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ABSTRACT

The class of symmetric orbits with near minimum energy
which originate very close to the earth and pass very close to a
fixed moon of small mass are studied using asymptotic methods.
An exact solution for the orbit is found using Bonnet's Theorem.
This is an ellipse with the force centers as foci. Results obtained
from the approximate solution are seen to agree exactly with the
predictions of Bonnet's Theorem. The solutions thus obtained are
the periodic solutions. A one dimensional study is undertaken as

a guide to the planar problem.
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I. INTRODUCTION

The planar motion of a particle of negligible mass in a trajec-
tory originating near a body of relatively large mass (the earth) and
passing close to a body of relatively small mass (the moon) was dis-
cussed in references [1] and [3]. In [1] the earth and moon were
assumed fixed in an inertial frame in order to illustrate the mathé-
matical aspects of the development of the solution by uniformly valid
asymptotic approximations. In [2] and [3] the more realistic case
of motion within the restricted three-body framework was obtained
for the case of elliptic initial orbits relative to the earth. The prob-
lem of near minimum energy trajectories in the restricted three-body
problem required special treatment in [3] because of the distinguished
behaviour of the solution before moon passage.

In this study near minimum energy trajectories are considered
for the two fixed force-center problem where again the behaviour of
the solution near the moon as predicted by the outer expansion changes
type. Certain new aspects arise that were not present in references
(1], [2] and [{3]. For example Bonnet's theorem (cf. reference 4)
guarantees the existence of periodic orbits which are ellipses with
the force centers as foci. If in addition the assumption of small
initial perigee distances is made as was done in references [2] and
[3] it is found that these periodic orbits are near mini;'num energy
elliptic trajectories. Explicit approximate formulas for the motion
for this class of trajectories are developed. It is seen that during
‘moon passage the effect of the earth must be retained in order to

obtain a solution which matches with the prior motion. This
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distinctive feature is due to the relatively long time spent by the
particle near the moon for the case of near minimum energy.

A study of the motion in one dimension is undertaken for the
case of total energy equal to the minimum necessary to ensure
escape from the earth. The study is largely academic as the par-
ticle is trapped at the equilibrium point after an infinite time and
never reaches the moon. However it provides valuable insight and
serves as a guide to the solution of the planar problem. The motion
between the equilibrium point and the moon is solved as a separate

problem.
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II. ONE-DIMENSIONAL CASE
In this section motion along the line joining the two centers of
attraction is considered with a total energy equal to the minimal value
necessary to reach the moon. In[1] it was shown that the minimal

value for the total energy, h, defined by:

_Lqdx N -k B
h = Z(df) X + =% (2.1)

is equal to

S-2p) VE + /oK) &

hmin = s—i-2u +0(u%2) (2.2)
min «fl_:;-f,: H* [

|
Furthermore at the equilibrium point X=Xg=l-pu /2+ 0 (u)

the two forces of attraction exactly cancel. This is a saddle-point in
the phase-plane of X and "g'%‘ as can easily be verified from (2. 1).
Determination of the trajectory in the form t=1t (x,y. ,h)
reduces in this case to a quadrature with the use of (2.1). However
the solution will be derived by constructing the limiting outer and
inner expansions, and then exhibiting the details of the matching of

the two solutions.

2.1 The Outer Expansion

An expansion procedure based on a limit process in which x
is kept fixed while p tends to zero will be valid for all x not close to
unity (i.e. away from the moon). It is assumed that the outer expan-

sion has the form;

t{x,p) = to(x) +p.l/2 tl/ (x) + pt,(x) +0 (pu%) (2.3)
2
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When the above expansion is used in (2. 1) the following differential

equations for the various terms in (2.3) are obtained.

—2 =,/ = (2. 4a)

X/
- () ‘ (2. 4b)

dtl - - 2x—1 3x2
VA=l Sy 2(I~x)2} (2.4c)

From [1], the differential equation governing motion written with x

3
QLQ. .

as independent variable, is

| ¢t _ (-p)
(dt/dx)3 dx? x 2 {1-x)2

=0 (2.5)

It is noted that equations (2.4) are just the first integrals of (2.5)
after (2. 2) and (2. 3) have been substituted. The existence of these
first integrals is guaranteed by the existence of the exact integral
(2.1). Conversely, the successive approximation scheme implied
by (2.3) would still hold in the absence of such an integral.

The solution of equations (2.4) subject to the initial conditions

t(o)=0 gives

V2 ty(x) sin”' /X = /x(1-%) (2. 6a)

n

3 .
-y _ :
fz—tyz(x) -J_:i-___-z— + 3 Iix - 3sin ‘Jx (2. 6b)

V2 1 (x) =-———{,,/ — sin f"} '3 3"} (2. 6¢)
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It is noted that fv(x) has a square root singularity and that 4(x)
2
has in addition a three-~halves singularity at x = 1, a reflection of

the fact that the above outer expansion is not valid near the moon.

2.2 The Inner Expansion

In order to study the motion in the neighbourhood of the eéui-—
librium point and the moon, the coordinates are translated to the
moon location and are enlarged. The inner variables are then defined

in the form: . I-x t—-t

x: T:
pe uP

where a and 8 are positive quantities and t represents the time to
reach an appropriate point near lunar encounter. Since for the present
case the motion approaches a saddle-point and is dominated byl both
centers of attraction in that phase one must choose a =—!2- B = T in
order to exhibit this balance of forces. This domain is larger than

the one chosen in [1] where the class of trajectories considered had

a non-zero velocity throughout the interval. The differential equation

of motion in the above limit then reduces to:

2

d"x I

——t—3 ~1=0 (2.7
dtz X 2

where the effect of the earth is exhibited to this order by the unit at-
traction. Furthermore, the domain of validity of equation (2.7)
includes both the moon and the equilibrium point which is located at

x=] .

Equation (2.7) has a first integral



Ve

(1-X)

which can also be obtained by evaluating the inner limit of the energy

alo
x| | =l

integral (2.1). The singularity at the saddle-point X =| is exhibited
explicitly in (2.8) and the integration must be performed in two steps.
Let v be the time taken to reach an arbitrarily chosen point
X =| + €, near the singular point. Then a simple integration yields
I/ —/2
- — X <+
.\/Zt(x)=-2x2+|og--|7———-+K (2.9a)
12
x —|

where K=-1{0)= 2 «/T+te - log

for € <</ (2.9b)

The motion between the equilibrium point and the moon is in the
present case a completely separate problem since it takes an infinite
time to reach or leave the saddle-point. If for this phase the origin

of time is taken to be the moon location, X =0 , integration of (2. 8)

yields
|
_ i ~/2
J2 t(i’)=2‘£2-|oq '+x,/ , 0 X< (2.10)
1-x 72

2.3 Matching of the Inner and Quter Expansions

As in[1], it is sufficient for matching to require the outer
solution evaluated in the inner region to agree with the inner solution
for large values of the inner variable. The inner limit of the outer

expansion (2.6) is easily determined:

-~ 3
-\/_f(x,p /4{ 2xa+2xyz+2 3/ 3" '/2+0(,/4) (2.11)
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The above should match with the limit as X == @ of (2.8), the ap-
propriate overlapping branch of the inner solution. Taking this limit

gives:
{ ! -1 -
VZ 1 (R)= /2 eud {- 2% 24 2% 2+ 2% %2, K} (2.12)

Comparing equations (2.11) and (2.12) it is clear that the inner and

I
outer expansions match to order p./z provided

T | T
4/2?="““”K}-L/4“§'u'#/2 (2.13)
2 2
Thus the composite solution which represents the motion uniformly
| |
to order ;1./2 in the interval 0 £ x < l-'p./2+0 () is

ﬁt(x,p) =sin—'ﬁ —m+py?{:\/—;:_% + ,‘B/Ti—x- -3 sin—iﬁ}
7
e {f (Vi e w5 TR -3 1)

| - -
| |+"'/2 - !ﬁ _9’2
+#/4{log |-’:'/2-2x - -%-—x } (2. 14)

where the last term is a ''boundary-layer correction,"'

It is observed that the square=root and three-halves singular-
ities of the outer expansion are cancelled by the boundary-layer
correction, which in turn introduces the real logarithmic singularity
at X =21 . The singularity of order pu( l—x).l/Z in pt (x) which
is uncancelled will match with a comparable higher order term if the
inner solution is carried out to the next order. This is the reason

.

the above expansion is only uniform to order u‘2.
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III. TWO-DIMENSIONAI CASE

In this section planar motion between two fixed centers (the
earth with mass (1-p) located at the origin of coordinates and the
moon with mass p located at the point (1,0) is studied, The particular
class of trajectories considered are initially symmetric with respect
to the earth-moon axis and originate from a neighbourhood of order p
of the earth {i.e., have a perigee distance of order p).

In [1] the two integrals of motion were exhibited,and as a
consequence the motion is in principle soluble by quadrature. How-
ever, the explicit representation of such an exact solution is most
cumbersome and asymptotic approximate formulas are both useful
and interesting.

In [4] a detailed discussion of Bonnet's theorem for the
general n-body case is given. For the present study a particular
choice of initial conditions ensures the applicability of this theorem
which states: ''If the orbits due to n centers of attraction considered
one at a time are identical, then the motion under the collective
influence of these n centers will proceed along this orbit with a
local speed equal to the square root of the sum of the squares of
the individual speeds.'’

Clearly, for two fixed Newtonian centers of gravitation any
ellipse with foci at the centers satisfies the requirements of an
exact orbit as long as the perigee speed, say, is precisely equal
to the value appropriate to the given perigee distance. In addition
to the necessary symmetry condition for the applicability of this

powerful result it will be shown in Section V that for perigee distances
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of order p the initial velocity requirement is equivalent to a choice
of total energy which is minimal to ¢rder unity. Use of this theorem
allows exact calculation of the energy and angular momentum for the
motion during moon passage and provides a useful check for the

asymptotic results.

3.1 Formulation of the Problem

The notation and point of view of references [2] and [3],
where the restricted three-body formulation was considered, _will
be adopted. The equations of motion in the Cartesian earth-centered

coordinates are (cf. Figure I for the geometry):

2

d“x X (1-x)p
— + l— w—— - M ————————— .
& y _ -my -
-+ (l-u) = — 3..1b
dt? 153 £ (3:18)

y
Particle
r 'm
(1,0)
Earth ‘ Moon

- Fig. I The Earth-Centered Cartesian Coordinate System
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As in [2], the initial conditions are prescribed by specifying

the Keplerian integrals at x = 0.

2 2 -
hf%{(ﬁ%)* (%%‘)}‘ -t

d dx i
|e=x—-:-'--y—-;- = w22
Pe=lex + (1-p) =0

d
Ge=—lo g +(1-p) % >0
t =0

With P, = 0, the Keplerian starting trajectory is an ellipse
whose major axis lies along the x-axis. The condition le=order p.VZ
implies that perigee distance is order u while hg==I+0{@)implies
minimal energy to reach the moon.

The Keplerian solutions obtained by setting the right hand

side of equations (3. 1) equal to zero are:

I
y (x,4) =—a /1-¢e2 {I-(e“—g-)z}/2 (3. 2a)
- 21V 2\
tix, p) =a%{sin ' [l-(e— £) ] a-e[t—(e-—-’-‘;) ] 2} (3. 2b)
where a = semi-major axis = 1:-&—%'—8-12——
2 B A3(1-pp))

e = eccentricity = | - 2
(1=p)



-11-

3.2 The Outer Expansion

In equations (3.1) the right hand sides are clearly perturba-
tions of order p so long as T is not small. Consequently if these
terms are zero the solutions for t(x) and y(x) are Keplerian relative
to earth, as has been shown. Clearly then, an expansion procedure
based on a limit process in which x is kept fixed while p tends to
zero will be valid for all T bounded away from zero. Considering
y(x) only, equation (3.1) suggests that the leading term is of the
form J/ay,/z(x,,;). This form of a leading term which depends both
on p and x is chosen to avoid the trivial non-uniformities that would
otherwise occur near the earth. These non-uniformities are ex-

hibited by expanding (3.1) in the form

y p) = -2 n EXT {14000} (3. 20)

Thus, y is of order I/2 for X,{1-x)=0(l) and of order p for X,(Ix)=Q(n).
"Then for x not small and r bounded away from zero an expansion of
the form of (3.2c) is uniformly valid. Inspection of (3.2b) shows

that exactly the same considerations apply to t{x, ). Hence the outer

expansion for both y(x) and t(x) takes the form
_ .Y ¥,
Y(xyﬂ)"[-‘- Y;/Z(X'#)"’f&y'(x)"'o(,u 2) (3.3a)
H(x, p) = to(x,p)+ p {{x)+0(p2) , (3. 3b)

The terms yl(x) and tl(x) are independent of p and are first corrections
i
to ‘u/z y./ and tg respectively. These corrections are necessary
2 .

for the matching processes which follow later. Furthermore,
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equations (3.3) are not valid near the moon which necessitates a
different form of expansion in this region.

Away from the earth (3.3b) may be written:
tix, )= todx) + [t 00+ 1 (0] +0(p?) (3. 4)

where to(x.p)=too(x)+;.¢im(x) and is given by (3.2b)

Direct expansion of equation (3.2b) gives:

V2 too(x)=sin"~/x_—\/x(l~x) (3.5)
«/—(3-:() -
2 tgx) = sm| VX i '.,/x +
Pl{ e }
2x2+N2x (3-2x) : (3.6)
- + 3 & .
U )

From equation (3.5), it is seen thatfz-' ?CI)O( x) = /_% (3.7)
I-x

As in {1] the equations of motion {3..1) are written with x as indepen-

dent variable

l .

- X e (l=x)

P + '__ —— S en———————— ‘(B'Ba)
3 C-p)=3 3
yll t”y’ y —,_Ly

—_— —— (]~ £ = L _ .
NEIVE t-p) -3 03 (3.8b)

Also from [1] an equivalent form of the above which exhibits the

role of hg and lg are

€ dx ~dx Loy

+ dlg
‘e=

2
! dh I+y! (1-
h € — d y - ILL)},-_- ﬁis {l_x-yyl} (3.93')

I
=4 [(ahy oy -ty
dx dx t/ rm3
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As in [2] and [3] insertion of the expansions (3. 3) in the above,
integrating from x = 0 and using the fact that tg and /J.I/Z y,/ give
the exact initial conditions on he and le at x = 0, the pertsrba-

tions 4 and y, are obtained;
*

ST ) = sinT S X (3.10a)
3 (1-x)72

y,{x) =0 ' (3.10b)

The outer expansions for y(x) and t(x) away from the earth are thus:
| -
z—yy 2 = 1-2x ry2 -
yix, ) ==p’2 2% {1 +u ot oo PP rex-p)} ]}

(3.11a)

V% (3-x)
VZ t{x,p)=sin WE - Jx(l-xiﬂ.:.{pl[-—-sm x~2m]

3
72 42
.= 2/ 5 | (_x ) X x(3-2x) }
~-2sin / x + -—— + ——mete. (3.11b)
I-x 3 (I-—x 2 ./x(1-x) _
In preparation for matching the following substitution is made:

= |-x (3.12)

Then

y(w’F_)=—/_4_l/2)\.\/2w(|-w){l+/_/.[p' aw “_ {)\+2(I p,)(l w)}]}

(3.13a)

* This result also follows directly from eq. (5.2b) of [1] in the limit -
p—1. Itis mterestmg to note that the logarithmic singularity at

x = 1 disappears and is replaced by the stronger three-halves singu-
larity exhibited.
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J2 tiw,p)= sinj"'.\/l-‘w = Jw(l-w) +/.4.{p| [%sin’" I-w —
2/ 1-w | 71-w §'2
-5 (59

JTw (2 +w) -l
-2 sin |-w + ———
2./w ] v

M (1-w)2w+1) .
2. /wil-w) (3.13b)

3.3 The Inner Expansion

The essential difference between the present study and the
cases considered in [1],[2],[3] is the fact that with near minimum
energy in the fixed center problem, the velocity of the particle as
predicted by the leading term of the ocuter expansion is vanishingly
small near the position of the moon, equation (3.7). As the one-
dimensional study showed, matching such a trajectory with a Kep-
lerian orbit relative to the moon is not possible because prior to
the onset of lunar dominance, the particie spends a relatively long
period in a region where both forces of attraction are important.
However, with y #0 and hg>hpi, the particle is not ''trapped'
at the saddle-point, and will eventually encounter a strictly lunar
phase after a finite time. In anticipation of this, two inner regions

will exist, one defined as before by the relations

- _ x-I = __Y . 1-7
t l
B 74

3 B c— -

wre T uk

(3.14)

where. T is the time taken to reach the moon starting from the earth,

and an innermost region where the motion is Keplerian relative to
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thé moon,

Actually the region defined by (3.14) includes the Keplerian
innermost region. However, unlike the simple one-dimensional case
it will be difficult to express the time as a function of x throughout
the entire inner region. It will be shown that if a neighbourhood of
order p of the moon is excluded (where the trajectory has a sha.rp
curvature) the effect of two-dimensionality is negligible as far as
the computation of t is concerned, and that the resulting expression
for t matches with the easily computed Keplerian solution very close
to the moon as well as the outer representation. The form of the
orbit will be parabolic in the entire region, and can be immediately
computed. The limiting differential equations are easily determined
and show that the effect of the earth appears to first order as a uni-

form gravitational field. These are shown below:

2= - o
f._t__’;'-}. "7;'3 +1=0 (3.15a)
dz._ —
"‘_!‘" ".‘_Ys =0 (3.15b)
dt r

Two integrals of motion for the above can be computed either by
taking the appropriate limits of the exact integrals h and & of [1]

or by direct construction from the above. These integrals are:

_2
- | +y! l -
h = —_— 3 — = tX (3.16)
27 '
e = 2 -
3 - yly'x-y) - X (3.17)
-2 2 r |

tl
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The inner expansion with the use of these integrals can be
found in principle by quadrature, and the matchiné would then define
h and § and the two added constants that are introduced by integrating
for t and y as functions of x.

Knowledge of the exact solution for the orbit provides con-
siderable simplification. As will be shown in Section 5 the elliptic
orbit given by the outer expansion is an exact solution for y every-
where as long as the speed is suitably modified. This being the case
the ellipse in the neighbourhood of the moon would appear as a parabola
in the present ;,; variables. In fact, this parabola at its minimum
approach to the moon is at a distance of order I.LI/Z in‘the present

inner variables. With this observation it is easy to show that

i

- -2 -
y = ;/."4 A {[.L!IZ A -—27}2, A=0(1) © (3.18)

which is the general formula for the class of parabolas that have
angular momentum of order y_|/4 and minimum approach distances
of order /J.I/Z , satisfies equation (3.15), and (3.17) to order unity,
It is easy to show that for this class of trajectories the integrals of
motion h and § are both equal to zero to first order. From [1], the

following are quoted:

RS A A W R o ,
heg (CFVHGT ) — o (3.19)

8= lglm+(1-p) 3 - (3. 20)
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From the initial conditions, h==1| +O(/.Ll/2), and the right hand side
of (3.19) evaluated in inner variables is equal to —‘+O(/.l.|/2). Simi-
larly with 6 the right hand side is |+0 (fL) while from initial data
§ is computed as unity. It is also easy to show that (3.18) holds
when x is of order unity and of order ,LLl/Z i.e., in the innermost
region.

When X is of order unity, y is of order ,.L‘/4 , from (3.18).

This provides considerable simplification in evaluating t since in

this case (3.16) reduces to

dat 7 _ -
J2 —= = — ith 2 - 3.21
dw '+w2 w w X ( )

where the negative sign is used for lunar approach.
Equation (3.21) is valid for all W >0 . The lower limit of integra-
tion (t = 0) is chosen as W = Wl , slightly greater than zero. This

constant is evaluated in the limit W; = O . Integrating directly

gives:
[
- 2w’ /1+we -
V2 1= F(p,k-2E(¢,k)— T - K,(W)) (3. 22a)

i
zw,’2 VT+w2

| +W,

with K (W)= F (¢, k)= 2E(¢p,k)- (3. 22b)

where F and E are elliptic functions of the first and second
kind respectively, and 4) and k are the amplitude and mo_du—
lus respectively.

Then limit of KQ(WI) as W, approaches zero = -1.692.
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The equations describing the motion in the inner region are:
l

2 wé-\/ I+ we

I +w

V2T =F(P,k)—2E(¢,k)- +1.692  (3.23a)

y = -2 7
7=p./4>\{,u.'/z)\ +ow}? (3.23b)

3.4 The Innermost Expansion

As was stated in Section 3.3, the solution for the time-histery;-
in the inner region was determined vy excluding a region of orderzp.
in outer variables around the moon. This implies that equation (3. 21)
is valid so long as x (or -w) is of order unity and less than zero.
When x is positive, it becomes of order /.Lllz s -}-r' of order ,u.l/z , as

can be seen from equation (3.18). Clearly then (3.21) cannot be used

for X >0 . Innermost variables are accordingly defined:
X = ¥ = (3.24)
i !
'LL/Z #3/4

where the choice of the powers of u are clearly consistent with the
above and the anticipation that the motion in this region is strictly
Keplerian relative to the moon. B is defined as the time taken for
the particle to travel from the moon to moon perigee and will be
evaluated as a result of matching. The innermost limit of equation

(3.16) then becomes:

—2
dt A =%
— = +0 () (3. 25)
X VXZa% g

The above equation represents Keplerian motion relative to the moon

as can be seen by expressing equation (3.15a) in innermost variables.
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This gives:

4% 4
— + —5 =0 (3. 26)
dt v3

~ <2 ~
with rs()\ =X ) . Direct substitution of (3. 25) satisfies (3.26) iden-
-2 ,
tically. Integration of equation (3.25) from X= A /2 gives, since

the integrand is improper at the lower limit;

L
~ - X ~
t = limit dx (3.27)
€—=0 -j; V3 2%
)\/2-6 .

This is evaluated as:
- / -] ~ =2
~ ~ — X
t(x) = _3_3_2- {3—)\-'?'} (3.28)
or substituting w=-%:

T - =AW 5 5 (5.29)
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IV. SOLUTION MATCHING

4.1 Innermost - Inner Matching

The simplified matching criterion discussed earlier holds
throughout and will be used in the subsequent computation. The
innermost limit is easily determined from (3. 23a) by substituting

W= F/Z W and taking the limit W approaching zero. This gives:.

T(W)=-—-—-—“/.52: %WB/Z"-O(/.L%)'FLWS (4. 1)

The above should match with the limit of (3.29) as W approaches

infinity. This gives

2 | -

T (W)= Btu’e {- 1/3—— Wi I g%y o l/z)} (4.2)

242 |

The singularities at the location of the moon are evident,

Comparing (4.1) and (4. 2) it is seen that the leading singularities
{of order Wa/z) match identically. The singularity of order ] |/2
remains uncancelled. Since the inner parabolic orbit satisfies the
differential equation to order unity only and the inner time-history
was determined by neglecting the contribution of '.'y'l 2 it is not

I "~
/2 in the limit as W ap-

possible to recover a term of order W
proaches zero unless higher order corrections are determined for
y(x) and t (x). Under these conditions the solutions match to order .

n
p 72 provided B =1.196.

4.2 Inner-Outer Matching

The inner limit of the outer expansioun, equation (3.13a), is

' — ——
determined by the substitution W =/.L/2 W and taking the limit as W



-21-

approaches zero. This gives:
/.
y(w,p) = -p¥ax {v2w +0(,u2)}+0(,u (4.3)

The limit of (3.23b) as W approaches infinity is

— 3 = |
ylw,p) =+ /.L/4>\ {J2w +0 ([L/Z)} (4. 4)
Comparison of (4.3) and'(4. 4) shows that for matching it is necessary
that A==\ (4.5)
and hence if T = angular momentum of the inner parabola
- ]
T=+0’ A (4.6)

Similarly, for f(w,/.L) » the inner limit of the outer expansion, equa-

tion (3.13b) is

VZrap = L - (o whs SuBan (g

Qll

— -.u +o(u¥) (4.7

The limit as W approaches infinity of equation (3. 23a) is:

V7
V2 tw,pl=v2 v~ ;1./4{2 4+-—w3y2} + 1. 692/1. (4.8)
Comparison_ of (4.7) and (4.8) shows that for matching
. T K 3P
+ 1. q = — .
THLISe pBe S b () (4.9)
‘Then if T is expanded in the form
T= Tgt 1T, (4.10)
7 30 N
T, — T, = 4P' -0 (4.11)
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Hence the half period of the motion is

a
T + 1196 p’* (4.12)
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V. GENERAL DISCUSSION

In the one-dimensional case the particle is‘ constrained to
follow a trajectory in space-time right into the equilibrium point
with an infinite period. The time history for the motion between
the equilibrium point and the moon is determined as a separate
problem. The earth's influence is felt as a uniform attraction neé.r
the singular point and the moon.

In the planar problem the energy is greater than the abso-
lute minimum; motion between the two centers is thus possible.
Prior to entering a strictly lunar phase the particle traverses a
region where earth and lunar effects are equally important. In
these two regions parabolic orbits with angular momentum of order

M I/4 and minimum approach distances of order ;.L,l/z in inner
variables define the motion to lowest order. The effects of two
dimensionality on the time history is negligible to lowest order.
The relation matches with the innermost Keplerian motion as well
as the outer motion.

The_main purpose is to reproduce the exact results given
by Bonnet's theorem through the use of asymptotic methods. This
exact solution is an ellipse with the force centers as foci.

Consider an ellipse with foci at the centers of attraction.

If the semi-major axis is denoted by a, the eccentricity by e, the
energy relative to the earth by he and the angular momentum relative
to the earth by lg , the following formulas relate the Keplerian ele-

ments to the integrals:
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a5 —— (5.1)

(5.2)

Furthermore, the fact that the earth-moon distance is equal
to unity implies:
2ae = | (5.3)

If the earth is considered alone, then a simple calculation

shows that the velocity at earth perigee, i.e., atx=-a{l-e),y=0, is

I/2
V¥« {t+erti-p) /ati-e } (5.4)

and the velocity at earth apogee, i.e., at x=a{l+e),y=0 is
v {i-exi-p) /a (|+e)} (5.5)

Next,if the moon is considered alone (located atx = 1, y = 0)
the velocities at the points X =a{l+e), y=0 , moon perigee,and

x =-a{l-e),y=0, moon apogee,are given respectively by

Y
Vg")= {(l+e),u/o(|-e)} ¢ (5.6)

|
Y
vl {-orp/ati+a}™ (5.7)

Then according to Bonnet's theorem the velocity at earth
perigee (or moon apogee) for the motion under the influence of both

centers is:



-25-

2
,\/V(e) . Lite)-dpe (5.8)

a(l-e%)

and the velocity at moon perigee (or earth apogee) is:

2
(I-e)+dpe ‘
V, = 2 2 = 5.9)
2 '\/;ée) +V1§m) a(1-e)? (59

Evaluation of the two integrals of motion at the two turning points

gives:
S
hs= 5a (5.10)
2
S = |2+ee (5.11)

If the exact perigee distance (i.e., a({l~e)) equals M Wwhere
@ is order unity, all pertinent quantities are easily computed as

functions of @ and M

|
Q'-E- +Q[.L (5.12)
e=l-2a/.l.+0(p.2) (5.13)
./ { 2)} (5.14) .
Mmla-1)
v2=@{|+—§~+o(P2)} (5. 15)
h=-1-2au+0(u?) (5.16)

S= | (5.17)
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he ==1+p(i+2a)+0(u?) (5.18)
(a+l)
o= v2ag {1- £+ o(u2)) (5.19)

The assumed initial conditions for the asymptotic solutions

were:

he=—1+pnp, e, P1Titea

1
le= [L/Z A A= /2a
Viewed in inner variables the ellipse appears as a parabola
near the moon. With the use of equations (5.12) through (5.19) the
following constants for the inner parabolic motion are easily deter-

mined in inner variables as:

|
Approach distance =apu /2 (5. 20)
- i
Angular momentum | = /4 2a (5.21)
'LL
- | 3
Energy h = I.L/ZQ+ o) (,u./z) (5.22)

From the matching (cf. Section IV) the angular momentum was shown
to be T:/il/“ A\ and the minimum approach distance as /.LI/Z )\2/2 .
Clearly these results agree exactly with the predicted results, equa-
tions (5.20) and (5.21). However the matching does not provide any
more information than that the order unity value of the energy is
zero. The effect of P is seen to occur only in the determination

of the half-period of the motion T +B /_L'/4 » cf. equation (4.12).

The solutions found are the periodic solutions.
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