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ABSTRACT

Approximate quantum-mechanical calculations for the two
lowest !Z”' states of the helium hydride molecule ion HeH have
been made, The molecular potential energy curves resulting from
these calculations have been found to agree reasonably well with
the results of other investigators. Using classical statistics for the
distribution of internuclear separations, approximate absorption
coefficients for radiative transitions between these two states have
been obtained.

A program to compute model stellar atmospheres in strict
radiative equilibrium is described and was used Lo compule eight
models with log g = 4.0 and effective temperatures between
9500° K. and 30000° K. Total flux constant to within 1% was
attained for these madels excluding HeH+ as a source of opacity.
When the final models were re-computed including the opacity of
HeH“*“, radiative equilibrium was found to be destroyed by as much
as 15%. Radiative equilibrium was re-established for the model
with Ty = 16000° K., and a comparison between this model with and
without HeH™ is given.,

It is found that HeH' introduces a striking discontinuity in
the continuous spectrum of the model at 1130 A; the ratio of the
emergent monochromatic flux on the red side of the discontinuity
to the flux on the violet side is 8. 2 for the 16000° K. model. It is
concluded that the wings of the Lyman lines, except L. &« , are

probably weaker than previously supposed.
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In addition, numerical quadrature formulae of high accuracy
and cfficicney arc given for integrals of the Schwarzschild-Milne

type.
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111 INTRODUCTION

It is indeed fortunate that the earth possesses a protective
atmosphere, under which life could develop. This life-giving
mantie, however, has been a source of frustration to the astronomer,.
for it has deprived him of badly needed observations in some of the
most important spectral regions, for example the ultraviolet below
3000 A. The coming of the Space Age now holds out the promise
that definitive observations in these long-inaccessible spectral
regions can soon be made.

Recent observations have been made by Stecher and Milligan
(38) from an unguided Aerobee rocket, which reached a peak altitude
of 107 miles. The dala consist ol observations on 15 stars, of
which 8 are of doubtful quality, secured with a modest grating
spectrophotometer and telemetered to earth. The observations
exhibit a fundamental disagreement with theoretical model atmos-
pheres, in the sense that the model atmospheres predict mono-
chromatic fluxes some 30 times as large as observed by Stecher and
Milligan. This disagreement was found to decrease in a somewhat
systematic manner, disappearing at spectral type I' 0, to within the
accuracy of either the observations or the models.

This disagreement is disturbing. One can consider three
possibilities for the origin of this effect: 1) continucus absorption
by an unknown source in the stellar atmosphere; 2) absorption by
material in a circumstellar envelope; and 3) absorption in

interstellar space.
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Pecker (39) has considered origin No. 2 above as explaining
the observed ullraviolel deliciency in early type stars. He con-
siders a circumstellar envelope of dielectric dust particles and finds
that to produce the observed extinction, the particles must have a
radius of 0,4 m .

Hoyle and Wickramasinghe (40) suggest that the extinction
may be caused by interstellar composite graphite - ice grains of
radii less than or equal to 0. T .

In their paper presenting the rocket observations, Stecher
and Milligan favor an atmospheric origin for the observed ultraviolet
deficiency on the grounds that if half of a hot star's total flux were
absorbed by a circumstellar envelope, the envelope should be
visible; they reject an interstellar source on the grounds that the
effect appears to be systematic with spectral type, and that « Carinae,
the most distant star observed, does not show the effect at all. They
propose instead an opacily source wilthin the stellar almosphere, due
to quasi-molecular absorption by various combinations of hydrogen
and helium atoms and ions. In particular, they suggest the helium
hydride molecule ion HeH+.

The purpose of this thesis is to obtain approximate quantum
mechanical cross-sections for the HeH  molecule and to investigate
the effectiveness of HeH+ as an opacity source in a theoretical model
atmosphere. We will make no attempt to explain the ultraviolet

deficiencies observed by Stecher and Milligan.
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The general theory of formation of molecules by radiative
association and the absorption coefficient due to radiative dissocia-
tion is discussed in Chapter IV, where are also given the specific
results obtained for HeHJr in this investigation. A comparison be-
tween the rate coefficient for radiative association of HeH+ and
the rate coefficients of other atomic and molecular processes is
also made.

A description of a non-gray model atmosphere computer
program follows in Chapter V. Several main sequence model
atmospheres, with effective temperatures between 95007 K and
30()000 K, were computed using this computer program, and the
results obtained, both with and without the HeHJr molecule as an
opacity source, are contained in Chapter VI. Mathematical
derivations and discussions that were lengthy have been put in the

Appendices wherever possible.
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IV SEMI-CLASSICAL MOLECULAR ABSORPTION COEFFICIENTS

1. _general Theory

At low gas densities, as for example in the outer layers of
a stellar atmosphere, a significant fraction of molecules present

may be formed by radiative association, typified by
A + B>(AB)+»(AB) + W av-1)

since the densities are frequently too low for the three-body re-

action
A+ B+ C-=»(AB) + C

to compete. Our particular interest is in the inverse of process
(IV-1), or an absorption process. We follow the semi-classical
procedure of Bates (6, 7), who supposes that two atoms approach
each other along a trajectory AB(R). This trajectory is asymptotic
to the initial state A + B at infinite separation and corresponds to
the potential energy curve U 1(R) indicated schematically in Figure 1.
Since we are talking in completely general terms, let us suppose that
we can write a complete Hamiltonian for state (AB(R)) along the
trajectory and solve Schrodinger's time-independent equation at each
internuclear separation R. We assume that there exists a second
state (CD(R)) to which radiative transitions from the initial state
(AB(R)) occur. This state (CD(R)) is asymptotic to the final state
C + D at infinite separation and corresponds to the potential energy

curve Ug(R) in kigure L.



POTENTIAL ENERGY U(R)

U, (R)

U, (R)

Figure 1.

INTERNUCLEAR SEPARATION R

Schematic Molecular Potential Energy Curves




We write the reaction as

A + B> (AB)
(AB) = (CD) + Wwv

(CD)»C + D (IV-2)

After the electronic transition, the state (CD) may or may not
be stable, depending uponthe amount of kinetic energy possessed by
the atomic systems after the transition. If the kinetic energy is
greater than the depth of the potential well shown in Figure 1, the
atoms can separate, If it is not, the system remains bound until
another event occurs, such as the absorption of radiation.

The absorption coefficient per unit volume /&(9,1') associated
with the inverse reaction of (IV-2) ig related to the photon emissivity
39, T) of (IV-2) by Kirchhoff's law

ho

2 bk
k) = 8_:92 ( e X7 - 1) jm)

(IV-3)

where v is the frequency of the radiation and T is the temperature.
We define a rate coefficient ¥(V,T) for process (IV-2) giving the
number of particles (AB) formed per unit volume per unit time in the

frequency range v to v+ dv . The photon emissivity J(v,T) is then

where N and NB are the concentrations per unit volume of atoms

A and B.
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We relate the reaction rate coefficient ¥(?,T) for the
frequency range v to V+dV to a reaction rate coefficient ¥(rR,T) for

photon emission from atoms whose internuclear separation lie be-

tween R and R + dR by the definition

Y(,T) = Y(RT)/) 5y (IV-5)

By an equally simple definition, the frequency of the radiative tran-
sition is given by the difference in energy between the potential

energies of the two states

hv(R) = U (R) — U (R). -6

Bates assumes that the trajectory AB{(R) along which the
atoms A and B approach each other is given by the laws of motion

for a classical orbit
ot 2 U (r)
dR . i R | orum ]
* n

where m is the reduced mass, v is the relative velocity of approach,

l/Z

N

(Iv-1)

and p is the impact parameter. The rate coefficient ¥(R,T)is ob-
tained by assuming a Maxwelliam velocity distribution and then
averaging over all values of v and p consistent with a given inter-

nuclear separation R, yielding

34 wmar?t
_ 2 vin T ORT
SR O

-
P’-vl 2 UL, (R

X /\)’3,9[’\71" Rz wm ] dv dp (IV-8)
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where g is the statistical probability that the atoms will approach
each other along the particular trajectory AB(R) out of all the pos-
sible trajectories, and A(R) is the Einstein transition probability for
a radiative transition from state AB(R) to a lower state CD(R) at the
separation R. g will be explicity defined later when we consider a
specific transition between two electronic states of HeH+. The
integration of equation {IV-8) over p is carried out first between the
limits p = 0 and p = p_,, the maximum value which p may achieve
for given values ofv and R. At a point of closest approach, dR/dt
vanishes and from equation (1V-7), Kramers and ter Haar (33) con-

cluded that p,,, is given by

2 Rz 2 u,(R‘
- — 2 .
P m v (IV-9)

Bates (6) pointed out that this is not always true and gave several
limiting cases. One limiting case is of special interest, for it
involves the approach of two atoms along a trajectory whose potential
energy curve is repulsive. An example of a reaction such as this is

the emission of photons from colliding hydrogen atoms and protons

H+ HY — H + HT + Wy

Bates shows that in this case where U] (R) >0 everywhere (Li.(""): 0))
the maximum P is correctly given by equation (IV-9). As we shall
show in Section 2 of this Chapter, this case applies also to the re-

actions involving hydrogen atoms and ionized helium atoms

Ho o + H — He + H + W .
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Another limiting case is where the atoms approach each
other along a trajectory whose potential energy curve is attractive,

exemplified by the doubly ionized helium hydride molecule

+ + +
He + H — He + H +ho.

In this case equation (IV-9) is incorrect, and Bates gives several
approximate expressions which can be used.

The integration of equation (IV-8) over p thus results in
3/
s

Y(R,T) = $rng AR R (Z00)

’\fz m At /7

T 24T 2 2 U, (R)
/\rl

From the equation of motion, equation (IV-7), we can see that the
minimum value of v which enables a given separation R to be

reached is

\/z

i

v o= [ B W]

since the derivative dR/dt must be real. If, after the transition, the

atoms possess no kinetic energy, v must equal Vv, , where

‘/2\
v = [a (e - et ]
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but since they may possess excess kinetic energy, the upper limit of
intcgration should be infinity. Wec integrate equation (IV-10) be-

I/Z
tween /\r:[lu\m)/m]and oz o9 and obtain

2 “L}-LSEE 2 w‘xzz
X(R,T) = L)T('ca,A(R\R e &7 [ﬁfﬁ x"dx

©

W (R)
AT

= Hrmreg ACR) R e

(IvV-11)

We emphasize that as used in this context, the potential energy

U].(R) is considered to be zero at R = @ . It should also be borne

in mind that equation (IV-11) is valid only if Ul(R) 2 0 everywhere.
The Einstein transition probability A(R) was shown by

Mulliken (8) Lo be

3

", 8 3 —m 2
ARy= =2 & ¢ v } Q(R)’
3he (IV-12)

where G2 is the orbital degeneracy factor of the lower state, defined
by Mulliken (8) to be the number of suitable final orbitals to which a
transition from a given initial orbital may occur. For diatomic
molecules, transitions between states may be divided into parallel-
type transitions, which are characterized by AA =0, and per-
pendicular-type transitions, where ah=1%1 J\. is of course the
projection of the electronic orbital angular moment on the line
joining the nuclei. When we discuss the helium-hydride molecule
ion in the next section, we will be considering only parallel-type

transitions. Mulliken shows that for parallel-type transitions, the
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orbital degeneracy factors of both the initial and final states are

both unity. Mulliken also points out that while G, and G-2 , associated

1
with the upper (initial) and lower (final) states respectively, are not
statistical weights, their ratio GZ/GT is always equal to the ratio of
the statistical weights gz/g] associated with the states.

-
In equation (IV-12), the quantity Q (R) is a dipole transition

integral and is defined by

*

E(R) ::\/‘\PZ (Z;{'A)\}/ dx
= ! ’ (IV-13)

where the subscript s and the summation refer to the electrons, ‘r's
is the position vector of the electrons referred to a coordinate sys-
tem to be deseribed later, "P‘ and \I”z are the electronic wave
functions along the trajectory for the initial and final states respec-
tively, and the integration is carried out over the coordinates of all
electrons.

In practice, exact electronic wave functions are not available;
approximate wave functions must then be used, and thus a knowledge
of the exactness or inexactness of the trial wave functions becomes
desirable. As Chandrasekhar (16) has pointed out, the expression
for the dipole transition integral in equation (IV-13), designated the
dipole-length formula, may be expressed in terms of the dipole -

velocity formula

T = s [ (2 9Y) de

E(R)
(Iv-14)
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or the dipole-acceleration formula

2

Q (R) ‘mf% (2 %V)Y de

(IV-15)

where E(R) is the energy difference between states at a specific
internuclear separation R, and V is the potential energy arising
from Coulomb interactions of the electrons with the nuclei and other
electrons. The three formulas for ES(R) yield identical results when
exact electronic wave functions are used. The extent to which they
disagree when approximate wave functions are used may be con-
sidered to be an index to the inexactness of the wavefunctions.

We now obtain the absorption coefficient of a unit volume of
atoms undergoing the inverse of process (IV-2) by combining

equations (IV-3), (IV-4), (IV-5), (IV-11) and (IV-12). The result is

4 2 2
_ 32w e v L g
RO, = Ine * dV/dR) R ’Q(R)

o AT _ a] N, Ng .

(IV-16)

In this expression, the quantity is computed from equation

l__i,‘

dv/dR
—p

(IV-9), and ‘Q(R)l is computed from any of equations (IV-13), (IV-14)

or (IV-15).
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.I_.
2. Applications to the Helium Hydride Molecule Ion HeH

Over a significant range of temperatures and electron pres-
sures in a stellar atmosphere, helium is mostly neutral and
hydrogen is mostly ionized, due to the fact that the ionization potential
of He is some 11 ev greater than H. For this reason the singly
ionized helium hydride molecule HeH+, formed in its ground state
by helium atoms and protons, may contribute significantly to the
opacity in a stellar atmosphere if the absorption occurs in a trans-
parent spectral region. The process involves a transfer of charge,

viz

+
He + H -+ (HeH")
(Hell ) + ho —= (e 1I) (IV-17)

_‘_
(He H) —» He + H

Electronic states and potential energy curves have been
reported for the ground state by Evett (13) and Anex (14), who
found the ground state to be slightly attractive, with a binding
energy less then Zev and an equilibrium internuclear separation of
1. 4 Bohr radii. Preliminary investigations by these two authors
indicated that the first excited state was repulsive.

An estimate of the lower frequency limit for this absorption
process may be obtained by considering the energies of the two
states at infinite internuclear separation. The ground state dis-
sociates into a neutral helium atom and a proton; its electronic

orbital energy is the ground state energy of the helium atom, or
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-2, 90372 Hartrees, after Hart and Herzberg (15). The excited
astate dissociates into a singly ionized helium atom and a hydrogen
atom, having electronic energies of -2. 0 Hartrees for the He II
atom and -0. 5 Hartrees for the HI atom. This minimum energy
difference of approximately 0.4 Hartrees corresponds roughly to
1140 Angstroms. The continuous absorption coefficient of a stellar
atmosphere is small in this wavelength region, as absorption by
photo-ionizations of hydrogen from the ground state cannot occur.

In atomic units the time-independent Schrgdinger equation for

the electronic states of the system (IIeI{+) is
2 A
-—'i(q + 9V )Y + (V-W)¥ =0 (IV-18)

where W is the electronic energy of the state for the electronic

potential energy V

| ! ]
V = 71',1_2‘(71“ +T)”7‘(EZ,+E;)' (TV-19)
Here the subscripts a and b denote the helium and hydrogen nuelei
respectively, the subscripts 1 and 2 denote the electrons, and R is
the internuclear separation, as shown in Figure 2.

To find approximate electronic wave functions for this
molecule, we use a variational approach, expanding the trial wave
functions as linear combinations of atomic orbitals (LCAQ) after
Mulliken (8). For the sake of simplicity, we allow only two non-

linear parameters, J;L and Ib one associated with each nucleus.
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Figure 2. Hamiltonian Coordinate System
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The atomic orbitals chosen are the normalized Slater
orbitals; for the sake of simplicity we restrict ourselves to only

s-type orbitals, defined by Roothaan (35) as

w+ s

s
(ZT) -l -JInr
A = At <

[L/Tt' (Z“)!]Vz

(IV-20)

where J is a non-linear variation parameter, n is the principle
quantum number of the atomic orbital, and A 1s the electron-
nucleus distance.

+

Anex (14) reports that the electronic ground state of HeH is
d ‘Z+st,ate, in customary molecular notation. The meaning of this
notation is that the component along the internuclear axis of the
electronic orbital angular momentum is zero, hence the state is non-
degenerate. The superscript 1 denotes the multiplicity of the state
due to electron spin; in this case the component of the spin angular
momentum on the internuclear axis is zero. The superscript +
indicates that the electronic eigenfunction is symmetric about the
internuclear axis (Herzberg (36) ).

Radiative electric dipole transitions can occur only between
states of the same orbital symmetry in the electrons. To prove
thig, let us consider the transition dipole moment as expressed in
equation (IV-13), and let us denote real electronic wave funclions for
the ground state and some excited state by 4”& (<ixz) and ¢; (x,%3)
respectively, where X4 and Xy are the coordinates of the two

+ . .
electrons. As the ground state of HeH is symmetric, we assume
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that the ground state wave function is symmetric with respect to an

interchange of the electrons,

P, (% %)

= d)’;(’(i’(l)

The transition dipole moment is

6 = f(t%(‘(l)(l‘)[’)—(" J )?1} 49‘:(“,)(1) dx,dxz .

We also have

§ = f(p,;(xzxﬂ[z; + )_("] Cbi(xzx,) dx, dx, .

If the excited state wavefunction is antisymmetric,

§ Cxx

and we have

Q

—

-Q

- %(szi)

which can be satisfied only if

Q

0

av-21

(IV-22)

(1IV-23)

(Iv-24)

Thus the wave functions representing the ground and excited states

of an electironic transition must both be symmetric or both anti-

symmeiric.
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The following set of symmetric electronic orbital wave
functions are constructedfrom Slater-type atomic orbitals with

principle quantum numbers less than or equal to two.

K= 1ag D) [ag=) )
K= TAaa) 1AL R+ 1AW Taa(R)
7(3 = ] Ag() Za, () + AL [ ALR)
= A, (D A, (2
Xy AAah A aq (@) $ (IV-25)

MXg = ZAagl) P AL(x + AL A2alz)

K = 12 2+ 245000 12a(@)

Ay = AAam Ay () 2Ap(1) Aca(2) N

where the notation is explained by the example: 24 (1) denotes an
atomic orbital with principle quantum number n = 2 for electron 1
centered on nucleus b (taken to be the hydrogen nucleus). See
Figure 2.

The electronic Hamiltonian for the system is

! 2 i 2 | 2z
= ~ VvV - =V + — - &
H A A R g Mo,
_ 4 o
oz Ty s (IV-26)
Let
Hew = f?(z H X, dx

(IV-27)



Ly = fXng d~ (TV-28)

be matrices, where the integration is carried out over the coordi-
nates of both electrons.
The expectation value for the electronic energy of an

eigenstate corresponding to a trial wave function ‘k"_ is

f\P; K{" dx (1V-29)

where +j, is expanded in termse of the elementary wave functions )(2

N

Y. = Z Cig Ko (IV-30)
L=4

*
Since our trial functions are entirely real. 4’ = ‘{" . Thus we obtain

N N
% ?’ C»‘-Q inn H,Qm
Wi = S ic C. A
%‘ AR TAm T (Iv-31)

or

L=1 m=i (IV-32)
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Differentiating with respect to the C,;,» we obtain a set of equations

N
Z CLJ [Hgk"‘ \NL AJQ] = O
J
k = ,2,3, ... N (IV-33)
For this set of N simultaneous homogeneous linear equations to have
a non-trivial solution, it is necessary that the determinant of
coefficients vanish:

(IV-34)

This equation yields a characteristic polynomial for the W;, which
are the approximate expectation values of the true energies of the
firgt N states of the molecule. Pauling and Wilson (34) state that
these N expectation values are successively upper limits to the true
energies of the lowest N electronic states of the same symmetry.
Our procedure is to vary the two nonlinear parameters jq and jb
until minimum energies are obtained. Once the minimized roots
have been found, we substitute them into equations (IV-29) to obtain
the coefficients Cij associated with each state.

The calculation of the matrix elements ij and A";k in
equation (IV-30) is described in Appendix A, where it is shown that
each element is composed of certain basic one- and two-center
molecular integrals. These integrals and their calculation are
described in detail in Appendix B. A general procedure would be
as follows:

1. A specificbasis N =2, 3, 4, . . . . . . 71is chosen.
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2. For a given internuclear separation R, specific
values of the non-linear parameters ¥_and 3’5
are selected. These values are arbitrary so long
as they are non-zero and positive.

3. The elementary molecular integrals listed in
Appendix B are computed and used to compute the

matrices according to Appendix A.

ij and A(}'k
4, The eigenvalues Wi and corresponding eigenvectors
Ci]‘ are computed from equations (IV-30) and (IV-29).
5. We return to step 2, incrementing the parameters 3,

and/or §, for the same value of R. The new
eigenvalues are tested against the old, and the set
of parameters ( ch, fb) are chosen which give the
lower eigenvalues. Eventually a minimum is found.

A preliminary investigation, using a basis N = 2, revealed
two features: 1) at separations R less than about Ze«,, the sets of
non-linear parameters which minimize the different eigenvalues W,
are distinct, such that no one set minimizes all Wi‘S; 2) at
separations R greater than about 2a, the sets become identical in
the sense that the ground state becomes nearly independent of Sb ,
while the first excited state is reasonably dependent upon both ¥,
and J, . The physical significance of this behavior (which is a
continuous phenomenon) is probably that we have chosen an LCAO
approximation, which generally represents the true electronic states
better at large internuclear separations than small. Moreover, the

second orbital wavefunction in the set (IV-25) is exact at infinite
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separations. This point will be discussed in more detail later. Since
our primary interest is in electronic transitions between the two
lowest states, it seemed necessary that some procedure be adopted
that could yield equally reliable wavefunctions for the two lowest
states. The arbitrary procedure adopted was to minimize with
respect to an algebraic sum of the two lowest eigenvalues.

We must be careful in the application of this procedure, for
the "quasi-eigenvalue' W = W1 + W, which we are attempting to
minimize is a function of J, and ¥, and may be best visualized as a
surface, as may the functions Wl( )'u, 7, ) and W2( 3&' 3, ). The
last two surfaces are generally found to be quite smooth, with a
definite minimum. However, the sum surface W( 3,, T, ) may not
be smooth, or in particular, may possess more than one minimum.
The nature of this surface should therefore be investigated thoroughly
before the decision can be made that a true minimum has been
found. A simple procedure for doing this is to use quite different
starting locations of the parameters I, and ¥, , tracing the
progress of the minimization and seeing if the same or different
final locations are obtaincd.

It was found that for any basis N up to N = 5, the largest
basis used, at separations exceeding R = 2 only one minimum is
present. At smaller separations, two minima were found. As we
are interested primarily in describing the electronic states at
internuclear separations greater than 3&0, we consider the

calculations to be significant only for R > 3a,.
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The optimum procedure would probably be to allow a dif-
ferent set of parameters J, and T, to bc associated with each of
the elementary wave functions in equations (IV-21). This would,
however, give rise to a formidable minimization problem in 11
coordinates.

The preliminary investigation showed that the difference in
energy between the two lowest states did not become less than the
ionization potential of hydrogen until a separation R greater than
about 3o, was reached. As this is appreciably greater than the
equilibrium separation R = 1. 4a0 found by Anex (14), it is felt that
the minimization procedure described above is reasonable.

An additional feature of the two lowest '5,° states of HeH+
should be noted. The excited state dissociates into a hydrogen atom
and an ionized helium atom, which are both hydrogenic atoms, and
hence the second elementary orbital wave function in equations
(IV-25) should yield an exact electronic orbital energy for the
excited state at R = ®@ . The ground state of HeHJr dissociates into
a proton and a normal helium atom in its lowest electronic state.
The first wave function in equations (IV-21) is the simplest sym-
metric representation of the ground state of helium. Thus the chosen
wave functions best represent the true states of HeH+ at large
separations R. This is of course guaranteed by the LLCAO approach,
but we feel that we have improved matters by a judicious choice of
the set of orbital wave function. As we have noted, electronic
transitions which occur at separations R greater than about Bao

are the only ones which could conceivably contribute significantly
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to a stellar opacity, for when the energy difference between the two
lowest states of HeH+ exceeds the ionization potential of hydrogen,
photo-ionizations from the ground state of hydrogen will dominate
the stellar absorption coefficient.

Accordingly, for diffcrent valucs of internuclear separation
R,the best energies for the two lowest states of HeH+ were computed
for different bases N = 2, 3, 4 and 5. Dipole transition integrals
_(3(R), defined by equations (IV-13) and (TV-14) were computed as
described in Appendix B. The dipole acceleration form, equation
(IV-15), wasnot used, as the greatest contribution to this integral
comes from parts of the wavefunctions close to the nuclei, where the
LCAO approximation is least valid.

Results for the two lowest ‘Z+ states of 1—181.-1+ as obtained by
Evett (13) and Anex (14) are presented in Table I. A comparison of
the best potential energies of the ground and excited states of HeH+
obtained in this invcestigation at selected internuclear separations R
for bases N = 2, 3, 4 and 5 is shown in Table II. The best potential
energies obtained in this investigation were computed using a

basis N = 5. Final results are shown in Table TIL.
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TABLE 1

R Ground State Excited State Source
C (e7a,) (€7a,)

1.0 -2.903 Anex
1.2 -2.956 Evett
1.3 -2.967 Evett
1.4 -2.973 -1.802 Evett
1.4 -2.977 Anex
1.44 -2.972 Evett
1.5 -2.971 Evett
1.6 -2.967 Evett
1.8 -2. 967 -2.11 (a) Anex
2.2 -2.948 -2.24 (a) Anex
3.272 -2.33 (a) Anex

a) Private communication from Basil G. Anex describing
preliminary results as described on page 1662 of reference

(14).
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TABLE 1I

+
Potential Energies of HeH Obtained in this Investigation

Ground State -- UI(R) (Q'L/Qo)

R N =2 N=3 N =4 N=5
(ao)

2.0 -2.899 -2.900 -2. 905 -2.916
3.0 -2.854 -2.861 -2.869 -2.875
4.0 -2.841 -2.849 -2.857 -2.863
5.0 -2.838 -2.847 -2.855 -2.861
10. 0 -2.837 -2, 846 -2.854 -2.860

Excited State -~ U,(R) (f/@a)

R N=2 N =23 N =4 N =5
(%)

2.0 -2.1904 -2.271 -2.272 -2. 275
3.0 -2.417 -2, 442 -2. 443 -2, 448
4.0 -2. 466 -2.487 ~2. 488 -2. 490
5.0 ~92.476 -92.496 -9, 497 -92.498
10.0 -92.478 -2.498 -2. 499 -2. 500
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TABLE III

1
Rcsults for Transitions between the Two Lowest Z,+ States of Ilell

—

R U, (R) U, (R) E(R) lQ(RW [

ground excited U, (RY-W(R) Tength veloeity
(ao) (€7a,) (e7a,) (€7a,) (20) (&)
2.0 -2.9159 -2.2223 0.6936 0.938 2.20
2.9 -2.8898 -2.3301 0.5597 0.845 2. 19
3.0 -2.8746 -2.4040 0. 4706 0.702 2.01
3.9 -2.8667 -2.4460 0.4207 0.545 1. 68
4.0 ~-2.8631 -2.4706 0.3925 0. 399 1. 29
4.5 -2.8614 -2.4844 0.3770 0.284 0. 960
5.0 -2.8608 -2.4920 0.3688 0.195 0.687
6.0 -2.8604 -2.48717 0. 3627 0.0867 0.320
8.0 -2.8603 -2.4994 0. 3609 0.0156 0.0639
10.0 -2.8603 -2. 4995 0. 3608 0.0026 0.0114




-31~

Two features of these calculations should be noted. The
first is the discrepancy in the dipole transition integral 6(R) as
computed by the dipole-length and dipole-velocity formulas. This is
probably a result of the fact that the wave functions used in this
investigation properly represcnt the true clectronic states of HCH+
only at large separations. As Chandrasekhar (16) has pointed out,
the dipole-length formula emphasizes parts of the wave functions at
relatively large distances from the nuclei, the main contribution to
the dipole-velocity formula comes from intermediate distances,
while the dipole-acceleration formula emphasizes regions of the
wave function close to the nuclei. As the wavelength region of
interest corresponds to large separations R, we place greater
confidence in the dipole-length formula. An additional reason for
choosing the dipole-length over the dipole-velocity formula is that
we wish to determine the minimum effect of absorption by this
process in a stellar atmosphere. While the absorption cross-section
of a radiative transition between the two lowest ’Z+ states of HeHJr
computed using column 5 of Table III can by no means be considered
a lower limit, it will be at least the smallest cross-section we com-
pute in this investigation.

The second feature of Table IIT is the minimum energy
difference at infinite internuclear separation. The best values of
the electronic orbital energies of these two states are taken to be
-2. 90372 Hartrees for the ground state after Hart and Harzberg (15),
and -2.4995 Hartrees for the excited state after Evett (13). Thus

the best value for the minimum energy difference is
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B( =@ ) = 0.4042 Hartrees
which places the threshold for radiative absorption from the ground

+
state of HeH to the first excited state at

Yx =8.866 A

H

or

<@

A 1130 A

The minimum energy difference computed in Table III would place
the threshold at 1260 & . A significant amount of the monochromatic
flux in the spectra of stars earlier than spectral type A O falls in
this wavelength region. Placing the threshold of this reaction at
1260 A would thus over-emphasize the importance of HeH+. For
this reason the following corrective procedure was used.

In Table IIT it is seen that the potential energy of the excited
state goes to the exact value at large internuclear separation, a
reflection of the fact that this electronic state is exactly represented
at large internuclear separations by hydrogenic wave functions
centered on each nucleus. The ground state potential energy, how-
ever, does not go to the exact value, but is about 1. 5% too high.
The potential energies of the ground state in Table III are shown in
Figure 3, where are also plotted the potential energies obtained by
Anex and the asymptotic potential energy at infinite separation. The
potential energy shown in Table III for the ground state at a

separation of 10 ag is -2.8603 Hartrces and appcars to have
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approached the asymptotic value which could be obtained from our
LCAO approximation. The required energy correction is -0, 0434
Hartrees, and if this constant correction is applied to all the
potential energies shown in Table III for the ground state, the
corrected potential energy curve joins smoothly with the curve of
Anex, and is indicated by the dashed line in Tigure 3. We adopt the
dashed curve as the best potential energy curve for the 121» ground
state of HeH+. Other corrective procedures, such as fitting a
simple empirical formula to the upper curve in Figure 3 and then
adjusting it to join smoothly with Anex's data and the asymptotic
energy, were considered; the elementary correction described, how-
ever, seemed best, for it preserves a maximum of the character of
the calculations of this investigation.

We refer to equation (IV-16) for the absorption coefficient

and write it in the form

Ay = BEC e, |2 | el
! 3 he dv/dR
W, (R) .
- /& T
AT _ N., N. .+
]
X € He '“H (1V-35)

where Uz(R) is the potential energy of the excited state shown in

Table III, relative to a zero point at R = ©@ | When the potential

energy curve of the ground state is corrected, the factor

JQZR l

computed from

rs
hvy = %. E(R)
© (IV-36)
will also be affected.
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We assume that all other factors in equation (IV-35) will be un-

affected and show the data that enter into equation (IV-35), after

correction of the ground state potential energy,in Table 1IV.

TABLE IV

Corrected Data

\ 7 =
) (Q‘) If;’( i)\ )ﬁfﬁ{‘ | ' ?Sj\)l
2.0 16. 166 0.2772 1.8 0.938
2.5 13. 227 0. 1694 2.4 0. 845
3.0 11, 275 0. 0955 3.6 0.702
3.5 10. 178 0.0535 6.0 0. 545
4.0 9. 564 0.0289 10. 2 0. 399
4,5 9, 222 0.0151 19 0. 284
5.0 9. 040 0.0075 35 0. 195
6.0 8. 908 0.0018 125 0,0867
8.0 8.867 0.0001 2600 0.0156
10. 0 3.866 0. 0000 73700 0.0026
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The orbital degeneracy factors G] and Gz, defined by
Mulliken (8), are unity for Z states. The ratio of statistical
weights of the two lowest 'Z+ states of HeHJr is thus unity. The
factor g in equation (IV-35) represents the statistical probability
that the atoms will approach each other along a trajectory corre-
sponding to the upper lz+ state of HeH+. Bates (6) assumes that g
is given by the ratio of the statistical weight of the upper state to the
sum of statistical weights of both states. g thus has the value 1/2.

In equation (IV-35) there is a numerical derivative of a
quantity which asymptotically approaches a constant as R increases.
The derivative thus vanishes, and the numerical accuracy of this
derivative at large R must be investigated. Numerical derivatives
were computed by 3 and 4 point Lagrangian formulas given by Kopal
(31) and indicated that two significant figures were preserved out to
internuclear separations of about Sao. Beyond this R, the derivatives
lose all significance. An attempt was made to determine the
asymptotic derivative of the energy difference E(R) from the basis
wave functions. This failed,however, because it was necessary to
evaluate the derivative of an exchange integral (see Appendix B). The

asymptotic behavior of the ground state, however, was found to be

Ul(R\ ~J QXP(‘KT&R\)

R —» o0

(IV-37)

where J, is the variation parameter centered on the helium nucleys
and has an approximate value of 1.7 at large R. The asymptotic

behavior of all terms which contribute to the excited state potential
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energy curve, except the exchange term, was found to be
U, (RY W exp(-27,R)
R» o0

where T, = 1.0 at large R. The asymptotic form for the dipole

length transition integral is easily shown to be

\é{(?ﬁ‘ ~ R Q“R

R~

The dominant asymptotic form of the various quantities thus appear
to be exp (-2R), and this form was adopted, fitted to the derivatives
computed out to R = 5a0 and used to extend the calculations to
R = 10a,.
Of interest is a comparison of the reaction rate coefficient
¥ (R, T) for reaction (IV-9) with rate coefficients of other reactions
in a stellar atmosphere. In particular, we would like to have a

comparison with the rate coefficient for recombination of atomic

hydrogen

+ -
HY o+ € — H(S) + W (1V-38)

and helium

- We o,
Het + € —= He(nS) + | (IV-39)

From equations (IV-T7), (IV-11) and (IV-12) we have
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s ¥ 2
256 1T € A, 3
¥(R,TYJR = X 9 & E(R)

@ - /'S e—L uI(R) b
Q(R) - — "2 _{(dR
¢ R NEI e { - T f

-173 3 5 — U 3
~ 2.0<10 E(m R ‘Q(Rﬂl c)(,o{—c ‘(R)}JR em Jaec

- oy AT

(IV-40)
where the units of the various quantities are as indicated in Table
ITI. What is of interest for comparison purposes is the integral of
equation (IV-40) over all values of R such that radiative association
can occur. We integrate over the limits zero to infinity, introducing
an external factor of 2 to cover both the approach and recession
halves of the trajectory. Results for different temperatures are
shown in Table V. The recombination rate coefficients for hydrogen
(to all wS levels) are taken from Bates and Dalgarno (37) and the
recombination rate coefficients for helium, again to all nS levels,
are taken from Arthurs and Hyslop (11). Also shown are reaction
rate coefficients for the sum of free-bound and free-free reactions

fT
o) H2 X
-+ ~+
H+ H — H, (zps) — H, (1ae) + hv

(H + HY) (zped — (H+ H' ) (1ag) + hv

taken from Bates (6), and reaction rate coefficients, free-bound

2+
plus free—free)of HeH2

(He™ + H)(2pe) — (He'+ H )(1a0) + hv

taken from Arthurs and Hyslop (11).
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TABLE V
Comparison of Rate Coefficients ~107 13 cmg/sec
T HeH" H He HeH? " H ;
(°K)
10000 0.79 4,2 4,3 1. 55 0.004
16000 1.2 2.9 3 1.52 0.009
20000 1.4 2.4 2.7 1.52 0.012

The reaction rate coefficients shown in Table V for HeH+ and HeH2
are surprisingly high in comparison to the recombination rate
coefficients of hydrogen and helium, when we remember that the
latter depend essentially upon electron velocities, while the
coefficients of the former are determined by nuclear velocities.

It follow that thc absorption cross scctions ofI{cH+vandﬁHeH2+’are

much greater than the photo-ionization cross sections of hydrogen

or helium atoms.
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V. MODEL STELLAR ATMOSPHERES

A. General Discussion

A comprehensive summary of the basic principles governing
the physical processes in a stellar atmosphere has been published
by Munch (17), who gives an extensive bibliography on the subject.
We follow established principles wherever possible and hence will
not discuss in detail the general theory of a model stellar atmos-
phere. What will be presented in this chapter are the specific
computational methods employed and the basic assumptions about
these models.

We assume the conditions of hydrostatic and radiative
equilibrium. Continuous opacity sources only are considered; ab-
sorption line effects are neglected. These models are non-gray in
the sensc that both thcrmal and isotropic scattering processes are
taken into account; the Milne equation is solved for the monochro-
matic source function. Local thermodynamic equilibrium is

postulated in order that a Tocal temperature may be defined.

B. Computational Methods

1.  Chemical composition

The convention will be adopted throughout that chemical
composition means the relative abundance by numbers of atoms of a
particular chemical element. Let A; denote this relative abundance;
the Ai's will be normalized such that

2 Ap =

(V-1)



-41-

2. Ionization and excitation equilibria

The ratio of the number of atoms of the ith element in the
, st . .. . . .
( + 1) ionization state to the number of atoms in the ']th state is
given by the Saha equation
5/
34 2 .
. anwm)  (RT) B s+ L4
i S | 2 e (- ) .
N - W' Te 8.3 (V-2)
A0
) ) 2
where P_ = electron pressure in dyne/cm
Ii]‘ = ionization potential, in ev, from jth to
S st
G+ 1) state

Bi,j(Pe, T) = partition function of element i in state j.
Values for all physical constants are adopted from Cohen, Crowe

and Dumond (18). Numerically, equation (V-2) may be written

q

. NG e _ 2022210 B .., !OGQI“
A3 Ny P, 6’2 B:; (V-3)
where
5040,
g = =

Ionizations up to and including the second state are computed for
each element. The total number of atoms per cm3 of a particular
element is the sum of the atoms per cm3 of the atom in ionization

states:



i\li = N:&o -+ NLI + NA?\ (V-4)
g N N, N;
= N. P+ —— + AR Al ] i
AQ \, Nio N, N.. (V-5)

. 3 . .
Hence the fractions of atoms per cm® of an element in various

ionization states are given by the following ratios:

N - . -1
nio - l\;" - [] + Xil + Xi'xil] (V-17)
A
- |
,.o= Nio X -L\—#X' + M.X;L] (V-8)
i N. Al Al
A
-~
Nz ‘ Ke + R X (V-9)
RLZ = N = Xiuxil’ I+ %3 i) Cia

A
3. The relation between gas pressure and electron pressure

F'rom the equation of state of an ideal gas and the law of

partial pressures, we have

P = P +P (V-10)
g a e
P, = N_KkT (V-11)
a a
P, = NKT (V-12)
where
Pg = gas pressure, dyne/cm2
P_ = pressure from atoms, dyne/cmz
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P, = electron pressure, dyne/cm?

Na = number of atoms per cm3 of all
elements, in all ionization states

No = number of electrons percwns

Each singly ionized atom contributes one electron, each doubly
ionized atom two electrons etc., so summing over chemical elements

and lonization states up to and including the second we have

Ne = N Z A+ 2 ng ) (V-13)

i

From (V-10), (V-11) and (V-12) we have

o _ NawNe _ 1+ Ne/n,
Pe Ne Ne/N, (V-14)

We may obtain NQ/TNa from equation (V-14), hence we may establish

a relation for 'Pg as

- <:;ﬂ { re -3 Y, ME
po= p [t M)
¢ e T\ T j : | (V-15)
VA (R 2o, A
or in functional form:
oo ) A - 'i:} r \\i
g r%( Aud e s (V-16)

Hence it is possible to invert this relationship to obtain

= L -
Peo= el Ay P%) by

3 (V-17)
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however, the inversion is non-analytic through the dependence of the

'

rijy's ad Bij 's on Pe' For a given P , T we may obtain P through
‘ . S

inverse interpolation in a table previously constructed from equation
(V-16). It should be noted here that having P, and T we may com-

pute the mass density of the gas

0 = Newme + Ny %J A wm; (V-18)
_ ’ N _ Fe
- m + A [« NS R .
X ¢ Ne ZJ A*m*} AT (V-19)

4. Continuous opacity sources
The sources of continuous absorption of radiative energy in a

stellar atmosphere are summarized below

a. Neutral hydrogen HI
b. Neutral helium He I
C. lonized helium He 11
d. The hydrogen molecule ion H2+
e. The negative hydrogen ion H™
f. The hydrogen molecule H,
g. Singly ionized helium hydride HeHJr
h. Thomson scattering by free

electrons | g

i. Rayleigh scattering
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Since the principle interest in this thesis is in stars of spectral type
earlier than A O, sources (f) and (i) are not included in the computer
program at the present time. Source (g) has been discussed at
length in Chapter IV, and the remaining sources will be discussed
here. The derivation of the atomic absorption coefficients arc con-
tained in Appendix C. What are presented here are working equa-
tions as used in the computer program.

The continuous atomic absorption coefficient of hvdrogen.
including both bound-free and free-free transitions and expressed
per H I atom in the ground state, is given by equation (C-18) in
Appendix C. To obtain the mass absorption coefficient, multiply by

3

the number per cm® of H I atoms in the ground state and

NH, I
divide by the mass density < .
The number per cm3 of HI atoms (all excitation states) plus

protons is
(V-20)

where A, is the relative abundance of hydrogen by numbers of atoms,

3

H

and Na is the number per cm” of all atoms in all ionization and

excitation states. From the Boltzmann equation, we compute the

ratio of ‘NH 1 to NH as

s

NH’| ?l - 2
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where BH = BH(

equation (V-7) we have

Pe, T) is the partition function of hydrogen. From

NH |
Ny + N |+ Xy (V-22)

l‘

where XH = N_/NH is computed from the Saha equation, equation
i P

(V-3). We thus have

N - _2\4 AH
" By 1+X4 o (V-23)

We use the definition of the mass density 0 as given in equation
(V-18) and neglect the mass of the electron:

2 = Na Z ALy (V-24)

A

The quantity

AM = > A (V-25)
depends only upon the chemical composition of the model, hence is
treated as a constant in the program. We express the masses of the
chemical elements in terms of atomic weights, and thus absorb a
factor of one atomic mass unit into the constant which appears in the
expressions for each of the atomic absorption coefficients. This
helps to avoid the possibility of encountering numbers which exceed
the numerical range allowed by the computer. We obtain finally the
following program equations for the monochromatic mass absorp-

tion coefficient of hydrogen.



£ n >T,
a
110 ( e - |) + ?E(x,‘r')
N Z
[+ 9
! (V-27)
.l _ he
K(HT)yp = 1259355 10 all &, (‘_ o ”)
By AM 1+ x,
(V-28)
n = 3!.30‘!31% 6 = Soyo. 17
" T

where A is expressed in microns, ¢7(? %) and g (9,7) are the

bound-free and free-free Gaunt factors respectively and the factor
~ e

(l - € Tfﬁ) is included to allow for stimulated transitions.

The continuous atomic absorption coefficient of neutral
helium, is given in Appendix C by equation (C-36). We convert this
to a mass absorption coefficient by multiplying by the number of
He I atoms in the ground state NHe, 1 and dividing by the density
A . We proceed in the same manner as for hydrogen, except that
in this case we have three possible ionization states instead of two.

The result is

NHe,l . Ane I
A Bue AM 1+ X+ X Xg

(V-29)

where AHe is the abundance by number of helium, BHe is the
partition function of neutral helium, and X2 and X3 are lonization

ratios defined by



NH€+
X, =
2 NHe
X, = Npe*"
NHe+

and are computed through the Saha equation, equation (V-3).

The continuous atomic ahsorption conefficient of ionized
helium, given in Appendix C by equation (C-22), is converted to a
mass absorption coefficient by multiplying by the number of HeJr

atoms in the ground state and dividing by the density o . Specifically,

we obtain
N H€+) t - A He XZ
/2 Byet AM | + X2 + X3 Xg (V-30)

where B i

H
of course include the stimulated emission factor for both neutral and

+ is the partition function of singly ionized helium. We
e

ionized helium.

The continuous absorption coefficient of the hydrogen
molecule ion, H; , has been calculated by Bates (6, 7, 19), and
his semi-classical procedure has been described in Chapter IV.

Specifically, we write

A, ’ l R ]75(@}2

dv/dR
_WiRy _ i
X [ e AT _ e AT ] (V-31)
""IZ N N + “~ .
K(V,T)H+ = 5.007 xi0 %Gf &y -5/—‘;-'1~ i /%m (V-32)
Z

the factor —uNwt may be written
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2
= Ty (1—-11@(%1*‘;\_) S0

N” NH+
/O

(V~33)

where ny, is the fraction of neutral hydrogen, defined in equation
(V-7). And since we are defining AM in terms of atomic weights,
we absorb a factor of one atomic mass unit squared into the constant
in equation (V-31). The quantities appearing in the right hand side
of equation (V-31) are given in Table VI , where in column 7 is

listed the quantity

2z

Y = R lﬁ;&) ‘&-’(R} V34

The orbital degeneracy factor G, appearing in equation (V-32) has

l.
the value 1 for the lav -2po transition of H2 , and the statistical
weight ratio g has the value 1/2, Thus we may writc for the

continuous mass absorption coefficient of H2 :
s - K -2

K(V)T)“-& = S.,09¥«xI10 Y (Q R _ ¢ &T)

Z

2
A
x Q- e (S8 om'/gm (V-35)

This expression includes the stimulated emission factor.
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TABLE VI
Y.

R WS bl B TAYe U1(R) U2(R) Y
@ () (20> (20) (€7 (%) (3)
0.0  32.9033 6.987  0.3728 o = 0.0
0.2 31.2807 2.716 0.3972  3.57130  4.99733  0.0171
0.4  28.2067 1.851 0.4511  1.19922  2.48921  0.0603
0.6  25.1644 1.649 0.5203  0.49516  1.64236 0. 1607
0.8  22.1920 1.555 0.5966  0.19553  1.20726  0.3543
1.0 19.4561 1.490 0.6745  0.04822  0.93519  0.6781
1.2 16.9714 1.441 0.7525 -0.02897  0.74472  1.175
1.4 14.7448 1.405 0.8305 -0.06998  0.60221  1.899
1.6 12. 7736 1. 381 (0.9035 -0.09093 0.49140 2.887
1.8 11.0463 1.368 0.9779 -0.10025  0.40333  4.239
2.0 9.54392 1.362  1.0487 -0.10263  0.33247  5.992
2.2 8.24380 1.361 1.1213 -0.10083  0.27499 8. 282
2.4  7.12104 1.362  1.1968 -0.09654  0.22809 11.24
2.6  6.15280 1.364  1.2750 -0.09083  0.18966  14.99
2.8  5.31684 1.365 1.3557 -0.08435  0.15803  19.67
3.0 4.59472 1.365 1.4386 -0.07756  0.13191 25,43
3.2 3.97077 1. 363 1.5260 -0.07073 0.11029 32. 54
3.4 3.43082 1.361 1.6122 -0.06408  0.09233  40.90
3.6  2.96272 1.357 1.7023 -0.05771  0.07736  50.95
3.8 2.55735 1.350  1.7934 -0.05170  0.06489  62.71
4.0 2.20518 1.341  1.8843 -0.04608  0.05445 7620
4.2 1.89973 1.332  1.9785 -0.04090  0.04571  92.00
4.4  1.63485 1.322 2.0702 -0.03615  0.03838 109.7
4.6 1.40519 1.311 2.1696 -0.03183  0.03223 1306
4.8 1.20612 1.299  2.2643 -0.02793  0.02706 153.5
5.0 1.03382 1,281 2.3600 -0.02442  0.02271 178.4
5.5  0.698756 1.234  2.6040 -0.01723  0.01462 253.2
6.0  0.467665 1.205 2.8564 -0.01196  0.00936 353.8
6.5  0.310497 1.180  3.1036 -0.00821  0.00594 480. 1
7.0 0.204439 1.157  3.3517 -0.00559  0.00373 636.9
7.5 0.133807 1.139  3.6018 -0.00380  0.00230 831.3
8.0  0.086974 1.122  3.8509 -0.00257  0.00140 1065.

3.9 0.056265 1. 108 4, 1039 -0.00174 0.00082 1348.

9.0  0.036194 1.092 4.3589 -0.00119  0.00046 1888.
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Gingerich (20) has given a polynomial approximation for the
absorption cross-section of H , including the stimulated emission
factor, after the values computed by Chandrasekhar and Breen (21).
This cross-section is expressed per neutral hydrogen atom per unit
cleetron pressurc., In their calculations, Chandrasekhar and Breen
took the partition function By of hydrogen to be 2; hence we must

multiply their values by the ratio 2/B Remembering our defini-

H
tion of AM in terms of atomic weights, we multiply Gingerich's
expression by Avogadro's number. We have then to multiply this

cross-section by the number of hydrogen atoms per cm® and divide

by the density. We obtain

NH — ﬂ.H A”

s AM (V-36)

We compute, with A in microns and 8 = 5040.17/T

n

3
A -3.00633 -7.53475 A +8.74112 x -3.90694 A

3 Y
-14. 3126 + 105.678x -148.916 )\1 + 92.6638X -21. 2049

td
1

3
C = 26.9706 - 139, 117x + 199.280X -124. 719X + 28. 6145 X
D - -15,.3323 + 74,2823 -107.612 g 67. 6839>~3 - 15,5738 7\‘{
3 o
E = 2.9937 - 14.1345*+ 20. 5901 - 13.0050 X + 3.000878 A
z 3 o
T1 = -3.65704 + 10.46086 - 5.4592580 + 1.9351 & -0.278743 @
T2 = 0,432655 + 0.0453346- 0,0147151 ch
2
T3 = 0.0379403 + 0. 3268588 - 0. 354844 6

2
T4 = -0.410321 + 6.714086 - 0.975664 & + 0. 186518 &
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and
k., o= Ry, + A (V-37)
where for A < 0.65

-3 T2
&b”" ,&& = (.02486 x [0 exp[T' - "{] (V-38)

and for ©.65 < A < .65 4

-3 3 Y

‘L’[T'-/ _{_jj_]

- LOAHBO (O
ko = ©0 x x ~ (V-40)
and for A > 1.65 M kf is given by cquation (V' 40) and
k =0 Vv-41
b ( )
We then have
A
Kv,T) . = 2w B 5 &
H B, AM (V-42)

The cross-section for Thomson scattering by ifree electrons is
given by

-5

= - = (.65208 %10 . m
. P (V-43)

@

A

(
»
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To convert this to a scattering coefficient per unit mass,

multiply by the number of electrons per em® and divide by the

density. Thus

AN .
g = b.65208 x 10 - v /%m
P {(V-44)
or in terms of the ratio of gas pressure to electron pressure

0. 400778
(el =

Agv\( Pde _ |) (V-45)

[4

The continuous absorption coefficients of HeH™ was described in
Chapter IV. We form the total continuous monochromatic mass

absorption coefficient by summing over the different sources:

Koty = KT+ KO,m oo+ KO e

+ KU,T)H: + KT e KOG e (V-46)
The total monochromatic opacity is
KQ(T\ = K\/(T3 + O (V-47)

5. The Equation of Hydrostatic Equilibrium

Assuming a plane-parallel stratified atmosphere with the z-
direction pointing outwards along the direction of gravity, we have,

in a state of mechanical equilibrium:

d ¥V
- = T %/
d‘a« (V-48)

where P is the total pressure, gas plus radiation.
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We introduce the characteristic optical depth, defined by

J’K:‘-”(K*’O’)/Odzf (V-49)

Here « is a mass absorption coefficient defined at some particular
frequencey. For hot stars an opacity defined at A 1000 A has been
found suitable; for cooler stars one should define the characteristic
opacity at a longer wavelength.

Hereafter., when we mean to specify the characteristic opacity
and optical depth, we shall write ¥ and * respectively. K, and 7%,
will denote for a different frequency the monochromatic mass ab-
sorption coefficient and associated optical depth. The total opacity
is the sum of the mass absorption coefficient and the mass scat-
tering coefficient. Thus equation (V-48) becomes

= ipe (V-50)

PR,

dx K+

Under an assumed temperature distribution T(x) equation,(V-50)

is integrated numerically, with the physical boundary condition

ch = 0 ot x = 0 (Vv-51)

This physical boundary condition is an unsatisfactory condition to
impose, because the ionization equilibria and other relations are not
defined at zero pressure. Hence it is necessary to adopt a gas

pressure at some non-vanishing optical depth.
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The procedure followed in this computer program is to assume
that at sufficiently small optical depths, the mass scattering coef-
ficient ¢ dominates over the mass absorption coefficient k. The
gas pressure gradient is then expected to be reasonably constant,

and a linear dependence of qu(’t) can be assumed. We assume an

2

.

arbitrary trial electron pressure, for example 10 -2 dyne/em
With this Pe and boundary T(o) from the assumed T(7%) distribution,
we compute K and ¥ . We compute from (V-50) a value for the gas
pressure gradient ( iP_‘L)c The gas pressure at a small optical

dt
depth oat i8

Pdh(b”cﬂ = (%)o 67T

(V-52)
The gas pressure at 9—%— is
P.(ox) = L Py(®
g ( ) % % (V-53)
and the temperature T(Z%)and radiation pressure gradient (%f::)“‘/x

are found by interpolation in the assumed distributions. From the
gas pressure tables we then find P_(%J). We compute ®, ¢ and d;%
for 9‘—;‘—: and then obtain an improved value of Pg( at ). This process
thus becomes iterative, and has proved to be quickly convergent;
most important, it provides a systematic method of defining the
boundary conditions from model to model.

Once the starting values have been computed, integration of

equation (V-50) is performed by standard procedures. At any depth

T, values of the independent variable and derivatives up to the
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fourth are used to predict values at the next integration step. Third-
order Lagrangian interpolation is used to obtain current values of
electron pressure, temperature and radiation pressure gradient;
the absorption and scattering coefficients are computed. Round-off
and truncation errors can be kept below a specified amount by the
numerical integrator. A typical computing time on an IBM 7094

computer for integration to an optical depth of 250 is 40°°€,

6. Monochromatic Optical Depths

After the equation of hydrostatic equilibrium has been integrated,
a table of monochromatic mass absorption coefficients \«(\7 (r) is
computed for all optical depths and frequencies. Monochromatic
optical depths %, (%) are defined in terms of the characteristic
optical depth © by

r
) o(?)
T, (v) = Molm) d= . -
K (2) + o) (V-54)

(o]
The characteristic * -scale is chosen such that integration of
equation (V-54) can be done by Simson's rule, which is quite
efficient, yet is accurate to third order. Typical computing times
on an IBM 7094 computer for 40 optical depths and 26 frequencies

are 30 seconds for the K,(®)table and 10 seconds for the T,() table.

7. The Equation of Radiative Transfer
We assume a semi-infinite, plane-parallel atmosphere; we may
then write the equation of radiative transfer for a ray of v -radiation

in the form
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P 35..5&;(_;_/:2 = T, - S,

(V-55)
where .. is the cosine of the angle between the ray and the outward
normal to the atmosphere, I\,(”cv,/u) is the specific intensity of
the ray, or the amount of radiative energy crossing a unit area at a
monochromatic optical depth 7, per second per unit solid angle in
the direction m . S,(’r,—,) is the source function, defined as the
ratio of the coefficient of spontaneous emission to the coefficient of
absorption. In strict thermodynamic equilibrium, SV,(’C,,\ is the
Planck function B,(7). As a boundary condition, we require that at

v,=0¢, the radiation field ig all directed outwards:

v
L, o, ) = O For m <0 . (V-56)
We note that a formal solution to equation (V-55) exists:
T" TV-—X\;
o A
o M
o 19--’("’
A
IV(’CV’J/“>O) = f SV(X\?) N i}f" . (V-58)

()

Following Eddington (12) we define the mean intensity
+1
3—\; (7)) = ”Iz'\‘f L,y ) du
~1

and the monochromatic flux

+1
T('Fg(ltg): 7\“] TylT,, ») M J/u .
- (V-60)
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We introduce the formal solution into equations (V-59) and (V-60)

and obtain
o2

U;(T.)) = ){f S?(X‘;) E’(\(V—TV\) an

Ty

T,
4+ f S,(x,) B, (T,= %) dx,
- o
1o Bty = wa 5o lxd) Ez\(x"’*’c"\) dxy
T,
Ty
. 7\th S\;(Xg) EICT.»”XVXC\XJ
()

where E (X} is the nth exponential integral, defined as
n

*  -xk

- € dx .
E“(Xw - [ *n

We define the general A\ -operator to be

A(“\(¥) = f%(x\ E, (x-7)dx
< T
T
,(..q"j FY B (r-x) dx.
o

Equations (V-61) and (V-62) are then rewritten

Q

T, = = A, (59

PN Ty

{2
2.TC J\’c (sy)
v

7( F\} (Ta\ =

(V-61)

(V-62)

(V-63)

(V-64)

(V-65)

(V-686)
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In the previous section, the monochromatic optical depth ¥,

was defined in terms of the characteristic optical depth * by

Ky(2) + o ()
do, = e _
v K (=) + o) (V-67)

We define

KV(’C] 4+ o (T

M,(e) = AM/C\; = N
de K(e)+ o () (V-68)
The equation of transfer, equation (V-55), may then be written in

terms of the characteristic optical depth -

P et r(\,(fc\[I;(?,/ﬂ* Sote

2t (V-69)

We must now investigate the form of the monochromatic
source function S,(%). We postulate that both continuous absorption
and scattering occur, and that free electrons dominate the scattering
processes because of their high velocities. Moreover, we assume
the radiation field lo be unpolarized; the cross section of a free
electron for scattering is then given by Thomson's classical formula,
equation (V-43). We confine our attention to a cylinder of unit
cross-section and length ds, located at a height z and oriented at an
angle # to the outward direction. The loss of beam intensity in

passing through this cylinder will be

where k;and ¢ denote the mass absorption and scattering coefficients,
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A 1s the mass density anddw is a unit solid angle about the direction
6 . The energy returned o the beam will consist of & conlribution

from thermal emigsion

v Yre (V-71)

where j, denotes the coefficient of thermal emission. We are
assuming local thermodynamic equilibrium, and hence invoke
Kirchhoff's law

Jo = Hdrc Ky B, (V-72)

Thus the energy returned to the beam from thermal emission is

Ky 2 By(T) da dew . (V-173)

Energy is also simply scattered into the beam from all other

directions, and this contribution is

T p da c{wf pPlcos 8) T,(%,0) dw
i (V-74)
where P(COS 6) is the phase function of the scattered light. For
igsotropic scaticring, plces e)=1 , and ugsing the dcfinition of ‘JV
in expression (V-74), the contribution to the beam from light

scattered from all other directions is

oo Jplz) da dw (V-175)
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Adding up the gains and losses, the equation of radiative transfer

becomes
CRAAY 7L A AT
2%
+ K\;/O BQ(TX + g-'/:) j\;(}) . (V-176)
Since
ng/ ~ cos® da = o da (V-77)

and the monochromatic optical depth is defined by
dt, = — (K, + ) o d3 (V-78)

equation (V-76) is written

B TV N, P ST
S )
27T,
_\ \'(Jﬂ, Bg(‘\'3 + S ‘jg (Tv)] . (V-79)
Yo+ o K,+0

We now define the source function 3$,(%,)to be

S, () = B,(T + J, 2,y .

Kovo K, o (V-80)

When we introduce the formal solution to the equation of transfer,
we have the Milne integral equation for both scattering and continuous

thermal absorption

(v

S\y(’tps = ‘V\? BQ(TS + “;’: T ,_/\,,(\ (S\?) ’
K, +0 K40 v (Vv 81)
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We solve this equation for S; and substitute into equations
(V-65) and (V-66) to obtain the mean intensity J,and monochromatic
flux 7F;. In the computer program, this constitutes the solution of
the equation of radiative transfer.

Equation (V-81) may be solved in several manners, the simplest
of which is iteration, since our procedures are geared to numerical
methods. A trial function for S‘, is inserted into the right hand side
of equation (V-81), and an improved S, is obtained. This is then
used as the trial function on the next iteration. In regions of the
spectrum where thermal absorption dominates over scattering, this
procedure converges rapidly. However, convergence is slow when
scattering dominates; this dictates an improved procedure.

We write the Milne equalion in the form

S, = (=2 B, + 2, T,

(V-82)
where
- vl
Ny = e (V-83)
v
and
QD]
PR hY
U\) = ‘[\‘”c,,( D

The straightforward iteration procedure may then be formulated as

L) (i-1)

Sy = =28, v XN, (V-84)
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S? = (=) B\) Y J, (V-85)
where
(Y
D) \ J\, S('«\
fj\? - %( v ) (V-86)
and
(o)
S = 89
Vv (V-817)

The change in the source function is

AN A1) 43

(&) (A=)
= A‘)L j\) - jv ]

wy

=L, K/\:(S\:*W - J\TV(S\:“)] (V-88)

PN

or

(‘\ (A=)
) o

(V-89)

Since the first exponential operator is singular at x,=7T, , we expand
Ch-0 .
/.\v* in a Taylor series about x,=7, and keep only the zero-th

order term.

AN \ Gy g0
8 A LN, 0 /L%(a)

*

(V-90)
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Our iteration procedure is then to compute

i) ) 1k CL -0
Sv-, = (=28, + 'Ji’\VJ\?v(SP )

{(V-91)
and
, - D (L-1)
N M& | ..Llslcm} L S-S, ]
(V-92)
and for our next trial source function, take
S Cad ) S (;) A L)
py -
v v v (V-93)

This procedure has proven to converge roughly twice as quickly as
the straightforward iteration method.

However, in extreme cases where scattering dominates over
thermal absorption by several orders of magnitude, convergence is
extremely slow whatever iteration method is used. Two procedures
seemed worthwhile investigating. The first was to keep higher

. . “ L .
order terms ia the expansion of &, , but this involves numerical

€AY

; . . L~t) N cps .
derivatives of S, and Sq(* . Enough significant figures were

lost that this method failed in nearly every case in which it was

tried. The second procedure is to attempt to provide an initial S,;( *
that is closer to the final S, than the approximation S,,mz B, . The
assumption made here is that at those fx*equencies and optical depths

where the scattering dominates over absorption. the monochromatic

source function will resemble a gray-body source function.
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The monochromatic absorption coefficient is small near the surface
of the star; at large depths ky dominates over ¢ . Thus we can
expect the source function 5, to look like the Planck function B8,
at large depths, but near the surface to look like a gray-body source
function with some scaling factor go that the two limiting solutions

will join. We write for large optical depths

(o’
S, U= By

and at small optical depths
(o) * .
where q\7,) is the Hopf function, discussed in Appendix D. The mean

intensities J, associated with these limiting cases are

(€N
(o) { ;
Jo =g A e (V-94)
(- *
jv \» v Ck v (V-95)
We join these solutions by the X, function, defined in equation
(V-83). Thus
(oY n ) *
T,7 L Gaany A8+ N, [, g .
* T (V-96)
Inserting this into the Milne equation we obtain
oy (@)}
<O { N
SQ = (\')‘)\18,) + EXVATJQKV)]
(V-97)

L r >\\7; L’t" + %c’rﬂ]
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Our fitting procedure for the best determination of C#* is the follow-
ing. We find the smallest optical depth '}:: where X, £ 0.9 and
compute the quantity

—_— ¥ \

-/f,: L (8,)

(V-98)

for the one optical depth ’tf . Then an initial value of Cx* is given
by

*
X Jy

*

T, o+ g ()

(V-99)

(o)
We compute an initial source function Sy  for all optical deptihs

*
from equation (V-87) and use this to obtain a better value of J, :

(v
. (o)
-3‘\7* = ‘!I ./\.?: Lgv’ ) (V-100)

Now an improved value of C* may be determined

y
5 - Gean AL, )

— .
Ay L'l'f + %(’l}f) ] (V-101)

This in turn leads to a better initial source function, and the process
becomes iterative. The value of a procedure such as this may be
realized from the fact that the lambda-operator is evaluated at one
optical depth ’t; only. Once the initial source function 39(0) has

been determined, we proceed with the iteration-prediction procedure

described above,
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Now we need to evaluate the lambda-operator at every optical depth,
and this is what takes up most of the computing time.

The evaluation of the first two lambda-operators is discussed in
Appendix E, where some efficient and accurate quadrature formulae
are given.

Once a final source function has been found that satisfies the
Milne equation at all optical depths to within some prescribed
accuracy, we integrate equationg (V-65) and (V-66) to obtain the
monochromatic mean intensity 3y and monochromatic flux mF,

We integrate the monochromatic flux over all frequencies to obtain
the total flux at each characteristic optical depth

(e
w F(ey = nf F,(zy dv
o (V-102)
Quadrature formulae for all frequency integrations such as this are
given in Appendix Io.

The condition of radiative equilibrium requires that the total
flux be constant with depth; in other words, the tau-gradient of the
integrated flux must vanish. The tau-gradient of the integrated flux
is most accurately computed by first integrating the transfer

equation over all 4 to obtain

K « o
Lod Fry) = &%(’cqs ~ B‘,(TB‘J
Y dx, K,+o (V-103)
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Transforming to the T -scale and integrating over frequency yields

[ <]
YT
d rFe = -y ng[TT\,(»c)*B‘,(T)] dv
Q

dr (V-104)

so that the condition of radiative equilibrium may be written
o0

/-b(v(”c)[_j‘,('t) - BQ(T)] dv = (

Q

(V-105)

8. Radiation Pressure
The amount of radiative energy crossing a unit area dS in a
direction . =cos @  with ils normal within a unit solid angle dew in

a unit of time dt and in the frequency range v to J+dv is

The momentum carries is dEp/g; , and the net rate of transfer of the
normal component of this momentum, A& dEp/c , across dS,
expressed per unit area per unit time and per unit frequency interval

is
+ 1

2T Vs C{_éE_.‘Z c\/u. = Z‘ETE« Ig('ﬂ’)/“) /4‘-1 d/“

-1
(V-107)
This is the definition of the radiation pressure pg(¥,%) of v-radia-

tion, and by using the definition of KQ(?) after Eddington (12)

+

K,(3 = «—'ifl\,(gx,/x) e

-1

(V-108)
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we have

(v,3) = HT
Pai? < KV(?) (V-109)

We note that if the equation of radiative transfer, equation (V-69), is

multiplied by s and integrated over all S We obtain

K,k = JH— —33—1—5— F, ). (V-110)
'

Thus the tau-gradient of the total radiation pressure Pg(x) is

(4]
- T K + ¢
Rt = & F, () dv
d*t Ko (V-111)
o
or
d R _ d 't,(q:)
cl ¥
(V-112)
For a gray atmosphere where i‘}j&iﬁ‘) = | ., we have
T
—_— . = S Flo = R
dx C F < Te_ (V-113)
Gray

where 9 is the Stefan-Boltzmann constant. For an initial model of
a star, where no knowledge of the true temperature distribution is
known, the gray body value of the radiation pressure gradient is used

in the equation of hydrostatic equilibrium, equation (V-50).
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Once the equation of radiative transfer has been solved by the methods
of the preceding section, all the quantities appearing in the right
hand side of equation (V-112) are known, and an improved table of
the radiation pressure gradient may be computed for use in the next

iteration of the model as we strive for radiative equilibrium.

9. The Temperature Correction Procedure

The temperature correction procedure used in this non-gray
stellar atmospheres computer program is the perturbation method
developed by Krook (22) and Avrett and Krook (23). In this method a
perturbation is applied to the independent variable v as well as to the
dependent variables. Slight modifications of the method as published
will be described here. These modifications allow for coherent
isotropic scattering.

We write the equation of radiative transfer in terms of the

characteristic optical depth

/‘*%};I‘y(tn‘“) = YL»’X IJ(TI/A)

- (=) B,{T(’rﬂs - A, j\,('t)] (V-114)

where as before

Kg(’t) + S ()

K{ry + o(x)

Ny o ()

WKy e)+ o(t)
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We introduce the following perturbations

=%t + 2%

() )
T @) + NT ()

1

T()
Thus

dx x4 2

[4}]

(o)
I\)(T)'}A\ = IQ (i‘)}&\ + 119(1:,/.«)

(SR}

Ty = To(x) + A~ T, 00

= (%))
Folr) = F;)(k) + »F, (%)

N} /
(0 = M)+ A TR )

w 4
X ) A ) R TR Ap(a)

B, (T) B,(T) + A Tér) B,(T°)

i

where N is a disposable parameter, and the prime and dot refer to
differentiation with respect to t and T(O) respectively. We introduce
these expansions into the equation of transfer, group terms accord-

ing to powers of A , and obtain the zero-order equation:

(o) <o? _ )
/wa?-;t I‘? = YLQX IV = U=2y) 8»7 - Ay jo ] (V-115)

and the first-order equation, cancelling the "A

(4} () »

[Q)] i
= T e T,
+ Tcn lI‘? (8?""3;“> ]

+ (0, 2o . T"‘mj)[:t;"_ (1-7«,)89—;‘,3";“] (V-116)
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We integrate the zero-order equation over all/u. and obtain

SL (o) B B (o
th* = 4, 0-2a( 3,7 - B;) (V-117)

and by first multiplying by 4 and then integrating over all u , we

obtain the first moment of the zero-order equation

d (o) v (o)
Py N (V-118)
The corresponding moments of the first order equation are
€} W D
‘%’iFV = HYL')X_(\‘)V)(U“? AT&)B\))
oy 7 (o)
/ () .
+ 4 (N, ™+ 2 )K(l—‘»ﬁ(l - 59)] (V-119)
and
d (43} B , {(H \ (.ﬂl w (€-2]
aKv —qYLqu +q(n0"f S PO PR
(V-120)

We assume the Eddington approximation in the form

[}

al _ o+ d 1€}
}I;Kv T3 dx I

and intcgrate cquations (V-119) and (V-120) over all frequencics to

obtain
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\ 1 4 J7 \ -

-q .a—,i F = f Ylg(l—);)(j‘,m-— T()B\,) dv
a

o
' ()
N wa N, -2 Ty - 8,) &
(4]

ol
(D) / ' 4 (o
-7 f""“a)‘o"‘h*n,kg‘](% )—B\,)dv
° (V-121)
and
( o0
i Sl.._ t) _ [€))
s Y = f Ny, By dv
[»)
o0 >
U)/ o> / o)
+ fn, F, dv ”t“’frc,, F, 7 do . (V- 122)
Q <Q

. ™, . W
The function * = is chosen for convenience so that the J  terms

vanish. (%)  is then defined by the differential equation

W o<t
. F W / R
d ./E‘)(*) e "'-«-—;;—‘ —-— T }{J? F;‘ )dV
F F 1, (V-123)

and since

()

F=F"+ F"

where F is the desired flux, we have

o
. : F Wy /
4 2% = Ll - | - X n, g
dx F'Tr Fo ) 3 o dv .
o v

(V-124)
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Equation (V-124) is numerically integrated under the boundary

condition

(V-125)

(1)

1 4 . "
Now that '’  and """ are know, an expression for T'  may
be derived from equation (V-121). We assume the boundary condi-

tion for a gray atmosphere

1 N .
F, (o) = = J, (o

V3 (V-126)
0}
and our choice of ’c‘((;k) implies that
[+24]
n
. SJ... J de = O .
N, dx 7V
o v (V-127)

. Lo W)
In view of this equalion and in order that we may eliminate the ;T?

term from equation (V-121) we require that

d j‘?(n(k\ - o

dx (V-128)

We then may write

oy

Tm(k) = j\;“(°3 = i‘:—- F, (o)

v

(o)
- E (—«.—-Ff;«.. - |) F:? (o)
F o (V-129)
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[€)]
The expression for T (*#) then becomes
oQ

(1 _ .L. E‘_ ) - E L _ ) (€3
T (t)“ [q th (x) y (F(?;) l]m\)("’)a)F\)(o) dv

Q

ol

+ ,C(t)/f YLQ(\-);)(:T;')-— 8\7) do

<
oQ
- " f[*mfrmé -2 M [ (357 B)dv
Q

/ f n,Ci-»y) B, do
[}

Now from the identities

Y
F = F %) + Fu(t)

d %%y = ~— < F{‘Zk)
A dt

Ell’?& Ft?k) = ‘%f n\:a(\——xp)(j;ﬂ* 89) dv
(°]

we may write

Tm(vﬂ = @‘/Qz
o0
R, = (v+ ’tm,)J 'Lq(\"x¢)(if¢(°)«8\,‘)d¢
[0}
F ’ )
. _Vg, (,.._,. 1) JOYLQ (=29 F;(o) dv

F(°)QO)

-]
b [ - T (- 4

o0
R, = J%,;(\-‘Ag) B, dv
o

(V-130)
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The development of the temperature correction procedure is
now completec. To summarize, we assume an initial temperature
distribution T(&\\ , solve the equation of transfer and obtain J ; o&t) )
F\,WEH , and F(o(‘k) . The perturbations ”cm(k) and Tm(t)
follow from equations (V-124) and (V-130). An improved temperature

distribution is then computed from the relations

v = ;\L + ’C(”(i‘)

(o) 0
Ty = T (&Y + T (%)
and the process become iterative,

10. Adiabatic and Radiative Temperature Gradients
Schwarzschild (24) established that the condition of instability

of a stellar atmosphere against convection is

d Am T d T
ddm f | | dinFy| (V-131)

where ad and rad specify adiabatic and radiative respectively. In
other words, whenever the radiative temperature gradient exceeds
the adiabatic temperature gradient, convection sets in.

We write the radiative temperature gradient in the form

d T
clme%

cJ‘r/dt

Y
nod T d P"% /d’t
(V-132)
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Thus the radiative temperature is computed by numerically
differentiating the assumed T(% ) relation and obtaining d P‘%/dfc from
the equation of hydrostatic equilibrium, equation (V-50).

The adiabatic temperature gradient is computed using an
expression derived by Krishna Swamy (25), for an ensemble of
atoms of different elements in varying degrees of ionization;
radiation pressure is also taken into account, and only first ioniza-

tions are considered. We write

ddnT ~ I F, ‘
d b B | o4 Fa (V-133)
where
‘.2.
X * A, x (1-x)(E+ X
FI - (\+X) -+~ {+‘;Za'——<xl> < 4 (A &T)
_ __1
’+L‘ —Piz- {(l-&‘;) + __‘X tzx Y Ai. xi(‘—x‘\]
P 2X + X -<xTy 4 (V-134)
5 X\
Y X . . -%X; 2. A
o= Zlsx) 2 Al (g kT)
A, 7>
[ PNV U“"ﬁ(%} + ]‘[{—’)]
- x
2 x + X =X
¥ -
+w§{um+ﬂ
%,
2 -
;(—+ SZ Xi
+ AL x (=% 2+
ZX + % - <x }; (% AT (V-135)
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and

X =2 AN
i

x> oz 2 AL

/—\i is the relative abundance of the element by numbers of atoms,
and X; is the degree of ionization, or the fraction of atoms of element
i that are at least singly ionized.

No attempt is made to allow for the effects of convection in
the computer program. The adiabatic and radiative temperature
gradients are merely computed as the equation of hydrostatic

equilibrium is being solved.
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VI HeH' IN MODEL STELLAR ATMOSPHERES
Eight model stellar atmospheres were computed with the
program outlined in Chapter V. The chemical composition chosen
for this set of models was the abundance table of the elements given

by Aller (41), and the adopted surface gravity was
logp g = 4.0

Thus the only parameter which varies among the models is the

effective temperature T, ; the models cover the range
95009 K. & T, < 30000° K.

Radiative equilibrium within T 1% was attained for these models
first without the helium hydride molecule ion. To determine the
effect of HeHJr upon these models, the final model for each effective
temperature was recomputed, using the same initial conditions,
except that the absorption of HeH' was now taken into account,

One of the more obvious criteria for judging the importance
of a new opacity in a stellar atmosphere is the degree to which
radiative equilibrium is destroved when the opacity source is
introduced. Figure 4 shows as a function of effective temperature
the departure in per cent from the previous radiative equilibrium of
the models. Two curves are shown, for the surface, at © = 0,
and for somewhat deeper layers, at T = 1. Figure 4 can also be
interpreted as showing the relative amount of total flux that has
been removed by the opacity of HeH+ and must be redistributed in

order that radiative equilibrium be re-established.
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A more detailed comparison between the models is given in
Figure 5, where is shown the per cent change in total flux duc to
HeH+ opacity as a function of the standard optical depth T o000
An inspection of this graph shows the atmospheric layers of different
models which are most affected by the opacity of Eiefi+. Note that at
the lowest effective temperatures investigated the effect of the
opacity of HeH+ is appreciable, especially in the deeper layers of the
atmosphere.

Radiative equilibrium was re-established for the Te =
160()0O K. model, which showed the maximum departure from
radiative equilibrium at the surface when the HeH+ opacity was
introduced. The 16000° K. model computed without HeH" is shown
in Table VII, while Table VIII shows thc samc model including HeII+.
The columns labeled "Partition Functions' give the logarithm to
base ten of the partition functions.

The general effect of the HeH+ opacity is to make the
atmosphere hotter; pressures are increased. The striking feature
between the models is the introduction of a convective zone, between
T = 0.008 and ¥ = 0.192. The degree to which flux constancy with
depth was achieved for these two models is shown in Figure 6. The
change in the temperature distribution T( T ) is shown in Figure 7,

where we plot the ratio Twith/T as a function of standard

without
optical depth. In Figure 8 are shown the emergent monochromatic

fluxes of the two models; shown as short vertical lines are the

centers of the Lyman o« , g and ¥ lines of hydrogen.
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The inescapable conclusion is that the wings of Lyman &
and all higher members of the Liyman scrics of hydrogen are weaker
than they would be if the HeH ™ opacity were not present. Lyman <
must still be a strong line, since most of it will be formed in the
highly transparent speciral region to the red of the HeH' threshold
at 1130 A. Moreover, the increased temperature leads to an in-
crease in the ionization of hydrogen, such that the mass absorption
coefficient to the red of the HeH+ threshold is reduced. Hence we
have the phenomenon that the center and red wing of Lyman ® are
formed in a spectral region that has become more transparent with
the introduction of HeH+, while part of the violet wing of Lyman
is formed in an opaque spectral region.

We turn now to the question of how the effect of HeH+ on a
stellar atmosphere might be observed. The obvious feature is of
course the discontinuity at 1130 A. Observations of this feature
wotuld have to be made from above the atmosphere and hence
present technological problems. A feature that could possibly be
observed from the ground is the slope of the spectral energy
distribution at wavelengths just to the violet of the Balmer dis-
continuity. Note that in Figure 8 the slopes of the two energy
distributions at 3000 A are markedly different to the eye.

What are needed are careful comparisons of the observed
and theoretical ultraviolet continua. It would be best to perform
this comparison differentially, say between stars of spectral type
A 0 and B 7. Possibly a binary system with both stars unevolved

could be used to detect this color difference. The unevolved main
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sequence of the Hyades might also provide observational material.
The ultraviolet continuum would have to be observed quite accurately,
for the difference in color between the two distributions in Figure 8
is only 0. 04 mag ( ¥/~ scale) over the portion of the Balmer
continuum that can be observed. In any event a grid of standard
models at closely spaced intervals is needed.

From an inspection of Figure 5, we can see that it is quite
possible that the 16000° K. model might not exhibit the most
marked difference in slope of the Balmer continuum, for the effect
of absorption by HeH+ is concentrated to the surface layers. A
model more like the 14000° K. or 12000° K. model could very well
show a greater difference in the slope of the ultraviolet continuum
around 3300 - 3400 A.

The most direct observational test would be to observe the
line profile of Lyman e , which should show a very pronounced
asymmetry; in particular, the depth and narrowncss of the HeH+
absorption just to the violet of 1130 A should be a striking feature.

It should be emphasized once more that the calculations of
Chapter IV have been made in a rather pessimistic manner, in the
sense that we have chosen, whenever a decision was made, the set
of numbers which would result in the smallest absorption coef-
ficient of HeH+. It is possible that the effects upon the model
atmospheres by the opacity of HeHJr found in this investigation
underestimate the true effects by a significant amount. At the
present time, however,all that can be said is that the effects of

el upon a model stellar atmosphere are probably no smaller
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than the effects reported here.
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APPENDIX A
HAMILTONIAN AND OVERLAP MATRICES

-+
The Hamiltonian for the system HeH , without the nuclear

Coulomb repulsion term % is

- L gt L |
H-—-—-z—V, —E"Vl +

|

— s

Rpa (A-1)

L - A
.
12 M 2 oy

e

where we follow the notation of Chapter IV. Subscripts 1 and 2
denote electrons, and subscripts a and b denote the helium and
hydrogen nuclei respectively. See figure 2

The Hamiltonian matrix Hij and overlap matrix Aij are

defined to be

H, = ffxi H X, v dy,
A3
(A-2)

= [ xx de de
AL) /[ A B! 2 (JA*-B)

where X, and X are members of the set of expansion wavefunctions
defined in equations (IV-25), Chapter IV. The integrations are
carried out over the coordinates of both electrons.

We can see that the substitution of equation (A-1) into (A-2)

gives seven integrals of the general form

(% )of %) :ffX;OX3 dx, d, (A-4)

where the operator Q is |, =5V or

L.
e
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Every integral of this general form can be expressed in terms of the
basic molecular integrals which are treated individually in Appendix
B. Recognizing that our set of expansion wavefunciions, eguations
(IV-25) of Chapter IV, are comprised only of s-type atomic orbital
wavefunctions, we anticipate the notation of Appendix B and define
the following basic two-center integrals. Our notation here will be to
use parentheses to indicate integrals involving one electron and
brackets to denote two-electron integrals.
1.  Overlap integrals
( HEEC'Y I Ay )
2. Kinetic energy integrals
V2
3. Nuclear attraction integrals (Type I)
2
(A e ‘ moay, )
I
(nag | e | v 2ay,)
4. Nuclear attraction integrals (Type II)
A
(wao)sm Iwmag)
A *
(nay | Qk] W Ay
5. Coulomb integrals
t /
’ — )
[vm.,,\(.) na, (n l ":1( WA () W Ay (2 ]
6. Hybrid integrals
R } " -,
E\(\A,a(t} N A, () l*&:li 14! /io_Ll\ m45(1)]
7. Exchange integrals

. i / ‘A )]
LV\/X&CW m Ay (D )“,I"‘z‘ hﬁa(1\ m 5(1
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It is noted that certain one-center integrals will arise in equation
(A-4) and that these integrals are treated as limiting cases of the
basic integrals above when the internuclear separation R is reduced
to zero.

Rather than present the detailed derivations of the expressions
for each element of the Hij and Ai‘ matrices, we give the example of
the H,, and A12 elements for illustration. Our wavefunctions in
this case are

xl = lAag )y ta, {(®)
(A-5)

N, = ALY AR 1A, ) T

following the notation of Chapter IV. Our general integral is then

T = [0 0@ O] 12e 144y + i taam | o

Our wavefunctions are symmetric with respect to an interchange of
electron indices; hence

T~ - A il/l“('\ |Au\(1\[O\ [Ag (1) 145<7~)]

(A-T)

We have for H

12
- b 1,l e () la 1)]
17: le = L’Aa(‘ﬂ/lab)' 2 v 1‘71‘ NI e
} -
+ [\/la(\\ \/.L“,(x\] 7:, [ 1, ) mbu)]
.
' YA ()
. VA, () 1A () |- &2 -2 llaacn b ]
N XV * a ‘ r(okl RO\:L :
. t _
+ Llflam g (|- - - ‘ 1460 mb(n]
Toy  Rypa
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which can be written, suppressing the electron indices in all one-
electron integrals, as

7 H,, = (1ag)-4 ool 12.)(12al 14y) + (1ag 12y (1aal-L o] 144 )

_(mmlf{— [raay(taalias) - (lamllam\(ldal%algab)
[+

—(vaal £ L) (eal1an) - (raliaa)(Maliyte) () o)

Since our s-type atomic orbital wavefunctions are normalized

(Iﬂmlldm) = i

and we can group terms in equation (A-8) as follows

i

T RN IES NS IBNEICENEAES

~(ma|-r‘1—~b)mg} b (1ae]-L otl1ay)

-»—(1&61,% i‘/‘Lb\ — (lao\.";’{b]"lb)

3
T

Y_l/l«(" la, ] ;"1" | 1 aa () '45(1)]
A

(A-9)
The A12 element is considerably simpler and is written
Am - 7 L bag, (1) 12a(a) i | f Vg iy /1.,Lz)j
- A (l/«'ua\l‘&o\\(14al"ll,\)
= 2 (el 1ay)
(A-10)
As is shown in Appendix B, the expressions for the Hi‘j elements are

further reduced because the kinetic energy integrals and the nuclear
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attraction integrals (Type 1) can be expressed as simple combinations
of overlap integrals.
Only the elements lying on or above the principle diagonals
of the Hi} and Aij matrices need be computed. This is so because

the operators !,-+ v~ and + are symmetric operators, such that
p : " 3 p

)

(nan]olma,) = (Waulolvwau)

IIence H‘ij and Ai. are symmetric matrices,
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APPENDIX B
BASIC TWO-CENTER MOLECULAR INTEGRALS

As described in Chapter IV, our basic one-electron atomic
orbital wave functions are normalized Slater s-type orbitals, de

fined in spherical coordinates by

n++

(Z_S) : n-l
s [LIT('(ZV\)'.]VZ " exp (- 5] (B-1)

+
For a two-center problem such as the HeH molecule, confocal

elliptic coordinates are useful. These coordinates are defined by:

< = Wf‘w‘R"b | § = o0 (B-2)
- (B-3)
. ReTe —1 & s+
1 R
e - L’ L { &1_;) ,?_ %
\Y () X = C %
, . T ot ]
9_ A - G e (B-4)
+ 'gyL i (l VL ) a}z‘ i (%‘l__m(l‘_ ),L'L) 2 ¢
and the volume element is
Qg 2. 2
dr = 3 (?‘Yb)dgd’tdff’ (B-5)

Lower case subscripts denote the nuclei a and b, while R denotes the
internuclear separation following the notation shown in figure 2

In this coordinate system, our basic a- and b-centered atomic

orbitals are

ntd i
(27.) -

Vg = Dare (2! ]™ (%) (s+n1) e*r’{~%&(g+m} (B-6)
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n-i

g I () (5en e -5 (5]
[ (amd!] B

We consider the following one-electron, two-center basic integrals:

Overlap integrals

(nag|may) = f(“-ﬁd(mflh) d

(B-8)
Kinetic energy integrals
(V‘Am}'-“'vq—)m/‘lb) = ”Lj‘(v‘/*vh Vl(mAb) de
2 1 (B-9)
Nuclear attraction integrals
%, | -
, Lo = % nag) L (may) dt
T. (nao] R“iwvxb\ “f( \&“( b) (B- 10)
Z !
AL | 22 (mAady) = %af(“’%) — (ma)dx
L | na( ) "o (B-11)

In addition, the following two-electron, two-center basic integrals

are encountered:

Coulomb integrals

[vm&m Woag (Y| ft;l YW AL (1) W\’/Lb(i.)]

r i 7/ { C{
gl e (Y mag(d 2o ymoac(y may ) de, de
f] o My ° A (B-12)
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Hybrid integrals

} h”/La(l\ Vv\fih(l)]
Mz

[naa(m nlae (D }

/ | #
- A () Nag () — v Aa(x) vma,(a) da,da
[/V‘ * M o (B-13)

Exchange integrals

7 ] ] // ]
\V\Aam W AL (1) };;:l] nagta) A, ()

- ffvmacn Ay, () I: n'a, (I me, () d”c, de,
' (B-14)

where ndenotes the inter-electronic distance.
All these basic integrals except the exchange integral may be

evaluated in terms of two auxiliary functions, defined by

00
Cap) = /Om'eﬂf < e (o) (B-15)
" l/oﬂ ¢ o)

= ! EZ:O xl (o8 2 (B- 16)
+
B, (y) = j Mo A (B-17)

~
The computation of the functions Cn(/O) presents no problem; the
set n = o{1)N may be computed from the upward recursion

relation

Co (/o‘ = (B-18)

- JV\ + N C_ _ (/O)
C“(/O) / Nn-i (B_]g)
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For small values of the argument y, we may expand the integrand

for the funclions Bn(y):

(~'\i < n
B.(4) = Z U /X

L= O -1

We obtain two expressions:

n even

oo z/;
B'n (’\3') = Z‘o h+1\4.+') (14)|
n odd
wQ Al
%
. Y= - A ;
Bv\(\g ;, (“4_1;.), (qi_n)-

In addition it should be noted that for all n:

Ba-lyh) = (-0 B gD

(B-20)

(B-21)

(B-22)

(B-23)

The expansion described above proves to be quickly convergent for

values of y up to approximately y = 5. For larger values of y, we

follow the formulation of Corbato (1), expanding x"

polynomials:

where

&ni

— nt (a4 E(n—x\ff (neg+) ! ]

in Legendre

(B-24)
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Z = SUum OveEr K even \‘Q nn €ven J £ OCH K w odc}

Y\’! = % (V\-l)(h-‘/)--- (2 or I)

and using the integral representation of the spherical hyperbolic

Bessel function of the first kind.

2%
/{“(K) = (%) In+_'_ (>

z

. + 1] th_
- JZ_(“.),[}DV’(XBQ dt

(B-25)

where I‘ML (%) is the ordinary modified Bessel funclion, It follows
2

that

noy
B, (4)= 2D Z Qg e ()
£=0,1 (B-26)

The il(g) are computed by the following technique.

First a set of ratios
TLelyy = *u:“a“/&m (B-27)

are computed using the recursion relation
-1
/7.(4 (‘é\ - ké‘-[i,e + ] + Lé/ RQC«4)] (B-28)

in the numerically accurate downward direction starting from

1 =M, where /IM is made zero. M is chosen to be

M2 w+ 5 + lolyl-(n+s) (B-29)
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which retains seven significant figure accuracy in the ratios for
£ 2w . The function ’Lo(‘?) is found from

-
Aoy = ew-[hu V| {H/Luun}] (B-30)

The general one-electron overlap integral is

oo '
(nag |wa,) = Cuwn /oﬂ$m+\f dif‘”‘t
! -1

n m -0S _—xh
$ (zan) (5-0) €7 e

(B-31)
where we define

”I/Z (Ta+TB)R

R
il

T < “’17': ( ja‘ Sb) R
T o L (T.+T)
L m+ 5
TG.Y\"? 3. J’b 2 I

G = - 1 ntm+l
"R Lt et (3]

Upon multiplying out the polynomials appearing in the integrand of
equation (B-31), it is seen that the integral is expressible in terms

of the auxiliary functions C,, (0) and B, (x) .
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Kinetic energy integrals, equation (B-9) may be expressed in

terms of overlap integrals, since

l/z
Z N in (n-1) A
‘Jivl(né‘) = ’li ‘S i_(h&) Z (1n—|) (" )
;/1 -
( Hwn (n=-1) ) ((n_ﬂ,¢>
(2n-1)(2n-3) (B-32)
Thus
(nag |-L v ma,) = (mav]-1 v naa)
\/?\
2 2an
s [Cmmetman - 3 (2 (e
Ya
(‘-lh(vx—-l\ ) (( \a} 4)
n-%A o] m _ar
(2n-1)(2n-3) b (B-33)
Nuclear attraction integrals of type I in equation (A-10)
may also be expressed in terms of overlap integrals, since
2 SV‘
—2 (wa ) = A%, I (( 2n (an-n) (n-0Aq
= (naa) ( o I
and A
Lo (may)= 22, T, (2mGmen) (O
AW (B-35)
Thus
-l/%
(el 22 ) = 2 2, T, (2 G (s mae)
"‘ (B-36)
—Vl

(v\,ao\l % lM/lh):: Lz, Tb[’z\m(lm—')] (Vm.ml(m,;)/.\b)
b

(B-37)
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The nuclear attraction integral defined in equation (B-11) is

evaluated by means of the auxiliary functions C. (o) and B,(w)
) y w2 "

' M+L

V\"“; P
Z _Z (27.) (25)
(V\Ab \ Ta ‘W\Ab> . ; n+m 4.

( S+ Th/) [(M)‘. (1“«)'-] *

oot
wem [ ! S Pl v+ - |
X O, ds(d ¢ e (s-1)
! -

(B-38)
where, as before,

/K"b:"'i(-fb+fl=)R
and

Lo = -‘{(S“+S°:)R

In this analysis, only one non-linear variation parameter is allowed

per nucleus:

3. = Ja
Sy = T,
Thus
Bf
(V\Ab\%\m"lb): [(’j; (im“]vl /"bmm
oo 41

~,pb§ o, 1, n+w-|
deg’fclme e (%-n)

! -
(B-39)
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and
2, Ja ntm

(“Am‘EP-IYY\Aa) = - d 2 /Pa
Ty, l(lv\)‘, (1wﬂ!]
&0 +1

~-AS -a ntwm-—|
ds | d -
Xf f e e (s-1) (B-40)

! ~1
As before, the polynomials in the integrands of (B-40) and (B-41)
are multiplied out and the result is then expressible in tecrms of the
Ch(,O) and Bn(y).

Coulomb integrals, equation (B-12), and hybrid integrals,
equation (R-13), are evalnated by means of the tahles of Ruedenberg,
Roothaan and Jaunzemis (2). We first define basic charge distribu-
tions on atoms, remembering that the non-linear parameters Ifl

and Tb are the same for all ns, and :msb orbitals respectively:

(Yl/loj(n//la) — (vun/).' " {_N Sw}

E(?m\! (’LY\')!] (B-41)
where
= v+t n -
N (B-42)
Thus our general coulomb integral will become, ordering the
atomic orbitals to identify the electrons
‘ _’_. /
[aa nan |5 | ma, mia, ]
AR + W\')’ ’
(nn+n Y (wm . }
; Vo ‘\I Sq_ N‘ Sb
L ¢amy! (an)! (am) ! (2m)) ! ] (B-43)
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We define

P = 23R
P, = 27, R
ST T‘*/Z T

(B-44)

The six basic Coulomb integrals comprised only of s-orbitals then

become:
AN {G (22) = ) = G (o ) |
[1s.125,]- % {Gaz(o,/%) ConCrme) = G (oo, ) |
LIs038,]= {G (0,70) = By (om, ) = p1 Gig () 20 }
[ZS ‘25., {3 Coz (@) = 3 Cop (o, 2

Y By s ) - A Gy (2 ,A,)}
[25035] = % 136,000 = 3 6, a0

Y G Cn, p) =2 Gyy (fay 00) 7;

[38‘1‘3&] - %% {6 603(01/05) - o 603(/°m,/”a)

. i,
-9 Gy lpn, ) - G Gy Ca, ) = R By (f“'/"b)§J

where o0 +1
o +8 +i )
Gw/s(‘f“&\ = (%) ‘/ngfdyt
! -1

x € e ($+n) (5-1)

}(B-45)

(B-46)
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It is to be noted that by multiplying out the polynomials in the
integrand of (B-46), lhe G“/s(x,tj,) functions are expressible in
terms of the C () and B (y) functions already defined, and that
[NS.|MS,] is obtained from [N\ S| NSQ by interchanging subscripts
a and b for the arguments of the G“,& functions in equations (B-45).

Hybrid integrals involving only s-type orbitals may be
represented as

Y,V\A“(') V\l/:.“(\) \—-:F‘zx V\”A-o.(l\ W‘Ab(ﬂ] = [ﬂo. ‘ -ﬂah] (B-47)

where (1, and ﬂd’ represent basic charge distributions. The
{1, are S-type charge distributions, given by equation (B-42). The
basic charge distributions f1_, arising from s-orbitals are given in

equation (B-48)}.

n+t omet

3 T L) nim-2 et ‘_/og -y
2 _o e RO o) e e
T [am! (am!]

(V‘ Am\(m/lb\ =
(B-48)

where

/o-: ‘é(Tm+SL)R

T = '11‘_ ( Tou" jﬂ) R
In terms of these basic charge distributions ﬂa. and -ﬂo.b ,
Ruedenberg, Roothaan and Jaunzemis (2) show that there are 12
basic hybrid integrals comprised of s-orbitals with atomic orbital

quantum numbers less than 3. We define

Loz TR 5 py= R 5wz T/,
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The twelve basic hybrid integrals are
LA

(laata l2a10y] = 2 T 5,
3, -3

N S
[4attalan2ay)= 7§ & Jb [Gorln) = Bos(3an) — s 6, (340, ]
S

‘j
[GQI(/"’-‘/:Q - 691(3/90-)/95) -/ Gu(‘sfo.» ﬂ:]

2
4o a2, 12, ] = Ff T [Gu(/’m/"h) G Ganp) - & G, Ga, ) |
z "

3

3
[_""- \Aakz”ni‘qb] ]' [_Gﬂx(f’ﬁ)/ob‘) 611(3/& Pe) - /"L (gfa,ﬁb)—_{
[14a240] 14 14y = '{JL‘; Sﬂi sz [3 Goi (s )26, (300, 2)- Y10 6,(314, 24)
- 1/“2- Gm(sﬂm/ob) ]
\ 3/1 ‘3/1
['%14;:.)!4“7«45]: 3 To T [3 Coxlra, ) = 36, (37m,P0) - - M6, G,p)

- 2/“‘*1 611(3/"’-;/01:) ]

B 5/1 -
[Iﬂ.ﬁlla,’ld“l'ab} :‘!g— 1[3 G”(/’G-)/o5) - 3 G”(‘ﬁ“)/ah) (B"49)

“Hp Gy (34, p) - T 631(3f°~'/°b)]
4 -3,

(a2 aalzaaa, ] = ; \r‘ LT L3%aA0A) -3 6, Gan o) ~4u 6,38, )

~2ut G B, ) |

t

] /2 o ) .
{14“'7\44@’ ]4‘1}2‘:{ = —3— r& < fb [6 GD'(/,Q,}pb-) - GOI(S/p*i/’b)—q/“ (7" (3/0"!/0b)
/ 3
- G/“‘l Ga.|L3ﬂa~J/ab) - l/u 63,(3/o¢)/ob)]
/1. -3/;
[24._14,_ 12, zA,,,i 3\F {G Gy, lPaifi) = 6 B 32, 2)-9 446, (3, 2)
"6/‘*1 Gz.z“ﬁwlab) - 7\/“‘ 631(3,0“,/05) ]
% s }
I_ZHQKAIli’QQ \Abl: 5‘3% SQ. rb [G G" (/’&:fb) - 6 G"(g/’g,ﬂb)—ﬁ# 61,(3/’0.),ﬂb)
-6 M Og 60, £p) ~ 7L,u~3 G.,,(S/a,,a.,‘)_]

S Y%
(24,24, 12024, ] = ';— PR [5 G2 lurPe) = ©6,(34,P0) - By, (3 i, £0)

E
- é’/"’. 631(8/06"3“’) - 2\/“' qu(g/ocu/b)] D
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where the er/s (X,L@) are defined in equation (B-46) and

Eh&m“rﬁml Waama, | = [ nWaanaa] w'eam Ab] . (B-50)
We write for the general exchange integral

I:[

{ {
n &, ()
(= mab(a] . (B-51)

Following Rudenberg (3) we write equation (B-51) in terms of the

basic charge distributions introduced in equation (B-48):
{ 'ﬂ'nm(” l ﬂn'm’(-ﬂ] . (B-52)

. . - - i .
Upon introducing the Neumann expansion for /n.l in confocal

elliptic coordinates

R y it Z“ Ny (L-1wmi)! r ( Q o
T g:o - (2+ (mi)! ) (‘§ OF ()
mi AMY imd,
X[P}Z (n,)e g <»§)<~§7\)

with a similar expression for %,>7%, obtained by interchanging all
indices, Rudenberg is able to write equation (B-52) in terms of

certain auxiliary functions. He obtains

Y\+V\I+l »ma-m(-rl o9
I- -lr{ ( R%a) (RT) Z Ig
K=o (B-53)

co geo °‘5

e 1

N N
Z > wt«nww) cﬁ
%5

(B-54)
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-~ ¥+ m
£ s !
W e) = Z . B (%)
:X:O
(B-35)
W o
Kes r X A
[B.i(”ﬂ _ {_12“] fe F?Z(x\ % dx
i p /, (B-56)
o 2 b1
d)‘q )" “(\:"’(\6,[’\ %ck(%,/o)
P%(/o = V&‘——n g (B-57)
1
R ; %i-px P
_J‘LP (4, p) = %) e FRxy x dx (B-58)

and the B0 are the unnormalized Legendre functions of the first
kind.
£
The lBi(”c) functions are explicit and easy to treat; we

write the unnormalized Legendre functions in the form

L .
j
Pﬂ(x) = Z Cg:\ X
jzo
£

where the Clj are the Legendre coefficients. The ZBA« may then be

written
+ 1

2
: ' TR L4h
R Aty
B, () = iﬁi‘l] cﬁsfe X dx
j=o0 - (B-60)
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i L

% ol A4+
B, (2> = [}ﬁz'} 2, Gy 0T B (e
ij=o (B-61)

where the B“,)(l 1)  functions are the same Bn(y) functions
introduced in equation (B-17). Equation (B-61) can be somewhat
reduced by the identity

J 2 c
(-1) Cpy = =0 (g (B-62)

which comes about because Legendre functions of even or odd order

contain only even or odd terms respectively. Thus

gl &

£
Bwr = [Z] (0 2 ¢y B, (e

J=o

(B-G3)

The cocfficicents °<pL in equation (B-55) are defined as
follows. The basic charge distributions defined in equation (B-48)

can be written

| ~P3 2
(nad(may) = & w(g, ) € e (B-64)

where w(%,y) is a polynomial defined as
n-1 -
wiltny)= (s+10) (5-1) . (B-65)

The coefficients «Pi are then defined in terms of these polynomials:

- PoL
(3= ) wisn) = 2 2 % 30
P4 (B-66)
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or

w4+ n+m
— Pos n ™
2. 7. %, 5 = (5+1) (5-n
pee 4=0 (B-67)

where n and m are the quantum numbers of the atomic orbitals
making up the charge distribution. Thus from equations (B-67) and
(B-63) one can compute the functions (.:J:(’t) defined in equation (B-55).
The functions d):%(/o) defined by equations (B-57) and (B-58)
are seen to be double integrals; however. they can be reduced to
single integrals in the following manner. We introduce into equation

(B-58) the form of the Legendre function given in equation (B-59):

4 ¥

£ \ -Pr  prd
5oy, = — C .fe x  dx
P (I ?O £, (B-68)

(B-69)

and note that

0o,
>
*x
X
b1
o
*
il
({}|
>+
™
>
~’

(B-70)
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where the Cn(t) are defined in equation (B-16). We thus obtain

2 L& G
So a0 = = 2, o C ..

Pﬂ(\a) i=o0 Pt
Py
- = p-::i Clm»}.(/m"’u ’}
Cry) (B-71)

The functions Cﬁp;(,a) are now computed by numerical integration
over the single variable y.

It is found that only a few terms in equation (B-53) for the
exchange integral provide high accuracy; in cases where convergence
is not rapid, corresponding to large values of the internuclear
separation R, the integral as a whole is small.

In addition to the molecular integrals described so far, there
are two morc intcgrals defining the dipole transition integral for an
electronic transition between the two lowest states of the molecule.
These two transition integrals are defined in terms of the dipole-

length formula

i x* s —
3, = ff% (7 T a7 do,

(B-72)

and the dipole-velocity formula

Q= ff ‘P; [(\:77* 5:7‘*’;] d’C"{'““/E(m

(B-173)
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where \_l'& and \}/L are the final and initial electronic wave functions
respectively,and E(R) is the difference in energy between the two
electronic states at an internuclear separation R. As our trial wave
functions consist only of s-orbitals, the x- and y—componehts of the
position vector R vanish for symmetry reasons. Thus the dipole-

length formula becomes

el

- *
Q= e} '/:/‘LP{, (¥ + %) "PA'_ c”c‘ c\’t,‘
(B-74)
where ?'3’ denotes a unit veclor in the z-direction (along the line

connecting the nuclei). From the definition of the electronic wave

functions given in Chapter IV, equation (IV-30), we write

—h

where Cim and Cfn are the coefficients in the expansion of our
initial state and final state trial electronic wave functions, and the

Km)’l,\ are the set of 2-electron wave functions defined in Chapter

IV, equations (IV-25). It can be seen that we require basic one-

electron integrals of the form

( wAag | %, M4 o)
(n4aql }\ mAy) (B-176)

(hﬁhlglw\/lﬂ
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We evaluate these integrals in the same confocal elliptic
coordinate system that we have been using; in this system

5«——*—5{’5’@

(B-7T)

From the definition of atomic orbitals in equations (B-6) and (B-7)

we may write for the integrals in equation (B-76).

nem+ |

R (%&R)
H I('LM! (1w\)!]%'

(naalzlma,) =

T T R{S+1) ntva—t
x[ds[dm ¢ (T (3o) (B
! “

L mt+ 1

nto
R (SaR) (7,R)

(nea]3)ma,) = ,
4 [ (am! (zm)s]/‘

> - (R RIRY (L (5-RRY "
Jasfmze e 13+ (3-1 (B-79)
i —{
n+rm+|
R (3SR

NAag|z|ma,) = \
( b ' H [(1V\\§(1w\\!]&

SNSRI X 3¢ S wtm-|

% [AY(aY e YL (5-1) (5+1) (R-80)
i

-t
By multiplying out the polynomials in the integrands of equations
(B-178), (B-79) and (B-80) it is clear that these basic integrals are
expressible in terms of the C, (x} and B, (4) functions introduced

and defined in equations (B-15) and (B-17).
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‘Turning our attention now to the dipole-velocity formula,
cquation (B-73), we cxpand our trial electronic wave functions as
before and note that since our set of basic wave functions consist
only of s-orbitals, the x- and y-components vanish for symmeitry
reasons. We thus must evaluate basic one-electron integrals of the

form -
(na, | 7 wma,)

(naa | Tmay)

(V‘Ab | T ™ 20

- (B-81)
(nay| 7 wmay)
By symmetry arguments, it can be shown that
(naal Vva,) = 0
(N2, | ¥ ma) = © (B-82)

The only non-vanishing components of the dipole velocity
integrals are the z-components; from the definition of the s-orbitals

in spherical coordinates centcrcd on nuclcus a and b in turn, we

have
frosed — A
V "4q 3 93 NAAq
’
- n—| Y
— - ‘S ( 3‘ 2 )“4
- 63( M. AN * (B-83)
and
i —
I wma, = €, S .,
3 93

(B-84)
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Whefe \/1
. - RNY
e [ o8]
. - 2\* 2
ny = [ty (yr D) ]

We introduce equations (B-83) and (B-84) into the two non-vanishing

integrals of equations (B-82) and transform to confoecal elliptic

coordinates
n+ At

e (3 (3) T _wem
(Vl/-lb"V'W\/La_) = € > “\I/ R
{(mﬂ'. Cam)1]™

6@+ PF _an 3 .
X | (m-1) dsf&m e e (S~ (3+n)
A

o + 1
-p3 - n m-i
~ SaR jagJ- dy e/’ e t(m—:)(‘f—ﬂ) (g+n)
A (B-85)

and .
mtg

A
R —_ 5, T +m
(manlFnay) = & R

[_(a-vn'. Cam)! T/"

+1

= 31 -y ™ n—
x[@—njo\\s[dm e e (sn+nN(s+n) ($-7)
t

k3

+1 ‘
-£3 -

) 1 " -
- %%fd’i a, e e (sp+nN(E+n) (‘i-’z,)\4 ]
(<

‘ (B-86)
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where

el J{(Sas*-gb\R'

it

‘l'i‘ (Tos”fb) R

Once again, by multiplying out the various polynomials appearing in
the integrands of equation (B-85) and (B-86), it is clear that our two
basic non-vanishing dipole-velocity transition integrals are

expressible in terms of the Cn(x) and Bn(y) functions.
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APPENDIX C

THE ATOMIC ABSORPTION COEFFICIENTS OF HYDROGEN AND

HELIUM

The following general notation is adopted.
A, - atomic absorption coefficient - cm2/atom
k; - absorption coefficient per unit volume - cm -1
K, -absorption coefficient per unit mass - cm2/gm
thus
ko= A
A - mass density - g:m/c:rn3
Ne - number of electrons per cm”
Ng - number of atoms of all kinds per cm3
- number of particles per cm

thus

P% - gas pressure - dyne/cm2
P - electron pressure - dyne/cm?
A; - relative abundance of element i by number of atoms
ﬁ = NQ me -+ NQ Z A:L mA
e

bul for practlical purposes

/: 'No, Z A,Lm.i
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1. . Neutral Hydrogen - H 1
.The cross section of one hydrogen-like atom in quantum

state n, for VZ v, is

o Trq i elo Z"I
m | i
3V3 ¢ h VASIRY (C-1)
¥ o1
7 = 27 me e 2 _ v,
7] h3 V\L —;‘-;- (C"z)

Yr(V,nw) is the Gaunt factor for bound-free transitions. We

multiply (1) by N“, the number of H~-atoms in level n,and sum over

levels such that \7“_4_ v From the Boltzmann distribution, we have
Xn
T RT
N,= & e N,
kL (C-3)
where
N, = number H-atoms in ground state

Yn = 2n? for hydrogen
P = 2
X, = excitation energy of level n above ground level

We thus have

n> v (C-4)
? .
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Karzas and Latter (26) have computed (¥,») for a wide range of
Vv and.for n up to n = 15. We therefore sum terms up to n= 15 In

equation (C-4), and replace the remainder of the sum, n>15 , by an

integral. In doing this, a mean value of 94 is adopted:

%t yn>is) = "%#1: = 1.10 (C-5)
We have
o0 e'x"/ﬁr we‘- XF:‘T
z 2 %/1(9, V\\ —-— %’I 3 d'ﬂ
n=1l6 n 16 " (C-6)
E’i \n(a'“\?‘") e -y
.&T ﬁ-r (C"7)
- a,
O = 3 (C-38)
Thus
Ln i
«o - Tar Q, Q\/h\
SS —grym = Fre )&t
nslb n e "

(C-9)
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Thus the total bound-free atomic absorption coefficient of hydrogen

per H-atom in the ground state is

Qa/"z
y 13-} _O.‘ 15 e
_ eH T wme € e Z — %’IL\;I“)A
Q\7(T'§ - A 3 n
3V3 ch v wr¥
14
P
56 _ |, __
+ I
- %/ (C-].O)

To this is added the contribution from free-free interactions between
protons and electrons. The continuous free-free absorption coef-
ficient between a proton and an electron with velocity between A~ and
Ar+dvis:

H et
3V3 ‘M: eh V3

&\?K =

L (v,T)
Ar ?I 7

(C-11)
Where Oht(a,‘r) is the free-free Gaunt factor, also computed by

Karzas and Latter (26). The number of electrons per cm3

with
velocities between + and 4r+dv is given by the Maxwellian velocity

distribution:

Nelav)dv = Y7 Ne (’«LY:;.T Avooe d .

(C-12)
We multiply equation (C-11) by (C-12} and N;, the number of protons
per cm”, and integrate over all velocities, Vv being held fixed.

A 34

( ' AT N;Ne
2T Wy, AT

6 T* e
3V ch

LT = ¥z Y, T) .

(C-13)
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We may express the product NiNe in terms of Nl’ the number of

H-atoms in the ground state by the combined Saha and Boltzmann

(C-14)

equations:
3/,
) Y -0,
A < 3
h
also, from the definition of a,, we have:
)
o, = e _ 2mme e
Thus
3 y
2 & 270 m, e
W, (C-16)
and
lo -
Y '
Y W me € )
aylr) = - . £ F=u0 N,
3VI ¢ h V3 20, (C-17)

We add equations (C-17) and (C;10) to obtain the total continuous

(C-15)

atomic absorption coefficient of hydrogen per H-atom in the ground

state:
: ' y o a 1 Wl
CHT me € Q‘ ‘ z € (v
Q-.;(T\ - C “3 %I )h)
EX ERAY v3 iy 2
. ' v

/. _
(Q 2;‘..4) ¥r + %1:(»7,1‘)
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Numerically, we write for the total continuous atomic absorption

coefficient of hydrogen:

O«‘/“-,_
3 5 e
O.y (T) = LONYZTIL x 10 X Z 2 LESOMS
. ec., v\‘>"_l g}
Y
Qlase
110 { e —1) iy, ™
N (C-19)
: 10\’
A vt Mitrons
_ - foyo .\ 7
o, = 31.30932 & 31.30°'3"~(~—7:—— (C-20)

Approximate expressions for the Gaunt factor %z(7,wn) have
been derived for quantum levels n = 1 to n = 15 by curve-fitting

expressions of the following form to the data of Karzas and Latter

(286).
al H
%IL;’,Y\) = Z Q.,“'. X
£=e (C-21)
Where
w* = zqoca,e ('/7\)
A v MiCYons
The coefficients C,; are presented in Table IX . These approxi-

mate expressions represent the values given by Karzas and Latter to
within ¥ 1%.

For the free-free.(}aun’c Factors o ™, T), two way interpola-
tion is pefformed in Table X , which was taken from the data of

Karzas and Latter (26).
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TABLE IX

Bound-Free Gaunt Factor Coetficients

" “no Cn1 “na Cn3 “n4

1 -0.22562 0.52841 -0.014517 -0.013476 0.0007822
2 0.68116 0.22009 -0,.023062 -0.0031543 0.0001566
3 0.88173 0,13846 -0.029257 0.0038457 -0.0006362
4 0.95987 0.085765 -0.0084987 -0.0018784 -0.0000285
5 0.99835 0.065833 -0.0096262 0.0004475 -0.0003724
6 1.02307 0.047595 -0.011946 0.0045831 -0.0010702
7 1.03084 0.042335 -0.0034511 0.00002719 -0.0004090
8 1.03887 0,035587 -0,0015757 0.00000562 -0,0004473
9 1.04378 0.032595 -0.0006065 -0.00099665 -0.0003040
10 1.05048 0,027722 -0.0025525 0.00167602 -0.0007242
11 1.05040 0,032472 0.0002064 -0.00122854 -0.0002464
12 1. 05495 0,026047 -0,0002350 0.00027118 -0.0005101
13 1.05632 0,025378 0.0001967 0.00003431 -0.0004727
14 1.05753 0.025188 0.0005817 -0.00024406 -0.0004295
15 1.05985 0.021491 0, 0007569 0.00039540 -0.0005509
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TABLE X

Free-Free Gaunt Factors

- SoYyo.il
6 T
Lon (1D 0.00958 ~ 0.05 0. 10 0, 15 0. 20 0.25
-1.0 8.475 2,418 2,032 1. 84 1.71 1.62
-0.8 3.2b 2. 24 1.88 1. 70 1. 585 1. 5086
-0.8 3.025 2.07 1,75 1. 585 1. 49 1.42
-0.4 2.80 1. 904 1. 62 1.484 1.402 1. 344
-0.2 2.59 1,766 1.514 1. 40 1.335 1.29
0.0 2.382 1. 645 1,43 1. 333 1. 28 1.24
0.2 2.19 1. 537 1. 356 1. 272 1.23 1.203
0.4 2.02 1. 44 1. 295 1. 235 1. 202 1. 18
0.6 1. 86 1. 367 1. 27 1. 202 1. 177 1. 16
0.8 1. 74 1. 302 1. 213 1. 177 1. 159 1.148
1.0 1. 58 1.247 1. 183 1. 159 1. 146 1. 138
1.2 1.46 1. 204 1. 156 1. 14 1,132 1.126
1.4 1. 35 1. 156 1. 125 1.116 1. 11 1. 106
1.6 1. 25 L. 107 L.087 1.081 1,078 1.07H
1.8 1. 15 1,048 1. 037 1.033 1.03 1.028
6 = 5ovo.n
In () 0. 30 0. 35 0. 40 0.45 0. 50 0. 60
-1.0 1.55 1. 502 1. 47 1. 435 1.41 1. 37
-0.8 1,452 1. 418 1. 385 1. 36 1. 34 1. 305
-0.6 1.372 1. 345 1. 315 1. 30 1. 28 1.352
-0.4 1. 307 1. 276 1. 255 1. 234 1. 219 1.193
-0,2 1. 257 1,23 1. 212 1. 195 1.182 1.163
0.0 1. 214 1. 198 1. 181 1,167 1. 158 1.142
0.2 1.184 1. 17 1. 16 1. 15 1. 144 1.134
0.4 1. 165 1.154 1. 146 1. 139 1.133 1.125
0.6 1. 149 1. 142 1. 135 1. 13 1.126 1.120
0.8 1. 14 1. 134 1. 13 1. 126 1.123 1.118
1. 0 1,132 1.127 1. 124 1.122 1.120 1.116
1.2 1.121 1.118 1. 116 1. 114 1.112 1.110
1.4 1. 104 1. 102 1. 100 1. 099 1,098 1.096
1.6 21,073 1.071 1,070 1. 069 1. 068 1.067
1.8 1,027 1.027 1.026 1. 025 1.025 1.024
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2. Tonized Helium -- He II
Since He II is a hydrogen-like atom, we follow exactly the

procedure of the previous sections with the following exceptions:

= Z
—- ,(He.‘ﬂ')
O, (He ) = b-iﬁ—-—
= H o, (K )

G (¥, T) = 1.0

Since the Gaunt factors are unknown, we simply set them to unity.
The aclual lonization frequencies of He II are determined from the
Rydberg for helium, which is slightly different from the Rydberg

for hydrogen. For convenience's sake, we have assumed the
Rydberg to be the same in order that the ionization edges coincide
and thus insure numerically accurate Vv -integrals. Since the
charge on the helium nucleus is 2, we sum over twice as many levels
as in the case of hydrogen. Numerically. we have for the atomic

absorption coefficient of He II, per He II atom in the ground state:

"sl/“-a.

30 e

I

a, () = l.6718 <10 A € ) "

S 3
*/ag
+ e

ZQ,

(C-22)
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To convert this to a mass absorption coefficient, we multiply by
NII, 1 the number of He II atoms in the ground state, and divide by
the density 4

3. Neutral Helium -- He I
Quantum mechanical calculations exist for transitions from
bound states n = 1 and n = 2 to free states. Table XI summarizes

the data on these transitions and gives the source of the calculations.

TABLE XI
X Transition gz YVa X4 Source
() (ev)
1 I's =~ K'P 1 19. 8305 0. 00 (1)
2 235 = P 3 3. 8546 19. 82 (1)
3 2's= kP 1 3. 2033 20. 61 (1)
4 2%p~ WD o 2. 9224 20. 96 (2)
5 2%~ K'S g 2. 9224 20. 96 (3)
6 2'P= KD 3 2. 7176 21. 22 (2)
7 2P K'S 3 2. 7176 21. 22 (3)
Sources: (1) Huang (27)

(2) Goldberg (28)

(3) Ueno (29) Quotes Goldberg as original
source.
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The following approximate expressions were derived from least-
square curve fits to the data as given by the sources listed in

Table XI

1 s = xlp |
a (9 )= exp (-71.039 + 36,459 x -14. 694 x% + 2, 5057 x°

- 0. 16249 x%) (C-23)

3 3
2 S =~ W P

az( v ) =exp (- 43.736+5,7414 x - 3, 1768 Xz + 0.58587 XS

- 0.04232 x¥) (C-24)

]

1 1
S = w P

2 3
a,(9) = exp (- 38,198 +0.27730 x - 1. 1451 x + 0, 247371 x
- 0.021336 x¥) - (C-25)

3 3
2 P — KD

a,(9) = exp (- 36.375 - 1.4957 x - 0,62184 x> + 7.8167 x°
- 0.0004734 x*) (C-26)
2 3p - «5s
a5(v) = exp (- 38.487 - 3.3 x) (C-27)
2 113 —i-KlD
2 3

ag(v) = exp (- 35.747 - 3.2129 x + 0. 007567 x> - 0. 033804 x
+0.0032075 x%) (C-28)

9 1P - 'KlS

8.7(0 ) = exp (- 38.296 - 3.6 x) (C-29)
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where

X = /Qo%e ( ')

A in witrons

The contribution from these transitions to the bound-free absorption

coefficient of He I, per He I atom in the ground state, is

7 - XL
. . &T
A, (Tymez) = PR AT
&<t
REs (C-30)

Hydrogenic forms are used for levels with quantum number n Z 3,
For levels n = 3 and n = 4, the exact term values and statistical
weights are used; data is given in Table XII.
Shielding by the inner electron is approximated by setting

+ = zﬁ-‘—? = )
and the Gaunt factors are assumed to be unity. We thus have the
following as the contribution to the bound-free absorption coefficient

of He I, per He I atom in the ground state:

a2 S XL
-1y 3 ! . AT
A0
£ - &%
b A 2, %ie
1oy PENE S
AN

(C-31)
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TABLE XII
i Level Y '(/:.‘) ::j)
8 335 3 . 5074 22.716
9 31 1 . 3446 22. 968
10 33p 9 . 2746 23. 005
11 33D and 3D 20 . 2208 23. 072
12 31P 3 L2101 23.085
13 433 3 .8013 23. 592
14 41g 1 L7371 23. 671
16 43P 9 . 7094 23. 706
16 43D and 4!p 20 6866 23.734
17 43F and 4'F 28 .6858  23.735
18 alp 3 .6818 23. 740




-129-

Complete hydrogenic forms are assumed for quantum levels n > 5,

adopting:
Oy = 4w
zZ = Ee;& = lu’
Qh(\-\e '];) = Q,“ (HI)
(C-32)
15 An
-4 y e
(L\?(T;ny_s) = }«53 « 10O RN e ns
Wz Y
14
+%(e ~1) ] (C-33)

The same procedure is followed for computing the free-free
atomic absorption coefficient of He I as was outlined for H1I in
equation (C-11) through (C-17), except that we do not make the

substitution for &, given in equation (C-15). We obtain

- L/
s eynte® AT o AT
T K) = _—
vl 393 h' ¢ V3
(C-34)
ar
-~ 16 7\3 -24.585 @
A (T, ) = 6.6709 <10 A
Y 1o (C-35)

The total continuous atomic absorption coefficient of
neutral helium, per He I atom in the ground state, is obtained by

adding equations (C-30), (C-31), (C-33) and (C-35):
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a,(T) = ay(Tyne2) + &y (T;n=13,4)

' . > 5 o, (T+ KD
+ Ay(Ty nzs) + v (C- 36)

To convert this to a mass absorption coefficient, multiply by
N1 1 the number of He I atoms in the ground state, and divide by

the density 4
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APPENDIX D

An Approximate Expression For the Hopf g®)Function

The Hopf qee) function, which expresses the variation with
optical depfh of the source function in a semi-infinite plane-parallel
gray atmosphere, has been discussed at length by Kourganoff (4).

King (5) has given a simple expression for this function of the form
W)= A + B E,m + CE_ (= (D-1)

th
where E is the n -order exponential integral. Using the
Schwarzschild-Milne integral equation for the source function, flux

and K-integrals at the top of a semi-infinite gray atmosphere, we

have

B(o) = 2 ch”c) E, () d (D-2)
o

©0

sz('tS E,(v) dx (D-3)

[+]

F

it

o0
K@= E q@ = —LJBU:) E, () dv
T 2 ) 3 (D-4)

Substituting

B = éi;: L’t M OGW)} (D-5)
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into .equations (D-2), (D-3) and (D-4) we have three integral con-

straints upon the Hopf function.

o0
A i
(*x) E. (2xYdr = — — —
I% ) v 2 (D-6)
o0
1
f > E, () de = 3 (D7)
o

oo

- 2 o0) -
jou(fc:\ E, () de = > G (=) m
© (D-8)

When equation (D-1) is substituted into (D-6), (D-7) and (D-8) and
the coefficients A, B and C determined, King finds that the approx-
imate expression (D-1) reproduces the exact g®) with an error of
+0. 24 per cent at =0 and less than I 0. 1 per cent error for
T = 0.01.

A more accurate expression may be derived with slight
additional effort by adding two constraints to the constrainis in

equations (D-6), {D-7) and (D-8). The two constraints are

CB(o) = E = 0.57135027 oo
and
. /2
w0 o w ] (o i)

(D-10)
= 0.71044609
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These additional constraints merely have the effect of making the
approximate expression exact at *=0 and = , which is of
considerable impbrtance in certain applications.
We continue the sefies approximation for g(«)in eqﬁation

(D-1) by

) = A + BE(® + CE® + DE + E Es(@)

substitute this expression into our five constraints and obtain the
_1 ’\
A
i
(-3 % (D-12)

A = Ck(‘”)
g (o)

linear set of equations
A+ BFR, + CF; + DR, + EFg~

!
A +BF, + CF13 + DRy + EF_-=

3A TBFR, + LR, + DR, +ER,-

wip N
A e &l

A+ B + 5C + 3D T LE

£
1

~

where the functions an are defined by

Foo= [Ehm E () 4z ooty

and are tabulated by Kourganoff (4).

The value of qqe) was obtained by expanding the integrand of

equation (D-10) in an infinite series:



3 |
-?(9) - et | - O cot 6
©0 Z2{n-1)
S Fv‘
. n=i
- o Z{n-t)
2. Gy
w= |
o 2(n-1)
= 2, R, 9
n=j
where
-
Fh: (-l) [(zw-rs)(ihﬂ) (1»\-:)‘]
-1
Gn [(Mﬂ) (2n-9 '] (D-18)
n-i -1
R [F > 6, R ]-¢
Thus
6 | o R An-~|
= — Ly
[ = ot 2, T (%) (D-17)

n=1

Computations using an IBM 7094 computer in double precision

yielded

(D-14)

(D-15)

gg(o0) = 0.71044 60895 98763 (D-18)
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The coefficients determined from equations (D-12) have the
values
= +0, 71044609
= -0, 28303851
. 57975839 (D-19)

= -0,75751038

H ©o o w »
I
-—l—
(@]

=+0.45026781

Calculations of this gs(¥approximate expression compare well with
the exact qu(t)values given by King (5), the error being less than
0.0032 per cent for all optical depths. Shown in TableXIIIis a
comparison between the values computed with this approximate

function and the exact values given by King (5).



-136-
TABLFE XIII

Comparison of Approximatc Ae(?) Function with Exact Values

T Exact Approximate Per Cent Error
0. 00 0. 577350 0.577350 0. 0000
0.01 0.588236 0.588219 -0.0029
0.02 0. 595391 0.595383 -0.0013
0.03 0.601242 0.601242 0. 0000
0.05 0.610758 0.610770 0.0020
0. 10 0.627919 0.627939 0.0032
0. 20 0. 649550 0. 649556 0. 0009
0. 30 0. 663365 0.663355 -0.0015
0. 40 0.673090 0.673072 -0. 0027
0. 60 0, 685801 0.685782 -0. 0028
0. 80 0.693535 0.693524 -0.0016
1. 00 0. 698540 0.698541 0.0001
2.00 0. 707916 0.707938 0.0031
3.00 0.709806 0.709821 0.0021
o0 0,710446 0.710446 0. 0000
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APPENDIX E

NUMERICAL QUADRATURE FORMULAE

1. The Schwarzschild-Milne Integrals
The solution to the equation of radiative transfer was shown

in Chapter V to involve integrals of the form
o

L= f Sq("ﬂ E, (x,-17,) dxy

T
(L
"'(“‘)“f S‘;("\?) E“(’t",—x‘,) dx,
° (E-1)

We will henceforth suppress the subscript v on all independent
variables, with the understanding that we always integrate on a

Ty or X; scale. We write cquation (E-1) in general terms

L=T1,-¢y I, (E-2)

where

o0

. f S(x) Eh(x—v’t) d=x
o .

H
1

(E-3)
and
,t .
I, = | SCo £, (x-x) 9

©
(E-4)
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We make the following transformations in the integrals 11 and I

2
1 w = X-—-%
duw = dx
. - - K
12. (.
duw = - dx

Thus the integrals become

T, - | SCerw) B o da

T

T,= [ Ste-w) E o du

(E-5)

(E-6)
In evaluating the first of these integrals, it is seen that a practical
upper limit may be taken to be

u = 20

since

~-lo
E,.(zed) ~ J0

We divide the range 0

<us

20 into m-1 intervals, denoting the
k™" interval by [m&_l ) LL‘&] where

1
(o)

Uy
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Our integrals thus become

: m
I = jtZ f S(r+wy E,(Wdu
=% " .

(E-7
k-1
and
J
1 b fS('t ~w) B, (w) du
2" k-2
U.&l
T
—w w) d
+ I §(r-uw) E, (w0 du 5-8)

[ P

where in the second integral we perform the indicated summation
over the basic intervals up to the largest uj that is smaller than
T . We then must compute the contribution of this partial
interval to the integral as a whole.

We note that the basic integral to be evaluated is of the

general form
8

f F(x,e) wix) dx

A
where w(x) is a weighting function. We can evaluate such integrals
by means of a Gaussian quadrature, in which the weighting function
does not appear explicitly, provided the moments of the weighting

function exist. -
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Moments are defined by
B

L
o(ltr-\,a)=fx w (%) dx

A (E-9)

Since the limits of the integral in the last term of equation
(E-8) are variable, we cannot evaluate this integral in terms of a
fixed set of points and weights. Instead we transform the integral
to the interval (-1, +1) and employ Gauss-Legendre quadrature. A
list of the roots and associated weights of the Legendre polynomials

is given by Lowan, Davids and Levenson (30). We write

T
f S(r-w) E_ (w) du
.

+1
- Uy -
- STl £, (22 )

A

L
= -y Z SLg(r-u(i-xp]

x WL E“ (ﬂc;‘u-“ + ,'E:-i—“-t-'i XL\ {(E-10)

Divisions Xi and weights W for this quadrature are given in Table
XIV . It has been found that, because the argument of S is rather
close to the origin and heri.ce S might be more ill-behaved than else-
where, a four-point formula, exact for polynomials of seventh

degree, was advisable.
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TABLE XIV
. Quadrature for the Incomplete Interval
1 Xl W]_
1 -0.86113631 0. 34785485
2 -0, 33998104 0.65214515
3 +0, 33998104 0.65214515
4 +0.86113631 0. 34785485

The procedure for deriving the divisions and weights which
are used to evaluate the remaining integrals in equations {(E-7) and
(E-8) are best illustrated by an example. We choose to evaluate the
integral over the interval [\L&_, y Yz ] by a two-point formula.
This will be exact for all polynomials of third degree or less. We
also choose to illusirate our procedure by the lirst exponential
integral, We are then attempting to evaluate the elementary

integral in the following manner.

(E-11)

u
&
f FVE () dx = W‘& §(xg) + Wzk % (%20)
w
k-

We denote the general moment of the first exponential integral over
the interval Euk_‘ N U%] by
“&

'8
Olpy = f X El(x) dx

Wy, (E-12)

Assuming for the moment that these moments exist and can be
computed, we have the following four conditions to be satisfied in
order that our quadrature formula be exact for all polynomials of

third degree or less.
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-~
WIA . o Wz'& = orﬁo
Wl& Xig + W’L& Xg = g, } (E-13)
W S 2
% (xg)  + Wia (%) = gy
3
Wig ( Xg) T Wag (xuﬂg = *az

-/

This is a set of equations linear in the Wik's, but non-linear in the

X;1.'S. We separate the linear and non-linear variables and solve

for them in turn. Kopal (31) has shown that the divisions X, are the
roots of the equation
x2+ cx+c, =0 (E-14)
1 2
where the ci’s are defined by a simultaneous linear system
dh'z, + G Y T C %o = 9
(E-15)

Once the roots have been computed, we obtain the corresponding
Gaussian weights Wy from any 2 of the 4 equations in (E-13). This
method can be extended to a larger number of divisions and weights
in an obvious manner.

We turn now to the calculation of the general moments of the

nth exponential integral,

“g

L

w
&



-143-

We integrate by parts n times and obtain

L4t KQ+1

L+ (e+)(any ™
. 2_‘_“ q‘&
AL X E1(,c)]
(241X 242} (240)
w U
4
! L+n-1 o d
' ®
* QAR+ (g4 W) € = (E-17)
Uhey
which can be written °
S
" g! 1+4 & ( .
= A . (X
O(nkz = [ é (2+4)! ntin
Ug -
Up
L1 f I LU T
+ K e" Ax
(gaw?! J (E-18)
Yot

We expand e™* in the last integral, and the resulting expression for

o\/“kl is
n { R4+a
o = [ >, 2« E . (x
nwhke Py’ (2*—1’.)! N4+ L=t
“Ug
&0 A .
| _ Lin+L
£ Z " ~ x
(ﬂ‘hﬂ)f izo ('Q'h" +i)° ‘! (E-19)
Ui

Following the procedures just described, Gaussian divisions
and Weights were computed for the first and second exponential
integrals. The selection of the intervals [u&‘ ) u&] is to a certain
degree arbitrary, but we are guided in our selection by wishing to

employ as few points as possible to represent the integrals in (E-1),



- 144-
yet retain a prescribed accuracy. The optimum procedure was to
select the distribution of the Uy such that the resulting moments
ke turned out to be approximately the same order of magnitude.
The U scale adapted_and the resulting Gaussian divisions and
weights for 2, 3 and 4 points per interval are shown in Tables XV
XVI and XVII respectively for the first exponential integral, while
Tables XVII, XIX and XX present the corresponding data for the
second exponential integral.
The accuracy of these quadrature formulae was judged by

computing the mean intensity and flux integrals for a gray atmos-

phere in radiative equilibrium
o3

T(x) = —‘Z-f S(x) E, (£-2) dX
x
T
Nt f S(x) E, (-%) dt
(o) (E-20)
o0
E = zfsc:ﬂ B, (t-7%) d%
T
Tt
- zf S E, (=-4) dt
(E-21)

o

The source function S(t) for a gray atmosphere is given by

(E-22)

S&Y =, %- F [t + %(*’]
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where q(t) is the Hopf function, discussed in Appendix D, where a

highly accurate expression was derived.
)

As Unsold (32) pointed out, the effect of the _/\ -
operator, defined in equation (V-64) of Chapter V, is to render an

approximate source function more exact, We therefore have the

following integral equations to be satisfied

o+ gle) = -;:f[m.%m] E, (k-7 d%
g
*
N _Lf £ + a6)] E,(x-1) dt
2 o[ 06 ] | (2-23)
i = X x| E.(x-7) 4%
3 Zf + gl ] 2 C
€%
<
- ZJ—\ [x + %(ﬂ] Ez('c—k) dx (E-24)
A .

The accuracy of the expression derived in Appendix D for the Hopf
q(t) function is considered to be such that if the above integral
equations, when evaluated numerically using the approximate expres-
sion for q(t) and the quadrature formulae in Tables XV  through
XX , should be satisfied to within the known error in our q(t).
We should thus be able to test the accuracy of our quadratures to
within 1 part in 104.

The accuracy ascribed to any quadrature formula is of
course dependent upon the test function; it is believed that our
choice of the source function for a gray atmosphere in radiative

equilibrium is a realistic choice.
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The results of numerical calculations of equations (E-23) and
(€}
(E-24) are given in Tables XXI and XXII  for the 'A"c and

2)
uadratures, for 2, 3 and 4 points per interval. Also given
z 4 g
as’

in column two for comparison is the relative error -§—°—- in per
cent for the approximate S(%x) expression. Note that the quadrature
errors in Table XXI follow the error of the approximate S(x%x)
expression, both in magnitude and sign, except in the vicinity of

T = 0.01. Note also that the errors given in Table XXI for all
three quadrature formulae are practically identical at all optical
depths.

The integral equation for the source function in a non-gray
stellar atmosphere, equation (V-81) of Chapter V is solved by
iteration, and the effect of an accumulated systematic error in the
quadrature formula must be investigated. A practical means of
doing this is to compute model atmospheres starting from identical
initial conditions, changing only the quadrature formulae. This was
tried on several different model atmospheres and revealed that the
monochromatic source functions, mean intensities and fluxes agreed
to within one part in 104 for all quadrature formulae. It is concluded
that the errors inherent in the quadrature formulae given in Tables

XV  through XX are less than the errors given in Tables XXI

and XXII,
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TABLE XV

No. points per interval =2

Divisions and Weights for the First Exponential Integral

Up-q

Uy

X

w

0. 000

0.018

0.045

0.080

0.125

0. 180

0.248

0.334

0.444

0.592

0.803

1. 146

1. 800

. 018

. 045

. 080

. 125

. 180

. 248

. 334

. 444

. 592

.803

. 146

.800

. 000

—t

W DN

. 2293625 (-3)
. 3873008 (-2)

. 3422959 (-2)
. 9045883 (-2)

.2111943 (-2)
. 2337290 (-2)

. 9170756 (-2)
. 1516441 (-1)

. 3622547 (-1)
. 6798828 (-1)

. 9386802 (-1)
. 3313289 (-1)

. 6548995 (-1)
. 1514234 (- 1)

3.5627381 (-1)

>

-3 (S0

—_ 0

w N

- 1977333 (-1)

. 7372988 (-1)
. 5914546 (-1)

. 3381530 (-1)
. 5553210 (-1)

. 6905778 (-1)
. 0666433 (0)

. 2642311 (0)
. 6389589 (0)

. 1652675 (0)
.7610834 (0)

N s Wk W W wdh wh Wk Wk

[ ™)

. 4230031 (-2)
. 5854506 (-2)

. 1758942 (-2)
. 7735955 (-2)

. 1348963 (-2)
.8110536 (-2)

. 2255826 (-2)
. 9136544 (-2)

. 1516308 (-2)
. 8545482 (-2)

. 1360736 (-2)
.8321230 (-2)

. 1725380 (-2)
. 8416279 (-2)

. 1674317 (-2)
. 80022486 (-2)

. 2274960 (-2)
. 71883306 (-2)

. 2738696 (-2)
. 7187322 (-2)

. 3946839 (-2)
. 5939053 (-2)

. 1571698 (-2)
. 9649589 (-2)

. 7051527 (-2)
.0767260 (-2)
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5. 000 20.000 5.5194879 (0) 8.5591913 (-4)
8.0818947 (0) 1. 4054982 (-4)

The number within parentheses indicates the power of 10 by which
the Table entry must be multiplied.
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TABLE XVI

Divisions and Weights for the First Exponential Integral

No. points per interval = 3

U -1

Uy

X

w

U, 000

0.018

0.045

0. 080

0.125

0. 180

0.248

0.334

0,444

0.592

0.018

0.045

0.080

0.125

0.180

0.248

0.334

0. 444

0.592

0.803

DD DD = b — = 00 ~J W N = OO

@ NN

01 OV H> Lo W

S NorWer

. 7050739 (-3)
. 5788997 (-3)
. 5842587 (-2}

.0917022 (-2)
. 1218285 (-2)
. 1853498 (-2)

. 8820057 (-2)
. 2205936 (-2)
. 5943256 (-2)

. 4924149 (-2)
.0214444 (-1)
. 1979053 (-1)

. 3102631 (-1)
. 5207919 (-1)
. 7363645 (-1)

. 8744649 (-1)
. 1346511 (-1)
.4012511 (-1)

. 5739675 (- 1)
. 9026764 (- 1)
. 2401687 (-1)

. 4597747 (-1)
.8795424 (-1)
. 3118533 (-1)

. 6001233 (-1)
. 1632677 (-1)
. 7464816 (-1)

. 1458221 (-1)
. 9447352 (-1)
. 7799452 (-1)

DN W N D N =W

w N

. 6863438 (-2)
. 4241477 (-2)
.8979622 (-2)

. 3972841 (-2)
.5136203 (-2)
. 0385853 (-2)

. 3561209 (-2)
. 5215749 (-2)
.0682542 (-2)

. 4031785 (~2)
. 6099371 (-2)

2.1261214 (-2)

DN o D NwN

. 3587863 (-2)
. 5523790 (-2)
. 0950136 (-2)

. 3510218 (-2)
. 5359783 (-2)
. 0811965 (-2)

2.3758627 (-2)

w

. 5561759 (-2)

2.0821274 (-2)

N oD D W N

. 3793488 (-2)
. 5349006 (-2)
. 0534069 (-2)

. 4255433 (-2)
. 5545588 (-2)
. 0357245 (~2)

2.4723787 (-2)

o

. 5406397 (-2)

1. 9795834 (-2)



1. 146

1.800

5. 000

1,146

1.800

5.000

20. 000

> BN IND = — O 0

Pt =3 O
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X

. 3887879 (-1)
. 6738374 (-1)
. 1044188 (0)

.2110479 (0)
.4501491 (0)
. 7165780 (0)

.0214225 (0)
. 9599028 (0)
. 3884949 (0)

. 3706538 (0)
. 0695086 (0)
. 0768523 (+1)

W= DD = W = W N

WO N ~J

w

. 5855303 (-2)
. 5285656 (-2)
. 8744933 (-2)

. 5329369 (-2)
. 1158198 (-2)
. 4733720 (-2)

. 7029580 (-2)
. 7603695 (-2)
. 1855122 (-3)

. 1771342 (-4)
. 6932351 (-4)
.4320227 (-6)

The number within parentheses indicates the power of 10 by which

the Table entry must be multiplied.
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TABLE XVII

Divisions and Weights for the First Exponential Integral

No. points per interval = 4

b oW

. 6957926 (-1)
. 0698193 (-1)
. 3615387 (-1)

N DN

uk__l uk X w
0. 000 0.018 1.0489777 (-3) 1.8037488 (-2)
5.5908984 (-3) 2, 7008755 (-2)
1.1809116 (-2) 2. 3446900 (-2)
1. 6687671 (-2) 1. 1591393 (-2)
0.018 0. 045 1.9810018 (-2) 1.5307783 (-2)
2.6707305 (-2) 2.6794238 (-2)
3.5904015 (-2) 2.4819948 (-2)
4, 3074022 (-2) 1. 2572927 (-2)
0. 045 0.080 4,7366786 (-2) 1. 4972071 (-2)
5.6342889 (-2) 2, 6652480 (-2)
6.8252164 (-2) 2.5049848 (-2)
7.7514040 (-2) 1. 2785099 (-2)
0.080 0.125 8.3049668 (-2) 1.5252098 (-2)
9.4601725 (-2) 2.7269100 (-2)
1.0990889 (-1) 2.5721957 (-2)
1.2180680 (-1) 1.3149216 (-2)
0.125 0. 180 1.2873154 (-1) 1.4960744 (-2)
1.4285773 (- 1) 2.6808314 (-2)
1.6156319 (-1) 2.5333119 (-2)
1.7609888 (-1) 1. 2959613 (-2)
0,180 0. 248 1,8461150 (-1) 1.4914836 (-2)
2.0206971 (-1) 2. 6704495 (-2)
2.2519428 (-1) 2.5194430 (-2)
2.4317312 (-1) 1. 2868206 (-2)
0. 248 0,334 2.5382169 (-1) 1. 5087060 (-2)
2.7587420 (-1) 2.6919842 (-2)
3.0511812 (-1) 2. 5275494 (-2)
3.2788354 (-1) 1. 2859264 (-2)
0. 334 0. 444 .4142533 (- 1) . 5132265 (-2)

. 6854458 (-2)
. 5029584 (-2)
. 2660255 (-2)



0.592

0.803

1. 146

1,800

5. 000

0.592

0.803

1.1486

1.800

5. 000

20.000

S Lo D = e — 2 O 00 -3 1N [9) [ VRN

= O o0

-152-

. 5393834 (-1)
. 9168903 (-1)
. 4200872 (-1)
.8138838 (-1)

. 0604384 (-1)
. 5955343 (-1)
. 3128212 (-1)
. 8773823 (-1)

. 2540617 (-1)
. 1132844 (-1)
. 0278773 (0)
. 1207281 (0)

. 1869960 (0)
. 3463581 (0)
. 5681607 (0)
. 7497742 (0)

. 9487884 (0)
. 5741250 (0)
. 6030888 (0)
. 6267863 (0)

. 2869272 (0)
. 5655010 (0)
. 1121393 (0)
. 3583756 (+1)

= =3 DN QO D — DD = DD =t D DO

Qo W

. 5469468 (-2)
. 7179033 (-2)
. 4996878 (-2)
. 2512887 (-2)

. 5842728 (-2)
. 7368027 {-2)
. 4610709 (-2)
. 2104554 (-2)

. 6730270 (-2)
. 7897151 (-2)
. 3924450 (-2)
. 1334022 (-2)

. 6729416 (-2)
. 5855415 (-2)
. 9960175 (-2)
. 6762813 (-3)

.0017436 (-2)
. 9381005 (-2)
. 0111172 (-3)
. 4002283 (-3)

. 0945754 (-4)
. 4980321 (-4)
. 6692300 (-5)
. 1589969 (-7)

The number within parentheses indicates the power of 10 by which

the Table entry must be multiplied.



-153~
TABLE XVIII
Divisions and Weights for the Second Exponential Integral

No. points per interval = 2

U4 Uy X w
0. 000 0. 100 2.0015G66 (-2) 4. 4085002 (-2)
7.7875580 (-2) 3.9623539 (-2)
0. 100 0. 250 1.3003107 (-1) 4,8435533 (-2)
2.1664212 (-1) 4,3171800 (-2)
0. 250 0. 500 2.9906121 (-1) 5.5634087 (-2)
4,4327069 (-1) 4, 7445675 (-2)
0. 500 0.900 5, 7632904 (-1) 5.3222702 (-2)
8.0663716 (-1) 4. 2678684 (-2)
0. 900 1. 500 1.0106560 (0) 3. 9544535 (-2)
1. 3550066 (0) 2.9418954 (-2)
1. 500 2,400 1. 6579186 (0) 2.2992746 (-2)
2.1711358 (0) 1. 5341360 (-2)
2.400 3.800 2.6264829 (0) 9.5637226 (-3)
3.4128939 (0) 5. 3585606 (-3)
3.800 8. 000 4,2382190 (0) 2.7514763 (-3)
6.1979275 (0) 7.0044441 (-4)
8.000 20,000 8.5399923 (0) 2. 6685720 (-5)
1.1172691 (+1) 4.4949231 (-6)

The number within parentheses indicates the power of 10 by which

the Table entry must be multiplied.
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TABLE XIX

Divisions and Weights for the Second kxponential Integral

No. points per interval = 3

Uy

X

w

0. 100

0.250

0. 900

1,500

2. 400

3.800

8.000

0.

20,

100

. 250

. 500

. 900

. 500

. 400

. 800

. 000

000

b o] [ee e )] B W N DN DR h =

w o

. 0763460 (-2)
.8893366 (-2)
.8313669 (-2)

. 1618066 (-1)
.7322168 (-1)
. 3239111 (-1)

.'7654248 (-1)
. 7089751 (- 1)
.7016828 (-1)

. 4153235 (-1)
. 9088973 (-1)
.5116163 (-1)

. 6063919 (-1)
. 1816598 (0)
. 4246266 (0)

. 5874506 (0)
. 9122289 (0)
. 2820653 (0)

. 5276120 (0)
.0151453 (0)

3.6031161 (0)

-1 U1 »

= -0

.0713533 (0)
. 22941758 (0)
. 1011594 (0)

. 3812974 (0)
.0112495 (+1)
.3811874 (+1)

2, 5360680 (-2)

[oh]

. 7000253 (-2)

2.1357609 (-2)

ek N = b - DN W o 0N o SV Y

w O N

. 7849995 (-2)
. 0583704 (-2)
. 3173633 (-2)

. 2374966 (-2)
. 5601857 (-2)
. 5102939 (-2)

. 1479201 (-2)
. 2307457 (-2)
.2114728 (-2)

. 3835407 (-2)
. 0288479 (-2)
. 4839603 (-2)

. 4224364 (-2)
. 6689008 (-2)
. 4207332 (-3)

. 15010869 (-3)
. 3695363 (-3)
.4026401 (-3)

. 0507175 (-3)
. 2270770 (-3)
. 7412620 (-4)

. 2193380 (-5)
. 6565973 (-6)
. 3066644 (-7)

The number within paraentheses indicates the power of 10 by which

the Table entry must be multiplied.
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TABLE XX

Divisiong and Weights for the Second Exponential Integral

No. points per interval = 4

uk_l U_k X w
0. 000 Nn. 100 . 6783673 (-3) 1. 6211446 (-2)
3.2205834 (-2) 2.8260364 (-2)
6. 6263566 (-2) 2. 6082825 (-2)
9. 2850071 (-2) 1. 3153907 (-2)
0. 100 0. 250 1. 1004711 (-1) 1. 7787383 (-2)
1.4826651 (-1) 3. 1095908 (-2)
1. 8928544 (-1) 2.8487252 (-2)
2.3923430 (-1) 1.4236788 (-2)
0, 250 0. 500 2, 6652974 (-1) 2.0818984 (-2)
3.2967778 (-1) 3.5510944 (-2)
4.1467596 (-1) 3. 1450654 (-2)
4.8181645 (- 1) 1. 5299180 (-2)
0. 500 0. 900 5.2597122 (-1) 2.0432986 (-2)
G. 2578014 (-1) 3. 3685733 (-2)
7.6167911 (-1) 2. 8458950 (-2)
8.7035685 (-1) 1. 3323716 (-2)
0. 900 1. 500 9.3810836 (-1) 1. 5641682 (-2)
1. 0855779 (0) 2.4764408 (-2)
1. 2891614 (0) 1. 9748170 (-2)
1. 4544895 (0) 8.8092280 (-3)
1. 500 2. 400 1. 5553564 (0) 9.4782276 (-3)
1.7716605 (0) 1. 4167581 (-2)
2.0762471 (0) 1.0383212 (~2)
2.3293380 (0) 4. 3050848 (-3)
2. 400 3. 800 2.4817275 (0) 4.1942542 (-3)
2.8058274 (0) 5, 7312450 (-3)
3. 2767689 (0) 3.65947176 (-3)
3.6835313 (0) 1. 3373065 (-3)
3.800 8. 000 3. 9846615 (0) 1. 5409671 (-3)
4.7631316 (0) 1. 4061089 (-3)
6.0745447 (0) 4, 3605402 (-4)
7.5027444 (0) . 6.8790779 (-5)
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U1 uy X _ w

8.000 20.000 8. 2889068 (0) 1. 8525605 (-5)
9.5644378 (0) 1. 1284676 (-5}
1. 2053906 (+1) 1. 3439943 (-6)
1. 6203619 (+1) 2.6367847 (-8)

The number within parentheses indicates the power of 10 by which
the Table entry must be multiplied.
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TABLE XXI
. )
Per Cent Errors in the _f\ = Quadrature
-4
T _9_5_ No. of points per interval
S° :
2 3 4
0,00 0. 0000 0. 0006 0.0001 0. 0000
0.01 0.0028 -0.0128 -0.0130 -0.0130
0.02 0.0013 0.0016 0.0013 0.0013
0.03 0.0000 0.0002 0. 0000 0.0000
0.04 0.0009 -0. 0008 -0.0010 -0.0010
0.06 -0.0019 -0.0020 -0.0022 -0.0022
0.08 -0,0023 -0.0021 -0.0025 -0.0026
0. 10 -0. 0027 ~0.0024 -0, 0026 -0.0026
0. 20 -0.0007 -0. 00056 -0. 0007 -0. 0007
0, 30 0.0010 0. 0009 0, 0008 0.0008
0.40 0.0017 0.0014 0.0013 0.0013
0. 60 0.00193 0.0016 0.0011 0.0010
0.80 0. 0007 0. 0006 0. 0005 0. 0005
1.00 0.0001 0.0001 0.0001 0.0001
2.00 0.0008 0.0000 -0. 0002 -0.0002
3. 00 -0.0004 0. 0000 0.0000 0. 0000
4,00 0. 0000 0. 0000 0. 0000
6. 00 0.0000 0.0000 0. 0000
8.00 0. 0000 0, 0000 0.0000
10. 00 0. 0000 0. 0000 0. 0000
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TABLE XXII
NS
Per Cent Errors in the _/\_ Quadrature
-
AS No. of points per interval
S°
2 3 4
0. . 0000 0.0033 0. 0007 0.0002
0. .0028 0.0016 0.0002 0. 0000
0. .0013 0.0011 0.0001 0.0001
0. . 0000 0.0008 0.0001 0.0001
0. . 0009 0.0007 0.0001 0.0001
0. .0019 0, 0005 0.0002 0.0002
0.08 . 0023 0. 0005 . 0002 . 0002
0. 10 . 0027 0025 . 0008 0004
0. 20 . 0007 0007 . 0008 . 0008
0. 30 . 0010 0010 . 0006 . 0006
0.40 . 0017 0005 . 0005 . 0005
0. 60 .0015 . 0000 . 0005 . 0005
0.80 . 0007 . 0007 . 0008 . 0008
1.00 . 0001 . 0002 .0014 .0014
2.00 . 00038 . 0002 ., 0000 . 0000
3.00 . 0004 . 0008 . 0006 .0007
4. 00 .0014 . 0006 . 0006
6. 00 -0,0002 . 0002 . 0002
8. 00 -0,0003 . 0002 . 0002
10. 00 -0.0001 .0002 .0002
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2. Frequency Integrals
Tn the course of the computation of a model stellar atmos-
phere, integrals of the form
00

(V) dv
(o) (E-25)

arise, where the integrand ¥(¥) is not necessarily a continuous
function, due to the ionization edges of the mass absorption coef-
ficient. It is thus necessary to integrate separately the frequency
regions between adjacent ionization limits. In order to keep to a
minimum the number of frequencics necessary to computc intcgrals
of the form (E-25) to within a prescribed accuracy, we choose a
Gaussian formula with two points fixed at the limits of the integra-
tion region between adjacent ionization edges.

We fix our attention upon the frequency region between two
adjacent ionization edges Vi and \72 . The contribution of this

region to the total integral is

‘77.
T =f $(9Y 4V
\/ (E-26)

We transform this integral by the substitution

7= (B2) + (37«
(E-27)
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and obtain

-+
I = (a—f—‘;\?‘)f ‘QI“Z‘.‘:—:’;{ + \7._____..1;‘?‘ x] dx
_ -

(E-28)
This is evalualed by a n-point gquadralure of the form
T = ?z:q._in S+ W, Fw)
w1t
V.=
+ 5 owi § B 20 ]
o 7 { % 2 4 (E-29)

Values of the divisions x; and weights W, for this type of quadrature
are given by Kopal (31) forn = 3, 4, . . . . 10,

The limits given for the complete integral in (E-25) are not
practical from a numerical standpoint. Instead, we choose as our
upper limit the highest ionization frequency to be encountered in our
model atmosphere. If the contiribution to the total integral becomes
negligible at a lower frequency, as is the general case in cool stars,
we choose a lower ionization frequency. BSuitable upper limits for
various effective temperatures are given in Table XXIII . Also given
in TableXXIII are practical lower limits for the frequency integrals.

We adapt as our criterion of accuracy one part in 104 to be
compatible with the accuracy of the quadrature in the preceeding
section and present in Table XXIVa set of standard frequencies,
expresscd in terms of inverse wavelength, and corresponding

weights.
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The integrals which must be computed with maximum accuracy
are the integrals for the tétal flux at depth ‘T , equation (V-102)
of Chapter V. For these integrals we obtain asymptotic expressions
to approximate the contributions from the frequencies above the
upper limit and below the lower limit, We assume that the
monochromatic flux for frequencies above the upper limit at depth

T resembles the Planck function in the limit of v —» ©@

F,(x) = C v’ exr(-— Ry )

& T()

vV > Yax : (- 30)

where the constant C is determined by fitting to the monochromatic

flux at a frequency just above the upper limit ‘7mo.x . For small

frequencies, we assume

FV(’C) = ¢Vt

(E-31)
\] < OW\\VI
and determine Clby fitting to the monochromatic flux at a frequency

just below the lower limit Vv,
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TABLE XXIII

Frequency Upper Limits for Model Atmospheres

T, Iohization PN V/x

(°k) edge of (A) (/[‘)
20000 He II 227 43,871032
15000 He I 504 19. 8305
10000 HI 911 10. 967758

Frequency Lower Limits for Model Atmospheres

T, Ionization b VAN

(°x) edge of (A) (")
20000 H I (n=5) 22794 0.43871032
10000 H I (n=6) 32823 0. 30465993

5000 HI(n=7) 44676 0.22383179
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TABLE XXIV

Standard Frequencies and Weights

lTonization /N w
Edge ("
He II
43.871010 4. 0067551
31. 850765 16. 027020
19, 830520 4.0067551
He I
19, 830480 1.477123%7
15. 399129 5. 9084949
10. 967778 1.4771237
HI
10. 967738 0.26129293
10. 183878 1.0451717
9. 400000 0. 30583793
9. 2522568 0. 22272500
9.0132031 0.22272500
+ 8.8654620 0. 044545000
HeH
8. 8654580 0. 30617603
7.8080923 1. 6669584
5,80369007 2. 1772519
3.7993071 1. 6669584
2.7419414 0. 30617603
HI
2.7419374 0.076164982
2.4789064 0.41467602
1. 9802896 0.54161765
1.4816727 0.4147602
1. 2186417 0.076164982
HI
1.2186377 0.044429573
1.0712793 0.22214787
0.83284523 0.22214787
0. 68548505 0.044429573
H1I
0. 68548465 0.041129091
0. 56209758 0. 16451636
0.43871050 0.041129091
HI
0.43871010 0.022341695
0,37168512 0.08936678
0. 30466013 0.022341685
HI
0. 30465973 0.013471290
0. 26424586 0. 053885160
0.22383199 0.013471290

HI




10.

11.

12,

13.
14.
15.

16,

17.

18.
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