AN INVESTIGATION OF THE USE OF FEEDBACK CONTROL
TO RAISE THE FLUTTER SPEED OF

AN AEROELASTIC SYSTEM

Thesis by

Harold S. Braham

In Partial Fulfillment of the Requirements
For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California

1958



ACKNOWLEDGEMENTS

I wish to express my deepest appreciation to Dr. Gilbert
D. McCann and Dr, C., H, Wilts for their help and encouragement
during this study,

Dr, McCann suggested the project and was mainly respon-
sible for initiating it and guiding it during its early phases,

Dr. Wilts repeatedly gave valuable suggestions, and was
a true inspiration during the entire project,

Also, I would like to thank Miss Ann Graff for her patience

with the author in typing this thesis,



ABSTRACT

This study deals with the possibility of raising the flutter
speed of an aeroelastic system by feedback control, Emphasis
is given to feedback control through a control surface driven by
a powered actuator, It is shown that only for certain aercelastic
systems is it possible to significantly raise the fluttér speed by
this type of feedback control,

In addition, a second type of feedback control is consid-
ered, a jet reaction torquer acting on the wing itself, A marked
increase in flutter speed is possible in easentially all aeroelastic
systems with this form of control, Despite the fact that this type
of controller requires more power than the control surface actu-
ator, its use may be practical in many cases,

The question of the reliability of the feedback control used
to raise flutter speed is becoming less important in this era of
missiles where the entire system is controlled by automatic de-
vices,

Part I discusses the basic problem, Parts Il and III de-
velop a general feedback theory, This theory, when applied to a
specific aeroelastic system, permits ready determination of
whether an increase in flutter speed is possible for that system,
Parts IV and V consider numerical investigations of many sys-
tems using a control surface actuator, Analyses are made by
both the general feedback theory and by analog computer, show-
ing similar numerical results, Part VI considers the jet reac-
tion torquer, and the increase in flutter speed that it can achieve,

Conclusions are presented in Part VII.
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PART I

BASIC TECHNIQUE OF FEEDBACK THROUGH A CONTROL

SURFACE TO PREVENT FLUTTER

1.1 Use of Powered Controls in a Simple Flap Servo or a Complex

Autopilot

The use of a powered actuator to drive the control surface

of an airplane or missile is now standard practice. A rudimentary

physical picture of the essential features common to all such sys-

tems is shown in figure 1.1la. The associated block diagram con-

sidering the elastic properties of the wing is given in figure 1. 1b.

The coordinates h, a, and B are the vertical diéplacement, angle of

rotation and relative aileron angle at a specific location along the

A

wing.
Powered Er ive .
~ A ctuator oint Wing
€ T B Aileron
N
O
Input
to
Powered
Actuator

v

Plan View of Control Surface Driven by Powered Actuator

Figure 1. la
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Input Actuator L oh
to Actuator Drive Point Aeroelastic
o——7> G(s) ————0 a
€ Tﬁ System
- o088

Actuator Transe=
fer Function

Block Diagram of System of Figure 1,1a

Figure 1.1b

The primary feature disi_:inguishing the most complex of these sys-
tems from the simplest is the degree of information about aircraft
motion fed back to the powered actuator input*, For example, a

simple control may be used, in which the only data fed back to the
actuator is the relative angle B of the control surface, This scheme

is shown in figure 1.2,

Servo

Servo .
Aeroelastic

Pilot + e Drive Point a
Input G(s) > system O
+ Tﬁ ;LT

Hﬁ'(s)

Feedback
Operator

Simple Flap Servo Control

Figure 1,2

*In all cases, some primary input exists such as a command from
the pilot, which the output ideally will follow,
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On the other hand, a complete autopilot may be used, This usually
feeds back quantities dependent on both ¢ and h in addition to B, as

shown in figure 1, 3,

Servo Servo

€ Drive A lasti h
Point eroelastic
Input ++ G(s) - a
: T System
B
Stabilizers V \‘/ y
H! (s
B! )
+
+ ]
HE (s)
t
HY (s)

General Autopilot Control

Figure 1,3

For example, a typical use of an autopilot is the control of
the vertical acceleration, 1.1., of the aircraft, Thus H;l(s).- serves as
the primary feedback, In addition the turning rate of the aircraft
may be used for damping, requiring H‘;(s) feedback, Also a flap
servo control of the aileron is usually used as an internal loop,
requirin.g l-g(s) feedback, Thus all three feedbacks of figure 1, 3
are used in a typical autopilot,

In the normal study of the autopilot loop of figure 1, 3, one
considers the aeroelastic system as a rigid body, This assumes
infinite vibration frequencies for the structure, In most cases this
is a valid approximation, since the structural modes of vibration

of the wing are usually far above the required pass band of autopilot
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frequencies, Typically, the lowest structural mode for a wing is
somewhere between five and fifty cps depending on its size, This
cor1"é8ponds to about 30 to 300 radians/second, The response
time of an autopilot is normally about one second, corresponding
to a cutoff frequency of one radian/second, Thus the lowest vibra-
tion frequency of the structure is a factor of 30 to 300 above the
autopilot pass band, thereby permitting the rigid bédy approxima-
tion,

l,2 Possibility of Using Feedback Control to Prevent Fluttér

As just stated, the frequency pass bapd of the autopilot is
usually well below the lowest structural mode frequency, Suppose,
instead, one were to purposely extend the autopilot pass band above
the first few structural mode frequencies, In particular, suppose
the frequency response of the servo transfer function G(s), and
the feedback operators Hé(s), H:I(s), HL(s) in figure 1,3 were
maintained essentially constant throughout the range of these low-
est structural modes, In that case, the autopilot loop would inter-
act with the aeroelastic system and add an additional force to the
aeroelastic* forces normally treated in flutter, This would cause
the flutter speed to change from that of the aeroelastic system
alone, increasing in some cases, while decreasing in others,

The purpose of this report is to synthesize appropriate
Hé(s), H;(s) and Hl‘l(s) operators for a fixed and specified servo
and aeroelastic system, in order that the coupled aeroelastic

*These are the elastic and inertia forces of the structure and the
aerodynamic forces,
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servo system of figure 1,3 have a higher flutter speed than the
aeroelastic system by itself, This represents a synthesis of the
muc.h discussed but little investigated possibility of raising the
flutter speed of an aeroelastic system by feedback control,

The previous paragraphs tacitly assumed that it was fea-
sible to maintain the frequency response of the servo operator,
G(8), and the feedback and measurement operators, H(s), into
the aeroelastic frequency band, This can certainly be accom-
plished even in the present state of the art, Hydraulic servos,
the type invariably used, cofnmonly have frequency responses
flat up to 30 to 50 cps, In addition, the H(s) operator can con-
sist partly of a lead network to compensate for lags in G(s),
thereby in effect increasing the cutoff frequency of G(s)., Simi-
lar compensation can be produced by H(s) on the transfer func-
tion of the measurement devices (gyros, accelerometers, etc),
Thus it is certainly feasible to provide a frequency response
for the G(s) and H(s) operators into the aeroelastic band*,

1,3 Isolation of Rigid Body and Flutter Stabilizer Feedback Loops

The last section indicated the main purpose of this study -
to determine what functional form H'ﬁ(s), H;(s) and HL(S) should
take in order to raise the flutter speed, However in part 1,1 it
was shown that the original purpose of these operators was the

rigid body control of the airplane, The question naturally arises:

is the functional form of these operators, determined from flutter

#QOther techniques of raising the pass band of these operators are
described in Appendix E,
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prevention considerations, compatible with a satisfactory rigid
body airplane control? For example, the flutter prevention con-
siderations may dictate that Hé(s) be small, At the same time it
may be true that the rigid body airplane control requires a large
Hé(s) for tight aileron control, Hence the two objectives may
require incompatible operators for Hé(s). This means each de-
sign of Hé(s), H;(s) and H;I(s) that results from the flutter pre-
vention synthesis must be checked against rigid body motion
requirements, with no guarantee of compatibility, This certainly
is an undesirable procedure,

A great simplification can be made, which essentially
permits an isolation of the rigid body and flutter prevention realms
of operation, Again this is predicated mainly on the wide frequency
separation usually existing between the structural modes and the
autopilot pass band actually needed for rigid body control, To
accomplish this isolation, a separate set of stabilizers for flutter
prevention H

B
rigid body stabilizers Hé(s), H;(s) and I—I.L(s) of figure 1.3, To

(s)s Hu(s) and Hh(s) is added in parallel with the

isolate the two feedbacks, a high pass filter is placed in cascade
with the flutter prevention operators, while a low pass filter is
placed in cascade with the normal autopilot operators, This
scheme is shown in figure 1,4, where for simplicity only one
H'(s) operator is shown for the autopilot loop, and one H(s) ope-
rator for the flutter prevention loop. The cutoff frequency of
both the high pass and Tow pass filters should be located at the

geometric mean of the needed autopilot pass band frequency and



Servo
Input ¥ € Servo. Aeroelastic
Gls) S System -
g
Flutter Prevention Loop «
High Pass
:*'i Filter H(s) <
+ | Low Pass . |
Filter HY(s) p——<—

Autopilot Loop D
Flutter Prevention and Autopilot Loops Isolated by Filters

Figure 1.4

the aeroelastic structural mode frequency., The wide separation
of these two frequencies permits almost complete elimination of
that loop which is undesired at each frequency range of interest,

This isolation technique permits the analysis of each loop
individually, while the second loop is completely ignored, For
flutter prevention analysis, only that loop through the high pass
filter need be examined, Furthermore one can neglect the high
pass filter in analysis of the high pass loop, since it has essen-~
tially unity gain at the flutter frequencies, Thus the flutter pre-
vention synthesis to be carried out in the remainder of this report
reduces to an investigation of the block diagram of figure 1,5,
The servo and aeroelastic transfer functions are considered fixed,
but H‘s(s), Ha(s) and Hh(s) can be adjusted arbitrarily to achieve
better flutter stability, No check on rigid body motion compatibil -
ity is necessary for any Hﬁ(s), Ha(s) and Hh(s) operators that

arise from the synthesis,



Servo
T Aeroelastic ——o——h—-—
G(s) b > System _"0—52_
a
H,(s)
. B
+
: H (s)
H, (s)

Flutter Prevention System Block Diagram

Figure 1.5

The preceding assumption of wide frequency separation of
the needed autopilot pass band and the structural modes is not
basic to the techniques to be developed in the remaining parts
of this study. If the assumption is valid in a specific application,
as it usually will be, then the two isolated loops of figure 1.4 can
be used, and no check on compatibility of the flutter prevention
loop on the autopilot loop is necessary, If, in special cases, the
assumption is not valid and the frequency bands overlap, then
only one loop such as fiEure 1, 5 can be used. After determina-
tion of the H(s) operator necessary for flutter prevention, one
must check the compatibility of this operator on the rigid body

motion,
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PART I
CONDITIONS UNDER WHICH ANY UNSTABLE SYSTEM
CAN BE STABILIZED BY FEEDBACK CONTROL
A study of feedback around an aeroelastic system at speeds
for which the aeroelastic system itself is unstable is now presented,
The first step in this investigation is an answer to the following
fundamental question, What conditions must a fixed and specified
aeroelastic system satisfy in order to ensure the existence of
some linear stabilizing operator which is capable of raising the
flutter speed? The wording of the preceding question hints é,t
the rather unusual situation existing for feedback control sys-
tems wherein the basic or fixed portion of the system is an aero-
elastic system, Some, but not all, aeroelastic systems can be
stabilized above the flutter speed by feedback control, In this
part, the following phases of the problem are considered.
a) The conditions the aeroelastic system must satisfy
to permit stabilization by feedback control at a
given speed.
b) Determination of the functional form of a stabi-
lizing operator which can achieve this stabilization,
The first phase, the conditions under which an unstable
system can be stabilized by feedback control, is actually a fun~
damental question of general feedback theory., It is of interest
not only in the present case where the fixed portion of the system
is aeroelastic, but for systems where the fixed portion is me-
chanical, electrical, acoustical, etc. Unfortunately no theory

has yet been developed to answer this question, The reason
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for dearth of even an effort along these lines prior to this aerocelas-

tic study is simple enough., It was not needed, As will be shown
later, virtually all known feedback systems other than the aeroelas-
tic ones fall into a ré.ther restricted category, such that some
feedback control operator alwé.ys exists capable of stabilizing the
basic system, For such systems the question of the existence of

a stabilizing operator is trivial,

In this part a general feedback theory is developed, which
is applicable to all feedback systems. The application of this theory
to a particular aeroelastic system provides a ready answer to the
question: can the aeroelastic system be stabilized by feedback
control? Only in certain cases is the answer affirmative, The
outgrowth of this general feedback theory is a mathematically rig-
-erous, yet simple-to-apply, sufficiency condition, If this condition
is satisfied by a fixed and specified but unstable system, then the
existence of a stabilizing operator capable of stabilizing the com-
posite system is assured, It is then shown by heuristic argument
that for the special system of interest in this study, an aeroelastic
system, the necessary condition for existence of a stabilizing feed-
back operator is, for all p1:actica1 purposes, the same as this
sufficiency condition. Hence a simplé criterion is available for
determination of whether stabilization of the aeroelastic system
is possible, The determination of the functional form of the sta-
bilizer follows as a natural consequence of the theory,

As might be expected the terminology of this general feed-
back theory is filled with concepts and techniques used by servo

and feedback engineers, Free use is made of concepts such as
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transfer functions, zeros and poles, root locus diagrams, etc, -
concepts familiar to the feedback engineer, A person not well
versed in feedback control theory should refer to a standard servo
text such as reference 1,

2.1 Sufficiency Conditions for Stabilization of a General Feedback
System

Consider a fixed specified system of transfer function Ll(s)
in figure 2,1, describing the relation between two arbitrary coor-

dinates, r and c',

Transfer Function Between Arbitrary Coordinates
of Basic System

Figure 2,1

If an aeroelastic system is under investigation, the input r may
represent a torque Tﬁ’ and the output c! may represent the coor-
dinate B of figure 1.2, L-l(s)* is completely described by the lo-
cation of its zeros Zi and poles Pj and by a gain factor kl’ as

follows:

(2,1)

*s represents the Laplace transform variable,
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It is evident that the Pj represent the characteristic roots of the sys-
tem, since the inverse Laplace transform c¢'(t) contains terms of

P.t
the form e J o

By assumption Ll(s) of figure 2.1 describes an unstable sys-
tem., Hence Lz(s) is added as a possible stabilizing device, as shown

in figure 2, 2.

Ly(s)

L,(s)

Stabilizing Device Added to Basic System

Figure 2,2

It is desired to find a functional form of Lz(s), if one exists, which
will make the characteristic roots of the composite system more
stable than those of the original system., Lz(s) can be written in a

form similar to equation 2,1,

. ’ 1' (S - Zl)
L,(s) = k, 1"1‘&” -L (2.2)

TT (s-P)
jsM+1 J

Equation 2, 1 explicitly indicates that the denominator of
Ll(s), of degree M, exceeds the numerator in degree by L. In

similar fashion, equation 2,2 shows that the denominator of Lz(s),
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of degree N-M, exceeds the numerator by degree R. No restriction
is made that either the poles or zeros of Ll(_s) lie in the left half

of the s plane, Thus its poles Pj may be in the right half plane rep-
resenting an unstable system., Also its zeros, Z;, may likewise

be in the right half plane. A special name is given to Zi values in
the right half plane in electrical engineering applications because

of the significance of zeros of this type. They are called non-
minimum phase zeros and are 3;150 of great significance in the
present study. Lz(s), of course, is to be chosen at the will of the
designer to affect optimum stability.

In the remainder of this study, significance is attached to
the half of the s plane ih which the zeros and poles are located,
Hence the following abbreviations will be used for left half plane
and right half plane quantities - Lo, H, P,, and R. H, P,

The characteristic equation of the system of figure 2,2 is

found by the usual equation of feedback theory using equations 2,1

and 2,2,
1 - Loop Gain = 0 (2. 3)
or more specifically,
1+L1 L2=0 (2. 4)
yielding,
N-(R+L)
l l (S - Zl)
i=l -
1+ k1 kZ N =0 (24 5)
T (S = PJ)

j=1
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The roots of equation 2,5 are the characteristic roots of
the system with feedback, The constant k1 is a fixed property of
Ll(s), but k2 is a constant which can be varied to achieve stability,

This constant k, (and hence the constant factor k of the loop

1%2
gain) can be adjusted from zero to a large value for this purpose,
A clear graphical portrayal of how the characteristic roots
vary as k2 changes is furnished by root locus diag:ams. The lo-
cations of the zeros and poles of the loop gain are important,
since these are terminals of each root locus for the extreme val-
ues of oo and 0 for k2° It is obvious from equation 2,5 that Zi and
Pj are the zeros and the poles of the loop gain in the finite portion
of the s plane. In addition a zero of degree (R+L) exists at infinity,
since the degree of the denominator of the loop gain exceeds the
degree of the numerator by (R+L) in equation 2,5, More precisely

one means that for values of s outside a circle of arbitrarily large

radius in the s plane, the value of the loop gain becomes arbi-

trarily small, varying as .The values of s approaching

1
sRsl-L °
this circle are said to be zeros of the loop gain, Only those val-
ues of s approaching this circle in a specified direction may satisfy

equation 2,5, and hence be terminal regions of a root locus, These

(R+L) directions of approach or phase angle are given in equation 2,6,

= 7l 142n)

¢, = —ggr~ forn=0, 1, 2 --- (R+tL-1) (2. 6)

These are of great importance in the remainder of the study and
are referred to constantly, For brevity purposes, the following
important shortened notation is adopted. Values of s which ap-

proach the arbitrarily large circle along these (R+L) directions of
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equation 2,6, are referred to simply as the zeros at infinity of the
loop gain,

Figure 2,3 depicts the location of these (R+L) zeros at

infinity for various values of (R+L})*,

infinite
radius
- -4 -t R S
il B Pl G - . - ~
d \ / AN / AN »” o
( v/ v/ Jeo N TN
/ 1 I \ / X | ! z 0
- t ] < [ I
I\ \ /
\ / O\ / \\ I\ y
/ \N 9o
\\s_. ”/ \\_+,// \'\_-—/ .\\-r’/
R+L =1 R+L = 2 R+L = 3 R+L = 4

Zeros at Infinity in s Plane for Values of (R+L)
from 1 to 4

Figure 2,3

Note in figure 2, 3 that no R, H, P. zeros exist at infinite radius for
(R+L}< 2, but that some R,H, P, zeros exist for (R+L)> 2, A mar-
ginal condition exists for (R+L) = 2,
As a final preliminary it is convenient to define the terms
a) A non-essential zero (or pole) of Ll(s).

b) An essential zero (or pole) of Ll(s).

A non-essential zero (or pole) of Ll(s) is defined as one that can be

*For physical systems (R+L) must be greater than zero, since a
physical system must have zero "gain' at infinite frequency.
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virtually removed from the loop gain by insertion of a suitable ope-
rator for Lz(s) in equation 2,2, An essential zero or pole of Ll(s)
is one that cannot be so removed, An important conclusion to be
proven next is that the zeros at infinity of Ll(s), and the zeros and
poles in the firite left half s plane are non-essential zeros or poles,
while those in the finite right half s plane are essential,

To prove that the zeros of Ll(s) at infinity are non-essential,
one notes that R, the excess of poles over zeros of Lz(s) is an ad-
justable number since Lz(s) is adjustable. Hence (RtL), the number
of zeros of the loop gain at in_finity, is adjustable, (R+L) becomes
smaller than L, the number of zeros at infinity in Ll(s), if R as-
sumes a negative value. The meaning of a negative value of R is
simply that Lz(s) has an excess of zeros over poles, In particular
if

R = - {R, (2. 7)
then the number of zeros at infinity in the loop gain is reduced by
|RI from the number in Ll(s). Furthermore, if R is given the fol-
lowing specific value,

R=- |L-1] (2. 8)

then the number of zeros at infinity in the loop gain is only 1, which
becomes a L.H, P. zero at « radians, from figure 2, 3%,

The proof that left half finite s plane zeros or poles of Ll(s)
are non-essential unlike those in the right half finite s plane is now

demonstrated., Suppose Ll(s) has a zero Zi’ manifested by a factor

- -

*An answer will presently be given to the objection raised by the as-
tute observer, who realizes that an excess of zeros over poles in Lz(s)
is physically unrealizable,
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in.l;l(s):

(S = Zi)

The only way that the zero Zi can be removed from the loop gain is
for Lz(s) to be designed to contain an approximately cancelling fac-

tor,

s - .+
i

where & is made as small as possible,

The sole difference between the actual loop gain and the
ideal one for which there is perfect cancellation of Zi’ is that the
actual loop gain has the additional ratio of factors

(S = Zi)
S - (Zi+5)

This produces an additional pole and zero of the loop gain very
close to one another around Z:o The combination gives rise to an
additional root in the closed loop system of figure 2,2, For very
small O, as assumed, the value of this root is essentially Zi for
any value of klkZ’ the loop gain constant, The time response term
corresponding to this root is found by the usual inverse Laplace
transform, and is proportional to

Z.t

6e *
At time t equal to zero, this term is proportional to §, and hence
has a very small value, For the case of Z, in the left half finite

s plane, the term becomes even smaller with time, Since this
term is negligibly small over all time, the time response is vir-

tually the same as the system with theoretically perfect cancellation,
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and the zero Zi may be said to be virtually removed, However if
Zi ig in the right half finite s plane, the term grows with time and
eventually becomes infinite even for a very small value of &,
Hence no cancellation of this type is possible for Zi in the right
half plane,

A similar argument holds if a pole of Ll(s) instead of a
zero were the factor under consideration, Thus the original pre-
mise is proved that left half finite s plane zeros and poles are
non-essential, and right half finite s plane zeros and poles are
essential,

The significant property of non-essential zeros of Ll(s)
is that all lie in the left half plane originally* or can be made to do
so by the proper Lz(s) operator*¥*, The importance of having all
zeros of the loop gain located in the left half s plane will soon be
illustrated,

The sufficiency condition on Ll(s) to ensure stabilization
capability can now be stated and then proved,

Theorem 1

A sufficient condition on a specified unstable system, Ll(s),
to ensure existence of an Lz(s) operator which can cause stability
is that only non-essential zeros exist in Ll(s). This means the
finite zeros of Ll(s) are in the left half s plane,

The proof of theorem 1 follows immediately from a consid-

eration of the root loci of any system of the type of figure 2, 2,

*The finite magnitude ones,
**The ones at infinity,
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For zero value of the constant factor of the loop gain, klkZ' the
characteristic roots exist at the poles of the loop gain, At least
one of these is unstable by definition, since these are the same
roots as the system without feedback., As klkz is made very large,
the roots approach arbitrarily close to the zeros of the loop gain,
If all these zeros are in the left half s plane, then all roots are
stable for large enough values of klkZ'

non-essential zeros, an Lz(s) operator must exist which can place

Now if Ll(s) has only

all the zeros of the loop gain in the left half s plane as shown above,
Thus if Ll(s) has only non-essential zeros a stabilizing operator
can always be found,

2,2 Functional Form of Stabilizing Operator Lz(s)

One form of Lz(s) to achieve the stabilization is now de-
scribed, It is somewhat ideal in form, but simple for illustration
purposes, Given an Ll(s) of the form of equation 2,1 where the
zeros at infinity of Ll(s) are L in number, one chooses the sim-
plest form of L,(s) satisfying equation 2,8: a polynomial in s of
degree (L - 1) Thus in equation 2,2, Lz(s) takes the specific
form:

M-1
L,(s) = k, 4]_‘— (s - Z,) (2. 9)
i=M+l-L
For this condition, R + L = 1, Hence only one zero of the loop
gain (laxists at infinity, this in the left half plane at w radians,
Stated simply, Lz(s) is made a polynomial in s of degree one less
than the excess of poles over zeros in Ll(s). Hence in the loop

gain, the excess of poles over zeros is one,
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The exact location of the Z, values in equation 2,9 is not
critical just so long as these lie in the left half plane, For k2. de -

signed adequately large so as to make klkZ very large, the charac-
teristic roots become essentially the zeros of Ll(s) in the finite s
plane, the zeros of Lz(s) in equation 2,9, and the one of infinite
magnitude at w radians, By assumption, all these are in the left
half plane so that the system is stable,

The essential operation of the stabilizer in this example
was to transform the finite plane characteristic roots of the sys-
tem from the poles of Ll(s’) to the zeros of Ll(s)*. The stabilizer
can be thought of as a device which can place the roots at either
the zeros or poles of Ll(s) wherever greater stability results,

For the problem at hand at least one pole of Ll(s) always is R.H. P.
Hence the only possibility of stable operation is operation close to
the zeros of Ll(s), should they all be L,H. P, Thus the key fac-
tor in determining if stabilization is possible is the location of

the finite s plane zeros of Ll(s). If these are in the left half plane,
stabilization is always possible,

A simple example is now presented where Ll(s) contains
three poles and no zeros, one pair of complex conjugate poles
being in the R, H. P According to the above theory, Lz(s) should
be designed as a second order polynomial in s, containing two
zeros in the left half plane, The zeros and poles of Ll(s) and
Lz(s) and the root loci of the composite system are shown in fig-

ure 2, 4.

*Plus the zeros of Lz(s) which are always designed to be L,H, P,
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X
Ll(Sf chs)
> *—@
X
Root Loci

x represents poles

® represents zeros

Parameter klkZ increases in

the direction of the arrow,

Zeros and Poles of a Typical Ll(s) and Lz(s),
and Root Loci of Composite System

Figure 2,4

Any value of klkz between K1 and infinity makes the composite sys-
tem stable, Thus a range of values of klkz above some minimum
exists capable of achieving stability, It is now evident that a limit-
ing case of the use of the stabilizer was considered in the general

discussion on page 20, There the roots approached the zeros of

the loop gain for the specific value k1k2—7- o, Root locus diagrams
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such as figure 2,4 show the general result that klk2 need only ex-
ceed a certain critical value for stability,

As indicated previously, the functional form of the 'Lz(s)
stabilizer given by equation 2,9 is somewhat idealized, In prac-
tice the degree of the denominator of Lz(s) must be equal to the
degree of the numerator, Otherwise the stabilizer would have in-
finite gain at infinite frequency and might produce excessive noise
even if it could be physically realized, In actual feedback practice
an approximation to the stabilizing operator of this section is used.
For every zero in Lz(s), a corresponding pole is also introduced,
However the magnitude of the pole is made large enough to pro-

duce negligible effect on the root loci for all values of ka‘2 interest,

Thus in servo practice, one does not actually use a zero term of
the form
1+ Ts

Instead, as an approximation, the following operator is used,

l1+7Ts

L4 22 (2, 101

Or equivalently

s +

alal-

s +

|

This is the familiar 'lead network® of servo theory, This opera-
tor produces a pole whose location on the negative real axis is o
times as large as the zero location, where a' is typically made
10 or more in magnitude, This far-removed pole hasnegligibly
small effect on the root loci that existed without its presence,

It does produce an additional root locus, If o' is made large,
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this root may be made large in magnitude and very stable for
essentially all gains k k, of interest, For very large, or in-
finite gain, of course, this root approaches the zero at infinity
of Ll(s), since the stabilizer of equation 2, 10 does not truly
change the zero at infinity of the loop gain from that of L1 (s),
but only apparently does so over the gains of interest,

These characteristics are shown in figure 2.5, where
the system depicted in figure 2,4 is shown again, with the ef-
fect of the stabilizer of equation 2,10 added, For gains klk2
up to say K, the system of figure 2, 5c has essentially the same
dynamic behavior of figure 2, 5b, since the new root is very
stable, and the old roots are essentially unchanged. For
gains above Kj the new root becomes increasingly less stable,
until above K4 it is unstable, Now K4, the critical gain at
which the root due to the pole of equation 2,10 becomes un-
stable, can be made as large as desired by making the pole or
a' large. In the limit of o —=00, K, approaches infinity, and
the system becomes that of figure 2, 5bs The maximum size of

ai

is mainly determined by equipment considerations, Since af
may be made‘very large, K4 may be made very large, well
above the actual gains used, Therefore the actual system of
figure 2, 5c can be made to perform essentially the same as
figure 2, 5b, Thus feedback practice, using stabilizers of the
form of equation 2,10, is a very good approximation to the

feedback theory of this part which considers ideal stabilizers.,

For simplicity the feedback theory of this part, which uses the
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ideal stabilizers of equation 2,9, will be employed in the remainder
of this study. Actual feedback practice can approximate this per-
formance to an arbitrarily close degree of accuracy.

2,3 General Feedback Theory Applied to Servo Systems and Feedback
Amplifiers which Invariably Contain Only Non-Essential Zeros

Before applying this general feedback theory to the specific
case of interest, an aeroelastic system, it is instructive to consider
first the more restrictive case of servos, feedback amplifiers, and
similar systems, comprising the vast majority of all systems that
normally are considered as feedback systems, These systems
invariably fall into the category treated in part 2,1 - those for
which the closed loop transfer function contains only non-essential
zeros, The underlying reason the zeros of such systems lie in the
left half finite s plane is that such systems are virtually always
made up of basic (non-feedback) elements each of which contains
only left half plane zeros and poles in its transfer function, These
are the so-called minimum phase operators of network theory,

The complete feedback system for these servos, feedback ampli-
fiers, etc, may consist of complicated interconnections of these
basic elements in multi-loops such as shown in figure 2,6, The G's
and the H's of figure 2. 6 represent the transfer functions of the
basic elements, and hence contain only L,H, P, zeros and poles,

Despite the complexity of the interconnections of a system
as figure 2,6, or even more complicated ones, it is a fact that
virtually without exception the closed loop transfer function of
these systems (say from r to c') contains only non-essential or
left half finite s plane zeros, This fact is demonstrated in Appen-

dix A,
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Thus if any unstable servo, feedback amplifier etc, is
considered as the fixed Ll(s) operator of figure 2,2, it follows
from the preceding discussion and theorem 1, that there always
exists a stabilizing operator LZ(S) from c! back to r which can
stabilize the system, Hence the following rule,

Rule 1

Virtually all servos, feedback amplifiers, etc, fall into
the category of feedback systems containing only non-essential
zeros, and hence can always be stabilized by feedback control,

From this viewpoint, most of servo theory is consolidated
into a single aim of transplanting the infinite right half plane
zeros of Ll(s) into the left half plane, since the finite plane zeros

already exist in the left half plane, As indicated in equation 2,9,
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this is done ideally by making Lz(s) a polynomial in s of degree

(L.-1); one less than the number of zeros of Ll(s) at infinity,
For simple systems, the value of (L-1) may be 1, LZ(S)

becoming:

L,(s) =k, (1 + Ts) (2.11)
A special case of this is,

T—=>00
k!
and k,—=>

so that
LZ(S) = k'zs (2. 12)

The Lz(s) of equation 2,12 represents a perfect derivative device
produced in practice by a tachometer feedback, The amount of
stabilizer feedback, k, in equation 2.11 or k‘2 in equation 2,12,
is increased until the system is stabilized,

A somewhat simplified case is now considered of an Ll(s)
operator containing two R.H.P. poles and no zeros, Each type of
feedback operator for Lz(s) in equations 2,11 and 2,12 is shown
in figure 2,7, The two infinite magnitude zeros of LI(S)’ of mar-
ginal location + w/2 radians, are convertedto one L.H.P, zero in
the loop gain at w radians in each case,

In both cases of figure 2,7 the system becomes stable for

values of klkZ greater than Kl*. The greater the gain klkz’ the

- - -

*0Of course the value of K, in each system need not be the same,



-28-

Parameter is k lk2

\0( \___’(

LA+ L

Lz(s) sk, (1+ %8) LZ(S} = kzms

a, b.

Stabilization of a Two Pole Ll(s) Operator by
Lz(s) = kz(l + T s)

Lz(s) = k:?,s

Figure 2.7a, b

more positively damped the system becomes, a familiar result
in servo systems using pure lead feedback (figure 2. 7a), or tachome-
ter feedback (figure 2. 7b).

A final example of application of this general feedback theory
to feedback systems with L. H. P. zeros is considered next. A realis-
tic and very common case is chosen of an Ll(s) operator having
three poles and no zeros. According to equation 2.9 two zeros of
Lz(s) are needed for stabilization. The root loci are shown in fig-
ure 2.8, the same as figure 2.4. Again for values of klkZ in excess

of Kl’ the system is stabilized.
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Parameter is k lkZ

P, ¢

Root Loci for 3 Pole Ll(s) and 2 Zero Lz(s)

Figure 2.8

A minor disparity between the feedback theory expressed
above and normal feedback practice should be mentioned. Because
of added complexity in instfumenting zero operators for LZ(S) and
because of the magnification in high frequency noise resulting, it
is customary in feedback préctice to use one less zero than indi-
cated by equation 2.9. Thus the order of the zero in Lz(s) is usu-
ally (L-2), thereby locating two infinite s plane zeros at + w/2
radians, rather than one at w radians. The roots which approach
the infinite zeros at + m/2 are not as well damped as the one ap-
proaching the infinite zero at m radians in figures 2.4, 2.7 and
2.8. For illustration consider the classic problem in servo theory,
the 3 pole Ll(s) operator just considered. Lz(s) becomes a single
zero and figure 2.8 is now modified to figure 2. 9.

This disparity between the general feedback theory of this
part and actual feedback practice concerns only the degree of sta-

bilization that need be incorporated into the system. This is
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Figure 2,9

really a minor point since our major purpose is to determine whether
stabilization is possible at all by feedback control, For those cases
in which stabilization is possible, only as much damping as needed
will be added in actual systems,

The more stringent requirement of the general feedback
theory of this part, was introduced partly because of the conceptual
ease in determining the stability of a root approaching w radians,

For two roots approaching + w/2, as in actual feedback practice,
the question arises - from which direction do the roots approach

this marginal direction, from the left or right half plane? It takes
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an actual root locus diagram such as figure 2,9 to answer this ques-
tion, a difficulty avoided by the general feedback theory of this chap-
ter, In actual practice the one less zero for Lz(s) can be satisfac-
torily used in many cases, to provide the noise reduction and
instrumentation simplicity mentioned above,

2,4 Possibility of Stabilization when Zeros are Essential (Non-
Minimum Phase)

Part 2,3 showed that the known and investigated feedback
control systems, such as servos, feedback amplifiers, etc,, in-
variably have the zeros of the transfer function in the left half s
plane, Rule 1 showed that such systems could always be stabilized
by feedback control, In certain cases the transfer function of aero-
elastic systems satisfy this condition of containing only non-essential
zeros, For such cases the preceding theory of this part applies,
and stabilization is readily achieved,

In many cases, however, the aeroelastic transfer function
contains R. H. P. zeros, For these cases, there is no assurance
that stabilization is possible. To ascertain the conditions, if any
exist, under which stabilization is possible, the general feedback
theory is extended to the case of essential or non-minimum phase
ZEeros,

The first characteristic noted about such systems is that
stabilization, if possible; is the so-called conditional stability of
servo theory, That is, the system can be stabilized by feedback
control only for values of the loop gain constant klk2 above a cer-

tain lower limit Kl’ and below a certain upper limit, KZ‘
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K, < kk, <K, (24 13)

This statement is easily proved, For klk2 equal to zero, the charac-
teristic roots exist at the poles of the loop gain, while for klkz equal
to infinity, the roots exist at the zeros, By assumption, both a

R.H, P, zero and pole exist, so that for either very small or very
large gain, the system is unstable.

Equation 2, 13 shows that for systems with essential zeros,
the band of stable values of klk2 is finite since KZ is finite, In con-
trast, part 2,2 showed that for systems with all zeros non-essential,
K, becomes infinite and the band of values of klkz becomes semi-
infinite, Physically this means for systems with R, H, P, zeros,
there is a chance of adding an excess of feedback which may desta«
bilize, a non-existent possibility with systems of only L,H., P, zeros,
Hence the width of the stability band of klk2 becomes the important
characteristic for systems with essential zeros,

Since the ultimate purpose of this study is to investigate

the use of feedback control to stabilize actual aeroelastic systems,

one cannot consider stabilization possible if the stable band of klkZ
is too narrow, To take an extreme example, if KZ’ the maximum
stable value of klkz in equation 2,13, were to exceed Kis the mini-
mum stable value, by only one per cent, certainly stabilization would
be possible mathematically, In practice, however, it would be im-
possible, since the aerodynamic and other aeroelastic parameters
would have to be known‘ and controlled to that unrealizable degree

of accuracy. A good measure of the width of the stable band of

klk2 values is the ratio KZ/KI"
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One more step needs to be taken before a clear picture can
be formed of the characteristics of the stable region of klkZ values
for systems with essential zeros, Consider a special case; one
in which both a zero and pole exist far from the imaginary axis in
the right half s plane, This is a limiting case of aeroelastic systems
for speeds above flutter, Above the first speed at which both a zero
and pole are in the right half plane, small speed increments cause
both to move markedly into the R, H, P. This fact will be illustrated
latei‘ in the numerical study cases of figures 4.2 and 4, 3*.

Two type root locus possibilities exist for this case of a
zero and pole far out in the right half plane, Either the same one,
or different loci, connect the right half plane pole and zero, These

two cases are illustrated in figure 2,10,

N
/

"
™ Ve
./ AN

v

Root Loci when a Zero and Pole Exist Far Qut
In the Right Half Plane

Figure 2,10

*Also, for speeds far above divergence, a real root moves far
into the right half plane,
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Figure 2,10a usually results when the distance in the right half
s plane between zero and pole is small compared to their distance
from the zeros and poles in the left half plane*, Figure 2, 10b usually
occurs when the R, H, P, pole and zero are far apart, It will now be
shown by heuristic argument that, for both cases in figure 2, 10, no
value of klk2 exists capable of stabilizing the system,

Obviously this statement is true in figure 2, 10a since an en-
tire locus exists in the right half plane, The addition of a stabilizing
lead network or pure zefo operator such as given by equations 2,10
and 2,11 will not change this right half plane locus appreciably. This
can be seen by actually sketching the effect of these operators on
the root loci of figure 2,10, It can also be seen by considering the
analogy of a root locus to an electric line of flux, In this analogy a
pole is equivalent to a unit positive line charge, and a zero equiva-
lent to a unit negative line charge, 1In figure 2,10a, the pole and
zero are close together as stated, Hence the plus and minus charges
in the analogy are close together, The electric field and hence the
root locus between these two cannot be modified appreciably by elec-
tric charges located in the far away left half plane, which is the
interpretation of stabilizing zeros and poles located there, Thus a
system as figure 2, 10a cannot be stabilized,

The root on the locus marked a in figure 2,10b is stable only
for klk2 > Kl" However the root on locus b is stable only for

klk2 < K3, For system stability both roots must be stable or

*This can be readily seen by considering the analogy between a root
locus and an electrostatic line of flux described in reference 2,
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K< k1k2< K! (2, 14)

2

Now distance along any locus from the pole to the zero is a monotoni-
cally increasing measure of the value of klkZ" From this fact it can
be seen by inspection of figure 2,10b that for the case under study -

a pole and zero located far out in the right half plane - K, must be
large and K'Z small, Since this is contrary to the inequality of equa~
tion 2, 14, no stabilization is possible, The physical interpretation
of this result is that the gain klk2 must be large to stabilize the root
on locus a, and small to stabilize the root on locus b, These two
requirements are inconsistent, and instability of one or the other
root must result,

The range of values of klk.2 for which stability results be-
comes zero for this assumed case of a zero and pole located far out
in the right half plane. No stabilization is possible for either of
the only two possible situations that can exist in figure 2, 10b. The
numerical examples of parts IV and V will illustrate that this is
the condition that exists in aeroelastic systems for adequate speeds
above that at which a zero and pole first move into the right half
plane,

One can now sketch a qualitative boundary of stable values
of klkz versus speed valid for aeroelastic systems in general. The
distinction between various systems exists only in the associated
numerical values, Figure 2,11 a and b shows the situation for the
two possible generic cases, In figure 2,1la the pole is the quantity
to cross into the right half s plane at the lower speed; while in

figure 2,11b the zero crosses first, In both cases all zeros and
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poles lie in the left half plane below this speed, Ve

By simple extension of the theory of part 2,3, it can be proved
rigorously that a suitable stabilizing operator can achieve stability
below the speed v, for all positive values of k1k2° The plausibility
of this statement is seen, since the limits of k;k, equal to zero
and ipfinity locate the characteristic roots at the poles and zeros
respectively, by assumption in the left half plane. Because of this,
the designation is given - the infinite stable range,

From speeds Vo to Vv, iﬁ figure 2,11, either a pole or a
zero,; but not both, move into the right half plane., For the former
case (figure 2, 11la) a limit on the stable lowest value of klkZ exists,
since zero value places a characteristic root at the R,H, P, pole. For
the latter case (figure 2, 11b) a limit on the stable highest value of
k‘lk2 exists, since an infinite value locates a characteristic root
at the R H. P, zero, Hence either a lower or upper limit of klkZ
exists, but not both, Thus the significant ratio KZ/KI is infinite
over this range in both cases, Hence this range is called the semi-~
infinite stable range.

Above speed V, both a R, H, P, zero and pole exist, It is
obvious from the discussion of the last paragraph that an infinite
value of klkz locates a root on the R, H, P, zero, while zero value
locates it on the R, H. P, pole, Hence both a lower and upper limit
exists for stable klkZ values, As the speed increases above Vl,
the zero in figure 2, 11a (or pole in figure 2, 11b) which has just be-
come R. Ho P, at speed V,s moves further into the right half plane,

The stable band of k1kz reduces as this occurs until finally above
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some speed (1 + n) Voo it becomes essentially zero in width, the
situation depicted previously in figure 2,10, The root locus of
this troublesome root, illustrating the narrowing-with-speed of
the stable band of klk2 values in the s plane, is shown in figure
2,12, It is worthwhile to remember the previously mentioned
fact that distance along the locus is a monotonic function of k 1k2.
This helps in forming ready mental pictures of the stable range

of k;k, values from the diagram,

K2=oo

i

=

V= VI V1<V<V1 (1 +n) V> Vl(l 4+ n)

Variation of the Stable Range of k1k2 with
Speed as Seen from the Root Locus Diagram

Figure 2,12
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Figure 2,11 really summarizes in compact form the entire
general theory of this part applied to aercelastic systems, Below
a speed Vl’ where either all thé zeros or all the poles are L, H, P,,
the ratio of stable klkZ values,Kj— s i8 infinite, Hence with nominal
k,k, operation somewhere in the middle of this range, stability
is still achieved even if the system parameters, such as the aero-

elastic gain are not known accurately. The feedback almost al-

ways represents a definite trend in both cases, a monotonically

stabilizing effect in figure 2, 11la, a monotonically destabilizing
effect in figure 2,11b, Obviously a large feedback, and hence a
large klkz value, should be used in the first case, while small or
zero feedback should be used in the second case, Despite large
variations in system parameters, manifested by large percentage
changes in K; and K, at any speed, stabilization will still result
for such operation because of the infinite width of the stability
band*, This semi-infinite stable range is really the case studied
in detail in parts 2.1, 2,2 and 2,3,

Above speed V; both zeros and poles lie in the right half
plane and a finite band of stable k k, values exist up to a speed
V1(1+n). This highest speed exceeds the maximum speed of the
semi-infinite stable range by n, when expressed in per unit of V,.
Mathematically, conditional stability is possible over this range.
However only a small part of the conditionally stable range would
even be considered as usable in an actual system, This is true

because the ratio of KZ to Kl is not very large (perhaps 2 or less)

*Below the speed V,;, one extreme value K, or K, is infinite when
measured on a logarithmic scale, as is the ratio of KZ/KI on an
absolute scale,
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over most of the conditionally stable zone as will be shown in the
numerical examples of part V, The great uncertainty of system pa-
rameters might easily throw the operation of the actual system out-
side this narrow stable zone of klk2 values, even when the calcula-
tions concerning the ideal or nominal system predicted stability,

To illustrate this point one notes that in ordinary servo
systems, where the system parameters are much better known
than in'aeroelastic servo systems, an adequately broad stable range
of system loop gain is required*, Typical operation is at the center
of the stable band, a factor of two being a typical minimum value
‘separating the nominal operating point from both the lower and
upper stable values of loop gain, Thus the ratio of KZ/ K[ becomes
4 for such systems, In aeroelastic servo systems, the parameters
are many more and not known so well, requiring a much broader
band of nominally stable klkZ values, Errors in test measurement
of structural constants such as location of the c, g,, manufacturing
tolerances, and approximations** made in any analytical study are
all sources which make the actual system deviate from the nominal
one studied analytically, This greatly increased uncertainty con-
cerning actual system performance requires a much larger factor
between the-nominal operating point, and each stable extreme K

1
and KZ’ than the aforementioned value of 2 of a typical servo, A

*This is expressible in such terms as gain margin,

**These are many indeed, such as the aerodynamic ones of incom=-
pressible flow, strip theory, center of pressure at the quarter
chord, usually made in subsonic aerodynamics, Also structural
approximations are made, such as the concept of an elastic axis, ne~
glect of bending moment of inertia, etc, Last, but not least, is the
finite difference approximation of a continuous system,
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figure of 4 is probably in no way overly safe, This means a ratio
of KZ/Kl of 16, Hence a practical quantitative rule might be given
as follows,
Rule 2

Only those portions of the conditionally stable zone for which
KZ./KI is say 16 or more, can be used to achieve practical stabili-
zation by feedback control, The nominal operating point of k1kz
in this zone is then a factor of 4 removed from the K, and K, stable
extremes,

The next question one naturally asks concerns the applica-
tion of rule 2 to numerical examples, How much speed increase
over V, does this usable portion of the conditionally stable region
represent? If this is negligibly small (say less than 50/0), as it is
in all the cases to be examined in part V, then for all practical
purposes the speed range over which adequate stabilization is pos-
sible may be said, with sufficient accuracy, to exist only up to
speed V1 in figure 2,11, This represents speeds at which either
all the zeros, or all the poles, are L, H. P, Since the speed re-
gime for which the aeroelastic system is unstable is the one under
investigation, by assumption at least one pole is R, H, P Thus the
necessary condition for practical stability above the aeroelastic
flutter speed is that the zeros of the aeroelastic transfer function
lie in the left half plane, But this is precisely the sufficiency
condition of theorem 1, Hence the following important rule,

Rule 3

For all practical purposes both the necessary and sufficient

condition for increase in flutter speed by feedback control is that

the zeros of the aeroelastic transfer function lie in the left half
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plane, The technique of achieving the functional form of the sta-
bilizing operator is given in part 2,2,

A word is in order concérning the numerical results of pért
V which was used above, This result shows that the usable por--
tion of the conditionally stable zone is very small compared to
speed Vl" In part V it is shown for the systems studied, that the
maximum vé.lue of the conditionally stable zone is typically ohly
5% to 25°fo in excess of V,s Furthermore the speeds which satis-
fy rule2; or KZ‘/KI > 16, invariably cover only a small fraction
of the conditionally stable range (less than 10%0), The last two
results show that the maximum usable speed of the conditionally
stable range is typically only . 5% to 2. 5%o0 greater ‘than Ve This
is negligible and the maximum usable speed may be said to be V,,

with adequate accuracy for our purposes,
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PART III
COFACTORS OF AEROELASTIC MATRIX THAT DETERMINE
WHETHER STABILIZATION IS POSSIBLE

Part II developed a general feedback theory, This theory
was applied to aeroelastic servo systems in a speed regime above
the aeroelastic flutter speed, The question as to whether stabili-
zation was possible at these speeds, was reduced to an investiga~-
tion of the zeros of the aeroelastic transfer function., For stability
to be possible at any speed above flutter, it was shown these zeros
must all be in the left half s plane, In this part, explicit expres~-
sions for the aeroelastic transfer function are derived, in order
to obtain the expressions constituting these zeros, In the next
part, the numerical results of application to test cases are de-
scribed,

To emphasize the basic factors involved without a maze of
detail, the three degree of freedom system is considered first,
After this the multi-degree of freedom system with distributed
properties is treated,

3s1 Three Degree of Freedom System

Figure 3.1 is a block diagram pertinent to the three degree
of freedom system, where the three coordinates of the wing, h,

a; and B are explicitly shown,

Three Degree of Freedom System

Figure 3,1
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It is shown in appendix B that the servo force, a torque of

magnitude T

B

, acting between the control surface and the wing, can

be treated as an external torque of the same magnitude acting only

on the B coordinate,

Thus the aeroelastic force matrix, [A], can

be written as follows, treating T

]
0

The A's represent the elastic and mass properties of the
structure and the aerodynamic forces, all functions of s,

The coordinates h, a, and p resulting from the external

Apn

= determinant of A matrix of equation 3,1

T

&

&

P

A, A

A A
aQ

Ag, A

p

as the only external force,

ng| [P
af e
g| |P

are easily found from equation 3, 1,

cofactor of B-h element of A

= cofactor of f-a element of A

force T
B
A
h = _.Eh._
A
o = —Pa
A
A
- _ PP
B =3
where
A
Mgy =
Aﬁa

App=

cofactor of B-f element of A

(3.1)

(3. 2)

(3. 3)
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Note that Aﬁﬁ is also the characteristic determinant of the
system when B is restrained to zero motion, The significance of

this property of A_ _ is illustrated in part 3, 3.

BP

The transfer functions of equation 3, 2 can be employed in

figure 1,5 to give the following more specific block diagram,

Aeroelastic System

Servo

T

Input + ? e G(s) | -8
+

1, (s)

Block Diagram of Three Degree of Freedom
Aeroelastic System, Stabilizers and Servo

Figure 3,2
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In the notation of part II, the fixed system or Ll(s), is made
' “sh %ga “pp
up of the aeroelastic operators rel i N and the servo

G(s)e The operators Hh(s), Ha(s), and Hﬁ(s)\can be varied at the

will of the designer to achieve optimum stability,
The characteristic equation of figure 3,2 is found using the

standard feedback relation
1 - Loop Gain = 0 ' (3. 3)

or more explicitly

L G{Aﬁh H + Mg Ho+ 85, Hﬁ]
A

= 0 (3. 4)

In equation 3,4 the dependence on s is implied,

It is instructive to compare equation 3, 4 with the relation
of the general feedback system, equation 2,5%, Obviously the poles,
Pj’ of equation 2,5 are equivalent to the zeros of A in equation 3.4,
the characteristic roots without the servo, Also the zeros Zi are
equivalent to the roots of the following expression from equation

304.

G[AﬁhHh-l-ApaHa-l-AﬁBHﬁ] = 0 (3. 5)

According to rule 3 of part II, the location of the zeros of
equation 3,5, at any speed at which the aeroelastic system is un-

stable, determines whether stabilization is possible, If the zeros

*In the discussion to follow, those zeros and poles of the loop gain
are ignored which result from poles of the numerator and demonina~
tor, respectively, of equation 3,4, These will invariably be in the
left half plane, and hence not important for our present purpose.
This fact is demonstrated in appendix D,
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are all in the left half s plane, or non-essential zeros, then sta~-
bilization caﬁ be achieved. The zeros of the servo operator, G(s),
will invariably be in the left half plane, since it falls under the
classification of a feedback system of minimum phasev elements
as defined in part 2, 3%, These L.H., P, zeros are of no importance
for our present purpose, Therefore, the function to be investigated

for significant zeros reduces from equation 3, 5 to equation 3, 6,

Z(s)= A, H +A, H +A
a a

sn Hn * 25 H, =0 (3. 6)

PR P

Thus the question of the possibility of stabilization by feed-
back control reduces to the criterion of rule 4,

Rule 4

Stabilization of an unstable aeroelastic system is feasible
if, and only if, the zeros of Z(s) of equation 3.6 lie in the left half
plane,

The major problem of the synthesis, therefore, is to deter-
mine whether a suitable combination of H,, Ha’ and H[S exists, so
as to make Z(s) contain only left half plane zeros, thereby permit-
ting stabilization,

It is easily seen that if any one of the operators,

Agn
or

28a (3.7)
oY

286

#*The form of the transfer function of typical hydraulic actuators is
given in reference 3, equation 46,
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contains only left half plane zeros, then Z(s) can be made to have

only left half plane zeros, For example if A, has only left half

Bh

plane zeros, then an obvious stabilization technique is to make

H, =Hg =0 (3. 8)

Under this condition, equation 3,6 becomes

Z(s) = A,Bh H (3. 9)

Z(s) would then have only left half plane zeros, because A,, has

Bh
this property.

Therefore, if any one of the three operators of equation
3.7 contains only left half plane zeros, Z(s) can be made to have
only non-essential zeros, and stabilization is possible,

The next consideration is the case where all three opera~

tors contain right half plane zeros, Can a non-essential Z(s) ope-

rator be yet constructed by a combination of H,, Ha’ and HI3 stabi-
lizers? It turns out the answer to this question is negative for all
practical purposes, This will now be demonstrated, relying on
the theory of part Il,

Consider first a Z(s) combination of two operators, Ho.’

H;. Equation 3, 6 becomes

Z(s) = A[Sh Hh + ABG Hq = 0 (3, 10)

By assumption, Aﬁh and A‘ﬁo, contain right half plane zeros,

Equation 3, 10 may be written,



v Aﬁa Ha
Z(s)'-"'AﬁhHh 1+Kf;}-1 ﬁ; {3.11)

The zeros of Aph H, are not zeros of equation 3,10 since by
definition Ha is not identically zero, Thus the factor Aﬁh Hh does
not contain zeros of equation 3, 11 and may be divided out,

The zeros of equation 3,11 become those of,

A
Z(s) = (1 +-EE9H’) = 0 (3.12)
Bh
where
t H“ ( )
ot e % 3.13
Hg

The original synthesis problem expressed in rule 4, has
been reduced to an equivalent one of investigating Z!(s) of equation
3, 12 for left half plane zeros, It is to be remembered that R,H. P,
zeros occur in both Aﬁa and Aﬁh by assumption,

To investigate equation 3,12, it is noted the same form exists
as equation 2,5, the basic equation for the theory of part II, Hence
the theory of part II relevant to equation 2,5 can be applied here,
The statement that both A{Sa and A[Sh

half plane zeros, is equivalent in equation 2,5 to both zeros, Zi’

of equation 3,12 contain right

and poles, ‘Pj’ of the loop gain being in the right half plane, The
theory of part I required that for such a situation, some roofs of
equation 2,5 must exist in the right half plane, for all practical
purposes, Hence for the corresponding function here, Z'(s}) of equa-
tion 3,12, some right half plane zeros must exist irrespective of
the H! operator, The same applies to Z(s) of equation 3,10, as

originally stated.
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A simple extension is used to prove the same result for
the general three operator case of equation 3,6, This can be

written

1; Agp Hy + 85, H

Z(sys A, H z 0 (3. 14)
peP “ep "p

By the same argument as above, the factor AﬁﬁH can be

B
dropped yielding,

Agp Hy * Ag, H
Agp g

Z¥i(s) =1+

H
o

(3.15)

For Z%(s) of equation 3,15 to have all left half plane zeros,
the theory of part II requires the numerator of the ratio of factors,
or the following expression, to likewise have all left half plane

Zeros,
Z"(s) = Aﬂh Hh + Aﬁu. 'Ha = 0 (3. 16)

However Z'(s} of equation 3, 16 is exactly equation 3, 10 of
the two feedback case, which has been shown to contain right half
plane zeros, Therefore Z¥(s} of equation 3, 15, and hence Z(s) of
equation 3, 6, has right half plane zeros.

A Very(r important conclusion is deduced from the preceding
discussion, In order that Z(s) of equation 3,6 have only left half
plane zeros, and hence for stabilization to be possible; at least

one of the operators Aﬁh’ Aﬁa or A5 must likewise contain only

g
left half plane zeros, If all these operators contain right half plane
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zeros, it does no good to use combinations of A[Sh’ Ag o and A

& pp’
weighted by H’h’ Ha and HB’ in an attempt to make Z(s) contain
only left half plane zeros, Thus the entire synthesis can be car-
ried out by examining A(Sh’ Aﬁa and Aﬁ(& individually, The operator
which contains only left half plane zeros up to the highest speed,
determines the highest speed for which stabilization is possible,
Feedback of only that coordinate suffices to achieve this stabili-
zation, This conclusion is explicitly stated in rule 5,
Rule 5

Maximum flutter speed is achieved by use of only one sta-
bilizing operator in figure 3,2, H,, H(1 or Hﬁ' This speed is de~
termined by investigating Aﬁh’ ABa’ and A 88 and noting the first
speed at which all three have R, H, P, zeros, The particular
coordinate feedback to achieve this is determined by the cofactor

whose zeros are L,H, P, below that speed,

3,2 Multi-Degree of Freedom System

The extension to the multi-degree of freedom system neces«
sary to represent the distributed properties of the wing is very

simple, The N cell finite difference appro:ltiimation is shown below

i N

h)  hy 9y aN

41 ay i ‘31}1
]

——rf —] e e — D

EANNANNNNANNANNAY

Finite Difference Approximation to Distributed
Wing Plus Control Surface

Figure 3,3
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The servo torque which acts at some point on the control surs
face in the ﬁth cell is treated as a generalized force on [33. An
obvious extension of figure 3,2 to handle the multi~-degree of free-

dom system of figure 3,3 is shown in figure 3.4,

A h
B0 1 H
A 1
A
ﬁg,al 41 H
A 1
i
l o
A
B h. hi
Servo f ! Hhi
Input+ g G(s) T.P’/
+ P =
2% a; -
A a;
1
|
1
A
Bpbn hy
A Hy
N
A
B,ﬁ QN uN H,
A N
A p
p B N
g N H
A PN

Block Diagram of Multi-Degree of Freedom
Aeroelastic Servo System

Figure 3,4



-53=
The possibility of using feedback of h, a or § at any station

is represented in figure 3.4, Equation 3,4 is generalized to
G

1-—1aA H +aA H + .00
A‘[ Bghy By Pygay ey
+a +A H +A H ] = 90 (3.17)
BePN BN Bgoxn o BePy Py
A similar argument to that in part 3.1 for the three coordi-
nate case shows that optimum stabilization is achieved by feedback
of only one coordinate, the coordinate x such that A‘3 < has no
£
right half plane zeros up to the highest speed. For the three degree
of freedom system, the synthesis reduced to an examination of the
zeros of all cofactors in the B row of the aeroelastic matrix of equa~
tion 3,1, namely, A A A, .. For the multi-degree of freedom
’ s pn’ “pa’ “pp &
system, all the cofactors in the ﬁﬂ row need be examined, that is

A for ally coordinates. While in theory the location of the drive

B,y
poiit cell, the 8th cell, may be considered variable, in practice
this is essentially fixed in location, Certainly the control surface
is always outboard, and usually the servo drive point on the control
surface is determined from other considerations, Therefore A

Bpy

need be investigated only for a fixed, specified value of £,
It seems reasonable to expect that the y coordinates at the

same 8th cell will yield the true or near true optimum A This

Pg x*
follows since these coordinates bear the most correlation to the g
drive point. Also these outboard coordinates are quite significant
in the flutter mode shapes, usually first torsion or bending, Thus
in practice only three cofactors probably need be investigated for

A

location of zeros - A y A , where § is the drive
Bp, 8

£ PPy
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point cell, Hence the synthesis of a possible stabilizing operator
for the multi-degree of freedom system is the same in form as the
single degree of freedom system: the examination of the cofactors
of the h, a, and p columns for the p row, the eth cent applying
for the distributed systems.

3.3 Feedback Control Using Only B Information

Before investigating the numerical cases to be taken up in
part 1V, it is simple; yet illuminating, to investigate in general
the case in which only pB feedback is used in figure 3,2 or 3,4, The
preceding theory of part III showed that stability could be achieved
for this case at all speeds for which Aﬁﬁ had L,H, P, zeros, Now
A . unlike the other stabilizing cofactors A

s and A has im-

PP ph Ba?
portant physical significance, Examination of equation 3, 1* shows
that Aﬁﬁ represents the characteristic determinant of the system
if p is constrained to zero motion, The statement that p feedback
control can stabilize up to the speed at which a R, H, P. zero of
Aﬁﬁ exists, can thus be interpreted as meaning that speed at which
the wing with locked control surface becomes unstable, For the
actual airplane with distributed properties, this speed becomes
the speed at which flutter occurs, when one locks the finite differ-
ence cell on the control surface at which the servo drives, How-
ever locking the drive point cell on the aileron is closely akin to

locking the entire aileron, especially for cases in which the aileron

does not constitute a major percentage of the wing span, Thus the

-y o

*QOr the more general n by n matrix for an n degree of freedom
system,
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following theorem,
Theorem 2

Feedback of only the B coordinate can be used to stabilize
for all speeds up to the flutter speed that occurs when the servo
drive point of the control surface is locked, This is usually essen-
tially the same speed as the flutter speed of the original wing with-
out aileron, |

In modern day supersonic airplanes the hinge line is pushed
forward to almost coincide with the leading edge of the control sur-
face, As is well known¥*, aileron flutter can occur for such cases
well below the flutter speed of the locked aileron, Typical three
degree of freedom systems examined in the literature show the fol-
lowing numerical results, In the system studied in reference 5,
the unrestrained aileron flutter speed was only 0, 18 that of the
locked aileron, In reference 4, the system studied had a free: aile-
ron flutter speed of 0, 46 that of the locked aileron, The flap servo,
or B feedback, can eliminate all such aileron flutter, and raise the
flutter speed to that of the locked aileron even when the structural
restraint on B is zero or small,

Since the flutter speed of the locked aileron is invariably
higher than that of the unrestrained or lightly restrained aileron*
the investigation in part IV will consider possible improvement

produced by a and h feedback relative to the flutter speed with the

*Reference 7,
**[llustrated by experience of many numerical cases besides those
cited,
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aileron locked, Stated in terms of the theory of this part, Aﬁﬁ in-
variably has only L. H. P, zeros for speeds greater than that at
which R, H, P, zeros occur in A, Hence, one need investigate Aﬁ{.’)’
Aﬁﬂ and 'Aﬁh’ but not A, to find the maximum practical flutter speed

for the aeroelastic-servo system,

3.4 P Feedback as an Internal Loop in an a Feedback System

The theory of parts 3,1 and 3, 3 showed that feedback of
either a motion alone, or h motion alone, suffices to give the best
possible stabilization above the flutter speed of the basic wing,

It will be shown by numerical example in part IV that in the cases
studied, and very probably in all systems, h motion feedback is in-
capable of yielding a stable system, Hence feedback of a¢ motion
alone will provide the best possible stabilization,

Though a feedback alone is required above the basic wing
flutter speed, B feedback will be used in addition to a feedback in
actual systems, The use of § feedback is intended to remove, at
least in part, two undesirable characteristics of the aeroelastic
servo loop of figure 3,2 which exist when only a feedback is used,

1) a removal of the lags due to the actuator operator, G(s).

2) a removal of the effect of non-linearities of G(s) which

arise from valve saturation®,

To illustrate this effect of B feedback, figure 3,2 is redrawn,
first without any feedback, and then with a and g feedbacks in fig-

ures 3, 5a and b,

*See reference 3, page 9, for a physical description, Also refer-
ence 5, Section X, for a mathematical description of how one treats
the saturation,
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of | G(s) ’p “pp e R
A A
BB
a) No Feedback
Hﬂ(S)
T
B | “pp 254
A Eos
H (s}

b) With o and § Feedback

Redrawing of Figure 3,2 with No Feedback,
and With o and B Feedback

Figure 3,5



58«

The equivalence of the block diagram of figure 3, 5a to that
of figure 3,2 is seen from the fact that p and a in both figures are
described by the same transfer function, given in equation 3,2,

The form of figure 3, 5b places emphasis on the flap servo
as an internal loop, whose main purpose is to control § motion to
follow the command signal €', Thus if the flap servo were ideal,

1
B would equal H—z(-s-) and figure 3, 5b would reduce to figure 3. 6,

Aeroelastic
Flap Servo System
Input * . O—= B “ga a
+7 HB[Sj A8

H (s)

Equivalent Block Diagram of Figure 3, 5b,
Assuming Perfect Flap Servo

Figure 3,6

The ideal representation of figure 3, 6 shows that the lags
and non-linearities of the actuator are removed by the flap servo,
The lags in an actual system are shown to be quite small and hence

close to this ideal in appendix E, These do not appreciably influence



-59-
the theory of this or the following parts,
The characteristic equation of the system of figure 3,6 is
given in equation 3, 18. This is used in the root locus diagrams

of the quantitative study of part V.

Ha(s) Aﬁa
1 -Eé-(-s-) K—ﬁ-é s 0 (3¢ 18)

The major difference in form between equation 3,18 and
the original equation, equation 3.4, is that the poles of the loop

gain* are the zeros of A, instead of A, This is to be expected,

pp

since the poles of equation 3, 18 represent the roots of the system

with no a feedback (Ha(s) equal to zero in equation 3, 18), Instead

of these roots being the zeros of A, as they were with no B internal

feedback, the presence of the very strong B feedback, assumed in

figure 3,6, makes these characteristic roots essentially the zeros

of Aﬁﬁ’ the characteristic determinant with § constrained to zero,
The design of this internal g feedback loop or flap servo

is treated in detail in reference 5%%, In that study no additional

a feedback was considered, It is noted from equation 3, 18 that

the system of figure 3,6, where a § motion is made to follow some

prescribed command, has the same significant zeros in the loop

gain as the system of figure 3, 2%%%, where a  torque is made to

— - o

*The loop is considered closed through a, since § is an internal
loop in figure 3, 5b, and does not appear in figure 3,6,

*This reference should be referred to for detailed explanation
of flap servo design from flutter considerations,
**¥Consider only a feedback used in figure 3, 2,
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follow some given order, These significant zeros are those of
A[Sa = 0 in both cases, Thus the condition for increase in flutter
speed is the same in both cases, This illustrates that the major

effect of the flap servo is to remove the non-linearities and lags

of G(s), but not to change the possibility of the stabilization,
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PART IV
QUANTITATIVE INVESTIGATION OF THE POSSIBILITY OF
STABILIZATION USING FEEDBACK THROUGH THE

CONTROL SURFACE ACTUATOR (11 TEST CASES)

The theory of the last part showed that stability was possible
at any speed using feedback control if, and only if, at least one of

the quantities A and A, , had all L.. H. P. zeros at that speed

phe “pa 27 Spp

(for the distributed system, these refer to the coordinate at an out-
board cell). The appropriate feedback coordinate for such a case
would be the coordinate associated with the cofactor having only
L.H.P. zeros. The present part is a quantitative investigation of

a large number of test cases to ascertain the improvement in flutter
speed that caﬁ be obtained.

Up to the present time, no feasible technique has been devel-
oped of finding directly the zeros of the determinant of an aeroelastic
matrix representing say four or more finite difference cells or at
least ten degrees of freedom (two aileron P coordinates). This is
true even when employing large scale digital computers*. On the
other hand, it is certainly feasible to find the zeros of the determi-
nant for a three degree of freedom system. It is felt that the exami-
nation of ten different, but typical, three degree of freedom systems,
anci the determination of the improvement obtained in flutter speed
by feedback control of each coordinate h, a and B, gives a fairly
good picture of what can be accomplished in actual systems with

distributed properties.

*A program is under way at the California Institute of Technology
Computing Center to develop such techniques using digital computers.
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To support this statement, consider the normal coordinate
representation of a system, The actual distributed system need be
represented by only its first two or three modes to obtain flutter
results of sufficient accuracy. The three degree of freedom sys-
tem likewise has three modes, Hence for a given distributed sys-
tem, there exists a three degree of freedom system with similar
flutter properties, While this argument is heuristic it does indi-
cate that examination of many typical three degree of freedom
systems in order to establish trends is analogous to examining
many distributed systems for the same purpose*, The cases to
be studied, therefore, are eléven three degree of freedom sys-
tems, One of these is a three degree of freedom model of an ac~
tual wing whose flutter properties are well known from previous
studies,

4,1 Stability Cofactors of Three Degree of Freedom System

Reference 4 is an extensive quantitative study of two and three
degree of freedom systems, It gives the variation in flutter speed
as the nine basic non-dimensional parameters of the system are
varied, The results tabulated in that reference were used as a
guide to indicate those parameters that should be varied in the ten
study cases, The values of the nine basic parameters selected for
these ten study cases are listed in table 1, where the notation of

reference 4 is used with the exception of x‘3 and r_, (see list of

B
symbols).

*The study of three degree of freedom systems to establish trends
for distributed systems is an established practice, See reference
4.
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A base case, case 1, was chosen, Its parameter va.lues*
are essentially those of the system studied in reference 5, The
major numerical changes from the base case in the other nine
test cases studied were in the quantities Xp2 X » x‘3 and mh/m;a.
These represent geometric variations in elastic axis location,
Co.go of the wing relative to the elastic axis, and c,g. of control
surface relative to the hinge, Also a variation in bending to tor-
sion frequency is represented by changes in ® h/m o® Thus it is
felt these ten cases constitute a fairly representative variation
of the parameters which influence flutter, The only additional
point concerning the constants of table 1 that may need clarifi-
cation concerns the change of x‘3 to a value of zero in cases 8,

9 and 10 (a shift of the c, g« of the control surface to the hinge
line)s This can be accomplished by mass balancing the control

surface, thereby producing very little change in r, (cases 9 and

P
10). Again, it might be accomplished by an actual change in hinge
line location, thereby substantially reducing J:ﬁ (case 8),

Modified expressions are derived in appendix C for the

a and A_, cofactors, These are given in equation C, 13,

Sent 2 BB

as fifth degree polynomials in the non-dimensional Laplace
transform variable, s, The coefficients of these polynomials
are dependent on a non-dimensional speed variable, v, expressed
in per unit of the divergence speed of the wing, The zeros of

these vpolynomials are the required zeros of A a and A

gr’ “p BB

- . -

*Except for the value of @,/ o
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The representation used for the aerodynamic forces in the
aeroelastic matrix, equation C, 10, from which A|3h‘ Aﬁa and Aﬁﬁ
are derived, is a slightly simplified form of the subsonic, incom-
pressible flow equations given in reference 6, The aerodynamic
inertia terms are neglected in equation C, 10 since these usually
have small ‘ef.fect. Also the Theodorsen function has been approxi-
mated by é ratio of first degree polynomials in s*.

The C constarnts(C", C! and C) of equation C, 13 are defined
in terms of another set, the B constants (B', B!, and B) in equa~
tion C, 14, These B constants are in turn defined in terms of the
nine basic system parameters in equations C,15 a, b, ¢, Thus
for each test case studied, the B constants are computed directly
from the physical constants of table 1, In turn the C constants
are computed from the B constants, specifying the coefficients of
equation C, 13 as functions of speed, The zeros of the fifth de-
gree polynomials in s are then found** at each speed, usually
consisting of two sets of complex conjugate roots and a real root,

The zeros of Aﬁh’ Aﬁa and A, were obtained over a speed

18
range 0 to divergence., These are plotted in figures 4,1 through
4, 3 for each test case, with speed as a parameter, The detailed
characteristics of these curves are discussed at length later
in this part, For the present only the primary purpose will be
considered - the determination of whether right half plane zeros

exist,

*Even with these approx1mat1ons, the calculated flutter speed dif-
fered by only 10 % in typical cases from that calculated by the more
exact equations of reference 4.

**Using a Datatron digital computer,



_66-

The zeros of Aﬁh exist in all ten cases in the right half plane
over practically the entire speed range, in particular on the positive
real axis, Therefore A[Sh can in no way be a possible stabilizing co-
factor in any of these cases, Because of the R, H, P. characteristics
of the zeros of Aﬁh’ only one test case is shown explicitly in figure
4,1, while all ten cases are shown for A{Su and Aﬁﬁ in figures 4,2
and 4, 3, Oﬁly the . upper half s plane zeros are plotted in figures
4,1, 4.2 and 4,3, the complex conjugates existing in the lower half
plane,

Table 2 is a listing of the speed range for which each cofac-
tor Aﬁh’ Aﬁa and Aﬁﬁ has L,H, P, zeros, obtained from insPectionq

of figures 4,1, 4,2 and 4,3, It was noted in part III that A, , rep~

B
resents the characteristic determinant of the aeroelastic system

with locked aileron, or that of the basic wing, Therefore, in order
to increase the flutter speed of the aeroelastic servo system above

that of the basic wing by feedback control, the zeros of A, or A

Ba Bh

must be L, H, P. up to a higher speed than those of A Of the ten

pp*
cases studied; four have this property in Aﬁu‘ As mentioned
above, none have this property in Aﬁh'

The result of this ten study case investigation leads to the
quite definite conclusion that h feedback offers very little hope of
stabilization in any aeroelastic system, and that if any stabilization
is to be achieved, it must come from a feedback, This seems
plausible from physical reasoning, also, since the destabilizing
aerodynamic forces depend primarily on angle of rotation, a, and

only secondarily on h, Thus a likely stabilizing feedback would be

an a source, not an h source,
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TABLE 2
SPEED RANGE FOR WHICH SYSTEM COFACTORS HAVE
ONLY L.H, P, ZEROS (EXPRESSED IN PER UNIT OF

WING DIVERGENCE SPEED)

Case A A A
ph Ba BB
1 ’ 0 0 to .03 and 0 to . 46
s 7to 1,0
2 0 0 to .08 0to,42
3 0 0 to .06 0to,44
4 : 0 0to,70
5 0 0to,.03 0 to , 56
«19to 1,0
6 0 0 to , 06 0to,72
7 0Oto 1,0 0 to, 90
8 0 0 to , 002 and 0 to .46
a3to 1,0
9 0 0 to .01 and 0 to, 46
o4to 1,0
10 0 0to .02 0to,72

Cases 5, 7, 8 and 9 can be stabilized by a feedback

above the flutter speed of the locked aileron,
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For the cases studied, speeds only up to 1,0 of divergence
were investigated, In all four cases where stabilization is possible
by a feedback - cases 5, 7, 8 and 9 - stabilization can be achieved
up to and above this divergence speed, the exact excess not deter-
minable since the data only went up to divergence speed, In case
5 the locked aileron flutter speed of , 56 can be raised above 1,0
by o feedback, certainly a substantial improvement,

It should be noted in case 5, that the zeros of A, are R,H.P.

Ba
from a speed range ,03 to (19, This means if a feedback is used
over this speed range, instability would result, even though the
aeroelastic system by itself is stable, However there is no need
of using a feedback over this range, since the aercelastic system
is stable from 0 to . 56, Thus the a feedback need not be made ef-
fective until speeds of ,56 and above, While this suffices in prin-
ciple, it is safer to cause a feedback to be effective at and above a
speed which is approximately half way between the highest speed
at which it causes destabilization (., 19); and the minimum speed at
which it is needed (o 56)s If a feedback is used only at this speed
of .37 and above, stabilization should be safely accomplished from
0 speed to above divergence, At speeds above ,37, the a feedback
is safely above the speed at which it causes instability (. 19); yet

it has been introduced at a sufficiently low speed to ensure stabi-
lization at speeds for which the aeroelastic system needs it (above
e 56)¢ The margins are probably adequate even if the actual aero-

elastic parameters are somewhat different than the calculated

values,
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Similar capability of stabilization exists for case 7, where
the flutter speed can be raised from 0,9 of divergence to above di-
vergence, For this case, no range of speeds exist for which Aﬁa
has R, P, H, zeros, as occurred in case 5,

In principle, cases 8 and 9 are also examples for which the
flutter speed of the locked aileron (.46) can be raised by a feedback
to above divérgence. The existence of a large band of speeds over
which A[Sa has R,H, P, zeros - from ,002 to , 3 in case 8, and from
e0l to 44 in case 9 - makes the feasibility of such stabilization
questionable in an actual system, For example, in case 9 the a
feedback can not be introduced at speeds below ., 4 to avoid insta-
bility, and yet it must be effective at speeds below , 46 to stabilize
the aeroelastic system, Thus the best one could do would be to
make the a feedback effective at the mean of these values or 0,43,
This seems too close to the nominally unstable values of 0,40 and
0,46, so that a slight variation of s’ystem parameters from the
nominal ones might cause instability,

The conclusions drawn from table 2 are that four of the ten
cases can be stabilized, in principle, to appreciably higher speeds
(sometimes doubled) by a feedback controls In practice probably
only two cases, cases 5 and 7, could be instrumented with ade~

quate safety margins,

4,2 Trends in Physical Quantities that Influence the Possibility
of Stabilization by Feedback Control

These numerical results show that only certain aeroelastic
systems can be stabilized by feedback control above the basic flutter
speed of the wing, It is desirable to determine what physical

parameters in an aeroelastic system influence the possibility of
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such stabilization, in addition to the mathematical properties of

Aﬁ(1 previously noted, Such studies have been previously carried
out to determine the significant parameters influencing the flutter
speed of the aeroelastic system by itself, such as reference 4,
which also examines only three degree of freedom systems*. Page
15 of that reference draws an important conclusion concerning
flutter of th‘e basic wing (locked aileron), after examination of
many systefns nurmerically, This conclusion is that only one pa«
rameter is of great significance in determining the flutter speed
for the case of most practical importance (walwh equal to 3 or
greater), This parameter is the location of the c,go of the wing
relative to the center of pressure (quarter chord), For maximum
flutter speed the c, g, should be as far forward as possible, The
location of the e, a. has very small influence on flutter speed,
For our present problem, a careful scrutiny of the con-
stants of the ten study cases in table 1, and also of the location
of the c, g relative to the quarter chord given in table 3, shows
that this same parameter seems the important one in determining
whether the flutter speed can be raised by feedback control, Of
the seven cases studied for which the aileron is severly unbal-
anced, cases 5 and 7 are the only two cases for which feedback
control can stabilize the system, Also these are the only two
cases in which the c, g, is pushed forward relative to the base

case, case l; denoting the above mentioned correlation,

*Actually mostly 2 degrees of freedom systems,
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TABLE 3

LOCATION OF C. Gs VS, POSSIBILITY OF

STABILIZATION BY FEEDBACK CONTROL

Distance of Co, G, Does Feedback
From Quarter Chord Control Raise the
Case (Per Unit of b) Flutter Speed?
1 « 4 no
2 o4 no
3 o4 no
4 o6 no
5 o+ 25 ves
6 o 45 no
7 - 10 yes
8 o 4 yes
9 o4 yes
10 <45 no

Cases 8, 9, 10 x‘3

= 0 (balanced aileron)
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For the balanced aileron systems, 8, 9, 10, stabilization
by feedback control is possible in cases 8 and 9 even though the
remaining geometrical quantities have not been changed from the
base case, Thus balancing the aileron, a technique long used to
prevent aileron~torsion-bending flutter, also seems valuable in
permitting stabilization by feedback control, In case 10 even
though the raileron is balanced, the slightly rearward change of
the coge from .40 to , 45 prevents stabilization by feedback control,

The conclusion reached therefore from our ten study case
investigation is that the two parameters that seem to enhance sta-

bilization by feedback control are ac. g. location as forward as

possible and a balanced aileron, Either by itself permitted sta-

bilization above the flutter speed of the basic wing, even above
the divergence speed,

A fairly complete understanding of those factors which
influence the possibility of stabilization by feedback control is
desirable before serious effort is made to incorporate such sta-
bilization techniques in actual systems, Further study of many
systems numerically -~ especially actual wings with distributed
properties, having additional masses such as nacelles* - is needed
to truly ascertain whether a large pefcentage of actual systems
can achieve a flutter speed increase using this type of feedback

control, Also supersonic and transonic speed studies should be

*Nacelles, if forward, would shift the c,g, forward thereby
probably enhancing the possibility of stabilization by feedback
control,
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a part of these future efforts,

4,3 General Properties of the Zeros of A, and A

a 51
The slightly simplified aerodynamics of appendix C for three

degree of freedom systems, resulted in expressions for Aﬁa and A'Bﬁ
which were fifth degree polynomials in s, The theory of this study
has placed emphasis on the location of these zeros, Hence it is
worthwhile to investigate these polynomials, in order to ascertain

general properties of the zeros of Aﬁa and A Certain of the prop-

BB
erties concerning the zeros of A‘ﬁﬁ are already well known, since

these are the roots of the basic wing with the aileron locked, It will
be shown that a corresponding set of properties exists for the zeros

of A While the fifth degree polynomials of equation C,13 describe

Ba®
only three degree of freedom systems, the same basic characteris-
tics of these polynomials hold also for actual wings,

For A 8? the bending and torsion structural modes each

B
contribute a complex conjugate pair of zeros in the s plane, These
zeros are purely imaginary at zero speed, but take on positive or
negative real parts as speed increases; In addition, a real zero
exists, which is associated with the single lag representation of

the Theodorsen function, It can be shown from equation C,13 that
this real zero starts at the origin at zero speed, This zero invari-
ably moves into the left half plane at low speeds, and then reverses
and crosses back through the origin into the right half plane at higher
speeds, The speed at which this real zero crosses into the right

half plane is called the divergence speed.

This behavior of the real zero with speed can be seen by
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examination of the expression for A, , in equation C, 13 of appendix

pp

C. At the divergence speed, there occurs a change in sign of the

constant term in the polynomial, namely the term
C vl -7%

At all speeds above divergence, this term is negative, since C0

is invariably positive, It can be shown by straightforward applica-
tion of the algebra of complex numbers that a negative value of this
constant term is a necessary and sufficient condition for one real
zero to exist in the right half plane, Hence this real zero remains
in the right half plane for all speeds above divergence,

Three zeros of A[So, exist at the origin at zero speed, in
addition to a complex conjugate imaginary pair, One zero at the
origin is associated with the Theodorsen function, as was the case
for Aﬁ'ﬁ‘ The physical explanation of the other’ pair at the origin

now follows,

A, is proportional to the displacement of a resulting from

Ba

a torque on 3, as can be seen from equation 3,2, Because of the

absence of a spring restraint on B, the zero speed steady state re-
*

sponse of a due to TB is zero o Therefore Aﬁa(s) must be zero

for zero value of s, This locates a pair of zeros of A a at the

P

origin at zero speed, As speed increases an aerodynamic spring

or steady state coupling exists between o and B, This effect causes

*This conclusion can be arrived at formally by noting the absence
of structural spring coupling terms between f§ and a, and Band h
in equation C, 10,
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this pair of zeros to move from the origin into the complex plane,

since the steady state a displacement due to T, is no longer zero,

p

The real zero associated with the Theodorsen function re-

mains real for all speeds, Unlike the case with A 8’ this zero

p
can move either into the right or left half plane at very low speeds,
Furthermore, once committed, it is confined to that particular

half plane for all speeds, and can never cross back through the
origin, The criterion of which direction it moves atAlow speeds.

is determined solely by the constant term, C:, 73, of the polynomaial
for Aﬁﬂ in equation C, 13, This constant does not reverse sign with

speed as did the corresponding term for A Instead, it is either

pR°
always positive or always negative for all speeds, depending on
the sign of C!s An inspection of equations C, 14 and C, 15b pro-

duces the following expression for C:), in terms of basic constants

of the system:

2 1 U
Wp 4 1
] a
Co= 57 — U |\ oz r -1 (4.1)
0. C 1 xr_z-

U, and U, are positive aerodynamic constants dependent
only on the aileron value of ¢, Since all the parameters in equa-
tion 4,1 are positive, the sign of C; depends only on the value of
(x, - %), for a specific aileron, A plot of C:) vs (xr - é—) is shown
in figure 4,4, For C:) to be positive, the elastic axis must be
aft of the center of pressure (quarter chord for this subsonic study),
but not excessively so, Hence for C:) to be positive, and thereby

locate the real root of Apa in the left half plane for all speeds,
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t -
Plot of C0 VSe X

£

Figure 4,4

the following condition must be satisfied
Vs
o (4.2)

O<x ~=<
X

] =

Equation 4, 2 shows that the question of the half s plane in

which the real zero of A, exists, is answered entirely by the lo-~

Ba

cation of the elastic axis for a specified value of ¢, One may think
of this real zero as being a divergence zero, analogous to the cor=~
responding real zero for Aﬁﬁ' Adopting this viewpoint, one notes

that the divergence speed for the zeros of A, must be either zero

Ba

or infinity, This divergence speed for the zeros of A o c2n only

B

be changed by a change in elastic axis location (for a given aileron),
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and not by the structural stiffness value as is the case for the zeros
of Aﬁﬁ'

In summary, therefore, one may state that zeros of Aﬁ(1 and
Aﬁﬁ may exist on the real axis due to the Theodorsen function, or
as complex conjugate pairs due to the structural modes of the sys-
tem, Each additional degree of freedom above the three treated
here, adds another mode, and hence another complex conjugate
pair, The divergence speed of a cofactor may be defined as the
speed at which a real zero goes into the right half plane, For A{SB,
this divergence speed varies in a continuous manner, dependent
on elastic axis location, structural stiffness and other quantities,
as shown by the expression for Vd at the bottom of equation C.13.
For A[Bo.' this so-called divergence speed can only take on the val-
ues zero or infinity, and depends only on the elastic axis location
for a given aileron value of ¢, One may extend the notation asso-
ciated with the zeros of A, to those of A

pB Pa’

can occur (above the divergence speed), or a R¢H. P, complex

A R H.,P, real zero

zero can occur (above the flutter speed), Usually the divergence
speed occurs above the flutter speed for ABB. In the ten study
cases for Aﬁain figure 4.2, the divergence speed likewise occurred
above the flutter speed*. On the other hand the uniform wing to be
studied next has a divergence speed of zero,

4,4 Investigation of the Stability Cofactors of a Uniform Wing,
Approximated by a Three Degree of Freedom System

An actual wing is considered next, a uniform rectangular

*It was infinite in all cases,
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wing, One reason for studying this particular wing is that its flutter
properties are well known, having been studied previously, both
theoretically and in a wind tunnel, Reference 8 is a detailed report
describing these results, Exact and finite difference solutions of
flutter speeds and frequencies are given in this reference,

The constants of this wing are listed in table 4, with the
geometry shown in figure 4.5, The 1% cell finite difference me-
chanical model of the wing with the aileron locked is shown in fig-
ure 4,6a, The original and simplified electric analogies of this
mechanical model are given in figures 4, 6b and 4,6c, The only
purpose in drawing these analogies is to obtain the constants of
the two degree of freedom system, as given in figure 4,6c. The
equivalent bending and torsion springs, the mass, and the inertia
terms are listed in this figure, With these determined, the quan-
tities W O and Vd are computed from the standard formulas,

This is carried out in equations 4,3 to 4, 5.

a 1 - GJ _ rad
ma 8’ -i-— = T}? = 290 -s—é—s' or 46.2 cps (4:g 3)
a a
h 1 2 4F1 rad
wh =y = ('E'c) v * 53,5 = °F 8. 50 cps (4, 4)
1 N
® T 2
vV, = az a [: 1 I ] = 331 ft/sec (4. 5)
' K (Xr" z)J

The values of the nine non~dimensional parameters of the equiva~
lent three degree of freedom system are obtained from table 4

and equations 4,3 to 4.5, These are listed in table 5,
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TABLE 4

MI
13
El

GJ

1/3 ft.

4 ft,

« 02703 slugs/ft, = mass per unit length of wing plus aileron

« 000800 slug ft, 2 » moment of inertia per unit length about e, a,

977.1 1bs. ft, >

480, 6 lbs, ft, 2
« 0309

« 05 M = effective mass of control surface

o 2b = half chord of aileron

° 50bc = ,0333 ft = c, g. of aileron aft of hinge

b, = 20666 ft, = radius of gyration of aileron
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TABLE 5
CONSTANTS OF THREE DEGREE OF FREEDOM

APPROXIMATION TO UNIFORM WING

Non Dimensional

Parameters

Wa
— = 5,45 ® = 290 rad/sec
W a

x, = . 437 Vd = 331 ft/sec

s ,039

= ,0309

<k

c
r‘Z
;%—s . 04
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Equations C, 13, C,14 and C, 15 are used, as before, to de~
termine the zeros of Aﬁu and Aﬁﬁ for this three degree of freedom
representation of the wing, These zeros are shown in figures 4, 7
and 4,8,

It is instructive to compare the flutter results of the basic
wing, obtained from the exact solution of reference 8, and obtained

by the three degree of freedom approximation with simplified aero-

dynamics used in the present study, Table 6 gives this comparison,

TABLE 6
COMPARISON OF EXACT SOLUTION WITH

APPROXIMATE SOLUTION OF OUR STUDY

- Approximate | Percentage
Exact Solution | Solution of Deviation from
of Reference 8 | Present Study| Exact Solution

Divergence Speed 409 ft/sec 331 ft/sec -16%
Flutter Speed 333 293 -12%

Flutter Frequency 25,3 25,8 + 2%

The errors of the present study are due to the coarse finite
difference approximation and due to the simplified aerodynamics
mentioned in appendix C, The accuracy involved is considered
adequate for our main purpose of establishing trends in flutter
capability,

In figure 4,7 it is noted that the real zero of Aﬁa exists in
the R, Ho P, for all speeds other than zero, though its magnitude
is small, The complex zeros move with speed monotonically

further into the left half plane, According to the theory of part

I, no practical stabilization is possible for this wing,
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The reason the real zero of A is a R H, P, zero for all

fa

speeds is that the critical quantity x, - %is larger than the limit
§)

4 . . .
T of equation 4,2, It is noted in table 5 that the x  value of

U
0.1437 is somewhat large, representing an elastic axis location
close to the mid chord, If the elastic axis were shifted forward
by . 05 of the full chord; then X would reduce by 05, The value
of X, - i-would fall between the limits of equation 4, 2, and the
R, Ho P. location of the real zero would be removed, For this case
of er - % shifted forward by . 05*, the zeros of Aﬁo. are as shown
in figure 4,9, Stabilization by feedback control becomes possible
for speeds in excess of 825 ft/sec., as compared to an original
flutter speed of 293 ft/sec,

The uniform wing just studied demonstrated two important

related facts, The first is that a R,H, P, real zero of A, may

Ba

occur, unlike the cases studied in figure 4, 2, if the elastic axis

is far afte The second is that slightly forward relocation of the
elastic axis may convert this real zero of A?"l into the left half
plane, and thus make stabilizatinn by feedback control possible

up to very high speeds, This second fact may be important in sta-
bilizing actual systems*f since it may be accomplished by shifting
more of the wing material slightly forward, a relatively simple
change in many cases,

*The other eight parameters of table 5 remain the same,
**QOf course, still using feedback control,
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PART V
DETERMINATION OF THE WIDTH OF THE CONDITIONALLY
| STABLE BAND BY ROOT LOCUS DIAGRAMS
AND BY THE ANALOG COMPUTER

Parts II and III developed a general feedback theory appli-
cable to aerpelastic systems, A resume of this theory was given
in figure 2,11 and the associated discussion of part II, Below a

speed of V., in figure 2,11, the first speed at which both zeros
1

and poles move into the right half plane, the stable range of klk2
values has an infinite Kzl K, ratio. In this region unconditional
stability occurs and stabilization by feedback control is feasible
in actual systems, Above this speed the stable range becomes
finite, progressively reducing to zero,

There is need of investigating this region above the speed
V, in typical aeroelastic systems to determine how much can be
used for practical stabilization by feedback control, The conclu-
sion to be reached after the numerical study carried out in this
part has already been used in the development of rule 3 in part
II, This states the usable speed range above Vi is negligible,
Thereby follows the criterion of rule 3 used in the numerical
examples of part IV - an increase in flutter speed is possible only

when the zeros of A q 2Te Le.H.P. zeros above the flutter speed

p
of the basic wing,
In this part the demonstration that the usable portion of

the conditionally stable region is negligible is carried out by two

methods of analyzing the aeroelastic servo system,
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1) Root locus diagrams of the systems studied in part IV
2) Determination of the conditionally stable region on an
analog computer

5.1 Use of Root Locus Diagrams to Determine the Band of Con=-
ditional Stability T

Three of the ten three degree of freedom systems investi-
gated in part 4.1 are now treated in more detailed manner by root
locus diagrams, These represent two cases for which practical

stabilization is impossible (A a has R, H, P. zeros above the flut=

p

ter speed), namely cases 1 and 6, In addition, case 5 is treated

for which stabilization is possible (the zeros of A, are L,H, P,

Ba
above the flutter speed),
It was shown in part 3,4 that the characteristic equation

of the aeroelastic system using the a coordinate as the principal

feedback, and § as an internal feedback was

A
1-2% ms) = 0" (5.1)
pp
where
1 — HG.(S) .

H'(s) can be adjusted to achieve best stability,
Equation 5, 1 shows that the aeroelastic system with feed~

back has the zeros of Aﬁa as the fixed zeros of the loop gain, and

the zeros of A,, as the fixed poles of the loop gain, Hence these

B

*It can be deduced from equation C, 13 that A, has a negative value
for s = 0, while A, , has a positive value, H nce a negative feedback
loop requires thatﬁﬁthe k, constant in H!(s) be positive,
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represent the fixed zeros and poles in the root locus diagrams of
the aeroelastic system with feedback,
The stabilizer, H!'(s), of equation 5,2 is chosen to be of the

following forms:

H'(s) = k, (a constant) (5. 3)
H'(s) = k,8 (a pure derivative) (5. 4)
H'(s) = kzs2 (a pure second derivative) (5.5)

The stabilizers represented by equations 5.4 and 5,5 repre-
sent limiting cases of single and double lead networks, respectively,

The speeds chosen for investigation are slightly above flutter
speed (50/0) in case 1, and a moderate amount above flutter speed
(250/0/) in case 6, For the system that is capable of stabilization
(case 5), the speed chosen is a large amount above flutter speed
(60°0). It will be shown that no practical stabilization is possible
for cases 1 and 6, and a semi-infinite stability band exists for case
5, substantiating the theory of parts II and III,

Figures 5,1, 5,2 and 5,3 are root locus diagrams for these
cases and speeds, The aeroelastic system employing the feedback
stabilizers represented by equations 5,3, 5,4 and 5,5, are depicted
in figures 5,1, 5,2 and 5,3, respectively, Figure 5,1a is for case
1, figure 5, 1b for case 6, and figure 5, 1c for case 5, with similar
designation in the other figures,

Figure 5,1 shows that cases 1 and 6, even at these small

speeds above flutter, cannot be stabilized for any value of kZ' the
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loop gain constant*, since an entire root trajectory lies in the right
half plane, On the other hand, for case 5 the system can be stabi-
lized for all values of k2 above K.

It is seen in figure 5,2a and b that the perfect damper stabi-
lizer, kzs, cannot stabilize cases 1 and 6 for any value of kZ‘ Note
that the unstable locus has not been shifted appreciably (insofar as
stabilization is concerned) by the presence of the derivative opera-
tor, as can be seen by comparison with figure 5,1a and b, The
presence of the lead operator makes the root locus of figure 5,2c
for case 5 even more stable than that of figure 5, 1c without the lead
device, Its principal oscillatory root can be made to have a damp-
ing factor, & , of 0.4 for a large value of kZ' The very high fre-
quency root is stable though not heavily damped, which is satisfactory,
since its excitation will be small, In practice, instead bf a pure de-
rivative stabilizer in case 5, a term of the form of equation 2,11
would be used, to increase the damping of the real root, while not
modifying the oscillatory roots appreciably,

In figure 5, 3a, the second derivative feedback is seen to
produce a stable system for a KZ/KI ratio of 5, This is not ade-
quately broad according to rule 2, Also, the damping factor, { ,
of the troublesome root is very poor, never exceeding , 02, Hence
even at this slight increase in speed above flutter (50/0), no practi-

cal stabilization is possible using second derivative feedback,

*¥k.k, as described in partIl is the actual loop gain constant, How-

ever only ratios of maximum and minimum stable values are of
importance here, Hence k1 is assumed unity,
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In figure 5, 3b for case 6, the stable range of KZ/KI is 2, 8,
certainly an insufficient range,

Reversing the sign of the feedback produces an exponentially
divergent real root, as can be seen by figure 5,4, Hence this posi-
tive feedback does not offer a stabilization possibility.

The conclusions deduced from figures 5,1, 5.2 and 5, 3 are
that no stable range of values of k, exist for cases 1 and 6 for
either a constant or a derivative feedback, while a semi=-infinite
stable range exists for case 5, well damped when derivative feed-
back is used., If the extreme of second derivative feedback* is
used for cases 1 and 6, a stable range of k k, values exist, How-
ever this range of stable values is too narrow to achieve practical
stabilization, Thus the basic rule, rule 5, is substantiated in these

test cases,

5,2 Analog Computer Determination of the Width of the Condition-
ally Stable Band

One system was studied on the large scale direct electric
-analog computer at the C.l. T. Computing Center, This was a three
degree of freedom system, the same system that was studied in
the test example of reference 5, This was, in turn, approximately
the same system as case 3 in part IV of the present study.

In the setup the complete subsonic, incompressible, two
dimensional strip theory aerodynamics of reference 6 was used,
including the aero inertia terms, The ratio of second degree

*A double differentiation of the feedback signal, obtained from noisy
sources such as accelerometers and gyros, is probably not feasible
in practice,
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polynomials in s was used for the Theodorsen function, a familiar
and quite accurate representation,
The block diagram of the physical system represented on
the analog is shown in figure 5,5, The stabilizer output is made

to control B, rather than TB, according to the theory of part 3.4.

p Aeroelastic a

System

Stabilizer

(14 %s) (14T "s)
2+TH O+ R

Unstable Aeroelastic System Plus Lead Stabilizer

Figure 5,5

The feedback operator is an adjustable double lead opera~-
tor, where both zeros and poles can be varied as <f, T' af, and
a'" are varied, Also the gain of the feedback stabilizer can be ad-
justed by varying kZ’ both in magnitude and sign,

The variation of the parameters, 1!, 7', a!, o' and k,
over essentially all values showed the following conclusions,

1) Stabilization produced without the lead devices was
essentially as good as that using the optimum set of
values of Tt ', ", o' and o', Hence the technique of
stabilization invariably used in servos does not apply

here,
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2) The conditionally stable zone was narrow, The total
width was only 7%0 above the aeroelastic flutter speeds
The criterion of rule 2 was satisfied only for speeds
about 1% above the flutter speed,

Thus the same conclusion, deduced for cases 1 and 6 from
root locus diagrams, is deduced for case 3 from an analog com-
puter study, The width of the conditionally~stable zone, above the
speed at which both a zero and a pole of the aeroelastic transfer

function first move into the right half plane, is negligibly small,
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PART VI
ADDITIONAL TECHNIQUES OF STABILIZATION
BY FEEDBACK CONTROL

The entire discussion of the first five parts considered the
possibility of raising the flutter speed by feedback control driving
through the control surface, The desirability of using such a feed-
back scheme ié obvious -~ no additional power source is required
besides the normal autopilot actuator, It was shown in parts IV
and V that only in certain cases was such stabilization possible,

A stabilization technique is now considered that can raise
the flutter speed 1n essentially all aeroelastic systems, The draw-~
back of this technique is an instrumentation  one, in that it requires
an additional power source, This technique -~ the use of jet reaction
forces on the wing itself = may be practical to instrument in many
cases, This point will be discussed later in this part after the
mathematical considerations are completed, The distinction on
physical grounds between this type of control and that througha
control surface, is treated later in this part,

6.1 Stabilization By Jet Reaction Torquer

The technique of driving through the control surface places
an immediate restriction on the cofactors that may be utilized for
stability - only A A A,.. This is true because the force is

Yy Y ﬁh’ Ba! 56
on the p coordinate as seen in figure 3,2, Now, if the stabilizing
force is on the a coordinate, instead of the B coordinate, then fig-

%
ure 3,2 is changed to figure 6,1 , The possible cofactors to be

*As can be seen by examining equation 3,1 for the case a TQ exists
instead of a T ..

g
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Aeroelastic Stabilizers

System
A
ah| h
Servo
T
InPut+;g e loe L2 a0 | a I;{ () hy
— i A a +
A
ap B8
s o (s)

Block Diagram of Aeroelastic System and Stabilizers
when Servo is a Jet Reaction Force on the a Coordinate

Figure 6,1

used for stabilization now become A ,, A , A It turns out
ah’ Taa q

BO
the Ao cofactor will almost always contain only L, H, P, zeros
at speeds above the flutter speed of the aeroelastic system, This

is true since A‘au represents the characteristic determinant of

the system with the a coordinate locked, Physical reasoning in-

dicates that locking the a coordinate at say the outboard cell of
*

a distributed wing will usually stabilize , Thus the important

distinction between an actuator force on § and an actuator force

- o

*It is well known that in a three degree of freedom system, lock-
ing a prevents wing flutter,
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on a is given in theorem 3,
Theorem 3

An actuator force on B properly chosen as discussed pre=-
viously, ensures stability up to the flutter speed with § locked,
the flutter speed of the basic wing, Only in certain cases can fur-
ther improvement be made by a feedback. A properly chosen jet
reaction torque on a ensures stability up to the flutter speed with
a locked, which invariably is above the flutter speed of the wing,
Hence an a force is more promising than a p force feedback con-
trol, in a.tt‘empting to increase the flutter speed above that of the
basic wing,.

6.2 Numerical Investigation of Stabilization by a Jet Reaction
Torque on a

For such a scheme, figure 6,1 reduces to one with only

Ha(s) feedback as shown in figure 6,2,

Aeroelastic .
Servo System  Stabilizer

T A
Input _:_( ) e | G(s) a a2 1% 1H (s)
A a

Figure 6,2

Such a configuration will essentially always produce sta-
bility in a three degree of freedom system, because only aileron-
bending flutter would then be possible, This type flutter does

not exist for speeds above the flutter speed of the locked aileron
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(or can be removed by a flap servo as previously described). Hence
in investigating numerical cases of a scheme as figure 6,2, the
distributed system alone need be investigated, wherein the jet re-
action force is applied to an outboard cell, The uniform rectangular
wing, previously examined in part IV by a three degree of freedom
approximation, was investigated on the analog computer for this pur-
pose, A 41 ée]l finite difference approximation was used, Also the
complete subsonic, incompressible flow aerodynamics were repre-
sented, with the more accurate ratio of second degree polynomials
used for C(k),

A speed of JZ2 times the aeroelastic flutter speed was ex-
amined. The determination of whether A had left half plane zeros
at this speed, which would permit a semi~infinite band of stable
klkZ. values in figure 2,11, was easily detéermined on the analog.
G(s) was made unity and Ha(s) was mafie infinite, For this condi-
‘tion, the feedback loop in figure 6,2 is madé equivalent to an infinite
spring, This is done on the analog by merely locking the o coordi-
nate, For this condition, the system was stable, thereby ensuring
that AL has only left half plane zeros at that speed,

Since K, of figure 2,11 is infinite at that speed of JZ times
the aeroelastic flutter speed, K1 a.loné is needed to determine the
stable range of klkZ at this speed, To accomplish this Ha(s) is re-
duced in magnitude until marginal stability occurs, From figﬁre
6.2 it is noted that Ha(s) is equivalent to a pure spring on a, when
G(s) = I, The value of this spring needed for marginal stability at
this speed was 66, 7. ft, 1b/radian, or about 1/2 the basic torsional stiff-

ness o the structure (Q-J = 120 ft, 1b, /radian),
y
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The conclusion is that a jet reaction drive on the outboard
cell in place of a control surface actuator, is approximately*
equivalent to a torsional spring on that a coordinate, Invariably this
produces a semi-infinite stable band of klk2 values well above the
flutter speed of the aeroelastic system, For the uniform wing stud-
ied, any value of this spring greater than 1/2 the basic structural
torsional stiffness produces stability at JZ times the aeroelastic
flutter Spe‘ed. In coﬁtrast no semi-infinite stable band existed for
the same wing above the aeroelastic flutter speed when a control

| surface actuator was used, as previously stated in part 4. 4,

6,3 Instrumentation Feasibility of a Jet Reaction Torquer

The mathematical improvement in flutter speed when using a
jet reaction torque on a has been shown by heuristic argument to
be quite good in part 6,1, aﬁd demonstrated by numerical example
in part 6,2. The only real question about this type of control is
the instrumentation feasibility of adding such a power source,

This question is really a practical one rather than a theo-
retical one, and can hardly be answered in this study, One must
investigate specific cases to determine the additional weight, size,
etc. of such a power source, For each case, overall system
considerations will determine whether the gain in flutter speed
is achieved in more practical fashion by this technique or by
competing techniques of doing the same (for example, stiffening

the wing).

- D b ou B

*Exactly if the servo were perfect, or G(s) equal to a constant,
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It may be mentioned that a storage system might be used
to reduce the peak power requirements of the air supply to the jet
reaction torquer, The stabilizing torque required from the actu-
ator as a function of time depends on the size of the gust distur-
bance acting on the wing, This latter is a statistical quantity with
severe peaks occurring only infrequently, Thus, maximum air
flow is required to the jet reaction torquer only occasionally, and
a compressed air storage tank, supplied by a small compressor,
may satisy this requirement, This is an argument that may per-
mit incofporation of a jet reaction torquer at a small cost in
weight,

Another argument for the instrumentation feasibility of
a jet reaction torquer is that it may be supplied with air from a
source already existent on the airplane or missile, Since the
flutter stabilizer does not require a large continual air supply,
the additional load it produces on the air system may well repre-
sent a small average value,

6.4 Difference in the Two Types of Feedback Stabilization from
a Physical Standpoint

Part 6,1 showed the mathematical distinction between
driving through a control surface, or driving on the wing itself by
a jet reaction torquer, It is instructive to compare the difference
in these two types of control on a more physical basis, as will
now'be done,

A typical jet reaction torquer is shown in figuré 6, 3.
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jet tube

airfoil
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air
(a) (b)
Jet Reaction Torque Applied to an Airfoil

Figure 6, 3

The electrical signal to the controller ( € in figure 6, 1) con-
trols the flow of air from each tube in figure 6,3a, so that equal and
opposite reaction forces (F1 in figure 6, 3b) act on the wing, Thus
a pure couple (Tu in figure 6,2) is produced on the wing approxi-
mately proportional to the control signal, An additional set of tor-
quers is used for the opposite sign of the controller signal, ¢ , It
is to be noted that the stabilizer forces acting on the wing are di~
rectly supplied from the controller and not by the aerodynamics,

In contrast, for the control surface actuator the major sta-
bilizing forces are produced by the aerodynamics, A simplified,
but adequate, description of the significant forces acting on the wing
is shown in figure 6,4, Only an aerodynamic force L! is shown
which acts at the center of pressure, The pitching moment is ig~
nored in this discussion since it does not change the validity of the

argument,
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?“

Ll

Significant Forces on Wing

Figure 6,4

The important property of the L' force acting at a specific
point, the center of pressure, is that it produces not only a mo-
ment on a (say about the elastic axis or c.g.); but it also produces
a force on h, Thus it produces a generalized force on two coor~
dinates h and a, rather than on just the one coordinate, a, as did
the jet reaction torquer,

Obviously the two types of control produce different sta-
bilizing effects, The question arises: which is the better stabi-
lizing control, a pure couple on a, or a force on h besides a moment
ona?

One might suspect a pure couple on a might be a better
‘control because it acts without coupling the bending and torsion
modes (usually a destabilizing action), One can go further from
physical reasoning and note that the pure couple (Ta in figure 6. 2)
produced by the jet reaction torquer is proportional to a when the
factor Ha(s) G(s) equals a constant, Thus the jet reaction torquer
is equivalent to a spring on a., This can be made a positive or
negative spring depending on the sign used for Ha(s). Thus the

important conclusion stated in Theorem 4,
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Theorem 4
Since the jet reaction torquer can be made to have the effect

of a spring on a, it can have the same effect on flutter as stiffening

the structure in torsion (in the limit locking the a coordinate), This

usually is a stabilizing effect, The control surface actuator cannot
produce this desired effect alone, but also must produce a force on
h,

One can therefore see, completely from physical reasoning,
that the jet reaction torquer will essentially always produce a sta-
bilizing effect or an increase in flutter speed, For the control sur-
face actuator, one cannot tell by physical reasoning the added
effect of the force on h, but must resort to the mathematics of the
previous parts, This showed that in many cases the effect of the
force on h counteracted the stabilizing effect of the torque on a,
thereby permitting no increase in flutter speed.

There exists another interesting interpretation of the phys-
ical differences in the two types of control, The jet reaction torquer

produces an effect which is the same as changing the aerodynamic

center of pressure, To prove this, it is noted that the combined

generalized forces on the wing, due to the aerodynamics and the

jet reaction torquer, are as followé: a lift 1. on h, and a moment
due to the jet reaction torquer, Since the latter is adjustable it
may be made to increase or decrease the original aerodynamic
moment, without changing the lift, This is, of course, the same
effect as changing the center of pressure of the aerodynamic forces,

In the limit of an infinitely stiff effective spring produced
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by the jet reaction torquer there exists a finite force and an infinite
moment, This has the effect of shifting the center of pressure to
inf'mity in either direction (depending on the sign of Ha(s) o Thus
the center of pressure of the aerodynamics can be equivalently
moved any distance fore or aft of the wing by the jet reaction con~
trol, It can readily be shown that a positive effective spring shifts
the center of pressure aft, This is the desired direction for im«
proved stabilization as shown in part IV,

Since fhe control surface actuator changes both the force
and moment, no such simple interpretation is possible for this
type of control,

The physical reasoning of this section, shows that a pure
couple produced by the jet reaction torquer, usually has a more
stabilizing effect than a moment and force produced by the control
surface actuator, This substantiates the mathematical distinction
earlier in this part concerning the R. H, P. properties of the zeros
or A

of A compared to A or A

BB Ba ph*®
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PART VII
CONC LUSIONS AND RECOMMENDATIONS FOR
FURTHER STUDY

‘7Tel Conclusions

The investigations of this study can be summarized in the
five major point’s listed below,
(1) It is possible only in certain cases to raise the flutter speed
in practice by feedback control, To examine the mathematical pos-
sibility of practical stabilization rule 3 of part II suffices, Thus
the possibility of raising the flutter speed is answered by simple
examination of a cofactor of the aeroelastic system such as Aﬁa
or'a_. for left or right half plane zeros, No explicit considera-
tion of a specific servo or stabilizer transfer function is necessary
in this determination, Note the similarity between this and the
examination of A of the aeroelastic system, which determines sta-
bility of the system without feedback control,

The determination of the actual stabilizer transfer function,
H(s), necessary to produce this stab'il_‘ization, is easily found by

the techniques of part 2.2,

(2) There exists the important conclusion that feedback of many
coordinates is no better than the feedback of a single coordinate
(rule 5 of part III). This reduces the stabilization investigation
to the investigation of a single loop rather than investigation of

many interacting loops, a monumental task.

(3) Two general types of feedback exist; the first, through the

control surface or a torque on B; the second, a jet reaction torquer
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on a, Theorem 3 describes the distinction in mathematical feasi-
bility of stabilization in the two cases, For the former, stabiliza-
tion above the basic wing flutter speed is possible only in certain
cases, this by the use of a feedback rather than h or g, However
B feedback can always remove aileron flutter, For the jet reac-
tion torquer case, stabilization above the wing flutter speed is
almost always possible, The jet reaction torquer type of stabili-

zation pays the price of additional instrumentation,

(4) In comsidering the possibility of raising flutter speed by feed-
back control, the obvious order of investigation of the two tech~
niques should be as follows, The control surface actuator type
should always be investigated first for mathematical feasibility
because of simpler insti'umentation. If this is not possible mathe-
matically, then the jet reaction torquer should be investigated,
Since this technique is usually possible mathematically, the only
question would be the practicality of the additional equipment,

A scheme was suggested in part VI to simplify this instrumenta-

tion (stored air supply).

(5) Eleven three degree of freedom systems were studied in this
investigation, Certain trends were presented in part IV, Similar
investigations on specific actual systems can be made using

either of the two techniques mentioned in this study: a) the ex-
amination of the cofactors Aﬁu’ Ao.o.’ etc, for left half plane zeros
by digital computer techniques, b) the examination of the aeroelas-

tic servo system on the direct electric analog,
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It is felt that mathematical and instrumentation feasibility
of raising flutter speed can be achieved by at least one of the two
feedback types of this study in many airplane and missile systems,
It is hoped that flutter and autopilot analysts will give serious con-
sideration to these techniques of stabilization,

7.2 Recommendations for Further Study

As mentioned previously, numerical examination of many
more test cases is needed, in particular actual systems with dis~
tributed properties, to ascertain the percentage of cases in which
either, or both, types of control are practically feasible,

A recommended study would be the examination of ten
typical actual wings with distributed properties, If digital com-
puters were used in this study, the same techniques would be em-~
ployed as used in conventional flutter analysis, The only differ-
ence would be that the significant determinant now becomes A Ba
and A instead of A, For analog study, the aeroelastic system
is represented in the conventional manner; the servo and stabi-
lizer is represented by an operator as shown in figure 5,5,

It is suggested that the ten systems studied be wings
for which flutter studies have previously been carried out, This
reduces considerably the amount of work involved in setup of the
problem, and also ensures examination of known systems so that
checking of results is easily performed, For either type of
computation, digital or analog, the basic setup would be available
from the previous studies, The new data concerning the feasibility
of stabilization would not be difficult to obtain from the existing

problem setup,
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The present study has laid the mathematical groundwork
and investigated a few systems numerically in considering the
possibility of increase in flutter speed by feedback control, The
numerical data from further studies as recommended above
would indicate more definitely the practical feasibility of these

techniques,
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APPENDIX A
DEMONSTRATION THAT THE CLOSED LOOP TRANSFER
FﬂNCTION OF A FEEDBACK SYSTEM WITH MINIMUM
PHASE BASIC ELEMENTS CONTAINS ONLY LEFT
HALF PLANE ZEROS

Consider a complex feedback system such as figure 2,6 of
- the text.* By assumption the zeros and poles of the basic elements,
the G's and H's lie in the left half s plane. The conditions under
which the closed loop transfer function c'/r has right half plane
zeros is now derived, It is then shown that virtually all servos,
feedback amplifiers, autopilots, etc, do not satisfy this condition,
and hence have only left half plane zeros in the closed loop transfer
function,

Consider the specific system of figure 2,6, To analyze the
system, one can eliminate all the inner loops in a series of steps,
leaving only the single outer loop, This can be done by replacing
each feedback operator by an equivalent operator from output to
input of the next larger loop, Thus, figure 2,6 is first reduced by
replacing H4(s) by an equivalent operator, as shown in figure A. 1,

- - -

#The systems under consideration are restricted as follows, with
no loss in generality. From any point along the forward trans-
mission from r to c', a feedback H., exists from that point
back to some earlier point in the forward transmission, such
that the transmission along the Hi path exists only in the one
direction. The H, themselves may contain internal loops.

Also the G operators are connected in simple cascade,
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I ! c!

N

N

Block Diagram of Figure 2,6 when H, Feedback

4
is Replaced by Equivalent Feedback in Next Larger Loop

Figure A,
H

4
2
G3Gg 5
and replacing this by an equivalent operator at the input to GZ' Thus

The next loop elimination is produced by adding to H

figure A, 1 becomes
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+ + G + C'
> J)— 1 = G G3G Gy
\:
\
H,
H
4 | B
eNen + Hy
G A H HH
Ho

Simplification of A, 1

Figure A,2

A final reduction leaves only the outer loop shown in figure A, 3,

+ c?
2 G1G2G3G,Gy
)
4 4 u
H, TG,G, 5
+ + H H_+H
GZG3G4G5 G, 27757
& + H,

Final Reduction of Figure 2, 6 into a Single Loop

Figure A, 3
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Figure A, 3 can be redrawn as in figure A, 4 by rationalizing

the fractions in figure A, 3, and defining,

G = G1G2G3G4G5

H1G1+H4G4+H5G3G4G5

G
3 (H,Hg+H()G,G3G,G+HLG

G

Same as Figure A, 3 Except for Rationalized Expressions

Figure A. 4

The ratio of cf/r can readily be found from figure A, 4.

¢t . G
T T TF¥H
where
H= HlGl + H4G4 + H5G3G4G5 + (HZHS + H6) G2G3G4G5+ H7G

(A. 2)

(Al 3)

(AL 4)
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Clearly the zeros of equation A, 3 are due to:
a) The zeros of G defined in equation A, 2,
b) The poles of H defined in equation A. 4,
Thus the zeros of c¢'/r will lie in the right half plane if, and

only if, some forward gain quantity, G G,s G3s Gy or Gg has right half

ll

plane zeros, or some feedback quantity, H,,H,, H ,H H6 or H

127720 g P50 7
has right half piane poles, But this is prohibited by assumption in
the type of systems under consideration, Thus c!'/r cannot contain
right half plane zeros,

By simple extension, this can be demonstrated for sys-
tems with even more loops than figure 2,6, Thus the original
premise is proved by induction,

It should be mentioned that the transfer function of c¢!/r in
a system such as figure 2,6 would have right half plane zeros, if
the feedback basic elements Hl, HZ’ 'H4, HS" H6’ H7 were permitted

to consist of feedback loops themselves which were unstable, Thus

if H1 were actually made up of a feedback loop as follows,

then the transfer function of H, might contain right half plane poles
(an unstable operator for Hl" This leads to right half plane zeros
of ct/r according to the above discussion, However the use of

feedback operators such as H,, H,, H4, Hg, Heo Hy of figure 2,6
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which have feedback loops within themselves, is rare indeed, The
case of unstable feedback loops constituting the basic Hl‘ HZ’ etc,
operators, the necessary condition for right half plane zeros of
c'/r , is practically non-existent, Thereby results the premise
stated in the text that virtually all servos, feedback amplifiers,
and similar systems, no matter how many loops in the system,

have only left half plane zeros in the transfer functions,



~143-
APPENDIX B
SERVO TORQUE IN h, a; § COORDINATE SYSTEM
The effect produced by the powered actuator is a torque of

magnitude T, acting between the control surface and parent sur-

B
face, Consider that cell along the span where the torque is applied,
The following free body diagram shows the equal and opposite

torques exerted by the servo on the a and Y absolute coordinates

of that cell,

Free Body Diagram of Servo Torque Acting on
Parent and Control Surfaces

Figure B, 1

Thus the forces on the h, a, ¥ coordinate system are
known, One desires to transform the forces to the h, a, p coor-

dinate system,
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To do this, the well-known matrix laws of transforming

coordinates and displacements are used. The following definitions

are made,

[Y] displacement vector in h, a, ¥ system
[y ] displacement vector in h,ayf system
[F] forcevectorinh, a; Y system

[F] force vector inh, a, B system

[ W] matrix relating [y Jto [y]

[ wiT transpose of [W ]
Therefore,

(71 = [w]lyl (B. 1)
and

[F] =WwlT[F] (B. 2)

The W matrix which transforms the h, a;f coordinates to

h, a,¥Y is written by simple inspection of figure B, 1,
1 0 OT

Wi= |0 1 0 (B. 3)

LO 1 1

[F], the force vector on h, a,Y, is simply

]

0

(B. 4)
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[F] , the force vector on h, a, B is found using equations

B.2, B,3, and B. 4,

— - = - — -1
1 0 0 0 0
[F] = {0 1 1 --Tﬁ = | O (B. 5)
0 0 1 T T
L. - L B_ L ﬁ-—

Thus the servo torque in the h, a, B coordinate system is
a torque of the original magnitude, T;S’ acting on only one coordi-

nate, the B coordinate,
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APPENDIX C
REPRESENTATION OF A

o A,, OF A THREE DEGREE

A
pn’ Tg pp
OF FREEDOM SYSTEM AS A FIFIH DEGREE POLYNOMIAL IN s,
The matrix equation for the three degree of freedom system

of figure 3.1 is

LF]

]

Al x| (C. 1)

where [F ] represents the external force vector, [A] represents
the aeroelastic force matrix, and [X] represents the b, a, P coor-
dinate vector. [A ] may be written as the sum of the structural

matrix [A ]‘1 plus the aerodynamic matrix [A] 50
[A) = [Aa]; + [al, (Co2)

The structural matrix is given in reference 6, page 196, It is re~
peated in equation C, 3 where the sign convention of our study for h
(positive up) differs from the sign convention of reference 6, Using
the notation of reference 6, [A] 1 becomes, for coordinates h, a,

and B in that order,

| msl+c, -s_ s -S4 52 ]
(A3, = |-s_ s° 1 s®+c. 18t (C. 3)
—S‘3 s‘2 Ic sz 1;3 s2 + Cﬁ
where
I, = Ig+(c - a) b Sy (Co 4)
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The following simplified subsonic, incompressible two

dimensional, aerodynamics is used,

o o

h
—_ 3/4 L €ade 2b ,3 y
a = a————é—— +U1(3=0""iva—'+—v—(z'xr)ﬂ+U15 (C. 5)

and

L! = 2n(q®) (2b) C(k) o

u, .
Q = 2b(x -3 L'-F (@) @) a~q @t (€6
U

.
Qg = - 2b () Lt = a7 @0)° 2 B

This represents the ordinary CL term or lift due to angle
a
of attack a , and the CM or a moment due to pitching velocity, as

well as the major moment terms due to the aileron, The aero
inertia terms, or terms proportional to the second derivative of h,
a; and B; have only a small influence on flutter speed, For our
purpose of ascertaining trends of relative stability of the ABh, ABo.

and A,, operators for many different systems, it is felt safe to ig-

e

nore these terms as is done in equation C, 6,

The U quantities used in equations C,5 and C,6 are a com-
posite of the T functions of Theodorsen, These depend only on the
geometrical value c, asldefined below,

1

1 2,2 1 =«
U, =T(l-c) t=cos "¢

EY
2

i

U (14c) (l—cz)

4
) (CaT)

. 1 2,1 -
Uy = g (24c) (1-c%)? - o= (142¢) cos™ e

1 2.3 ~1 1 2
Ug = (14c)} (1-c7)2 cos "¢ - ?(l-l-c,) (1-c™)

i
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Equations C, 5 and C, 6 can be combined to form the aero~

dynamic matrix, [A] 28 the negative of the L}, Qa, and Q[3 forces,

Clk) 522~ -C(k) D [1 £ x) -S-S—] -C(x} DU,
O : o)
[A], =|C(k) DE5s ~C(k) DK, |1+ (3 - x )5 -C(k)DK. U, |(C. 8)
2 = 7—"bso 5 7~ *r ER 5%1 o
bU
Dbs 4
+ Bs, D e
DUés 3 s
-ClK) == C{k) DbU, |1+ (5 - x_) = C(k) DbU, U,
(s} o]
2
+ 2qb Ug

The following definitions pertain to equation C, 8,

D= Z'lprVZ'g
-V
5,% »p (Ce 9)
K. = 2b (x_ - )
57 r 4

The addition of the [A]Z matrix of equation C,8, and the
Al | matrix of equation C. 3 yields the entire aeroelastic matrix,

[A ], given in equation C, 10,
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Representation of Aﬁh’ Aﬁa’ and Aﬁﬁ as Fifth Degree Polynomials in s

A A, and A, , may each be formed as a cofactor ofthe [ A
pnt “pa 274 Apg ™Y olal
matrix of equation C, 10, represented by a fourth degree polynomial
in 8, wherein C(k) is contained in the coefficients of s, C(k) may be
suitably approximated for our purposes by a ratio of first degree
polynomials in s,
1+ T, % ]
Clk) = ——— (Co11)

T1 and T3 are dimensionless constants, which, for best flutter

prediction, are given the following values,

T]. = 40311

(C.12)

T3 x 7,221

After insertion of the expression for C(k), given by equation
C. 11, into the matrix of equation C, 10, a straightforward but rather

lengthy manipulation yields expressions of modified A

Bh* “Ba’ “pB

as fifth degree polynomials in s, The zeros of these expressions,

given in equation C, 13, yield the zeros of A and A The

ph* “pa *" “pp*
8 8p in equation C, 13 are

defined in terms of the B, B?, and B constants in equation C,14,

C', C!' and C constants of Aﬁh’ Ag. and A
These B!, B! and B constants in turn are defined in terms of the
nine basic non-dimensional parameters of the aeroelastic system
in equations C.15a, .C, 15b, C.15c. Thus a specification of these

nine basic parameters in effect determines the constants C", C'



~151-

and C of equation C. 13, These nine basic parameéters are

x r
b
T B

Sk
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where

VE_Y..
Va
—_ 5
s N —
®

=]

Equation C.13., Expressions for Aﬁh’

N

A at Any Speed,

Ba’ “pg
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: x
o) | 2 ) G )+ (@x - D)

Equation C,15c., Definition of B Constants of Equation C, 14
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APPENDIX D
INVESTIGATION OF THE POLES OF A, Aﬁa’ Aﬁﬁ
AND A _ s AND THE ZEROS AT INFINITY
The force vs, displacement matrix of the aeroelastic sys-
tem for n degrees of freedom is an obvious extension of the [A]
matrix of equation 3,1, which describes a three degree of freedom
system, A is a sum of n} terms, each containing n factors of dif-
ferent Aij elements, Aij is the general element of the [A] matrix,
located in the ith row and jth column, Therefore A can have only

such poles as exist in the most general Aij term, A.lj can be ap-

proximated as follows,

A .=:N[..BZ+Gi

ij ij .8 + K,. + C(k) [G..'s + Kij'] + D(s) (D.1)

J 1 ij

The first three terms in equation D. 1 are the usual passive
force terms, the mass, damping, and spring forces, respectively,
The Theodorsen function of subsonic aerodynamics, C(k), weights
the damping and spring aerodynamic forces, Gij's and Ki.'. A sim-
ilar lag term exists for supersonic aerodynamics, represented by
D(s) in equation D, 1,

It can be shown that the Theodorsen function has poles only
on the negative real axis, In particular, the ratio of 2nd degree
polynomials, often used as an approximation to the Theodrosen
function, has two poles on the negative real axis, It is thereby

seen from equation D, 1 that, for subsonic speeds, Aij will contain
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only poles in the left half plane, those due to the Theodorsen func-
tion, A similar result holds for the usual polynomial approximation
of D'(s) for supersonic flow, Therefore for A, or any of its cofac-
tors, left half plane poles are the only poles that exist, these due
to the aerodynamic lag functions.

It is instructive to note the behavior of A, or any of its co-
factors, as s —= oo, The Aij term varies as s2 as s —== @, Since
the lag function becomes a constant for large s, Hence A varies
as szn. Also, any cofactor of A, such as Aij’ varies as sZn-Z.
Therefore, in the basic aeroelastic servo feedback system of fig-
ure 3,2, whose characteristic equation is equation 3,4, the order
of the zero at infinity is 2 for the case G(s) equal to a constant,
From the theory of part II, H(s) must be a first degree polynomial
in s in equation 2,9, in order that the zero at infinity exist at «

radians,
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APPENDIX E
TECHNIQUES OF REDUCING THE LAG IN G(s)

The time delay in the control surface actuator or jet reaction
actuator described in this study, was represented by G{s}) in the basic
block diagrams, figures 3,5 and 6,2, respectively, In subsequent
analyses, these delays were considered small enough to be ignored,
An extremely small effective delay can be produced in practice
from two considerations,

a) The basic delay is itself small,

b) In addition, a feedback loop can be used around the
actuator, such as the flap servo in figure 3,5, to
compensate for the delay.

Relative to the first point, it is to be noted that the servo
output is a torque, Tﬁor T:l,‘nnot_ a motion, Hence the time delay
is primarily the delay associated with opening the valve, a very
small delay, This is different than the usual servo actuator delay
associated with the inertia of the output mass (here the control
surface). In our problem this inertia is lumped with the aeroelas-
tic matrix, and not with the G(s) operator, Typical delay times
of milliseconds can be achieved,

Regarding the second point, this is a standard technique
of reducing the delay of some element, It is not uncommon to
achieve a reduction by a factor of 10 in delay time by such tech-
niques,

From these two considerations, the effective delay time

of the servo is made very small, In addition Ha(s) is made a lead
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network, as previously described, to further compensate for the
lags in G(s). Thus the performance of the actual system is closely

that predicted by the theory of parts IV, V and VI,



