The Homogeneous Machine

Thesis by

Bart N. Locanthi

In Partial Fulfillment of the Reguirements
for the Degree of

Doctor of Philesophy

Californiao Institute of Technology

Pasadena, California

1980

(Submitted Janvary 24, 19800

Wy

ficknoewledaements

In the course of acknowledging those who helped me in
formulating this theslis, I would be remiss in leaving out
wy mother and father who so profoundly influenced my early
developrent and exercised my mind,

I algo owe a great debt to Rod Serling, Joseph Stefano,
Gene Roddenberry, and John Wayne, whoese presence through
the media kept me company as a child, and Isaoc Asimov,
Robert A. Heinlein, and Larry Niven, who captivated my
imagination as an adult,

fnd lastly, I wish to extend my thanks to some of the
people that made my stay at Coltech so rewanrding:

te Sally PBrowning and Jim Rowson, with whom I shared many
interesting projects, discussions, and experiences,

to Ivan E. Sutherland, who taught me how to sift through
ldeas,

to Carver A, Mead, who made me think and dared me te act,

and, most importantly, to my thesis advisor Chuck Seitz,
whose endless patience with my slow progress and whose
houndless enthusiasm for new ideas and adventures
encouraged and guided me,

The research decribed in this thesis was sponsored by the
Defense Advanced Research Projects Agency under contracts
#NO0OL23-78-C~0806 and #N0004£4-79-C—-0597.

"'.L.l.l"

The advance of semiconductor technelogy is bringing about
rapid changes in the scale and performance of integrated
systems, thus also in their economics and potential
applications, The highly wvisible and readily quantified
changes in measures such as the number of transistors are
nccompanied by more subtle but increasingly significant

shifts in fundamental relationships affecting system
design. Specifically, as transistors become smaller,
faoster, and lower power, the wires used to interconnect
them are becoming slower. These shifts, along with the

challenge of wmanaging the complexity of designs with
millionsg of switching elements, are forcing a new loock at
alternative computer architectures which use ensembles of

computing elements under restricted and regular
intercoennection,

This thesis addresses the problem of erchestrating many
computing elements in the performance of general-purpose
computations, There are three major obstacles in the way
of this goal, First, it must be possible te express
pregrams in a notation that allows concurrency to be
discovered and exploited, Second, it must be possible to
map computations onto a physical structure for execution by
multiple computing elements, Third, such computing
elements must be provided rapid access to storage while at
the same tTime avoiding contention,

This thesis presents a scheme which automatically detects
and exploits concurrencies in computations expressed in an
applicative subset of the LISP programming lanquage. The
mapping of numerical and symbelic computations onto array
and tree structures is also investigated.

This thesis approaches the design of multiprocessor systems

as o problem in bandwidth reduction. To this end, the
cencept of a multi-level cache is introduced, The
discussion culminates with a description of a multi-level
LISP system implemented on a tree of processors, This
implementation provides each processoer with a superset of
the address sgpace of its liImmediate ancestor, Memory

allocatien and garbage collection for this wmachine are
described, and a simple example of its operation is given.

Table of Contents

Infr’OdUCTiOf’l O R I T R e O T T S R O O B O I I I A I R B S I I O)

i, Cencurrent evaluation of LIBP expressions

Functional prograMming . oo oo v oo eere
TheLISP 1anquﬂqe E 3 ¢ & ¥ & F ¥ T E & & & 2 ¢ & ¢ ¥ & F B & 3 % ' 4 0 ¥ ¥

Three deluxe examples ., . i i

2, Structures for partitioning computations
2.1 ArTOY SIPUCTUNES o v v e e ettt v s e
2.2 Tree SIruCTUPES vt a et oot
2,3 Wirability analysis of interconnect %tructuree

%, Memory bandwidth and contention in multiprocessors

3.4 Multi-level MEMOMY o ottt e o
3.2 Shared memory multiprocessor with cache ..., ..
3.3 HMulti-level cache and tree machine, .0 o
3.4 FEroadcast methodologles ..o
4, Structure of a multi-level LISP system oo
4.4 A hierorchy of address pOCES v vt
4.2 Data representatlions ... it
4.3 HMewmory management and garbage collectlion
4.4 A simple example v e i i e e i
4.5 Summary and critigue .o e e e s
APPENndLX v e e e e e e e

e A A= 1 - - S

$.4

1.2

1.3 Hechanisms for concurrent evaluation
$.4 When is it Wworth L1727 0 e i e e ittt
1.5

.

¥ I4S

2 I64

.. B
.. 82
t '88
93

II?B

405
407
JA40
A
149
423

128

L4134

[EN
[N

~e
237

PRI RCPRERONS O

™Y
23

)
M o

3 R

R I - L R AT

i
£ Ol

O DO GE OO G
S Ut b GEPQ e

N DGR e

L DD

List of Fiqures and Tables

Evaluation trace for (NORMZ 3 4) .t r. 20

Array MachiNes v v i i e e e A6
Tree of procedure activations

Paneh—o0fF i s e e . 58
Simulation S-tree on a binary tree ..., v ..59
Exponential WasSte ...t i e bl
FFT butterfly computation ... i anrrias . bb
=D interconnect STPUCTURES o v v vt n et sr s b7
2~D interconnect SIPUCTURESE v i sttt 08
I=tree In Z-SDOCE vttt et e 7Y
Recurslve STarS .ottt ettt ser s 78
Coenstruction for d‘1 2 .74

Constructrion for du L
Squaring a Circle v i i i s el P27
Hierarchical construction of a 4{-D hypercube77

Shared memory multiprocessor P - .

Bandwidth relationship of devices83
Typical multi-level MemMOry SYSTEM . v oo, B8
A continuum of cache performManceovvvion v B6
Shared wmemory multiprocessor with cacheB9
Multi-level cache ... i i iei et B9

(Multiple head)-per—track disk, 403

A node in a multi-level LISP tree machine . .. 108
LISP data object i ettt aaitd
Representation of "ASCII"™ e 444
Representation of NIL ., v I S ¥ 1
Time history of multi-level cache120

Introdugction

The changes breught about by the rapid advance of
semiconductor technology are both guantitative and

gualitative.

The guantitative changes are the highly visible and

spectacular improvements in the economics of semiconductor
devices, by now an expected, seemingly daily tradition,
The result of these changes is of course that the same
function will be made smaller, faster, cheaper, and lower
powar temerrow than it is teday,

fis more complex functions are put on the "hit list" of LSI
technoelogy, people are wondering to what uvse the technology
can ultimately be put, & favorite quip asks what IBM will
sell for a million dollars once it becomes possible to put
a System/370 on a %10 chip.

The increasing anxiety over just what to do with all those

transistors is part of 1the gualitative changes brought

about by advances in LSI technelogy. fs people realize
that building a wmillion bit memory chip is really just a
good way of net wusing 999,999 transisters at o time
[Butherland771, <they have 1o sit back, fold their clammy
hands, and wonder what else to do with <the millions more

transistors soon to find their way onto individual chips.

Unfertunately, increasing density and speed are not the
only parts of the L8I story. Amidst all the woenderful news

about density, the sad fact is that wires are getting

slower . As the fundamental limits of semiconductor physics
are approached, those tiny, fast devices have less and less
drive, wires get thinner and flatter, and propagation times

are more and more dominated by diffusion delavs [Seitz79]1.

("You wmean signals won’t go at the speed of ligh anymore?")
Thise development puts an increasing importance to the

concept of locaglity.
What, then, to do with all those transisters?

The concept of multiprocessing dates back to the early days
of computers, With the realizatien that it wmay soon be
practical +to incorporate literally thousands of computing
elements into one system, the subject of wmultiprocessing
has been pursued with renewed vigor, Predictably,
special-purpose multiprocessors have been proposed and
occasionally built, wmostly Ffor signal processing or some
simple forms of numerical analysis where brute parallelism

can be put to good use,

jThie thesis takes a different emphasis, that of general
\purpose computation, The <focus of this thesis is the
orchestration of many computing elements in the execution
of “useful" programs.: Implicit in this goal is the hope
that many computing elements can perform with wmany times
the “power” of one computing element. Also implicit is the
hope that “useful" programs are among those that wmany

computing elements can perform with such power,

There are three major obstacles in the way of achieving
this goal, First, it must be possible to express programs
in a notation thaot allows concurrency to be discovered and

exploited, Secoend, given a program that can be executed

concurrently by several computing elements, these computing
elements wmust be arranged so that the computation can be
distributed effectively. Finally, given a programming
noetation and an arrangement of computing elements that
distributes control of o computation effectively, storage
resources and interprocessor communication must be managed
so that computations by the individual computing elements
can proceed relatively unimpored by the effects of their

physical separation,

These three problewms are interrelated. With the
realizatien that cewmputers are in foact physical systems
sub ject to the constraints of physics, it is important to
understaond the physical implications of the use of a given
programming notation. Similarly, given that a computation
may be performed on physically separate computing elements,
the concept of ‘"global data® wmaoy be worthless, and this
conclusion should be reflected in the programmling notation.

In +this thesis I attempt to treat the problems of notation,
intercennect, and resource management individyally,
However, each discussion should be taken in the context of
the other tuwo, as the lssuves involved affect more than one
area at a time., The reader is thus beling asked to swnllow
a complete story, aware that each level of the house of
cards is necessary for the support of the rest.

Chapter One

Concurrent evaluation of LISP expressions

This sectlon describes a proegramming notation and a
methodology fer wusing it such that concurrency may be
detected and exploited easily, 1In doing se I am aligning
the discussion with the school of thought that advocates
functional programming, My view is that peeple can think
in terms of functional programming, As I will attempt to
show, functional noetation provides a convenlent wmiddle
ground fer the expression of computations as well as the
easy discovery (by machinel!) of concurrency in computations
s0 expressed, The work of Davis [Davis781 and ethers
suggest that concurrency can be detected in computations
expressed Iin mMore conventioenal (procedural) netations, a
much harder task. Since this thesis ls primarily concerned
with the machine, the mechanisms described and the examples

chosen will be at the level of functional programming.

1.4 Functional programming

Algoerithms are traditionally expressed as o sequence of
steps, or precedure, by which a particular computation may
be performed,. Such descriptions are knewn as procedural
descriptions. In order to get something done, one follows
a procedure which describes how that semething gets done.

Cooking recipes are examples of procedural descriptions.

In fact, the bias toward procedural description pervades a
great deal of human culture. Why this bias has caorried
into computer programming is less significant than the fact
that it has, The result is that people generally program
as if the computer wused a pencil and paper and stored
calculations in little named cubbyholes. Our procedunl
bins even shows itself in our terminology. The term

scratchpad storage is a prime example,

An alternative to listing the steps by which a computation

may be performed is to describe the answer., & much-used

example ("much-used"” 1is wmuch said, by the way) is the

facterinl function
facterialind = 4 ¥ 2 % 3 % .., ¥ (n—4) % n

which can be computed in a sequence of steps as in

o do

pot s P
H 3% ~
~ 3

f
f

e

or defined recursively as

i}

facterialin] = if n == 0 then i
else n ¥ factoeriallin-11;

The latter description is a functional one because it
describes whaot a facterial is, whereas +the former is a
procedural one because 11 shows how to compute a factorial,
It is of course possible to compute a factorial from the
functional definition, though the process of doing s0 may

strike some people as "inefficient",

Nevertheless, the functional description of facterial

mianages to get the essence of the ldeq acress without

worrying about the detalls of assigning values and
sequencing computations, By contrast, the procedural
description leaves nething to the imagination, and in doling
s0 closes off avenues for the discovery of concurrency.

Sermonette: As I have pointed out before, work has been

dene to discover concurrency in procedural descriptions of
computations., Perhaps the term should be ‘“recover" rather
than “discover", since the wmajer part of the task is
filtering out irrelevant details put in because of the
demands of procedural description, Programming 1is hard
encugh, but when the programmer is forced by convention to
specify detail that is 1later to be discarded in the
interest of Tdiscovering" concurrency, effort wmust be

wasted., End of sermonette,

" The central theme of the functional pregranming

methodology, that of describing the answer, is generic to

the applicative style of preogramming that LISP shares with
the so-called greduction lanquages (Backus?781 and eother

studies of recursive programming techniques [Burge?51,

While applicative notations wmay differ In syntax and

semantics, they all possess a property known as referential

transparency, which among other things insures that

execution of algorithms expressed In such notations will

not resuvlt in side~effects., This absence of side-effects

is essenticl to the task of discevering concurrencies in
computations, hence +the renewed interest in functional

noetations.

The reader should be cautioned that functional programming
is not simply expressing computations in the most general

Means possible. Rather, the practice of functional

programming entails taking a different point of view from
that taken in precedural programming., For example, one may
know the procedural steps for lLnverting o matrlix using
Gaussian elliwmination, but how can he describe what the
inverse of a matrix looks like? The obvious answer is
Cramer?’s Rule, which wunfortunately involves a tremendous
amount of computation (0(n!)) as compared with the O(ns) of

Caussian elimination.

In order to express Gavssian elimination functionally, one
first noetes that the process invelvas gsuccessive
transformations of the original w@atrix, Following this
observation comes the description of what these
transformations invelve, and so on, The eventual result isg
o dual to the standard procedural description of Gaussian
elimination, as shown in an example at the end of +this

chapter.

Until the change in viewpolint 1is mastered, generating
functional descriptions can be difficult. Interestingly
enocugh, since computer programming is an acgquired skill, a
student whose first exposure to programming Ls through
functional notation will not have such difficulties. The
assertion here is that understanding functional notation is
noet solely a property of computers., With this in wmind, I
will wuyse the LISP language as o vehicle for illustirating
functional programming and the goodness deriving from its

use ,

1.2 The LISP lancuage

LISP has been arocund since the early days of programming

languages as we know them today (or, as Perlis calls them,

FEAPP: FORTRAN, BASIC, Algoel, PL/I, and Pascal). Named
after its supposedly original purpose, LISt Processing,
LISP eéenjoys a loyal, bordering on fanatical, following of
enthusiasts who revel in its power and flexibility,
Indeed, the protean nature of the language has allowed Lt
te survive nearly two decades of vse, modification,
extension, and other forms of abuse from the research
community essentinlly unchanged frem lits original form,
From its inception, and still todoy (49808), LISP ies the
standard language of the so—-called értificial

Intelligentsia., LISP is a neat language.

By now, LISP has S0 Many forms, dialects, and
implementations that it can hardly be c¢alled "a®
programming language, While this may resvlt in some

confusion when the single word *LISP" is not sufficient to
specify what one is thinking ebout, it allows the author
considerable freedom in saying just what be means by LISP.
This glves me the opportunity to define a LIBP-1ike
functional programming notation and refer to it as "LIGP",
even though it is actually only that subset of most LIGP

syatems which is functionally pure.

To the extent that a specification of my "LISP" will be
required and its basic concepts need to be related to the
central theme of this thesis, a short description is
provided, However, the interested reader is referred to
the superior dlscussions by Allen [Allen?781, Berkeley
fBerkeleyb4]l, and HMcCarthy [McCarthyéS]l. A& recent special
issve of o personal computing magazine [Byte79] provides an
excellent introduction to LISP and several perspectives on
its use, The following discussion is wmodeled after, if not

plagiarized from, a discussion by Elson [Elson731.

LISP is set apart from the Tower of Babel of computer

languages in three major ways:

i. the representation of all data as symbolic
expressions (S—expressions)

2, the control structure of LISP

3. the ability to represent LISP programs as
LIGP data structures

1.2.4 S—-expressions

In LISP, all data is represented as S-expressions. An

S-expression is elther an atemic symbol or a pair of

S-expressions., Atomic symbols correspond to what in other

languages are called tokens or identifiers. For example,

the word “"FOO" is an atomic symbol, Numbers are also
considered atomic symbols, The atomic symbols NIL and T
are permanently defined and are generally used to denote

falsity or truth,

The definition for S-expressions is recursive. That is,
data structures of indefinite size can be constructed from
collections of GS-expressions and atoms, Some possible

S-expressions are shown below:

& atom

(6 . B painr

(A, BY . (C , DN pair of pairs
(A . (B ., (C ., NIL list

() = NIL empty list

Unbalanced structures dare used so often in LISP <that a
shorthand for list structure is used almost %o exclusion of

all else, The following S-expressions are identical:

-4 -

(A . (B . (C . NIL)) = (A RBC) = L
B
C N
Being so0o often wused, 1list notation can sometimes be
confused with det notation. As loeng as the difference
between (A B) and (& ., B} is understood, there shouldn’t be
any problems,

A = (AB)Y £ (AL B) = //N\\

A B
E NiL

The formal definition of LISBP includes only five elemantary
operations for operating on S—expressions. The most basic
operation, and the one that reflects the philoesophy of LISP

most clearly, 1is the construction operater c¢ons. Cons

takes two S-expressions as arguments and creates a new pair

containing them, returning a pointer to the newly created
ob ject.

D

conslA,Bl = (A . B)

consif,conslB,NILI]

L]
>
bsd
St

#

\

B WNiw

Cons sole purpose is to create new structures from existing
ones, It is the only means in LISP of doing so. Cong does
not destroy or modify existing data; such operations are
net possible in LISP, (This marks my first departure from
conventional LISP usage., If you know about prplaca, rplacd,
and setg, you can forget about them here. If not, don’t
worry ~ funny names like that can’t be useful anyway.)

The philosephy behind c¢cons is the maintenence of an
illvsion, the illusion being that of an infinite quantity

....i i...

of starage for S~expressions, The wuser is neither
informed, nor does he care, where the storage for a new
pair is obtained., A1l that matters is that sterage can be
ebtained whenever it is desired. In practice, this
illusion is maintained with a finite quantity of storage by
detecting when old S-expressions are not being used dand
recycling them, A1l this happens avutomatically, so the

user need not worry until he peally runs out of storage.

ficcoempanying the c¢onsg operator are the twe gelection
operators car and cdr., Each operator takes a pair as an
argument and returns one of the elements of the pair., Car

and cdr of atomic symbols are undefined.

carl(a . B3l = &
cdria ., BY] = R
carl{a B)I] = A
cdri(A B)] = (B) = /N
B NiL
carfcdri(a BY1] = carl(B)) = ER
carlAl = undefined
Note that the gdr of a list is still e list. The names c¢ar

and ¢dr, artifocts of the IEM 709 computer on which LISP
was first implemented, provide a convenient shorthand for
commonly wused combinations of the selectien eperators. The
trick is 1o coellapse a serlies of car’s and c¢dr’s into a
C.,.r Wwith the approepriacte n’s and d’s.

cadrl(A B C)¥] = carlfcdrl(a B L)1) = carl(B)1 = R
caddr{a B C)] = carlcdricdri{a B Y111 = C
caarfd(a))l = carlcarl({A))1] = carl{aA}]l = A

Two predicate operators are provided for testing preperties
of S-expressions. Egq compares tWwo atomic symbols for

equality, Egq is undefined for non-atomic arguments,

eqgla,Al T
eqla,Rl NIL
egla,(a . BY1 = undefined

oH

D
ey
L]
x

tells whether an S-expression is an atomic symbol or

o
<«
~+

atomial = 7T
atomi{a ., B)] = NIL

From these five operators, all computable functions can be
derived, For convenience, wmany more are uvsually provided

for doing arithmetic and so on.

1i.2.2 Control in LISP

Aside from functional notation, the only contrel structure
of LISF is the conditional expression, The form of

conditional expression is exceptionally simple:
[pi - ed; p2 —> e2; ... 3 pn - enl

works just like the Algol cenditional expression

if pi then el else if p2 then e2 ...
o else if pn then en

The predicates p are evaluated in sequence until one is

found to be non-NIL, The corresponding expression iIs then
evalunted and returned as the result of the conditional
expression, The wvalue of a conditional expression s
undefined if all predicates evaluate to NIL, In practice,
this is seldom found to be @ concern, as the last predicate
ef a conditional expression is wusvally T, which is
definitely non—-NIL,

—13_-

The notation for conditional expressions is illustrated in
the following example of a function egual which compares

two S—-expressions for sameness,

eauvalix,yl = latomixl -3 [atomiyl -> eqlx,yl;
T -» NILI;
atomiyl -> NIL:
equallcarixl,carfiyll
-% equalicdrixl,cdriylly
T ~» NILI

Mete that functione are inveked in exactly the same fashion
as primltive operators. Net only is this property absent
from the FBAPP languages, it is alse wmissing Ffrom the
syntactically sugored functional notations of Backus et al
[Backus?781., Wherens the manuvals for other languages have
SYntax descriptions, type definitions, and porameter
passing modes, the manual for a particular LISP system is
the 1list of functions already defined. 8ince LISP has no
syntax, what else can there be?

When a LISP function flei,e2,...,enl 1is invoked, the
elements in the argument list are evaluoted and bound +to
the formal parameters of the function £. The function body
ie then evaluated in the context of these new bindings,
Mowhere in the definition of LISP is the order of
evaluation of the arguments specified, nor does it matter
since (i) they are all evaluated prior to the evaluation of
the function body, and (2) the evaluation of one of the
arguments cannot result in side-effects that could change
the result of the evaluation of any of the other arguments,
This is where strict adherence to functional programming

pays off,

Prefundity: The arguments to a functlon in LISP may be

evaluated concurrently. The sole seguencing requirement of

_14...

function evaluvation in LISP is therefore that the arguments
to a function must be evaluated before the function body

can be evaluated., End of profundity.,

As more details of LISP operation are revealed, it will
become clear that even this sequencing requirement can be
relaxed., For now, observing the restriction aos is will neot

be troublesome,

The LISP analogy to sequential statements in the FRAPP

languvages is functional compesitien. The sequence

can be replaced by the composition
ciblallll

where ¢, b, and g0 are defined as functions rather than
statements, The bunched up parentheses at the right of the
composition iLllustrates a Familiar phenomenon which has
earned LISP the alternate acroenym of Lots of Irritating

Single Parentheses,

i.2.3 Program is datn

LISP fanatics will tell you that the ability to represent
LISP pregrams as LISP data structure alloews a program to
create another program and have it executed. This is of
course true, but the impact of "program is data" reaches
farther than the abstractiens of Al research, It just

turns out to be wvery convenient to be able to store and

_..15'....

manipulate programs easily. Almost all LISP systems have
specinlized editor and ‘“prettyprint® programs that toke
advantage of the structure of LISP programs and make 1life
easy for the LISP programmer.

More ismportantly, being able to represent program as data
glves o new meaning to the concept of passing a function or
an unevaluated expression as a parameter, If a function
receiving such a parameter decided to print it, the actual
source code for the expression would appear! Since most
LISP systems operate from a uniform linear array of storage
cells, the act of passing an unevaluated expression wmerely
involves the creation o¢f a new pointer to an old data

structure and passing the pointer.

Important observation: If two functions do noet operate out
of the same memory, passing an unevaluated expression from
ene to the other must invelve some copying of the program,
that is, the data representing the program. Since program
and data are represented the same way, a scheme which
handles the distribution of data in a wmultiprocessor LISP
system will alse handle the distribution of program. This
becomes especially significant when the sizes of programs
exceed the storage capacity of individual processing

elements which must execute them, End of important

shservation,

The ability to represent program as data also wmakes it
convenient to¢ illustrate the inner workings eof o LISP
system simply by wrlting it in LISP., This I will do in
order +to show hoew concurrent evalvation schemes differ from
erdinary evaluators,

...ié...

The wmapping from functional notation into the standard
S-expression form of LISP source code is wvery simple, A
function invocation is simply a list with the function name
as the first element and the argument list following,

atomlal --> (ATOM A)
equalix,yl --> (EQUAL X Y)

Capitalizatien inslde S-~expressions given here can be
interpreted s o reminder thot S-expressions are meant to
be read by machine and are somehow less “refined" than the

egquivalent functional notation,

Conditionaul expressionsg take on an appropriate form:

Ipi -> edi; p2 -y €2; ... 3 pn —lenl --3

(COND (P4 E&) (P2 E2) ... (PN EN)
where COND signals the beginning of a conditional
expression, Note that conditional expressions take on the

form of a Ffunctien invecation, while the reles for
evaluvating conditional expressions are different from the
rules (or lack thereof) for evaluating functions, COND is

a so-called gpecial form, or a function whose arguments are

not evaluvated, HMost LISP systems allow the vser to define
special forms, wmostly Ffer the purpose of defining new
control structures,

The ieplementation of special forsus ils Lllustrated in the
function evagl which evaluntes an expression ¢ in the

environment a!

evalle ,al = [atomlel - cdrliassocle,nll;
atomlcarlell -
fegicarfel,QUOTE] -} cadriel;
eqlcarlel,CONDI -2 evconlcdriel,al;

...i’?...
T =~ applylcariel,evlisfcdricl,al,all;
T = applylcariel,evlisicdriel,alall
where

associx,nl = [equalix,caarlall -> carial;
T =~ assccix,cdrialll

Variable bindings (the environment) are stored on an

gssoeciation list as a list of pairs. The function assoc is
used to search such lists. QUOTE and COND are the special
forms defined in this version of eval, 6&n S-expression of
the form (QUOTE FOO) evaluates to FOD, while the evaluation
of conditional expressions is passed to evcon. If the
first element of an S—-expression is not immaediately
recognized, 1t is assumed to be o function which is then

applied to the argument list evaluated by evlis.

#

gveonlc,al fevallcaaricl,al -} evallcadaricl,al;

T -» eveconledricl,all

#

evlisll,al [nelllll -3 NIL;

T =) conslevallcarill,al,eviisicdrill,alll

where

nullixl = eqglx,NIL]

Evcon evalvates until it finds a non-NIL predicate, while

evlis evaluates until nothing is left.

None of the functions defined so far does anything to alter
the environment @ in which expressions are evaluated,
Binding formal paorameters to actual parameters is a crucial
element of function evaluation. The function pairlis takes
a list of variable names x and a 1list of evaluated
expressions y and adds new bindings to an dssociaotion list

g‘ ¥

pairlisix,y,al = [pulllx] -> a;
T - conslconslcarixl,cariyll,

~i 8-

palrlisfcdrix),cdriyl,alll

Formal parameters are specified through Church’e lambda

et morr s e S

notation [Church4il, For example, the function

normelx,yl = sqrilplusitimesix,xl,timesly,vlll

can be represented as the binding of the atem NORMZ to the
lombdo-expression

(LAMEDA (X Y) (SQRT (PLUS (TIMES X X) (TIMES Y Y)>)))

Lambdao~expressions are simply listse in which the first
element Is the atom LAMEDA, the second is the list of names

te be bound to the elements of the parameter list passed to

the function, and the third is the expression to be
evaaluated in the context of these bindings (the body of the
function). Such lambdao-expressions are recognized by the
function apply which also recognizes the primitive

operators cons, car, cdr, eq, and atom.

applylifn,x,al =
{atomifnl -
[eqlfn,CONS] - conslcarixl,cadrixll;
eqlfn ,CART -} caarlxl;
eqgifn,CDRI - cdarlixl;
eqlfn,EQ]1 -» eqlcarixl,cadrixll;
eqlfn ,aTOMI ~)> atoemlcarixll;
T =% applylevalifn,al,x,all;
egqlcarifnl,LAMBRDA]l -> evallcaddrifnl,
pairlisicadrifnl,x,all
T - applylevallifn,al,x,all

- With the definition of apply, a complete linterpreter for
LISP has been given. More impressive than the conclseness
of the interpreter is the shock one receives when he first
vnderstands how it works, because there 1is wvirtually

nothing geing on besides creating new variable bindings and

replacing expressions by other expressions., (This is as it

should be, since by the time the interpreter starts working

.

on an expression, the programmer haos already described the
answer} the interpreter merely fills it out.)

In the course of evaluation, an expression gets handed back
and forth between eval and apply, vunpeeling a 1little at
gach step. This wutval recursion is the "clock" by which
the interpreter runs, as shown by the evalvation of

norm2l3,41 in figure 4.4,

With the simplicity of the LIS interpreter comes another
benefit from "prograom ils data", With w6 few basic
elemMents, the individual parts of evaluation are easily
separable, and wmajor changes In behavior can be wrought
from changing key interpreter functlions - and they’re all
key interpreter functions, Indeed, wmuch of the basis for

this thesis comes from changing the way gvlis works,

i.3 Mechanisms for concurrent evaluation

1.3.1 HMaking evliis eaqger

The sole function of evlie in the LISP interpreter is the
evaluation of argument lists, Se far as the rest of the
interpreter is concerned, this function can be changed so
that evlis wmerely arranges for the evaluation of argument
lists., @A simple way of doing this is for eylis 1o take
responsibility for evaluating the first element of an
argument list and hand the rest to an ewvlis in another
processor., When both evaluations are completed, they are
consed together and returned in the normal fashion. This
operatlion necessarily invelves some sequencing and is

illustrated in an Algol-like notation

(NORMZ2 3 4)

-3 evallie,al
e: (NORMZ 3 4)

a: (... (NORM2
-3 applylifn,x,al
fn: NORM2

x: (3 4

a: (... (NORM2
-3 evalle,al

e: NORM2

o ¢ ... (NORM2

-7 applyifn,x,al

fn: (LAMEBDA (X Y)

X (3 4)
1 { ... (NORMZ

~> evalle,al

e: (SERT (PLUS (TIMES X X) (TIMES Y Y

ar (X . 3) (Y
veo (NORMZ

$

v

t

13

(LAMEBDA (X Y) (S@RT

(LAMEDA (X Y) (BQRT

(LAMEDA (X Y) (SERT

(SERT ... M)

(LAMEDA (X Y) (S@RT

4)
(LaMEDA (X Y) (8QRT

%

IDDD

3

31V

IDDD

2)))

Evaluatlon trace for (NORM2 I 4)

figure 1.4

evlisll,al =

Enulllll -> NIL;

eageril]l -3
[pair p;
p.cdr 1= MAIL,
spawnlp,cdrill,al;
p.car = evallcarill,al;
while p.cdr == MAIL do [1;
return pl;

T ~) conslevallcarill,al,evliislcdrill,alll

where spawn is defined in ancother processor to mean
spawnlp,l,al = Ip.cdr 1= evlisll,all

I1f eagerll is non-NIL, the first thing that the new gvlis
does is spawn an evaluatien in oncother processor, Having
done that, it evaluates the first element of the argument

list and waits for the spawned evaluation to return an

answer. If eagerll is NIL, evlis functione as before.
Remark: The wvalue of eagerll is assumed to depend on
whether an additional processor is available or not, The

point to remember is that the new evlis, an eager evlis,

returns the same resuvlt as the ordinary evlis regardless of
the value of eagerll, which wmight just as easily be the

coin flip function. End of remark.

The power of eager evlis is lllustrated in the following

contrived example of a function wmirrer which mirrors an

S-expression g:

mirrorisl = [atomis]l -) g,
T =) conslmirroricdrisll,mirroricartslll]

Eager _evlis causes the two arguments to cons to be

evaluated concurrently, By the nature of the example, the
evaluvatiens of these arguments requires roughly equivalent

amounts of non—trivial work. Concurrent evalutation thus
reduvces the time to mirror a tree of n leaves from 0(n)
time to O(logn) time., Wouw!

The new gvlis clearly satisflies the condition of an earlier

profundity, That is, all arguments to a functlon are
evaluated before control is passed to the function. The
concurrent evaluvations are synchronized by a while-loep,
As noted earlier, this synchronizatien is not strictly

flecessary.

Suppose the while-loop is removed from the new evlis. It

then becomes possible for an incomplete argument list te be
returned from gvlis. In all cases, the first argument may
be accessed, but any premature attempts to access the rest
of the argument list results in following a pointer to
MAIL . Once followed, such a pointer cannot be retraced, s

some kind of checking is in order,

The requisite form of checker comes in the form of a

suspicious cdr

cdrixl = [while x.cdr == MAIL do [1;
return x.cdrl

Synchrenization is deloyed wuntil the first attempt to
follow a cdr pointer that points to MAIL., As will be shown
in later examples, many functions can initiate substantial

activity with an incomplete argument list.

Unfoertunately, as the interpreter is presently defined, the
firet attempt 16 access the whole argument list eccurs in
pairlis as new variable bindings are being added to the
environment, This problem is an artifact of &) the

decision to define an interpreter rather than a compiler,
and 2) the particular way in which the interpreter has been
presented., The first point has been important to the
development of the sub ject matter, and will continue to be
w0, The second is a result of wanting to present the
interpreter clearly. The reader should be able to convince
himself that o different Interpreter can be deflined in
which the functions of evlis and pairlis are combined.
(The author has in fact written and tested such an
interpreter, Unfortunately 1t isn’t pretty enough to be
included with the text. See appendix.?

£$.3.2 A lenient cons

agnother source of concurrency comes from coensldering the

basic philoseophy behind eager evlis. That is, te return a

result whether or not the parts of the result are
completely evaluated. In LISP the basic means of producing
results is gcens. If cons can be made to preduce results
without bethering te check that the parts are evaluated,
synchronization can be delayed wuntil the parts of the
result are needed., How are results taken apart? With car
and ¢dr, of course, |

Friedman and Wise [Friedman761 define such o gons and call

it a lenient cons. It is easily incorporated into the

interpreter by considering cons toe be a special form rather

than a primitive operatoer. Invocations of ¢oens are thus
recognized in eval rather than apply:

evalle,nl = [atomlel -> ... ;
atomlcarlell -3
feglicar{el,QUOTEY -> cadriel;
eqglcar{el,COND] -5 evconle,al}

...34...

eqlcarfiel,CONST -
leonsicadriel,caddriel,al;

T =) applytl ... 1;
T =% applyl .., 11

where lcons (in this case an gsymmetrical lenient cons) is

defined in a manner similar to the eager evlie:

leconsix,y,al = [pair p;
p.cdr = MAIL;
cepawnip,y,al;
p.car 1= evallx,al;
return pl

and c¢spawn is defined in another processor as similar to
gpawn, invoeking eval instead of evlis:

cepawnlp,e,al = {p.cdr := evalle,all

As wlth eager evlis, synchronizatien is provided by

syspicious cdr. Keller vuses a symmetrlc form of lenient

cons which requires car to be wmade suspiciovus as well
{Keller781,

Interestingly enocugh, +the old contrived example of the
mirror function serves as an illustration of the way

lenient cong works., As with eager evlis, the evaluation of

conslmirroricdrisll,mirroricarislll

Spawns separate subprocesses to evaluvate the twoe arguments.
However, a symmetric lenient coens will return with an

answer almest immediately. Only when the result is
examined wlll there be any synchronizatioen. An analogy due
to Hewitt is that of +trading in commodities futures,
Strawberries can be beught, traded, and sold, but the only

time they have to exist is when they are eaten [Hewitt771!

By returning a result, apny result, as fast as possible,
lenient cons is arqgued not only to be an effective means of

discovering cencurrency, but also a mechanism for
pipelining processes 1In separate processors, Although

lacking in generality (nothing special would happen under

lenient cons if coens was replaced with plus in pirroer),

lenient cons does represent a valuvable concept in

discovering and distributing concurrency,

1.3.3 Concurrent evaluation of conditionals

I have focused so far on schemes which partition work which
is known to be wusetful, However, there are cases where
anticipation of work to be performed can speed up the

evaluation process.

In the course of evaluating conditional expressions, each
branch is preceded by the evaoluvation of some predicate.
Certain types of programs such as compilers, interpreters,
and geal-directed A1 programs often have conditional
expressions Wwith several predicates, the first of which s
seldom true, Little advantage can be gained from
evaluating simple predicates in parallel, since each takes
g0 little time. On the other hand, complicated predicates
involving severnl levels of recursion are prime candidates

for evaluation in parallel.

An appropriate (eoger) version of gvcon is easily defined.

eveonlc,al =
feagerll -2
{pointer x;
% 1= MAIL;
forkix,cdricl,al;

...2&....

if evallcaaricl,al then [
killll;
evallicadaricl,al;
1

else [
while x.cdr == MAIL do [1;
return x;
1

1

T ->
levallcaaricl,al -3 evallcadaricl,al;
T ~Y eveonlecdricl,alll

where fork is deflned in another processor to be

forkix,c,al = {x 1= evconic,all
and kill recursively terminates all child processes, Kill
is included to stop activity which is known to be

pointless,

Evaluating conditional expressions in this way represents a
kind of gamble. The benefit from evaluating something
before it ls necessary wmust be welighed against the
proebability that L1t won’t be needed. Care must be taken to
avoid investing large fractions of the resocurces available
in work that is not needed. In addition, due to the way
conditionals are generally weitten, parallel evaluation of
conditionals wmay result in illegnl operations such as
dividing by zero or taking the car of an atom., These are
generally more catastrophic failures than those brought on
by eager evlis operatioens, Care would have to be taken to

insure these operations do net prove fatal.

Consider the following function gctsmart defined in terwms
of a conditional expression:

actemartiinl =
[matchlin,patterni] -2 replylin,responseil;
matchlin,pattern2l -) replylin,response2l;

]

matchiin,patternNl ~> replylin,responseiN];
T ~» nullreplyll]

If an egger evcon is unleashed on this functien, and if

invocations of match are costly, the proper response can be
initiated in little wmore than the time required for o

single match.

Unfortunately, very few LISP programs follow this pattern.
Even the most ambitious conditionals appear to be similar

te the form for interpreters;

Invllixl -> ...

atomlxl -2 ...

atomicarixll ->
feglcarix},FOOI - ...
eglcarix],MUMBLEY ..

Such conditionals hardly warrant concurrent evaluvation.
Worse wyet, premature evaluation of some of the predicates
invites disaster. It would seem that taking advantage of

an eqger esvcen would invelve considerable effort. Or

perhaps the few programs that could use It can be recoded

as functions operating on lists, as in

ithevallfirstonelpatterni,pattern2, ..., , patterniN],
quotelresponsed,response2, ..., , responseN]]

4.4 UWhen is it werth 112

In the previous section I presented several mechanisms for
exploiting concurrency., Each one taokes a task foellowing a
general pattern and transforms it to a set of subtasks that
can be evaluated concurrently. While It is certainly true
that such schemes in general detect and exploit
cencurrency, the benefits from doing so are not equally

prenocunced,

-2~

£.4,4 Tail recursion ve tree recursion

] good gxample ¢f the trade-offse invelved is tail
recursion, which ls the LISP analogy to iteration in other
languages, For example, the 1list reversal function (as

opposed to tree reversal) can be defined as

revill = revill,NIL]

revifa,bl = [nullial -3 b
T ~¥ revilcdrial,conslicartibi, bill

There is no benefit to be derived ¥from evaluating the
ar@uments to pevi concurrently, since they are s0 simple.
Further, each invecation of revi initintes only one wmore
inveocation directly, so there is no useful partitioening of
labor to be had,

As an intermediate example, consider the functioen mapcar

which maps a function £ onte a list of elements 1 defined

as
mapcarlf,1} = [nullilll - NIL;
T =) conslflcarill],mapcarif,cdril1ill]
Clearly, the tasks of evaluating flecarfilll and

mapcarif;cdrlill] de not require equal work. However, the
degree to which this is important depends on the complexity
of evalvating §f relative to the work inveolved in setting up
the next evalvation of §. We will call this latter
quantity the tail recursion work t. If the evalvations of

f can be performed by separate processors, the time to

evaluate mapcar on a list of length n is therefore

wWl(f) + n¥Xt

where w(f) is the work (time?) reguired 1o evaluate §,
This lis clearly better than the n¥(w(p) + 1) time reguired
to evaluote mapcar in a one~-processor system, Mowever, It
is possible that we can do better by avoiding the use of
tail recursion. The degree to which the effects of 1ail
recursion are noticed is determined by the ratio nXt/wi(f),

an alternative to the use of tail recursion is wmapping the
function onte o tree structure instead of o list., @An

approprintely defined version of the mapping function is

maplf,t] = [nullltl -3 NIL;
atoemitl -¥ FIL11;
T =y conslmapif,cartil,mapif,cdritllll]

Each evaluation of map invokes two evoluations of equal
work, as oppoesed to the unbalanced partitioning of mapcar,
I¥f each new invocatioeon can be glven to] separate
processor, the time to evaluate map on a tree contalning n

elements is
Wwi(f) + loginl)it

which is better, especially Ffer large n, but is hardly
worth the effort If w(f) is large enocugh to warrant
parallel evaluation in the first place.

1.4.2 Automatic vs programmer specified

The matter of generality was also brought wp during the

discussion of lenient cons. Fager evlis was seen as

somehow more general than lepnient cons, yet an expression
llke

-Z -

censicarixl,cariyli

hardly yearns even for the copabilitvies of lenient cons,

After all, spawning a process has to take a gooed deal more

effort than taking ftwoe cars.

& gliumer of an answer is provided in the implementation of
lcons, which is invoked from a new eval which recognizes
CONS as a special form, The new special foerm could just as
easily be LCONS, leaving the task of recognizing CONS back
in apply. Doing 1this would allow (or force, depending on
your point of view) the user to specify when he wants to

use a lenient cons and when he just wants to stick two

things tegether with an ordinary cong. It should be fairly
ecbvious to the user where computations are likely to be
time~-consuming, and LISP systems are interactive enough 1o

let one try out several possibilities quickly.

In addition to lcons, the uvser could be allowed to define

hie own extra-special forms ... or not. If he just wants

to define a simple functien without having to invoke the

whole mechanism of eoager evlis, so be it., Unfortunately,

this would involve some duplication ef function, as it

were, Starting with cons and lcons, we could have plus and

eplus, and so on, Cens and lcens are two different
functions, but all the other function pairs would differ
only in the kind of eylis they wuse, «hich is in turn

dictated by thelr usage in programs.

Perhaps the proper course is teo have the user specify when
eager evaluation is desired, A new special form could be

used to differentiate usage.

sumtreelt] = [atomlt]l =) ¢
T ~) eageriplusisumtreelcaritll,
sumtreelcdr(t]lil]

=34~

sumlistil] = [pnelllll -3 0}
T =) plusfcarill,sumlisticdr[1]111]

A new gvagl can thus be defined:

evalle,al =
[!.l
atomlcarlell -3
tl!l
eqicarlel,LCONS] -) lconslcadriel,caddriel,al;
eqlcariel ,EAGER]Y -) eevallcdriel,al;

where egeval applies a function 1o an argument list

e spntrteme it e

eevalie,al = applylcariel;ceviislicdriel,al,al

and eevlis is the previously defined eager evlis, gqgiven a

different name in order not to conflict with the original
evliise which is still around,

£.5 Three deluxe examples

1.%5.4 Huiksort

Guiksort is typical of the divide and conquer class of
tlgorithms ideally suited to parallel evaluation., It works
by first partitliening a set of elements to be sorted into
two sets, call them & and B, in which ench element of B is
greater than every element of A. The process is then
repeated on the tuwo sets A and K,

A classical implementation of guiksort in Pascal is as
follows:

....32..

type sortlist = arrayliinl of integer;

procedure quiki{min,maxiinteger; var aisortlist);
var middlesinteger;
begin
middle 1= partition(min,mux;al;
if middle > min+i then quik(min,middle-1i,a);
if middle (maox—-§{ then quik(middle+i,max,a);
end}

function partition(min,max: integer;
var at sortlist): integer;
var i, j,m,temp: integer;

begin
m 1= almaxd;
i = min; ji= max;
repeat
while (i <) j) and (alil (= m) do i 1= i+i;
while (i (> j) and C(aljl = m) do j := j-4i;
temp = alll; alil := aljl; aljl 1= tewmp;

until L = j;

afmaxl = alil;

partition = i}
end;

alil 1= m;

The best {(and expected) time for guiksert applied to an
array of n elements is O(nlogn). To achieve this it is
best for the switching element m to be the wmedian element
of <the array, In the algorithm shown m was merely taken
from one end of the array. This is fine if the array is
randem, but if the array already has some order to it,
partition will do o very lopsided job and the expected time
will be equal to the worst case time of D(ne). In the
interest of simplicity we wWwill merely note this fact and
continve the convenience of choosing ® in an arbitrary
Manner,

Another item of interest is <that guiksort as written in
Pascal maokes heavy use of array indexing for compare and
exchange operations, If the “cost” of performing a compare
er an interchange was proeportional te the distance between

3
the two elements invelved, gquiksert would be an 0(n~)
algorithm,

....33....

We can easily detect concurrency in this algerithm; after
nll It ig a divide and conguer algorithm, Clearly, the two
recursive calls to guik can be performed In parallel. They
both unfortunately operate on the same array, but by the
structure of the algorithm they eperate on wmutually
exclusive parts of the array, If the recursive c¢alls to
guik are partitioned out to separate precessors, and if the
problems of contention for shared memory can be overcome,
aquiksort would become an 0(n) algoerithm.

At this point the reader may be saying, "Who cares If we
can get a speedup from 0Od¢nlogn) +to 0O(n)? They’re both
roughly the same time, and it takes that leng to read in
the informotion from disk. Fesides, I never do any sorting
anvwayt® These points are well taken, The purpose of this

exercise ls to demonstrate the facility of discoevering

concurrency in algorithms expressed functionally. of
necessity We start with sinple textbook problems.
(Unfortunately, L don’1t know of any interesting

. 4 . .
non-numerical 0O(n ') algorithms, so0 we wWill progress from
simple textbook problems to mere difficult textbook

problems .)

A

quikil) = [atomIll -7 1;
T =% partitionlcarill,nil,nil,cdril1]]

partitionim,a,b,11 =
[nullll] -) conciquikial,listiml,quikibll;
greaterls,carilll]l -
partitionim,consicarill,al,b,cdril11];
T =) partitionim,a,consicarill,bl,cdrlllll

.Y/

Although it looks very different, it really is wmuch the
same algorithe, The major difference is that partition
actually generates the twe sets & and B separately from the
input set, Thus, there are no side effects and parallel

operations can proceed vnimpalred,

In the Pascal version of guiksert, we knew that the
recursive calls to guik could proceed in parallel becdause
we knew how guiksort behaved., That is, the two sets to be
sorted are always in different parts of the same array, A
gulck glance at the LISP wversion points this out
immediately, All other opérﬂtiona are easily seen 1o be

sequential In nature,.

Again, I point out that the functienal description of
guiksoert is not so much a procedure for sorting a list as a
descriptioen of what _the sorted list looks 1like. The

definition is concise and to the point, And, as in the

LISPF interpreter, there is almost pothing doing on.

1.95.2 é&n NP-complete program — The Traveling Saleswman

The NP-complete clasgss of textbook problems are exceedingly
expensive to so0lve exactly. NP stands for
non—deterministic polynomial; NP-complete problems can be
selved in polynomial time only by non-deterministic means.
That is, whenever there is a choice of paths to take in the
tourse of solution, the correct path is taken.
Deterministic solution of course requires the evalvation eof
each of these paths at each step ef the solution. This
expenential growth preperty forces the use of approximation

methods on those who actually want to use the results,

Hewewver, beling textbook problems, nobody is really
interested in solving thewm, Rather, they are used as

vehicles for studying computational complexity.

In a sense, then, the following example is a foanciful one,
However, it is wuseful in jllustrating the potential of
applicative notation for mobilizing and coordinating
computatiennal resources, 6és we shall see, attempting to
solve an NPF-complete problem con wmobilize wmany wmore
computational resources than are feasible te build,

This observation becomes more wmeaningful Lf taken in a
slightly different way. Recall that the mechanism for
spawning subtosks does so only If extro resources are
available., In the case of these NP-complete problems, we
can look wupon this characteristic as the ablility to make
vse of whatever is available, For example, If you have an
“intractoble” problem that requires 1012 operations, isn’t
it redssuring to know that vyour 104 processors can be
applied effectively to solve it in 108 time?

Browning ond Mead [Browning7?al outline the general lidea
for distributing NP-complete problems over a large number
of processors. Since exact solutions of NP-complete
problems are necessarlily combinaterial, why not simply
generate all pessible candidates for selution and plck the
best one? This technique is illustrated in the following

example:

"troveling salesmon — find the shortest path®
travellll = descendiO,nil,1,11

descendls,x,y,zl =
fnulllyl -) consls,xl;
nullizl -> nil;
T - minldescendIplusis,costicarixl,cariyll,

-36-
conslcarlyl,xl,cdriyl,cdrivll,
descendls,x,rotatelyl,cdrizil}

minlx,y) = [nulllyl - x;
greatericariyl,carixll -3 x3

T -» vyl
rotatelll = rotélcarill,cdrill]
rotilx;11 = [nulllll -3 x;

T ~-> consfcarill,rotilx,cdr{1111]

"an example distance function®
castlix,yl = absiminusix,yll

In the traveling salesman problem, we are faced with the

task of finding the shortest path that passes through each
city exactly once. The notion of distance between cities
can be generalized to that of the cost of arcs in a graph,
The more practical probles is amenable +to¢ approximation
through geometric anaolysis, and some approximations so

obtained are in fact quite good [Lewis78],

The algorithm shown solves +the problem by generating all
possible permutations of n elements (cities) and computing
their cost functions along the way, After they have all
been generated, they return through a #Ffliltering process
which selects that permutation with the minimum total cost,
There aore n levels +to the permutation process, and n2
eperations are required at each level 1o set up the
Computations for the npext level down, A guick glance at
the algorithm shows that the evaluations of descend, paired
up as arguments to min, are really the only eoperations for
which partitioning of effort is worthwhile, If «a
sufficient number (exponential) of processing elements
exist, this algorithm takes U(na) time, which is great if

you have money but are short on time,

...3'?....

1.9.3 Solution of a linear system of equations

Numerical éAnalysis is a peculliarly fascinating blend of
applied wmathematics and computer science. While there is a
familiaor satisfaction accompanying the design of a
"beautiful" algorithm, there ls also an overriding concern
for the "bottom line" — how fast the algerithm executes,
how stable it is numerically, etc. While +there is a
concern for algorithmic complexity, asymptotic measuvres are
not wused to determine the efficacy of an algorithm. Rather
than say Gaussian elimination takes O(nz) time, it is said
that the time complexity is 3n3/3 + n2 - n/3 Lisaacsonbél,
In fact, these expressions are uvsually broken down further

inte floating multiplications, divisions, and additions.

Certainly one reason foer this is the fact that people
crunch numbers in order to see the results. More important
perhaps is the scale of problems attempted and the
frequency with which +they are attacked., Whatever problem
lg being solved today, there are always bigger or wmore
complex proeblems on the shelf walting for the next
generation of faster computers, For example,
straightforward application of 1linear algebra to the
solution of Laplace’s equation in three dimensions yields a
problem whose complexity is of order n?, where n is the
size of the system along one of the dimensions, Fluid
mechanics people will be fairly happy when this kind of
problem can be comfortably solved for n=4i00. That’s 1014
fleating point operations, folks, and if the problem is not
Laplace’s equation but some non-linear subset of the
Navier-Stokes equations, this operation will be merely an
lteration toward the final sclution [NABA781!

—E

One strange aspect of numerical analysis ig the
non-hierarchic makeup of most problems, While one wmight
speak of the time required to solve a 100x400 system with
the same coencern a computer scientist refers to the time
required for a procedure call, the end problem usuvally
ilsn?t very many levels above simple matrix inversion,. The
numerical analyst may be interested in solving a $1000x1000
system or applying 400xi00 solutions as part of an
iterative process., Whereas a computer scientist might build
g many~-level hierarchy of procedures or data structure out
of simple components, the numerical analyst may be content
with nested do~loops and large wmulti-dimensional arrays,
Procedures are seen ag a wmeans of factoring out common

subtasks, largely in the interest of saving typing.

All of the above is by way of introduction to the ubiquity
of the solution of linear systems of equations, More
popularly called matrix inversion (and they gren’t the same
thing!). Coming from an engineering background, oene of wmy
early measures of the value of a proegramming longuage wWas
the facility with which I could wvse it to solve linear
systems of equations, Since my first introduction to LISP
I have remembered the admonishments of the instructor te

program by describing the answer, and wondered just how to
describe what the inverse of a matrix looks 1like. Before
geing inte that in detall, 1let me establish a reference
poeint by presenting the algoerithm in Pascal:

type matrix = arrayiiin,iinl of real,
vector = arrayliinl of real;

procedure sclvel(ntinteger; var a:matrix; bivector);
var i, j,k,piviinteger;

m,tireal;
begin

...3(?...

"forward elimination with pivoting™”
for i:=i to n-4i do
begin
"find plvot element”
plvi=i;
for ji=iti to n do
if abs(alj,il) > abs(alpiv,il) then pivi=j;
"perform exchange”
for ji=41 to n do
begin
i=ali, j1;
afli,jli=alpiv, jl;
afpiv, jli=t}
end;
ti=biil; blili=bipivl; blipivli=t;
"elimination step"”
for Ji=i+ti to n do
begin
mi=alj,il/alli,il;
for ki=il+i to n do
al j,kli=alj,kl-mkali,kl;
bl jl:=bl jl-m%biil;
end;
end;
"back substitution®
binl:=binl/alin,nl;
for i:i=n—-1 downtoe 41 do
begin
for ji=it+i to n do
bLid:i=blil-oali, jikbljl;
biili=blil/ali,il;
end;
end;

Solve is a good example of an algorithm well expressed in
do~loops., Perhaps 1it’s my cultural bias - this algorithm
clearly and exactly describes to me the process of Gausslan
elimination, lhat expressive power Is lost due to¢ the
verbosity of over—specification (who cares about keeplng
track of i, j, and k er is interested in how an exchange is
performed?) is compensated for by the famliliarity of array
indexing conventions and the pencil and paper nature of

designment statements,

Unfortunately, this exactness of specification gets in the

way of extracting concurrency from the problem. It seems

~40-

ebvious where we can find concurrency in Gaussian
elimination, but that is only becauvse of our familiarity
with it, Imogine being presented with this algorithe
without being told what it does, and the point becomes
clear. The indices 1, j, and k assume only ene set of
values at a time, so parallel execuvtion has to be directed
through wmultiple sets of indices, But wait a minvte, How
can we be sure that smashing alj,kl in ene literation
doesn’t interfere with ali,kl in some other iteration? HWe
can’t, except by detailed analysis of indexing patterns or
by advance knowledge of what the algoerithm is supposed to
do in the first place.

Sonme forms of concurrency go a lot deeper than
instantiation of do-loops. For example, lisn?t it clear
that the pivot element for the ilﬁ elimination step should
be known upen coempletion of the i--iél elimination step?
This faoct is not at all apparent from the Pascal
description of the algorithm, and putting It in 1lis a
nen—trivial re-uwrite,

During back substitution, it should be clear that the
solution eof blil] can be applied immediately to partial
computations of bl jl for j<i. If resuvlts are applied as
soon as they are known, the back substitution process can
be reduced to linear time instead of the quadratic time
normally required. Again, deducing this fact from a Pascal
program involves more anaolysis than I think is reasonable
te expect of a compiler.

With these points in mind I present a functional definitian
ef what +the solution of a linear solution of a linear
system of equations looks like:

~44-

"solution of system Ax=b"
xfa,bl = backiunziplforwardipivetlizipla,bll1111

"back substitution sweep®
backixl = backilcarixl,cdrixll]

backila,bl =
[nullibl -> nil;
T - substicarial,carlbl,backilcdrlal,cdriblll]

"solve for bLLYl in terms of bLjl, L<{j{=n"
substlai,bl,x] =
conslguetientiminusibli,
innerfcdriail,x11,
carfaill,
%1

inner{x,yl =
{nellixl -3 G
T - plusitimesicarixl,cariyil,
innerfedrixl,cdriyllll

“forward elimination without piveting"
forwardial =
[nulllal - nil;
T =) conslcarial,
forwardipivotlielinicarial,cdriallllll

"eliminate using first row"
elinmip,ml =
Inulliml —-> nil;
T =) conslrowdiviguotienticaariml,caripll,
cdripl,
cdarimll,
elimip,cdrimllll

"returns y-m¥x"
rowdivim,x,yl =
[nullix]l ~> nil;
T =) consiminuslcariyl,timesim,carlx11],
rowdivim,cdrixd,cdriyilll

"pivetr step”
pivetlial = pivilcarlal,cdrial,nill

pivilt,x,y]l = [nulllx]l =) consit,vl;
greatericaritl,caarixl] -
pivilt,cdrixl,congicarixl,vll;
T =) pivilcarixl,cdrix],conslt,yll]

"utilities te join and separate augmented moatrix"
"form augmented matrix from matrix a and vecter b"
zipla,bl = Inulllal -) nil;
T - conslzipifcartial,carlbll,
ziplcdrial,cdribllll

zipifa,bl = [nulllal -> b,
T - conslcarial,zipilcdrial,bll]

"Form matrix and vector from augmented matrix®
unzipill = [nulllll -> listinill;
T -~ combinelallbuticarl{ll],
lastonelcar{111l,
unziplcdri11111

combinelx,y,zl = conslconsix,carlzll,consly,cdrlzll]

"doing these separately ..."
allbutll] = [nuvllicdrill] - nil;
T => conslcarill,allbuticdr{1111]

vvo is faster than trying to do them at once®
lagtonelll = [nulllcdrfl1] - carlill;
T ~-% lastonelcdr[111}

At first it looks 1like a hopelessly jumbled set 6f
definitions, There is a pattern, however, and close
examination shows a fairly straightforward ftransliteration
of the Pascal procedure. For example, instead of saying
"forward elimination, then back substitution" the answer is
defined as “"back substitution of forward elimination of
pivot of input™,

Besides this simple transformation of sequential
statements, for—loops have been replaced by the recursive
LISP equivalents, and infix operators have been made
prefix. I hope the reader will take +the time 1o compare
these two definitions of the same algorithm, as the

similarity is striking.

it Ky

Consider now the interaction of forward, elim, and pivet

under a cembination of the eager evlis and lenient cons

types of evaluation., Elim conses up rows as it performs the
eliminations and returns them to pivet. Pivet chases along

its heels, comparing the first element of each new row as
it is generated. Almost immediotely after elim hos hit
bottom, pivot anncunces completion of its task te forward,
which promptly begins the next elimination step. This
avtomatic and possibly optimal form of pipelining comes for
free once the effort is token +to describe the algorithm

functionally.

An equally striking example can be found in the back
substitution process. Almost as soon as the first pivoting
operation takes place, forward returns the firet row of the
eliminated matrix and back lays the foundation for
calculating x[411 in terms of x[i], 1%, The evaluation
tree is laid odt, terminating in MAIL nodes at the leaves,
Soon the next row is supplied, and a corresponding tree is
set up for x[21., Note that x[i1 depends on xI[2], but they
both depend equally en x[il, i>2, Eventually the whole
back substitution tree is set up and the triggering value
xfnl is supplied. Then, in a flurry of activity, MaIL
nedes get replaced by results and these results ripple up

the evaluvation trees,

A similar but more massive mobilization of resocurces takes
place during each elimination step. Each invecation of
glim starts a rpowdiv operation on the first row and
simultaneously launches another glim operation on the rest
of the rows. Indeed, if pivoting were left ovut, forward
would be snatching the first results of elim and inviting

another elimination step while the original is still in

-..,44_

progress. Again, the pipelining is automatic, yet more
Complete <than could be specified by the human writing a

Pascal program,

At this peint something should be said about the reduction
of theory to practice, While it is trve that functional
notation provides an extremely powerful avenue for
directing the parallel evaluation of Gaussian elimination,
the sad truth Is thot actuval pleces of data have to be
transferred from physical place to place in order for
computations to take place, The flew of infermation during
Gaussian elimination with piveting is rather complicated
and does not wmap particularly well onte o variety of
structures, This problem of mapping of logical structures
onto physical ones is the primary concern of this thesis,
and these points will be discussed again later. For now,
all that can be sald is that functional notation does not
get in the way of extrocting and expleiting concurrency

from problems,

45

Chapter Twe

Structures for partitioning computations

I have so far concentrated on the legical problems involved
in finding concurrenclies and exploiting them, assuming the
existence of some physical structure onto which the loegical
structure can be mapped. In this sectlon I will turn the
situation arcund and assume for each of several physical
structures - corresponding logical structure capable of

recognizing and distributing concurrencies,

2.4 Array stnuctures

The simplest and most often suggested structure for
multiprocessors is the array of identical wmachines, Array
interconnectien in one and two dimensions 1s easily

arranged (figure 2.1), and there is substantial econeomic
incentive for the use of standardized parts.

One dimensional array machines have proven effective in a
host of numerical analysis and slgnal processing
applications, Some signal processing applications adapt so
well +to +this structure that general purpose computers are
seldom used for the individual processing elements in the
array., Pipelined interconnection of specialized chunks of
hardware lead to economic (jie commercially successful)
construction eof wmany stage digital filters, FFT boxes, and
processors specialized far synthetic dperture radar
fCohen?791.

-46-

1-D Array Machine

2-D Array Machine

Figure 2.1

-...47.,.

Arrays of general purpose processors are less Ccommon owing
te their expense, Nevertheless, machlnes such as Illlac IV
[Barnesb8] are being vsed effectively in the solution of
linear and non-linear systems of equations, and are
porticularly successtfully applied +to the solution of
partial differential equations,

2.4.4 WNumerical algorithms

Most numer ical algorithMs adapt well to use on
one—dimensional array machines since they can be factored
aleng at least one dimension., Matrices to be inverted can
be divided into rows or columns., Unifoerm qrids fer partial
differential equations can generally lose one dimension te

parallelism,

Sometimes algorithms are not adapted without effert. For
example, Goauvsslan elimination requlires communication along
both dimensions of the matrix. In o one-dimensional array
machine this communication wmust in part result in the
physiecal transmission of signals between processors., This
is an added detall that the one-proecessor algorithm need
net address, since all intermediate results occupy the same
Memory .,

2.4.4.4 Array structure and algorithm structure

Some complications of oadapting numerical algorithms reach
beyond complexity of programming them and affect the
numerical methoed wused,. an example is the solution of
time—-invariant erdinary differential gquations with
beundary conditions on a one-dimensional grid by the
Cavss-8eidel relaxation method. Forgetting for the moment

-y

that this is a stupid way of solving the problem, we set up
the sample problem

u(x) = f{x), a { x b, vla) = ua, vlb) = ub

by approximating the differential equation as a difference
eguation and solving for the value of v at each grid peint,

fissuming the interval is divided inte n sub-intervals,

x[01 = a, zxinl = b,

x{i+i1 — xiild = (ub - va)/n = dx,
and that the differentiaol equation can be approximated by
2
Culivdil - 2ulil + wli-41d/dx™ = flL1i1,

in Gaouss—-Seidel

-t

we solve for uvlil and apply the resul
fashion and lterate the following loop until the maximum

change in vlil ls small enocuagh to indicate convergence,

for izi to n—-4i do
Ulil = FQuli-41,ulid,uli+ild)

Note that relaxation implies the evaluation at grid points
in sequence, usling previously computed wvalues wherever
pessible, If these evalvations occur In parallel, as shown

by the change in notation

for each L in [&i,nl do
ulil = FCuli-41,ulid,uli+il)

we suddenly discover that +the g¢grid evaluations sLcur
synchronously, and the iterations are no longer

Gauss—-Seidel but Jacebi, which converge only half as fast,

This difficulty could in principle be eovercome by

overlapping syccessive Gauss~Selidel iterations (ie

_4(?..

pipelining), except that Gauvss-Seidel iteratioens are often
applied in alternating directions 1o iwmprove convergence,
Clearly, alternating the direction of pipelined operations
at each iteration Yempties the pipeline” at each iteration,
s¢ the improvement in convergence has to be weighed against
the less in parallelisw,

Granting that a gross penalty in speed wmay be a bad bargain
for a slight improvement in convergence, we still have 1o
choose between the straightforward and speedy (yet slowly
coenvergent) Jacobi iLteration and the wmore complicated and
rapidly convergent Gauvuss—-Seidel iteration, (Ironically,
Gause-Belidel is gimpler than Jacobi when programmed for a
gsequential wmachine, so the cholce is seldom difficult.)
Ordinarily, alternating the direction of literation of
Gouss-Seidel iterations is a trivial matter. However, when
dealing with a parallel machine, even a one-dimensional

array machine, the rules of the game have changed.

2.4.14.2 Direct solution vs iteration

fs I mentioned before, wvwsing simple iterative methods on
one~dimensional ODEs with boundary conditions is wusvally a
bad choice, (The exception to this is when time-dependent
behavior is desired.) If the ODE is linear, direct
solution wmerely invelves the solutien of a banded system of
linear equations. (Non-linear 0ODEs can be solved by a few
Mewton lLteratioens of such direct solutions, a process

called gquasi-linearization.) Array machines can be

ganinfully applied to the solution of full linear systems of
equations. However, solving a banded system s a simple
two-suweep (down and up) process, which does not lend itself

especially well to parallelism.

=50~

While one would normally choose a direct soclutlon method
when proegramming for a sequentiol machine, we have seen a
case where the iterative solution of a problem speeds up
dramatically while the direct solution does not. Mot only
are we forced to denl with the details of a solution
method, but we must re—evaluate the npature of the wmethod

desirable for computing the solution on a parallel machine,

£.4.4.3 Time soelution and PDEs

Selution of time-invariant partial differential equations
ie similar to solving the corresponding time-dependent
equations by simulating the behavior from rest or initial
conditions., Jacobl iteration differs from time simulation
in that some grid poeints are advanced wmore quickly in time
than others. In time simulation, all grid points are
advanced with the saome time step, generally the maximum
step allowed for the most sensitive grid point. This tiwme
step is chosen to be the maximum for which stability of the

solution can be guaranteed.

Generally, time simuvlation is not performed vunless
tiMe—dependent behavier is desired. This is becauvse direct
solution methods are much faster on sequential machines,
However, as the dimensionality of <the target machine
increases, net all wmethods adapt equally well, Time
simulation and Jacobi iteration will always take full
advantage of array wmachines, but the situation for direct
solution methods is less clear.

Direct selution methods gperate on mathematical

abstractiens of physical situations, whereas simulation

e

methods map the geometry of the physical situvatien directly
onto the cemputer. Parcels of §fluid “transfer heat and
momentum only to the elements surrounding them, so0o a
simulation method will require only nearest neighbor
communication within aon array computer. The process of
inverting a matrix is an operation on a wmathematical
abstraction which does not preserve the locality of the
physical situation,

Matrix operations such os piveting or eliminating a column
have noe analoegy in the physical world, This fact can be
ignored in a sequential machine where all memory accesses
cost the same, but an array machine J{(indeed, any parallel
machine) must by nature impose some characteristics of the
physical world on the algorithm designer, It wmay be that
the existence of wmulti-dimensional array computers will
bring a resurgence in the use of iterative wmethods simply
because they follow more closely the physics of the probles
being solved. Unfortunately, a 2-D array computer
performing an iterative solution of some problems may be
slower than a i-D array computer performing a direct
soelution,

2.4.2 Array machines and non—-numerical problems

In applying array wmachines 1o numerical problems it is
vusually possible to wmake assumptions about how to wmap
problems onte the array. One is generally net afforded
this luxury in the course of <trying to wmap non-numerical
preblems onte array structures. The generality of storage
management for non-numerical programming languages such as
LISP, Simula, GNOROL, and to a lesser extent Pascal

records and net arrays, It is not at all clear how tree
structures might best be represented in, say, a

two~dimensional array machine,

One tree structure I would 1like to represent 1ls the
hierarchy of proecedure activations generated by a
concurrent evoluation scheme (figure 2.2). When each
activation generates twoe or more new ones, the primary task
can reguest the use of an exponentially increasing number
of processors at each step., Mochines beling limited to the
reality of two or three dimensional space, the resulting

mavhem Ls quite interesting to watch,

If resource allocation is handled on a local basis, an
individual processing element will attempt 1o partition out
subtasks te its immediate neighbors, some of which may
already be bugy with work handed out by other processing
elements., ComMmunication paths will not have any preferred
directlong a node coordinating the activities of its
neighbors may finish its work and subsequently become a
slave to one of those same neighbors., Activity will spread
out and contract as an amorphous bleb, with subtasks

competing for resources,

An unfortundte property of arrays is that a spreading wave
front of activity in a 2-D array will at best encounter a
linearly increasing number of elements as it progresses,
whereas tree-structured computations can grow exponentially
with the distance #§rom the rooct. Not only can such
processes sWwamp an array very quickly, but many subtasks
will be blocked from potential resources, This phenomenon,
analagous to pinch-off In semiconducter physics, may resuvlt

in local shortages in situations of global surplus s¢ as to

-53-

solve
lingcar

System

ook
S bsfrdaron
émd
elivamahion
selue for
Sther
selee for elEnae mts
last edemmenit

&livwern ate

frst
(-a/l‘mu

selve Gom
Reut.-do Jay i
Q-/zmg-t

Tree of procedure activations

Ffigure 2.2

-G -

prevent even large problems from using the full rescurces
of the array, Figqure 2.3 1llustrates this phenomenon das
time progresses €for a problem of dimension Sx%Bx%5x5x5
ruenning on a i0xi0 array machine.

If the partitioning part of the parallel evaluation schemnme
is made sensitive to “"crowding” by sending new activations
S 0Me distance away , this problem can be alleviated
somewhat, at the cost of using some processoers solely for
commMunication, An ideal scenario for such a scheme would
he for processing nodes to recognize conflict situations
and w®make big communication jumps on the basis of local
infoermation, A demand-driven policy for allocating idle
nodes would elither have to be based on unselfish attitudes
towards limited resources or some centrally managed scheme
based en global information,

Eoth schemes have problems. The former, even assuming
honest and civic-minded processing nodes, has the
possibility of cavsing artificial shortages of resources
simply by vusing the same allecation strategy in each node.
Coentention for rescurces could even result in deadlock
problems., The loatter class of schemes, on the ether hand,
covld aveid lecel shortages in situations of global
surplus, but would be handicapped by the need for global

communication.

While there wmight be some strategy to deal with the
allecation problem, it seems wunnatural to force all
programs toe sap onto the procrustean bed of array machines
which seem best adapted for a special class of numerical
problems.

10 = 04 == (4 - v e

3 -2

M M M- € ® ® B

«55-

o am s T WP e e mo @M AT K e e me W ae

*

3

!
3-3-3

3 -3~3
2-2-2-2-3 -

I3
(3

-4-4-4-5

3

{

2-2-2

3

{

- e e e i Gk e S A S O R B S S e S e e M G o S i s S e 8 S e i S S o O M O 990 T 950 Gl S S s D e e e ek e e O G

el == =10 ==l =A==l ¥

i |
% # N LG e Wi
i i '
¥ ¥ N M- & -in--n-Ln
] § 1
% M~ N e T--n #
[| i1
M--0d 0 w WM N--¥ N W
! i § 1 L
Mieed o=l i@ -=1 10 ¥
i i] i
Mer == wiomwi==ii WN--IN #
i i
& N -—-N--N--< W ¥
f I [
* 3¢ ¥ ¥ M T W Me-in
t i i
% % # ¥ [T -GG F -

*® ¥ & ¥ ¥ ¥ ¥ #
i [}

L] % n bt} L4 L * E 3 ¥

| i i

M OMme-m 6 % W W %

i i i

M N e 3% N % W
\ i i

Ml e-wt <« 3 #* ¥ ¥
\ § ¥

1) e O o= O == ol om wd == 1 3¢ 2 ¥

i |

Mo o=~ ea N W V=N

1 i i i]]

M M- M M W N -

i 3 { i
K % M MG

X

S

“Pinch-off"™ phenomenon
figure 2.3

....S(:)....

e.2 Tree stryctyures

Almost evarything in the physical world, while not
resembling trees of the redwood and other kinds, is
structured as a tree, People have limbs, which have bones
and muscles, which ore made of cells. Buildings have
floors, roeoms, furniture, and so on. QCorporations have

presidents, vice-presidents, managers, foremen, and factory

workers, Except for corporations, which are composed of a
collection of structurally very saimilar people, these
hierarchies are heterogeneous, Instend of describing the

skeletal structure of humans, one can talk about the
hierarchies of wvarlous internal osrgans. For example,
kidneys (yecch!) are made of nephrons (ulpl), which are
made of cells, which are wmade of protoplasm (gakl) ...
well, you get the idea.

Computers are no exception., The eobvious physical hierarchy
ie that of computer, cabinet, rack, beard, integrated
circult, and <transistor. Memory systems are beoutiful
examples of this kind of hierarchy. However, the hierarchy
of the menory system is used as a filter for requests from
the root, s0 wmost of the system is idle, We seek a
different hierarchy, similar to that of the cerporation,
which somehow Manages to harness the working energies of
many like individuals, The hope is that a processing
element can be designed gnce and replicated indefinitely to
achieve a combined computational power on the order of the

sum of the powers of the individual processing elements,

The array approach to fulfilling this hope corresponds to

setting up a corporation made frem a large pool of

~T 7 -

executives, all eof equal standing. Human beings are adept,
perhaps uniquely so0, at alternating between the roles of
giver of orders and recelver of orders I[Niven74]1. The role
of receiver of orders ls in some measure made palatable by
the identification of a single identity called bhoss.
Deference +to the bgss 1s tolerated because there are
underlings conditioned 1o the role of receiver of orders.
(If this concept seems tenvous, ask a professor how he
would feel about being ordered arocund by a graduate
student.,) In the case of the array machine, this approach
leads to an uncertain identity of processing elements. No
element had a fixed relationship 1o 1its neighbors - it

might be a slave one instant, o master the next.

A tree maochine as It will be discussed here will be «
collection of processing elements whose interrelationships
correspond to the physical arrangement of the tree. Each
node in the tree has exactly one parent, which is also its
master, and some number of descendants, which are its
slaves, The fixed master-slave relationship between a node
and its descendants is a simplification over the amorphous
expanding blob described for the array machine. Since each
node has only one parent, there can be noe competition for
control of any given node.

2.2.4 Tree machines and non—numerical problems
Trees fit naturally intoe the procedure/data structure

hierarchy wmold of computation with which we are most

comfortable. Indeed, +the egager evlis mode of evaluation

builds up a hierarchy of processes each coordinating the
activities of its component subtasks. This arrangement

corresponds quite nicely to a physical structure in which

-5

each node haos exactly one parent and some number of

children except at the leaves,

The trouble with this arrangement ls that the structure of
the machine, although a +tree, w™may not match the tree
structure of procedure activations generated by a
particular problem, Any presources lost 1o part of a
computation cannoet be picked up by another part of that
computation because each node has only one possible master
- its parent, Whereas one can hope a problem will expand
to fill an array machine, a computation which is imbalanced
will result in an imbalanced wuse of nodes in a tree

machine,

What cheices are there for dealing with this problem in
resource allecation? The easliest (and in another sense the
hardest) way is to put the burden of allocation on the
application programmer, This technique has been explored
in programming several algorithms for a machine configured
s a binary tree [Browning801, In these algorithms the
binary tree Is mode to appear as an n—ary tree by using
several levels of the tree for communication as in figure
2.4,

& side "benefit" from being forced <o allocate resources
manvally is that the programmer has coentrol over what goes
en in the tree. At best this is a mixed blessing; I hear
very few people complain about having a garbage collector
in a programming system, and fewer still who are used +to
having a garbage collector around whoe are willing to return
te o system wWwithout one. So it will be with manual
allocation of processors unless there is a marked penalty

o et ot

in performance from automatic allocation,

-50-

Sitmulation of 5-tree on a binary tree

figure 2.4

....60....

The concurrent evalvation scheme discussed in chapter one
does not take the effort te determine the branching ratio
ef a problem in advance, & process splits If it can be
divided. Feyond that, nothing is known about the potential
ef the sub-processes faor acquiring and explolting
computational resources., UWhatever potential there is must
walt untlil it is given resources to exploit. In practice,
this cavalier approach to resocurce alloecation clearly wWwould
have to be wmodifled in the liInterest of providing an

equitable division of resources.
2,2.2 Exponential waste

As peinted out earllier, tree wmachines have the marvelous
property that an exponentially increasing number of nodes
can be made avallable to a computation for every level of
partitiening. Unfortunately, it is alsoe very easy to waste

an exponentially increasing number of nodes.

In fact, the situatien is worse than one might at first
expect., Consider the simulation of a 3-tree on a 4-tree,
shown In figure 2.%. Obviously, one fourth of the tree is
going to be wasted, right? Look again, One fourth of the
first level of the tree is goling to be wasted, which takes
eut one fourth of the wuwhole tree right away,. In each
successive level, 1less and less of the machine remains
available, By the time the fifth level is reached, there
are 3S = 243 nodes in use ... out of 45 = §024 nodes! In
fact, the ratio of wasted nodes to +total nodes rapidly
approaches unity. (For pn large, (3/4)" is a very small

number indeed.)

-61-

YOO O0DO0OE

figure 2.5

fevel | wsed |unused
1 L1/1 o/y
2 3/ L
3 e */e
4 23, 4 3%y

Exponential waste

This problem of exponential waste can rear its uvgly head in
any tree machine of branching ratioc greater than two,
Eradicating the problem completely requires the use of a

binary tree and a miserly allocation methodology. That |is,

a computation whese branching ratiec is not a power of two
should be given fewer computational resources than it can

use .,

Suppose for example that an exponentinl computation of
branching ratioc three is shoehorned into a binary tree. At
the first level of partitioning only two out of a possible
three subtasks are initiated and the third must wait for
the completion of the other two., This effectively doubles
the computation time for the subtasks at that level, S8ince
each level suffers the same degradation, the total slowdown

. N . . n
is the product of the individual contributions, or 2 .

A result of this policy is that exponential computations
performed on a tree machine will again take exponential
time, Houwever, solving the problem on a tree machine takes

gxponentially less time than solving it oen a single
processer machine (3"/2" = 3/25™). The point of wview one
takes depends on whether the goal ie performing

computations in the minimum possible time or keeping busy

Qs many proecessors as can be afforded.

2.2.3 Tree machine and numerical problems

In discussing the wmerits of array machines I treoted the

problems of mapping numerical and non-pumerical
cemputations separdtely, In the interest of equal time, I
will continue the practice here, However, from the

standpoint of a tree machine, an array-structured

~6%~

computation is simply a badly balanced, or list~structured,

computation, so there isn’t much to say,

One point about numerical computations that I will wmake
concerns their generally physical derivation. In physical
systems every element affects every other elither directly,
as in E & M or potential flow problems, or indirectly, as
demonstrated by iterative solutions of field equatiens,
The possibility of each element requiring communication
with every other element is just the situation that a tree

machine is designed to prevent,

Partitioning cemputations out in a tree relies on the

gxistence of independent sub-computations that can be

evaluated by separate processors., Functional descriptions
of numerlical computations do wmanage to maintain this
separation, However, the price for this is passing at the
time of partitioning gvervihing needed by the
sub-computations. This isn’t so bad for wmatrix inversion,
where the matrix can at least be divided inte a hierarchy
of roews, but csap&tatian% involving wmatrix wmultiplication,
such as computing a Discrete Fourier Transform, insist that
egach element of a vector have access to every other
element,

Ah, you say, but the Discrete Fourier Transform can be
reformulated as the Fast Fourier Transform, a perfect
example of o divide-and-conquer algorithm. While computing
an FFT takes fewer arithmetic operations than computing a
DFT, the effect is still that each element of the input
vector has to be combined with every other element through
the well-known butterfly eperation {figure 2.6), a
straightforward divide-and-conquer implementation of the

-64-

s b
e SO

l\

3./ {’/

\

FFT butterfly computation

Figure 2.6

-65-

FFT on a +tree wmachine would transmit half of each

sub-butterfly over each of 1ogen levels, yielding a tetal

computation time of O0<(n)., This result is the same Ffor the
matrix-vector wmultiply obtained in the course of solving a

linear system of equations [Browning801.

To the extent that numerical problems can be expressed
hierarchlcaolly, preferably not as hierarchies of shuffles
as in the FFT, tree machines can be useful in solving them.
The wmulti-grid method [Brandt77] is a hierarchical

interpretation of literative metheds for solving partial
differential equations., The interested reader is directed
te the beginning of what should be an expanding body of
literature,

a.5 Wirability analysis of interconnect structures

This analysis is presented as an attempt to replace some
intuitive feelings I’ve had with some hard analysis. For
seme time we hoave at least been auware that there will be
penalties in attempting to implement wvarious structures,
but we have seen precious little analysis of just what the
penalties are. With this analysis I hope to put at least
some 6f the speculation behind vus.

Throughout we will be concerned primarily with twe things,

First, we will seek measures of wiring cost in terms of

total length of wire, Secondly, and as a result of the
first, we wish to know the effects of wiring on the packing
density of structures we build, This, after all, is the
bottom line of the cost of wiring - how sparsely must we
populate circuit boards and integrated circuits in order to

_66.—

accommodaote the interconnect wiring?

I have selected <four examples of particular interest,
Nearest neighbop intercennect and full interconnect
represent lower and upper bounds of things we might want to
consider, and tree interconnect and hypercube interconnect
are examples of structures actuvally proeposed for the
construction of multiprocessor systems,

2.53.4 Nearest Neighbor éArray

The nearest nelghbor interconnect structure is presented
first because it is both the simplest to build and analyze
and the last resort if all ethers prove infeasible in some
way., Analysis is of course trivial, with the wiring cost
of order n for n noedes Iin both i-spuce and Z2-space. NN
array layouts are included in flgures 2.7 and 2.8 for

completeness and alsoe comparison with other structures,
2.3.2 Full Interconnect

Full intercennect represents an upper bound in the sanse
that 1t is in principle desirable but in practice
unimplementable. There are two facets of difficulty, the
first of which is the tremendous npumber of wires required
te achieve full interconnect (D(na)). There is also the

problem of averaqe wire length, which must be proportlional

te the characteristic dimenslion of the array. To zeroth
order the wiring costs are 0(n3) and D(nS/E) for 4i-spaoce
and Z2-space, respectively. Heowever, the randomness plus the
amount of wiring rapidly influences the packing density and
thus increases the wiring estimates dramatically, In short,

it is baod (see flgures 2.7 and 2.8).

b7 -

kyrefgukg

O(=)

-68-

W g
06y

LAl
D 7—1 wterconnact

o(x &\ & aeal] w

P L R T

2 - dree
o(»)
113 e §t [1:4
i 88
-] & &
~ "'Y?evwke
) T b 18 o(,“&\
&1 ee \ [o6at) £ vy rye =]
i 1G9 @i -

A = elimgnsions (’%}m 2.8%

—y G

2.3.2 Trees

For now I will confine the discussion te 2-trees, for which
the analysis is particularly simple, In 4-D, a qguick
glance at the figures should convince the reader that the

tetal wiring coest is

$ levels
2. (& nodes at level i) ¥ (av wire lengths at level
i

% levels i i
2, (n/2%) 27 = nlogsn
i

Another way of looking at this resvlt is that the cost of
wiring a tree in $-D grows faster than the cost of the
nodes used in the tree. Hence, the width of the wiring
channels will eventually affect the component spacing

significantly.

I would calculate exactly when this happens, except this
problem goes away in 2-D. As you can see from the fligures,
the wire lengths need not double for every level, In fact,
the figure shows a layout where the wWwire lengths double

avery twe levels, or

i)

..70...

loggn
5, (n/2 + n/4) 2% ¢ (/8 + nrsiey 2 o+ L,
i
logn/2 i §/2
= 3n/2 3 £/2° = 3In/2 (L - i/n0")

O

{H

In other words, 2-tree connectivity has no _ influence on

packing density.

Clearly, 3-space can do the same thing for 4-trees that
2~gpace does for Z-trees, (Take a look at some TV antennae
and you will see what I mean.) However, it is net clear
that added dimensionality is wmandatory for higher degree
trees, For example, figure 2.9 1llustrates an arrangement

for a 3-tree for which the cost is

loggn

3, (ns3ty 2t
i

3n(4 - (2/3)L0UpN

i}

Odind

In genernal, the important parameter is the ratio of wire
length increase to the branching ratio of the tree. When
it is not less than 41, the wiring cost again becomes
appreciable,

We are now in a position to investigate the placement of
n-trees in 2-space, Picking up from whaere we left off
earlier, we see that the wiring cost for a tree structure

is

logun

; (n/ai> pl
i

~71-

™
-
N ! I e T
L J 1

] ra]
e
1J

3-tree in 2-space

Figure 2.9

where o is the branching ratie ef the tree, and p 1is the
rotie of wire lengths as we go from level to level. The
form of the result clearly depends on the ratlo p/a, for
which we have

n §{ ~- (p/a)i+1°gmn

&

L~ p/a

~=3 3{n) for pra { 4

1ogan
b3 (n/a*y rt = nloqqn for p/a = 4§
i
n (prayttheggn oy
p/a — 4
—y pendtlogale/ady Lo o 0y g
Clearly we like to have p/a { §. We have seen existence

proefs of 2~ and 3-trees where this is so6, but they were
generated in an ad hoc manner, Figure 2,10 shows an attempt
at regular constructions for 3- and 4-trees which T will

christen recursive stars for want of a better namse,

Each level of the star has a characteristic radivs "y which

is somewhat larger than the wire length 11. In fact, we
see that e 1i+i o To find p = ri+1/ri we
introdece the recurrence relation

Tivg 5T} tr a
where dm is defined in the coenstruction of figure 2.41. So

we have

-73-

3=tree

d-tree

HRecursive stars

Figure 2.10

-74-

figure 2.11

ey

Construction for da #2 v_ :

Figure 2.12

-7

r. = p. 4 ry cosec(pi/al
/rl = 4 4+ 4/=sinf{pi/a)
and the guantity of coensuming interest is

pfa = 4/a (i + i/sin{pli/al?}

We can tabulate some values to get an idea of just whean

this brings trouble., Let’s see now,

a = 2 = drJ = § =) p/a = 4/2 (4 + §) = 4
172
a= 3 =} d‘1 = 2/3 =y plfa = ,72
-
=4 =y d = al/8 oy p/a = b
a = & =7 dG = @ =) p/a = L/3
Woit a minute, this was supposed to blow up, right? Well,
in the limlt of lincreasing a, sin{pi/a) -—> pi/a and we are

left with

lim p/a = lim 470 (i + §/¢(sin pi/ad)l = 4/pi
a ~)oo a -3}

and the cost goes fto

lim n L - (i/pi)ro9gntd

a -yoo i ~ i/pi

=0 pi/{pi - 4

Clearly, then, not only is added dimensionality wunnecessary
for higher degree trees, life gets gasier as the branching

ratioc increases. Looking back at the coenstruction for dq,

the result for large a is rather obvious. In fact, it’s
the ratio of diameter to circumference! (See alse figure
2.42.)

The reader may hove noticed that p/a = 4 for a = 2. Fear

net - the recursive star approximation is intended to

....76....

simplify the calculations for non-trivial a. Adepting this
stuff to 2Z2-trees Ls literally the same as sguaring off
cerners In a circle (figure 2.43) s8¢ that p/o = ft/.?.i/2
which 1s similar to the previously obtained result for

Z-trees,
2.3.4 Hypercube

Mention hyper-dimensional interconnect and vyour audience
tmay consider yeu wunfit for life outside your own private
dream world, Hypercubes are obvicusly impossible or
gxpensive to bulld, so <thinking about them is a futile
exercise., Or is it? Proponents [Sullivan77] of hypercube
systems have brought out several advantages accruing from
the generality of hyper—dimensional lInterconnect, so it

seems o worthwhile exerclise te ot least measure the cost.

The idea behind the hypercube is that each node has an

address and LIs connected to its loggn Homming neighbors,

that is, nodes whose addresses differ by one bit., In +this
way, any node can commupnicate with any other neode in at

Most logan jumps., fAlse, since there are O(nlogzn)

communication paths, communication can be arranged so that
at any given instant every node is connected to some other
node without interference.

To comprehend the connectivity of hypercube Iinterconnect,
consider a block of p words of etorage interleaved across p
different nodes in the hypercube network. Since each node

is connected to 1092n other nodes, there are ploggn paths

into this one bloeck of storage! Managed in this way,
hyper—dimensional interconnect gives a new meaning to the
concept of shared memory,

77~

L "
, T o o _._..:"‘ < ;1_ - :L_
' ‘ i Tyl
. - r
T o . AL N Py
rl
bt — >F.L
= Nz

Squaring a circle

figure 2,13

Hierarchical construction of a 1-D hypercube

Ffigure 2.14

...’;')8..

Hypercubes Mmap guite nicely into hyperspace,
Unfortunately, there is of course no¢ convenient wmapping
ento real space, so one may expect average wire langths to
be of the order of the characteristic dimension of the
layout. Noive analysis of the cost foer $-D would thus
bring

(# of nodes) % (F wires/node) ¥ (av wire length)

ol

b
= polog.n
9,._)

. , , 3
which is nearly as bad as full intercoennect at .

Remember, this 1is still not coensidering the effects of

devoting space to wiring channels, For completeness, the
. . /2 . L
naive result for 2-D is n3 “1oqan; since the characteristic
172

dimension is n .

Rather than remalin naive, we may choose to calcuvlate actual
wire lengths, An obviocus mapping eof addresses onte §-D

space (figure 2.7) reveals that each of the 1og?n wires

leaving a node has a different length 2! where i is the bit

which ls different in the two nodes connected by the wire,
The total cost is thus

logan
n 3 2 =0

In 2~space the wire lengths double for every 1two bits

P-4 .

(figure 2.8, so the cost is

1ogzn
no g, b+ 2h = 0%,

7

which is hardly the horrible +teoll one would at first
intuit. The figures in fact bear this out by their

relatively un-busy appearance.

Given that the relative c¢ost eof wiring a hypercube
increnses with its size, we should calculate the impact on
the layout due to widening wiring channels. The first item
of business is to calculate just when it becomes
significant. Clearly, when we consider the effects of
wiring channel widths, the characteristic dimension (and
thus the wire lengths) is multiplied by {4 + ad where a is
the "thickness" of a wire relative to a node (<{{ i), and d
is the number of wires each wiring channel must accomodate
in width. For paockages on a printed circult board we may
reasenably expect a to be 41/710 to 4/20. For integrated
circuit layouts a could easlily be as small as 41/400,

We are left with the task of determining d. The reader
will first note that the 2-D layout for the hypercube uses

enly wvertical or herizental wires. Remember, all wires
connect nodes whose addresses differ in one bit, Each row

and column can thus be considered a5 a separate 4-D
problem, i.e. there is no glut of wires in the center!
Consider now the hilerarchical construction of a 4§-D
bypercube shown in figure 2.44, Note the wuniform doubling
of wiring channel widthe along the length of the array,
Clearly, d is one half of the charocteristic dimension,

which in 2-space means

i/2

d = (n/4) =y 4§ +ad = (i + nit/%y/30

it

L

i/746, Thus we need neot
consider the effects of wiring channel width for PC board

>
layout until ad = 4/32 ni/2

for a convenient valve of a

is roughly &, or n = §0321 If

~80-

we assume a = 1/64 for IC layout, we needn’t worry until n
= 16,3841

Recovering froem hysterics, we see that the total wiring

cost for a hypercube in 2-space is thus

o) o
n3/u qni/L

{(f + /23

b
which is 0(n“) if n is large enough.

In summary, hypercubes are not nearly as difficult to build
as one wmight expect, although payment must be paid
eventually for the generality thus obtained. Whereas both
tree and nearest nelghbor interconnect incur linear cost
increases, the hypercube does get less dense with size. My
conclusion is that with tree and array processors one could
afford nearly any form of interconnect, including bundles
of wires (flat cables), while with hypercube systems one

immedintely insists on serial communication between nodes.

Bi.

Chapter Three

Memory bandwidth and contention in multiprocessors

The basic concern of this thesis is to discover how to
vutilize the many wmillions of transistors soon to be offered
by LSI technology. In chapter one I ouvtlined mechanisms
for discovering and distributing concurrency in programs,
In the previocus chapter 1 presented some interconnect
structures which wmight prove svitable for such concurrent
evaluvation., 5S¢ far no attention has been paid to some
fundamentaol issves of loglstics, otherwise known os system

design, This chapter addresses just those lssues,

Partitioning as a means of extracting concurrencies from a
computation produces processes which are conceptually
copies of the original computatien, The processes are
literally snapshots of the original cemputation as it would
appear in the wmemory of a single processor machine at a
gpecific moment in the execution of the computation, These
processes are of course independent of each other in
execution, but they are derived from a commen origin and

ultimately must share occess 1o some global structure.

The iden of multiple processors sharing access 1o common
resources such as primary memory brings about a gquestion of
balance. Gingle processor machines are constructed so that
the bandwidth of primary memory is roughly the same as the
maximum potential bandwidth that the precessor can request,.
What happens to the balance of such a system when several

precessers are svddenly put in contention for access to a

-8~

stornge unit designed to handle the bandwidth of only one
processor? Such a multiprocessor system (figure 3.1) will
only perforsm with the power of a single processor system,
poessibly even worse because of overhead due to resolving

bus conflicts,

Fundomental assertion: Given that any wmultiprocessor must

provide shared access to certain resocurces, the bandwidth
to these resocurces required per processor must be reduced
by roughly the number of processors in the system., End of

fundamental assertion,

This chapter deals with a number of schemes to deal with
the bandwidth preblem. The first three sections form a
proegression leading to a tree structured scheme which
borrows from existing bandwidth reduction technology. The
last sectien is essentially a diversion - an attempt to
extend some ideas learned from the technolegy and 1lore of
fixed head disks,

3.4 HMulti~level memory

The construction of multi-level storage systems is largely

motivated by cost., The aodvent of cache wmemory has made it

possible to build what appears to be a large fast memory
for the cost of a large slow memory plus the cost of a
small fast memory - & bargaln indeed, The concept of
virtual memory [Denning701 is even more astounding,

considering the tremendous difference in speed betuween
semiconductor memory and the electromechanical activator of

o moving head disk drive.

-83-

M |= 2— shared

memory memoxry
{/”ﬂ~_——’ bus

¢ © @ e
P P 7 ’P processing
elements
Shared memory multiprocessor
figure 3.1

technology bandwidth ratio
cache memory 5 M words/sec 1:1
main memory 1 M words/sec 1:5
disc file (peak) 0.5 M words/sec 3:10
disc file (block) 12.5 - 5 K words/sec 1:400 - 1:1000

disc file {character) 50 - 20 words/sec 1:100,000 - 1:250,000

Bandwidth relationship of devices
figure 3.2

_84...

Whatever the economic motivation, o principal design goal
of multi-level wmemory is bandwidth attenuation. While such
attenutation is ordinarily applied to allow the use of a
slow storage wmedium, an equally valid application is the
sharing of a fast storage wmedium by several processors,
This peint should be kept in wmind during the following

discusslon,

32.4.4 Characteristics of storage media

Figure 3.2 compares the relative bandwidths of several
kinds of storage. The numbers in the table are taken as a
representative sample from the DEC PDP-ii line of computers
and are rounded for convenlience., Three sets of numbers are
given for the disk file to illustrate the difference in

bandwidth of various accessing modes,

The peak bandwidth of the disk file is no less than the
rotational speed of the surfaces times the bit density. At
half a million words per second, the disk is half as fast
as prisary memory, However, in order to realize such a
transfer rate it is necessary to transfer more than 20,000
words at a time. Such disk operations are limited to nasé

transfer operations such as the swapping of core images,.

When data is retrieved in blocks (256 words on the PDP—-ii)
the effective banduwidth goes down to between 5 and 412.5
thousand words per second, assuming latencies of S50 and 20
milliseconds. The first case is based on the average
access time dssuming no correlation between successive disk
accesses, while the laotter is an observed average “transfer
time on the UNIX oeperating system I[Ritchie78). The

-85~

difference between observed behavior and average expected
behavier is wusually attributed to a phenosenon called

locality of reference. (I call it a phenomenon because it

is more easily wmeasured than created.)

Disk blocks retrieved in the operation of a paging system
(Kilburné2l are not guaranteed teo contain 2% equally
useful words of data, useful being defined as likely to be
referenced in the wvery near future, In the worst cdse,
where only one word of a retrieved disk block is ever
referenced, the disk becomes a device for accessing
individual waerds and its_bandwldth igs between 20 and SO
words per secondl! Again, locality of reference comes teo
the rescue by assuring that worst case behavior 1% not

approached in practice.

Figure 3.3 illustrates a typical storage hierarchy built
from the wvarious storage wmedia of figure 3.2, A fast
processor accesses prismary semory through o cache buffer,
allowing primary memory to be slower than the processor.
Primary menmsry is in turn backed up by o wmoving arem disk,
which 1is oaccessed very infrequently due 1to the extreme

bandwidth difference betueen primary memory and disk fliles.

The size raties given in the figure are typical of real
systams., Cache sizes of a few thousand words are
ctonsidered adequate to make a few hundred thousand words of
primary memory appear toe have nearly the bandwidth of the
five times faster cache, Miss raties fer successful
operation are typically SZ-i5%%. On the other hand, the
tremendouvs bandwidth differential of primary semory and
disk storage requires that primary memory be large enough

to hoeld nearly all of o running computation. In terms of

-86~ "

~ AKmords w {OBK swovds ~ 280 Wwiords
. Payimy)
Processor cache - promary 5m dl".’
mcmcry #iemory fle
SPw/n { Mo oy fk"n./.stc

Typical multi-level memory system

Figure 3.3
1501 ;
A4 .
% Of - &Ik/m:ﬂ
~
total j04
memory
_ - £ebs, bablles /mfn?
needed /T .
main/cacke
} /; u'a 40;0 o

bandwidth &lowdown

A continuum of cache performance

figure 3.4

mies ratio, only 0.0004% to 0.004% of all memory references
can be permitted +to result in a page fault., PBecause of
this, moving arm disk files are essentiolly useless as
paging devices [Brinch-Hansen731,

The numbers given here may seem a bilt nebulous and
imprecise, They are. As can be expected, caching and
paging statistics depend heavily on the nature of programs
testad, Indeed, wvariations in the languages used (even
their implementations), page replacement algorithms, cache
write-through algorithes, etc., can affect the statistics
gathered more than the individuval computations used for the
test., Graphse illustrating caching statistics seldom even
have labelled axes! Even these that do [Strecker781 are
enly applicable t¢ a very restricted class of machines.
What conclusions could possibly be made from comparing
cache statistics for o Burroughs RB&700 performing symbolic
integration in LISP t¢ a PDP-i4 computing Fast Fourier
Transfoerms in FORTRAN?

Blaonket statement: Mest caching statistics are phony, End

of blonket statement,

For the purposes of this thesis, it will be wuseful to
establish a centinuum of required cache size as a function
of relative bandwidth., Unfortunately, in addition to the
imprecision and variability of existing statistics, there
are no statistics gathered for storage devices which are,
say, 20-100 times as slow as the processor they serve,
since there have been no examples as yet of devices wwith

such characteristics from which to build paging systems.

-8 8-

The absence of data for intermediate banduwidth
differentials makes it difficult +te¢ assume that the
difference in performance of cache wemories and paging
systems is a0 wmatter of degree, and that the underlying
principles are the same, Nevertheless, I will define a
continuum, 1llustrated in figure 3.4, The shape of the
curve, an exponential tail, is suggested by Coffman and

Varian [CoffmanéBl in a discussion of paging systewms,

3.2 Shared memory mulitiprocessor with cache

& cache wmemory with o wmiss ratio of SX-10%X reduvces the
reguired bandwidth to main memoery by an order of wmagnitude.
If instead of buffering access t¢ a slower memory, the
cache is used to buffer access 1o a wmewmory of the same
bandwidth as the cache, one would expect te be able to
place severnl processors with cache on the same memory bus
(figure 3.5,

Clearly, using a cache that attenvated bandwidth by a
tfactor of 410 shouvld allew 40 processors te share the same
memory comfortably, The existence of paging systems prove
that it is feasible 16 bulld a coche memory with a miss
ratioc of 0.04%., Does this mean that 10,000 processors can
be wmade to share the same memory bus simply by building
large caches for them?

Ignoring the basically intractoble electrical problems of
svch an arrangement, there are serious problems in
accemmodating interprocessor communication, That s, if

10,000 processors are forced +to share the same bus for

-89-

Shared memory multiprocessor with cache

figure 3.5

P P P P P F P

Multi-level cache

figure 3.6

e

communication, the bus will be completely saturated, This
after all was the point of the previous chapter, However,
assume for the moment that the electrical problems are
soelved and a separate communication network can be

provided, What further obstructions are in the way of this
schaeme? -

J.2.4 Write-through

The course of computation can be viewed as a sequence of
gtate vectors, gach derived froem the previous, The
transformation of state is the intended result of having a
processor execute o proegram. Since all state is stored in
memory, it follows that soeme accesses to smemery must be to

write data.

This is in fact the case, though the statistics governing
write behavior are as subject to misrepresentation and
error as caching statistics, Consider for example a
typical microprogrammed computer, and suppose it writes
data eon 20X of its wmemory references vnder certain
conditions, . Now suppose the micropregram store is mapped
inte main memory. Since the wmicroproegram never changes,
the percentage of writes will decrease,. If internal
registers are mapped out, the percentage of writes will
increase. If instead of compiling intoe machine code, a
language system relies on anocther level of interpretation,
the percentage of writes will again droep. A&s a reference
point, forcing all writes in a PDP—-44 cache 1to be written
through 1o memory results In a slight change in performance
[Bell?78], as if a write occurred for about SZ of all wemory
references. (The reader is left +to¢ speculate on the

relative power of the PDP-1i4 instructlion set.)

-4

The impact of write stotistics en the performance of a
shared memory multiprocessor with cache is subtle., Even if
writes occur 20X of the time, the performance of a virtual
memory system will not degrade significantly, All virtual
memory systems wmark pages thot have been altered with a
"dirty bit", which forces the page to be written only when
it has been selected for replacement. In this way, wWwrites
to memory are buffered in o similar fashion to the way
memory reads are buffered,

Unfoertunately, a multiprocessor system cannoet afford this
luxury., Activity Initiated in another processor must have
nccess to the same environment from which 1t was spawned,
Most of +this envirenment is shared and cached by beth
processors, but some of it, namely the parameters computed
for the new activity, 1is different and should be written
through to memory for the other processors to read, In
other words, each new process will require essentially a
flushing of the cache belonging to the processor spawning

the process.

The need for periodic cache flushing defeats the write
buffering necessary for an extremely low miss ratlio cache.
Hence, there must be a limit +to how many processors can
share a wmesmory bus, My own feeling, which is probably
about as accurate as most cachlng statistics, is that the
limit 1lies between 40 and 20 processors — certainly a far

cry from the thousands of machines soon to be affordable.

~F-

3.2.2 Stale daotn

This is o problem that keeps system designers from putting
even tuo cached processors on the same memory bus,
Consider a location In wsemory that two processors have
accessed recently and hence both have in their caches.
Suppose one processor writes into that location.
Eventually the new contents of that location will wmigrate
out te memory, but the other processor will never be able
to access it, After all, the contents of that loecation had

previeusly been fetched and stored in cache, Such data,

Gloat: For systems that allow eonly functional proramming,

the stanle data problem is a noen—-problem., 8ince stnle data

can only be created through side effects, a functional
programming systes will not suffer the stale data problem,
End of gloeat,

ITuplementations of functional programming systems
occasionally moke use of side effects, The wmost obvious
example is the cons coperatoer, an essential component in the
maintenance of the illusion of infinite wmemory, The
implementation of cons generally involves alteration of a
free list, which is not something that tuWwo processors
should be deing simultaneously, The obvious answer in this
case is to mailntain a free list for each processor, Other
means of implementing cons in multiprocessor systems will

be discussed as part of memory management consideration,

~93-

2.3 Multi-level cache and tree machine

Consider a tree-structured application of the concept of
multi-level wmemory as shown in figure 3.6, This
arrangement is different from the traditional multi-level
storage system in two ways, First, each level of storage
is dmplemented in the same medium, enabling shared access
to common storage. Second, each level of storage branches

out with the levels of the tree.

In this way, each cache serves both as a filter for
requests wmade to a larger store and as a shared resource
for caches lower in the hierarchy. The Intent of the +tree
structure, aside from avoliding the electrical problems of
massive bus sharing, 1s 1o sufficiently Fflilter wmemory
requests so that the banduwidth avallable from the root node
ig enough to permit unimpeded access. How much Filtering
ie sufficient?

Banduwidth conditien; If the branching ratio of a level in

the 1tree is g, then the miss ratio of a cache at that level
muest be less than or equal te 4/a. IFf this condition is
always satisfied, then the bandwidth at the root required
by the rest of the +tree ls less than or equal to the
maximum bandwidth reqguired by a single processor. End of
banduwidth caonditien,

Attempting to satisfy this condition immediately raises
several guestiens, First, although the required miss
ratios are g¢given in relative terms, the cumulative miss
raties required near the root of the tree are guite small,
Fer a cache near the root to filter the required percentage

of accesses, it has +to have information that caches at

..94...

lower levels do net have, For example, a cache at the
second level of a ten-level binary tree has to be able +to
function as a cache with a miss ratio of (1/2)9, or 0.2%,
to half of the nodes at the leaves of the tree. Does this
mean that nodes near the root of the tree have to have a
substantial fraction of the storage capacity of the root?

The second question relates to write-through, I+ the
caches are all mapped to merory in the roet, lis not the
bandwidth problem of write-through the same as for the
shared memory multiprocessor with cache, that ig,

intractable?

The last question (that I can think of) concerns the daccess
time through the tree, If it turns out to require large
guantities of storage just 1o satisfy the bandwidth
condition, will jt require even more to make references to
memory appear acceptably fast? Recall that the requirements
for miss ratioeos are relaxed relative to typical cache miss
ratieo requirements,

As presented this scheme appears to share some of the same
difficulties as the scheme of the previous section, As
presented so far, this tree structured cache organization
says nothing about o possible communications network. The
time hae come to combine two ideas from separate chapters
and describe their interactions., I will answer some of the
preceding guestions in the course of describing the

combination of lideas.

...(?S...

3.3.4 & tree machine with cache

Until new I have treated wmulti-level caches as passive
elements iIn a tree structure, assuming that all processing
happens at the leaves and that requests for data filter up
threugh the tree of wmultiple port caches., There is no
reasoen to suspect the validity of vsing the nermal caching
models fer this structure, since each wmultiple port cache
can be thought of as a conglomeration of single port
caches, If the bandwidth problems can be resolved as
specified, there can be no problems with such a
conglomeration sharing communication paths,

Suppose now that this cache hlerarchy is overlaid with a
hierarchy of processing elements, When evaluoting a
function, a single processing element in this tree views
the world above it as a multi-level cache, and thereby some
distribution of data referenced by the element is set up.
Now, if the evaluation splits and forms new processes
running the node’s children, each new proecess starts out
with an empty local memory. Most of the data (and program)
needed by the new processes can be found one level wup, and
the first few mnmoments of execution are spent largely in
filllng local wmemory, This cache flushing behavior Iis
similar to that found in cached single processor systems
supporting multiprogramming,

In proctice, this kind of cache flushing is not thought to
be a seriocus problem, since caches tend to recover quite
rapidly. However, if the wmachine switches context very
rapldly, the cache may never reach a state where <the ratio
of misses to hits remains constant. For a PDP-44i, even if

a new process executes as few as 300 instruction fetches,

...96.—.

the miss ratio for the cache is only degraded to 30%. This
gives some nmeasure of hew large a process must be before it
is worthwhile to partitien it to some precessing element
lower in the hierarchy.

3.3.2 Write—through, locallty, and address spaces

In the shared wmemory wamultiprocessor, parameters 1o new
processes are transmitted through shared wmenmory, This
requires changed data to be written oeut 1o shared wmeMory
independent of <the cache’s ability to buffer Wwrite access.
In a tree wmachine, computations are parcelled out to
descendant processorse in the tree. Hence, uwrite-through is
net necessary for transmission of parameter information in

tree maochines.

In fact, except for returning results from functions (a
ene~level write-through), the concept of write-through is
superfluocus in the context of a ftree machine, The
functional programsming methodology foerbids side-effects, so

there is no need to maintain mappings to upper levels for

newly generated data. Selective mapping of data, while not
strictly in the tradition of cache wemory, eliminates the
write-through problem altogether.,

Selective mapping alsoe provides a wmeans of preserving

locality of reference,. Consider a function which in
recursing wupon lLtself is handed off to a descendan
precessor, The code §for the function body is ot least

partially stored locally, so a cache miss in the descendant
processer will travel only one level wup the hierarchy.
Similarly, the parameters for the new functlon are alse

generated locally, not even mapped 1o higher levels, so

_(}‘)'?....

parameter access alse requires data transmission across

only a single level.

In other words, locality of reference allows some agpects
of caching behavior to0 be considered in relative terms,
This means that the problem of maintaining reasonable wmiss
raties near the root of the tree may not be intractable
after 0ll, Cache memories with miss ratiocs ef 5S0Z are
certoinly very easy o build, especially when the
alternative is a 0.2%Z wmiss ratio cache,

Consider also the effect on locality of descendant
processors performing similar computations, For example,
if they are evaluating the same function {(with different
arguments), the ancestor processor has to fetch the code
for the function body only ence. This meets the banduwidth

criterien exactly,

3.3,3 Hulti-level cache performance

ne of the questions raised earlier was whether or not the
bandwidth requirement of tree structured cache hierarchies
is stringent enough to provide the expected performance
henefite of cache wmermory., That is, will acccess to memory
through the cache be roughly as fast as accesses to local

memory?

Since all levels of the wmulti-level cache will use
semiconductor storage, and there is no compulsioen to use
cheaper storage for the larger caches, occessing upper
levels of the cache will not incur the extreme access time
penalty ef single processor cache hierarchles. The first
jump, from the internal memory of a node to the memory of

-..98....

the parent node, will wmean roughly a §factor of i0
degradation in access time, However, having to¢ go tuwo
levels up instead of one will not bring another factor of
10, but will only be twice as slow. In a 4-tree, for which
we require a miss ratio of no more than 2%%, a factor of
two increase in access time will net be noticed, In fact,
since the penalty for missing at a level gets wmilder for

gach step up, the deldays associated with misses will net be

Assuming a 4-tree with a wmiss ratio of 25% and o delay
pregression that goes something like (i, 46, 20, 30, 40
v+ Y, the average access time for a given node in the iresg
will be

374 + (474 % 10) + (1/46 % 20) + (41764 % 30) + ...

or rovughly a facter of % slower than local memory accesses.
Note that the first jump contributes the wmost to this
factor. In other words, if the bandwidth reguirement |is
satisfied, the speed of access to memory is bounded, if not

entirely satisfactery.

3.4 PBroodcast methedoloegies

The previocus sections assumed that bandwidth reduction

through demand driven scheduling is desirable, if not

ynavoidable, However, the handling of the various details
of cache wmanagement - mapping algorithms, replacement
policies, loockahead peolicies (if any) - cun be complicated

and time consuming. Perhaps it would be easier <to provide

raw bandwidth and repeatedly broadcast everything to all

-0

processors. Would the results be as good? This section is
then an exercise in point of wview, and is perhaps best

introduced by the example of elevator scheduling.

%.4.4 Elevators

Suppose we have a single elevator serving several floors
and lunchtime hos arrlved. Nobody breought o sack lunch to
work, 0 requests for elevator service come from all
floors. Furthermore, service requests are directioenal and
varied becavse there are several floors of parking

structure.,

The wmoest obvious (and worst!) strategy is to handle

requests in the order they come in, transporting oene person

or group at a time from floor 1o floor. Te service all
requests the elevator wmust on the average traverse the
entire height of <the bullding feor each request,. The

service is intoelerably bad, mitigated slightly by the shift
of would-be elevator users to the stairs. Unfortunately,
most of the etair users had already pushed the call button
before turning to the stalrs in disgust,

i much better policy 1is to consclidate several service
requests into each trip. This approach does not improve the
service to a single elevator wuser, but service degrades
slowly in the face of demand from several vsers. Buality of
service now depends somewhat on the capacity of the
elevator and the time spent at each floor pilicking up and
depesiting passengers., Censiderable thovght can be put inte
this kind of scheduling; it is even possible to find an
optimal one given the properties of the elevator and some
measure of cost [Knuth731,

-400~

An intermediate pollcy is to send the elevater up and douwn
constantly and have it stop at Ffloors for which service
requests point in the direction the elevator is currently
troveling., This poelicy will not provide optimal service in
the sense of delivering the most people to the most floors
in the least time, but it will provide a 1lower bound for
service as well as a redsonably well controlled expected
time, Also, it is by far the simplest policy of <the three
to implement.

3.4,.2 Fixed—~head disks

This elevator example alse corresponds wWwell to the
characterlistics of rotating wmedia, Although elevators do
have inertia, they have no preferred direction ef motion
once they are stopped. Moving head disk arms are the saowme
way, which is why the second kind of pelicy is most often
veed for moving head disk strategy. HEut the wmedium itself
rotates, and with considerably more momentum than that of
the twirling patches of magnetization we call bits. With
severnl surfaces rotating at 3600 revolutions per minute, a
lot of information is whizzing by in each 17 millisecond
revolution. In fact, if there 1is a read/write head for
every track of recorded data on the disk, everything you
could pessibly want to teuch passes by in these 17
milliseconds [HMcMahon791.

This observation forms the basis of a nearly defunct lore
of fixed-head disks and their wuse on paged timesharing
SYstemMs. Rather +than take the point of view that each I/0
operation will take place in so much time, the promise can

almost be made that all I/0 sperations presently queved

~-404-

will be completed in a fixed amount of time. The wvalidity
of such a promise depends of course on the ability of the
system to perform I/0 operations en several tracks
concurrently, slince there will ot times be wmultiple
operations scheduled for different tracks in the same

sector of the disk.

This prospect is enormously attractive in a timesharing
environment where several processes are generating 170
requests and page faults asynchronously, The TENEX
[Bobrow721 and BEN LISP [Bobrowbt7] systems are examples of
systems that take good advantage of head-per—track disks in
this way, Unfertunately, the days of the fixed bhead disk
are appoarently past, and moedern timesharing systems can be

purchased only with moving head disks,

3.4.3 (Multiple head)-per—track disk

Consider the enormous potential bandwidth of individual
read/write heads each hevering over a separate track. This
bandwidth is wusually thrown cuay by enabling only one at a
time. However, the fact remains that even wunder a heavy
load the maximum access time is only double the average
access time, More importantly, every bit on the disk
passes under a read/write hend for every revolution of the
disk.

This marvelous property first came abouvt From the
difficulties in bulilding disk arms that wmoved without
machining w~aterial from disk surfaces. With the advent of
moving are technology and its ever—increasing track
density, the extravagance eof installing (and maintaining!)

@ head for each track became less and less justified and

~102~

fixed head disks have all but died away,

Today’s (1980) densities of thin film technology recording
heads are in the hundreds of tracks per inch., While one
can hepe for a comeback in fixed head disks, another
pessibility presents ltself, Back in the days when disk
drives were (relatively) cheap and computers were not (when
men were men and giants walked the earth), it made sense to

spend a little wmore 1o wmake the disk faster, This
sitvation has wvery clearly reversed - very few personal
coemputers have hard disk drives. Given the inevitable,

that wmultiple computers will share the same recording
medium, why not give each computer its own set of heads?
Further, what is to step us from placing these sets of

heads over the same tracks as in figure 3.&7

The advantoges are twofold. First, all wmachines have
access to the same storage, and this storage passes by each
machine every revolution, If +the address space of each
machine is mapped to disk then we have achieved the goal of
multiple machines sharing memory., In fact, all storage is
shored save the lecal sterage in each wmachine which acts

more as o cache than anything else,

The second advantage is that since the heads are physically
placed at different locations over the disk surface, the
transfer rate to and from each wmachine 1ls not reduced,
Looking at it another way, the bandwidth of the disk is
multiplied by the number of machines connected to it. This
total shared memory confliguratien &0 valuable for
multiprocessors comes without the penalty of reduced
bandwidth,

-103-

I
thin-film
recording head
F
(~1000 tracks)
disk J
surface

]

(Multiple head)-per-track disk

Figure 3.7

~104-

Communication between processors is limited by the rotation
speed of the disk, so in a very real sense the disk becomes
the clock by which partitioning of parallel subtasks takes
place. More than anything else, this affects the size of
subtasks below which there is no advantage to partitioning.
Given the sverhend one might expect to incur for
partitioning, this may not be a major problen. There also
has to be o multiple free list scheme to prevent contention

for write access to individual areas en the disk.

I leave it t¢ the reader to construct his own analogles to
this kind ef system in CCD and Bubble memory technologies.

-10%~

Chapter Four

8tructure of a multi-level LISP system

In previocus chapters 1 have presented schemes for
extracting concurrencies from computations, interconnact
structures for wmultiprocessors, and ways of providing
adequate wmemory banduwidth +to individual processors in o
multiprocessor system. In this sectien I attempt to combine
the results obtained and apply them in a real-world system.

This chapter describes an implementation of ! LIgp
programming enviroenment on a tree machine whose memory
operates o8 a wmulti-level cache, The purpose of this
exercise is to lend a sense of reality to previous
discussions, In this regard a LISP system can be brought
arbitrarily close to reality; many LISP systems are more

eperating system than progamming language.

The implementation of a LISP system also brings with it the
necessity of selving some wvery real problems almost
universally lignored vet wvital to the success of a truly
functioning system, For example, the matter of how program
code gets to the processoers that need to execute it has

never to my knowledge been dealt with satisfactorily,

Also, in the course of managing the limited resources of a
node in a tree wmachine, the matter of managing program
which wmight not completely fit is eoften ignored by treating
program coede as special. Such proeblems reflect symptoms of

a4 memory management scheme insufficlently general to handle

-~ 06~

looding and execution of programs while wusing only those
primitives provided by the programming language., In LISF,
program is datno, forcing the implementer to face up 1o the
reallities of managing program space.,

Treating programs as data offers that additienal advantage
that a scheme that handles dato structure well will alse
handle program storage. This provides a convenient test of
o multi-level caching system intended to make access to
data appear as fast as the fastest memeoery in the system. Ag
pointed out earlier, LISP programs can be represented as
simply a particular forew of list structured data, and the
same arguments that apply 1o data referencing behavior
should apply equally well +to program reference behavier,
If not, somebody is lying and the reader ls admonished to

start checking for the flooting peint svyndraome which often

appears amidst phony cachling statistics,

fnother aspect of life in the real world which is often
cverlooked is avtomnatic Memory managemant. Several
languages, including Simula {[(Rirtwistle?73l, APL, SNOROL,
SAIL, and LISP, provide 1this very useful sgervice to
programmers, often at the gxpense of having their
colleagues accusing them of laziness or living in an
illusery world., The existence of a garbage coellector frees
the programmer from the strictures of stack programming,
Just as stack allecation in Algel and its descendents freed
programmers from the strictures of FORTRAN programming,

Pedantic statement: That there still exists a respected
body of people who either fail to acknowledge the automatic
memory mandagement functions of almost all eperating systems

or den’t realize that their favorite programming language

~407-

uses dynamic storage for strings, or worse yet feel that
confining oneself to the strictures of stack programming is
somehow "good" or Tvirtuous" 1s a constant source of
amazement to me, Epnd _of peduntic stalement,

Aaain, the implementation of a LISP system provides direct
gxposure to a real world problem whose solution is
testimony 1o the effectiveness (or Ffailurel) of one’s
ideas, However, because of the uniform strvcture of list
structure, a soclution for LISP will not necessarily work
for languoges {eq Simula) which provide automatic
management of variable sized ob jects [Arnborg721. As T will
point out later, that is a hard problem.

I will thus coentent myself for now with wmopping a LISP
environment onto a multi-level system., This task combines
some of the realities invelved in providing a vuseable
system with the potential of a pregramming language
sufficiently powerful as to be able to write an operating

systenm in it.

4.4 A bhierarchy of anddress spaces

Imagine a multi~level machine in which the address space of
each node Lls a superset of the address space of its
immedliate ancestor, Each node can thus address everything
gecessible by its parent, plus w®ore which Ls accessible

only to the node and its descendants,

A suitable configuration for a node in such a machine is
given in figure 4.1, Each node is comprised of a processing
element, a cache memory through which access to ancestral

data is provided, and a local memory which can be written

-108-

to
aneestor

cache
memory registers

Free liet

processor expression

environment

local \ oo
\

memory \

to descendants

3

A node in a multi-level LISP tree machine

figure 4.1 .

-109-

only by the processing element in the node. The processor
igs connected to lts lwmmedlate ancestor and descendants in a

tree structure.,

The sole purpose of the cache is to buffer read accesses to
ancestral data. The processor is prohibited from writing in
the cache, Hence, the concept of write-through is
meaningless in this machine., As discussed in the previous
chapter, eliminating write-through removes a potential
bandwidth preblem and prevents the so-called stale data
problem,

fctivity in a node is initiated by the parent spawning the
evaluation of an S—-expression., The node is handed pointers
te the expression and the environment for its evaluation,
from which the node wmay access any relevant piece of
pregram or data. Itewms so0 referenced are buffered in the
cache and are sub ject to the standard replacement

algoerithms of cache memory.

In the course of evalvating the expression, the processor
in the mode may create new data or new combinations of old
data. Space for such data is allocated in the local memory
of the node, Note that this dato can be made available to
any of the node’s descendants should pointers to them be
passed down in the spawning of an evaluation,

The interesting part of the evaluation process comes when
it is time to return the results of the evaluation to the
parent node. Since the result is most likely to be created
in local wmemory, which is not addressable by the parent,
any local data returned must be mapped and copied into the

parent’s address space. All pointers to such data also

~$40~

have to be re-credated in the parent’s address spoace. This

process will be described more fully later.,

4.2 Data representations

A possible representation for LISP data is illustrated in
figure 4.2, All data is +typed, allowing type-dependent
decisions +to be wmnde on inspection, LISP systems have
historically dealt with data typing on a very informal
basis, For o wmulti-level system it is ieportant to

separate the notions of type and address space.

ALl data ob jects, or words, are lidentical in size,
consisting of three fields: a jfype Fflield, an information

field, and a small (4 or 2 bit) field for garbage
collection purposes. For the sake of convention I will
assign 24 bits for the information field, &6 bits for the
type flield, and 2 bits for the garbage collection (GC)
field, a total of 32 bits for each data eb ject.

The primitive daota types chosen are integer, character,

atom, pair, and {free. In the free data type, the

P A

information field is used to hold an address to the next
element of o free list. All data objects are allocated
from the free list and returned after uvse by the garbage
cellector.

Since LISP pairs have twe fields cgr and ¢dr, a palr is
considered to be two consecutive words in storage. The
infermation field of the first word is the cagr field, while

the cdr resides in the information field ¢f the second word

-111-

GC | TYPE

INFO

LISP data obje
Ffigure 4.2

et

Representation of "ASCII"

figure 4.3

Representation of NIL

figure 4.4

g4 @-

of the pair. Two free lists are kept in anticipation of
having to allocate two words at a time for pairs and ene
word at a time for everything else,

fs a matter of interest, the MIT LISP wmachine
[Greenblatt?77] makes use of clever encodings of the type
field in order to represent some LISP pairs in a single
word., This scheme relies on the existence of a copying

garbage cellector, an assumption I am not prepared to make

for this multi-level svstem.

An integer object is a word containing the integer type
field and a signed 1two’s complement integer in the
information field.

The chapracter data type uses the information field to store
a small onumber of characters, A 24 bit information fleld
is room encugh for 3 ASCII characters., Unused character

pesitions are represented by null bytes.
Strings of indefinite length can be represented as lists of
character objects., For example, the string "ASCII" is

represented in figure 4.3, occupying six words of storage,

The information ¢field of an atom object is simply an

address ¢f a string object. The string object is the print
pame of the atem and is created when the atom iLs read in
from the keyboard, Note that atoms are created only in the
address space of the root nede. The atoem NIL is shown in
figure 4.4,

The representations given were chosen for clarity rather

than coempactness., Many variations abound in the annals of

-4413~

LISP culture, aach with its own particular advantages. Une
of the earliest recorded non—-standard representations is
Deuvtsch’s compact encoding for atoems in PDP-4 LISP
[Revtsché4al, The important properties of the
representatiens chosen here are the separate type field and

the (nearly) constant size of primitive objects.

Since this is o wmulti-level system, anddresses are broken
down into tuwo fields: a short flield denoting the level of
the tree to which the address refers, and the physical
address within the local wmemory of the ancestor node at
that level, Thus, the combination of a 4 bit level field
and a 20 bit physical address fleld is sufficient 1o

brd
identify 2“0 elements in each of 16 levels of the tree

Note that addresses are given only in terms of the current
nede and ancestors of the current node, Addresses may be
duplicated across variocus nodes at the same level of the
tree without ambiguity, since the address spaces can be
differentiated by the physical locatien of the nodes.

4,3 MHMemory manggement and garbade cellection

Each node in the tree is responsible for malilntaining the
validity of polnter data in its owun address space, as well
as managing the allocation and reclamation of free storage.
Becouse each node is part of a larger whole, it makes sense
te adept certain conventions fer behavior in wmanaging
memory., These conventions will of course prestrict the
freedom of action of individual nodes, but they will also
allow many kinds of operations to be easily accommodated.

-4i4~

The fundamental property of this multi-level system is the
hierarchy of address spaces. In terms of access rights,
each node can access its own storage as well as the storage
in ancestor nodes, Conversely, local stoerage in any node

ls accessible only to that node and its descendants,

4.3.4 Returning results

This situation has its costs., For example, consider a datag
structure being returned by an evaluation in a descendant
node . This data structure contains references 1o data
accessible by that descendant node. Unfortunately, the
node precelving the result does not have gocess to data in
the local memory of the descendant node.

Soeme data created 1in the descendant can be copied without
translation, The representations of integer and character
ob jects are independent of the level of their creation., In
‘ceopyving such objects back, free objects are merely taken
from the free list and the dota stored in them, Addresses,
however, are a different matter, including the addresses of

ob jects whose representations are independent of level,

An object centaining an address to another object in the
lecal wmemory of the descendant cannot be coplied literally.
& free object can be taken from the free list and given a
new type lemediately, but the address field cannot be
filled in until the data pointed to is copied and its new

address known. If this data also points for objects in the

descendant’s local memory, the procese has toe be repeated.

Returning results from a spawned function is thus a

recursive process. Each attempt te copy an object pointing

~115-

inte the lecal memory of a descendant initiates another
recursion, Attempting to copy o pgir can result In tuwe
branchings of the recursion., Recursion along such a branch
terminates when an integer or charagacter object is copied,
er when an address encountered points to an ob ject in the
current address space. Such objects cannot have been
creanted or altered by the descendant processor because the
descendant processor does not have write access to any
memory but its ewn lecal wmemory., Hence, following an
address peointing to "old" data cannot lead to any data

which Is not "eld®,

Note the significance of the restriction that prevents a
nede from wrliting inte Lts cache, If 11t were possible to
saplice new datg inte an exlsting list, there would be no
way of determining at what point to step a recursive

cepying operation,

4.3.2 GbGarbage coellection

The process of cemputation produces results by creating new
data structures from previosusly defined data structures.
In LISP, new data structure is stored in objects taken from
the free 1list. By the physical nature of storage devices,
the free list must have a finite length. However, one of
the primary goals of a LISP systewm ls the maintenance of
the iLllusion of infinite memory. In erder to wmaintain this
illusion, vunused objects must eventually be recycled to the
free list. This is custemarily accomplished through the
garbage collection process,.

Garbage collection is normally initiated when the free 1list
rens out of objects., Without telling the uvser thaot he just

~1ié&-

ran out of wmemory, the garbage collector reaches out and
marks every object touchable by the user’s program and data
structures. The garbage cellecter then sweeps through
physical memary returning unmarked {and therefore
vnreachable) ob jects te the free list and unmarking those
ob jects that get marked in the first phase. Simple.

4.3.2.4 GC scare #i

Garbnge collection becomes a more complicated wmemory
management operation if the system on which it runs relies
en virtuval wmenmory., This is because objects iln memory do
net become unused in the same order they are used, What
starts osut as a nicely ordered free list becomes random
after several garbage collections, which plays havoc with
the paging behavior of virtuval memory systems.

Schemes designed to alleviate this problem range from a

clever cons [Bebrowét?7l to Full linearizotion of memory

through o copying garbage collection [Baker781, Clevep
cons works by separating the free list into a free list for
every page in the hope that new dota g¢onsed together will
have better than randem referencing behavior, Copying
garbage collection works simply by copying all
referenceable data from one part of m™Memory te anether,
linearizing references along the way. Both schemes work by
attempting te give the paging system what 1t wants:
nen—random reference patterns.,

The question arises:; what does the multi-level cache scheme
want? The answer of course is "nothing®, since all levels
of swstorage in the system are wmade {from semiconductor

memory, objects can be retrieved one at a time nearly as

- i 1‘7.

papidly as in large blocks.

This is wvery fortunate from the standpoint of garbage
collection algorithms, slnce wmoving data around in memory
is dangerous in o multi-level sygtem., Why? Because objects
in the lecal wmemory of node wmay be pointed to from
descendant nodes, Rearranging storage in a nede would thus
cavuse a lot of caches to suddenly go stale, a sitvation

worth avoiding.
4.3.2.2 GC scaore &2

Consider now the marking phase of garbage collection, where
all reachable objects are dccessed and wmarked, The
implementation of a hierarchy of address spaces certainly
gives each node access to a lot of memory, Marking all
that memory for ench garbage collection in edch node of the
tree would take a great deal of time,

Also, consider those objects In local wmemory pointed 1o
from descendant nodes. Can any of these objects become
unreachable from local memory and still be pointed to from
putside? If se¢, wmarking must proeceed from the leaves of
the <tree touwards the root. Such forced synchrony of
eperation would be devastating to the performance of the
svatem as a whole,

Foertunately, all ob jects reachable from a spauned
computation can be troced from the information passed to it
at the time of spawning, That is, the expression to
evaluate and the environment in which <to evalugte it
provide all the information necessary to determine what can

be referenced froem a descendant node. By retaining this

~§ 18-

information, marking can therefore proceed in a node
without concern for what descendant nodes actually do

reference.,

looking from the point of view of such a descendant neoede,
it deesn’t matter what portions of aneestral storage i1t can
reference, All such references are of course wmade through
the cache, The ebvious conclusion 1is that addresses to

non—-local wmewmory need not be foellowing during garbaoge
collection!

fstounding ohservation: Garbage collection in o node of a

multi-level LISPE systaem can proceed completely
independently of other nodes in the tree. It is therefore
impossible +to generate a cache wmiss in the course of

performing a garbage collection, End of astounding

observation.

This ability te garbage collect without generating the
equivalent of page Ffaults is of course not shaored by
ordinary virtual memory systems, However, to be fair, the
multi-level scheme presented has no recourse in the event
that a computation exhausts local memory, In providing
individual nodes with access to large quantities of storage
through the tree, and so0 allowing individual noedes to have
less wmewnmery than would otherwise be needed, preventing
writes from migrating up the tree hierarchy is an essential
part of maintaining independence of gperation and
reasonable bandwidih 1o wmewmory. Providing an overflow
scheme is an additional complication that may have to be

faced in the construction of a multi-level syvsatem.

-119-

4.4 6 simple example

This section illustrates the operation of a multi-level
LISP system in the course of evaluating a simple example,
That example is the old contrived example of the mirror

function

mirroritl [atomitl —-> 1

T -} conslmirroricdritll,mirrorlcarlit111]
applied to the S-expression
<A . By . (C . DM

The computation begins with the definition of wmirrer and

ilte argument contained in the wmemory of the root node

(figure 4.5%a0). Mirror determines that its argument Ls

non-atemic and proceeds to cons together the results of the

mirrored sub-trees. Under eoger evlis evaluation, the root

hands these sub-~computations to descendant nodes and waits

At this point the descendants have pointers to the function
|
to be evaluated (mirror) and the S-expression to which it

ils to be applied. The left descendant is charged with the

task of evalvating wmirrerI(C , D)1, while the right
descendant 1is given wmirrori(d ., BI] to evaluate (figure
4,5b) .

In +the course of evaluanting the mirror function, each of
these descendants must bring a copy of the relevant wmirror
code into its cache, Since wmirror is not an iterative
function, and each invocation spawns computations in

descendant nodes, all references to parts of mirror result

-120-

((A.B).(C.D)) ((A.B).(C.D))

((A.B).(C.D)) ((A.B).(C.D))

((A.B).(C.D))
((D.C).(B.4))

((A.B).(C.D))

.B)

JA)

Time history of multi-level cache

figure 4.5

S rIe

in coche misses and must be retrieved from the parent, in

this case the root,

Consider now the left descendant of the root, which is

gvaluating wmirrori(C . D)1, Upon inspection of the pointer
te (C . D) it determines that the argument to wmirroer is
noen—atomic, and proceeds to set up anether pair of

evaluations., These evaluations invelve the cdr and car of
(C . D), so0o the pointer to (C . D) is followed and the
actual pair is cached (figure 4.%c). At this point the
node can glve polnters to D and C 1o its descendants along
with pointers to mirroer (fiqure 4.5d)., A similar sequence

of events happens n the right descendant of 1the root
evaluating wmirrorli(aA . R21,

There are now four evaluations of mirroer[t] initiated in
which the arqguments { are atomic, The tests are made,
caching the code for pmirror from one level up in the tree,
until the leaf nodes discever that their darguments dre
indeed atemic, and they must do something their parents had

never done. Until this point, the part of
atomitl -3 1

that returns 1t has never been executed, Assuming no
special attention has been paid to wmanaging program
segments as such, a series of cache misses ensues, with the

requisite code being brought down from the root.

Once the leaves find out that in fact their arguments (D,
C, B, and A) are their resuvlts, pointers to the appropriate
atoms are returned and are consed tegether by the nodes in
the second level of the tree (figure 4.5e)., Since the newly

created cons pairs (D . C) and (B ., &) are in fact the

~1 22~

results of the mirrer evalvations at this level, they must
be returned to the root. FHecause local data is not wmapped
te o parent’s oaddress space, the new pairs adare re-created
in the address space of the root, The root in turn conses

these results together to return the answer
(. €Y , (B . A

as shown in figure 4.5f,

an obvious question in light of this example is that of the
observed cache miss ratio. It seems as If wvirtually all
acesses to data in each node below the root result in cache
misses, Obviously, this dees not auvger well Ffor the

parformance eof a multi-level cache system,

The retert to this question is of course, "How could it be
otherwige?" The computation necessarily begins with exactly
one copy of the program and the Initial data, most of which
is eventually distributed throughout the tree. The
operation of the wmulti-level cache in this example is
analogous 1o the behind-the-scene activity necessary for a
asystem embodying the philosophy of letting the compiler
handle everything, In the worst case, the multi-level
cache operates as a recursive loader, at all times
satisfying the bandwidth condition since two requests for

the same ltem generate only one cache miss,

For computations which are less of a "one-shot" nature,

such ag matrix inversion, one would expect certain

functions such as inner product to migrate to the leaves of
the tree for repeated invecation during the computation.
Needless to say, cache memory works best in situntions like
these where "the past predicts the future®,

~123-

4.5 Summary and critigue

In +thig thesis I have attempted to treat the problems of
noetation, interconnect, and resouce management
individually, In the first chapter I introduced several
mechanisms whereby concurrencies in LISP pregrams can be
detected and exploited easily. In 1he secoend chapter I
showed how vardovs kinds of computations might be expected

to map onto physical structure, and presentaed a short

analysis of the wirability af several interconnect
structures, In the third chapter I addressed system design
ilssues Ffrom the standpeint of maintaining acceptable

bandwidth for each computing element, resulting iIin the

development of the concept of the multi~level cache,

In +this the final chapter T have brought the results of
these discussions together iIn the description of a
multi—-level LISP system, This description ls complete in
the sense that wvery little 1is left to the imagination
regarding its construction., In fact, given an appropriate
collection of microprocessors, support circults, and

memory, the system described could be bulilt today,

The multi-level LIGP system presented here has the
potential of beling able to involve many computing elements
vsefully in the performance of general—-purpose
computations, Whether or not this universally sought after
gonl is achieved depends among ether things on whether the
underlying principles of cache memory really apply

favorably across many levels,

To be sure, the design attempts to take advantaoge of
locality in computations, (In fact, I don’t know how it
could be wmore so0.) This design is in keeping with the
trends in semiconductor technology mentioned in the
introeduction, which promise to reward locality handsomely

as the technoloegy progresses,

The irony of this presentation is that the vehicle chosen
for searching out the benefits of locality is the LISP
programming language, whose reputation Ffor generality ls
Mmatched oenly by its reputation for non-lecality., LISF, the
bhane of many a paged timesharing system, used In a
demonstration of locality in design!

4.%5%.4 What could be

A natural question at this point is whether or not the
ideas presented in the implementation of a multi-level LISP
system apply te other programming netations. Some of the

schemes presented, such as lenient cons, are indeed very

specific to LISP, and their applications to computation in
general are perhaps not immediately clear, Could this

thesis then be construed as an vuvltimatum Ffrem the LISP
world?

Certainly not. Aside from the wmaterial in chapter one,
most of the discussion leading up to this chapter has been
divorced from the specifics of any programming notation,
If a concurrent evaluation scheme were developed for, say,
Pascal, then all of the discussiaon of interconnect
structures and multi-level caches would apply.

In particular, the successful operation of the wmulti-level
cache would still depend on the absence of side-effects,
If partitioning in Pascal is keyed on procedure calle as

with the eager evlis wmechanism For LISP, the standard

Pascal scope rules would have to be modified and the var
parameter passing mode eliminated, In addition, assignment
to local variaobles naccessible from porameters passed to
descendant nodes would somehow have to be prohibited,

Also, since results returned Ffrom Pascal procedures can
only be of simple types or pointers to records, structures
returned must be mapped and coplied Iin a maonner similar to
that described for list structures in LISF, Such
coensiderations beg the question of storage management In

Pascaol, which is very much of the do-it-yourself variety,

I short, it would not be easy to adapt Pascal for
concurrent execution on a multi-level machine., Howaver,
other functional notations [Burge?Sl [Backus?8) [Turner?79l
have wmuch in common with LISP, and one might expect

implementation on g multi-level machine to be similar in
complaxity to that of LISP,

LISP of course has many properties which, if not essential
to +the svuccess of the ldeas presented, are at leeast uvseful
in illustrating sechanisms for handling generality, The
existence of an internal form for LISP programs ("progranm
is dnta") exposes and solves logistical gquestions wusually

agvoided in discussions of concurrent moachines,

The constant size of primitive objects in LISP allows for a
general storage management scheme whose operation is not

affected by the inability to move objects in storage. The

vse of wvariable-sized objects coupled with a need for
garbage collection, as in a Simula system, Fforces the vuse
of copying algorithms in sterage management., As I pointed
out earlier, suvch algorithms are noet suitable for uvse In

multi—-level systems,
4.%.2 What isn’tv

LISP i used in this thesis as an example of a
gelf-sufficient environment which is known to be useful,
and I am comfortable with the implementation described,
Yet the view taken by LISP, indeed by all of the FRAPP
languages and wmost functional notations, 1s that of «
centrally defined demon operating on passive objects, The
multi-level system described spreads the demon over a

hierarchy of active elements, yet the data remains passive,

The wview taken by the Simula programming language is more
consistent with the real world, Each instance of a Simula
class, while possibly owned by anocther object, is
nonetheless the master of its own internal state, Ob jects
in the real world have handles, buttons, and furry paws
through which the external world is interfaced, No
centrally located demon controls the pop-up mechanism of a
toaster or the digestion processes of a small kitten.

Those are matters for the internals of toasters and small
kittens.

Objects in the real world are long-lived., When a man cuts
himself with a razor, no new instance of the man plus a cut
is created and +the old one thrown away., You con meet
somMeone you’ve never seen or heard of before. All of these

observations are alien to +the LISP world of functional

expression, yet are consistent with the viewpoint of
Simula,

I don?t know what o multiprocessor Simula system wouvld look
like, but I am sure it would not resemble a multi-level
LLISF system. For example, a basic precept of cache wmemory
is that program precedes data, That is, a data object can
be fetched only if there is o program to request it, When

the program goes away, the data leses all of its meaning.

Suppose an object is left in some descendant node of the
tree, It can’t be touched, because all pointers point up,
If it is left dormant, later to be accompanied by some
program which gives it meaning, there is no way of finding
the object.

It is easy enough to imagine a system comprised of
individual functien blocks, each a class object capable of
influencing others., How can behavior be shared, as for
multiple instances of a class? Perhaps the idea of shared
behavior is superfluovus, since each instance of o small
kitten has its own copy of everything a small kitten should

have .,

In short, there is much work to do.

~-i28~

Appendix

An eager evaluator

The interpreter presented here combines several concepts
from the Ffirst chapter, Incorporated are an explicit

lenient cons nnd an explicit eager evaluation scheme in

which the functions of poirlis and enger evlis are
combined, As before, eval and apply form the main body of

the interpreter.

evalie,al = [atomiel - cdriassocle,all;
atemlcarfell -3
feqlcariel ,QUOTE] ~? cadrlel;
eqlcarlel ,CONDI ~) evconlcdriel,al;

eqlcarlel ,LCONS] -> lconsicadriel,caddriel , al
eqlecarlel ,EAGER]Y ~-) lapplylcadrliel,cddriel,al

T =) applylicariel ,eviislcdriel,al,all;
T =) applylcartel,eviislcdriel,alall

applylfn,x,al =
{atemIfnl -
feqifn,CONST - conslcarix],cadrixl];
eqlfn ,CARY -) caarixl;
eqlfn,CDRY - cdarixl:
eqlfn,EQY -3 eqglicarixl,cadrlxll;
eglfn ,ATOM]I -> atomicarixll;
T =) applylevallfn,al,x,all;
eglcarifnl,LAMEDA]l -> evallcaddrifnl,
pairlisfcadrifnl,x,all

T =) applylevalifn,al,x,all

In this interpreter, lcons performs a symmetric lenient

cong function:

lcensix,y,al = [pair p}
p.car ;= MAIL,
p.cdr = MAIL;
carspawnip,x,al;
cdrspauwnip,y,al;

-429~

return pl
where carspawn and c¢cdrspown are defined in separate
processors as
carspawnip,x,al 1= Ip.car ;= evallx,all
cdrspawnip,y,al 1= Ip.cdr 1= evally,all

This requires both car and cdr to be suspicious:

carixl = [while x.car == MAIL do [];
return x.carl
cdrix] = [while x.cdr == MAIL do [1;

return x.cdrl

If the uvser specifies eanger evaluation, gyal passes control
to lapply rather than apply. Lapply is different in that

it does pot expect the argument list x to be evaluated:

~>
eqlfn ,CONS] ~-> conslevallcarixl,al,
evallcadrix],all;
eqlfn,CARY -2 evallcaarixl,al;
eq{fn,CDRI -> evallcdarixli,al;
eqlfn ,EQY -) eqlevallcarixl,al,
evalicadrixl,all;
eqlfn ,ATOM] -) atomlevallcarix),all;
T -> lapplylevallfn,al,x,all;
eqlcar{fnl,LAMBDA] -} evallcaddrifnl,
pairevliisicadrifnl,x,all
T ~) lapplylevallfn,al,x,all

= 3
b §
-+
a

where palrevlis is defined to perform the functions of
pairlis and eaqaqger evlis:

pairevlisix,y,al =

[nulllxl -> NIL;

eager{] -
fpoir p;
p.cdr = MAIL;
spawnip,cdrixl,cdriyl,al;
p.car = conslcarixl,evallcariyl,all;
return pl;

~4.30-

T =) conslconsicarixl,evallcariyl,all,
pairevlisicdrixl,cdriyl,alll
spawnip,x,y,al = [p.cdr := pairevlisix,y,all

As I said before, it lsn’t pretty. The reader is invited
te formulate his own, prettier, evaluator,

~-13i~

References

"This bibliography is presented both to acknowledge the
great debt of the author to the Wwork of others, and to

share with the reader a compendium of provocative reading.*"
[IKayé7]

[Acton70]
Forman S, Acton
Numerical Methoeds That (Mostly) Work
Harper & Row, 1970

{Aallen78]
John é&llen
dnotomy of LIGE
McGraw-Hill, 1978

[Arnborg721}
Stefan Arnborg
"Storage Administration in a Virtual Memory
Simula Sustem"”
BIT 12:9, 4972, p. 125-144

{Backus781]
John Backus
*Can Programming be Liberated from the vonNeumann Style?
A Functional Style and its Algebra of Programs®
Comm ACM 21:8, August 4978, p. &613-644

[Baker781
Henry G, Baker, Jr.
"List Processing in Real Time on a Serial Computer®
Comm_ ACHM 21:4, April 4978, p. 280-294
[Barnes68l
George H., Barnes et al
"The TLLIAC IV computer”
IEEE Trans Cowmp 17:8, August L9468, p. 7446~757

[Bell781]

C. G, Bell, J. C, Mudge, and J. McNamara
Computer Engineering
Digitnl Press, i978

-132~

fRerkeleyb4dl
Edmund C. Berkeley
CMLIGP ~ A Simple Introduction®
in The Programming Language LISP:
Its Operatien _and épplications
"MIT Press, 1964, p. §-49

[Birtwistle73]
Graham M, Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug,
and Kristen Nygaard
Simulo BEGIN
Petrocelli/Charter, 1973

[(Bobrowt?]
Daniel G, Bebrow aond Daniel L. HMurphy
"Structure of a LISP System Using Two-lLevel Storage"”
Comm_ACM 10:3, March 1967, p. ibo-iu,
155~-459,

[Bobrow68l
Daniel G, Bobrow
"Storage Manaogement in LISP"
in S8ymbol Manipulation lLaonguages
North Holland, 4968, p. 291-304

[Bobrow72]
Daniel G. Bobrow
“TENEX, o Paged Time Sharing System for the PDP-L0"
Comm_ ACM 45:3, March 1972, p. 135-143
[Brandt1771]
fchi Brandt
"Multi-Level Adaptive Solutisns to
Boundary~Value Problems"
Mathemntice of Computation Z4:4, april 4977,
p. 333-390

[Brinch-Hansen731
Per Erinch-Hansen
Opernating Svystem Principles
Prentice Hall, 41973

{Browning7%9al
Sally A, Browning
“Computations on a Tree of Processorsg"”
Caltech VLSI Conference Proceedings
California Institute of Technology, 4979, p. 453-478

-4.33~-

{Browning80]
Sally &, PBrowning
The Tree Machine: A& Highly Concurrent
Computing Envirenment
PhD Dissertation, Computer Science Dept.
California Institute of Technology, 41980

fBurqe?75]
W. H. Burge
Recursive Programming Technigues
Addisen-Wesley, 197%

[Byte79]
Specianl issve on LISP
BEYTE Magazine 4:8, August {979

[Church4il
Alonzo Church
The €Cnlcull of Lambdo-Conversion
Princeton University Press, {944

[Clark771
Douglas W. Clark and C, Cordell Green
*a&n Emprical Study of List Structure in Lisp"®
Comm ACM 20:2, February 1977,p. 78-87

[Coffmans8l
E. G, Coffman and L, C., Varian
"Further experimental data on the behavior of programs
in a paging environment"”
Comm ACM 6:7, July 41968, p. 396-408

[Cohen79]
Danny Cohen and Vance Tyree
"ULSI System for SAR Processing®
Caltech VLEBI Conference Proceedings
California Institute of Technology, 1979, p. 1%i-472

[Davis781
A, L. Davis
"Data Driven Nets: A& Maximally Cencurrent, Procedural,
Parallel Process Representation fer
Distributed Control Systems"”
btah Technical Report UUCS-78-108
University of Utah, October 1978

[Denning701
Peter J. Denning
“Yirtual Memory"
Computing Survevs 2:3, September 1970 p. 453-489

~§34-

[Deuvtsché4sl
L.. Peter Deutsch
*The LISP Implementation for the PDP-4 Computer®
in The Programming Language LISP:
Its Operation _and Applications
MIT Press, 1964, p. 326-37%

[Elson73]
Mark Elson
Concepte of Proaramming Langunges
Sclence Research Associates, 1973, p. 213-227

{Fenichelé?l
Robert R, Fenichel and Jerome C. Yochelson
“A4 LISP Garbage Collector for Virtuval-Mewsory
Computer Systems”
Comm ACHM 12:44, November 1969, p. 611-678

{Friedman761]
D. Friedman and D. Wise
"CONS SBhould Not Evaluate its Arguments®
Prec 3rd Int Collog on Automata, Languages,
and Pregramming
Edinburgh University Press, July 1976, p. 257-284

[Gibsoné7]
D, Eibson
*Considerations in block-oriented systems design®
AFIPS Conference Proceedings 30, Spring 1967, p. 75-80

[Greenblatt77]
Richard Greenblatt
LISP Machine Progress Report memo 444
MIT Al Lab, August 1974

{Hansens%1
Wilfred J. Hansen
"Compact List Representation: Definition, Garbage
Collection, and System Implementation®
Comm ACHM 12:9, September 1969 p., 499-507

ITHeinle inbbl
Robert A. Heinlein
The Moon is a Harsh Mistress
Berkely Bantam Rooks, 1966

~4135%~

[Hewitt771
Carl Hewitt
"Viewing Controel Structures and Patterns of
Passing Messages"”
Grtificial Intelligence 8, 1977, p. 323-344

{Isancsonédl]
Eugene Isaacson, Herbert Bishop Keller
Annlysis of Numerical Methods
John Wiley & Sons, Inc., New York, 1966

[Kayés71]
Alan €. Kay
The Reactive Engine
PhD Dissertation, Computer Science Dept.
University of Utah, 1967

[Keller781]
Robert M., Keller, Gary Lindstrom, Suhas Patil
"An Architecture for a Loosely~Coupled Parallel
Processor®
Utah Technical Report UUCS-78-40S
University of Utah, October 1978

[Kilburné2l
T. Kilburn
"One-level storage system"
IRE Trans Elec Comp 2:4, April 1962, p. 223-23%

[Knuthé&8]
Donald E. Knuth
Fundamental Algoerithms
fdddison Wesley, 1968, p. 420422

{Knuth731
Donald E., Knuth
Sorting and Searching
fddison Wesley, 41973, p. 357-360

[Kung791}
H.T. Kung and Charles E. Leliserson
"Algorithms for VLSBT Processor arrays”
in [Mead?791, p. 2741292

[lLewis781
H. R. Lewis and C., H. Papadimitriou
"The Efficieny of Algorithms"®
Scientific American 238:4, Janvary 1978, p. 96-i09

~§36~

{McCarthys%]
John McCarthy
LISP 4.5 Programmer’s Manual
HIT Press, 1765

[McMahon79]
E. McMahon and J. Carson
"It’s not a very big book..."
The Tonight Show
National Broeadcasting Company, 1979

[Mewd79]
Carver &. HMead and Lynn Conway
Introduction to VLSI Svestens
- . Addison—Wesley, 41979

INivenn741
Larry Niven and Jerry Pournelle
The Mote in God’s Eye
Pocket Books, 4974

[NASA78]
"Future Cemputer Regqguirements for
Computationnl fderodynamics®
NASA Conference Publication 2032, 4978

[Pease77]
M. Pease
*The Indirect Binary N-Cube Microprocessor Array"”
IEEE Trans Comp 26:5, HMay 41977, p. 4%8-473

[Ritchie78]
Dennis M. Ritchie and Ken Thompson
"The UNIX Time-~Sharing System”
The Bell Svstem Techpical Journal %7:6,
Part 2 (8Special issve on UNIX Time-8Sharing System)
July—August 4978, p. 1905-(930

[Seitz79]
"Self-timed VLSI SBystens"
Caltech VYLSI Conference Proceedinas
California Institute of Technology, (979, p. 34%-3%64

[Steele?5]

‘ Guy Lewis Steele, Jr.
"Multiprocessing Compactifying Garbage Collection"”
Comm ACM 18:9, September 1%97%, p. 495-507

-4 37~

[Strecker781

William D, Strecker

"Cache Memorles for PDP-4i4 Family Computers®
in [Rell78B1 p. 263-268

{S8ullivan771]
Sullivan
*... Boolean N-Cube ..."
ColumbimsUniversity, 1977

[Sutherland?7]
Ivan E.; Sutherland and Carver A. Mead
"Microelectronics and Computer Science"
Scienti¥ic American 237:3, September 1977, p. 210-228

-

[Teitelman74]
Warren Teitelman
Interlisp Reference Manual
Bolt, Reranek & Newman, Xerox Corpoeration, 1974

LTurner?79l
D. &, Turner
“A New Implementation Technique for
Applicative Languages"
Softuware Proctice and Experience 9:4,
Tanuary 1979, p. 34-49

