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ABSTRACT

The ESR spectra of the cycloheptatrienyl radical
(CHT) have been studied theoretically, and the orbital
degeneracy of the ground state of CHT has been decisively
confirmed. The static Jahn-Teller effect and out-of~-plane
puckering do’not occur. The spin densities have been cal-
culated according to the prescriptions of the simple
Hickel, approximate UHF-LCAO-MO, Pariliser-Parr and valence
bond theories. The modifications of the dynamic Jahn-
Teller effect and of the unusually strong coupling between
the CHT molecule and the lattlce through the crystal fleld
have been discussed. The hyperfine.structure of the high
temperature spectra in naph@halegg haé beén quantitatively
explained, and the hyperfine structure of the low tempera-
ture spectra in naphthalene has been seml-quantitatively
explained, The pi-electron contribution to the spectro-

scopic splitting factor, has been estimated and shown

2y
to account for the low temperature polycrystalline g-factors.
The role of the spin-orbit interaction in inducing spin-
lattice relaxation has been examined in the light of the

strong lattice-CHT coupling.
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INTRODUCTION

The cycloheptatrienyl radical (CHT),

H
I
H\C/;;\C/H CoH,, was first studied by Hickel (1) in
Hd,g ﬁgﬁ4 1931. In the Hiickel theory, as well as in
N
/F==Q\ the valence bond theory, planar heptagonal
H H

CHT has a ground state which because of
-symmetry is orbitally degenerate. In 1937, Jahn and Teller
(2) formulated thelr famous theorem: non-linear molecules
whose ground states are oibitally*ﬁegenép&fe because of
symmetry will distort so as to remove both the symmetry and
the degeneracy. Since 1937, the questions

Is CHT a planar, regﬁlar heptagon?

Does CHT have an orbitally degenerate ground state?

Does CHT undergo a Jahn-Teller distortion?
have received much theoretical attention, but until now have
not been unambiguously answered.

The recent electron spin resonance (ESR) study of CHT
in this laboratory by David E. Wood (3) has made it possible
to answer these questions. In this theslis, we shall show
that the answers to these questlons are:

CHT is a planar molecule with the symmetry of a
regular heptagon.

The ground state of CHT is orbitally degenerate.

The degeneracy 1s lifted not by a static Jahn-Teller
distortion but by the crystalline electric field.

Several speclal consequences of the degeneracy will be

investigated in detall. These include:
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the very unusual coupling between the CHT molecule
and the crystal;
the effect of this coupling on the spin-lattice
relaxation time through the spin-orbit interaction;
the unusually important pi-electron contribution to
the g-tensor.
The thesis will begin with a brief summary of the
experimental ESR results on CHT. This will be followed by
a review of the theory of the spin Hamiltonian and the spin
density matrix. The spin Hamiltonian and,ﬁhé spin density
matrix act as a liaison between theory and experiment. Next,
various approximate methods of solving the Schroédinger
equation will be applied to CHT. Since CHT i1s both a very
simple non-alternant hydrocarbon and has a degenerate
ground state, it provides a basic test of the various approxi-
mate methods. The predictions of the approximate theories
are then modified to account for the dynamlc Jahn-Teller
effect. The effect of a crystal field is investigated. The
numerical computations of spectra and the matching of the
theory to experiment are described. Finally, the pl-electron
contribution to the g-tensor, and the effect of the degeneracy

on the spin-lattice relaxation time are derived.
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A, EYPERIMENTAL RESULTS

Wood (3) has examined the ESR spectra of CHT in
several matrices: naphthalene, thiourea, cycloheptatriene,
and argon. The spectra in each matrix may be dlvided 1nto
two groups: high temperature spectra and low temperature
spectra. The high temperature spectra all have eight
equally spaced lines with relative intensltles 1:7:21:35:
35:21:7:1. The splitting between the lines varies from 3.5
to 4 gauss, and in single-crystal gémples,is significantly
(but not greatly) anisotropic. The lawktemperature spectra
are extremely anisotropic, and In $ingle crystal naphthalene
samples, the apparent number of fines varies from three to
seven., The low temperature spectra vary greatly from one
matrix to the next and are very easy to saturate, in contrast
to the high temperature spectra which are difficult to satu-
rate. The transition from high to low temperature spectra
occurs within a temperature range of a few degrees Kelvin,
and the transition temperatures in naphthalene, thiourea, and
cycloheptatriene are 209, 40°, and 13° X, respectively. In
an argon matrlix, no transition from the high temperature
spectrum was observed down to a temperature of about "50 K.

Following are some g-values reported for the low

temperature spectra.

g~-value matrix
2,00232,0002 thilourea (polycrystalline)
2.0035%.0004 naphthalene (parallel to a-axis)

1.99854.0015 cycloheptatriene (polycrystalline)
-.0003
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B. THE SPIN HAMILTONIAN

All the properties of CHT are contained 1n 1ts exact

Hamiltonian, H, and the assoclated Schrodinger equation,
H¢=i¥x%% (1)

The spin Hamiltonian, H 1s a Hamlltonian depending ex-~

sh’
plicitly on only spin operators, and whose energy spectrum

in the ESR region is 1identical with that of H. H is both

sh
a convenient way to summarize the magnetic.properties of H
and an indlspensable computational device 1n the interpre-
tation of experimental ESR spectra. 'In this section, it 1is
shown how to derive the spin Hamifltonian from the exact
Hamiltonian.

The exact Hamlltonlan may be written as the sum of

four terms:

H=Hy + Hgo + Hy + Hpggy (2)

He represents the usual non-relativistic Hamiltonian (in the
absence of a magnetic field); HSO represents the spin-orbilt
interaction, Hm the magnetic terms other than the spin-orbit

interaction. H contains all the remaining terms in H,

rest
and for our purposes may be neglected.

‘Since Hgy 1s much larger than Hyps and Hp, the latter two
may be treated mathematically as perturbations on the problem
defined by He' The solution of the Schrddinger equation for

Hg 1s discussed in SectionsD-G. The spin-orbit interaction
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1s dealt with in Sections R and S. 1In thils section we are
concerned explicitly with the magnetic terms of the
Hamiltonian, H.

Hm is split into four parts*

Hy = Hy + Hpp + Hgg + Hope (3)
The largest part of Hm is the Zeeman interaction of the
electron with the external magnetic field E:

H, =8l = (1, + osi) H (4)

electrons,

Hnhe represents the hyperfine interadtion. (For convenlence,
the Zeeman terms for the nuc¢lel have been included in the

electron-proton hyperfine interactlon.) HSS represents the
electron spin-spin interaction, and Hypp the orbital hyper-

fine interaction.

-5
= g s (r =30 a5 )" I
ea*j “electronsij i e S I Nt
protons, j

+ (877'/3) geg’pJBI'BN %_j b3] ({'i-,{'j) §j_',],:]

“EoBy 2y Ly

(5)

*For an excellent discussion of the important terms in
the Hamiltonlan, see Bethe and Salpeter (4)



Hes = 858% % ryP s1-(rs§ -3ri414)- 83 (6)
electrons
i<
— » - 2 L3
L ]

The various symbols used on the right hand side of Equations
4.7 all have their usual meanings.

The ground state of He 1s assumed to have no orbltal
degeneracy, (for CHT it is necessayy to include the effect
of the crystal field to insure non—deggperacy), but does
have two-fold electron-spin degeneracy, and 27 - 128-fold
proton-spin degeneracy. Hp 1iftg this 256-fold degeneracy.
In ESR spectroscopy, one observes transitions among these
256 levels in which the energy differences are of the order
ofleBllgl. The energy levels are calculated to first order
perturbatlon Lheory., by diagonallizing the 256x256 matrix of
H, with respect to the ground state space of H,.

Parts of Hy are immediately seen to be zero. :H,, - and
the orbital part of Hz are zero because the H, ground state
is orbitally non-degenerate. (Hsg>= 0 because the ground
state is a doublet (electron-spin). ( See Proposition No. 1).

Effectively, Hm reduces to
Hy = 2|8 S-H + Hyp (8)

The only non-zero part of Hj, whlch depends on elec-

tron space-coordinates 1s Hpp. Thls spatial dependence 1is
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not difficult to eliminate, especially if the formalism 1is
developed as follows.

Define gd(ij), and h,(ij) by

-5 2
ha(13) = -gozJBIR rij5 (ryj =374 574 5) (9)
hc<ij) = (8« /3) gegp|8"BN S(Eij) (10)

Expressed in terms of hc and Ed’ Hy ¢ becomes

H L o

+ 2 { 51o0g(38) Iy + 87Ty he(ad) }

1.3 (11)

Consider the elgenfunctions of He' Each of the 256
functions can be written in the form

¥ = §(23)0y05030105040% (12)

ﬁ(*%) is the antisymmetric electron space and spin dependent

ground-state eigenfunction of H, with 8 = 1, S, = # ;. o, is

a proton spin function ( a or8) for proton i. The spin

density (5), .F(g), is defined from @(+%) by
f(}:) = ( ¢(+"1é')9 z 25123(!‘-{'5_) ¢(+‘i") ) (13)
i

The spin density also appears from ¥ 1n the following three

ways:

plx) = (W (), 2 255 ,3(r-r )W (£3) ) (14)



p(x) = (Y (#2), 2 2s4x8(r-r4)¥ (53) ) (15)
1

o(r) = +1(¥ (+5), I 2s1y8(z-rs) ¥(53) ) (16)
1

Using the Equations 9-16, the general matrix element

of th, can be written

(W (s), Hye WV (s') ) + (V¥ (s), zj;i;pﬂm I;-Av(sh) ) (17)

= (¥ (s), T (s3-hq(13) Ty + 53-Ij helid) )W¥(s") )
i,3 ~ .7 P

= ( ¥ {(s), % (Q{IF(I) Ld(j) dv.gj
+ 5 I3fp(x) Bo(3) &7 ) ¥ (1)) (18) %

Equation 18 is the key to removing the dependence of Hpe on
electron space coordinates. If we denote the 1sotropic

proton hyperfine coupling constant by aJ

a5 =f§>(.r:) ho(3) av (19)*

= (87/3) gegplﬁil%\, plr;) (20)

and the anisotropic hyperfine coupling tensor by g

Ty =[p(x) by(3) @ (21)*

*When the electronic coordinates, ry, in h,(iJj) and Ly
(13) are not given a subscript, we shall write h.(J) and pg(J).
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‘then the 256x256 matrix of H  1s identical with that of

Hop = o815 H - % (gpfly H = $°T5 = as3)- 13 (22)

Hgp 1s called the spin Hamiltonlan; 1t depends only on spin
operators, and is an extremely convenient meeting ground be-
tween theory and experiment. On the one hand, Hgp provides
an elegant way to report experimental results, i.e., through
the isotropic coupling constants aj, and the traceless,
anlsotroplc coupling tensors 23- On‘thevother hand, Hgy 1is

an equally elegant form for reporting thepretical results.
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C. THE SPIN DENSITY MATRIX

Although the entire spin Hamiltonian is needed to
describe the ESR spectrum, the spln properties unique to
the electronlic wavefunctlon are embodied in the spin density
y(r). A particularly useful generalization ofg:(g) is the
spin density matrix (5).

f(g' ',\I:) = ﬁﬁdngO@...andth;(%)*(;; ',;21000’}:11) (23)
'2n51z¢(%)(£,£2,onog;:n)
Furthermore, if {ai} is a complete”set of ¢dne-electron

space functions, then it is possible/ﬁo express the spin

density matrix as
(hyr) = 2 a, (r) ayx)” (24)
R I A RS
The spin density 1s obtained by setting r' = r.

f(g) = g:(g,;;) (25)
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D. THE SIMPLE HUCKEL MOLECULAR ORBITAL THEORY

The simple Hiickel Molecular Orbital theory (1) (SHMO)
1s a highly approximate method for solving the Schrddinger
equation for a planar, conjugated molecule (6). The first
approximation of SHMO theory is to disregard all electrons
except the so-called pi-electrons., The second approximation
made is that the pl-electrons do not correlate. Thus, the

pi-electron Hamiltonian, H becomes the sum of one-electron

e?
terms:

He = = h(i) (26)

pi electrons, i
h(n) acts only on electron n, and is called the effective
one-electron Hamiltonlan. Later approximations make a pre-
cise definition of h(n) unnecessary.
As a consequence of the second, non-interacting

particle approximation, the wave functions ﬂ(gl, ros, “‘-'257)

(CHT has seven pi electrons) can be written in the form

We use the convention that the 1th spin-orbital to appear 1s
a function of the coordinates of electron i. A denotes the
antisymmetrization operator, so that @ satisfles the Paulil
princible. 0, denotes a spin functlon (e orB). The molecu-

lar orbitals, Mi’ are eigenfunctions of h with energy ey .

hM, =e (28)

1 =& M

i
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The energy of ¥ is e} + ex + ... + €.
The third approximation of the SHMO theory is to
approxlmate each molecular orbital as a linear combination

of atomic orbitals (LCAO).

W = 2 % .
(@) = Za g o3 25 (29)

For CHT, the sum 1s over the seven carbon atoms whose posi-
tion vectors are designatedlgj. a4 1s to be regarded as a
Slater 2pz_ type atomic orbital centered on the carbon
nucleus at_g{. The c§ are chosen 8o that the total energy
of ¢ 1s a minimum, which implies that the c} satisfy the

P e T BT ~
elLgenvaiue egua

zhlm op = ey r%slm °xi{1 (30)
where
hy, = ( ay, ha) (31)
Sym = (ays ap) (32)
Finally? the following mathematlical assumptlons are
made :

S1m = 14 (33)

h,, = @ independent of m (34)

i}

B, if 1 and m are nearest neizhbors; (35)
independent of 1 and m

P1m

hy, =0, 1#m, 1 and m not nearest neighbors (36)
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Within this framework, the c% are independent of ¢ and B8 ,
and the one-electron energieé have the form e; = a+ k; B8,
where kj is independent of ¢ and B .
For CHT, the molecular orbitals are determined by
symmetry* (1):
M, (r) a nz;z exp(2 Tim/7) a (r
n = @+ 2B cos(27n/7)

e

)
}m =0, +1, 2, 43 (37)

The wavefunction of the form of Equation 27, with the

lowest energy is
¢ =R gaMyBiyaMyBM 4a M_iﬁ”fiz'é)w (38)

In addition to the two-fold spin degeneracy, the ground state
is orbitally two-fold degenerate with symmetry E",. o~ repre-
sents an arbitrary linear combination of « and B for
electron #7, and M(g) stands for an arbitrary linear combi-
nation of MtQ'

If M(E) is required to be real, then it must have the

form

0

2"21'(exp(ieom) Mo + exp(-i6,,) M_5) (39)

"oon

where eom willl be called the orbital mixing parameter.
In Sections B and C, 1t was shown how to ilncorporate
the electronlec wavefunction into the spin Hamliltonlan via the

spin density. Later, only the diagonal elements of the spin

*Throughout Sections D-G, CHT will be assumed to have
the symmetry of a regular heptagon.
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density matrix in an atomic orbital representation will be
required. These diagonal elements will be called the "spin

densities". The SHMO spin densities are found from Equations
24, 37-39, to be

ynn = (1/7) [1 + cos( (8wnf7) + Zeom):l (40)
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E. THE VALENCE BOND THECRY

The Valence Bond (VB) theory 1s the natural generaliza-
tion of the chemist's classical plcture of a molecule.

Classically, a chemist would represent CHT by the following

diagram: w
H—C C—H
N\
C==C/
/ \
H H

The VB theory assigns to diagrams s&uch as these a seml-precise
mathematical meaning in the form of a”simple many electron
wavefunction. As with the SHMO théory, only the pi-electrons
are considered erplicitly. If the carbon atoms are numbered
congsecutively beginning with thé odd electron, then the above

diagram stands for the "bond eigenfunction"
1 ~
¢ =824} aia azaB(aB -Ba)a4a5(a8 -Ba )353-7(11,3 -Ba) (41)

The actual mechanlcs of the VB calculation for CHT are
quite tedious (7), although the method is simple and described
in standard texts (e.g., ref. (8)). The VB method is equiva-
lent to the spin-state method, which in the case of CHT is
somewhat simpler to apply. The VB wavefunctlon is nothilng
more than a llnear combination of spin-states, each of which

has the form

§ =k aj010,02,030,9,2,002,%2,% (42)
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where each o, 1s either o orpB. There are o7 = 128 such
spin-states, of which only 35 have S = 3, and from which
only 14 independent doublets can be formed. The VB method
starts by weeding out the states of unwanted multiplicity.
It is in this step, however, that the complications associ-
ated with the VB theory are introduced. The simpler
procedure in this case 1s to diagonalize the 35x35 matrix of
Ho wlth respect to the states of mixed multiplicities using a
digital computer. The states of different muitiplicities
are automatically separated (assumfhg that ‘thelr energiles
differ) and one needs only to verify:ﬁhe spin of a state with
a given energy. The spin-state matrix elements are much
easier to calculate than the bond-elgenfunction matrix elements.

In calculating matrix elements, the following assump=-

tlons are made

(a;a5,  Hg ajai) = A <0, if i and j are nearest (43)
" neighbors, independent
of i, j
= 0, otherwise

The results of the VB and spin-state calculations for
CHT are (a) the ground state is a doublet which 1s orbitally
two-fold degenerate belongling to the Eg representation of
D7 i (b) the symmetry of the VB ground state is the same as
for the SHMO ground state; (c) the energy of the ground state

i1s 2.2104 A; (d) the spin densitles are given by the formula

Pon = (1/7) [1 + 3.2377 cos( (8wnf7) + zeom>] (45)
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F. THE UNRESTRICTED HARTREE-FOCK LCAO-MO THEORY

The unrestricted Hartree-Fock (UHF) LCAO-MO funetion
is the single determinant LCAO-MO wavefunction which gives

the lowest energy for a radical (9). It has the form

A

- Y .V SR | Mo ) h) 2
$=4 daM 'BMyeM, B M ol B a (46)

Mi may differ from M'i. The UHF functlon is physically an
improvement over the SHMO function in that 1t accounts for
the average coulomb and exchange interactions of the elec-
trons. As before, only the pl-electrons are considered
explicitly.

In general, the UHF ﬁ 1s not an eigenfunction of’§?.
McLachlan (10) has shown, however, that in spite of this
objection, the results obtained using a function of the type
of Equation 46 are usually quite good, and when the UHF wave-
function 1s calculated from the SHMO wavefunction using first
order perturbation theory, the results are essentially the
same as those obtained from the SHMO theory by configuration
interaction to first order perturbation theory.

A second objection 1s that the UHF @ will not in
general transform according to an irreducible representation
of the symmetry group of the molecule, if the molecule has
high syhmetry._ However, when the UHF function and spin
denslties are calculated to first order from the SHMO func-

tion, the symmetry of the spin densilties 1s not destroyed.
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With these considérations in'mind, we now proceed with
an approximate UHF-LCAO-MDcalculation. The UHF molecular

orbitals (9) satidy the equations

Foﬁlid = eio?fIi"/ (47)

F? 1is the UHF Hamiltonian for electrons of spino: It is
made up of the SHMO equivalent one-electron Hamiltonian, L,

and the average coulomb and exchange interactions J, KO,

FO=h+J -k (48)

J = s (5, (&°)r45) 14 ) (49)
occuvied orbitals 2o

Ko’= > . ‘}Ii),.ez/r.‘z ( Mi' (50)
occupied orbitals
of spin ¢

In the spirit of perturbation theory, it is first
assumed thét F2 (0) = A (0), and that Equation 47 has been
solved, Then one treats the difference Fo - FG(O) as a per-
turbation, F¥ being calculated from the "unperturbed" wave-
function.

For CHT, the arbilitrary real SHMO wavefunction 1s glven
by Equations 38 and 39.

=18 MyaigBu, aMy By all 4B g - (50.1)

(It should be noticed at this point that if M( 2) In Equation
39 were taken to be Mo, then the SHMO molecular orbltals

would already be solutions of Equation 47. Physically, this
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function has both uniform charge and spin density. That g,
Equation 50.1, is not a solution of Equation 47, shows that
the UHF procedure does not always lead to unique results.)
The obvious definition for F(0) is (in Dirac notation)
! 2 . ) o2
F(0) = h + 13_1[2(?41, (e /r12) Mi) - |mi) e /r12(24i|] (51)
F(0) is invariant under DTh’ as 1s h, and consequently, the
SHMO orbitals are also eigenfunctions of F(0). The orbital
energles, with the approximations and conventlons of

Equations 63-66, are

o = (L, F(0) M) (52)
. - 3
= 2 2 - .
a 4+ BCOS( Tl'm/?) + KOO ol KO Tei, (53)
3
where Kom = (1/7) (Ggg + : 2Gq,c08(2 7 m/7) ) (54)
n:

The corrections to F(O) to obtain FZ and FA are just

the coulomb and exchange operators for the odd electron:

ya=yB IMeom ) &%fry, ( g, | (55)

B= ¢ 2 ~ 6
v (neom, (e"/ry5) Meom) (56)

Note that v@ hqeom) =0 (57)
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"For the SHMO wavefunction, the unperturbed spin densities
are (Equation 40)

Prn = (1/7) [1 + cos{ {(3wn/7) + 2eom)]

The flrst order changes in the spin densities are

1 .
8 frn = 2Re I 5 (eb)eX (i, (2P My)/(es-e))  (58)
i=a lkl =2:3

(1/7) (Tx = 1) cos( (Bwn/7) + 20_) (59)
where Ty , the theory indexing parameter,is given by

T}{ =1+ 2KO1/(e3-e1) o 2K02‘/’K83;-90) + ZKOB/(93‘31) (60)

Using the valuesof Section G for the Go, and e, ,

o = (/7)1 + 1383 cos( (Bmn/7) + 2845) | (61)
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THE RECIPE OF PARISER AND PARR

The Pariser-Parr theory (11) for treating pi-electron

molecules introduces pl-electron correlation into the SHMO

wavefunction by limited configuration interaction. The

essential features of the recipe as it applies to CHT are

(1)
(i1)

(111)

(1v)
(v)

(vi)

(vii)

pl-electrons only are treated (62)
=Yh(i)+4 e /r (63)
i M1#J

(ai,haj) =0, if 1 = j (64)

B, 1f 1, ¥ nearest neighbors,
Indepeéndént of i, j.

= O, otherwise.

..(ai,aj) Sij (65)

(a8, (Ffrp) agay) = 85 8y, Gy (66)

the wavefunction is to be constructed from
the SHMO ground and singly excited (67)
states (12)

Empirical wvalues are assigned to GOO and GOl’

Gopm m#0,1 , are given the values oomputed

using Slater 2p, orbitals with (68)
effective nuclear charge 3.18
electronlc charges,

The exact details of the Pariser-Parr recipe are

not universally agreed upon, and as far as it concerns CHT,

the values used for B, GOO’ GO1 have a certain arbitrari-

ness. The exact numbers we use here are roughly those of

Pariser (13).

The values for GOQ’ and GO3 were obtained for
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carbon-carbon distances of 2.52 and 3.15 Angstroms, from the

table of Kotanl et al. (32).

B = -2.4 e.v.

Goos CGpys Ggos Gg3 = 11.0, 7.0, 5.4, b4 e.v.

In the SHMO theory, the ground state may be taken as

¢ =R Mga 99BN aMB H_q1aM_48 Moa (69)
T 02 20F Y 1 1 1 +2

Because of the high symmetry, ¢+ does not interact with any
of its singly excited configurationé. Howgver, a linear
combination of @, and @_ does interact with singly exclted
configurations. This 1is hecause Q;finteracts with the singly
exclted configurations of @:. Thus @, interacts with its
pseudo-singly excited configurations.

By diagonalizing Hg over ¢; and 1ts pseudo-singly
exclted configurations, the energy lowering of the ground
state is found to be 0.44 e.v.,, and the spin densities are

given by the formula

Pan = (U7) [1+ 1,65 cos( (87n[7) + 28)] (70)
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H. THE STATIC JAHN-TELLER EFFECT

Untll now, 1t has been assumed that CHT has D7h
symmetry. Both molecular orbital and VB theorles predict
that the ground state l1s orbitally two-fold degenerate with
symmetry Eé. An arbltrary llnear combinatlon of these
states will not have in general a symmetric charge distri-
bution. The forces the electrons exert on the nuclel can
be computed directly from the charge distribution by Feynman's
theorem (14); hence, the férces on %he nucléi due to the
electrons cannot be radial for each nuéleus, and cannot bal-
ance the radial coulomb repulsion forces among the nuclel.
The molecule ought to distort, and one has the Jahn-Teller
effect (2). |

The static Jahn-Teller distortion for CHT has been
calculated by Hobey and McLachlan (15). They find changes
in the bond lengths of the order of 0.02 K, and a net gain

1 is less than the zero-point

in energy of 300 cm"l. 300 em”
energy of any of the planar vibrations of CHT involving the
carbon atoms. This fact casts serious doubt on the picture
of a distorted CHT molecule. .

That the forces on the nuclei do not vanish in the sym-
metrical configuration, and that the statlic distortion energy
1s less than a vibratlonal guantum, suggest that the nuclear

and electronic motions might be strongly coupled. Indeed, the

requirement for the uncoupling of the motions 1s just that the
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Born-Oppenheimer (16) approximation be valid, which in turn
requires that the forces on the nuclei in the equilibrium

configuration vanish.
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I. THE DYNAMIC JAHN-TELLER EFFECT

The solution of the Schrddinger equation when the
motions of the electrons and nuclel are correlated 1s orders
of magnitude more difficult than the usual uncoupled
problem. The eigenfunction can be represented as a double,

peneralized Fourier series over a complete set of states

for the nuclear motions (Ni} and the electronic motions
{my}

A crude approximation to & for CHT would be

P = Niffyo + Nofp (72)

where @+, are the electronic eigenfunctlons for the sym-
metrical configuration. A calculation using a function of
this type, based on the SHMO theory, was performed by
McConnell and McLachlan (l7) for the benzene negative 1ion.
They found that only two EEg vibrations coupled very
strongly to the electronic motions, and that the vibronic
ground state was still degeherate with E2u symmetry.

A similar calculation was carried out for CHT. The
frequenciles of the normal modes of vibration of CHT were
estimated by assuming the C-C stretching force constant and
the C-C-C bending force constant appropriate for benzene

(18). and treating the molecule as made up of only seven
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carbon atoms (no hydrogen). Only two E'!' vibrations mixed
strongly with the electron motions, and3the ground state
retains its symmetry and degeneracy.

Let R., denote the operator which rotates the molecule

7
by 27/7. It 1s assumed that ¢+2 have been chosen to satisfy

R'7¢t2 = exp(xh71i/7) ¢t2 (73)

($42)" = 4, (74)

Then Lhe vibronic wavefunctlion has theﬁfdfm

Nobyp + W48 o (T4 ,.‘ 1)

"

P

Lt}

e

2= Nebp + N, By (75)

The symmetry of the vibrational factors is given by

Rollp = Ny (76)

Ny =W, (77)
RNy, = exp(+371/7) 1y, (78)
R,ZN; = exp(-871/7) N, (79)

The effect of the vibronic coupling on matrix elements

of electronic operators can be estimated by using Equations

74,1 .and 75:

(@40, 0 ) = (s ) (Byp0 Op 8,5) (80)
+ (0, 1)@, 00 8)
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<Cpi27’ Op ‘ID_T-z) = (NO' NQ)(¢igs Op ¢J,:2> (81)

In particular, the expressions for the spin densities,
Pan = (1) [+ k cos( (87n/7) + zeom)] (82)
become fnn = (1/7) [1 + (g, W) k cos( (8mn/7) + Zeomi‘ (83)

where (Ng, NO) 1s probably of the order of 0.8.
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J. OUT-OF-PLANE PUCKERING

Another type of distortion which would lower the
symmetry of CHT, and therefore remove the ground state
degeneracy, 1is ring puckering. If the effect of puckering
18 treated by perturbation theory, the puckering would
select an orbital mixing parameter and produce a splitting
precisely analogous to the crystal field effect (éee
Section K). It will be shown in Section P that the energy
gained by puckering cannot be greafer than%loo em~t., This
is smaller than the theoretical energy-gained from an in-
plane distortion, so that a puckerinhg of the ring is

a fortiorli not possible.
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K. THE CRYSTAL FIELD SPLITTING

A weak crystalline electric fleld introduces terms
into the Hamiltonian, He, which remove the degeneracy of
the CHT ground state. The actual ground state will be real
(neglecting spin-orbit coupling) and to zeroth order of
perturbation theory, will be a linear combination of the
two degenerate states. The spin densities will then be

glven by

fhn = (1/7) [1 + Ty cos( (81rn/7)/+;ééoﬁ5] (84)

The "theory indexing parameter', T;, Has the values
1, 1.343, 1.65, and 3.2377 for the SHMO, approximate UHF-
LCAO-MO, Pariser-Parr, and VB theories, respectively. The

orbital mixing parameter, © 1s determined by the crystal

om’

field, and specifies which linear combination of the two
degenerate states 1s the actual ground state.

It 1s possible to estimate the order of magnitude of
the crystal fleld splitting in organic crystals. If the
crystal fleld is expanded in a power series about the center of
the CHT molecule, then the lowest terms that can split the
degeneracy are the third and fourth. In organle crystals,
the source of the crystal field 1s most likely the dipole
moment 6f the CH bonds. Depending somewhat upon what numbers
are used for the relevant dipole moments and their distances

from the CHT molecule, one estimates a splitting of the order
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of magnitude of 150 em™! for the third-order term, and about
30 ecm~! for the fourth-order term. In naphthalene, 1f the
CHT replaces a naphthalene molecule substitutionally, then
it is at a center of symmetry, and there is no third-order

term.
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L. ROTATION AND THE CRYSTAL FIELD

At high temperatures (see Section P) the CHT molecule
undergoes "rotational reorientation" about its seven-fold
axis. Modulation of the crystal fleld interaction by rota-
tion has a dramatic effect on the nature of the CHT wave-
function. Suppose that the CHT molecule 1is fotated by
21r/7. In the coordinate system of the crystal, the ground
state eigenfunction of CHT will be identical before and
after the rotation. In the referefice frémégof the molecule,
the crystal field will have rotated pyr;é T /T, as will the
ground state charge distribution. -Hemee, the "odd-electron”
is frozen into the crystal. The rotation of CHT in a
crystal field 1s analogous to that of a hellcopter whose
rotor ig held fixed.

If CHT were to rotate freely about its seven-fold
axls, 1ts rotational frequency « would be V§Ef7f'. The
moment of 1nert1a‘I 1s approximately 4x10'38 gm cm2, so that
for T = 100° K, @= 1012 radians/second.

The existence of the low-temperature spectra 1n
naphthalene indicates that rotatioﬁ is not free, but
restricted by a barrier V which might be high enough to trap
at least one non-rotating bound state of energy around 15-20
em™1, in the absence of a contribution to this barrier from
the crystalline electric field (see below), the potential
energy of rotation will have (in naphthalene) a fourteen-

fold periodicity, which may be approximated by
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Vrot=%v(1-cos 148 ) (85)
~ 121 96x7x0° (86)

If the zero-point energy, %/ﬁ,/§§v7f,were equal to 20 em=1,
V would be about 120 em™ 1,

In order to understand the high-temperature behavior
of CHT, it is important to realize that CHT cannot be
described by a stationary state wavefunction, This unusual
situation is a direct result of the degenerdcy of the CHT
ground state and the consequent strong coupling of the rota-
tion of the molecule to the crystal f{eld. We now examine
this lattice-rotation coupling mathematically.

At high temperatures, when the molecule 1s rotating
more or less freely, the electronic wavefunction 1s rather
complicated. In ordef to simplify the mathematlcs, and yet
retain the important physical aspects of this lattice-
rotation coupling, we approximate the entire crystal field
by the fourth-order terms only, and account for the rota-
tion of the molecule by letting the crystal rotate about
the stationary molecule wlth an angular frequency « .

If the electronlc wavefunctlons 9;2 for the unper-
turbed molecule are given'the right phase, and 1f they
satisfy Equations 73 and T4, then the matrix of the crystal

field at time t =0 18

H(0) =-3AE ((1) é) - (87)
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After a time t, H will be

H(t) = -%AE(‘;XD(MMt*)exp(()-l*iwt)) (88)

The rotation leaves the magnitude of the crystal field
splitting unchanged and modulates the relative'phases of
g&a in the wavefunction. (The higher order terms 1n the
potential would produce a small modulation of the magnitude
of the crystal field splitting.)

The instantaneous eigenfunctions of H(t) are

i

17 2=

1 ( ¢+Zexp(21w t) + ¢_zex9(",ziw t) ) (89>

<
1

= 2-% ( 8, 0%(21w ) = §_exp(-21w t) ) (90)

Writing H(t) in Dirac notation,

B(E) = 3AF (¥ )( | =y (v, ]) (91)

Because the Hamiltonian H(t) is time-dependent, the
Sehrodinger equation, H(t)?’=fLﬁ%%9’ , has no stationary-
state solutions. Two linearly independent, time-dependent

solutions are

fi

YL, = (tcosQt ~(3AE/AQ)sInQt) Y4 +(2w/Q)sinQt v (92)

Yy = (20/Q)sinQt ¢y +(icos Ut +(2AE/AQ)sinQt) (93)

where Q =Vho? + 1( AB/R)? (94)
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As one would expect intuitively, the major effect of
the rotation is to average all the spin densities to 1/7.
This partially explains the high temperature spectra.
Another effect of the rotation-lattice coupling 1s to make
the wavefunction complex. This will affect the spin-orbit
lnteraction.

Throughout this entire section there has been an
implicit swindle: thét the rotation of the molecule 1s sep-
arable from the electronlc motions. Indeed, the exact
Hamiltonlan describing CHT in a crystal‘fiéld is not time-
dependent and has stationary-state sclutions. How is this
reconclled with the above model? The-’answer can be found in
a flurry of hand-wavling. On general principles, the exact
Sehrodinger equation for CHT would have stationary state
solutions, and from our above model, 1t may be inferred that
thls solution would be a complicated function of rotational,
electronic, and vibrational coordinates. Rotation, however,
is a semi-dlstinet property of a massive molecule, and
separating rotation from the other motions should not be too
bad an approxlimation. Hence, it 1s a reasonable hope that
the time-dependence this separation introduces into the
electronic wavefunction (which is definitely a property of

the model) reflects the properties of a more exact treatment.
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M. ON THE ANISOTROPIC AND ISOTROPIC HYPERFINE INTERACTIONS

An aim of theory 1is to predict experimental results
accurately. We have examined the predictions of MO and VB
theories of the spin densities of CHT, and have come to the
point where the question of which theory predicts the spin
densities for CHT correctly should be answered. The answer
will occupy the next four sections of the thesis.

A theoretical computation of ESR spectra begins wlth
the spin Hamiltonlan, Equation 22. The 1@p0rtant unknown
quantities are the anilsotropic traceless hyperfine tensors,
Equation 21, and the 1sotropic hypéffihe coupling constants,
Fquation 20, In evaluating %he integrals of Equations 20 and
21, it is convenient to use the atomlc orbital expansion,
Equation 24, for the spin density. Thus, one may divide the
labor into two parts:; evaluating some integrals over a set
of atomic orbitals and calculating the atomic orbital spin
denslty matrix from theory.

One great deficiency of the MO and VB theories in
practice 1s the small number of atomic orbitals on which the
wavefunctions are based. Thils deficlency is partially com-
pensated by giving the integrals involving the atomic orbitals
empirical values. In practice, it is impossible to give all
the integrals values from experiment and s0 somc are glven
experimental values, others are glven theoretical values,

and most are neglected altogether.
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Each of the tensors (aj, Ed(J)ai) has three principal
axes: one along the Cy-Hjdirection (x), a second axis in the
molecular plane perpendicular to the first (v), and a third
parallel to the lobes of the p-orbitals (z). The largest of
these tensors are the (aj, Qd(J)aj) (whose principal values
are independent of j). It would have been very difficult to
evaluate this tensor from the present experiments; therefore
the principal values for this tensor were arbitrarily adopted
from the works of McConnell, Heller.. Cole and Fessenden (19)
and of Cole, Kushida and Heller (20) on the ESR of the
malonic acid radical. The values ape listed 1n Table 1.

The integrals, (ai, Qd(j)qijffér 1 4 j, were evaluated
theoretically. Slater 2p, orbitals with effective nuclear
charges of 3.18 and 3.25, and Gaussian orbitals with scale

factor g = 0.0445 and 0.0464 (Bohr radii)~% were used in this

calculation. (When g

. 6 z2__/a 2, th
0.0439 eff/ o e overlap between

the Slater and Gaussian is maximal.) The integrals using the

Slater orbitals were worked out by McConnell and Strathdee (21).

The integrals using the Gaussians are glven below. The values
adopted are listed in Table 1; each represents a compromise
of four calculated values,

(a3 byl 3) = 8% 2[(-nfa /o) + (12/35 = 2/)p ()]

(a3, byl iy 2y) = 822/2[(6/xhatx) + (-3/x5 +1/)p(x)]

(age Bg()y 23) = = [{ags h(Dga) + (ags ny(Dyyap)] (96)

(These integrals are in units of 'gegp]mP}J’)
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where
ay = 211451 7 =31y exo(g(rop,)?)
r; = (R, 0, 0)
X = Zﬁﬁ'a

Wx) = (27)F exp(-2x2)

x
P(x) = / o(r) ar
-

The integrals . (a pd(j)ak), k 7 1, were arbitrarily

17
set equal to zero. It is argued elgewhere.(25) that these
integrals should be small. It might ast”be argued that

they should be neglected to be cons¥stent with the neglect

of differential overlap in calculagting the electronic wave-
function. Both these arguments are swindles. These
integrals are neglected because we Want to avoid the compli-
cation of keeplng non-diagonal elements of the spin density
matrix. Thils approximation might not be a very wlse ovne.

In the pl-electron approximatlon, the spin density in
the plane of the molecule is zero. The isotropilc hyperfine
coupling constants, Equation 20, would therefore appear to be
zero, since the protons all lle in the molecular plane.
Sigma-pi exchange interactions polarize the sigma electrons,
however, and cause the spin density at each proton to be
non-zero. The spin density at each proton is approximately
proportional to the pi-electron spin density,ﬁfnn, at the

adjacent carbon atom, and hence the isotropic hyperfine

coupling constant a  is also proportional tO\Pnn (McConnell's
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relation (22) ),

= Q Pnn (98)
Q is usually taken to be of the order of magnitude of -25
gauss. A more exact relation (23) expresses a, as a linear
combination of all the pi-electron atomic orbital spin density
matrix elements‘fij. Although 1t is quite likely that a
better approximation than Equation 98 is required to accurately
predict the a, for CHT, the McConnell relation 1s certalnly
the vest first approximation. Unfortunately,lit 1s imprac-
tical in CHT to try to go any further thén?ﬁquation 98.
|Q| (see Section P) is found from the Figh temperature spectra

of CHT in naphthalene to be 26.8 =-1.0 gauss.
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N. ON THE CALCULATION OF ENERGY LEVELS AND
TRANSITION PROBABILITIES FROM THE SPIN HAMILTONIAN

The ESR spectra of CHT are determlned by the 256x256
matrix of Hypy. If we let E(ij) denote (ai’Ed(j)ai)’ then
from Equations 22, 98 and the considerations of Section M,

HSh is given by

Hy, = ¢/BS°H - f{gp Ayl = 22 f’nn?(“j) - %Ojji}'ij (99)

With the exception of thefg~factor.fwhich may'be taken as
2.003, and the exact value of Q, which,IS*discussed in Sec-
tion P, the numerical values of all.the quantlties appearing
in Equation 99 have been discussed above. The procedure for
obtaining the eigenvalues of H_ , will now be described,

This procedure is essentially the method of McConnell, Heller,
Cole and Fessenden (19).

Rather than find the eigenvalues of Equation 99 evactly,
which would involve diagonalizing a 256x256 matrix, the
eigenvalues and vectors are found to first order perturbation
theory. The unperturbed Hamlltonian 1s just the electron
Zeeman term, Equation 4, and 1ts elgenvalues are =%gUﬂ|§|.

The eigenfunctions all have the form @ (Sy = 4 %) multiplied

by an arbitrary nuclear spin function. The zeroth order

levels are both 128-fold degenerate. The hyperfine interaction
removes this degeneracy, and 1n order to calculate the first

order energies, one must diagonalize both 128x128 matrices of

H 4+) = - i . 4 - i .
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where ey =§§/|§‘ (101)

The eigenfunctions and eigenvalues of H(*) may be written

down by inspection, because H(%2) is the sum of one-proton terms,
B = -2 B(34) I
s Y = i . 1

where };}(J,i) = gp,BNIj z 39y Zr:l f)nnZ(nj) T EYEJQ ey (102)

D(J,*)_is physlcally gp/BN times the effective magnetlc field

at proton j. Hence, the energy levels of the SH=% states are

7
B = 3 (@) BIGED] (103)
Jz
and for the Sy = -1 states,
7 .
B-)= § (& |n3,-) (104)

=1
The hyperfine splittings are then
7
bR Z (£) |80 + |25 ) (105)
The wavefunctions are constructed from simple products
of nuclear spin functions oj(+) (oj(-)), which are eilgen-
functions of the component of I; 1n the direction of b(i,f)

(h(1,-)), with uelgenvalues #%.

¥, = $ER)og (). ... 0n(E) (106)

The relative transition probabllity from a + to a - state 1s

7
[ s w2 T o), o (-Nf (107)
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If O is the angle between h(i,+ ) and h(1,-), and if

o3 (+) and of(-) both have the same eigenvalues for the

appropriate projections of li’
|(01(+), o3_(--))l2 = 1 + cos® (108)
2
If their elgenvalues are opposite, then

(03 (+), o1(-))2 =1~ cos @ (109)
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0. CYCLOHEPTATRTIENYL IN NAPHTHALENE

CHT was studled experimentally by Wood 1In several
crystal hosts. In only one crystal host, however, could the
orientation of the CHT molecule be regarded as even partlally
known. This host was naphthalene. Assuming that CHT
replaces a naphthalene molecule substitutionally, the orien-
tation of the CHT molecule l1ls known, except for an angle gro’
specifying the rotational orientation of the molecule about
its seven-fold axis. An attempt wés madgg%c find the values
of the experimental parameters Qro’xgém’ T., and Q for CHT
in naphthalene.

The crystal structure of’naphthalene was worked out by
Abrahams, Robertson, and White (24). Naphthalene crystal-
lizes according to the space group P2;/a. The two molecules
per unit cell are located at 000 and 310 , and are related

by a two-fold screw axis. A diagram of the unit cell from

(24) 1s reproduced in Figure 1.

TR 2

Figure 1: Molecular arrangement in the unlit cell of
naphthalene; taken from Robertson (24).
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It i1s not difficult to see that the two molecules
are magnetically equivalent when the magnetic fileld 1is 1n
the AC-plane or parallel to the B~axls. Accordingly, low
temperature spectra were taken with the magnetic field in
the AC-plane so as to eliminate the complications of the
g-factor anisotropy.

A Fortran-MAP program was written for an IBM 7090
computer to calculate derivative spectra for CHT in naphtha-
lene. Both Gaussian and Lorentzian line shapes were tried,
and the computed spectra were graﬁﬁicallgv%épresented by a
Mosley-Plotter connected to the 709ijy;a 7040 computer.

For an overall picture ot what valles’were assigned to the
various theoretical and semi-theoretical parameters, see
Table 1.

There are a number ot reasons, both theoretical and
experimental, why the calculatlons should fail to glve exact
agreement with experiment:

Theoretical Achllles' Heels:

Malonlc acld radical values for the CHT anisotropic
tensor may be very poor because the CHT carbon are
not sp2.

The theoretically estimated hyperfine tensor values
might not be close enough to the experimental values,
-and the neglect of the overlap contributions might be
bad.

The simple relation a, = C{an may be toc simple.
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TABLE 1. NUMEROLOGY

Quantity Value Comment
(aj,hd(i)aj) 11.0  gauss x-principal value Cole (20)
je i ~11,8 gauss y-principal value
0.8 gauss z-principal value
L.7 gauss
J = 1+1 {- 2.7 gauss These values are 1ln x-y-z
- 2.0 gauss order. x refers to the C4-Hi
1.27 gauss direction, 7 to the diredtion
j = 1+2 {- 0.66 gauss of the lobes of the p-orbiltals,
- 0.61 gauss and y the mutually perpendicu-
0.712 gauss lar direction. Values are the
j = 1+3 { -0.366 gauss average of .integrations of
-0.346 gauss Slaters (3,18, 3.25) and
Gaussians (0.445, O 46U BRohr
radit~<). They are independent
of ..
c-C 1.50 A Aromatic carbon-carbon distance
C-H 1.09 R and carbon-hydrogen distance;
Pauling (33).
Q -26.8 gauss Best fit for high temperature
A (max. to min. 1.7 gauss spectra in naphthalene.
line width) 2.4 gauss Rough fit for low temperature
spectra.
bp/BNIE! 5,23 gauss Experimental electron Larmor
g¢lA frequency was 9.6 kme/s.
(N., N.) ~0.8 Nuclear vibration matrix element,
0’ 70 estimated by method of McConnell
and McLachlan (17).
Bom Orbital mixing and rotational
Oro orientation parameters to be
determined from low temperature
eXxperiments.
Ty Theory indexing parameter, to be
' determined from experiment.
TX/(NO,NO) 1.0 Theoretical predictions: SHMO;
1.343 approximate UHF-LCAQ-MO;
1.65 Pariser-Parr;
3.2377 VB.
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The derivative spectra, being a complicated
superposition of 128 (or a multiple of 128) overlap-
ping lines, might be a fairly sensitive function of
the line shape function assigned to the individual

lines,

Experimental Uncertainties:

The low temperature spectra are slightly saturated,
which tends to destroy the structure in the center of
the spectra.

The crystal may be misorient@d/ﬁy as much as 5 degrees.

The CHT might not replace{the naphthalene in a
strictly coplanar fashlon,.

The crystal might be dlsordered or distorted by the
presence of the CHT.

The unit cell dimensions might change appreciably at

the very low temperatures of the experiments.
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P. HIGH TEMPERATURE SPECTRA IN NAPHTHALENE

The high temperature CHT ESR spectra observed by Wood
were briefly described in Section A. The similarity of the
eight-line spectra to the solution spectra of CHT (26)
guggests that rotation may play a part in averaging out the
anisotropic hyperfine interaction. Since the average value
of the in-plane principal values of the malonlc acld radical
anisotropiec hyperfine tensor is -0.4 gauss (20), rotation
evidently need take place only about the seven-fold axis.

In Section L, 1t was shown that this. type of rotation also
averaged the spin densities to 1/7i More carefully, one must
average the product of the spin densitlies and the anisotropic
hyperfine interaction. Within the framework of the model of
Section L (concerning the form of the crystal field), the
average of the product is the product of the averages.

The values used for the various interaction constants
in computing the high temperature spectra are listed in
Table 1, except that the values for the x- and y-components
of the hyperfine tensors were replaced by thelr averages.

The spin densities were all taken as 1/7. O and the line-
width were varied, and both Gaussian and Lorentzilan line-
shapes were tried. Since the best experlimental measurements
can be made on the center four lines, only the center four
lines were used in comparilison of experimental and theoretical
spectra. The best results were obtained with Q = -26.8 gauss,

distance between points of maximum and minimum slopes = 1.7 gauss,
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Gaussian line shape. The experimental and theoretical
spectra for the magnetic field along the A, B and C* axes of
naphthalene are compared in Figure 2 and Table 2. All
measurements of experimental and theoretical spectra were
made on maxima and minima of the derivative spectra.

High temperature in naphthalene means over 200 K.
At 200 K, the drastic change in the ESR spectra is interpreted
to mean that the molecule no longer rotates with a frequency
greater than 107 radians/sec. The temperature of transition
from high to low temperature spectré isfgékén as a measure
of the rotational barrier (Section L}. IThe crystal field
splitting cannot be obtained from the’transition temperature,
but a bound on the magnitude of the variation of the crystal
field splitting as a function of Qro can. Furthermore, the
transition temperature places an experimental bound on the
energy of a Jahn-Teller or out-of-plane distortion, because
sueh a distortion, (even if smaller than the crystal field
splitting) would have to be overcome for the molecule to
rotate. On the basis of the naphthalene experiments alone,
this bound is about 100 cm~1 (Sections A and L). The
cyecloheptatriene and argon experiments suggest that this
bound might be an order of magnitude smaller, but 1n any
event, to clalm a static distortion of even 100 cm"l would
indicate a gross misunderstanding of the Jahn-Teller cffect

and the Born-Oppenhelmer approximation.



48

Experimental Theoretical

Figure 2. High temp-
erature CHT ESR
spectra in naphtha-
lene. M

{

]
a) Magnetic field ““J\
along A-axis;

b) B-axis;

c) C*-axis, f 20 qauns fﬁ%
-\ | ?[b~w*-f m .,Jbi!,|!ﬁ,h.__
¥ ‘

Qw% \ $-~ ) —4@%*

TABLE 2

Comparison of experimental and theoretical high temperature
CHT ESR spectra in naphthalene

For theoretical spectra, Q =-26.8 gauss, A = 1.7
gauss, and the line shape 1is Gaussian.

Hyperfine Splitting (Gauss)

Orientation of magnetic field Experimental Theoretical

A-axls 4.1 4.2
B-axis 3.7+ 3.7
C*-axis 3.7~ 3.6
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LOW TEMPERATURE SPECTRA IN NAPHTHALENE

The agreement of theory with experiment for the high

temperature spectra in naphthalene 1is quite good. At low

temperatures, both the experimental and theoretical spectra

are more complicated. The experimental spectra display a

large anisotropy and much poorer resolution. The cessation

of rotation restores the dependence of the spin Hamiltonlan

on Ogms Opgs and Tx'

Theoretical spectra were computed, varying these three

parameters and using the values for the other parameters listed

in Table 1.

Gaussian line shape and Q of -26.8 were taken

from the hlgh temperature analysis. The followlng statements

summarize the results of the attempt to match the low temp-

erature spectra by a judicious cholce of values for G5y, ©Opng

and TX.

(a)

(v)

(c)

In general, given any orlentation of the magnetic
field (in the AC-plane), a triple of values

could be found for which the calculated spectra
agreed quite well with the experimental spectra.
Three examples are displayed in Figure 3.

In general, the triple of values associated with
one direction of the magnetic fleld was different
from that associated wlth another direction.

The average spread of the low temperature spectra

1s 28-29 gauss (3). This indicates that T, should



50

be in the range 1.25 to 1.55.

(d) 1In Pigure 3, three computed spectra for a

compromise set of values are displayed.

In view of the experimental and theoretical short-
comings listed in Section O, the results are as good as
could be hoped for. Goﬁ and gro could not be evaluated in a
way that would glve agreement for all orientations of H, but
that any given spectrum could be matched by a pair of values
for these pafameters merely indicates that.some of the
errors listed 1ln Section O could be compensated for by ad-
justing these parameters. In this fespect, it is important
to note that the general trend of-r the spectra could be
accounted for by a single set of values (see Figure 3).
Furthermore, the limits on the values of Tx indicate that
both the UHF and Pariser-Parr theories (with vibronic
coupling) glve the best predictions of the spin densltles.
This is in accord with the qualitative idea that the SHMO
theory underestimates electron correlation, that the VB
theory overestimates correlation, and that the UHF and
Pariser-Parr theories lle in between. TX is properly, of
course, a measure of spin- (or exchange-) correlation (10),
not of the entire coulomb correlation.

There are three relations between 6, and ©_, which
slightly simplify the calculations. The spectra are invari-

ant to
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20 gauss

s
i
M\\JN/VNﬁ/v\/\\M, J\J\qf//

I GA :
mff\/\ A /11/ "

Experimental

Figure 3.
Magnetic field is (a)
from A, -20° from C*;

(d)160° from A, T0° from C*. Theoretlcal (1):

.grO: Tx) =

ga) éo .22kl o 75, 1.35 (1.122, 2.767,
b 0.045, 0.67, 1.30 1.301, 0.377,
(e §o .26, 2.15, 1.35 1.086, 2.72 ,
(d 0.60, 0.94, 1.30 0.746, 1.79,

Theoretical (2): (0.21, 0.34, 1.4)

Line shape:

Theoretical (1)

Theoretical (2)

(a) Lorentzian, (b)-(d) Gaussian

Low Temperature CHT ESR spectra in napthalene.
parallel to A-axis; (b) 70°
(c¢c) 108° from A, 18° from C*;

(Som>

1.3
1.3
1.3
1.3

o owm

)
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Boms 8ro — Eon 1 Opg T

Bom * 7 /7 4 Opo * 477

- %om ? 29r0<0) - %
Oro (0) is the angle the long-axis of the naphthalene
molecule makes with the projection of the magnetic field onto

the molecular plane. In particular, one can restrict the

ranges of O, and @ _ to 0£0.,<m[7, 0%8p<T .
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R. THE SPIN-ORBIT COUPLING AND THE G-TENSOR

In most pi-electron, hydrocarbon radicals, the
g~-tensor 1s very nearly isotropic, with the average princi-
pal value close to the free electron value 2.0023. 1In
general the principal value of the g-tensor for the direc-

tion perpendicular to the ring, g is closest to the free

zz’
electron value, whlle the other two principal values are
somewhat larger (27). The deviations are caused by the spin-
orbit interaction through virtual sigma-pl and pl-sigma*
excitations (27, 28). Pi-pi* excitatiens, which affect 3
only, are usually unimportant becausé of the small value of
the pi-electron spin-orbit matrix element (29).

The low lying, excited pi state of CHT changes the
above conslderatlons, because the smallness of the excltation
energy compensates for the smallness of the spin-orbit matrix
element. The contribution to &, will be estimated using
SHMO theory.

The SHMO wavefunction is given by Equations 38 and 39.
Denote the orbital of the odd electron,rﬂemf by ¢1, and the

entire wavefunction by @1. The lowest exclted state, éu 1s

obtained from @1 by replacing ¢1 with Qu.
1
¢u = -1 272 ( Vpexp(+if,,) - M__Zexp(-ieom) ) (110)

The energy separation, e, - e; = AE, 1s the crystal field

u
splitting.
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The spin orbit interaction is given by (4)

oo * (26%/0) & wpgsy (123)

where 51 is the total electric field acting on electron 1.
For simplicity, £, can be approxlmated (29) by

£, = )X er, [r,3 (112)
~1  carbon nuclei k ~ak' Tk

The effective nuclear charge Zk 1s gilven a value between 6
(no screening) and 1 (complete screening).

The contribution to the g-tenhsor of fhe spin-orbit
interaction is easily derivable from the appropriate term in
the second order perturbation theoﬁy correction to the energy,

- £
é% (@1, Hso@u) (@u, %jﬁ@l). Combined with Equation 112, the

contribution to g, is

Ag,, = (=2/AE) (@, 2 8% Ezk[gik/rig )= gzcéu) (113)
° (¢ul 12 ¢1)

The second matrix element can be worked out using
Slater EpZ orbitals, and has the approximate value 1. The
first matrix element can be evaluated approximately, and is
about 1 cm~1.

It is well known, however, that the Huckel theory
overestimates 1 matrix elements. The equivalent VB calcula-
tion, with the neglect of overlap, gives zero. It 1s
therefore reasonable that the 1, matrixz element might be an
order of magnitude smaller, say O.1l.

The spin-orbit matrix element has been estimated by
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at least one author (30) to be as high as 5 em~l, Tt is
certainly in the range 0.5 - 5 em™1,

Apart from the uncertalntlies in estlmating the above
matrix elements, the above discussion must be modifled to
include the effects of vibronic coupling (Section I).
According to Equations 80 and 81, the above matrix elements
should be reduced by the factor (N5, Ny) - (Ny, Ny), (0.2 to
0.6), and the crystal field splitting by (NO, NO) t0.8).

Hence the conservative theoretical estimate foraAg,, 1is
=5/ AE ¢ Ag,, < 0,005/ AE(en~1) (114)

A gquantitatlive, purely theoretical estimate of g,,
appears to be impossible. Qualitatively, 1t has been shown
that the pi-pl contribution to gzz is negative, inversely
proportional tc the crystal field splitting, and that vibronic
coupling tends to reduce the contribution. SinceaE is esti-
mated to be of the order of 30 cm~1l or less for appropriate
crystals (Section K), even the most pessimistic value in
Equation 114 is measurable. Even more important, since the
crystal field can be easily varied, changes in the wvalue of
g,, are a measure of the strength of the crystal field.

Experimentally, measurement of the g-tensor at low
temperatures is very difficult. Wood (3) was able to obtain
measurements for polycrystalline samples of CHT in thiourea
and in cycloheptatricne that are of interest here. The poly-

crystalline g-values represent an average of the %, y and z
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values, and were 2.0023 % 00,0002 for thiourea, and 1.9985 #
0.0015 for cycloheptatriene. Only B,y is expected to be
less than 2.0023,.

These average values indicate that g, is less than
2,0023 for CHT in thiourea, and conslderably less than 2.0023
for CHT in cycloheptatriene. This indicates that the crystal
field splitting in thiourea is greater than in cyclohepta-
triene, which is in accord with the more polar nature of
thiourea. It 1s also compatible with the higher transition
temperature, 40° K, in thiourea, vé;‘l3°ﬂKfin cyclohepta-
triene.

If the crystal tield splitting-in cycloheptatriene
is as low as 10 em~!, then the product of the spin orbit and
angular momentum matrix elementé would be)lO"2 em~1., If it

1s as large as 100 cm'l, the product would pe>10~-1 em-1,
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3, SPIN-LATTICE RELAXATION IN THE HIGH TEMPERATURE FORM
OF CHT :

Wood and McConnell (3) have noticed that the ESR
spectra of the high temperature form of CHT are more difficult
to saturate than the ESR spectra of ordinary aromatic hydro-
carbon radicals. This enhanced spin-lattice relaxation has
also been obscrved in.other presumably degenerate systems
(31). McConnelllhas suggested that the short.sp1n~1att1ce
relaxation time T4 1h solutions is ¢aused by'a magnetic
pulse - effect of the spin-orbit interactlion when the molecule,
because of fluctuations in its environment, passes through a
degenerate state. McConnell and McLachlan (17) also investi-
gated the possibility of relaxation occurring through the
hyperfine interaction and the sloshing around of the spin
densities, but they found that the hyperfine interaction was
too weak to account for the short Tl'

In Section L a model was developed for the rotational
interaction of the lattice and the CHT molecule. This model
will now be used to derive the spin-orbit induced spin-lattice
relaxation in CHT.

The spln-orbit interaction, Equations 111, 112, may be
treated as a perturbation on the Hamiltonian of Equation 91.
If at time t = O, the wavefunction ¥ 1s equal to Y a

where the spin function g is an eigenfunction of S then at

X’

time t the coefficients of qi B and \% B are approximated

by
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(1Aw [ 5Q%) cos 20t (115)
(«iA [ 4Q) (sin20t - (AEAD)cos2t) (116)

Both coefficients are sinusoldal with angular frequency 2§ .
The average probability of finding the spin flipped is of
the order of %Aﬁﬂf , where A 1s essentially the spin-orbit
matrix element. Suppose after a time T the CHT molecule is
subjected to a process in which the phases of the different
instantaneous elgenfunctions of tha@Hamithﬁian are destroyed.
Such a process might be a '"collision' with the lattice, in
which either the crystal field or the rotation were suddenly
changed and might be viewed .as a measurement by the crystal
lattice of the state of the molécule. The probability of
finding the molecule in a state with its spin flipped is of
the order of 1/4 f° and would lead to a T, of the order
of ~ 0%/ 2% 1.

If one uses the values Tl = 10~7 sec, A =.5 em=1 £2=30 cm~1
then T ~ 10-11 gsec, which is not an unreasonable value. Since
there is no simple way of estimating T, the most that can be
sald 1s that (dnce again) the spin-orbit interaction can be
responsible for the enhanced spin-lattice relaxation.

A way to test experimentally the hypothesis that the
spin-orblt interactlon is responsible for the spin-lattice
relaxation, is to measure the anisotropy of the relaxation
time. When the magnetic field is perpendicular to the plane

of the molecule, the vanishing of the pi-electron spin-orbit

matrix elements eliminates the special mechanism for relaxation.
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SUMMARY AND CONCLUSIONS

The ESR spectra of CHT provide overwhelming evidence
that the ground state of CHT in the absence of a crystal
field would be orbitally degenerate. Thils degeneracy is re-
quired for the quantitative interpretation of the high
temperature spectra, and for the magnitude and direction of
the varlations in the low temperature g-factors. Degeneracy
is required to explaln why the crystal lattlce has a large
effect on the nature of the low teﬂperatugé hyperfine
structure, and it is an implicit feaﬁure of the approximate
UHF-LCAO~MO and Pariser-Parr theories ‘which provide a semi-
quantitatlive explanation of'fhevlow temperature spectra in
naphthalene.

Degeneracy in turn requires that the molecule have
the symmetry of a regular heptagon.

The static Jahn-Teller effect in CHT is shown not to
exist, and the theoretlcal modifications required by the
breakdown of the Born-Oppenheimer approximation are shown
to affect primarily the values of the matrix elements of the
spin-orbit coupling and the angular momentum.

Degeneracy also plays an implicit role in the spin-

orblt induced spin-lattice relaxation mechanism.
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PROPOSITION I
THE EILECTRON SPIN-SPIN INTERACTION IN EXCITED STATES

CF MOLECULES AND THE SPIN-HAMILTONIAN
Abstract

It is shown that the spin-Hamiltonian
D(Sg - %gz) + E(SXZ- S?) can be used to represent the

electron spin-spin interaction within the 2S + 1 - dimen-

sional space of an arbitrary spin mditipletfcf spin S.
The electron spin-spin interaction (Hy) is given by
2 2 . 2 .
By = ifjg B rijs (s1-85 r45 - 3(s1-r13)(s5-r15) ) (1)
where

A5, = spin angular momentum operator for electron i.

position vector of electron i.

=3
"

T13 581 = X5

i3 % 'E‘ij|

o
L]

free-electron g-factor

it

B

The spin-spin 1lnteraction was first studied in molecules by

Bohr magneton

Hutechison and Mangum (1) in 1958 in their classic experiment
on the electron spin resonance of the lowest triplet state
naphthalene. Since 1958, various other triplet systems have

been investigated by ESR (2). For triplet states it is easy
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to show (3) that Hy can be replaced by the "spin-

Hamiltonian" (H)
H = D(S2 - 182) + E(S2-32); (2)
V4 3 Xy :

that is, for a speclal cholce of coordinate axes xyz, and for
appropriately chosen constants D, E, the 3x3 matrices of Hd
and H are identical. The simple form of Equation 2 greatly
simplifies the interpretation of experiments, and D and E

can often be measured quite accurately.

Recently the cycloheptatriefiyl raqiéél (4) and various
substituted carbenes (5) and nitrenes (%) have been prepared
in crystals and glasses. The grournd gtate of cyclohepta-
trienyl is a Kramers doublet and the ground states of the
carbenes and nitrenes are triplets. It is quite likely that
the lowest quartet and quintet states of these systems will
soon be studled by ESR. The question then arises, "can a
spin-Hamiltonian of the form (2) be used to represent Hy for
multiplets with spin greater than one?" The answer is usually

affirmative* and will be considered in detall below.

*In a recent paper, A.D. McLachlan, Mol. Phys. 6,
441 (1963) has derived the D, E Hamiltonian by using the
Wigner-Eckart theorem. The present derlvatlon was first
discovered when the author was a flrst-year graduate student
and, at the risk of being redundant, 1s repeated here for
its pedagogical value.
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Formulation of the Problem

The 2SS + 1 states of a multiplet having total spin S
will be denoted by [SM) , M = S, S-1, ..., ~S. 5,55,5,5Sytisy

denote the usual total electron spin operators; e.g.,
N

S = ‘Ea B4 where the total number of electrons is N,
1= :

The |SM) satisfy
32 |SM) = S(S + 1) |sM)

s, |sMy = M |SM) (3)

S, |SM) = [S(S+1)=-M{T+1) ]s ‘?-{4-13)?:
Define D = 3 (25° - s)"1 (ss) Hylss) (4)
E = [5(25 - 1)]™ (s3] Hy|S £-2) (5)

We assert that we can choose the coordinate axes xyz so that
the (2+1) x (2 %+ 1) matrices of Hy and

H =D (s%-45%) + B (2 - 5D
are identical. Hy and (S% - Sg) are Hermitian, but according
to Equation {5) E 1s not a priorl real. It will also be

gdhown that in this coordinate system E 1is real.

Proof of the Assertion

The assertion 1s proved by takling advantage of rela-
tions among the spin operators, and of the relations (3)
among the |SM) . The important relations among the spin

operators are
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Pi'§ﬂ =0
[Sizs Six) = #Six
8342 84.] = 2544 | (6)

35554 T 54454, =0
PO"'

13 = operator which permutes spin coordinates of eleectrons i,

= ip0 _ &
81783 = P35 = 3

v

It will be convenient to define
i = %51y (7)

Using (1), (6) and (7), Hy can be dgcomposed into the fol-

lowing sum:

Hy = Hpy + Hy_ + Hyy + Hy_ + H (8)
Hoy = =(3/8) ?p? 3 ri‘j5 xiﬁ- (s34 + S.ji)z (82)
143 +
Hyp = -(3/4) g2[32 iE_ r{gzijxij¥{(siz+sjz)(sii+sjt) (81)
, ¢J +(Bit+sjt)(siz+3jz)}
Hy = (3/4) &2 T r{%(ri%-'%i%) {(Siz"'sjz)z (85)
13 -(1/3)(s3+54)%

The decomposition (8) simplifies the computation of the

matrix of Hd:

(sm] Hy | M) 0 M) > 2

It

(01 By | SiE'),  |Mei'] =2

il

(sm| Ry, | '), o= (9)

(sM] Hy |5M'), 1=M' =0
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(a) AM = 2 elements
(SM + 2|Hp, |SM )
= (5 2 | Hpy Sy | S 1=1)/(S(S+1)=(=1 1)%
= (3 M+2\ S, Hy, | s M—1)/(S(S+1)-(M—1)M)%

= [5(S+1)= (1) (+2)
S(S+1)=(M-1)M

(5 w1 Hy, | 5 u1)

since [H2+, $;] = 0. But

o2 |a vy = [8(5+1)=0Cs1) Q82) ' 2\ a 1
(s w2| s s ) 1/S(S+1)-(M-1)M (s 1| s£ |5 1-1)

From (10) and (11),

o = 3[5(25-1)] % (55|, | s8e2) 52

. .
The Hermltian conjugate of Hop, ; Ho, = Ho_. Hence,

Hoy + Ho_ = [45(2 -1)]’% 5-2)s2 - g)g@
o+ Hp_ S (Ss\Hy|88-2)8% +(88-2]Hg|S9)S

(b) AM=1 elements.
First we shall show that

21,/ S{5+1 )= (=11

(54 |Hy |5 i=1) =

25-1 25 (ss | Hy|s s-1)

(10)

(11)

(12)

(13)

(14)

This is trivially so for M = S, We assume (14) holds for

M=m¢+ 1 and establlish 1ts truth for M = m.

(Sm | Hy|3 me1) = [S(SH1)om(m+1 ) -3 (Sm+1 | 8¢ Hyyl S me1)

= /8(S+1)=(m=1)m
i/s(s+1).m<m+1) (5w 1y, | s m)

+(S(5H1)=n(m+1) )"%(3/4)53276 Z% (3 m1)

.-5 2
Iijzijxij-z(si++sj+) \S m-1)



68
In the second term (8;) has been substituted for H,, and the
commutator with S, taken. Substituting (14) into the first
term, noting that [(si+-+ sj+), S+j = 0, and using (3)
repeatedly, the above expression becomes '

(Sm | Hyg ]S me1)
2+l /) 5(5+1 ) ={m=1)m
251 25

+'~ e - L 2 2 -47? -5 . R N \ -
/’(@ T )-(rsn-} BRG)(52 -1)(53“‘-;-2fs"-s—2(5-* i) 133

1
Using |5 s-2) = (45-2)"% 5_|s s-1), (s¢|s =0  and
+)], we find that

(ssiHy s s-1)

[(si++sj+) ,S_J: 2{(si++sj+)(si‘_’z-i-sjz)-l-(si?-sjz)(ﬁsiﬁﬁgj
2:- + A Sl o ’
(S | Hyg |8 met)=58ot (23 Zlntdn (55 {4 |5 5-1)

which establishes (14). Moreover,

(SM | (5,8, + 8,8,) |S M=1) = (24=1) /S(5+1)=(M~1)k
which taken with (14) gives

(23-1¥2S
and gy, + By = [(25-1)85] g(ssl Hy|55-1)(S,54%545,) ] (15)
+(SS-1|Hy| 58) (85,5488,
(c) AM = 0 elements.

We shall show that

(Si|Hy| M) = 3(25%-8)"" (s5|H,|S8)(M° -5(5+1)/3) (16)

This 1s trivially true for M = S, Assumling (16) 1s true for
M=m4+4 1, we consider M = m:
E

(Sm|Hg|Sm) = (S m+|Hg|SmH )+ {S(S+ )em(mk1)] =2 (Sm1 1[:S+,H(_;}|Sm)

Substituting (80) for HO and evaluating the commutator,
' 1

(Sm|H,| Sm) =(SmH| H, |SmHl) + [S(5+1)=m(mH )} T2(=3/4)g% B2 igj

-5, 2 2
(5m+1\rij(rij-Bzij){(si++sj+)(siz+sjz)+(siz+sjz)

(Si++Sj+?}ISm)
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By the proof of Equation (14), we can simplify the second

term above:

(Sm|H,|Sm) = (Smet|Hg|smr1) —(3/8)g2 g2 2L L. 5
1 % B s VB 1l

5, 2 2
<SS;rig(rij‘3zij){(si++sj+)(Siz+sjz)+(sj_z+sjz)(Si++sj-+)}lSS"1 )
Using
5_15S) =/B5I58-1), (55 |S_ = 0, [(sgsFs4)(sy s 3,0+
(Siz+sjz)(si++5j+), S-_I= 6f(siz+sjz)2‘<§i+§j)2/3}’ and substitut-
ing Eouation 16 into the first term, (Sm|Hg|Sm) =
3 (282-3)'1(SS|Hd‘SS){ m2-5(s+1)/3}
establishing (16).

Clearly H, =3 (252.5)" (ss 4] 55) (s§ - 532/3) (17)

0

(a) From Equations (8), (13), (15), and (17)

Hy = aS2+b52+cs24d(3_ S +5 5. J+e(S S +5 S _)+£(S 545 5 ) +

! DS eSS, 5,45, 5y 5oz %% vz 27y’ T8
where a, b, ¢, 4, e, f, g. are real numbers. Hd is a sym-~
metric quadratic form in the total spin operators. S
transforms as a vector under rotations. By elementary algebra,
there 1s a rotated coordinate system XYZ in which the co-
efficlents of the cross terms vanlsh, and Hy has the form

— 2 2 2

Hy=ASy+BS;+C5;+¢
Now let us suppose that the ISM) are the states quantized
along the Z-axis in the special coordinate system. No XZ or

YZ terms occur =¥

Hy, + Hy_ =0

No sty 4 Sysx term =»

(ss|Hd|ss-2) 1s real ,
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Consequently, in this coordinate system,
2 -
H =3 (252 - 5)7 (55|Hy|88) (52 -5° /3)
2 o -’1—-' [afa] oz 02
+ (25% - 9)"2 (ug1Hd|ss-2) (ux - “’y)
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PROPOSITION IT

A NOTE ON THE CALCULATION OF MATRIX ELEMENTS OF THE

TWO-ELECTRON SPIN-ORBIT TERMS OF THE HAMILTONIAN
Abstract

It is shown that calculated two-electron spin-orbit
matrix elements are more reliable than the wavefunctions used
in the calculations. The antisymmetry of the wavefunction
and of part of the interaction comﬁensathfar the poor cor-

relation properties of the wavefunction.

The two-electron spin-orbit terms of the Hamiltonian
are very large when the two electrons are close together.
To try to calculate their matrix elements with approximate
wavefunctions would seem pointless, because (the usual)
approrimate wavefunctions are poorest when two electrons are
close together. It wlill be shown, however, that each matrix
element has at least two factors which are antisymmetric (1)
with respect to exchange of electronic spatial coordinates,
mitigating the lack of correlation of the wavefunctions.
We wish to calculate (@, HV). H is given (2) by
H =i§jHij
Hyy = 285 (=(eyg/rs?) xpy + 2 (ryylrs ) xpyles

H + H can be written

1j Ji

- g2 3.} x (p,ep.)-
+ (xy/ris) x uipy)-(egmsy))
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The two-electron density matrix of the n-electron
wavefunctions @ and ¥ is defined by
Plert01trp" 505" 5115995 50, %)
= r_l.(_g.'.}lfdn' ats. .. .drng*(gl',0'1‘,,{’2‘,0‘2',’1:3,0“3, .
En’oﬁ)

X\P(gl,vl,;z,o‘g,g?),og ..... T

where dr, 1s the space-spin volume element for electron m,
In terms of p, (#, HV) = [ (B il dr A7 .

» , 1 Hmfn’”i’ﬁi‘z'?z 2
\f can be written as -

= 3 '
F l’mfm L
1 - 1 1. (4
Fim 91111(5'1 P Fpls rye 1) £5(172Y) £ (12)

£, =272 (o8 = Ba).

1

= aa

fq= BB

i

£, =272 (af+Ba)

The flm depend on only spatial coordinates. The flm are

symmetric with respect to exchange of ' and 2' when 1 = 1,
antisymmetric when 1) 1, and symmetric with respect to ex-
change of 1 and 2 when m = 1, antlsymmetric when m>1{.

The integral (ﬂ, HY¥ ) breaks up into two terms: one
proportional to 8 * B0, and one proportional to‘§1 - So.
Sinpe (31 + 52) f‘1 = 0, only _Flm with both 1 and m greater
than 1, contribute to the first term. But each of theseﬁflm
is antisymmetric with respect to both exchange of the spatial

coordinates of electrons 1 and 2 and 1' and 2°',
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Similarly, the term proportional to{g1 - 8, con-
tains contributions from the.flm for which elther 1 or m,
but not both, = 1. Each of these\le is antisymmetric with
respect to exchange of electrons 1 and 2 or 1' and 2'. Also,
the coefficient of 5 - 5o in H12 + H21 is antisymmetric with
respect to exchange of spatlial coordinates.

Hence, each matrix element of the two-electron spin-
orbit interactlion has at least two factors which are anti-
symmetric with respect to exchange of the spatlal coordinates

of the two electrons.,
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PROPOSITION IIT
CALCULATION OF EIGENVALUES U3ING AN OPERATOR TECHNIQUE
Abstract

It is proposed that e X(H-E) pe used to calculate
energy eigenvalues through the behavior of e“k(H"E) £ (for

some function f) at large k as a function of E.

Suppose H is a Hefmitian operator whose lowest
elgenvalue, E , , 1s finite, with eigenfunction @. Let f
be any function such that (g, £) #%0.,

Then 1im e~¥(H-E)¢ - o, 1ir E {E_,

k— 00

n.’
'ﬁ(g: f): if E = Em-j_nj
=®, If E)E

min®

It 1s proposed that these relations be the basis of a new
method for finding eigenvalues of H.

This method consists 1n choosing a convenient func-
tion f, a large value for k, and computing e‘k(H“E) f as a
function of E at a convenient point in the n-electron space

of H. When E passes through E the value of the expres-

min’
sion should increase suddenly.

- The main difficulty 1In using this exponential oper-
ator method is in the evaluation of the exponential. Because,

in practice, only a finite number of terms of the exponential
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power series can be used, convergence problems may occur.
In particular, the number of terms kept restricts the size
of k. Also, careful attention must be pald to the choilce
of £, since f expressed in terms of the eigenfunctions of
H, will almost certainly have terms whose eigenvalues (times
k) 1lie outside the range for which the finite series is
accurate.

With these considerations in mind, a careful study
of thls method and of its_applicat;@h to some simple prob-

lems 1s belng planned,
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PROPOSITION IV

THE ROLE OF SPIN CORRELATION IN THE CALCULATION OF
THE ZERO-FIELD SPLITTING PARAMETERS, D AND E

Abstract

It is shown that the calculated values of the zero-
field splitting parameters, D and E, are changed greatly
when the SHMO wavefunction 1s modified to account for spin

correlation.

. . . . . . - L] . . .

Active theoretical interest in calculating the zero-
field splitting (See Proposition-I) parameters D and E for
the lowest triplet state of a molecule dates from the classic
experiment of Hutchison and Mangum (1) on naphthalene.
Several theoretical calculations have been reported. 1In
particular, those of Boorsteiln and Gouterman (2), who in
some cases were able to obtain agreement with experimental
results with a two-configuration wavefunction, indicate that
the lowest triplet (single configuration) SHMO wavefunction
does not correctly give D and E. We propose to show, by
example, that the deficlency of the SHMO wavefunction, insofar
as D and E are concerned, 1is 1ts lack of spin correlation.

- There are essentlally two physical faults with the
SHMO triplet wavefunction: coulomb and spin-correlation.
(Spin correlation is properly a part of the coulomb correla-

tion.) The possible influence of spin correlation on
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calculations of D and E was pointed out by McLachlan (3).
That the average coulomb correlation should be relatively
unimportant was suggested qualitatively by McConnell (&4).

D and E may be calculated from the triplet S, = 1

wavefunction ¢.

D = (3/4) g'?,(ngdv1dv2 5(1,2) r, " (1-122 - 32,,°) (1)
E= (B/L") gZB zfdv-‘de 5(1,2) 1'12-5 (}7'122 - X122) (2)
5(1:2) = (8, 2 8(x; - 1y) 3lry - rp ) sy ,95,75;55) ) (3)

i#]
In the simple Hiuckel theory, @ has the form

g = A Ma MB ... . Mo MmB»Mm-rla Mpap @ (4)

One may calculate the average effects of correlation by
using UHF-LCAO-MO orbitals. From Equation 4, the SHMO
3(1,2) is simply

s(1,2) = ’zl‘l Mipa1Mma o Mg oMne1 | 2 (5)
When the UHF functions are calculated to first order from
Equatlon 4, the corrections to Equation 5 consist in a term
which 1s largely the average coulomb correlation and a term

which 1s explicitly the average spin correlation effect.

85(1,2) = 2 (MupqMpo-Yiyotling) {%ﬂ“k"‘k%m)
ccoul Ky ybig w2 errx-4-2"“3k

(6)

+ (M 2= 22) V5 g }
Sm+1-Ck
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m m+2
8s(1,2) = z
Sp.COr. i=1

e T Mo L-M Y (T2
s (Mi.,lj xIJn.l)(ukIJ MJﬂk)(l K

_.n%,, lﬁm LN (ei—ek)( 7)

e, represents the one electron SHMO energies.

Vi (g, V) (8)
o B m+2 5 5

Vo= V4 j=21(:"1jye /I‘-Iz Mj) - ‘M‘]) e /I‘12 <MJl (9)

vB = z 20y, e4fry, My) = [1y) e 11?12 (1] (10)

1=1
The corrections to D and E were calculated with the
assumptions made by Mclachlan (5) in his successful treat-
ment of spin-correlation in radicals: only the one-center
coulomb terms in the Vij matrix elements are kept, and the

SHMO theory B8 is replaced by g -3(P_ )

o
relay P01 ° where G

01
is the nearest neighbor two-center coulomb integral, and
(Phg)yy 18 the average nearest neighbor total bond order.

All the integrals of equations 1 and 2 were done
exactly using Gaussian atomic orbitals (6). The results
were that the SHMO value for D was reduced by about 1/3 and the
SHMO value for E changed sign from negative to positive. The
contribution of the spin correlation terms of Equation 7 was
found to be an order of magnitude larger than that of
Equation 6., The exact numbers are not important because

this effect on D and E, in contrast to the effect on the

spin densities, 1s clearly too large to be computed by
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perturbation theory. Nonetheless, that the size of the
correction was so large, shows that i1t is lack of spin cor-
relation which makes the SHMO wavefunction so poor for

calculating D and E.

References

C.A.

(1958)

2. S.A. Boorstein and M. Gouterman, J. Chem. Phys. 39, 2443
(1963

3. A.D. McLachlan, Mol. Phys. 5, 51 (1962).

4. H.M, McConnell, Proc. Natl. Acad. Sei. (U.8.) 45, 172
1000
\+ZZ 7/

k. D. McLachlan, Mol. Phys. 3, 233 (1960).

Calculations were performed for the lowest SHMO triplet
gtate of naphthalene.
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PROPOSITION V

THEORETTICAL SPIil DEISITIES FOR CICLOPEHTADIENYL

Abstract

The spin densities for planar pentagonal cyclopenta-
dienyl radical, CgHg, are calculated according to a) the
SHMO, b) approximate UHF-LCAO-MO, c¢) Pariser-Parr, and d)

VB theories.

The cyclopentadienyl radical OiHg (CP?jﬁis ecurrently
being studied by electron spin resonance over a wide range
of temperatures in this laboratory” (1). The theory of the
ESR spectra of CPD 1s very 'similar to that of CHT, and in
this proposition calculations 5f the spin densitles of CPD
by the a) SHMO, b) approximate UHF-LCAO-MO, c) Pariser-Parr,
and d) VB theories are presented.

Each of these theories was described in the thesls and
will not be described again here. The ground state of
planar pentagonal CPD is predicted to be orbitally degener-
ate by both the MO and VB theories, with symmetry E";. The
spin densities for an arbitrary real eigenfunction can be

described by
Prn = (1/5) [1 + T, cos (4mn/5 + 2 gom):l

where the orbital mixing parameter, 6,4, and the theory

indexing parameter, T play the same roles as for CHT.

X,
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a) As with CHT, the SHMO value of T, igs 1.
b) The approximate UHF-LCAO-MO method leads to the

expression

T =14+2| “Ko1 4+ -Koo
_eo-el 61-82

where

e, 2Rcos{(2xr m/7) - Kom

KOm = (1/5XG00 + 2 cos(2m/5) Go1t+2 COS("—PTm/‘j)GOE)

B, Gpos GOi: as before, were adopted from Pariser (2). Ggp
was calculated for a C-C distance of 2.27 R, nuclear charge

3.18. The values used were

B, Gpo. Ggy, Gop = -2.4, 11.0, 7.0, 6.0 electron volts.
T, is calculated to be 1.467.

¢) The discussion of the Pariser-Parr method can be
carried over almost without change. Diagonalizing the
matrix of H over the ground state of CPD and its pseudo-
singly excited configuratlions, the energy lowering is found
to be 0.44 e.v., and the computed Ty 1s 1.286. The values
used for the integrals were the same as for the UHF calcu-
lation.

d) The VB method for CPD is simple to apply because
the wavefunction is determined by symmetry (3). The VB
prediction of T, is 2.667.

In summary, the spin densitles for CPD are given

theoretically by the formula
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fon = (1/5) [1 4 T, cosllir /) + 2 00, )]

The orbital mixing parameter, 8,,, 1s determined by the
environment of the molecule. The theory indexing parameter,
T, , 1s given the values 1, 1.467, 1.286, and 2.667 by the
SHMO, approximate UHF-LCAO-MO, Pariser-Parr, and VB theories,

respectively.
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