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ABSTRACT

It .1s shown that the boundary layer approximation is applica=
ble to two=phase flow over a semi-infinite flat plate and about a
circular stationary cylinder, provided the particle density is of the
order of p in the boundary layer. In the boundary layer equations,
the importance of a new parameter, ?xm/x s which is the ratio of the
distance required for particle velocity to reach that of the fluid to the
length measured downstream from the stagnation point, is pointed
out, and expansions are made in terms of this parameter in such a
way that a similarity variable can be found for the semi=~infinite flat
plate. This analysis is carried out for both an incompressible and a
;:ompressible gas on the semi~infinite fiat plate. New shear coeffi=
cients and heat transfer coefficients are derived from this analysis.
Also, an integral method is applied to the semi~infinite flat plate
when the gas is incompressible to compare with the numerical solu-
tion of the same problem. The boundary layer analysis of the sta-
tionary circular cylinder demonstrate.s effects of curvature on two=-

phase flow.,
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I. INTRODUCTION

For many yearé engineers and scienlists have been inler=
ested in gas -~ solid particle flows which arise in many industrial
applications. To mention a few, gas ~ particle flow phenomena are
important in sedimentation, pipe flows [12, 207, fluidized beds, gas
'puriﬁcation, and transport processes [11,217], More recently, the
fields of propulsion and combustion [15, 167 have stimulated new
interest in the gas - solid particle flow phenomena.

The general problem considered in this thesis is the flow
over a solid object of a viscous gas in which there is a distribution
of spherical solid particles, all having the same radius. The radius
of a particle is in the range of 0.1 to 5. 0 microns. A sufficiently
high Reynolds number is assumed for the gas flow so that a laminar
boundary layer will form on the solid surface. The problem, then,
is to analyze the effects of the particles on the boundary layer in
regard to velocity profile, shear coefficient; and heat transfer,

Very few publications have been written on the subject of
two~phase boundary layers. Both Soo [177 and Marble [27] have de-
veloped the conservation equations for two~-phase flow in general,
and Soo treats the problem of the turbulent two-~phase boundary laver
on a semi-~infinite flat plate. Because of the complexity of turbulent
two~phase boundary layers, Soo uses integral methods in his analy~
sig. Chiu [187 treats the laminar two-phase boundary layer on a
semi~infinite flat plate, but his boundary layer equations are incor~
rect gince the conservation of particle momentum in the normal di-

rection is neglected. Also, Chiu assumes that the particle density
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is constant, and his analysis is applicable only when the effects of
t};e particles on the gas are of higher order than the gas inertia or
viséous forces, Marble [2] also treats the laminar two-phase
boundary layer on a semi-infinite flat plate, assuming that the nor=-
‘m.a}_ particle velocity is equal to the normal gas velocity within the
usual boundary _layer assumptions. Also, Marble's analysis is not
applicable for the entire length of the plate,

This thesis will treat the problem of a laminar two~phase
boundary layer on a semi~infinite flat plate and on a stationary cir-
cular cylinder, The change in heat transfer to the wall and in shear
at the wall caused by the presence of the particles in the flow will be
computed. An integral method will also be applied to the flat plate
problem, and the stationary circular cylinder problem will give the
effects of curvature on two-phase flow,

In the boundary layer, the gas decelerates from its free
stream velocity to zero velocity at the solid surface, but since the
density of the particle material is much greater than the gas density,
the particles cannot accommodate this rapid deceleration but tend to
slip through the gas as they decelerate, The magnitude of the parti-
~ cle slip velocity depends on the region of the boundary layer being
considered. Near the stagnation point on the surface, the particles
have very large slip veloclty, while on the other hand, far down=
stream of the stagnation point the slip velocity will be small, for in
this region the particles have had time to adjust to the boundary
layer.

The particles are assumed to be sufficiently dilute and to
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move at so nearly the same séeed that they do not have collisions
with each other and that the flow fleld aboﬁt. each Individual particle
dq.es not interact with the ilow field about any other particle. It is
also assumed that there is no radiative heat transfer from one parti=
clé to another. The particles are regarded as a continuum since the
individual motion of each particle is of no interest here, and it is as~
sumed that the particles have no random motions, and hence the

particle phase has no analog of pressure.
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II. GENERAL THEORY OF TWO-DIMENSIONAL

GAS -~ PARTICLE BOUNDARY LAYER

Because of the previcusly mentioned particle slip velocities,
there will be a volume force .a.cting on the gas and an equal and oppo~
site force acting on the particle phase. This volume force is ag-
sumed to have the form of the Stokes drag law. For large particle
Reynolds number, this assumption is erroneous, so it will be as=
sumed that the particle Reynolds number is of order unity. Every=
where this restriction is not met, the results will still be qualita-
tively correct and quantitatively reasonable, Therefore

EP = up(muc (zp-x)

where an underline denotes a vector quantity, and

F_ = force per unit volume of mixture of both phases acting

on the gas ,

nP = number of particles per unit volume of mixture of
both phases,

i = coefficient of viscosity,

o = radius of the particles,

—\ip = parlicle velocity,

v = gas velocity,

pp = particle density = mass of particle phase per unit
volume of mixture of the two phases,

p, = mass of particle material per unit volume of particle

material ,

m = mass of one particle,



o= P
P m 4 3
TT0 Py
Then
_E‘p = B bmuc({v_-v}
370 Pg
3 Ppl(¥p™Y)
—P 2,Ps o’
— o
FEN—2)
Pplco
R

where u = free stream gas velocity,

pumcr

P
e = Tmtes & %{-ﬁi)( )¢ = momentum equilibration
2 length,
PO
) = momentum equilibration time.

T= 2
m 9
Now in the boundary layer the particles find themselves in a
shear flow which causes them to rotate, thus giving rise to a 1lift
force acting on the particles in addition to the Stokes drag forces.
Unfortunately, the problem of the sphere in a shear flow has not
been done; however, in reference 1 the lift force on a sphere which
is spinning in a uniform rectilinear flow is discussed, and the fol-
lowing formula for the j.i.ft force is obtained:
F,p, = ™0 p0X (¥Vp=¥)
where
F = lift force
= pgas density

p
£} = angular velocity of the sphere.
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These authors alsc tried to obtain an expresaion for the lift force on
a sphere in a parabolic velocity profile, but the labor involved be~
came prohibitive, althongh as far as they carried the analysis, the
results for EPL are the same as the above formmula. Hence, the
only form which can be discussed for the lift force per unit volumec
of mixture is

For 7 np“03p%(_v><y_)><{zp-z) ’

and then in two dimensions,

ST TR
EY n,6muo | v, - v
1 PP% o 1 oy Bu”
1z =t R )
where
,v = x-and y-components of v

4 = some characteristic length
ES

x = x/1

Re = (pqm—t)/u

u = u/uOO

o v

v o= /Re ———
u
ao

= )(%) is small enough, we can neglect lift forces com~

pu
Then if (
)

pared to Stokes drag forces. In the following work, lift forces are

neglected,
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In addition to the ~pa.rtic1e velocity slips, the particles will

in general have a different temperature th.an that of the surrounding
gas, and therefore there will be temperature defects as well. Re-
cause of these temperature defects, there will be heat transfer be=
tween the two phases. The heat transfer from a particle to the gas
has the form |

0 = k (4m02) _____(TIZ;T) Nu ,
where

Nu = Nusselt numberzr ,

T = gas temperature;

k = conductivity of the gas ,

T = temperature of the particle ,

9, = heat transferred.
Under the same conditions as for the validity of the Stokes drag law,
i.e., Reynolds number of o.fder unity, the Nusselt number can be

taken equal to one, provided the Prandtl number is also of order

unity. Then taking

the total heat transfer to the gas per unit volume of mixture of the

two phases is

2 T -T
npk(41rc 1| i—-g )

QP =
(T_=T)
QP = p-pCS e
where
p = total heat transferred ,

i

specific heat of the solid particles,
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C_ = specific heat at constant pressure for the

gas,
Pr = (Cpp,)/k = Prandtl number ,

1 C p u crz

)= Tl = thermal
equilibration length ,

C
— 3 B — « 3 =
TT = -2~Pr T T™m = thermal equilibration time,

A discussion of the general problem of gas - particle flow
systems is given in reference 4. In that paper, the conservation
equations for the two phases are derived, and the importance of
several new éimilarity parameters, among them being the parame«
ter Am/;; ¢ 1s pointed out. As has been stated, there are regimeg
in the boundary layer which must be treated differently. Physically
A is the distance required for a particle to travel in order to re=
duce its initial slip velocity by e-]' . Hence, if

A /x> 1,
then the particles have not had time to adjust to the gas flow and
consequently take on large velocity slips. In this case, the particle
motions are determined by their initial conditions, since they have
not had time to be affected very much by the gas.

On the other hand, if

?\m/X << ],
then the particles have moved many times the required length to re=
duce their initial velocity, and hence the velocity slips in this re=
gime are small. In this regime, the particle motions are deter=

mined by the gas and not their initial conditions. The following
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analysis will make use of these two regimes,

To write the two-dimensional conservation laws for twom
phase flow over a seminirﬁinite flat plate, let x measure the dis-
tance along the wall from the stagnation point, and let y measure
th.e distance normal to the wall. Then

2+ (pu) + 55 (pv) = 0 (1)

is the equation of continuity for the gas.

The conservation of momentum equations for the gas are

g
PUBE T ugm t Ve = - PRt g (M ge 4 AV )t S T
(2)

i 8

The conservation of energy equation for the gas is

8T T _ 8 Sp 8
+2+2 +Q . 4
p P (%)
In these conservation equations,
(u -u)
R (5)
P Tm
(v _~v)
F_ = p -2 (6)
Py P T
(TP"‘T)
= — 7
Q, = p,Cq T (7)
@ = F - - 8
p = Epr (v,-¥) (8)

$ = viscous dissipation function
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_.9u ov

V‘-Q-—-'g)-{' 5y

first coefficient of viscosity

Moo=
A = second coefficient of viscosity
P = pressure

and up and Vp are the x- and y-components of the particle ve~
locity, The equation of state is taken to be
P = pRT. (9)

The continuity equation for the particle phase is

9p
p .9 9 . -
-t tTax (Ppu.p) + KT (PPVP) = 0. {10)
The conservation of momentum equations for the particle phase are
811P BuP Bup
pP(at+up Hx+vp Sy): 'pr’ {11)
va 8VP BVP
el st * % B TVp By = " Fpy© (12)

The conservation of energy for the particle phase is

atT 0T orT

P b Dy

An essential point to make now is that the usual boundary
layer assumptions are still valid, because equation 10 minus equa-

| tion I gives
0 0 8 _
5% (pp-p) t 5 (ppup-pu) + £33 (ppvp-pv) = 0.
But in the boundary layer

y ~ O(1/ [Re)
vpﬂv ~ O(l/\/R_e)

and hence
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in the boundary layer, provided Po is of the order of p in the

boundary l'aye'r. Therefore, from 3,

%I-;—r ~ 0{l/ [Re},

and consequently the variation of pressure across the boﬁnda.ry layer

can be neglected for large Reynolds numbers of the gas flow, Thus
P = pP(x,t)

and is computed f_rom the flow external to the boundary layer., Now

making the usual boundary layer approximation in equations 1

through 13 yields

9 ) )
5+ 3z (P0) tgylev) = O, (14)
w, Bu, du,_ Op, (u,-u)
Pt + ugg vy ) = —antaylugy b T * (1)
8T dT ;) )
pC (—5— =y 73 = ke F)top tu '3£+H('5—)
(u_~u)® (T_-T)
+p —-—%——-—-- +p CS ---—,1~_—B--——-- ’ (16)
p m p T
Bp
p .9 4 -
a0 taxlegt,) tyleyvy) = 0, (17)
Bup aup Bup (up-u) _
Bv 8V BVP (VP-V)
Py (—3——+ —5-—+ Y) = =Py Tl (19)
o 'J.'p o '.}.‘P o 'J.‘P ('J.'p- ‘1)

The coefficient of viscosity, U, is for the mixture of gas and

solid particles and not for the gas phase alone. References 6 through
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10 discuss somewhat how the ﬁsco.sity of a gas with a suspension of
small spherical particles changes. Although there is some disagree-
ment as to whether the viscosity increases or decreases when parti-
cles are added to the gas, the viscosity, according to Kinstein, can

be written

u= w1425 ¢+ 0(c”)]

where W is the viscosity of the gas phase alone and ¢ is the vol-

ume of spheres in unit volume of the mixture, Then

P - -
c = 2 =2 - o107,

pS pS
and consequently | will be taken as the gas phase viscosity through-
out the rest of this thesis.
When the gas is incompressible, work done by compression
is zero and all dissipation terms can be neglected. Also, yu and k
can be assumed constant, and then for steady flow the boundary lay-

er equations are

g§+g§ =0, (21)
2 (u_-u)
du , . du ldp, 8%  Pp
g + Vg & = — + v + - 22
ox oy p dx BVZ pT., ? (22)
2 (T_-T)
0T oT e T p
oy T
0 - 4
7 (Ppp) * 3y lep¥p) = 0 - (24
Sup 8u (up—u)



avé 'va (vp-*v) . :
pp (8, 55 + Vo o5) = - ey T (26)
oT, 0T, (T -T)
ppcs(up——gx—-!-vp-—a—g’-_—) = - PPGS -———--'E-—-—-—TT . {27)

The boundary conditions on the gas phase are:
(i} no mass transfer at the plate,
(ii) gas velocity on the plate vanishes,

(iii) gas velocity must approach free stream value

as y approaches infinity,

(iv) temperature of the gas at the plate ig that of
the plate,

(v) temperature of the gas must approach free

stream value a8 y approaches infinity.
The boundary conditions on the particle phase are
(i} no particle mass transfer at the wall,

(i1} particle velocities must approach their free
stream values as y approaches infinity; if no
presgure gradient exists, then particles and
gas must be at equilibrium as y approaches
infinity,

(iii) particle phase temperatures must approach

their free stream values as y approaches
infinity,

{iv) particle phase density must approach its free
stream value as y approaches infinity.

When there is a pressure gradient, there will be temperature
defects and velocity slips in the external flow as well as in the bound~

ary layer. Consequently, before the boundary layer can be consid-
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ered, the two-phase external .ﬂow must be sol;v“ed,. and this greatly
complicatés the problem. Therefore, throughout the rest of this
thesis, _
dp/dx = 0,
and
u=u ., 2 constant,
in the external flow., Since the particle phase and gas phase are in

equilibrium in the external flow, the boundary conditions on the par~

ticles are greatly simplified.

Restrictions on Solutions

In the regime far downstream from the leading edge, there are
two conditions which the flow must satisfy in order for the slip veloci-
ties to be small and at the same time for the Stokes' drag law on the

particles to be valid, If the Stokes' drag law is valid, then

(u_~ujo
Re =B 531,
o Y

and if the particle slip velocities are small, then

(up-u)/uoo << 1

~For a given flow field, one of these conditions is more restrictive on
the flow than the other; hence,the extent of the regime of small slip

velocities depends on the parameters of the flow field, i.e., v, U

p » G L]
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III. SEMI-INFINITE FLAT PLATE WHEN THE GAS
IS INCOMPRESSIBI.E
For steady, incompresgible flow over a semi~infinite flat
plate, the boundary layer equations are, from Chapter II,

ou , Ov

=1y = 0, | (28)
p(udZ 4y 22y o) 82“+ pleo () ) (29)
2 Cu
dT 8T, _ . 8°T , Pp~s"w
¥
9 ]
5% (ppup) + -5? (pPVP) = 0, {(31)
BuP Bup Ppuoo
= - - 3
pP(upr + Vp—g‘ﬁ}") —X: (U-p u) . (32)
BVP 8vp Pl
Pp(up*g“x— + VP _B_y—:) = - _rrn— (VP'*V) > (33)
3TP 8Tp pPCSuOO

In view of equation 28 a gas stream function can be intreduced.

u = 8f/8y ,
(35)
v = - 9)/0x .

A, Small Slip Approximation

For now the regime characterized by the statement
A /x<<1
m
is considered, i.e., the regime of small particle slip velocities
and small temperature defects, Therefore, taking advantage of how

the slip quantities enter the equations 29, 30 , 32 , 33, and 34,
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the equations for the behavior of the slip qua.nt-i.ties to first order in
?Lm/ x can be immediately determined. Hence the introduction of a
pa.rticle stream function, which is indicated in view of 31 , actually
complicates the analysis. Since a small dimensionless parameter,
Km/x :+ is involved in the boundary .layer equations 28 through 34 ,
it would seem that a perturbational analysis ig in order, and, there-
fore, the quantities ¥, Ul VsV TP-T » T, and Pp will be
expressed as expansions in hm/x . First of all, the equations 29 ,
30 ,32 ,33 , and 34 are rearranged so that the slip quantities

can be read off immediately to first order.

Dividing 29 by p and adding 32 , divided by p , yields

ou ou azu pP 3up auP 0 36
u~5§+vﬁ§~v-é;z+—p—(up 8X.+vp aY)— . (36)

Dividing 32 by Pp and subtracting 29 , divided by p , yields

ou ou

Py P_(u8u+ Bu)_i_ 8211_ (1.+pp)uoo( -u) (37)
v BY 'EE V'ry_‘ \)'—‘—E‘EY — - —p—--r—mupun

Yp B P

Dividing 30 by pCP and adding 34 , divided by pCP » yields

oT , 8T k 9’1, PpCs 98T, 2T

- P =

Dividing 34 by PpCs and subtracting 30 , divided by pCP » yields

2 C u
8T 8T 8T , 8T k 8°T Po~s oo
P P _(As=tV | I S =« {1+ ) (T -T).
N TR - (Tox ' oy pCp 83;'2 | Pcp 7\; 2
(39)
Expanding 31 ylelds
81.1P B‘V‘P BPP Bpp

Now the appropriate dependent variables except for the stream
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functions are

u —"~(11p--‘.~1)/um0

ve = (v av)ug,

T: = (T, =TH(T =T,
T = (T-T T T,
o = P/ (np)

where

w o= (pp(o))/p ,

p = density of particles far upstream of the

plate ,
Too = equilibrium temperature far upstream of the

plate ,

TW = temperature of the plate assumed constant.

Writing equations 40, 36 , 33 , 37 , 38 , and 39 interms of {,
H %

¥ % 3
U, s Vo TS + T & pP vields the following equations.

e

b S * £ B Ei3
]
*(8“5 ,+8Vs Hu*app +V*39p L1 9v P 1 oay o, -0
Pp V7B oy s “ox s 9y 'm_ 8y B8x 1u_ 9x 0y ’
© ©
(41)
Linp 2 2 3 ou " ou "
Pp (ﬂﬁwﬂ_{?_ll_l_atl:)_\) al!I+M*(u* 5 +v* g
T2 'Oy oxoy  Bx g, 2’ T T 2o 37 My Ix TV THy
u 0y U By
% ES S ES
s 8%y +Vs 8%y 4L oy Bu, 1 9y u — (42)
u__ 9x0y U B.yz um-s'f 9= u_ ox oy o
5 de * b ' % *
WK x % e 0%y Ve oy 1 e ®s 1 ey e
5 0x s 0 o 5’ u Bxov u_ 0y ox u__ 9x 9y



- | (43)
u 2 Tyaxz u
fo's} oo
ou ¥ ou’ w2 * 2 du ¥ Bu "
u*u +V* us 11 3¢+v53¢+12‘£ S_lﬂus
s 0% s oy  u_ 9xdy o By u_ oy ox u ox Oy
£
3 u
v 97y #, 8
St SRERCEL DD ol (44)
u ay m
Q0
L (Qapes . )(allJBT LTI i i BN
u Cp 9y 9x 9x Oy umPr Byz Cp P
a7 * 57 * L N —_—
(u* TS -i-val'= TS -E—u*aTﬂ +v*8T + ! _f_i_lL Ts
8 dx s 0y s 0x s Iy u_ gy ox
' %
oT
1 8¢ s _
“T ey ) = 0 (42)
w
BT choN * % oT
u* +v * +u*aT +v * 8T + 1 oy S
s “Ox g Oy 8 DX 8y u_ Oy 0x
>¢"~ 2 % c T*
- + = o (l4st e p ) (46)
T'—Ey u Pr aya CP P hp

In these equations,
v = u/p = kinematic coefficient of viscosity of the gas.
Since the slip quantities are small, the zeroth order approxi~
matlion is taken to be that the gas and particle phases move as one
phase in equilibrium. This zeroth order approximation can be con~
sidered as the limifing process where the particle radii approach
zero, but at the same time the force exerted by the gas on the parti=-

cles approaches a finite limit, and in-addition the mass of the
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particles remains constant. Tiqus, in the zeroth order the particles

and the gas. are in equilibrium, but the particles still affect the gas

ﬂoﬁr through their mass. The first order solution will account for

the slip quantities and modify slightly the zeroth order solution.
Now in defining the kinematic coefficient of viscosity for the

mixture, one must take into account the mass of the particles., That

ig, let
s

vio= ullptey)s
where, in the zeroth order,

Pp = AP

and then
v o= v/(1+x) .
This means that in the zeroth order approximation, one need con~
sider only the flow of a gas phase with kinematic coefficient of via-
b
cosity, v .
From what has been said,

B~ + O{)\m/x)
VP ~V + O(Km/x)

and then, to zeroth order, 31 is

o, 2%
u—a-i—"i'v'—-s—}-; = 0,

or, to zeroth order, pp is constant; hence

e

p.P = 14 O(Km/X) .

Likewise,

Tp ~ T+ O(}\m/X) .
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Immediately then, it can be seen that to first order in )\m/X s

equations 41, 43 , 44 , and 46 become

du_  av. . dp dp "
% g 8 1 8 yo) 1 3y P
Pp (ot o5 ) ts sy e "o = Ey - 0 ¢ (A7)
: o oo
v a3¢ u.ﬁ>==
— = = = (L) — (48)
u oy m
[e's}
#
_ L oawdfy 1 oey ofy | Vs (49)
" 2z 'ﬁax};’. 0 Z 9x 0x0Yy .
@ 00
2 % C T*
v 0T 8 8
— = = (ltp o) . (50}
umPr Byz CIJ kT
In terms of the similarity variable
n= fu_/vE)y,
it is found that a
o Yo ( 9 )
= | —_
oy vox ﬁﬁ X
a2. . u ( 82 :
8y2' \J*X 81'32 x
83 u 3/2 83
—x = (%) (—7) ~ (51)
By Vv X on” x
9 8 9
Cge) = (o) =2 (g)
2 gE]
9 ©| d I S
Bx0y * |9 gx“-zﬂx'( z) ?,E('éﬁ
v x [N x
az__(a?‘- 623_a+ﬂ2 5%
(—=)= (—) "g'g"ﬁ'g;"‘z—z('g‘ﬁ) s (= )
ax” v Ox x 4x 9 x
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Using the transformation 51, equations 47, 42 , 48 , 49 , 50
and 45 become -

2S % e S

e Bus Bus um'avs 1 ap 8pP-
Pp (B "2k Bt 7 By )7 — T
v u_ v x
9p "
I S T S
=— 0x on !
um\) X
Lnp 2 5
e, by ( 87y “_1_81;:)_‘_%82@; v (“oo)783¢
@ v |0 ImEx T 2% 0N Bx Ty 2 2V E T3
00\) X M u‘:30 VX n
* ®
s *l— Ye (azq, __naz¢“1a¢)+vs az.y
“Ppl— w oTox Zx g Z Zxon o ¥_oZ
* 1 v X an
u v x
Q0
® *
R oy 90 1 oy %% | 0
5— On ox - w— 0x on T
U.COV x um\) X
N Yo 3/283t|; u:
— {—) -3 = '(1+%)T— :
u_ v X aT m
1 [Pw oyl 8%y q 32¢+ﬂ3¢
U, Vv OX Ox 2:;
u 2 2 *
41 ooaq;alp_?ﬂ_aq; L avl _ Vs
F x| DX X L2 BN - TRt
u_ v X an m
b
b
(Lx) 8°T »Co Ty

¥

(52)

(53)

(54)

(53)

(56)
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1 nCy oy BT (Lix) 8°T"

_ 8y o
— (Lt )(an 5% " Bx BH | T Prx 52
u_ v x b n
“Cg x| % 0T 0T, T #2Ts  woar” *
T CP pp |}s( 0x -7& o )+ \)*x Vs D Tug (Bx " Zx Ton )
» % %
. [lw  xaT 1 aqj(aTs o 0T )
& s BT 7 on - ox 2x 071
v X U.CO\) X
- 1 aTs. (81[; _n 8y vl =0, (57)
= on ‘9x  2x on
vy X
The following expansions are assumed for the six variables
s £ ] 5 %
lb’ us L v x PP r TS F T o 1
” - Ay, 2
b= fua v ox [ (+—=,M+ (=) LHn)+ ... ]
s A A 2
% m m
Uy = o gpnk ) gt
* )\m }‘m z \)*
vy = |5 b))+ (=) hyln)+ ... u_%
. A A2 r (38)
pp = Lt Tjim+ (—{gl—) I+ ..
A .
* _ "m (1) (2)
T, = 8 ()+( )95 () +...
* b 2
s
T = () +—=8y(n) + (=) 8,(n) + ...

-

Substituting the system 58 into equation 52 and equating the coeffi~

cient of )\m/x to zero yields

Le ot 1 - L P
i) +EL = k-8 g (59)

where the prime denotes differentiation with respect to n . Sub-
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stituting 58 into 53 and equating coefficients of ()km/:s‘:)n » n=20,1,
to zero yvields
1 1 "o
£+l o= 0, (60)
and '

Torg 1 et gr Jlene K Ly ¢ Nevvgpprya 1wyl t
R R R T T [zllfofla'*gl(z%”o’ hlfo”fogl] .

(61)
Similarly, equation 54 yields
= H = L 11
g = - = Fi 0, (62)
~and 55 yields
-7 Y, 2
by = 755 Zfoflo'{-{il(f:::) ' (63)
and 57 yields
nC
14—
oy “p }Pria oo (64)
%% I +xn Z “o’o .
to zeroth order, and
nG #C
14+ —5 14

C C
P _1_ 1 g £t _ Pr p 1
S e el AD RN U A R T R

wC_IC. Pr uC_/C
Pr Mg . 8 p it {1)
.'—Z"_( T+ » )foel)]:lhI T+ % [‘7g193+h195”fées
+ é .foe's(l):l (65)
to first order. Equation 56 yields
C C
(1) . 3 %s 14 u _ 3 s 1
P Zonl Smarrionml LISRE Sich ool BNOSS (66)
b

Making use of equations 62 and 63 to simplify the other equations



w2
and grouping the equations into a zeroth order é.nd first order prob=-
lem, the results are the following equations.
Zeroth Order Problem:

fp 2 £ £ = 0 (67)

1+ (xC_/C_)
1 s’ °p Pr -
e‘o*( 57 )Tfogé“o (68)

First Order Problem:

1
R AN (©9)
1 2
hy = glfofg-zfofio+g(£fo) (70)
f”
lepaor = 2 (st - £ ) (71)
Z o1 oTl T I \Nt, o
. 1 1 _ 1 1.3
i+ 3£ T+ SF) - 210F) = - 031+ - AL -310T  (72)
C .
(1) _ 3 s 1
% = 2T 7% (73)
l+(xC_/C_) 14 (nC_/C_)
| 1
U+ Pr( 1+Su. P )(.Zfoe'lq-f;el):.-pr(*__r__.m_ju P )5 ;60
Pr{xC _/C_) Pr(nC _/C_)
s" p'l 2 s Tp Ne s 1
T+ —?-:foeoIl-l- T Fu [%‘Zfé "Zfof;)
g PrC_ C L3 Prz(‘,‘S 3 l+{nCS/CP) 1
TBTC fofoao-l-E C 'fo{ 1+ % )%, (74)
P P
where
oy 1+w
Fp = ( - )£

The boundary conditions on the gas phase as stated in Chap-

ter II imply



(i) 'fo(o) = 0, f{o) = 0

(i) (o) = 0, £(0) = 0

(iti) (@) = 1, f}(c0) = 0 L (75)
v) 8 f0) = 0,  8(0) = 0

(v) 8 (o) = 1, 8;(w) = 0,

Now in the solution for the particle phase velocities and tempera~
ture, the leading derivatives of particle phase velocities and tem=~
perature were suppressed by the expansion procedure. This, of
course, can be done, provided the derivatives of the particle phase
velocities and temperature are not large in the region of interest.
Consequently, it appears that the particle phase equations constitute
a singular perturbation problem when the expansion procedure is
attempled,

To see that the problem is indeed a singular perturbation
problem, a one~dimensional problem will be considered, The equa=

tion for the particle phase is
du u_-~u
(=)

P
1u - — - 1 'Y
pax [o oD

Now it is assumed for simplicitythat

u = u = a constant,
0
and then letting
U.P-'U.m = 1u g *
one gets
dus u
[us + }.3 E’ = bl -7\":'""'"" @
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Now gsuppose that

u <<1,

s
then
du - u
5 - .8
dx
m
(0) "X/lm
u_ = u e
s s
where u (o) _ us(x=0) . Clearly, the rate of change of u_ is large

=

only in the region

For x>> >‘m » the approximation
u = 0
s

is a very good one. Hance, provided

)\m/x << 1,
the derivatives of the particle velocities are not large and can be sup~
pressed by the expansion procedure. Consequently, the particle
phase boundary conditions, (i), (ii), and (iii}, given in Chapter II,
are likewise suppressed by the expansion in terms of lm/x . The

condition {iv) given in Chapter II for the particle phase implies

Il(oo) = 0. (76)

Thus, the zeroth and first order problem compose a two~point
boundary value problem over a semi=infinite domain which rnust, of
course, be solved numerically,

The solution of 60 is the well=known Blasius solution for a
gas with kinematic coefficient of viscosity, \)* . IFrom reference 3,

the following information is given about f (n):
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f"(c) = .33206.

For n<<1,

£2(0)
f0 Ttz o
\
:E(‘) = fg(o)ﬂ .
- For n very large, -
1 2
HE = z{n-PB)
£.(n) = n~ﬁ+v(fﬂhfe dn
' o Qo
1 2
L ~g(n-B)
i) = 14y e an
12 2
" —z{n-B) f
filn) = vye
p = .13 y = 0,231 .
.

Equation 71 can be written

d 2 _ '
dn £, 1) = fofic;(ﬂfo"fo)

i

2

fo Il = JPfO(X)fg(X)[Xf:D(X)'fO(X)jdX
0

assuming Il(o) is finite. Then

i

Il = i'o’-z jlfo(x)f‘(;(x)[xf:)(x)-fo(x)]dx -
i)
Let n<< 1, then
0 [f”(O)]s
Il('ﬂ) = 2 > 4I 02 XZ(%XZ)dX‘E'O('ﬂz)

(01" ¢

(77)

(78)
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im = = [x*ax+om?
N 0 '
e
Iiin) = —g—n+0OMm) . (79)
Hence,
I(0) = 0, (80)

and we can replace the boundary condition 76 with this one. Equa-
tion 79 shows how Il(-n) goes away from n =0,

The results of the numerical solution to the zeroth and first
order problems are shown in figures 1, 2, 3, and 4. One might
questiion the behavior of the curves for I1 R Fi ,» and By = gince
they approach zero so slowly as 1 approaches infinity. If one takes
this feature literally, it would mean that the particle pha,se affects
the gas flow well outside of the boundary layer, which is physically
impossible. To explain why the curves behave as they do as n
moves out of the boundary layer, it must be realized that the analy~
sis began with the boundary layer equations. In particular, the
boundéry layer approximation gives rise to a vertical velocity, v,
which does not vanish ag 7n moves outside of the boundary layer,
Because of this, there is a convection of particle quantities outside
of the boundary layer where they cannot physically be. In short,
the results could hardly be expected to be any better than the as-
sumptions that were made originally, However, the equations
should be a sufficiently close approximation to the actual physical
gituation near the plate such that quantities 1ike the shear, heat

transfer, and particle density on the plate computed from this



29w
analysis will be réasona.b-ly acéurate.

When one tries to solve equation 72 numerically, the usual
procedure is to guess a value of F'l‘(o) and integrate out along n to
see if the solution satisfies F'l-(oo) = 0 ., Using the behavior of the
solution at o , one can usually get a better estimate for F‘l-'(o.) ;
however, in this case, regardlesé of the value of F‘l'(o) » the solu-
tion approaches zero at infinity, and hence there is no criterion for
choosing the correct curve. Integrating equation 72 from zero to

infinity will give a new criterion for choosing the correct curve.

(e8] o0

IEFRH + %foFtﬁf;Fi - %-ngIJdﬂ =~ fc;(n)dn
0 0

where

1 1.3
Gl = EI3EE + (6, FE 32 2T

8

o0

(133 —
IFl dn = Fl(o) ’
0
0 [0 o]
T Llepuan = oL [egran
J Z ot 1M 2 o" 1 '
0 0
(8 o] [0 o] (s o]

1
ot

1 1 1
160 an = -2 fF‘ldn 3 Ing‘ldﬂ .
0 0

Then

(66

1

F(o) = | [(€,-3)F}+Gn)ldn

0

and this will be a new criterion for picking out the correct curve.

However, since the curve for F‘l(n) does not converge properly,
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this integral will be incorrect and also will not converge fast
e.ﬁog.ghu Physically, it is known that F‘1 must approach zero like
e.-fﬂ /4 for large m, and consequently, to get this kind of decay for
large 1, the decay of the homogeneous solution, which is responsi~-
ble for the slow decay, must be subtracted out of the general solution

for large m. Doing all this calculation gives the following estimates

F‘i(o} = ,159 .,

The same thing can be said for the solution of 74 . However, note

that for Pr =1 and Cs/Cp =1, then

0 = %
but
]
9, # 11
gince
)"T ?é )\nl *

Consequently, similarity between the velocity and temperature pro=

files does not hold to first order, Also, for Pr= 1 and Cs/Cp =1,

(1) _ 3,1, .. 3,1
Os ftffoeg)"z(”zfofg)

il

H

es(l) %gl(ﬂ) *

When one examines the graphs for F‘l('n) and ei(rq) s given
in figures 1 and 4, it is seen that the curves hecome negative for
T ~ O(5) . This behavior should not be taken liferally,. because this
is the result of lack of technique in the numerical solution. This
problem is due to the fact that F’l('r]) and e'lm) do not approach

zero as rapidly as they physically should. Nevertheless, the mathe-
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matics and formulation of the two=phasge flow p:foblem is correct,
and the non»correspo,ﬁdence of the results with what one physically
expects ig due to the boundary layer assumption made originally,
In particular, the troubles arise from the y=component momentum
equation [or Lthe particle phase, which cannol be neglected In the
boundary layer, whereas in the usual gas phase boundary layer,
terms like those on the left side of 33 never arise. However, this
formulation does provide some understanding of the general two~
phase flow problem,

To understand that the positive nature of the curve for F‘l(n)
is correct requires an understanding of what is meant by the zeroth
and first order approximations. In the zeroth order, the gas phase
and the particle phase move as one phase, i.e., the particles are
frozen to the surrounding gas. This means that the gas holds the
particles with some finite force. However, to first order, the par~
ticles are allowed to slip through the gas, and it is not difficuit to
see that the particles will decelerate faster than the gas does as both
phases move downstream since the particle slip velocities decrease
as the particles move dowﬁstream. This means that the gas must
exert a force on the particles even greater than that force required
to keep the particles frozen to the gas in the zeroth order problem.
Consequently, to first order, a force is cxerteci on the gas in the
positive x~=direction even greater than the zeroth order force. Thus
the gas velocity increases above the zeroth order gas velocity,

The shear coefficient is calculated to be



o A

. ) X
_ T _ 0,332 T ;H m
CT = 2 = - l+?{, [1+0.48(m)——}{—»+o-«j‘ (81)
pum /ReX .
where
u_ x
Re_ = p @ e
x &

The heat transfer to the plate for Pr = Cs,/cp =1 is

{(T_=~T_) | A
alo) = -k —2—_ /Re "0.332 [l [1 10504 (ph) == 1 «ue | (82)

Hence the presence of particles meane that the shear coefficient is

modified by the factor
. A
% L, m
f14n E + (.m). 48 ( -—-}E—u)jl
and, likewise, the heat transferred to the plate is modified by the

factor

A
1+ [1 + . 504(%)%}
in the region where )\m_/x << 1.,

B. Large Slip Approximation

For the large slip approximation, the region of interest is

characterized by the statement
Am/x >> 1

which, of course, occurs near the leading edge of the plate. The
governing equations for the boundary layer are, as before, 28, 29,
30, 31,32 , 33, and 34, Ase before, a stream function for the
gas is intro.duce.d, but now the particle slip velocities are not small,
and hence it is advantageous to introduce a particle stream function

defined by



33

u : 3] 2]
Pop b /oy

= o~ 0y [ox.
Fp¥p bplo=

Now equationa 28 and 31 are identically satisfied.

(83)

Introducing the

gas and particle stream functions in equations 29, 30 , 32 , 33 ,

and 34 gives the following equations:

2 3
oy _owaly 0% Pe e e
v Dx0y Xay 8373 p)\m y P oy
oyor _syar_ v oir, Pp G (TpmT)
dy ox O0x 0y Pr ayz p Gp fos) ;\T
2 2
oy 8%y Bp_ By oy i, Op, 8

TP e SO 1
A, P 9y "p 9y
3y 8% 8p_ By By 2% 8p_ oy
( p. ey . 'p, p 7'p,
Ty Pp L2 T TEX TBx 5x ‘Pp 9By ~ THY TBx
B, 2%, 3y
—"m(PP*Q;;"PP—g)n
o o 8y © -
bp 8Ty BY, BT, o (Tp-T)
3y 6%  bx By Pp oo A

(84)

(85)

(86)

(87)

(88)

.Now, since a particle stream function has been introduced,

the particle phase will be treated as a perfectly respectable separate

phase, which meansg that in the zeroth order, the gas flows independ-

ently of the particle phase and vice versa. This lmplles that there is

13

no need to introduce vy as was done for the small slip approxima=

tion, With this thought in mind, the following transformation is made:
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n=v/ [vklu_ . (89)

The derivatives for this transformation have already been computed
in 51, provided \J% is replaced by v everywhere.
Making the transformation, 89 , in equations 84 through 88

gives the following equations.

]
ati:{azq; "_.Laq,)_aipazq,:(vu ) fvu_x(llf q;)
(90)
u u 2 1 C
= ey e en) ¢ xpr—{j;z*'—}:,—i-—T——C-Q(T -T). (91)
By_ 8% s By 2 9p 8y 8% 8p._ By
P p.__1 ) ( P) P __P { P__P P,
Pp B \B%0n ~ Zx “On o 0x 5% Pp 2 on “on
vu_ X 2 awp 3 9y
e S - e . 2
v Py Iy " Pp By ) (92)
2
0 ] d ) ]
P(ﬂfnﬂf nw)_wpp(w__ﬂavp)
p o2 2% % | 252 07 bn Ox TBx  2x On
2
8°
) o, P ( v, 1 9 h_&amp) & o, (3¢P“ﬂa¢P)
Pp Bx ‘Bx 5 T 5 3nz 5x an 0x  2x 9n
vu_ X &, 9y
o 2 n_'p aq; n 8y
u 9¢_ aT 8y oT (T_~T)
o0 P P __ P b - a P (94)
VX aﬂ ax BX a'n Pp oo 'AT e

Now since the particle phase flows independently of the gas
phase to zeroth order, and since the particle phase has no way of

feeling the presence of the flat plate except through its interaction



with the gas, then to zeroth order up =u 'vp = 0, and there-

fore, by equation 31,
p. = constant
to zeroth order. With this in mind, the following expansions are

assumed for ¢, ¢_, p

T, and T .
P b

p 7
x 2
A Efommm)fl(nm{‘;) £+ ]

vy = [V L Nm (2 )i“’( )+ )i‘ Mt
m

P
e B- 1y + ’ L (95
o T T El(ﬂ) ( )Iz(n)+ (95)
& T“‘TW % < 2
T = g = Sl )8y M) yln) e
o T =T
Tp = P = 8 (0)( )+ (57— )8 (1’( )+ (5= ) 9 (2)(n)+m .
(e 8] W 1’1’1

It is expected that fP(O)('ﬂ) = n from what has already been
said,

Now substituting these expansions intoequations 90 through
94 and equating coefficlents of (x/)\m_)n » n =0,1, to zero gives

the following. The zeroth order part of 93 gives

(0)gul0) (02 L (0)(0)
nfp fp + T](fp ) fp :Ep = 0

and the zeroth order part of 92 gives

%f (O}f”_(oj - O N
P P
Hence

1 (0) (o) (0) _
[nfl " - 13200601 = 0,

but since
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(o) _ o) _
.an fp 0
gqﬁ (fp(o)]'n) = 0
fp(o) - AT]

where A is a constant. The boundary conditions on the particle

phaée have been stated in Chapter II, and they are

(i) fP(O)(o) =0, fp(l)(_o) -0
(i) f‘p(o)(oo) -1, f'P(l)(oo) = 0

. (o) _ (L) -
(it)) 8 %) = 1, 8 (e) = 0

o

(iv) I,(c0) =

to first order. ‘lThereiore

and
(o)
r =
b (n) i
as was expected. Making use of 97, the first order part of 93
2.(1) (1) Lo (1) LS
n f; - anfp + 3i'p = Z(fo nfo) s

and the first order part of 92 gives

-

MY o= £ oa 1oenll) g (1)
rly =1y = £ = 1+ dntnt < e

Equation 90 yields to zeroth order
m a1 -
£ zfofg = 0,
and to first order

Eﬂ"-+%foyg -1

3 ,
1 R 1 — L IR .
1 Fy+3fgF, == 1,

t
e}

»(96)

(97)
glves

(98)

(99)

(100)

(101)
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where 97 was used to simplify the algebra, and

1
F) = o4

Equation 91 vields to zeroth order

P
Bl + = £ ()8l = 0 (102)

and to first order

oy + S8 01-Prite) = - yPriel -2 e ). (103)

Equation 94 yields to zeroth order
161t

which implies

(o)
=1 104
0y (104)
where the boundary condition given in 96 was used. Equation 94

yvields to first ordexr

C
1)L (1) 4
n%p 0,

B
T Pr C (]“"e ) (105)

where 97 and 104 were used to simplify the algebra.
The well known solution of the homogeneous part of 98 is

and to obtain the particular solution, the method of variation of pa-

rameters is used, i.e., A= A(n) and B{n), which leads to

fn) B ()
A-('n):"'""?— Jw—z—dxi-Al
n
fO

where Al and Bl are constanis to be determined by the boundary

conditions 96 . The complete solution is



Noting that

lim
0

Zn

S (x)
fp(l)('r]) = 2n3 f%‘_-l-Aln +Byn -

T

Xt (x)

J...de =§f(o) 0,

it is seen that the boundary condition

is satisfied for arbitrary A and B .

tion

it is found that

lim f};(”(n) =lim |-

n-co

but

and hence

Tim
-

:fp(l)(o) = 0

:fl’D(l)(oo) =0,

28(m) (I

~Q0
i iyl

lim [ =2 +3 +3An° +B] = 0,
n-00

which implies that

Thus

+ 6'1"] -—-————Idx+3Aﬂ +B

Applying the boundary condi-



1 (x)
1 3
) = 2n’ [ axay
=
o
. 2f_(n) P f (x)
%flhn) = -2t n? | 2dx -1
' x
n
2(f ~mf') Pt (x) 65 (n)
g;(l%n) = 2 +12n | 2 dx - O
il x n
m
Note that
0
lim 3 fo(x) 2 5
=00 M —z ¥ T3 .o(m) ’
'T] X
oD
: £ (x)
lim 2 o
7
lim OOJi"o(X) d _ fg(o)
n-o N J T F F T Tz
m
Q0
lim £,(x) _
oo m —_de = 0,
m X

so that the singular point of the integrals gives no problems.

ITsing the expressions abtained for rFé(l)

equation 99 gives

where C 1is a constant.

[ =
my - 21, 0

d 2
'd_,n'(Il/T] } = 0

1

C'nz

But since

and fi)'(l) in

(106)

(107)

(108)
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| I(0) = 0,
it mus=t be that
Cc = 0.
Hence,
Il('n) = 0.

Also, note that
1)
f"( [o] = = 1
P (o}

and

2:(0) = ~2en(0)-28(0)68(0) = 261(0)

(109)

Thus there is a particle slip on the plate, and the fl’a(l)(o) should

be negative since in the zeroth approximation, the particles move as

‘though the plate were not there. Consequently, the first order cor-

rection should slow the particles down.

Equation 105 can be written

T ) 7 ogEr () e
n s M
1-9_(x))
1y 4 Cp 2 0 (-8,
T sER g [
Q0
C 18 (x)
LR AR TR D2 B S " "o
p 3Pr \T, Znz i;‘;?”
C C i B {x)
{1} _ 2 P 4 r 2 MY
e = - —— - "r] dx .
P 35Pr T, 3prC," | T3
0

(110)

The boundary conditions for the gas phase are the same as
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those given in 75. Thus the “solution for equé.tion 160 is just the
Rlasins solution for the gas phase alone. Equation 101, together
with its boundary conditions, coinpose a two=point boundary~value
problem with none of the problems‘that were present in the small~
slip approximation. The solution curves fr)x; f:)(-q) and F‘l(n,) are
given in figure 5. In a similar way, the solutions for 102 and 103
are found for Pr=.10, 1, and 10, and are plotted in figures 6,
7. and 8. It is seen that the particle influence on the gas temperaw
ture decreases with Increasing Prandtl number, The curves for the
solutions given by equations 107 and 110 are given in figures 9a and
9b. It is clear that the first order profiles have the right sign in
view of what the zeroth order approximation is.
The ghear coefficient for the regime of large slip is

e o= T D332 rysuma, Xy (111)
T Z A
pu Re m
oo X

and the heat transfer to the plate is

(T ~T)
qo) = -k —=_ " /Re 0.332[1+2, 575K(_m){ cee ] (112)

for Pr =1.0,

(T =T
q(o) = _kLW_ /Re  0- 14003[1+10. 406 » (5 --)+...,] (113)
for Pr = 0.1, and
(T ~T
q(o)_.-k_.__...__w_ f""‘ 0.7281[1+ 1. 480 (— )+...j (114)

for Pr=10.0.

In figure 10 a plot of the shear coefficients for both the
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large and small slip approximations is shown., The dotted line

represents how the shear coefficient behaves when x is of the

order of km « Itis seen that the maximum shear coefficient is

shifted toward the leading edge as x increases.

The perturbation metheod is valid in Section A only if

u -1 u g
Re = & XL e

o) um Y

I

and (up-ll)/um << 1. In figure 11, the curve corresponding to Re

1 is plotted as the dotted curve. The two above conditions are then

"‘“m e =

_m = X ¢

= gl (T\) N T x 1
max

Ao lx<<1fg; () = 8.84
max

u o
where X = Am(. 113} —%3-—— . I, for a given flow, the second condition

isn't satisfied unless x > X , then the second condition governs the re~
gime of validity for the expansion.

For air flowing at 1000 ft/sec and o = 5, 4 microns, then X =
11.3 A y? and then for x ® x, the perturbation terms account for

something less than 8 per cent of the total solution in the small-slip

approximation.
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IV. APPLICATION OF INTEGRAL METHODS TO TWO-PHASE
FLOW OVER A SEMI-INFINITE FLAT PLATE

WHEN THE GAS IS INCOMPRESSIBLE

Just as in the case of a pure gas flow over a se’mi-infi_nite
flat plate, it is interesting to apply the Karman-Pohlhausen tech-
nigue to the two~phase flow over the semi~infinite flat plate, and to
compare the results with the numerical solutions presented in Chap-

| ter IIl. The equations governing the boundary layer flow are the
same as equations 28 through 34, However, by using the continuity

equations for both phases, these equations can be put in the form

.glli+-g-;f— =0 (115)
2 2 u

du & ~ 0“0 , Pp "w

5% + i (uv) = v ﬁ—zay + -—I;—' 'X';n" (U—P"u) (116)
S (pu )+ (pv.) = O (117)

5% \Ppp’ T By \Pp'p

RS I B s SR S - N ST

Bx'p PO 'p PP P A, P

o ,Pp 8 Fp_ 2 Po Yoo

2 (R 2 (2 N 11

iz (2 gy ()= -2 2w (1)

- where the energy equations have not been considered.

A, Small Slip Approximation
As before, the equations are rewritten so that the particle
slip velocities can be easily calculated. Thus, adding 116 and 118

gives

8112

2
9 8 Pp_2,. 98 Pp
Bx by (9V) Fox (5 mp Mgy i vpvpt Y

o

Y= 0, (120)
v

i}

A
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and equation 116 minus 118 gives
2 2 2p_u
ou p 2 9 ,Pp 81 _ “Pp Yw
-t By (uv)=~5- ( v )-W (—‘5— “PVP)“\) Z 5 T (uP—u) (121)

Now integrating equation 115 from y = 0 to y = 6(x), where B{x)

is the boundary layer thickness, yields

6{x)
: d
v{y=6) = —-;EI udy-i-uma-i- . (122)
0

Similarly, integrating 117 across the boundary layer gives
5bﬂ
_ ~ 0 Pp dé
wp(y=8) = -2 — W dvtuu, go . {123)
o

In arriving at 122 and 123, the conditions

v{o) = 0, ufy=6) = u_
vp(o) = 0, up(y:‘ﬁ) =
p(y=8) =
were used. Integrating equation 120 across the boundary layer gives
6(x) 6(?&)
-5—- j u(u-u )dy-{— f -um)dy-{—\)(%) =0 (124)

y=0
where 122 was used to simplify the equation, and the condition

(Bu/ay)ym6 = 0 was used. Infegrating equation 121 across the

boundary layer gives

o) 5(x)
8 f PPy (uen )dy = .o f P (4 —u)ay (125)
I Tl e, T ToE

where equation 123 was used to simplify the equation. Integrating

equation 119 across the boundary layer gives



o [ Pp ' Pp
5= N upvpdy+ -g—j udy = r updy
0 0 0
5(X)P S(X)p
dé 8 P ~ p
~U - U_,de = - r (VP-V)dy . (126)
0 o

where 123 was used. Now changing dependent variables by letting

Ug =W mBy VS VoeV, equations 124, 125, and 126 become

5(x) 82),
o g 0
= ju(u-u )dy+nax Jr %(us+u_)(us+u-um)dy+v(§§) o =0, (127)
0 0 y=
S(X) a G(X)p
— j —-—(u Sulfugtumu gdy = - 32 [ Py, (128)
' :
and
5ix). &(x) 5(x)
2 [P (u tu)(v_+v)dy +| e fud 4 j PP (w 4u)d
ox xp Bx Bx up = s
o , 0
8(x) &(x)
d& @ Pp . "w f Pp

Since equation 129 involves vy and since v is not involved in 127

and 128, equations 127 and 128 can be considered alone. Letting

= 7
n = ST 127 becomes
5(x)

1 1
) U % g re Py s u, s d
% '1—1—'—(—"-"" Jdn +7’°"—" S(X)J i‘“ el o «1)dn
5 ® © 0 Yo "o "o Yoo
8
PV [an(u“ ﬂ - o, (130)
o} =0
and 128 becomes
1 1
a Pp b u,, s ! 5(x) P Us
< 8(x) W(u t— )(u t— ~1)dn =--x--- ,J.TT e (131)
3 c©w o T 5 '

Now the functions under the integrals must be expressed in

terms of the similarity variable, r, but it is known that u/um 3
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pP/np , and uS/u,00 are not functions of n albne, i.e., they are

not completely similar, but have the form
-

u/u00 = u(o)('n_) + (lm/x)u(l)(n) S

ufu = Mo ix)+ ... L (132)

pP/%p = 1+ (Km/X)pp(l)('i’]) Fouen

-

Putting these expansions in 130 and equating coefficients of ()\m/x)n,
n=20,1, to zero ylelds

1 _
2 ¥ gylo)
0

= ey o), " (133)
and
1d§° 82 " 1 1
'z—a;“—# f{u( )(Zu(o)-1)+n[us( )(u(o)-1)+u( )(Zu(o)-l)
0
* (1)
+u(o)ns(l)+pp(l),1(0)(11(0)_.1)]}an+(1+%)a’m E‘gﬂ__)nzoz 0.  (134)

Putting 132 into 131 and taking only the zeroth order part gives

1 1

Now there are three equations, 133, 134, and 135, to solve} coﬁseu
quently, there must be three unknowns, of which &§(x) is one. This
means that an unknown can be included in the specification of u(l)
and us(l) » but u(o) and pp(l) must be completely specified. Note
that \)* is used instead of v, as it should be, since both phases
flow as onc phasc with kinematic coefficient of viscosity, ‘\J* + 1o the
zeroth order,

Let

1
A, = fu(o)(u(o)-l)dn (136)
0
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a, = | ) (137)
1 an =0
then 133 gives
* a
2 2 1
0 1
where we have applied the condition that &(o) = 0. Let
1
1 1 1 1
Bl - I{Zu(o)u( )_u( )_]_ Iin [us( )(Zu(o)~1)+pp( )u(o)(u(o)-l)]}dﬂ
0 (139)
. ( oull) )
17 on n=0 ’
then, since
dg® _ 5°
dx T ¥’
equation 134 gives
2 A
o 1+
A S P ) - I M N (140)
Or, using 138,
B,/A; = =B /la;. (141)
Equation 135 gives
1
j“ Mg = 214, (142)
8 1
0

To evaluate the functions AI R Bl r 2y bl » Polynomial

profiles are specified for u(o) ’ u(l) ’ pp(l) » and us(l) « Thus, let
o] 2 3
u(')(ﬂ) = CO'i'Clﬂ'l'Czﬂ tcam

where the ci‘s s 1=0,1,2,3, are constants. ‘lT'he boundary condi-

(0)

tions for u are
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2oy = 0, 1o slip on the plate,

u"(o)(u) = o0, . zero pressure gradient,

u(o)(l) =1, : gas velocity reaches free stream

value at 1= 1,

u’(o)(l) = 0, smooth joining condition.

Then
ul®)ny = %n - —% . (143)

Let

1 2 3
u{ )(T]) = do + d}_'n + dzn + d3'ﬂ *

where the d,'s, i=0,1,2,3, are constants. The boundary condi-

i

tiong for ‘U.(l) atre

u(l)(o) =0, no slip on the plate,

u(l)(l) = 0, gas velocity reaches free stream

value at n=1,

u'(l)(l) = 0, smooth joining condition.

Thus
oMy = T—%C(n-znzm?’) (144)

where C is an unknown constant. Let

(1) _ 2 3
pP = e temte,n tegm
where the ei‘s s 1=20,1,2,3, are constants, The boundary condi-
tions for pp(l) are
(1)
o) = 0 = yp oOn plate
Pp {o) ) Pp p b P
1
Pp( )(1)=0, pp = np at m=l,

pj:_,(l)(l) = 0, smooth joining condition.
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Thus

Py (M) = D(n-2n’n’)

where D 1is a known constant. ILet

(1) 2 3 4
u = f0+fln+f2n +f3n +f4'ﬂ R

where the f,'s, 1=0,1,2,3,4, are constants.

(145)

The boundary con-

i
ditions for us(l) arc
us(l)(o) = 0, no slip on plate,
u;(l)(o) = 0, zero slope at plate,
us(l)(l} =0, no slip at m=1,
u;(l)(l) = 0, smooth jolning condition.

Then

1 2,3, 4
‘%()= E(n-an"+n7),

(146)

where E is an unknown constant. Using 143, 144, 145, and 146,

- 39

Al 7 2800

a; = 3/2,
o # 1 3

By = 15 ‘120 Ctzgo E-
- A

b]_ Il T-F;("‘Cu

Using 147 in 138, 142, and 141 yields
2 280 v'x

T
o117
E—-*gg—,
351 161

C = 1377 "85z P

TZ70 D1 -

S (147)

(148)

(149)

(150)
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Thus, when D is specified, C is determined and the profiles are
determined. From Chapter II1, sfnall sllp approximation,

D = .308,
where the fact that y/8(x) is not the same as the 1 used in Chapter
III, Section A, is taken intc account. Then -

C = .204
and
oMo Czoa Y- 2P (3

2 2 1 3

+
@642 °  (1.6a7 Mo

Ul
W1 < T%K('204)[4.g4“

(151)

where i is a new symbol for the 7 used In Chapter III, Sectlon A.

1) _
du( :l
T = e, 0440 ,
[ Mo 'r]O:O +H‘

and this is to be compared with the numerically computed value,

autl) "
|y T T
o

Then

Consequently, the quantitative results of this integral method are
very poor, although the qualitative results are correct.

To understand why the integral method gives such poor guan-
titative results, the profiles given by

L (1) _ 17 122 5,1 4
8 56 1 (4. 64)% © (4.64)p © (4.64)4 °

(1)
Pp

It

508 |1 n - 2 nz n3
_ . © (4. 64) (4. 64)3

and 151 are plotted and compared with the numerically computed
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curves in figures 12, 13, a.nd. 14. Itis seen that the assumed pro=
files are very much different from the numerically computed profiles.
In particular, the approximate curve for pp(l) ;» which has to be
completely specified before the integral method can proceed, is very
mﬁch in error. If the cubic for u(l) is plotted with C determined
from the numerically computed solution in Chapter III, Section A,
then the curve given by the dotted line in figure 14 is obtained.
Consequently, one has to conclude that the curvature of the first
order solutions changes too rapidly to be closely approximated by

cubic polynomials.

B. Large Slip Approximation

Starting with equations 115, 116, 117, and 118 and inte~

grating each one from y =0 to y = §(x) yields

5{x)
g I dé
v(yzﬁ) = -‘“'-a-:—{ J UdY“'uma‘“X > (]‘52’)
0
5(X)
N : P ds
nvp(y—é) = 'é'“ u dy tuu o= (153)
5(x) 5(-‘&)
0 u u v o u _ P
% IT(E—--I)dY +u E;(u :I —TI Kp('ﬁ""“—"—)d%
2 w oo o oo o mf o
¥
(154)
8 5(X)"P " "p 1 a Pp,. % _u
S [ e s T [ | Ry, ass)
0 [ae] os} in 0 w0 (8]

where equations 152 and 153 were used to get 154 and 155, and the

conditions



v(io) = 0, u{y=6) = U
VP(O) = 0.; u (yzﬁ) = U
PP(Y:B) = up, (ay)y . = 0,

also were used, Letting n= a%{—)- , then 154 and 155 become

1
8 9
w= |8(x) ‘anl—l—(all._‘—l)dﬂ +'ﬁv_5['§'ﬁ(£ll‘“)} )
0 o3} co n=0

©
1
%6 pp _uE u
=22 BB .2 4y, (156)
m g " Y Yx
lp u 11, ) lp u
9 )
3% |8(x) r-—gf—(l—l—?——l)dn R I—E(E—P— -2 )dn. (157)
‘0 P [o'e} [ov] m 0 P o o]

In the regime of large particle- slip velocities, the particles
and gas phase flow independently of each other in the zeroth order,
as was explained in Chapter ITI, Section B. Therefore, the following

expansgiong are assumed for u/u . U /u + and Pp Iap «

u o X 1
© m
u
um Am P
P 1
_B = ]‘ + x ( ) + LI
"o . Pp (n)
-
Substituting 158 into 156 gives to zeroth order
2 2y
5% = = u— -Xl- (159)
1

where 1

A, = Iu(o)(u(o)-l)dn \
-



au(o)
ap = ) e
T n=0
6(c) = 0,
and to first order
bl
3By~ Az = G, (160)
where
. 1
B, = tfu(INZu(OLJJdn ,
0
(1)
by = (Tg)
n n:U

1
(8}
C’l = f(l-u( ))d'r] .
0
Substituting 158 into 157 gives to first ovder
1 ,
% ‘Jﬁup(l)dﬂ = -Cy. (161)
0

Equation 159 implies that u(o) must be completely specified.
Equation 160 implies that the assumed form for _u(l) must contain
an unknown constant, and likewise, 161 implies that the agssumed
formn for u (1) must contain an unknown constant. Let u(o)(n) be
represented by a cubic polynomial,and then with the conditions

wloy = 0, w1y = 0
A9y = 1, wl®g) = 0,
u(o)('r]_) becomes

3 1 3

Wy = -z L (162)

H

Likewise, let u('l)(m be represented by a cubic polynomia.l, and



Y
then with the conditions -

Moy =0, oMy = 0, w®ay = 0,

u( 1 )('n) becomeé

uln) = wain-2n4n?) (163)

where G 1is an unknown constant. Let uP(l) be represented by a

quadratic polynomial with the conditionsthat

oo NI
w ) =0, w ) = o,
Then
up(l) = E(1 - 2n+n%) (164)

where E 1s an unknown constantl.

Then

A1 = =~ 39/280,
a; = 3/2,
C, = 3/8,
B, = nG/ 140 ,
b, = uG,
and 159 becomes

52(2’.) - 280 wvx

T3 uw_ *
[}
160 gives
G = 105/16,
and 161 gives
E = ~-3/4.

Therefore,

1 105 1 Z 2 1 3
ult =y 2 [4.64“ M } , (165)

- +
°" 4 64)2 © (4. 64)° ©
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where Mo is a new sy-mbol representing the symbol , n, in Chapter
III, Section B, since the 7 used in that chapter is not equal to v/§,

i. €4,
0 Y
1961 6 *

Therefore,

c

(1)
[%_} =y 1,412,
N,=0

and this is to be compared with the numerically computed value

(1)
du J = » 1,146 .
'no 'r]or-“.()

'f[’hus, there is good'quantitative agreement in the large slip regime,
Equations 165 and 166 are plotted in figures 15 and 16 together
with their corresponding numerically computed curves for compari-

s0n.



V. CURVATURE EFFECTS ON TWO~PHASE BOUNDARY LAYER

WHEN THE GAS IS INCOMPRESSIBLE

In studying the two—phase boundary layer on a curved surface,
the particle density distribution is one of the important effects to be
considered. The velocity normal to the boundary layer is crucial in
determining this density distribution, and consequently, the normal
veloci_ty must be computed correctly. However, it has already been
pointed out in Chapter III, Section A, that the usual boundary layer
approximation does not glve the correct normal velocity, and thus it
is necessary to treat the curved wall boundary layer in a somewhat
different manner than in the usual way.

A solid circular cylinder, radius R, is considered to be at
rest in a gas containing a distribution of the usual particles. At
time t = 0, the mixlure is set into a vortex motion while the cylin-
der remains fixed. The governing equations for the system written
in two~dimensional, cylindrical coordinates, where

u = gas radial velocity

up = particle radial velocity
v = gas tangential velocity
VP = particle tangential velocity

r, ¢ = cylindrical coordinates

are

0
FEEu L = 0, (167)
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(171)

(172)

(173)

(174)

811 ou , vou v _ 'lap 2 u 2 Ov 1
"g‘ '5—+— ¢""1.—'f""ﬁ"ﬁ'}'\)(vu”"z"—zgq—))'l'FFPr:(168)
r r
ov ov | v Bv  uv 1108p 2 20u v i
+ -s——”']'---gzb-*l'—-—*- E?%'}'\J(v V+;Z*5$"*;2')+FF gt
8T OT ,v8T. 1 B 9T,,1 8 kaT
Lt e tregd Tror T mrreglres ) Y Qe
2 _ 8% .18
VoS treEe
9p
p .18 12 _
Wi +;"g‘_;(rppup)+"1:'§$(PPVP) = 0,
du auP VP Bup sz
el T et 3 ") < " Fpeo
8VP BVP VP BVP o'p
pp(8t+p8r+_:? ¢+r'):-Fp8’
BTP BTP v BTP
ppcs(-—a——-—t +11p'—8—--—r +'-}'— T"'(i) ) = "‘st
(u_=u)
Fr = P T »
P PTT
(v, =v)
B
pé P ,.I.p 7
Im
T =T
Q = oI

For incompressible flow, the work done by compression and all dis-

sipation terms can be neglected in the energy equation for the gas.

For this problem, there is no angular dependence, and hence from

167

)]
e (ru) = 0

H|

ru = B(t)
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w = B
But

‘u{r=R) = 0 ,
hence

B(t) = 0,
and

u = 0

Therefore, letting

r = R+ Y,’
equations 168 through 174 become
2 p._ u
Sy o iR B (175)
+y POy P Ty
av _ \)(_-Zaz‘w--—-l T P o (176)
t oy ty oy (R+v) P Tm
2 (T_~T)

oy T
ap ou p P
b P b PP _
et Py e T e e = 0 (178)
Bup Bup b uP
Pou B -2B - - (179)
DVP 'VP uP B {v_~v)
SR E R = - (180)
aTP aT (T,-T) |

Now, making the usual boundary layer approximation by letting
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and then from 178

provided R >>v, i.e., R~O( JRe), where Re = Reynolds
number. Then the resulting boundary layer equations from 175

through 181 are

P o1y,

oy =

' p. (v.=v)
%‘%;—. \,9_;; + 2 P (182)
oy p ‘m
2 (T_~T)
9T 9
PCo BT = k= poCy i (183)
oy
Op 9
ot Ty (PPUP) = 0, (184)
BuP Bup VPZ uP
T L (185)
t P oy R T
v Ov (v ~v)
‘B‘tB +up..8_P = .._TP s (186)
m
BT oT, (T,~T)

Thus, whereas pure gas phase boundary layers are not affected by
curvature, a gas with particles is affected by curvature since curva=
ture does affect the particle motions.

This chapter will deal with the regime of small particle slip
velocities and small temperature defects which may be characterized
by the statement

Tnn/t<< 1,
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which has the same interpretation as the statement }\m/x << 1 in
Chapter II.. With an expansion in powars of Tm/t in mind, the equa-
tions are rewritﬁen in the following way so that the first=-order slip
quantities can be determined immediately,

Multiplying equation 186 by Py {p and adding to 182 gives

P aV aZV pP 8v 8V aV
where v_ = vV . Equation 182 minus 186 gives
2 ov ov v
8%v | s 8 v Po, Vs
Rl bt + + o pinie = 1+‘—"‘" - e 18
v ayZ I:Bt up Ay up dy’] ( p ) "I'm (189)

Adding equations 183 and 187 gives

EI__V_aZTJrE.E.?_S(aT +u 3T+8T +u °Ts Sy = 0 (190)
ot Prayz pCp 9t~ p 9y Oy p 9y

where TS =T =~T.
Equation 183 divided by pCP minus equation 187 divided by
pPCS gives

5
- +u, +u = == ). (191)
Pr BVZ ot p oy pay p Cp T

2 oT 9T c T
i) T [ 5 ] BT} - (1 + pP 5
Equation 185 becomes

bu du

P N S 20 .
T +up-§—3}- il [VS +2vvs+v 1= (192)

B—ai,ﬁsﬂ

Now since u, is of first order, i.e., O('rm_/t) , then from
equationl84 ,

pp = up + O(Tm/t) -

Hence the following expansions are mmde for the dependent variables

Vo, O , Vv

p g * prMp, T , and T.s
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;
voE Volyat) 4 (=) T Vi) + oo
= u My, 2y + ...

&
1

P
|'E' B

v = v ey ..

o . - (193)
—i‘a = "'_'Il(y-?t)(—t_")""’"“

T-Tw "m,,
T =T = QO(Yat)+(T)(m)el(Yat)

® W

T =T T

i ™

o = 8 My + .

w W J

Substituting the expansion 193 into equation 188 gives to zmeroth order

8V, L0V,
B~ SV — (194)
oy
a,md to first order
2 (1)

o D vy 8V1 -1-\_;_1. . 8V0+8Vs -lv(1)+u(l)8V0 (195)
v ayz T t 1 8t ot t s s oy °
Likewise, equation 184 gives to first order

311 1 aus(l)
'5'1:-"‘?11-]' oy 03 (196)
equation 189 gives to zeroth order
(1) . 2V
VS. = o=y t——T H (197)
‘ oy
equation 192 gives to zeroth order
I t 2 '
us( b oo = V. (198)
equation 190 gives to zeroth order
2
l4x{C _/C 9 * 9
( +n{ S/ P)) 80.._\.’._. B, _ . (199)
1+ ot Pr .ayz !

and to first order
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2 . “an (1)
v 878, “(1+u(cslcp))(ael _91)_‘ C, . aeo}aes Lo
Pr 5,2 Lo /Bt CECC_|1BE T8t T e
o
(1) “®o
tug g2 (200)
equation 191 gives to zeroth order
(1) 1+ Tyt -azeo
8. = - e U= gz )t —s - (201)
s l+n(Cs/C-P) Tm Pr dy |

The well=known general solution to 194 is

F/\/\)*—t 5
VO = AJ e ™ /4
0

dx + B .

The boundary conditions are that
VO(O, t) = 0

é.nd

r
Vo(r,t)am as T - o,

which in the boundary layer approximation becomes

T r

2R (V) o = V , aconstant.

VU(CD’ t) =

Hence, B=0, A=V/ [7 and

[Jv't 2
v, = — f’ e® Mgy o vert () (202)
J—'f-i'— 0 4\)*1:
where n 5
[ =€
erf{n) = —— ._J e - df .
T 0
Then
“S(l) = % VZ erfz (______Y ) (203)
4\)'Ft

and
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.
Ly
4 ES

VS(” =Y ye YVt | (204)

2 jmy t

By multiplying equation 196 by 1/t, it can be put in the form
b4
1oz, % oyf f2vt

2 1 zly /vt | e“XZ/Z

4V
= { - ) e
sR [2v Jt_ 0

which, upon integration and a change of integration variable, yields

dx ,

81,
ot ‘'t B

2
v _ Y j g~3/2 ¢ oxf( [E) d& + Aly)t .

The term A(y)t in the formula for I, is a solution of the homoge-~
neous diiferential equation which must vanish as t— o, since the
particular solution is the only one that is wanted for large times.

Aly) is taken to be zero, and then

Hence,
v ty [ 3/2 -§
= - —_— - : -
1,{y,t) ( = ) ‘Jz *g e " erf( [E)dE. (205)
v /4y t

Now using equations 202, 203, 204, and 205, equation 195 becomes
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—"QD
<
Qo
<
<

1, 2, 3%
. 3 Yz e-;1—(v /v t)

\Y - Fo = ( J)
oy’  Of % 2rRy [ F,

1 o,
- (Yz/\)"t)
e

Vv

~3/2 & 3 Vv v
X (S *erf df w-—
‘fz e "erf( [E)dE -7 =) 372
b4
‘_Fv . , (206)

1, 2, % -
- (y" /v 1) 3 _
v b4 4 v y Jte VY 1'erfz'(—----L) .

R e -[-.(__...___._
% = t5;2 o %
8v Jmv R/fvw 4yt

.
E

NN

+

Multiplying equation 206 by 1/t and defining VI = %Vl s then
" azi‘fl a’i‘r1
V _:';)_VT ;T F(y.t) (207}
where '1 2
y
3 2 "ITF P /
v Y vt ~3/2 -~
t) = f d
Py = () e 6732 e s e
2RV Y 2
Yy
4\1"‘1:
1 Yz 1 Yz
% Y
_3( V)yez\)t_l_ Vv yse v t
4 sk tEJZ sk %t
™V 8v Ty
2
ly
3 T
+ { v )—1— e V't oars ( Y ) -

For Pr=1, C.S/C}P = 1, equation 199 becomes

2
-_5_.880 -F ._2_8 o g 208
t M B - ( )
¥y
which, with the boundary condition (v} for the gas phase, implies that

4] = ..}.....

o 7 Vo (209)
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20..":.2. E%f . (210}

*8231 Gh 1
Vo —y =g 7 -V-G(Yat) (211)
oy
where
] o2
LD AR
v yo AR ~3/2 _-f
Glyst) = (——— ) Ty | e e enn Eat
i - 2
TZRy v
4yt
2
1yt s i
3 %
_9( ) 4\)t_+3 N y e4vt
g \/— 5]2 16 *\/—*{UZ
LAY W LAY
1 o2
o
4 *

+ V3 ! e —
e R
To get a complete .solution to equation 207 would be a very
difficult task indeed;. hence a solution will be obtained for very large

t and then for very small y. For very large t,

erf (—Jo ) o -2 Y

T F o

[6 &) 1o
N -3/2 -t 2 11—y
£ e > erf( [E)df ay g —
272 j - > / Bz °

T

and

4yt

and hence
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' -2 % I, 2, %
3 2 -{y /2y t) =z (v /v t)
F(yst) a v y (2 e 3
-é-(yzlv*t)

———————— ( =e +
x % 2123
TRy v T
e

+ Of )
t5/2

Now let

8%y

~ (o]
vy = iy} —
oy

and substitute in equation 207 where F(y,t) is given by 212,

2 2 2 2 *

df d 2 2,2 =

2L vy f (AR b1y +org) -
v t dy TRV 2

For very large t, the approximations
2, *
v ilvt<<l
2,, # :

are made, Then

2 2
2 d%f aE -, 10V . 3
Y ek 2y = =~ = )
dy dy 31TR.\J*
d 2 df 10 Z I 4 4
v g == =Yg ) gz v
dy ¥ dy 37Ry y
df 10v: . 1 2 A
;2 S R S A
37Rv v
v .1 3 A
Hy) = = ( ) y  -=+B
31TR.\J* 1z ¥

where A and B are integration constants. Then

1,2, *
v y "zl ey B3oa
172 ¢ e
* okt
™ NV

(212)

Then
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The boundary conditions, (ii) and (iii), given in Chapter II for the gas
plﬁase imply tgat |
| V1(°',t) = Vl(oa,, t} = 0, (213)
and hence A = 0., Both boundary conditions are satisfied for arbi~
trary B, but B corresponds to a solution of the homogeneous dif-
ferential equation and hence is taken equal to zero since only a par=

ticular solution is wanted. Then

' 1 2, %
5 V3 Y4 “’I(Y /‘\J t)
™ ‘/‘n'\; v R
and since for large t
Gly.t) = Fly,t},
“then 8, = & V- (215)
For very small y, il.e., y close totheboundary,
1, 2, =%
F(y,t) = = 7 {—=) =577 © +0(y")
'n'\,)-" t
and then
0%, o - 265N
* 2 Y1 SV 3y y
Vo s = g )57z ¢ ' (216)
oy 11"\)* t :
Letting >
R
V) = et —
8y
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tvV-- t
Y] Y
3 % t
g = -3V 1og(if_)+c
\

where C is an integration constant. Hence

1 s 2
N I
= )Y e + C ———y - (217)

3
1 Z I/z
LS
/,"’ t V oy

Both boundary conditions given in 213 are satisfied by 217 for arbi-

trary G, but G corresponds to the solution of the homogeneous

equation and hence is set equal to zero. Since, for small vy,

Glyst) = 3 F(t)

then
1, 2, %
o) = 3L |log V) TFY A (218)
1 k) = t‘172 v*
™
The shear at the wall is
2T '
uv [ w3 tV m
T =2 ———— jl+a—Flog{—g)—=—+... (219)
5 T+ 4 ST

my L

and the heat transfer to the wall is

R(T ~T_ ) T
q(o)mm,iﬁ_rﬂ_l:l+f_f—%-§log(f—\i—)—g—n—+...] . (220)
-’Trv=‘t Y]

It is interesting to note that neither 219 nor 220 depend on the curva=- |
ture, R, and that both 219 and 220 decrease with time as they should
gince the boundary layer becomes thicker as time increases.

A graph of equation 202 is given in figure 17 showing how the

boundary layer increases as time increases, A graph of equations
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203 and 204 is given in figures 18 and 19 showing that the particle slip
velocities move away from the boundary as time increases in accord-
ance with the thickening of the boundary layer. Figure 18 also shows
that the -radial slip velocity approaches a constant outside the bound-
ary.r layer. Furthermore, equation 204 shows that the .tangential par-

ticle slip velocity decreases like t3/2

1/2

the particles decelerate like t . This indicates that the force ex-

, while in the zeroth order,

erted on the particles to first order is greater than the force exerted
on the particles to zeroth order. Thus, the first-order gas velocity
should be positive as shown in figure 21 . Figure 21 also shows that
as time increases, the first~order gas velocity moves away from the
boundary. Figure 20 is a graph of equation 205, and indicates that,
as time increases, the particles move out of the boundary layer and

into the external flow.
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Vi. SEMI-INFINITE FLAT PLATE WHEN THE GAS
' 1S COMPRESSIBLE
The governing equations are obtained by taking equations 14
through 20 , setting all time derivatives to zero and setting all

pressure derivatives to zero. Then

0 ,
2% () + 55 (pv) = 0, (221)
ou du 9 fu U'pmu
plug-+va-) = (Mge) +p ) (222)
=t VEy) T oay ay) tep i

. 2
aT oT L] 8T du
F’C:P(‘\l"g--'X +V"a—-y) =5 (k-—a—-y) +Ll(-3-§)

(up-u) 2 pr-T
+p,. +p.C_{=——), (223)
P T P 85" Tn
o o
Bz () + 55 (pvp) = 0. - (224)
Bup Bup upwu
BVP SVP V ey
+ = - 226
pp(pT Vp"gy) Pp( Tm)’ ( }
8TP 8TP TpdT
. = = ), 22
ppcs(up—gj'c_+vp_53?‘) PPCS( T ) (227)
Since p is now a variable, the equation of state
p = pRT (228)

must be included. Consequently, there are eight equations to solve
for the eight unknowns, u,v, T, p, up, VP, Tp’ and pp . Since the gas
is compressible, | and k are no longer constants but vary with

gas temperature. Consequently, it is convenient to let
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whg = (ritgf (229)
k/kr = (T/'I‘OO)% (230)
A, =T _a (231)
?LT = Topd (232)

where a is the local gaseous velocity of sound given by

a = \/'YR_T“ (233)

As a consequence of 229, 230, and 233, ?\m R K’I‘ and Prandtl
number are constants. It is assumed that Cp and C, are also
constants.

Of the several methods used in the past on compressible
boundary layers of a pure gas, only one is applicable to two-phase
flow. The famed Howarth method does not work in this case, since
there is a y=component momentum equation, 226, and hence the in-
tegral transformation does not drop out as it does in one~phase
flow., The von Mises method changes independent variables from

Xsy to x,{ , where { is the gas stream function, and requires

i, = © (T/Tm’ :

where C is a constant. Crocco's method requires a change of in-
dependent variables irom x,y to x,u, which is not convenient for
two-phase flow. Emmons and Brainard in reference 5 use a method
adopting the equations of motion for a numerical solution. An ex-
tension of the Emmong and Brainard method will be applied to egua~-

tlons 221 through 228,

A. Small Slip Approximation

As for the case of an incompressible gas, the first region of
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interest is the regime of small particle slip velocities. With this in

mind, the eéluations of motion are rewritten somewhat so that the
slip quantities can be easily determined. Equation 222 plus 225

gives
du gu
: 0 0
Pp(up_ﬁ:B+vp_5TP)+P(u'-9%+V%;‘)-B%(HT¥) = 0. (234)

Equation 222, divided by p , subtracted from 225, divided by Py 2

gives
du ou ’
P _ gu du 13 Bu, _ _ E.I.’. a .
up"-s-;'l'vp—g}g (u"g-'*x'f'v-ry‘)‘i'p-ga:(uw)— (1+p)'x-r—;1'(up 11)-:
(235)
Equation 226 becomes
BVP BVP o .
P ) - a 2-36
uP =T + Vp i )‘m (VP v) ( )
Equation 223 added to 2447 gives
eT 8T
0T T P P o a7
du a 2
- - E = 2
u(g-_;,) pprm—(up u) 0, (237)

and 227, divided by Ppcs ; minus 223, divided by pCp s> glves

9T 0T
P

P arT oT
Yo T Ve vy

1 8 oT

+ (Bu)2+ppa (up-u)z— 1 sp)a T -1)
°C, By! Teey s Tt gy et

(238)
A transformation of dependent variables is now made by letting

T =T ~T
s P v = v_-v (239)
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In .the regime of small particle slip velocities,- 'I‘S s Ujs and vy
are first order quantities with respect to )\_m/x » therefore making
the transformation 239 in equations 221 , 224 , 234 , 235 , 236 ,
237 and 238, using the equation of state to simplify 221, and

keeping terms up to first order only yields

ou , Ov, _ BT 9T
du ov g 8 o 0
s Vs 0u_ dv Pp Pp Pp "o .
Pl toy Tortoy) Tl t Ve 3y TU T TV opy = 0 (24])
gu ou

P ) 9 P 9 )
P u u 8 s P u. u
7 st Vemy P PV gy ) (L RMu g+ v gy)

1 8 du
- = 0 242
P 9y (b 5Y) ! ( )

ou ou p
ou gu ou + .__.1.3_)

s s 1 8 3 a
uSE—X+VS§§+UE{—+V%‘F+FW‘(U_‘§)“"(1 o X‘“H“l‘uss(243)

A 8V+uavs+vavs+ 8v+ Sv _ e (244)
g 0x ' s 9y 0% 9 hal:r oy~ mvs’
P s 5 ps
Ten (=t Ve sy T o Yy ) T Lt S e v )
2
Z au
1 2 9T H,0%u Pp® s
- k ) o o (am) e = 0 (245)
"8'”"‘( »
PCp By 1 BYTpCL Ty TRC R
2
uaTs+V8Ts+u 8T+ aT 1 8 BT)+ppaus
0x oy s9x ' ‘s 0y  pC -5')?( By’ T p Pfr‘n‘
2 p. C
¥ du . P’s a
t—=(5=) = ~(1+ ) T, . (246)
pCp oy pC!P X‘; s

Let



M_=u _Jla_,
© o' “oo
o= (pp/p)m = constant,
" N
Voo = Vglll+n),
b
Ug 7 U‘s/uoo’
L3 / £
vy = Vg [ (vm uoo) s
ES
u = u/um, |
% *
v o= V\/X/(\)w uoo)’
TR /T .,
Q0
¥ - T /T
s Ts oo’
¥,
Pp = pp/(%pm),

and then making the transformation

1. e., the transformation 51 with v* repiaced by Voo* s With

¢ o
I = nu - 2v | (247)
in equations 240 through 246 yields
wgut 1 Ak 1 k8] #0TT , 1 ;8T
u EF < <
T gt Te ~mT g% 3t E57=0r (248
£ b #* A
du du Qv " )
*" 78 - m s 1778 du 1, % 8] % “Py
Pp 178x ™ Zx "Bn + oM Tt (u "'_'r]) T %
* * ¢ % e
unu*app ¢ _Pp +u*aPP i = 0
Zx s oM x omn Ox 2x “O0m ’



wTHw
¥ aus |
2x oM

T( % By’ M *Bu+l ='r8uk+ 8“‘_5_
"Pp “s—a— 2x% Bn " x's Bn %

b %
% %k kBu . § 8 L4n) T [ ou’
t{ltnp, T Nu == Sln)"( < ‘ "5“’-0
(250)

v g Eomt _m au"+_ *Bu* oo fug g vy
wo|% Fx "2x s On on 9%~ Zx 07

™
+ (““)T 5 (JT } == trpy T 4w, (250)

= ‘.1......?:.“ “S* , (252)
m
T* =’.=Gs u”ﬁalls __l_]ﬁals _{_u"‘aT __'r_]_u 8T +Vs o7
S A ox 2x £ TBq s Ox s 07 X TOT

P

c %
* %k Tg *8T 1 BT T4n T
FERT ey o)\ Sl G eEw (T

1+% 2, 0u" "
2y o (Y"l)M (—5~—) - np (Y“’l)M =0,
. . (253)
10's} u 5 T.LE 5 9x  2x s On x on

(254)
Now in the regime of small particle slip velocities, the



following expansions are assumed,
e

X
_ “m
u = u.o('n)+—---—X u,l(n)+...

by
o= b ()+—yn+...
" A
e m
T = eo(n) ";" 81('}'])'{' cue
e A
B4 m
us = T gl(ﬂ) F oace
L - )“m h
VS — "Y"‘ l(ﬂ) + LI -
% }t
Pp = I (T]) +-'— Il('r]) + -
* (1)

Putting 255into 248 and equating coefficients of (km/x)n

gives
- o
8 bl u ) = BLUJO
and
e:) e:) "o o
! - — — - R ——— i P
Vi-g 0y A P Ul Tl S R
o e - 0 o
o
Similarly, equation 249 gives
el
It+1 -2 =0
o o f
o
and
B! I out u ut 'Y u
P o - . 0o oo 370
bty + (Zag o= h )y = M| = —a b~y = 7 —5 75
© 8 % 8o

1 Vs 14+xC, /c 8! >
+7e5/2 { l-l-u )Tllf -T-Z+(Y I)M Pru‘

0

alu elif 21 e]qI el qu
,3 oon_l_ oo 8. - 0 g - 170 o
=g 5/2 3 V1 21

+‘z
0 MCDeO MCDGO M(D o] O \f EJO

> (255)

n=0,1,

(256)

(257)

(258)

(259)



equation 250 gives

. o :
2(14+n) o d oty =
and. .
3 _+3 [8_ 8! u ut
" ) 070 o _ 1 o
uy + ( uy + u = -3 - ¥y
BO _80 E)o N, eo eo E]0
2 . 2
+{ % } i Moo n uguo . @ @:Ju:ﬂo Moolbo ouz)
Ly 4 £ -
eo \/eo \/eo 80 ,/eo ./ ecxv
3
¥ oul boul
w o o % 1 l 7070 1
+t—g 5 yJ (1+34) 372 (-2' 5 el+71}fnenué}l )
a o
H
1 9;11; uo woul)

equation 251 gives to [irst order

gpln) = ——

M
fo'd)

equation 252 glves to first order

¥
hy(m) = —2(Ju -
%
equation 253 gives
2 : 1
o + (80) + Pr ( l+%cs/0 )¢oeo
o Zen Z I+ n 32
o

and

(260)

(261)

(262)

(263)

(264)



w78~

Pr 1+Kcs,ﬁp ¥
1
o | 2T 0t o |, (o, LG
] 5 5 1 ( } Y Ju
O \’ (o]
. : 2
t
1( # )PI'E-E--llI ec::)ml*'(P:r ILIc»e:)_&lg:a el
TP Vo "3l w52 —| 372
J 5 o o
nCS
Pr 3
Cp Moo 3 cs Pr llrouo'g::) 3 Gs 2 1+"'Cs/cp 4!0 8:3
T+ it —FY—ttwc Fr (13 )—z
B 8 P /6 P " B
o o o o
2 2,2 ; 2
Cs Moo lJJo Y .(_:.E. uoeo e:auo

2. 2
1 1 t
9 llrc> ll'ouoeo Pr l-l-nCS/Cp B

Q
- - ol e e R VFAS
| 49_ [6_ 4 5, 0,

. 3 2 .2
C_/C_ ¢ 8f .Y SR
Pr, "~s'~p . "0% 2 44 ©w '0 0
-_Z_( 5 ) II-ZPr(yul)Mm_uoul-l_]_n Pr{y-1) yi y i
R %
and equation 254 gives to first order
C M__ U 8!
1 3 s w 00
13 8,
Egquation 258 can be written
H% (Ioeo) =0
Ioeo = const.
From the boundary conditions stated in Chapterll,
Io(oo) =1, eo(oo} = 1;
hence
I8 =1, (267)

Equations 267, 262, 263, and 266were used in obtainihg 257, 259 ,
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261, and 265. Using 267, the zeroth order problem reduces to

112
3N -

0+ 5 — + 7~

For Pr=1, C /C
s P

@!
Ty gto =B = 0 (268)
(6]
1 8 3/2
r - 8 O - +
uo+(2§;+-2— 65 )v.‘o o, (269)
1+xC_/C_ | 8!
8 oo 2 2
) 37z T (y-DM Pr(ul)” = 0. (270)
eO
= 1 , the Crocco integral of 2701is
- 1- Y-y 24 (1
9y = 8(0) + [1-8 (0)Tu + (S5 )M "u (1-u ). (271)

The first order problem is given by equations 257, 259 , 261, 262,

263, and 265.

As stated in the introduction, the boundary conditions for the

gas are .
(i) ¥ o) = 0, §,(0) =0
(i) u_(0) = 0, wu(o) = 0
(iil) u (0) = 1, wufe) = 0 >(272)
(iv) eo(o) =0, a given constant
5,(0) = ©
(v} 8 (0} = L , §{0) = 0. |

As in the case for

an Incompressible gas, the boundary conditions

for the particle phase velocities and temperatures have been sup=~

pressed by the expansion procedure.

The particle density has the

boundary conditions

IO(OD) = 1 ,

Il(oo) = 0.
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Equation 259 has a singular point at 1 = 0, hence it is nec=-

essary to find how I, goes away from m= 0 before a numerical

solution can be obtained. Let

b = (y-l)sz
a = 8 _(o)

g = 8.(o)

Yy = u/(o}

e = 83(0)

& = ui(o) .

Then with the boundary conditions 272 and with the equations 268,

269, 270, and 265, the following series can be found for m << 1.
2 1 3
ll‘ro = % 'r] + "]:"2“ ‘ﬁ_y M + cne

2
1 2 2
6, = @+§ﬂ-§[—%+bpm}n + {5 +_ﬂbPrJ'l’] + e

3
u_ = yn- Z(El)“ +-6[(E)V+Egr—\'-}n toune

l1Be 2
8, = eﬂ--zli%+2bPry6:|ﬂ + 4

Then keeping only the largest terms in 259

4 5e
I' 421, = M (s - ) + 0{n)
1 "n71 (o3} 0L3/2 M CLZ

Q0
M

_ w0 Y 5¢ 5

ﬂzk.[l - 5 ( 3/2 - Z)T] 'I'-nn
a MOOCI

= R var dLE
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for n<<1. Therefore,

M_ ul(o) 58}(0)
Il(n) = 509 ( %/2 - 2)n+’°‘ .
o4 N M(DO:

The solution of the zeroth order problem is plotted in figures
22 , 23 , and 24 along with the incompreseible solution curves for
comparison. Care must be taken in making this comparison, since
different reference values were used in the two cases. The solution
for the first order problem is difficult to obtain because of the high
coupling between energy and momentum equations. In addition, re~
gardless of the choice of u'l(o) and e‘l(o) . ul(n} and 91(‘?’ ap-
proach zero as n approaches infinity, making it impossible to pick
out the correct solutions. Therefore, only the particle slip veloci-
ties can be plotted and compared with the corresponding incompresg~

sible curves in figures 25, 26 , and 27 ,

B. Large Slip Approximation

The governing equations are 221 through 228, which become

p = pRT, (273)
) 9 aT oT

) du ppa RT )
3o (T g5 —=— == (u_-u) (275)
¥ y' Ry, PP

WL, BT KT Yo b T&THRTB/Z oo 2w’
Bty T re =t (T ) T By
P TOD Cp ;Tm

G p
RT - RT 'p -
t oo 5o (u,mw) _+ =7 S (T,=T)s | (276)



g , '
3 (i) 35 (opvp) = 0 (277)
du Bup a :
o e Ty T T T (278)
va i} b N
BTP T P a
Y B + v » By < " X; (TP-T) . (280)

Being a regime of large particle slip velocity means that in the

zeroth order, both phases flow independently of each other, just as

in the incompressible case. Therefore, let

u = u/um,

v o= v f}é/(vmum) .

%k
T = T/Too s

= p./ .

Py Ppl (1P )
sk

TP = TP/TOO,

Pplp = MPg (99,707) .

PpVp = ™ P, (Bﬂip/a}c) »

and then 277 is identically satisfied, and the rest of the governing

equations become

s

o ' A
% du ov JFeT Yo %*8T _
Tt oz )= o=+ T %7 By (281)
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o 9% X V37 " Vo 'Eﬁr-( T 3 )

* _
%p);)T 3/2 1 oY "
twr— (= BYP -u_uw ), (282)
- To'm p
P
T*( 811* + Yoo''oo ﬁv* = Yoo F 9 /T* BI’
Yo B% X gy '~ Pr © "5'3?(
*3
3/2 pu* 2 %W"l)P=== 'z
+vam (V=135 ) +——5 X
m o
9y 2 oy 1C #3/2
4 * 2 %*2 g * T %
ey { BVI.J ) - = 8313 U +umu +-C-_a'mpp T (T -T )
Pp Pp P T
(283)
2 * 2 £
) N Bp_ © ) 9 9p " 9
IIJP w9 U : Py TJIP ) lllp " 1J!P ; Pp ‘lfp _
By |Pp BxBy " Bx By p Tyl By By
&
a ‘/T el o wl
o P k ok %2
- -1 , 2
- [ 5 YoPp u] o (284)
2 S %
0 L 9 2] 2] b 8 ] b
5y | Pp sz gx  0x ox pp Bxay 0y  Ox
T ¥_ 4
3 *
°° P (T+p [-22%), (285)
* % %
by, 8T by OT a o T . &
- = - ..-_.«L__ " -
9y ox TRX TP—Y - (’I‘P T) . (286)
Now let

i B
n = /uoo./(\)oo_x) vy = -nu;' A
lpp = ,uoovoox fp(X.,__’]’])

and then with the transformation given by 51 with \)* replaced

(287)
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everywhere by Vo * the equations 281 through 286 become

¢ 1 % 1 8p,  xoT aT"
Tlgg toxe =z5) = @ "555‘“’2%5"811—’ (288)

s % S % 43/2 of
* Ou 1 _ ou T @ * 0u nT P * 3k
S ax cmmiey T e T w e (e ) (289)

QO m
: e *1/2
% £ ER M™ T
* 0u _u _ 18], _ Pp @ ,*BT % ®
PP(-E"'-ZE "2'}—:-_51-_1*)—-"-—?5—-5-( T )+pp(y 1)_.__.}?_._._..._..
| * 2 aM_ (ynl) of
ou *2*2
X () (Bﬂ)—pru-g-—er
w2 EX
e 2 VT (290)
+.-..-..—..—...__......_._ ) - 3
CP MCOKT P
oc | . 8% 0% 8 8p 8p T,
o2 [P (Brom= T =% )= (g~ ok e )| (2t £))
n|p ' 9ndx  2x o m X Z2x  oOn X 2% p
2 * 2 %
L 90 ep " or of 8%t p. Bf
P P _Pp n_ P, ¥_P P -
X - + - =
Cep "_Z‘an L T )+ e (py an 5 an)
B3 w2
T p of e
P ( P w 201
- ~p u ) (291)
M_A_ on p ?
2 2
_, pr(afp+iafpn 1f.._"f_1_afP+“‘afP} af_ Bp
P Bn ' g2 X0x T 2p Zx BB 4,2 O an ox
b, 0L, Bf Bzfp | Szfp ) %%,
Nar vz o) tep ”53:"“56832"’?;;"&7{“%;}"2‘"2‘;2'5?)
8f of af 9°f a1 8“1
- Pyl n ey 1ok " p. 1%p n’'
o= Bn ox 2= 2 _ﬁ‘ﬁ- 2x Tp Pm x‘ﬁﬁ' ZX_E}—;Z



- -85~

/ * of of
= *2 T"= P 1 N B @
- Pp mem(ax 2xfp“§%“§‘"+TXPPu “Pp Zx ) (292)
* %
9f_ 8T 9T Bf %
P P __ P p, 1 oL T Tk
g0 B B Bk tzp) T TP Mg (7T (293)

As in the case of large particle slip velocity for an incom-

pressible gas phase, the following expansions are made in terms of

3L
u = uo(ﬂ)+7&; ul('n)+ oo

Bo= v s pn)+ ...
m

*
T = g ) +5— 8y(n) + ...

m >(294)
— . (o) b24 (1)
bp = [Fevas L i+ = £ iy + L)
m
PP = I(T|)+ l('r])+...
* (o) x (1)
T =8 (M) 4+ 3—8_ " {n) +...
P P Am P
Putting 294 in 288 yields to zeroth order
Bot0 = Bo¥o T Vo8 = 0 (295)
and to first order
- t t - | S
90¢1+lh19 o+390u1 elwo u0914—1”081 0. (29¢6)
Putting 294 into 289 gives to zeroth order
' 3/2 1 /2,000 _
9, a0 +?e aiug = 0 (297)

and to first order

3/2 1/2 3 2 1 1/2
90/ ”"1”“'2“9 / el 1+ w u uoul+feoll ugel+zeo/ u.:)ei'l'
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1, -1/2 141
+-3;90 8011081'1' . 11I1+

Y 02 Pe()rn )= 0. (298)

Putting 294 into 290 gives to zeroth order

2 2
$ g (o) = - -1 ) 299
%
and to first order
e‘: ] e 2 (1.1')
o 1% 1 (y~1) 2
etli.|.._é.(_)_ 9!1.[. 8_ Z{e ) +"T—M P eo 91-!-(\(.-1)1\/100 2.]E-”.'r'vu.:)u‘1
it
3 Pr Pr "1 _  Pr (0),2 (0),; 2, 2
-3 G = - P2 - 1)[(1" e RUEAR S St
8 o
o o
2 (o)
-?Wlo(ep bBo" (300)
fos)
éimilarly,_ 291 gives to zeroth order
(0)(1 f,,(o) Ilft (o) ) = 0, (301)

P op
which implies
I fn(o) - THE! (o) - 0
op Top

since fP(O) # 0. Thus

where A is an integration constant. Boundary conditions (i) and

(iv) glven in Chapter IIfor the particle phage imply that
1 (0) = -
fp (o) = Io(oo) = 1.

Hence
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0@ _ 1, (302)
P (]

Using 302 , then 291 gives to first order

. % _f (O)I f"(l)'l'(:[ ft (0)_|_ 1 _E (O)It )ft (1)_ l}fl (0)) 'i'%’fP(O)f”(O)]I

P oD op '2Zp “o'p P P 1
-1 (o), {0), _ 1 1/2_2_.,(0)
+_7£p fl') o= - M 8, I [f}') I a7 (303)

Patting 294 into 292 gives to zeroth order
. : 2
£1 () -t (0.)f (o) £1 (O)fr (o) fn(o) £ ()2 _ 0 304
p L~fp p Emip T IHE T (304)
and to first order

3¢ pr o) (1), 35 £ (0)y (1) 3, (0)y{o), 3 (0),2

_%I'f (o), (1)mjjIIOf (O)fg(“"%fp(c})fis’(o&l +_2fp(0):[lfl (1)_2};({1)(0))211

op P P ap
12, 1/2
Ne (0} {0}y _ "0 "0 i (o) m.(0) n ml

where 302 is used for simplification.

Likewise, 293 gives to zeroth order
{ (0) 41 (0) = 0
p Op !

or

(o} _ '
8, 1 = 1, (306)

applying boundary conditions (iii) for the particle phase given in

Chapter Ij, and to first order

41 /B
(o), (1) (1) (0) u o
i 1 -2 ¥ = . -
S 8y L o (8,~1) (307)
3 e Pr M
CP o)

where 306 is used,

A solution of 304 is
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fp(o') = const X n ,
but since fi)(o)(oo) =1, then

. (0} _
£, = M. (308)

Then rewriting the zeroth order equations in standard form yields

el
- o -
e 'e—;ﬂfo = Uy (309}
1 1_1/2
AR +7eo/ 8 :
w2y yul = 0, (310)
Q
i 1. 1/2
?Pr¢o+?eo e:J 2 2
oy + 377 )8+ (y=1)M_"Pr{ul)” =0, (311)
6
o]
I, =1, (312)
fI')(") =1, (313)
ep(") = 1. (314)

For Pr =1, the Crocco integral of 311 gives

6 = 90(0) +[1l- eo(o)]uo + l'z'l Moozuo(l”“o) . (315)

o

Rewriting the first order equations in standard form gives

g 8o oo B B e
1'"@‘0'1”1" u1+(u0+9—0~¢0)—8-;--—e—0-61— , (316)

wl e - (2 t=> )0
s o | L p3/2 17 '3 B2z 7 T
o 0 ' 8] Q Q

[ t 1 1

1 { ___906-0&1110 u U'owo 1 Bftauo
1
A

i oA TR v e CLENE (317)
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ﬂ"+[e_l.+1;.r_—lp§7-z :H +~ 'Zii'rg'l' %(E—I—) +T (v-1)M 2(161;)2
o
Prug o8l 2Prty-1M, Parat + 0! _
E}ﬁze—omeJr r(y-1)M_"u! T‘?T“‘fl
- PraM_(y-1)(1 - Zu-Hl) ? (1 6,) (318)
nit =21, = ”EI/\L/_E““TO)”;(”“% fp(l) , (319)
" fn“’ 3 flgf”mf“’ iﬁm@(nuo-wo), ; (320)
nel;‘”-.zep(” = - zm (8 =10 (321)

8 o
3 -c'—- PI‘MG}
b

The boundary conditions for the gas phase as stated in Chapter IJ are

(i) ¥(0) = 0, ¥,(0) = 0

~—

{ii) uo(o) = 0 , ul(o) = 0

(1) u (@) = 1, ufe) = 0 (322)
TW
(iV) 80(0) = T = O el(o) = @

[0 9]

1}

(v) 8 (o) = 1, 8§ () = 0.

-

The boundary conditions for the particle phase as stated in Chapler II

are:
(i) f(:g} =0, f((l‘, = 0
P (323a)

(1) f{)‘"’(m} =1, f}')(l)(oo) = 0
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; (o) L (1)
(iii) 6 ") = 1, 5 Nw) = 0
P L (323b)

_(iv) Iotoo) =1, J;l(oo) = -0,

The well-known solution of the homogeneous part of 320 is

A'q3+Bn

g0 by variation of parameters, i.e,,

3
fp(l) = A(Mn~ + B(nn.,
the following equations are obtained:
1/2

1L (% 0 324

A = = Y EJ" = [xuo(x)-ﬂfo(x)]dx+A0 (324)
(8.6
B = g ] e D)= () Jd 4 B (325)
Qo

where Ao and Bo are constants. Therefore

5 Mg /20 "’*e%,éf
:Ep(l) = - I\Pm f OX4 [xuo(x)wllro(x)]dx+ MZ;, f :2 X
[Xuo(x)-w 0.(x)]dx + Aons + BOQ N (326)

and the boundary conditions 323 are used to determine Ao and Bo'

Applying the conditions

yields

Thus
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. 1
Mg E(X) .
fp(l)(n)"- nmj 14 [xuo(x)-*llio(x)]dx.
a
Nea 3y
0,%(x)
+M20£ 7 Deaglei (s (327)
and
(1) 32 0,2 (x)
5 Mm = - - J; Dt )16
T g %(x)
1 o
+ - ldx 328
Mmi e XCRNG (328)
w, }
(1, - .1 2t
2 Mo) = - f °X2 [xu_(x)~§ _(x)]dx . (329)
0

Note that since xuo(x)-tbo(x) approaches a constant as x approach-
es infinity, f‘.:)(l)(o) is a well defined number, and also fi)(l)('l’])

exists for m approaching zero as well as 1 approaching infinity,

The equation 321 can be written

45 2 (¢ -1}
d 1 (1) - o o 330
36——]?1*1\/100
P
and hence
n
1 4 2 1 [6 fx)=1]
o= - n [ bR 2 ax, (331)
3€—P1‘M o X
P
1 2
SP( )(o_) = o8 8,(0) [Qo(o)ul] (332)
SC—-PI'M



where the boundary condition,

ep(“(ocs) =0,

is applied. Egquation 319 can be written

1 i
-CTCL(_EZ ) = - Mg _Jé. f%[xub(x)_¢o(x)]dx (333)
’r] n oD -n oo ,-[-I !cn =

where 327 and 328 have been used., Then integrating yields

2 01 [xep_(x)]
L= f‘zeoz""*?o_ )
(o o]
iy t g i(x)
2 2 1
- —M_.;.- n j .;3— -0-}-{-2.-— [xuo(x)-qjo(x)]dx dt . (334)

where the bpundary condition,

II(CQ) = 0,

has been used. Then Integrating by parts and simplifying the result=

ing expression gives

i 1
2 g2 2 f e 2x)xu ()i (x)]
a2 [0 ey (x)]dx - 0 0 oo .
I, (n) Mmi};—‘f[ b olx)1a Mm%.[ - a
1
0o %(x
Mlm I OXZ [ ()=} _fx)]dx (335)
and
® g Fx)
1 3 1 o ¥
Il(""ﬂf;?eoz(")"'%uj O Dty el gl e (336)

The solutions for equations 309 , 310, 311 are just those

for the flow of a compressible gas over a semi-infinite flat plate and
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are shown plotted in figures 22 and 24 . Since in the large slip
case the gas flows independently of the particles in the zeroth order,
the kinematic coefficient of viscosity is unchanged, and no statement
needs to be made about CS/Cp . As in the previous case, whenever
curves are drawn for comparing the incompressible gas phasc casc
with the compressible gas phase case, comparable quantities must
be made dimensionless in the same manner,

The solutions for equations 316 and 317 when
Pr=1 (y-I)MOO2= 1

g o) = o = 1/2

are shown in figure 28. The solullon curve for 318 is shown in
figure 29 , and the solution curves for 335, 328 , and 331 are
shown in figures 30 , 31 , and 32, The curves showing the com~
parison betwecen the compressible gas solutions and the correspond-
ing incompressible gas solutions are given in figures 33, 34 , 35,
and 36 . The nature of all the solution curves is fairly easy to
understand except for figure 30 which gives Il('r]) . To understand
figure 30 , one must realize that the gas is being cooled by the
presence of the flat plate at a temperature, TW » which is less than
Too . Now, in the first order problem, the thermal interaction he=
tween the gas phase and the particle phase is taken into account. To
first order then, the particle phase is subjected to a cooling gas,
and consequently heat is transferred from the particles to the gas as
indicated by figure 29. Therefore, a gas with particles does not
cool as fast as a gas without particles, and thus the gas density does

not increase as fast as it would without particles. This means that
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there is a first order decrease in gas density due to the particles,
and this causes a first order decrease in pa_r_ticle. density. There=
fore, the first~order particle density should be negative near the
plate, as indeed it is.
The formulas for the shear coefficient and heat transfer to

the wall are given by

u e )Lni MOO
Pen oo x

LY 1 _(.4903)[1+-£2,197—“-—-+,,] . (337)

m oo

T
g(o) = "koo?cﬁ JE /RX (,4903)[1 +f.‘_.. 2,663 I\Z +] » (338)

provided
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Fig. 3 Particle Slip Velocities,
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Fig. 9b First-Order Particle Temperatures.
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g, 17 Zeroth=Order Gas Velocity for Curved Wall.
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