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Abstract

PART I

A self-dual code of length 48, dimension 24, with Hamming distance essentially
equal to 12 is constructed. There are only six codewords of weight 8. All the other
codewords have weights that are multiples of 4 and have minimum weight equal to

12.

A (72, 36; 15) box code was constructed from a (63, 35; 8) cyclic code. The

theoretical justification is presented herein.

A second (72, 36; 15) code is constructed from an inner (63, 27; 16) Bose-
Chaudhuri-Hocquenghem (BCH) code and expanded to length 72 using the box code
algorithm for extension. This code was simulated and verified to have a minimum
distance of 15 with even weight words congruent to 0 modulo 4. The decoding for

hard and soft decision is still more complex than the first code constructed above.

Finally, an (8, 4; 5) Reed-Solomon code over GF(512) in the binary representation
of the (72, 36; 15) box code gives rise to a (72, 36; 16*) code, where the “16*” means

that there are nine codewords of weight 8 and all the rest have weights > 16.

PART II

In order to get self-dual block codes by the convolutional encoding technique
developed in [18], Solomon [12] gave sufficient conditions for code length 2n + 2 and
tap polynomials p(z) and ¢(z). We present necessary and sufficient conditions for
convolutional encoding of self-dual block codes of rate 1/2 with weights w, w =
0 (mod 4). In addition [15], we searched for the smallest possible convolutional
encoding constraint lengths K for (80, 40; 16) self-dual codes (quadratic residue and

non-quadratic residue) and even for (104, 52; 20) quadratic residue code.
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Chapter 1 Introduction

1.1 Codes

An (n,k) linear code C of length n is defined as a k-dimensional subspace of V,,( K),

the n-dimensional vector space over a finite field K.

Let x € V,(K), y € V.(K), then the Hamming distance d(x,y) of x and y is
defined by
d(x,y) = [{z]l <i<n,zi #yi}l.

The weight w(x) of x is defined by
w(x) = d(x,0).
The minimum distance of a nontrivial code C is
min{d(x,y)|x € C,y € C,x # y}.
The minimum weight of C is
min{w(x)|x € C,x # 0}.

Note: If C is linear then the minimum distance is the same as the minimum

weight. And we call C an (n,k; d) code if its minimum distance is d.

In most applications, the field K is taken to be GF(2), the field with two elements
0 and 1. A code C is called binary if it is defined over GF(2).
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1.2 Cyclic Codes and Mattson-Solomon Polyno-

mials
A linear code C is called cyclic if for each codeword x = (zg,1,...,2,_1) in C,
the vector (z1,22,...,Zn_1,To) is also in C.

Remark. For other definitions of cyclic codes, please see [11], [8], [3] and [6].

Let C be an (n, k) binary cyclic code. Then there exists a binary polynomial
k .

f(z) = Z u;x’

=0

which divides z"+1 over GF(2) with the property that any codeword a = (ag, ay, . .., a,_;) €
C can be generated by the recursion [11]

k
Z U; Q4 = 0.

i=0
Remark: The polynomial f(z) is called the parity-check polynomial of the code
and g(z) = (2™ 4+ 1)/ f(z) is call the generator polynomial of the code.

Let 3 be a fixed primitive n-th root of unity. Then with every codeword a in C,

there is a polynomial called the Mattson-Solomon polynomial 7]

n-—1
ga(2) = 3 ci',
1=0
with the following properties:
(a) The ¢; are given by the Reed formula
n—1 N
q:Za;ﬁ-”, j=0,1,...,n——1;
1==0

especially, co = 217 a; = w(a) (mod 2) and ¢p; = c? for any j.

(b) If a = (ag, a1,...,a,—1) then ga(3?) = a;.



(c) ¢; = 0 whenever f(3’) # 0.

That is, the only ¢; that can enter in the expression for ga(z) are those ¢; such

that f(89) = 0.

1.3 Solomon-McEliece I's Formula and an Exam-

ple of a Box Code

1.3.1 Solomon-McEliece I'y; Formula

Let a = (ag,ay,...,a,-1) be a binary n-tuple. If w is the weight of a, then

y(a) = Y aia; = (’“2") (mod 2).

1<y

Note that I'; € GF(2).

Solomon and McEliece [17] prove that

(n-1)/2
Ta(a) = Y cicoi if w(a) is even,
=1

where ¢; are the coefficients of the Mattson-Solomon polynomial, and
I(a) =0 iff w(a) =0 (mod 4)

for any even weight cyclic codeword a.
When n =7, a € C, we have the following straightforward properties:

(a) I'z(a) = c1e6 + cac5 + cscs = Tr(cics), where Tr(b) = b + b% + b* € GF(2);
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(b) For any codeword a’ in the extended code of C,

Tr(cics) =0 if w(a’) =0 (mod 4);

(c) w(a) =0 or 7 if and only if 1 = ¢5 = 0;
(d) w(a) =1 or 6 if and only if ¢c1c6 = 1;

(e) If w(a) =5, c;c6 € GF(2).

1.3.2 Box Codes

Let us consider any linear code C of length n and any permutation o € Sym(n),
we can arrange the codeword a = (ao,ay,...,an-1) as a t X s matrix M with respect

to o, where n = ts as follows:

Qs(0) As(1) Tt Ag(s-1)
M = Qo(s) Qo (s+1) e Qs(25-1)
Ag((t=1)s) Qo((t-1)s+1) "~ Qo((t—1)s+(s=1))

Adding ¢ overall parity-check bits b;; ¢ = 0,1,...,t — 1 for each t rows, we get a
t x (s + 1) matrix

as(0) ay(1) e Ag(s-1) bo
M — Qo (s) Ag(s+1) " Ay (25—1) by
Ao((t=1)s) Qo((t-1)s+1) *°° GQo((t-1)s+(s-1)) bi-1
where
s—1

b; = Zaa(ig-f-j); 1=0,1,...,t—1.
=0



Then the set C’ of all new vectors

a' = (as(0), Go(1)y -+ » Bo(s-1)> D0y - - - 5 Qo ((t=1)s)s Bo((t=1)s+1)» - - - » Ba((t—1)s+(s—1))> De—1)

is called the t x (s + 1) boz code of C with respect to o.
Note that the box code C’ is a linear code of length n + .

The concept of box codes was first introduced by G. Solomon in the late 1980’s
when he was visiting the electrical engineering department of the California Institute
of Technology. A box code can be regarded as a generalization of an extended code.
Many good codes are box codes generated from other codes. A good example [17] is
that the extended (24, 12; 8) Golay code is a 3 x 8 box code generated from the (8, 4;
5) Reed-Solomon code over the field GF(8) of eight elements with respect to certain
basis for GF(8) over GF(2). We here present the theoretical proof of the example.

Example: (see [17])

Consider the (7, 4; 4) Reed-Solomon code over GF(8) given by the parity-check

polynomial
3

f(z) = I_I(w + ),

where 8 be a root of g(z) = 23 + 2% + 1.

It is easy to see that 3 is a primitive 7th root of unity and that {8,3%, 8%} is a

self-complementary normal basis for GF(8) over GF(2).

Then the MS polynomial for any codeword a is
9a(z) = co + 17 + ¢22° + 32,
where

a = (aﬂ7al,a27a37a4va’57a6) € GF(8)7
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z € GF(8)={0,1,3,3%35% 8% 8° B%;
¢ € GF(8), 0<i<3.

In binary representation by using the normal basis above, we obtain three 7-tuple

vectors:

a= Qg ay as as ay as ag a
Tga)8) | o | o [ [ | o | o | &2 |o
Toa@)s) | o) | o | o | & | o | o) | &
Tga@8) | o | o | o | & | & | 2 | 2 o

Consider the extended (8, 4; 5) Reed-Solomon code; we obtain a 3 x 8 box code

(see the table above), where O represents the overall parity symbol.

Tr(ga(z)B) = Tr[(c1f + (c2)H)z + (c367)2%2® + cof],
2[Tr(ga(z)8’)] = Tr(e1c28% + c5c33%).

So

> Ta[Tr(ga(z)B")] =0 by Tr(8%) = Tr(8°) = 0.

71=1,24

By the Solomon-McEliece I'; formula, the weight of each new codeword is multiple
of 4. And the (8, 4; 5) Reed-Solomon code over GF(8) has minimun distance 5. Then

the box code has minimum distance 8, and therefore, it is the (24, 12; 8) Golay code.

Moreover we studied the properties of the box codes generated for the (8, 4; 5)
extended Reed-Solomon codes over GF(64) and GF(512).

In 1993, we [14] constructed a (72, 35; 16) box code from the (63, 35; 8) cyclic code

by using the Mattson-Solomon polynomials and the Solomon-McEliece I’y Formula
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[17]. A similar method yields a (72, 36; 15) box code with the (72, 35; 16) code as
a subcode. This work is related to the Research Problem (19.3) of MacWilliams and
Sloane [6], which asks whether there is a (72, 36; 16) even self-dual code.

1.4 Convolutional Coding of Block Codes

~ Convolutional codes have also been used successfully in practice despite the lack
of a deep mathematics theory. In 1979, Solomon and van Tilborg [18] developed
a connection between quadratic residue codes, quasi-cyclic codes and convolutional
codes. For example [18], the (24, 12; 8) Golay code can be encoded convolutionally
by two polynomials p(z) = 2® + z> + 1 and ¢(z) = z® + z + 1.

Let us consider the (24,12;8) Golay code and two polynomials p(z) = 2%+ 22+ 1

and q(z) = 2> + z + 1. Let ig,7y,...,%10,%11 be the 12 information bits.

In vector and matrix notation, the codeword of the information bits 7g, 1y, ..., 210,211

is the vector

(%0, %1, - - - 110,211) G(P|Q),

where
( 1 1
1 1
P Q
G(PIQ) =
1 1
\ 11 -+ 1 1 0 0 --- 0 0

P is the associated circulant of order 11 of p(z), and Q is the associated circulant of

order 11 of ¢(z).

m

Note that for any polynomial f(z) = 75" of degree m — 1, the associated circu-

lant F of order n (n > m) is a square n xn matrix with the top row ( fo, f1,..., fm-1,0,...
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and every other row the right cyclic permutation of its preceding row.

Solomon and van Tilborg [18] give the convolutional encoding of the Golay code

by the two polynomials p(z) and ¢(z).

Remark: Such polynomials p(z) and g(z) are call taps or tap polynomials of the
convolutional coding. And we call this code can be convolutionally encoded by the

polynomial matrix [p(z) q(z)].

Arrange the 12 information bits 29, ¢1,...,%10,%11 in special way (See Figure 1.1).

W//\b\ px)=1+x%+x’

Zs 2 Lo fm—m

Zo,..., Zo

b~ \/r(/q(x)=1+x+x

>/

Figure 1.1: Binary Convolutional Encoder for the (24, 12; 8) Golay Code.

Output sequences

10
ag,ay,...,010, 00 With aoo——-Za,-;
i=0

10
bos b1y -+ 1 b10,boo With bey = b,

=0

Codeword is

(ao, aiy...,010, aoo,bo,bl, ceey blO, boo)

Recently Solomon [12] gave sufficient conditions for code length 2n + 2 and two

polynomials p(z) and g(z) in order to convolutionally encode even self-dual block
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codes. The conditions are n = 3 (mod 4), ged(p(z),2™ + 1) = 1, and ¢(z) = p(z),
where p(z) is the reciprocal polynomial of p(z). We eventually found the necessary
and sufficient conditions [16]. In addition, the previously found constraint length
K = 9 [18] for the (48, 24; 12) quadratic residue code was lowered to K = 8 [12] by
Solomon. We have found in our search for the smallest possible constraint lengths
for (80, 40; 16) even self-dual codes (quadratic residue and non-quadratic residue,
respectively), the constraint lengths K = 14, and K = 13; and we found K = 21 for
the (104, 52; 20) quadratic residue code [15]. The smaller the K, the less complex

the sequential or Viterbi decoder.

Moreover, we generalized this idea to convolutional encoding of some cyclic codes

of rate ﬂ-t—x For example, the (33, 22; 6) cyclic code with generator polynomial

f(z) = z't 4+ 2° + 2% + 2% + 22 + 1 and the (65, 52; 6) cyclic code with generator

polynomial f(z) = z'® + 2'2 4+ 2% + z* + z + 1 can be encoded convolutionally.
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Chapter 2 Box Codes

2.1 Codes of Lengths 48 and 72

The self-dual (48, 24; 12) Quadratic Residue Code has had a history of difficulty
and complexity in decoding for 5 errors algebraically as well as decoding for soft
decision. (For the concepts of algebraic decoding (hard decision) and decoding for
soft decision, please see [8].) This led us to apply the techniques of box codes as
successfully developed for Golay Codes to rate 1/2 codes of length 48. See [13], [10].
Subcodes of dimension 23 and Hamming distance 12 were easily found. In addition
the box structure gave parity information to detect odd errors in rows which simplify

decoding procedures.

Remark: For the concepts of algebraic decoding (hard decision) and decoding

for soft decision, please see [8].

The attempt to avoid the six codewords of weight 8 in the natural box code
construction yielded two self-dual (48, 24; 12) codes [13]. Upon closer examination

of computer simulation, these codes contained 42 words of weight 8.

In [13], two codes constructed were designed to be self-dual. The (48, 23; 12)
systematic subcodes of each were easily found. The 24th coordinate in each was more
elaborately constructed with the proviso that odd parities of the rows were induced
to be used as tools in an erasure-error correcting decoding procedure. A search of
the codeword weights’ structure indicated the presence of 42 words of weight 8 and
40 in both these codes. The remaining non-zero words were of minimum weight 12.
There exists a straight systematic construction of the Reed-Solomon (8, 4; 5) code
over GF(64) for the 24th dimension given below, still using the particular binary
representation in [13], which yields only 6 codewords of weight 8 and 40. This gives

a box code with even parity on the rows. So for a low signal-to-noise ratio, this
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code and the previously constructed codes of dimension 48, rate 1/2 are effectively
of minimum distance 12. The decoding procedure for soft decision mentioned in [13]
is still applicable and preferred over any current soft decoding of the (48, 24; 12)

Quadratic Residue code.

In [10], a code of length 72 and distance 15 was constructed specifically designed
to have simplified soft decoding. Again the (72, 35; 16) subcode was constructed
with even parity on the nine rows in a non-systematic manner as a subcode of the
Reed-Solomon (8, 4; 5) code over GF(512). The 36th dimension was constructed to
give odd parity on the rows and yield a code of minimum distance 15. The full code
was désigned to have a systematic encoding. This code, however, upon investigation,

was found to have a very small number of codewords of length 11.

To meet this emergency, a new (72, 36; 15) box code is constructed here with rows
of even or odd parity, and so it possesses, perhaps, a simple hard decision 7-8 error
correcting procedure. This code has been simulated and verified to have minimum

distance of 15 and even weight words congruent to 0 modulo 4.

2.2 (8, 4; 5) Reed-Solomon Code over GF(64)

Representing the (8, 4; 5) Reed-Solomon code over GF(64) in binary using the par-
ticular normal basis in [13], one can generate a rate 1/2 self-dual code of length 48

and dimension 24 with weights that are multiples of 4.

This binary representation of the (8, 4; 5) Reed-Solomon code over GF(64) yields
six (8, 7; 2) codewords whose decomposition via Mattson-Solomon into two cyclic
code components and a constant component looks like (6, 4; 3), (6, 2; 5) codes over

GF(8) and a (6, 6; 1) binary code respectively.

In particular, let 4 be a root of the polynomial f(z) = z% + 2° + 2* + z + 1,

where v is a primitive generator of the 63 roots of unity. Represent the elements of
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GF(64) in the normal representation using the roots of f(z). The roots are v 7€ J;
J = {1,2,4,8,16,32}.

NOTE: For this particular choice of f(z), we have

Tr(v)=1; jeJ; J=1{1,2,4,8,16,32},
Tr(y'4*) =0;  i#k; i,keJ

6,7%} is called the self-complementary normal

And such a basis {v*,v*,v* %!
basis for GF(64) over GF(2). A useful theorem can be found in A. Lempel and M.J.

weinberger [2]:

Theorem 2.2.1. GF(g¢") has a self-complementary normal basis over GF(q) if

and only if n is odd or n = 2 (mod 4) and q is even. §

A. Encoding
Let 3 be a root of the polynomial g(z) = > + z2 4+ 1. 3 is an element of GF(8),
a subfield of GF(64), and 8 = ~°.

Now use the parity-check polynomial A(z) = [[?.o(z +/5*) to generate an extended
(8, 4; 5) Reed-Solomon code over GF(64). This means that the initial shift register
contains four elements in GF(64) expressed as coefficients in the normal representation
a,bovq. The cyclic portion of the code is of length 7, and the overall parity symbol
is the eighth dimension. Representing the binary code as components Tr(Pa(z)y’);

j=1,2,4,8,16,32.

The general Mattson-Solomon polynomial of a codeword a, similar to the Golay
codeword over GF(8) is Pa(z) = Co + Ciz + Caz? + C3z> where C; € GF(64) for
0<:<3and z € GF(8).

Encode the codeword in its cyclic portion. The extended codeword a expressed

in terms of the Mattson-Solomon polynomial is

a = (Pa(f);0 < i <6, Pa(0)).
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Writing the codewords in binary, using the normal basis 77, j € J above, there

are six binary codewords of weight 8:
Tr(Pa(z)y); j=1,2,4,8,16,32,
where Tra denotes the value in GF(2) given by the Trace of an element a € GF(64):

Tr(a) = a + a® + a* + a® + a'® + a*%

Consider one of the six binary words in its Mattson-Solomon setting,

Tr(Pa(:t)yj) = Tr((Co + Ciz + Coz?® + Csz®)v?)
= Tr(Coy’) + Tr'[(Ciz + Caz* + Caz®)y’
+ ((Crz + Coz® + ng3)7j)8],

where  Tr'(a) = a+a*+a* ae GF(8).

Set Cy = 0 temporarily as this does not effect the arguments to follow.

Tr(Pa(z)y’) = TI[(C1y + (C1¥’)® + (Cav’)* + (Cov’) )z
+((C57')? + (C57’)'€)2].

For each codeword a, we have 6 coefficients of z (z®) with respect to the 6 values
of 7. Consider all codewords of the Reed-Solomon code, we have a code of length 6

over GF(8). We call this code the coefficient code of z (zf).

Lemma 2.2.2. The coefficient code of z is a (6, 4; 3) code over GF(8). The
coefficient code of z° is a (6, 2; 5) code over GF(8). The code is indexed by the values
of v j € J = {1,2,4,8,16,32}.

Proof. Theset v/;j € J = {1,2,4,8,16,32} is a linearly independent set and thus

one can only take zero values one less than the number of terms in the coeflicients.
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For the coefficients of z, if there are at least 4 of them are zeros, then C; = C; =0
which implies that all the coefficients are zeros. Hence the coefficient code of z is a

(6, 4; 3) code.

Same argument applies to coefficient code of z6. B

Theorem 2.2.3. The Reed-Solomon code determined by codewords with Mattson-
Solomon polynomials Pa(z); Tr(Co) = 0 form a (48, 23; 12) binary code with weight
multiples of 4.

Proof. The multiple 4 property of the weights follows using the Solomon-McEliece

['; Formula.

Tr(Pa(z)y’) = T(Cry’ + (Crv))* + (Cov')* + (Cv') )z
+((Cx7)? + (Ca7) )2,
where Tr is defined in GF(64) and Tr’ is defined in GF(8).
Now
Ty(TrPa(z)y) = Tr(CiC3Y + CECIY™™ + C103%4" + CEC104*
+OPCI™ + CICH™ + GO + CICI™)
= TGO + CECEAY 4 G5 + CAC™),
and therefore ¥ ;¢ T2(TrPa(z)y?) = 0. 1

Recall that the normal basis was chosen so that Tr(y?) = 1;5 € J, and Tr(y'~v*) =
0 itk i kel

It has been demonstrated that the binary weight of any codeword in the Reed-
Solomon code above is a multiple of 4. Since the symbol distance of the code is

greater than 5, we have narrowed the weights down to 8,12,16,20,...,40.
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2.3 Structure of the Code

Using the same arguments in [13], one shows the minimum weight of the code for
Tr(Co) = 0 is equal to 12. We proved that these six are the only codewords of weight
8. A counting argument on the weights would do the same. Since all words have

weight multiples of 4, the code is self-dual.

Theorem 2.3.1. The 6 x 8 box code generated by extended (8, 4; 5) Reed-
Solomon code over GF(64) with respect to the chosen normal basis v7; j € J =

{1,2,4,8,16,32} over GF(2) has exactly six codewords of weight 8.

Proof. A codeword of weight 8 occurs only if Tr(Co) # 0 and Cy = C¢ = 0. By
property (c) of Section 1.3.1, there must be one and only one row with all 1’s and the
rest five rows are all 0’s. This happens when the original Reed-Solomon codeword is

(Y, 7, ¥ v v, 7, 49); for § = 1,2,4,8,16,32. 1

2.4 (72, 36; 15) Code

In [10], an alternate (72, 36; 15) box code was constructed from the (63, 35; 8) cyclic
code, generated by the check polynomial f(z) =[] fi(z);i = 1,3,5,7,9,13,21 where
fi(z) is a polynomial irreducible over GF(2) with 3 as a root where 3 is a primitive

63rd root of unity. We now present the theoretical justification.

Place the codewords in the usual 9 X 7 box code matrices corresponding to their
values 7t + 97 (mod 63) for 0 <7< 8,0 < j < 6. Let z = zy where 2" = 1,y° =
1,z = 3%, and y = #". Indexing the rows by y, the Mattson-Solomon polynomial

for each row y is

Py(CE) = Tr(Clz -+ 0323 -+ 0525 -+ C7Z7 + 013213)
+C92° + C12"8 + C362® + Cg12% + Cyp2™?
= Cuy’+ CHy® + Te(Cry") + Tr'[(Cs + Cry + Ciy’)z

+(Ciy® + C3%y% + Cray* + CLy® + C3y® + Cy7)2®).
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Where Tr is defined in GF(64) and T’ is defined in GF(8).

Thus the coefficient code of z is a (9, 3; 7) code over GF(8) and the coefficient
code of z° is a (9, 6; 4) code over GF(8).

Construct an 8th column on the nine rows by the usual parity rule. The 8th
column will have the same I'; value as the original (63, 35; 8) code. Then we have

the following lemma immediately:
Lemma 2.4.1. The extended box code is a (72, 35; 16) code.

Proof. Consider the Solomon-McEliece Formula. The sum ['; over the nine rows
gives 0, showing that the weight of every codeword is multiple of 4. And the properties

of the coeflicient codes of z and z° imply the minimum weight to be 16. B

Now adjoin a vector of all ones in the original 9 x 7 matrix setting. This will make
the rows have odd parity and will complement the column sums. It is easy to show
that all odd-weight codewords have weights of form 4m — 1. We will prove that the

minimum code distance is 15.

Examining the degree of the Mattson-Solomon polynomial and the properties of
the coefficients of = and z°, one can easily see that the weight of the inner cyclic
codeword is less than or equal to 54 because the degree of the Mattson-Solomon
polynomial is at most 56 and z + 1 is not a factor of the parity-check polynomial
f(z). If the inner weight is 54, the nine rows weight patterns 6 6 6 6 6 6 6 6 6,
7666666605 and 77666666 4 could generate codewords of weights less
than 15. If the inner weight is 52, the weight pattern 6 6 6 6 6 6 6 6 4 could generate
codeword of weight less than 15.

Lemma 2.4.2. For the original cyclic (63, 35; 8) code, none of the weight patterns

above are possible.

Proof. Weight pattern 6 6 6 6 6 6 6 6 6 gives the sum I'; to be 1. This is

impossible.
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Let

Ply) = Cy+ Ciy+ C{y®,

Qly) = Ciy* + Ci%y3 4 Cuay* + C%y° + C2y° 4+ €327,
Then

L, P(y)Q(y) =0,
deg (P°(y) — Q(y)) < 7.

If the weight patternis 76 6 6 6 6 6 6 5, then £,P(y)Q(y) = 1 + a # 0 for some
a # 1; o € GF(8). See property (e) in Section 1.3.1.

If the weight patterns are 666666664 0r 776666664, P(y) =Q(y) =0
or P(y)Q(y) = 1 for eight values of y by properties (c) and (d) in Section 1.3.1. This
means that the polynomial P%(y) — Q(y) has 8 zeros since P(y), Q(y) € GF(8). Then
PS(y) = Q(y). But P(y)Q(y) = 0 and P%(y) = Q(y) do not give weight 4 for any
row indexed by y. I

Theorem 2.4.3. The box code is a (72, 36; 15) code, where the even-weight
subcode is a (72, 35; 16) with all codewords having weights of form 4m, and the
odd-weight subcode is a (72, 35; 15) code with all codewords having weights of form
4m —1. |

2.5 (72, 36; 15) Alternate Code

One can construct the cyclic (63, 27; 16) code generated by the check polynomial
f(z) = Il fi(z); i = 1,3,5,9,11. The cyclic decomposition in the box code setting
yields a (9, 5; 5) code over GF(8) for the coefficient code of z and a (9, 4; 6) code
over GF(8) for the coefficient code of z°. This does extend to a (72, 36; 15) code,

too. In fact, this code has been simulated and verified to have a minimum distance
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of 15 with even weight codewords congruent to 0 modulo 4. If we try all possibilities
for the check polynomial g(z) =[] fi(z); 1 = 7,21, which totals to 256 codewords, we
are left with an inner cyclic code that can algebraically correct 7 errors. This leaves

soft decoding still very complex and unworkable.

Note that because of the Mattson-Solomon decomposition here, we may correct
five errors easily by hard decision, but six and higher takes more trials. Similarly, a
soft decision would require 8* = 2! trials. This requires more trials for both hard and
soft decision than the alternate code mentioned above [10]. Note the (9, 3; 7) code
over GF(8) is the coefficient code of z° as opposed to the (9,4;6) code over GF(8) for

the coefficient code of z.

2.6 (8, 4; 5) Reed-Solomon Code over GF(512)

The extended (8, 4; 5) Reed-Solomon code over GF(512) in the binary representation
of [10] gives rise to a systematic (72, 36; 16*) code with nine words of weight 8 and
all the rest have weights > 16. The normal basis consists of 7%; ¢ = 2/; 0 < j < 8
with v a root of f(z) = 2% + 2® + 2 + 2% + z* + z + 1. The proof that there are no
words of weight 12 is a simple counting argument. We prove there are no words of

weight 60 in the code of dimension 35 given by Cp = 0.

Represent the elements of GF(512) in the normal representation using the roots

of f(z). The roots are v%; j € J; J = {1,2,4,8,16,32,64,128,256}.

For this particular choice of f(z), we have

Tr(y)=1; jeJ; J={1,2,4,8,16,32,64,128,256},
Tr(v'A*) =0; i#k; i,keJ

Represent the binary code as components Tr(P(z)v'); ¢ = 1,2,4,8,16,32, 64, 128, 256,

giving nine words of length 8.

A. Encoding



19
Let 3 be a root of the polynomial g(z) = z® + 2? + 1. § is an element of GF(8),
a subfield of GF(512) and 3 = y.

Now use parity-check polynomial A(z) = [T>_,(z + §°) to generate the extended
(8, 4; 5) Reed-Solomon code over GF(512). This means that the initial shift register
contains four elements in GF(512) expressed as coefficients in the normal representa-
tion above. The cyclic portion of the code is of length 7, the overall parity symbol;

the eighth dimension is the usual sum over the seven symbols.

In the (72, 36) binary representation of the Reed-Solomon (8, 4; 5) code over
GF(512), any codeword with the coeffiecients of z and z® non-zero, has minimum
weight 16. When these are zero, then clearly there are only nine words of weight 8,
which come from the encoding of the symbol y/; 5 € J; J = {1,2,4, 8, 16,32, 64, 128, 256}.
A similar proof would argue that there are only six words of weight 8 in the binary

representation of the (8, 4; 5) Reed-Solomon code over GF(64).

To prove there are no words of weight 12, a counting argument notes that there
are no words of weight 60 in the even weight codes, where TrCy = 0. Words of
weight 60 must possess a weight distribution over the nine words in any permutation
of 888666 66 6. This implies that three rows are zero and six rows are non-zero
with weights 6 or I'y = 1, to say the least. However, in [10], we note that this cannot
be. The coefficient codes are (9, 3; 7) and (9, 6; 4) codes over GF(8), so there are at
least 7 rows with I'; = 1. |
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Chapter 3 Convolutional Coding of Block Codes

3.1 Convolutional Techniques for Block Codes

Let f(z) = S5t fizt be a binary polynomial of degree m — 1. We define w( f) to be
the number of non-zero coeflicients of f(z) and call f(z) an even polynomial or odd
polynomial if w(f) is even or odd respectively. The associated circulant F of order
n (n > m) is a square n X n matrix with the top row (fo, fi,..., fm-1,0,...,0) and
every other row the right cyclic permutation of its preceding row. If A and B are two
square matrices of order n, we define G(A|B) to be the following (n + 1) x (2n + 2)

matrix:

1 1
1 1
A B
1 1
11 1 1 00 0 O

Let us consider a binary convolutional code of rate -;— with constraint length K.
Let n > K be an odd integer and 19,11, ...,t,—; be n information bits to be encoded.

The taps are described by two odd polynomials

K-1 K-1
p(z)= Y pa' and q(z)= ) gz,
1=0 =0

where (po, px-1) = (1,1), and ged(p(z), ¢(z),z" +1) = 1.

Extend the information bits to t_g41,...,7-1,%,%1,...,%n-1, Wherei_; = ¢,,_; for
1 <7 <K —1,ie., sequences of length n + K — 1, in which the first K — 1 symbols

are repeated at the end.
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The two output sequences depend on the input sequence in the following way:
K1
a; = Y pij, 0<j<n—1,
=0
K-1
by = Y qij, 0<j<n-1
=0

In terms of polynomials, when we write

n—1 n—1 n—1
I(z)= Y47, a(z) = Y @', and b(z) = Y bz,
1=0 =0 =0

the relations are

I(z)p(z) (modz™ +1),

Q
P
8
e
il

o=
—_

8
—

H

I[(z)q(z) (modz™ + 1).
In vector notation,
(’io, ily ‘e ,Zn_.l)(P|Q) = (ag, ceeylp—q, bo, ey bn—l)

where p and @ are n x n circulants with top row (po,p1,...,pr-1,0,...,0), respec-

tively (qo0,41,---,9K~1,0,...,0). So, the binary block code C via convolutional con-

struction above has generator matrix

G =(P|Q).

The following three lemmas can be found in [18].
Lemma 3.1.1. dim(C) = rank(P|Q) = n.

Proof. If I(z) = 372} 42!, then

(ios . - - in-1)(P|Q) = (0,...,0]0,...,0)
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iff I{z)p(z) = I(z)g(z) =0 (mod z™ + 1). I(z)p(z) = h(z)(z" + 1) = g(z)(z"™ + 1)
for some h(z) and g(z). gcd(p(z),q(z),z" + 1) = 1 implies that I(z) =0. §

If g(z) is a binary polynomial of degree < n — 1 and gcd(g(z),2™ + 1) = 1, then

;(1;—) (mod z" + 1) is well-defined.

Lemma 3.1.2. The code C generated by (P|Q) can also be generated by (P|Q),
where P and ( are circulants of p(z) = ;d(%, respectively, ¢(z) = Z—E%. Especially, C
can be generated by (I|F) where [ is identity matrix and F is circulant of f(z) = %2

= ple)”

Proof. Consider input polynomials g(z) and g—(lx—). |
Especially, if gcd(p(z), 2" + 1) = 1, we have

Lemma 3.1.3. The code C generated by (P|Q) is equivalent to the code D
generated by (I|F?), where I is identity matrix and F¢ is circulant of f;—?g%l (mod
z" + 1) for integer d. 1

Now let us generalize the convolutional construction by adding one more informa-

tion bit .
And extend codeword (ao, ..., an-1,b0,...,bn-1) to
(a03 vy n—1,000, b07 (RN bn—17 boo)
where

n—1 n—1
aoo=Za,-, bOOZZb,'.
1=0 1=0

Then the extended new code C' is generated by G(P|Q), i.e.,

( 1 1
1 1
P Q@
1 1
11 1 1 00 0 0
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or

1 1
1 1
I F
1 1
11 1 1 00 0 0

which remains rate %
Solomon and van Tilborg [18] proved

Theorem 3.1.4. Let U be the extension by an overall parity bit of the (2n +
1,n + 1) binary quadratic residue code generated by for(z) = [Licqr(z + o), where
a is a primitive (2n + 1)** root of unity, QR = {j*(mod2n + 1);1 < j < 2n} and
2n 4+ 1 is a prime of the form 8/ & 1.

If (co,ci....,¢on) is @ codeword of the (2n + 1,n + 1) QR code and for some
r,t € QR, s € NQR such that

{rt’,zzo,l,,n—l} QR7

{s-t5i=0,1,...,n—1} = NQR.

Let

Pi = Cri, and ¢ = cgpi, t=0,1,...,n—1.

Note that p(z) and ¢(z) may not be reciprocal each other.

Then
1 1
1 1
P Q
1 1
11 1 1 00 0 0
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is the generator matrix for the (2n + 2,n + 1) extended QR code. 1

3.2 Sufficient Conditions

For any two polynomials p(z) and g(z) of degree at most n — 1, let P and @ be the
associated circulants and consider the block code C’ with generator matrix G(P|Q).
To get self-dual codes of rate 1/2 with weights of all codewords multiples of 4 by the

convolutional technique, we apply a theorem that can be found in G. Solomon [12].

Theorem 3.2.1. Let n = 3 (mod 4), p(z) a polynomial of degree K — 1, K <
n, with ged(p(z),z" + 1) = 1. Let g(z) = p(z) = z¥1p(z™!) be the reciprocal
polynomial of p(z). Then the code with generator matrix G(P|Q) is a self-dual code
of length 2(n + 1), and all of the weights are multiples of 4. il

In [12] and [15] we used Theorem 3.2.1 and looked for the smallest possible con-
straint lengths K that could generate certain self-dual codes using tap polynomials
p(z) and ¢(z). However, one finds that the reciprocal relation in Theorem 3.1.1 is

not necessary even when the degrees of p(z) and g(z) are the same.

Example 3.2.2. Letn = 11, p(z) = 2'°42®+2°+2+1, ¢(z) = 209+2%+2"+24+1.
ged(p(z), ' + 1) = ged(gq(z),z'" + 1) = 1 and G(P|Q) generates a (24,12) self-dual
code with all the weights multiples of 4. One can check that p(z)p(z) = ¢(z)§(z) = «'°
(mod z'! +1).

3.3 Necessary Conditions

We examine some properties of the two tap polynomials p(z) and g(z) of self-dual

codes with all weights multiples of 4.

Theorem 3.3.1. Let p(z) and ¢(z) be two polynomials of degree at most n — 1

and P and () the associated circulants of order n. If G(P|Q) is a generator matrix
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for a self-dual (2n + 2,n + 1) code with the weight of every codeword multiple of 4,

then
(1) n =3 (mod 4),
(2) w(p) = wlq) (mod 4),

(3) both w(p) and w(q) are odd,

(4) ged(p(z), g(z), 2" + 1) = 1.

Proof. (1) The last row of G(P|Q) gives us a codeword of weight n+1 = 0 (mod
4), which implies n = 3 (mod 4);

(2) Consider the sum of the first row and the last row. There is a codeword of

weight n — w(p) + w(q) + 1 = 0 (mod 4). Then w(p) = w(q) (mod 4) by (1);

(3) Observe that the first row of G(P|Q) gives us a codeword of weight w(p) +
w(q) +2 =0 (mod 4). If w(p) = w(qg) =0 or 2 (mod 4), then w(p) + w(q) +2 =2
(mod 4). This is in contradiction to the observation. Hence both w(p) and w(q) are

odd;

(4) If ged(p(z), q(z), 2"+ 1) # 1, then the n rows of (P|Q) are linearly dependent,
which implies that there is a polynomial I(x) such that I(z)p(z) = I(z)q(z) = 0
(mod z"™ + 1). w([) is even since both w(p) and w(q) are odd. Then the first n rows
of G(P|Q) are linearly dependent. Hence the rank of G(P|Q) is less than n + 1. This

is in contradiction to the dimension of the code. §

3.4 The Ay Mapping and Its Property

From now on let n, p(z) and ¢(z) satisfy the four conditions stated in Theorem 3.3.1

unless we specify otherwise.

For a fixed odd n, let 8 be a primitive n** root of unity and F the extension field
of GF(2) containing 8. Given any polynomial I(z) = Y7 a;z’ there is an associated

polynomial
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n—1
g1(z) = Y ;2
Jj=0

with

n—1

le‘zai,@—ij, j=0,1,...,n—1,

1=0
where g;(z) and ¢;’s are the MS (Mattson-Solomon) polynomial and the coefficients

of the MS polynomial of I(z), respectively.
Let

(n~1)/2
I(I(z)) = Z CiCni-
=1

The Solomon-McEliece I'; formula [17] implies

Lemma 3.4.1. For n = 3 (mod 4), then
w(I) =0,3 (mod 4) iff T9(J) =0 (mod 2). B

Now we define S, for any odd n to be the set of all binary polynomials of degree

at most n — 1 and a mapping
Ay Sy —» FOHD/2
with
Ag(I()) = (coco, C1Cn—1y+ - CiCnoiy- -+, C(n=1)/2C(n+1)/2)-

Note that F(™*1)/2 is an (n + 1)/2-dimensional vector space over F but A, is not

a linear mapping in general.

We present a useful property of A,.
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Lemma 3.4.2. For any odd n, Ay(S,) contains a basis for F("+1)/2,

Proof. We will construct a set of (n+1)/2 vectors in A2(Sy,) which forms a basis

for F(n+1)/2,

Let
eo(z) = 1,
eif(z) = 1+,
ex(z) = 1422,
ei(r) = 14, fori#0,
em-12(z) = 142072
and

v=0 4+ fori=0,1,...,(n—1)/2.
It is easy to see that all +; are distinct, and

Az(eo(x)) = (]_, 1,..., 1), Ag(em(:c)) = (O,ﬂm+ﬂ—m, .. 7ﬁmi+/8..mi’ e 7/B'm(n—l)/Z_*_
BT™=0/2) for 1 <m < (n—1)/2. So

A2(em($)) = (76",7;711 s 77(7:11—1)/2)? for m = 1,2
Moreover, for 3 <m < (n —1)/2, if m is odd
mi —-mi  __ i —i\ym m (m-2)i —(m—-2)t
FrA T = (BT )8 +8 )+

- ((m bt /2) (8 +87),
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then

m

Nente)) = (8T 2fin) + () sl +

(Do) e

if m is even

m

1

e e ()

,Bmi‘lr‘ﬁ—mi = (ﬁz+ﬂ—z)m+( )(/B(m~2)i+ﬂ—(m—2)i)+_”

then

m

Malen() = (5o i)+ (T Aalemoa(a))

N (m/;z_ 1)/\2(62(95)) + (m"/’Q) Aa(eofz))-

Consider the square matrix of order (n +1)/2

As(e(n-1)/2(2))

h

any m'” row is a linear combination of (v7*,4™,...,y™_ and its previous rows.
071> ’ H{n-1)/2
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So
1 1)
Az(eo())
Yo B! T Y(n-1)/2
Az(er(2)) ) ) )
det : = det Yo N T Y(n-1)/2
As(em-1)/2(T)) n_ n_ . n_
A P
= J[(vi—v)#0.

1>7

Therefore, {Az(eo(2)), Aa(e1(z)),- .., Aa(em-1)/2(z))} forms a basis for F(»+1)/2 1

3.5 Necessary and Sufficient Conditions

Theorem 3.5.1. Let p(z) = X! pir? and q(z) = ©52! g2 be two polynomials
with max(K; —1,K; — 1) <n —1 and pk,-1 = gk,-1 = po = qo = 1. Then G(P|Q)
is a generator matrix for a self-dual (2n + 2,n + 1) code with the weight of every

codeword multiple of 4 if and only if
(1) n = 3 (mod 4),
(2) w(p) = w(g) (mod 4),
(3) both w(p) and w(q) are odd,
(4) ged(p(z), q(z), 2" +1) = 1,
(5) 7K1+ p(z)p(z) + 27 F**1q(2)g(z) =0 (mod 2™ +1).

Note that for any g(z) € S, with ged(g(z),2™ + 1) = 1, g7!(z) (mod z™ + 1) is
well-defined in S,,, so 27X is well-defined. (5) does not guarantee p(z) and ¢(z) are

reciprocal to each other even if K; = K5; see Example 3.2.2.

Proof. Suppose G(P|Q) generates a self-dual (2n+2,n+1) code with the weight

of every codeword a multiple of 4. We only need to prove (5) because of Theorem
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3.3.1 Consider any input/information polynomial I(z) = ;‘;01 a;z’, then the parity
sequences of length n = 4m — 1 generated by p(z) and ¢(z) are of the form I(z)p(z)
and I(z)g(z) (mod z" +1). Let ¢; be the MS coefficients of the information sequence
I(z) of length n, then for parity sequences I(z)p(z) and I(z)q(z) (mod z™ + 1), their
MS coefficients are cip(ﬂ“i) and ¢;q(87"), respectively.

Now consider sequences I(z)p(z) and I(z)g(z). Their ['; formulae [17] are

(n-1)/2
Lo(I(2)p(@) = 3 cicaip(B)p(57)

(n-1)/2

and T2(I(z)q(z)) 2 cica-iq(8)9(87)

respectively.

Since n = 3 (mod 4), the weight of each codeword of length 2n + 2 is multiple of
4 if and only if [y(I(z)p(z)) + [2(I(z)q(z)) = 0; see Lemma 3.4.4. And

(n=1)/2
Po(I(z)p(2)) + To(I(2)g(z)) = Y cicailp(B)P(B™) + q(6)a(B7)]

=1
(n=1)/2

= D ccasi[p(B)P(B7) + q(8)q(87)]

=0

=0

consequently. (Note that p(1)p(1) 4 ¢(1)¢(1) = 0 and we define ¢, = c;.)

In vector notation, it becomes

Ay(I(z))-(A+ B) =0

if we denote

Y

= (p(L)p(1),...,p(BYP(B™),. .., p(BT"D/2)p(B~ (=12,
and B = (q(1)q(1),-.-,q(BYa(B7), ..., q(BTV/P)g(B~*"1/%)).
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By Lemma 3.4.2 we can see that A+ B = 6 That is p(z)p(z~!)+q(z)g(z~*) = 0 for
z=0,i=0,1,...,(n—1)/2, and then also for z = 3", = 0,1,...,n — 1. Therefore
z™+1 is a factor of p(z)p(z~1)+q(z)g(z™), i.e., K11 p(z)p(2) + 2~ K2 +1g(2)§(z) = 0
(mod z™ + 1).

The other way is trivial if we can see that the rank of G(P|@Q) is n + 1. One
notices that (4) guarantees rank(P|Q) = n, and the last row of G(P|Q) is not a

linear combination of the first n rows. N

Corollary 3.5.2. Let f(z) = 575! f:z' be a polynomial of degree m —1 < n—1
with fo = fn-1 = 1 and I, the identity matrix of order n. Then G(I,|F) is a generator
matrix for a self-dual (2 + 2,n + 1) code with the weight of every codeword being
multiple of 4 if and only if

(1) n = 3 (mod 4),
(2) w(f) =1 (mod 4),

(3) f(z)f(z) =™ (mod 2" +1).

Note that such an f(z) satisfies ged(f(z),z" + 1) = 1.

Proof. Let p(c) =1, ¢(z) = f(z) and use Theorem 3.5.1. 1§

Corollary 3.5.3. Let p(z) = 55! piz* and ¢(z) = 55! ¢z be two polynomials
of the same degree K — 1 < (n 4+ 1)/2 with px_; = gxk_y = po = ¢ = 1. If
ged(p(z),q(x)) = 1 and G(P|Q) is a generator matrix for a self-dual (2n + 2,7 + 1)
code with the weight of every codeword multiple of 4, then p(z) = §(z).

Proof. By Theorem 3.5.1, p(z)p(z) + q(z)¢(z) = 0 (mod z™ + 1). Since degree
(p(z)p(z) + g(z)g(x)) < 2(K —1) —1 < n and 0 is a root of p(z)5(z) + g()§(z), then
p(z)p(z) = q(z)§(x). Since ged(p(z),g(z)) = 1, this leads to p(z) = §(z). I

We now prove that such extended quadratic residue codes can be generated by

matrices of the form G(I|F'). That is, we can find a codeword a = (aq, a1, . . ., as,) of
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the (2n 4+ 1,n + 1) quadratic residue code with ap =a; =1 and a; =0 for : #0,1 a

quadratic residue.

Theorem 3.5.4. Let U be the extended (2n + 2,n + 1) quadratic residue code
generated by parity-check polynomial g(z) = (z + 1) [liegr(z + o'), where a is a
primitive (2n + 1)* root of unity, @R = {j?(mod 2n + 1);1 < j < 2n} and 2n + 1 is
a prime of the form 8/ — 1. Then U can be generated by a matrix of the form G(I|F’)
where F' is the associated circulant of order n of some polynomial f(z) with degree

n— 1.

Remark. We can find a polynomial f(z) such that 1 and f(z) can be used as
taps in convolutional encoder for (2n +2,n + 1) QR code.

Proof. Let the parity-check polynomial

n+1

9(z) =3 uz'.

1=0

Let ap = a; =1 and a; = 0 if ¢ # 0,1 is a quadratic residue. Let us regard a; as
variables for all nonresidues 7, then there are n variables. Since we want the codeword

a = (ap,ay,...,as,) to satisfy

n+1
Zu,-am:o, fort=0,1,...,n—1,

1=0

we have n equations for n unknowns. So there is a solution for the n unknowns, and
therefore there is a codeword a = (ag,a,, ..., as2,) such that ap = a; = 1 and a; = 0 if
¢ # 0,1 is a quadratic residue. And the solution is nontrivial because (1,1,0,...,0)

is obviously not a codeword.

Let j be a multiplicative generator of the quadratic residues of 2n+1, i.e., j* = 1
(mod 2n + 1) and {j* (mod 2n + 1), ¢ = 0,1,...,n — 1} = QR. Pick s to be any
nonresidue; then {s-j* (mod 2n+1),i=0,1,...,n—1} = NQR. The following two
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polynomials can be chosen as the convolutional encoder taps

FO(z Zﬂ with  f =

=0

() Zf with  f® = a,,.

=0

It is easy to see that f(!)(z) = 1. Let f(z) = f®(z) and F the associated circulant
of f(z) of order n, then G(I|F) is a generator matrix for U. 1

Generally, from a convolutional coding point of view, if we regard equivalent codes
to be the same, we want to find polynomials p(z) and ¢(z) with ¢(z) = f(z)p(z) (mod
z" + 1) and ged(p(z), 2" + 1) = 1 such that the maximum degree of p(z) and ¢(z) is

as small as possible.

From Theorem 1.5 in Solomon and van Tilborg [18], one can find p'(z) and ¢/(z)
with ¢'(z) = 2% f(z)p'(z) (mod z" + 1) for some 0 < d’ < n —1 and q(0)=p'(0)=1
such that max degree (p'(z),¢'(z)) < (n — 1)/2. If ged(p'(z), 2" + 1) = 1 we can
choose p(z) = L5 pia’, ¢(e) = T gia’ with g(2) = 2f(2)p(z) (mod z* + 1)
for some 0 < d < n — 1, (po, pry-1) = (40, 4xs-1) = (1, 1) and ged(p(c),q(z)) = 1 by
dividing p'(z) and ¢(z) by their common factors. Note that max degree (p(z),q(x))

1s at most max degree (p'(z), ¢'(z)). Moreover we have

Theorem 3.5.5. Under the conditions stated above, p(z) and ¢(z) are reciprocal

to each other.

Proof. Without loss of generality, suppose K; > K,. By Theorem 3.5.1
e ¥ p(2)p(z) + 7  g(2)g(z) = 0 (mod 2™ + 1),

and then
p(z)p(z) + 25172 g(2)4(z) = 0 (mod 2™ + 1).
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Since

degree(p(z)p(z) + 17 Fq(z)§(z)) < 2K, —1) <n -1,

p(z)p(z) + 25 F2g(2)§(z) = 0

K, = K; because p(0) = p(0) = g(0) = §(0) = 1. Therefore,

p(2)i(z) + q(2)(z) = 0, and ged(p(z), g(z)) = 1 implies p(z) = G(z).

The theorems above explain why we can always find two reciprocal polynomials

) and g(z) to encode QR codes convolutionally in Solomon and van Tilborg [18].

Codes

3.6.1 (80, 40; 16) QR Code

The vector (¢;) is a codeword of the (79, 40; 15) QR code generated by check poly-

nomial g(x) — 1'40 +$39 +$37+$35 +x32 +x29 +Z'28+$24+ x22+ $18+ $17+Z‘16+

3715

Let

+ 2B+ 21 4 2 4 28 4 2* + 28 + 1, where

¢ = 1 fori=0,1,14,15,24, 30,34, 35,37, 39, 41,
43,47,53,57,58,61,66, 68,69, 70, 71, 74,

¢; = 0 otherwise.

fi(l) =  C1.44%,

O = ey, fori=0,1,...,38.
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Then
D) = 1,
f2) = e+ +°+2°+2° + 0+ 2" 2
-+ o' 27 4 219 g2l 4 g2 4 23 25y 26
4 224 B g0y 232y 3
Since
@ _ 2alz) %
[(z) = () (mod z%° + 1),
where
gz) =142+ 2t + 25 + 2 4212 4 218
plz)=14+z+ 22+ 2%+ 2°+ 2" + 23
d =27,
ged(p(z),z* + 1) =1,
and K = 14.

By previous results in Solomon and van Tilborg [18], we can use p(z) and ¢(z)
as taps in the convolutional encoder with the tail bitting sequence of information of
length 39. Appending the overall parity checks to the length 39 parity sequences and
then adding the 40th information bit to the p(z) sequence gives us the appropriate
QR code. We have thus found an encoding with constraint length K = 14.

3.6.2 (80, 40; 16) Non-QR. Code

On the other hand, let us use as the encoding taps the following polynomials in the

convolutional encoder:

p(z) =1+z+ 2 +2* 4+ 25 + 2%+ 22,

Q(.’E):1+$2+$7+$8+$10+$11+$12,
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K =13.

Adjoining the parity checks to the parity sequences and then adding the 40th
information bit to the p(z) sequence, we construct an even self-dual (80, 40; 16)
block code. The minimum distance is verified by computer simulation. The code

may not be QR code.

Problem 3.6.2 s the (80, 40; 16) code a non-QR code?

3.6.3 (104, 52; 20) QR Code

The vector (¢i) is a codeword of the (103,52;19) QR code generated by check poly-
nomial g(w) — 3:52 + xSI +$50 + .'.C48 + $45 + 1.42 + 1.38 + $37 + x36 _+_ $35 + :1:33 + $28 +

x27+$26+x21+$17+x16+$12+x10+$8+$4+w3+$2+1, Where

¢ = 1 fori=0,1,6,10,11,12,31,37,39,43,45,
47,48, 53,54, 73, 75,85, 87, 88,89, 99, 101,

¢; = 0 otherwise.
Let
fi(l) = Cra,
P = ey fori=0,1,...,50.
Then

fO@) = 1,
f(2)($) — $+$2+I4+$6+$7+$8+$10+$‘12

(E19+$21 +1’26+$29+$30+$31 +$36

+

38 44
38 4+ 1743 + M4 (1146 + $48 + $50‘

+
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Since

02y = 242 (104 451 4 1),

1+$4+ZL’5+$9+CL’10+3}12+1’15

»Q
—_
8
N—
i

7
$16 + il'l + $19 + .’1320,

+

1+$+$3+JL‘4+.’L'5+$8+$10+$11

=
8

R
Il

x15 + 1716 + 1‘20;

+

d = 30, gcd(p(z), ' +1) =1,
and K = 2L

We can use p(z) and ¢(z) above in the convolutional encoder. We have thus found

an encoding with constraint length K = 21.

3.7 Convolutional Coding of Some Cyclic Codes
and Further Problem

3.7.1 The (24, 12; 8) Golay Code and a (33, 22; 6) Cyclic
Code

We know that the (24, 12; 8) Golay code can be convolutionally encoded by
[+ 2%+ 1 23+ z + 1]. Without the overall parity checks and the 12th information

bit, this convolutional algorithm gives us a (22, 11; 6) code.

Now let us consider the rate 2/3 (33, 22; 6) code convolutionally encoded by

34+ +1 0 2 4+r+1
0 B4z +1 22+22+1 '

Let a_3,a_2,a_1,a9,a;1,...,a10 and b._3,b_5,b_1,b,b1,...,b10 be two sets of in-
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formation sequences, where a_; = ay;_j,b_; = by1_j,j = 1,2,3. Parity sequences
are c;,d; and e;, where ¢; = aj_3 + aj_2 + a;, dj = bj_3+ bj_; +b; and d; =

a;_3+a;_1 +a; + bj_g -+ b]'_z + bj,j =0,1,...,10. Then

Theorem 3.7.1. The (33, 22; 6) code above is isomorphic to the cyclic code with
generator polynomial f(z) = (z+1)(z"°+2°+2%+z+1) = e+ 2%+ 28+ 25+ 22+ 1.

Proof. Consider the cyclic code. Make three rows for the 33-bit codeword

03 6 9 12 15 18 21 24 27 30
2 5 8 11 14 17 20 23 26 29 32.
4 7 10 13 16 18 22 25 28 31 1

Note that the codeword of the generator polynomial gives

o
o
o
<o
(==
o

1011 0
1101 0,
000O0O0OO0OOOOGO0OO

o
o
o
o
o
o

and the cyclic shift by two gives

000O0O0OO0OO0OOO0OGOO
101100000O0O0TO0
11010000000

Therefore, the permutation of the three rows give an isomorphism between the

two codes. B
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3.7.2 Convolutional Encoding of a (65, 52; 6) Cyclic Code

Theorem 3.7.2. The (65, 52; 6) cyclic code with generator polynomial f(z)

2 + 2% + 2% + 2 + £ + 1 can be encoded convolutionally by

Proof. Consider the cyclic code. Make five rows for the 65-bit codeword

0
1

s+ +1
B +r+1
2+ zi+1
_:v4+3:3+1

zt4+ 2341 0
0 2 +zr+1
0 0
0 0

5 10 15

6 11

17 22 27
48 53 38

64

A codeword f(z)(z® +z*+1) = 2™ + 220+ 28+ 25 + z + 1 gives

4

OO D ke e

9

[ e e B o B

16

o O o o o

20 25
21 26
37 42

3 8
19 24

o O O = O
DO O e
o O O O ©

30
31
47
13
29

(== e N o B o B e ]

35
36
52
18
34

(=R e N e N < B

(=T o T o B wo BN <o

0 0
0 0

2 +r+1 0
0

40
41
57
23
39

[T o B e T e B e

'tz 41 |

45 50 55

46
62
28
44

o o o o o

51 56

2 7
33 38
49 54

L= o T e B o S
[ o N e B o B e

60
61

12 .

43
59
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Similarly, 3% + 27 4+ 217 4+ 215 + 25 4+ 1 gives

110100000
0 00O0O0OO0OOO
101100000
0 00O0O0OO0OGO0ODGCOCDO
000O0OOGOCOO
$63+$53+$48+l‘15+w10+1giVeS
101100000
0 000O0O0OCOGCOTPO
0000O0O0O0OOCO
1101000O0O0TO0
000 0O0CO0OOOGO
and 764 + 220 + 1% + ¥ + z* + 1 gives
100110000
0 000O0COO0OO0OO
0000O0O0OO0OOCO
0000O0OO0OTO0OO
110010000

o O O o O
[T e T e T e B
oo O o O

oo O o O
o O o o @ ©
o O o o O

o O O o O
oo O O O
oo o O o

[ N v SR e B e B e

LR e B e B o B e

So the rate 4/5 cyclic code can be convolutionally encoded by

zt+z+1 4+ +1 0
©+r+1 0 >+ +1
2+t +1 0 0
et 241 0 0

0
0

B +z+1
0

0

0

0
stz +1 |
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3.7.3 Further Problem

Problem 3.7.3. Let C be arate (n—1)/n cyclic code with generator polynomial
g(z). If g(z) is self-reciprocal, i.e., §(x) = g(x). Then the code can be convolutionally

encoded by
p(z) q(z) 0 0
pa(z) 0 qo(2) 0
| Pa-i(z) O 0 - gualz) |

where p;(z) = ¢i(z) for 1 <1 <n—1.
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