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ABSTRACT

An analysis is made of the elastic instability of thin, tapered
cantilever struts subjected fo a general concentrated load acting in the
plane of the strut at its tip. The strut is supported at its root on a
struc’ture pe’r@tting elastic rotations of the root section in the buckled
mode. The influence of the support on the minimum buckling load is
one of the main points of interest. It is shown that the general
linearized problem can be formulated in one second order differential
equation with variable coefficients, and two associated boundary condi-
tioﬁs. This homogeneous eigenvalue system constitutes a simplified
statement of the problem which permits the easy extension of exact
linear theory to a wide class of taper functions, including the effect of
elastic supports. The solution emerges in terms of a generalized
deﬂectionf parameter, rather than of either the torsional or the bending
components of the coupled buckﬁng mode, which are governed respec-
tively by third and fourth order differential equations.

Specific solutions are derived for some '"natural" taper forms of
the strut. The general solutions for the deflection mode are power se-
ries, which are rapidly convergent for certain limiting geometries. The
préblems of convergence of the series, some singular physical aspects
assaciated with pointed tips, and the increasing numerical difficulty for
large taper ratio are correlated with the behavior of the singular points
of the equation. Numerical results showing the effects of the elastic
supports on minimum buckling loads are presented for the uniform strut
and for a simple case of l‘:he tapered strut., The series solutions for
more general cases are given in a form which can be applied to digital

computers,
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TABLE OF NOTATION

numerical constant = [[
] - -
numerical constant = 1 + 2a = 1 +,€

1-4
general coefficient in power series expansion
flexural rigidity parameter = %
£
torsional rigidity parameter = -%—Z
spring constants, moment per radian, for strut root

support in torsion and bending, respectively

dimensionless flexural rigidity distribution
dimensionless torsional rigidity distribution

taper parameter (Figure 2)

length of strut
1-hi

exponent
general index

ratio of dimensionless load parameters
1

P
indices

special independent variable = —% (Figure 7)

deflection coordinates for strut neutral axis (Figure 2)

w(f) - u
Y

special independent variable (Figure 7)

= dimensionless deflection

special independent variable (Figure 7)
distances along strut neutral axis (Figure 2)

coordinates (Figure 2)
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generalized deflection parameter
variable bending rigidity

Batx = 0

vaﬁable torsional rigidity

Catx =0

Young's modulus
20
1L+ 42

Zm
1+ 42
components of moment defined about x, x', y, etc.

axes according to right-hand rule

transverse load applied at strut tip (Figure 3)
coefficients of general differential equation
index

axial load applied at strut tip (Figure 3)
exponent

angle of twist of strut cross-section

special coefficients

flexibility coefficient for strut support in bending
about major principal axis

flexibility coefficient for strut support in torsion
about elastic axis

generalized twist deformation

T+

dimensionless parameter for transverse load
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PART A

I. INTRODUCTION

This report ‘is divided into two parts., Part A is a brief résumé
of the assumptions and important steps of the analysis, and collects
the essential results. Readers who are interested in details, and in
the less specific sidelights of the problem, will find them in Part B.

| The elastic instability of cantilever struts under axial and/or
lateral loads (Figure 1) has been treated by several investigators.
References 1 through 4 have been standard works for the cases when
either of the loads is applied alone. References 5, 7 and 8 have treated
the problem for combinations of these loads. The particular case for
thin tapered struts, such as are used in wind tunnels for model supports,
has received attention in References 5 and 7. The investigations of
combined loadings have all been limited either to very special strut
geometries in the analysis by the exact linear equations, or to an
approximate formulation by energy methods for the more general strut
shapes, The strut has also been considered in these analyses to be
rigidly supported at its root section.

This report considers the instability problem of the strut on
elastic supports. Such supports for the strut are typical of the wind
tunnel model rigging configurations which have evolved in recent years,
as shown in Figure 1. In these configurations the strut root section
can rotate elastically in the two degrees of freedom which are pertinent
to the deflection mode of the buckled strut. In the process of reconsid-

ering the stability analysis for these newer boundary conditions it has
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been possible also to formulate the problem completely and simply in
the exact linear theory, with applications to perfectly general taper
functions under combined loadings. Specific solutions are generated

for a wide class of tapered struts in this report.
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II. DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS

In the notation defined on Figures 2 and 3 and in the Table of
Notation the following pair of differential equations express equilibrium
of a section of the buckled strut at a distance x from the root, accord-

ing to the elementary concepts of linear beam theory:

- 2
d“y
B(x);{—%xP(,Q-X)P + T(y, - u)

(1.1)
c(x‘)%g- = Py, -u)-P() -

The forces P and T act at the intersection of the elastic-neutral axis
with the tip, in a plane parallel to the plane of the undeflected thin strut.
In deriving these equations it is assumed that all deflections are small
and that the strut sections are everywhere so thin that the flexural
rigidity about the u-axis is very large compared with the rigidity about
the y-axis, Then the deflection of the elastic-neutral axis out of the
x-u plane is neglected,

The boundary conditions to be satisfied by the strut deformations

q(x) and [3 (x) are

atx=0: (1) u=0

2
(2) ey F = B(SS) (1.2)

dx

™

() e = c(gf)
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atxzﬁ: (4) =0
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o
o

"o

o

(5)

o

Conditions (2) and (3) introduce the assumed elastic spring rates of
the strut support, in bending and torsion of the strut at its root,

It is convenient to introduce dimensionless variables
g-‘-’l-—-—’f— and v:-l_(uﬁ-u) ;

2 J/

the coupled equations 1.1 then become

dzv
-b(g) Egz = P§{3 + Tv
: (1.3)
&) $E = Py - PE Y

Retaining for the moment the variation of the flexural and torsional
rigidities in the form of the parameters b(§) and c(g) ,

equations 1.3 can be combined by eliminating either v or ﬁ . After
some manipulation this results in the following alternate equations,

in @ and v respectively:

gadf[bgdg(C%-g—)] - Zbgg(csl&g) + g[Pzgz%gé + Tc%gj =0 (1.4)



and

iz__(b_‘fl) +Td2 p* 4 [._f d (V)]
dgz dgz —E——E c d§'E
Either of equations 1.4, with appropriate boundary conditions
from equations 1.2, constitutes a homogeneous system for the solution
of the eigenvalues of P and T. Since each system must yield the same
eigenvalues, they are entirely equivalent systems for determining
critical buckling loads, It follows that they are reducible to the same

form. In fact, upon introducing the appropriate transformations

B Eg-v
and ’ | (1.5)
C _
_ o aB
= ;Fg(g)_?l'ﬁ_

of the dependent variables, each of equations 1.4 can be reduced to

the form

.2 d [KE) dz 2
£ a—g[—é%l%-g]-k [rJ’Eg'gTJZ =0 (1.6)

Here £(£) and g(£) are dimensionless representations of the
rigidity funcﬁc«ns, replacing b(§) and c(§¢) ;and T and ¢ are
the dimensionless load parameters representing T and P. In order to
recognize that both of equations 1.4 reduce to equation 1. 6, it is neces~

sary to recognize that



z = 0 (1.7)

as can be verified from the second of equations 1.3. The dependent
variable z(§) is a generalized deflection parameter, in terms of
which the eigenvalue equation for the critical loads attains the rela-
tively simple expression given in equation 1,6, which is only of second
order,

The boundary conditions must now be expressed in terms of
z(g); this requires that the five conditions listed in equations 1.2
be reduced to two conditions in z(£). The last two conditions 1.2
express the absence of applied moﬁaents at the strut tip., These are
automatically satisfied by any functions u(x) and B (x) which satisfy
equations 1.1, and thus also for any functions which satisfy equations
1.5 and 1.6. In the dimensionless variables v and £ the first three

conditions 1. 2 become

at £ = O (1) v(0) = 0
atf = 10 (2) S = -edz"(l) (1.8)
. ’d—g EEZ »

d
(3) G(1) = -/4—&?— (1)
The dimensionless flexibility coefficients U and € , introduced here,
replace the spring constants ey and e, in equations 1.2. With the help
of equations 1.5 and 1.7, and the first of equations 1.1, the last two

of conditions 1.8 may be rewritten and combined to form the last of
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conditions 1.9, which follow. The first condition 1.8 can be rewritten
immediately as z(0) = 0.

Thus the boundary conditions

z(0) = 0
and (1.9)
Fm = F£EL0 )
plus the differential equation 1.6, are the final homogeneous system
for the determination of the eigenvalues of T and ¢ . The corre-
sponding eigenfunctions z{£) could then also be determined, from
which the deflection functions v(§) and B3 (§) might be obtained with

additional quadratures through equations 1.5.
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II. GENERAL SOLUTIONS FOR A CLASS
OF THIN, TAPERED STRUTS

Equation 1. 6 can be written in a second canonical form:

dzz dz
5 + R(«E)—E+ S(€)z = 0

with (1.10)

ﬁ..

2
RE) = g -7+ S0 = p(T+El

For thin sections it can be shown that the torsional and flexural
rigidities vary in exactly the same manner. Choosing the taper function

;m (Figure 2) to represent a suitably wide class of strut geometries,

then
R f(g) = g(é) = £
aztd R(E) = m%i—a;-é (1.11)

_ 1 +a m 2,14+a
S(g) = E—-———- [?‘3‘ 1 (E_"‘_a—) ]
where a is a constant representing the location of the imaginary pointed
tip. With reference to Figure 2 it will be noted that the parameter
defined as
f =1-hx

is a convenient index for the equivalent taper ratio of the strut. As ﬂ
varies from 0 to 1 the strut varies in truncation from ''complete™ taper
to zero taper, and the constant a varies from 0 to co. The numbers ﬂ

and m completely specify the strut geometry for the purposes of this

problem.
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As will be seen, it is necessary to distinguish cases for j = 0
from all others. When z # O the problem can be solved in general by
a power series expansion of z about the point § = 0, although certain
degenerate cases méy be expected to produce closed solutions (4). It
will be observed from equations 1,11 that the differential equation has
three singular points, namely the points at £ = 0, -a, and o, and
that the singularity at £ = 0 is always regular. The pointat § = -ais
not a regular aingﬁlarity, however, form > 1 (and ¢ # 0).

Regarding z and £ as complex variables, for the moment, then
it is apparent from the above that power series solutions can always be
written about £ = 0, when E # 0. If the circle of convergence includes
the point £ = 1, then the series is valid in the interval 0 € £ = 1, as
required for a solution of the eigenvalue problem., But whenm > 1,
the point ﬁz -ais an irregular singularity, such that the radius of
convergence is limited by it, This singularity moves toward the origin
as Z—r 0; for Z< %, a < 1 and consequently the power series
solution does not extend to the strut root.

This difficulty may be éircumvented by a suitable transformation

of the independent variable. The transformation

£ . __w_
2a 1 -
W= wa (1.12)

E:l*Zazl_i___
1

Lo R Y
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serves the purpose of maintaining the maximum radius of convergence
for a given ﬂ_, The singular points £ = -a and co are transformed into
the points w = 4 a. The interval occupied by the strut remains
0 € w < 1, Since ':?1‘ > 1 for I > 0, a series solution in w is conver-
gent over the length of the strut for all E7 0. The rate of convergence,
however, can be expected to become less and less rapid as Z.—"O.

After transforming to the new independent variable, equation 1.10

takes the form, for £ # 0,

(1.13)
4%z M 2014 ] dz | [ (1-9™% % wP-w)2™ 67
=2 S| T em T T oem 270
dw (1-w) w(l-w) (1+w) {(1+w)
and the boundary conditions 1.9 become .
(1) atw = 0: z(0) = 0
,, (1.14)
(2) atw =1 LM = TELE 4

* *
The parameters L, M, T and ¢ are convenient recombinations of
ﬂ, m, T and ¢ which become equal to the latter parameters, respec-

tively, when £= 1.

If the series expansion for z(w) is written as

and substituted in equation 1.13, the indicial equation is
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o (o - 3) =

Although the roots of this equatioﬁ differ by an integer, the corre-
sponding pair of solutions are linearly independent. The first boundary
condition 1.14 eliminates the solution corresponding to K= 0. The

general solution is then

0o
z = w3 E anwn (1.15)
n=o

After substituting equation 1.15 into equation 1.13, clearing fractions
and expanding polynomials, the following recurrence relation results

for the coefficients a:

-

Zm n-s
-n(n+3)a_ Z/( )(-3 Z (Z;n) (n&?a:;)r(ni-z-t) a,
r=o

Zm{-l!n-s

-ZZ/( @S G, e
r=o

Zm—lln-s-l

MOt > e,

r=o
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!n-Z
mi=z-
L3 y x TPy, .
T Z (?)(-az) San-Zs—Z
s=0

zm-z(%i

+¢* Z ( 211;—2)(_52)-5 ®n-2s-4

S=0

The coefficient a is arbitrary. In the above the following special
notation is employed:

a) t=r+s

b) '(I:) are the binomial coefficients of the expansion (1 + %)™

c) The sign Z/ denotes omission of the term fort = 0 from

"fthe summation

d) The summation index is limited to the lesser of the two upper
limits whenever a double limit appears.

e) If the lesser upper limit is less than zero no contribution
occurs from that index, except that in the last (or q;* )
summation m = 0 is to be treated as m = 1.

With the co.effi-cients a, determined the eigenvalues of Z'* and

4)* are found upon application of the second boundary condition 1. 14.

This can be done best by assuming a ratio

(1.17)

W

p:

and solving for the minimum eigenvalue of 'Z.’* if p is small, and of ¢*

if p is large. The ratio p becomes an additional arbitrary parameter.
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The coefficients a will be polynomials in whichever load parameter,
say T, is selected. Upon application of the boundary condition the

result is an infinite power series in T’\: which may be written

@ B
> Al =0 (1.18)
t=o .
The coefficients At are func\tiﬂns of the arbitrary input data: m, Z s Ps
€ a:i}d M. The mimmum critical load corresponds with the minimum
root of equation 1. 4185, which can be found by numerical methods,
In the general case the application of the recurrence relation
1,16 will be most efficiently handled by digital machine calculation.

. When the coefficients a are known for given m, ,Q and p, they are the

basis of the calculation for all flexibilities, € and M, of the strut support.

i
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IV. SOLUTION FOR THE UNIFORM STRUT
When [ = 1 the taper function is a constant. This is also the
case form = 0, 'I‘hén w—»£. The recurrence relation 1. 16 is

greatly simplified, reducing to

_ -T
an - n(n+3') (an~2+Pan-4) ? n = 4’ 6’ 89 cee

_ T
42 = "7 E 3, (1.19)
a =0 ) n = l) 3, 5’ e s a

These define the solution 1, 15 for a uniform strut.

This series has an infinité radius of convergence since a = oo,
and is so rapidly convergent at w = 1 that the infinite series 1.18 can
be limited '{é its first four terms. The numerical calculations proceed
fairly quickly on a desk calculator. They are outlined in greater detail
in ?art B, and are laid out as a sample for computer programming in
Appendix 1. The results, illustrating the effects of elastic supports,

are given in Figures 8 and 10,
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V. SOLUTIONS FOR f = 0: "POINTED" STRUTS

As I ~—» 0 there is a confluence of singularities of equation
1.10, since then a —» 0. The transformation 1,12 loses meaning at
E = 0 (the entire £-plane is mapped into the point w = 1), and the
solution must be obtained in the §-plane. The confluent singularity
at £ = 0 remains regular for m = 2, and series solufions in powers of
£ exist for these values of m, convergent in the entire §-plane.

The case for m = 0 is the uniform strut of the preceding
section. The case for m = 1 is, however, a nontrivial one whose
solution is easily obtained and is of interest.

The indicial equation determined for the series solutions to

equations 1.10 and 1.11, when L =0 andm =1, is

A(X-2)=0.

Here again the solution corresponding to the root & = 0 is eliminated
by the first boundary condition 1.9, and the general solution to the

differential equation is

©
zZ = E,Z Z a gn (1.20)

n=o0

The lower value of the second root ( X = 2) in this case corresponds to

the fact that now, for L = 0, B(0) = C(0) = 0; i.e. it is no longer

2
required that -(-1——121- = —g—g— = 0 at the tip, as in the last pair of
dx :

conditions 1. 2.
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The recurrence relations for the coefficients in equation 1. 20

are
_ T
&y = =373
(1.21)
a =—rFt (a +pa_ )
n n{n+2) n-1 Pa, 2

The details of the calculations for this case will be found in Part B and

in Appendix 2. Typical results are plotted in Figures 9 and 11.
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VI. EXPERIMENTAL VERIFICATION

A short experimental program was run to obtain a check on the
analysis. The results of linear theory for struts on rigid supports
have been verified many times by other investigators. In this case it
was desired only to verify the effects of the elastic supports.

The test specimen isJ shown on Figure 12, and the method of
loading is indicated in Figure 13. The specimen has the appearance of
a carpenter’s "L'", the narrower leg of which represents the cantilever
strut, while the wider leg cénstitutes the elastic support. As shown
on Figure 13, by clamping the end of the wider leg at variable distance
,QI from the narrow leg, the flexibility of the strut support could be
varied.

It Q;ill be recognized that the boundary condition at the root of
the strut (corner of the "L:") differs in details from the ideal conditions
assumed in the analysis. In particular it is necessary to determine an
effective length for the strut. It is also necessary to correct the flexi-
bility coefficient M to account for the non-linear bending of the wider
leg of the "L'" under the action of the load P when the strut deflects.

When these effects are included in the analyses of the experi-
mental data, the comparison between linear theory and experiment is
as shown on Figure 14.k The results are considered a satisfactory
verification for the uniform strut. The solid curve on Figure 14 gives
data obtained from the linear theory for the particular conditions of the

experiment, The test model was loaded with equal axial and transverse
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loads, P = T. This is different in general from the condition p = 1,
or T = ¢; and in fact over the range of the test points.the condition
P = T corresponds to variable p, in the range 2/3 < p << 3/2. This
variation has been téken into account in constructing the solid curve,

to compare directly with the experimental points.
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VII. CONCLUSION

It is felt that the possibilities for analysis of the problem by
‘exact linear method‘s havye been fully revealed and exploited in this
investigation., In particular the association of the mathematical and
numerical difficulties with large taper ratios ( E—"O) is clarified by
its comnection with the confluence of singularities at £ = 0. Thus
while exact soiutions become progressively more difficult as E -0
{the associated diffe‘rentia.l equation has three singularities), the
solutions becaine gimplest at I = 0 (the associated differential
equation has only twe singularities, at 0 and o).

This difficulty is removed for a strut with exponential taper,
a solution for which is derived in Part B,

£

chm.pnting experience with equation 1. 16 will reveal practical
lower limits of I for which to obtain answers from the exact theory.
Approximate numerical methods may then prove to be more attractive,
from this standpoint. For this purpose the reduction of the governing
differential equation to its second order form, as in equation 1,6, will
be a considerable help., In its giveﬁ form equation 1, 6 is directly
applicable either to ordinary iteration methods or to the more powerful

integral equation formulations and their approximate numerical solutions.

(Ref. 9).
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PART B

I. REVIEW OF THE PROBLEM

The analysis of the buckling problem for struts under loadings
of the type considered here, and on rigid supports, is not new. DBesides
some of the more standard works, such as those described by
Timoshenko (Ref. 1), Roark (Ref. 2) and others (Refs. 3, 4), an attempt
at analysing the‘ problem for a by now standard class of taper functions
was made by Richardson in 1948 in a private work (Ref. 5). The class
of taper functions which was considered represented the flexural and
torsional rigidities as proportional to the function (1 - hx)™, where x is
the distance out from the strut root section, h is an arbitrary constant
determined by the strut taper, andm = 0, 1, 2, ... (Figure 2).
Richard,sni; and Dinnik (Ref. 4) have obtained solutions in closed form
for the eigenvalues corresponding to the Euler column problem
(i.e. with zero lateral load), and Richardsen attacked the Prandtl or
lateral buckling problem (zér;e axial load) by an iteration procedure.

He carried out numerical calculations on a desk calculator for the
critical axial loads at m = 3 and 4, and for the critical lateral loads
at m = 3, devoting considerable effort, in the formulation of the latter
case, to attaining an accuracy to several figures. The results may be
seen on Figure 4, for the complete vrange of taper, from pointed tip to
uniform strut.

Richardson also considered the general problem of buckling
under combined axial and lateral loads, choosing to make a variational

formulation following the method of Rayleigh-Ritz. Here also much
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attention was devoted to detail, especially to achieving a plausible
approximation to the buckled mode, in an attempt to hold accuracy to
severa.lAfigures, with the result that numerical calculations are tedious
and beset by arithmetical difficulties. Richardson did net make any
calculations. In the simplest case, for a uniform strut ( :Q. = 1), the
calculations have been carried out recently under the writer's direction
on the CWT#c electronic digital calculator, and the results are shown
on Figure 5. It Will be observed that they are indistinguishable on the
figure from the curve of the exact solution due to Mértin (Ref. 7).
Richardson's expansion of the method to include taper involved a great
deal more complication, requiring a mathematical restatement of the
problem in terms of which the solution diverges if either of the limiting
forms represented by a uniform strut and by a pointed tip is approached
(i.e, if EL;'G, 1). This seems to be a characteristic difficulty of
this problem, and not necessarily a difficulty of method alone, as will
be seen later. However in this case the attendant arithmetical diver-
gences have been a serious problem and it has been possible at this
point only to obtain the answers form = 3, ,—Q- = 0.5 (which corresponds
to a two-to-one taper in thickness, with strut chord held constant) shown
on Figure 5,

In 1950 in his doctoral thesis Martin (Ref. 7) made exact
analyses for the cases represented by the solid lines on Figure 5. He

solved the fourth order linear differential equation for the deflection

* So. Calif. Coop. W. T.
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mode of the strut neutral aﬁs,~ obtaining solutions in power series form
for a strut of uniform cross section, and for what he calls complete
taper, vlz , taper to a pointed tip I = 0) for m = 1, which can be
‘represented by lineé,r chord variation at constant thickness. * The
reduction of the solutions from fhe fourth order equation to eigenvalues
was suiﬁciently complicated for these cases that Martin did not attempt
a solution for more general taper, of which these two cases are
degenerate, limit forms.

The only remaining work of importance in the area of this
problem which has- come to the writer's attention was published in
1952 by Di Maggio et al (Ref. 8), in Table 3 of which are listed critical
buckling loads for a cantilevered rectangular beam on rigid support
under several end loadings, The method of analysis again was
appro:dm%:te, based on variational and energy principles.

As is evident on Figure 5, the results developed by
Richardson and Martin show a pronounced effect, on critical load, of
the taper function exponent, m. For m = 1 the critical loads for
Martin's taper ( E‘z 0) are more than half the critical loads of the
uniform cantilever. For m = 3, on the other hand, the loads for

Q = 0.5 are less than those for Martin's taper, and indeed are zero for

the corresponding pointed tip ( ﬂ = 0; see Figure 4), It appears now

* Actually this concept of the taper needs to be modified near the tip
since it is a basic assumption used in the analysis that the strut cross
sections are thin, Thus near the tip the thickness must also be
reduced, as x?e_c'essary, to maintain a thin section.
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that for both axial and lateral loading the critical load near =0
reduces abruptly between m = 1 and m = 2 (and not between m = 2 and
m = 3 as tentatively suggested in Ref. 6). More work needs to be
done on the theory for the pointed tip cases, under combined loads,
to establish the correct solutions at E =0 form 2 2,

The work so far described has related to thin struts on rigid
supports. In recent years structural configurations have appeared
(for example, in wind tfmnel mountings; see Figure 1) in which the thin
model support strut can no longer be regarded as rigidly supported at
its root section. However with good approximation it can be considered
mounted on elastic supports which permit rotation of the root section in
both of the pertinent degrees of freedom, i.e. about the strut neutral
axis, and about the major axis of symmetry of the section, * This
inclusion ‘;f elastic supports in the problem injected a need for a more
straightforward approach even to the basic problem on rigid supports
(now a limiting case of the newer, expanded project) than had previously
been taken. Consequently a new start on the problem was made not
only to incorporate the elastic supports but also to frame a more
complete theory., The assumptions and notation used in the analysis
are described in Section II, The development of the general equation
and the statement of the boundary conditions is carred out in Section III,

From the two coupled equations which express equilibrium of the

%

In another possible application, the pylons used to sling external
stores beneath airplane wings are also supported elastically.
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deflected strut in bending and torsion, elimination of either the bending
or the torsional deflections yields respectively either a third order
ordinary differential equation in the torsional deflection or a fourth
order differential equation in the bending deflection. The same eigen-
values should result, of course, from a solution with either eqﬁation
althoughbthe_ corresponding eigenfunctions would be different. It shouid
be an essential characteristic of the eigenvalue problem per se, as a
matter of fact, that it can be represented by a single mathematical
formulation for both modes of deflection, i.e. that a single differential
equation and set of boundary conditions can be obtained, deducible from
each of the separate representations for the separate modes., In
Section III this line of attack is followed and it is found that with suitable
transformations of the dependent variables the eigenvalue problem is
reducible to a second order equation, bearing marked resemblance to
the second order equations of the degenerate single loading cases
solved by Richardson, but with important differences. This constitutes
a significant simplification in the problem, especially for the inclusion
of elastic supports, the effect of which could now be expressed in just
one of the two boundary conditions., The dependent variable of the
problem is to be considered a generalized deflection, the eigenfunctions
in which can be transformed through separate integrations into both
the bending and the torsional deflection modes, Many characteristics
of the problem, e.g. the critical shape effect, can be interpreted in the
light of the singularities of this second order differential equation.
General solutions are derived in power series, for the

generalized deflection, in Section IV, With the application of boundary
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conditions the eigenvalues are found as the roots of an infinite power
series, by numerical methods. The series are convergent, so rapidly
in some of the limit cases that the calculations are easily carried out
manually on a desk éa.lculator or with a slide rule. The results of such
calculations are shown on Figures 8 through 11. These show the trend
of the effects of elastic supports for the uniform strut and for Martin's
taper.

Typically, as shown also by the experience of previous investi-
gators, the solutions become numerically more formidable for the
general taper function. In the present case the solutions become
sufficiently less rapidly convergent to make them impracticable for
manual calculations, but they are adaptable to programming on automatic
éa.lculaters. They have the characteristic that by far the majority of
the work iies in computing the series coefficients for the basic general-
ized deflection mode of the rigidly supported strut. The eigen;values
for any combination of the elastic supports can then be found without

much additienal work.
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II. DESCRIPTION OF PROBLEM

1. Geometry and Notation

Typical wind-tunnel installations showing thin cantilever struts
on elastic supports are sketched on Figure 1. The notation used to
describe the strut geometry is defined on Figure 2, and in the Table of
Notation. -

The stfut is required to be thin for aerodynamic applications in
order to present the least frontal area practicable, for the required
structural stiffness. To simplify the analysis it is assumed that the
strut is so thin as to make its bending rigidity about the short principal
axis of the cross sections very large compared with its rigidity about
the long axis. The strut is also represented as having such symmetry
pr‘@pertieg in planform and cross section as may be necessary in order
to possess an elastic axis, coincident with the neutral axis, with both
axes straight and perpendicular to the root section,

The analysis then proceeds as a one-dimensional beam problem
in which cross section changes and variations in elastic moduli (if any)
are represented entirely in the variation of the bending and torsional
rigidities, B(x) = E(x)IY'(x) and C(x) respectively. These variations

are given by the dimensionless functions

B c
f=g—» &7
o O

where Bo’ C0 are rigidities of the strut root section (Figure 2). The

problem may be treated without additional difficulty for the function
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f = f(x) different from g = g(x), and the sepafate identities of these
functions is maintained in the analysis. However, as can easily be
shown (see Refs. 5 or 7, for example), for thin sections the two func-
tions may be considered identical. A wide class of practicable strut

geometries can be represented by the functions

flx) = glx) = (1-m)™ =%, m=0,1,2...

The notation used here is defined in Figure 2. It is convenient to define

the parameter
£=1-n)
such that the "taper ratio' for the rigidity is given by

K B c

- ti! - _tip _ (E)m
o :o

-~

Also then 2 = 1 for a uniform strut (any m), that is, for constant

rigidity. For 2 = 0 the strut is "pointed', i.e. the rigidity vanishes
giaity P

at the tip as £ (see diagram, Figure 2). When m is an integer the

strut assumes various '"natural' taper rates, as summarized on

Figure 2.



28

2. Formulation of Basic Equations

As mentioned in the previous section the .problpm is formulated
as a one-dimensional elastic beam problem. It is also linearized, the
justification for whiéh, in the case of rigid strut support at least, has
been given adequate attention by previous investigators. We are inter-
ested in the lateral buckling phenomenon involving both a bending and
a twisting deformation out of the plane of the applied loads. The loads
are applied to the strut tip in the major principal plane of the
undeflected strut (Figures 1 and 3), An axial load T acts at the tip
colinearly with the undeflected neutral axis, positive when it is a
compressive load. A lateral load P is applied at the neutral axis of
the tip. In the deflected configuration these loads are assumed to remain
parlallel to their initial directions, viz. to the x and y axes, respectively
(Figure 3)

| Since the loads are not applied eccentrically to the elastic-
neutral axis, the deflections u and ,6 of the buckled mode are not
generated linearly or even continuously in accordance with increasing
P and T, but occur .su.él.d«e:nl*y:a= at some critical combination(s) of the
load. The critical load then corresponds to the eigenvalues of the
boundary value problem in terms of \#hich the physical situation is

approximated mathematically.

In practice it is almost impossible to avoid small eccentricities in
applying the load so that the buckled mode grows rapidly but contin-
uously, and not suddenly, at critical loading.
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In the above interpretation the critical load is defined as well
by infinitesimally small magnitudes of buckled deflections as it is by
large ones. Indeed as is well known, in the linear buckling theory
the magnitudes of thé deflections are left undetermined. Hence the
steps toward linearization which depend upon the assumption of small
deflections can be justified philosophically. The results of linear
theory for the problem of interest here, but with rigid supports, have
also been checked ‘experimentally by numerous investigators with
excellent agreement (see list of references), The present problem is
linearized by the assumption that the slope of the neutral axis is

small, du/dx << 1, and hence that the curvature is given by

1, dPu/e . d%
P du.2] % ax?
: - (S

The result of inciuding the cempiete expression for curvature, making
the beam problem non-linear, is to remove the indeterminacy of the
deflection magnitudes (see Ref, 1, Art. 13), The result obtained for
the critical load remains the same in the non-linear problem as that
obtained in the linear problem, however. These circumstances for the
beam are in direct contrast to the situation for shells where not only
is a linear theory inadequate and a non-linear theory necessary to an
adequate description of the physical problem, but in many instances a
satisfactory non-linear theory remains to be formulated.

It is further assumed that compared with the bending about the
major principal axis, the bending about the minor axis of the narrow

cross sections is negligibly small, This means that lateral deflections
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of the elastic-neutral axis occur entirely in the x - u plane, as shown
in Figure 3. For thin sections and small deflections,  as a matter of
fact, it can be shown that the two bending deflections are not coupled
in this problem, i. é. the critical loads are independent of bending
about the minor axis (see, for example, Ref. 1, Art, 46).

In describing the twist of the beam the assumption is made that
the cross sections are free to warp. If this condition is not met (as at
the built-in root section, or perhaps at the tip if fastened to a pod, etc.)
then a differential bending deformation stiffens the structure in torsion.
The effect can be shown to be proportional to the third derivative,
d3ﬁ /dx?". This additional stiffness is not of importance for thin cross
sections, unless the ratio of strut length to chord is not large (Refs. 10,
11). Thui for thin sections and long struts, the assumption may be‘
consideréd valid, as has been verified experimentally. It should be
noted in this connection that, with other conditions given, the length of
the strut is maximal for the buckling problem.

With fhese preliminary remarks it is possible to write down
conditions for equilibrium of the deflected strut. At a station x along
the strut the bending moment about the major principal axis is given by

{(Figure 3)

2
u

o,

B
Mvy! = =
LA

= B

1

X

The twisting moment about the elastic axis is given by
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The system of axes x', y', u' moves with the cross section as it rotates
and twists in the deflected mode. For small deflections the direction
cosines bf these moving axes with respect to the fixed axes x, y, u can
be approximated by cos(x', x) = 1, cos(x', u) = du/dx,

&cos(y', u) =3, etc. Then the moments are given by

My' = My cos(y', y) + Mx cos(y',x) + Mu cos(y',u)
My +(3 Mu = T(gy - u) + P(12~x)(3
and
Mx' = Mx cos(x',x) + My cos(x',y) + Mu cos(x',u)

Mx + Mu%x‘l

it=

= -P(y, -u) %P{Q—x)%%

The equilibrium conditions can now be stated in the fixed coordinate

system X, y, u with the approximate expressions
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2
B(x)i;g‘-= P(L-% @+ Ty -u)

(2. 1)
G(X)%XE = P(ui -u) - P(L - X)%Xl-l—

Equations 2.1 are a coupled pair of linear ordinary equations with

variable coefficients. They are the basic equations for the analysis.
The boundary conditions to be satisfied by the system of equa-

tions may be summarized as follows, in the case of a rigidly built-in

root section,

{l) w =0 at x = 0

(z)'%%= 0 at x = 0

(3) B=0at x=0 (2.2)

(4) d2u=0atx=[
ax?

(5)%-5-=0at x =

Conditions 1 through 3 are on displacements at the root section; condi-
tions 4 and 5 express the fact that there are no couples (bending and

%
torsion) applied to the tip. Actually the latter are automatically

satisfied for any functions which satisfy the basic equations 2. 1.

Certain modifications in the case of pointed tips are discussed in
Article III, 5.
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For an elastically built-in root section bcond_itions 2 and 3 above
are changed to accommodate assumed linear spring rates between the
rotational deflections of the root section and the corresponding restrain-
ing moments. The section is assumed rigid in rotation about its minor
principal axis without loss of generality, in view of the assumption of
effectiveiy infinite flexural rigidities about the section minor axis. An
elastic deformation at the root section about its minor axis then only
reproportions the ratio between the load components P and T in a
completely predictable way. In the case of the other two degrees of

freedom let e and e, be arbitrary constant spring rates such that

2
du, _ _ du
(2) exlaxlo = My, = Bol3),

(2.3)

(3) °1 @3 = *Mxo = Co(é(é)o

These conditions replace those which are correspondingly numbered in
equations 2.2, For e = oo they are the same as for rigid supports;
for e = 0 they correspond to infinitely weak or pinned supports for which,

of course, the position of the cantilever is statically indeterminate.
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III. DEVELOPMENT OF GENERALIZED EQUATION

1. Derivations

The basic equations 2.1 for strut equilibrium in buckled mode
have been obtained in the preceding section, with boundary conditions

2.2 and 2.3. These equations are coupled if P # 0, and must be solved

simultaneously. It is convenient to introduce the change of independent

variable from dimensional x to dimensionless § as (Figure 3)

. A-x=
*= 7
d 1 4
& T (3.1)
a2 1 4%

ax> A% ag®

u - U

v= L (3. 2)

i

then

da _ dv

dx = df
(3.3)

2 2
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and the equations become

a2 2
(3.4)
» _C(g) 4@ _ dv _ _d
(b) —E*z——-é- = Pv - P&,Eg- = cé

where b(€) = --—1—2- B(£) and c(£) = —-21~2- C(£) are introduced for brevity.

With the identity
v - g-'g = -ﬁz%(%)

equation 3.4b becomes

d 2d
(c) S - P (3.4)
A single differential equ#ti&n, can be determined from the
coupled equations 3.4a, b either by eliminating v, or by elimination
of [3 In the former case equation 3.4b, differentiated once, yields,
with substitution from equation 3. 4a:

2
e Pgié%

1]

(3.5)

-EE (pe@ + Tv)

After multiplying by b(£) and differentiating once more

(a) -a‘-ig[b%(c%(g-)] = [PZ%(EZP) + PT%(gv)] (3.6)
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From equation 3. 4c there is

(b) Tc%g = PT g"‘_‘ig £ = Tp[a‘ig(gv) - Zv] ‘ (3. 6)

'Solving for v from equations 3.6a, b, as

P = YA R e4R)] + pidieter v nedf]

and substituting into equation 3.5, gives

I T L Rt

which reduces to the third order equation in ﬁ:

g%{b%(cﬁa@)} Zbgg(c%%) v e [Pzgz%g_ " Tc%@-} -0 (3.7)

On the other hand P can be eliminated from the set 3.4 by

differentiafing equation 3.4a twice and substituting for F from equa-

tion 3. 4c:
"'g(b )_P(g_g. +ﬁ)+Tdv
42 42
iy )-P(gdﬁ +288) + 1y
Cag? ag? dg” dg

2 & pd dzv 2
el

gdv\ g2 a4 vi] .
p dg?‘) +T—— +P {g“‘g‘a"a“g‘z)] + 22 (E)} =0

ﬁ‘nlp‘
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The quantity in curly brackets is of the form

e+ 2y = p %y

and so the last equation can be written more compactly as

i

2 2 2
d (bdv)-l-Tdv

£ d (¥ J |
0 (3.8)
e ag? at? 'E"?TE[ ;3
Equation 3.8 is a fourth order equation in the bending deflection,
in its most general form, for arbitrary b(§) and c(§). It reduces to
the particular fourth order equations used in the analysis by Martin
when Martin's taper functions are substituted, viz. for b = Bo/ )i 2 and

c = t(?-o/[‘(Z (i. e. uniform strut)

4 2 4 2 4

d*v TJZ 4P 2p% 2 p%)

—z td5— £7) + 2 a-{;.--- =0
dg i i: dgz BOC V

_ 2 2
(see Ref, 7, p. 25) and fcrv-Eg-—— S—é——— £ (Martin's pointed taper)

Q
4 3 2 4 2 24
2d7v Tﬂ Pﬂ dv I -
gdg +z§'§g‘"+( g+ C g Bc(g'_g"v"o

(see Ref. 7, p. 65)
*
At this point it is convenient to introduce the dimensionless

parameters for the loads

2 2,4
t=¥—, ¢=§_/% (3.9)
[+ [« 3 » ]

The convenience of definition of ¢ is not at once evident in equations
3.4.
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and the dimensionless functions for the taper functions (Figure 2)

2
l. b(g) = £(£) , %%_%_ 2 C(g) = g(§) (3.10)
O

ot
-

Equations 3,7 and 3,8 then become

a%[fd%cg%%)] - 25 (g5 + g[@"‘%@ +tg%§-} =0 (3.11)

2. 2 g‘i
:iz';-z-(fdi; )+Z’-—§ Ea‘g[g —E('g] =0 (3.12)

The critical loads could now be found as eigenvalues of either
of these equations in conjunction with boundary conditions 2.2 or 2, 3;
for example the eigenvalues of T for a selected value of the ratio

= ¢ /T . The corresponding solutions (5"(&) and v(£) are the eigen-
functidns of the problem, i.e. the deflection patterns of the buckled
modes., Tﬁ;re is no immediate interest in these functions; the linear
theory does not reveal their m,agxiitudes within an unkno&n multiplicative
constant, as has been remarked earlier, and the eigenvalues are always
determined first in aﬁy event,

If left in the form of a pair of "independent" equations such as
equations 3.11 and 3, 12.., the statement of the problem lacks an inherent
unification. It remains to be shown that both of equations 3.11 and 3,12
can be transformed into identical statements, which happen also to
effect a considerable simplification of the problem. To this end we

make a change of dependent variable, writing

(@) 2z 5 (= e (3.13)
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and

2
dz d v '
(b) = £ (3.13)
dg dgz
2 3 2
d"= d v d"v
{c) — £ — +
at?  Cag>  ag?

Reference to equation 3. 13c¢c will be made later. With the transforma-

tions 3.13a, b equation 3.12 is reduced from fourth to third order:

f d=z gz
E (E—E) +t’—-§ +¢—E—(———z) = 0 (3.14)

Now with the identity

adz

i

= [’z

NI

and with

_ f dz
X

the first term of equation 3. 14 is integrable. Since both v and § vanish
at the tip, then =z a.ndg‘-zg- are also zero there. With these conditions,

equation 3.14 can be integrated at once to give

2
f d=z ) _
&—g(——z——g)+(‘t+———-g )z = O (3.15)

which is the final form desired,
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On the other hand the reduction to the form of equation 3.15
can be started from equation 3.11, in . Let the change in dependent

%*
variable be

C
0= ooz ) % (3.16)

Then equation 3,11 becomes

A
e - ngg*‘ gz+E20 =0

and with the identity

v - 24 = 8% )
Y = f%g—
it is
62%(—;2- F) (T %’i)o =0 .17

The last equation, developed from 3.11, is identical with

equation 3.15, which was deduced from 3.12, provided that
0= = (3.18)

Upon substituting into this last equation from the definitions 3.13 a and
3.16, it is seen that

C
° dg
S EOE -t

N ¢
The multiplier ——O—Z is for later convenience, in equation 3.18.
P
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or

C d 2d
R

and this is the sé,me as eqﬁation 3. 4c for the equilibrium in torsion.

Thus condition 3, 18 is an identity, expressing a required
relation Eetween the torsional and bending deflections, and representing
the desired unification of the mathematical statement for the eigen-
values, The variable z (or @) could be called a generalized deflection
parameter for the problem, for which there has occurred a reduction
to a second order differential equation. With a solution of the
eigenvalues for T and ¢, and hence of the eigenfunctions z(§), the
deflections v(§) and p (£) can be obtained from additional quadratures
through eq?ations 3.13a and 3. 16 respectively.

W&h the differential equation in hand, the boundary conditions
must now be modified to the nev& variables and to accomodate the

reduced order of the equation.

2. Boundary Conditions

The boundary conditions stated in equations 2.2 and 2.3 were
atx = 0: (1) u=20

(root) 2
(2) e, (L), = Bo"jjz"’o

(3) eI(ﬁ)o = Co(%g-)o
2

atx =4 : (4)
(tip)

du
__..._) =0
iZ.JI

5) (3£, =0
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With the new variables £ and v, given by the definitions 3.1 and 3. 2,

and introducing the dimensionless flexibility coefficients

(3.19)

the boundary conditions are restated as follows:
at € = 0: (a)

(tip)
(b) —(0) = 0

(c) v(0) = 0 (3.20)

até = 1. (d) B(1) = -_/u%g(l)

{root)
(e) dv(l) = =€ dzv(l)
dg :1%7

It has been pointed out previously that the first two conditions as stated
in equations 3. 20, expressing the absence of applied couples at the tip,
are inherently satisfied by functions which satisfy the differential
equation. The eigenvalue problem is therefore governed by the last
three of conditions 3. 20

In terms of the new dependent variable, z, given by equation

3.13a, boundary condition (c) becomes

z(0) = 0 (3.21)



43
The condition (e) gives

dzv
z(l) = -6':1-&-2'(1) - v(1)

or, from 3.13b .
z(l) = - é‘g-g(l) - v{1) (3.22)

With condition (d), and using 3.13b, 3.4a, 3.9, 3.16 and 3.18, in that
order:

2
(1) =

ou
N
[
i
o7
«

H
o 1c
o | MY

'Bﬂz [PA() + Tv(1)]
Q

[P/“%g‘(l) i TV(I)J (3.23)

294 2
B4 o - T
o O ]

H

pMéz(l) - Tv(l)

From the last two numbered equations, eliminating =z:

- %(1) = be[e%(l) + v(l):l + Tv(l)

(3.24)
1 dz,..\ _ T+ pMd
v &t = - T
Then, upon substituting back into 3. 22:
z(1l) _ __€ dz
&) 1 v{ll)'af(l)
(3.25)

1. ez
SRS T
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Equations 3. 21, 3.24 and 3. 25 replace conditions 3,20c, d, e as
boundary conditions, applicable to the differential equation 3.15 in z.
The latter is a second order equation. We can divide equation 3. 24 by
‘equation 3.25 and obtain the single homogeneous boundary condition at
the root as given in equations 3.26 which follow.

The final reduced formulation of the boundary value problem can
now be stated in the following homogeneous system of the generalized

deflection function z (or 0) — in summary from equations 3,18, 3,21,

3.24 and 3, 25:
, 2
2d(f d
ﬁas['g(%l"zﬁ]“’ [”%{%]“0

z{(0) = 0 (3. 26)

ol

. dz . T+ ud
: EW = 757«

Of the two generalized parameters, z and 0, z is the more convenient

to use, in general, since vO is defined explicitly in terms of one of the
taper functions, g(£). The normal range of the flexibility coefficients

€ and/u lies between 0 (for rigid strut support) to co (for a weak support
approaching a pinned or swivel joint). The effect of € or M vanishes in
the problem as the associated load vanishes, as is to be expected.

The constant U4 represents the twisting spring rate, effective only if

the lateral load is present, i.e. if'¢ # 0; while the constant € repre-
sents the bending spring rate, effective only if there is an axial load,

T # 0. These relations are slightly more complex in the individual
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conditions 3, 24 and 3.25, The loading parameter ¢ is proportional
to PZ and consequently is non-negative; this corresponds to the fact
that the problem is identical for either direction of application of the
lateral load. The axial loading parameter T, on the other hand may be
positive or negative. The problem is defined for negative as well as
positive bspring rates, é’-l and /u_l, if an application can be found for
the former,

It will presently be seen that the boundary conditions of the system
3. 26 represent all five of the conditions 3. 20 in compact form, while the
differential equation is a compact statement of many problems heretofore
stated and solved individually, In deriving the equation it is perhaps
more direct to proceed from the equation in ﬁ than from the equation
in v. However the boundary conditions are conceptually less difficult to

”

work with in z than in 0.

3. Some Limiting Cases of the Reduced Equation

It is of interest to apply equation 3. 26 to some of the problems
which have already been solved and which are limiting or degenerate
cases of the general equation, in order to establish its consistency with
previous theory.

(2) Martin's solution

The nearest approach to the general coupled problem has been
made by Martin in Ref. 7. It has been shown previously how equation 3.8
in the bending deflection, v, can be put into agreement with Ref. 7, for

the cases of unifornd and linear rigidity distribution considered there.
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Equation 3.8 would be regenerated from equation 3. 26 by differentiation,
and substitution from 3. 13a. However it will be shown in Section IV that
numerical calculations from the system 3,26 agree with those of Ref, 7.
(b) Prandtl ér’oblem (2= 0)
Equation 3. 26 bears in some respects a resemblance to its
limiting form for the case of zero axial load (compare equations 3.27 and

3. 28 below). Of course if left in terms of z, equation 3. 26 becomes, for
T =20

d , { d=z '
( ) +
Tz

z = 0

oa e

z(O) =0 (3.27)

T = poa(D)

g
i

But from equations 3,16 and 3,18 z may be replaced by g %g-, and then

after one integration the above is

f 4 d
(g ) + ¢4 = const.
2T+ op

However, the integration constant is zero as can be verified by substitu-

tion from equation 3.4, and consequently there is obtained the final form

in{B:

1 d, d o a_
(g—4) + = 0 (3.28)
2 E -a‘gs" 7P
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It is worthwhile also to trace the retrotransformation of the boundary
conditions as a further check of system 3.26. The first of these be-

comes immediately (the special case of the '"pointed' tip, g(0) = O,

excluded)

%(0) =0 (3.29)

The second can be written easily with the aid of equation 3. 28, for since

£(1) = g(1) = 1, then

FW = pox)

becomes

EEE] 0 = pe @

or

B(1) = -,u%g-(l) (3.30)

Equation 3. 28 is identical with the equation which can be derived
from the set 3.4a, b for T= 0, as has been done, for example, by
Richardson in Ref. 5, p. 4. The boundary conditions 3.29 and 3. 30 are
the same as conditions 3, 20a, d.

Putting f(§) = g(§) = 1, the equation for the uniform strut is

2

4B+ %6 = 0 (3.31)
ag

(compare Ref. 1, p. 247).
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(c) Euler problem (¢ = 0)

Now, putting ¢ = 0, equation 3. 26 becomes for. purely axial load

d ,f d=z T
= { )+ —z =0
dE'Z BT T 2

z(0) = 0 (3.32)

o - 2

Substituting for z from 3.13a, b, and integrating:

£ 2

Eat

2.
<

+?:'v

T = const,

)

But the integration constant is zero since .f(O) g-::% (0) = 0 and +(0) = 0;
consequently the final form in v is
e f-—-—-—z +Tv=20 (3.33)
The first boundary condition beéomes, since f(1) = g(1) = 1:
v(@) = 0 (3.34)

The second boundary condition takes the form

2
T | FW - v(l)]- = (1 -er)i-‘g(l)

or
‘ 2 2
dv d7 v d%v dv
T (1) +€——-—(1z] = == (1) + T 3£ (1
CH ag® ag® W (3.35)
%%m +e§f-‘g(1) =0
dg

where the right side is zero, from equation 3.33.
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The statements in the last three numbered equations are
identical with equations 3.4a and 3.20c, e (see also Richardson, Ref. 5,

p. 27; Timoshenko, Ref, 1, p. 65; Dinnik, Ref, 4), for the Euler

column problem,

4. Discussion of the Differential Equation

The characteristics of the differential equation 3. 26 can be
examined by identifying its singular points. After expanding the first
term in the equation, and diﬁding through by £(£), it assumes the second

canonical form

pA 2
d"z 1 df 2, dz 1 E°d,y, .
or 4%z dz (3.36)
¢ + R(E)== + S(E)z = O

: . 3
R(E) = 155 - 5 S0 = T+ EDR)

A specific class of taper functions will now be introduced for
which it is intended to obtain solutions (see Figure 2, and the discussion

in Article II, 1), viz.
 yem ,
£g) =glé) = ", m=20,1,2.,., (3.37)
where

f=t+m=5r2-0-fig+a),
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with

)
1-4

The strut shapes to be considered range from the uniform strut, denoted

a=

by f = 1 or a = 00, to the "pointed strut", for which ; = £ ora=0,

For these shapes the derivative in the coefficient R(£) can be written

Then the coefficients themselves become

i l+a 2
R(§) = megpy - %
(3. 38)
. l1+am ;1 +am
; 5(¢) = (m) [‘t""‘f’g(m) J
®
A general scheme for the solution of the problem consists in
finding a power series solution to the differential equation about the
point £ = 0. The coefficients of the series will be polynomials in ,
for an assumed fixed ratio, p = ¢/T . This series will satisfy the first
boundary conditions in 3. 26 for any value of T . The result of applying

the second boundary condition will be a power seriesin T . The

minimum eigenvalue for T will be the least root of the series. These

* The form of R{£) suggests immediately the transformation z = Ef/gllz

which will eliminate the first derivative from the differential equation.
This does not alter the singularities, however; it tends to complicate
the boundary conditions; and anyhow on investigation it has not proved
worth while.
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calculations are carried out in Section IV, The mechanics of the solu-
tion involve identifying the roots of the indicial equation, and writing
recurrence relations for the coefficients of the power series in z.
Prior to this it is ne‘cessa,vr'y to determine, however, that the series
solution exists and that it will converge throughout the region of interest.
It is also of interest to the suécess of numerical calculations that the
series be as rapidly convergent as possible., These latter questions
will now be examined by looking at the singularities of equation 3. 36
with the coefficients 3. 38, in the light of the theory of linear differential
equations.

(a) Singularities of the differential equation

The general taper case of equations 3. 36 and 3. 38 will be defined
as corresponding to the parameter ranges m # 0 and 0< E <l
Certain 0€};er' cases will be identified individually,

It will be observed that the differential equation has in the
general taper case three distinct singular points*, which are § = 0,
£ = -a and the point at infinity. These are shown on Figure 7a. It will
be convenient in what follows to consider both z and £ to be complex
quantities, as necessary. Then while the problem at hand is defined on
the axis of reals in the complex £-plane, it will be possible also to
discuss the circle of convergence of the complex power series in

complex §. For the general case of the functions 3, 38 as just defined,

* The points of R(£) and S{£) at which they are regular functions are
called ordinary points of the differential equation. The singular points

are points for which R(£) and S(£) are not regular. The S1ngu1ar point
£ = 0 is itself said to be regular, for example, if £R(£) and £25(£) are
regular at £ = 0, Otherwise £ = 0 is said to be an irregular singularity
(see Ref. 12, Chapter 10).
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every point in the £-plane is ordinary except the three singular points
on the real axis. A power éeries solution can be written about any such
ordinary point, convergent within that circle which extends to the
nearest singularity of the solution. The same can be done about any
regular singular point of the equation. The procedure breaks down if
the singularity about which the expansion is attempted is irregular.

| In the present problem any solution, to be useful, must be defined
over the closed‘ inferva.l, 0 £ ¢ € 1. Hence a solution expanded about any
point § # 0 might not be useful since it would not necessarily be defined
at £ = 0, Fortunately the point £ = 0 is always regular for thé general
taper case as defined above (€ = 0 is always regular as long as E > 0).
This means that a general series solution is always possible in powers
of £, convergent within that circle which just extends to the nearest
singularit?i It follows that an indicial equation can be written at § = 0
for the differential equation in the general taper case m # 0, 0 < E <1

(other cases for which this is true are to be discussed later), and in

fact the indicial equation for the general case is always

o (-1} -2 =& (X -3)=0, (3. 39)

with roots & = 0, 3, as can be verified by inspection of the differential
equation (3. 36), Although the roots differ by an integer, the two solu-
tions are linearly independent. Then the general solution is

(o]

> ®n, .n+3
n,,.n n, .n
z=al E (-;-;—-)f; +oa > =) €
n=o ° °

n=o
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where a s a'o are arbitrary constants to be determined. Since one of
the boundary conditions 3. 26 requires z(0) = 0, the constant a'o = 0,

and the general solution reduces to

co
z = §3 Z a.ngn (3.40)
n=o

There will be a recurrence relation giving the a, forn 2 1 in terms of
a, (see Section IV), and these will be polynomials in T, as has been
said, of ascending degree as n increases. The remaining boundary
condition is to be satisfied at £ = 1, giving a power series in T which
is equated to zero., It is necessary then that the series 3.40 converge,
and converge as rapidly as possible in the closed interval 0 € § € 1, in
order to apply the second boundary condition without numerical difficulty.
Thus in the general taper case a solution has been found, pro-
vided the series does not diverge in the interval 0 € £ € 1. Actually it
is not difficult to show that the series is not necessarily convergent for
all values of [, More precisely, for [5 1/2 the radius of convergence
is € 1, so that the series 3.40 does not extend to the point £ = 1. This
is easily seen on Figure 13a, if it is remembered that a = T—é— s SO
that 0 € a € o correspondingly as 0 € [ € 1, In particular a = 1 for
f =1/2, andfor [>1/2, a > 1 while for £ < 1/2, a < 1. Since the
radius of convergence is equal to a (the point £ = -a is the singularity

*
nearer to £ = 0) , the truth of the above follows at once.

The point £ = -a, whenm > 1 and ¢ # 0, is an irregular singularity
of the equation. Otherwise, when £ = -a is a regular s1ngular1ty, it
is not at once evident whether or not the radius of convergence is
limited to a.
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This requires that in the general case, in order to include
Z €.1/2, the solution must be redefined., This will be done in paragraph
f below, where it is accomplished by a transformation of the independent
vé.riable g, with corfesponding changes in the locations of singularities.
It is convenient, meanwhile, to discuss first some special cases for
which the form of equation 3.36 remains applicable.

(b) Z =1 (m = 0)... auniform strut

If Z = 1‘ (any m) the rigidities B and C are constant along the

strut; the same is true ifm = 0. In either event the differential

equation (3. 36) has the coefficients

R(§)

H

2
€
(3.41)

1]

S(E) = T+ ¢8°

since now f(§) = g(£) = 1. There are only two singularities of this
differential equation, which is a special, confluent form of the general
equation 3.38, That is as Z—->l, a —» o, so that in the limit I =1
there is a confluence between two singularities as the one at £ = -a
coincides with the one at infinity.

However the singularity at £ = 0 remains regular, and the
indicial equation 3, 39 and hence the general solution 3,40 are applicable.
In fact the radius of convergence of the latter is now infinite, and as one
consequence of this it turns out that the series 3,40 is very rapidly
convergent over the interval of interest, 0 € § € 1, Itis therefore quite

easy to obtain solutions for the uniform beam (see Section IV).
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‘() L=0, m=1... Martin's taper
It has been shown in the preceding paragraph that the equation
for the uniform strut ( Zz 1) is a confluent form of the general differ-
ential equation 3. 36, independent of the taper function exponent m. It
will now be shown that the equations for "pointed struts', i.e. Z = 0,
are another confluent form, in which the exponent m plays a decisive

role. These will be considered separately for the several integer

values of m,

Form = 1 and £ = 0 the taper function corresponds to the

linear rigidity distributions, f(§) = g(§) = §, for which the differential

equation has the coefficients

R(E) = - ¢
iy (3.42)

S(€) = £ + ¢
This is the tapered strut considered by Martin (Ref. 7). Since for
Z—-’O, a — 0 then at E = 0 there is a confluence of the moveable
singularity £ = -a with the fixed singularity at the origin (cf. Figure 7a).
The singularity at £ = 0 remains regular (for m = 1), however, so that
an indicial equation and general power series solution can be written
about the poinf ¢ = 0. The remaining singularity is the point at infinity,
so that in this case, just as for the uniform strut, the radius of conver-
gence is infinite and the rate of convergence is extremely rapid at £ = 1,

The indicial equation is now somewhat different, however, being

X (K -2)=0 (3.43)
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with roots ©( =0, 2, Since, by the first of the boundary conditions

3.26, z(0) = 0, the general solution in this case is the Taylor series

(o)

a(g) = £° 2 ag” (3. 44)

n=o

The details éf this solution are worked out in Section IV,

(d) z # 0 ... the general taper case

In paragraph a it was found that the solution to the general
equation 3. 36 for the taper functions 3. 37, written as a power series
in £, was not convergent at § = 1 for I € 1/2. This is directly related
to the movement of the point £ = -a within the unit circle (cf. Figure 7a)
when E € 1/2.

The difficulty can be removed by a homographic transformation
such as that illustrated by the new independent variable w:{c on Figure 7b,

where

als

ES
—
w

i

£ here

2
1-w

(3.45)
5 = wia-1)
In this transformation the points £ = 0, 1 are mapped on w* =0, 1
respectively, i.e. the strut appears over the same range of variables

in the two planes. However the singularity £ = -a is moved to the point

. % .
at infinity in the w -plane, while the singularity at infinity in the {-plane

* *
becomes the moving singularity w = —-1—71—1—— in the w -plane., These

corresponding points are listed in the following table
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1 2 3 4
¢ 0 -a 4 oo )
\_w* 0 + oo 1 (1-2)

% ?.~1
W 0 4+ oo (1-2) 1

Over the range 0 < ﬂ € 1 the unit circle in W* is now free of
singularities and the solution to the differential equation in powers of
w* will be convergent at the strut root, w*l = 1. However for small
values of I the moveable singu.la,ritj moves up close to the point w* =1
from the right. Consequently the series can be expected to be slowly
convergent for Z near zero.

In fact as Z—"O, a—0 and the entire £-plane collapses into
the point W‘* =1, As I —1, on the other hand, the moveable singu-
larity moves out to +oo, w*—’— £ .a;nd the solution approaches that of
paragraph b,

The W* transformation can be replaced by a somewhat better
one, but the W* transformation is ‘of,interest in comparison with others.
Such another is the variable s selected by Richardson in his solution to
the coupled problem in which he used variational methods (Ref. 5).
Since this solution exhibits very strong tendency to numerical difficulty

as £ 0 and as £ —>1, the transformation to s will be discussed

briefly. By definition

c-XL _1-mx _Jru-Die_ L E (3.4
y) 2 a

LA
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(also s = —-—-—1—:-;;- ): and the following points correspond:

l - w
1 2 3 4
£ 0 -a + oo 1
s 1 0 + /e—l

These are shown on Figure 7c. The interval representing the strut is
15 <1/}, becoming vanishingly small for £ —-1, and infinitely long
for £ —~0. However the characteristics of consequence, closely related

to the arithmetical problems in Richardson's solution, are that for both

L =1 and L = 0 the transformation collapses, mapping the £-plane into

—
-

latlr— 1, an,dintas=ooat£= 0.

il

s

This behavior is unavoidable near ,Q = 0, as long as the points

&

-a and € = 0 are both singular points of the differential equation.

il

g
It will be noted in this connection that while the transformation used by
Dinnik (see paragraph e above) is somewhat similar, viz. ﬂ- s, itis
straightforward at ﬂ—= 0. The success of the latter transformation is
related to the fact that for purely axial loading (Dinnik's case) the differ-
ential equation is not singular at £ = 0,

In the case of combined loads, on the other hand, both § = 0 and
€ = -a are singular and the purpose of the transformation must be to
develop an independent variable that holds the tip separate from the
nearest singularity by at least the length of the interval to the root. This
procedure will always break down as E-’O. However for @ = 1 the
mapping should revert to an identical mapping, as is the case for w*,

This suggests that the difficulties in Ref. 5 near ﬂ = 1 could be removed

: *
by a change from s to either w or w (see below).
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It was seen that the transformation to w’i= removed the confluence
of singularities at the tip point £ = 0, for Z = 0, and introduced a
confluence from the right at the root point, W* = 1, While it is not
possible to avoid the iatter, it is possible to devise a more uniform
convergence of the singularities toward the unit circle. In the §-plane
and in the w*-plane one of the three singularities remains fixed at
infinity. In the w-plane, which is now introduced, the two external
singularities are made to approach the unit circle along the positive and
negative real axes as E —0. The transformation is given by mapping

the point § = -2a into the point at infinity in the w-plane:

_ W

3
AT T-w
wi

(3.47)

1

[SRU =
E
)

1 2 3 4
£ 0 -a o0 1
" 0 -1 1 3!
w 0 -a a 1

as shown on Figure 7d,
The strut lies in the interval 0 € w € 1, The transformation
becomes w—>§ as I —1. While it is subject to the same type of

-

*
difficulties at L = 0 as is w , the singularity does approach the strut



60
. * . .
root point, w=w = 1, at a slower rate in the w-plane than in the
* N .
w -plane, as 1 —» 0. The general series solution to the combined

load problem is derived in powers of w in Section IV.
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IV. SOLUTIONS

1. Power Series for Uniform Strut; m = 0 ( £ = 1)

The general equation 3. 26 becomes, for constant torsional and

flexural rigidities:

47z 2 dz

:1;57 - Ea‘£+(t+¢§ ) =0

z(0) = 0 (4. 1)
‘”g'(l) ....?_'_f__/‘_‘_.i?_ z(1)

(cf. paragraph b, Article III, 4). Putting

(9]
-Clg Z(n+o() n““"'l (4.2)
Q

n+d M n+ X - 1)a §n+06-2

N|°‘
cMs

then the equation gives {after dividing out &d)

(¢ o] QO (w0
> (4o Yo+ - 3)an§n"2 + Z‘tangn > ¢angn+2 = 0

O o o
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or

o (X-3)a_t™% + (1) (X -2)a 67 + [(o42)(X-1)ay + ‘Z'aoJ +

: o
[(0(+3)0(a3+7.’a.1]§+ Z [(n+o(+2)(n+0(-l)an+2+ ‘z'a.n+c}>an_2] " =0

n=2
The roots of the; indicia.l equation are & = 0, 3; these give independent
éolutions although they differ by an integer. Corresponding to each
root the constant a, is arbitrary, and the succeeding even-numbered
coefficients will be multiples of a_. Having taken a_ # 0, thena, = 0,
and thus all odd-numbered coefficients are also zero. In order to
satisfy the first boundéry condition, z(0) = 0, the general solution
cannot contain the expan,sioﬁ from the‘ root & = 0. Therefore the

general solution is

&

£ ’ m
a=8 S agh (4. 3)
o
in which a = 0 whenn = 1, 3, 5, ... ' (4. 4)
and '
. =T
227 725 %

- ~1 :
dnt2 T@F (@ 5)(Ta'n * clJa’n—?.)

n=z2, 4, 6, ...

(4. 5)

Thus for the Euler column (¢ = 0) problem, for example,

letting a, = 1, the coefficients are

a. = -T a, = . a, = . PN
2 25 °? 4~ 2457 6 2:4:6°5°7-9°
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and

£ 2’

_ g3 T .5 T 7 B 9
a=8 -5ty t - TreETg st

Applying the second boundary condition (4. 1), for €= 0:

2 3
dz, .. _ 57 77 9
TV =3 -ty Tt -
| 2 3
+tz(1) = ‘C- - '2%+ 'Z—r:rz:—'—.?' -~ e e e
2 3

%(1)—rz(1)=3(1-;27:',_+%-—'6¢;_+...)=o

or
cos t_l/Z =0
or - 11*2
T= I ‘ (4. 6)

This is the result originaily due to Euler for the uniform column
(cf. Ref. 1, p. 66) on rigid support.

Similarly, for the Prandtl buckling problem ( T = 0), with
a = 1, then in addition to the results 4.4, a = 0 forn = 2, 6,
10, ... , and

o ' -
q4 T - FT e FTLETIT Y M2 T AT0-TCITIBY 0t

Therefore

2 3
3 6.1, b 11 b 15
z =8 -g=t trgert - e -
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Applying the boundary condition 4.1 at the strut root for this case:
2 3
4) - (‘b + ' )
3-4-7-8 ~ 3-4-7-8-11-12 ~ **°

1]

31 - 52 4

d
agm B

(4.7)
= 0
This agrees with Prandtl's result (Ref. 1, p. 247) and could of course
also be written in Bessel's functions.
Turning back now to the combined loads, the numerical solu-

tions can be carried out with only slightly more complication, in’clﬁding

also the effects of elastic supports (i.e. € # 0, = # 0), Putting
p = _fci’__. (4.8)
*
and solving for the critical load T at constant p, it is evident from the

recurrence relation 4,5 that the a are polynomials in 7. Thus we can

B

- "q -
rewrite this relation as

- __-T .
s = S5 ¥ 3) (pag_ 4+ 235 5) (4.9)
which will produce the polynomials
r
a_ = Zyr z—-‘ ' (4.10)

Putting the boundary condition at £ = 1 to use, for given values of € and

Ms there is then obtained a power series in T which is equated to zero,

viz, -
Z A_t‘tt =0, (4.11)
t=o0
Otherwise, at large p, it will be advisable to put q = E—, and solve

for critical ¢ at constant q. ¢
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This series is so rapidly convergent that the first few terms are
sufficient to guarantee four figure accuracy in the result. Equating the
first four terms to zero and writing them as a third order polynomial

in T 1:

3
f(/\)=ZAtT3“tf"0’ A

t=0

:('1:': (4.12)
The greatest root in ’C'_l, and hence the least eigenvalue of T, can be
obtained by any one of several numerical methods (see, for example,

" Ref, 13, p. 191 and ff.). The method to be used here consists of
squaring the roots (Graeffe's method): the result of the first squaring
yvields a first approximation to the root, in the present case, accurate

within less than 1 Jo; the accuracy can be improved to any desired

&

degree by ‘i-e‘peated squaring. The first squaring gives

3
HNEH-A) = S VA =0 (4.13)
(& R
where 2
VO = AO
Vi = 284, - AIZ
2
NV, = 8,7 - 24,4,
V, = -a,°

The first approximation is then

(v”Cl'l)Z = -V,/v, (4.14)
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The second squaring gives

. 3 '
(A% 5-AH = S § AH3-t - o (4. 15)
&)

where

an
I

- vz
- ZVOVZ - Vlz
éz = VZZ - ZV]_Vg,

2
-V;

(O2N
o
i

0
W
H

and f:he second approximation is
| (T, e - ds, (4. 16)

The details of numerical calculations for this case are tabulated
in Appendix 1. These are shown broken down into the literal step-by-
step procedure that would be followed in programming the calculations
. to an electronic computer. These same steps would be followed in the
rather more complicated case for the general taper, the solution to
which is derived in Article V, 3. It will be noted that the computation
consisf:s—of two steps. The calculation of the coefficients 3;, of the a_s
is carried out once for an assumed value of p, independent of € and Mo
The "sa.me a_ are then used in the second step, for all € and M iﬁ
applying the boundary condition at £ = 1 to calculate the coefﬁ.cieﬁts A,

t

It is convenient in the present case to write, for the second step,
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o (8.9]
> 873> {(s +3) - [(1+pup) + e(s+3]z-} a (4.17)
t=o §=0

so that A = 1. The particular cases calculated through the second
approximation in Appendix 1 are the following: (1) p = 1, €= M= 05
(2) p=1, €=0.1, M= 0.2 p = 0, G:/A: 0; (3) p = oo,

€= M= 0. As a result of the rapid convergence of the series, the
effect of € # 0,> /u # 0 in all cases can be handled to good approxi-
mation in the following simple way. The values of A, are first calcu-
lated for € = M= 0. Then, since only a, contributes a term in € and

Mto A, and a, and a, make the only contributions of €and Uto A, the

following results are obtained

L Al = 0A1+3.11/A+ alZG
AZ = OAZ + 3,21/.k+ a’ZZG (4.18)
A

3 = ofg t g M tas, €

where the .4 are values of the 4} for € = M = 0, and the 3, are
functions of p. With equations 4. 14 or 4. 16 the critical loads can be
obtained, and for given p the ratios ’C'/‘C’Q and (<§>/<§)0)1/2 = (T/ Z’o)
tabulated or plotted against the two parameters € and /. In these ratios
2’0 and ¢o represent values for & = M = 0. First approximation
calculations are listed in Appendix 1 and plotted in the figures at the

end of this report for representative cases showing the trend of the

effects of elastic supports.
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2, Power Series for Martin's Taper; m = 1, Q = 0

Referring back to paragraph c of Article III, 4, .the general

equation becomes, for linear rigidity variations and "pointed" tip:
giaity p P

a%z 1 dz

prial £ e
z(0) = 0 (4.19)

%2(1) =T a8,

The development proceeds identically to the preceding article. Sub-
stituting the series 4. 2 into equation 4,19 gives, after dividing through

by &
| o= 22 t7E + [(Pel)ay + Tao] ¢!

0
+ t4(;:{(\114-0()(nc!—o(-i-Z):a,}:l_l‘z‘ + t'an+1 + ¢a’n} =0

The solution which satisfied the first boundary condition z(0) = 0,

for K= 2, is

o0
z = £2 > ang“ (4. 20)
o ‘
in which
..
a; T =373,

-1
2pt2 T D@ Ay (Tang * 02y

The procedure outlined in equations 4.8 through 4. 18 is now applicable,

provided that equation 4.9 is replaced with

- _-T
ag = ?(‘sif)(Pas-z + a's--l) ' (4.21)
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and if equation 4.17 is changed to

fo's} 0
Z At‘(;t = %Z{(s-&-f&) - [:(1+/up) + €(s+2)i|‘t’} ag k (4. 22)
t=0 s=0

Numerical calculations for this case are listed in Appendix 2

and presented in the figures at the back of the report.

—

3. Power Series for the General Taper Function; Q # 0

In the arﬁcles just preceding, two simple cases of the general
equation 3. 36 have been rgduced to rapidly convergent series solutions
in powers of £, A discussion of these and the more general case when
o< I< 1, m =1, 2, 3, ... is given in Article IIl, 4, where it is

pointed out that the series solution for the general case is divergent for

—

Q £ 1/2, when written in powers of £, The linear transformation
w —
—‘% = = —= (4. 23)

a - w 1 - w

guarantees convergence of a series solution in w, but with convergence
occurring the more slowly the more closely ﬁ""’O.
Writing the terms of the differential equation in the new variable

w, there are

a _p-wra, ___20
dg L dw ’ 1+)
2 2
d 1 -4 d 2 -3 d
z = (1 - W) = -~ £(1 - W) — (4. 24)
dgi LZ dwz a dw
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] - w

r=-J)ae+a) =] (EE

- ___@(l-w)_(l-w)

_ o2 m 2
CTTUETECET]

t

l1+w aw

. _ —_2 _

- \ —
T 7 Tig ™ 1+w ™ (1 +w)2m
After combining terms in dz/d§ the differential equation becomes, for
the taper functions defined by equation 3.37: (4. 25)
%2 [ M 21W))dz, [0-w™t L swPaw) O]
A ey Saimpeay A el —Zm |20
dw (1-w) w(l-w) (1+w) (1+w)
where
_ Zm.
M=13
¥ ‘z'Lz
’ T = == (4. 26)
TS
2 . |
# L7 2
= dl=x)

The transformation of the independent variable does not alter the

indicial equation; moreover in this transformation the points § = w

= 0
represent the tip so that the tip boundary condition is w(0) = 0, The
solution must then be of the form

oo
z = W3 Z a.nwn (4.27)
o
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dz d
&) = Lga(1)
and the second of the boundary conditions 3. 26 becomes

LEW = FHLL (4. 28)

It will be noted that as E—’ 1, M—m —0, a — o0, W — 0 and equation
4.25 becomes identical to equation 3, 41 for the uniform strut.

The recurrence relations for the coefficients in the series 4,27
may be derived just as in the two preceding paragraphs, To do so,

equation 4, 25 is cleared of fractions

(1+w)2 (1- )4 d 'z [(1_-‘;,)3 M(l_‘_’%)zm'l_m‘;v)_____] (—di%

(4.29)
+ [P0 s a2 W,

and substitutions are made from equation 4,27, The expansions of the
coefficients of the derivatives involve the product of two polynomials

and an infinite series, It is convenient to write, for example,
— Zm 2

Then from the general term in WR+ of equation (4. 29), the coefficient

ap can be obtained from the following recurrence relation for any m

and 2:
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Zm[R-s
-R(R+3)ag Z/ (4)( 3 Z (Zlfn\(R+3 _t)r(R+2 ~t) e
o r=o a
2m+llR-s
- / 2m+1 (R+3-t) _
2 Z )( -2) Z ( =7 R-t
r=0 a
2m-1[{R-s-1
3)°® 2m-1, (R+2-t)
+ M Z ( ( Z ( r ) '5"1' aR.-t—l
r=0
m | R=2 (4.30)
;l—-—z |
+ T Z (I:)(‘“Ezrs aR-25-2
80
Zm«z,z.]%i"
%k - s -
+ R T A,
S=0

The coefficient 2, is arbitrary.

notation has been employed, in addition to t

{(a) The sign Z/ denotes omission of the term for t

from the double summation,

In the above the following special

r + s:

(b) The summation index is limited to the lesser of the two

upper limits whenever & double upper limit appears,

(c) If the lesser upper limit is less than zero, no contribution

*
occurs from that index, except that in the last (or ¢ ) summation

m = 01is to be treated as m =

1.

It is easily seen that in the general case equation 4,30 is a sub-

ject for an average-speed digital computer, the programming of which

would follow the lines outlined by the simpler problems of Appendix 1

and 2, With the coefficients Y. determined for the ags the calculation

will proceed exactly as outlined in equations 4. 10 through 4. 18, if it is

remembered to modify equation 4,17 as necessary from 4, 28,
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4. Exponential Taper

The singularities of the mathematical problem associated with
the class of taper functioﬁs f=g= :m have been treated in detail in
this report. This class of functions includes several natural taper
forms as shown on Figure 2. However it is obvious that these mathe-~
matical difficulties can be side-stepped by using an exponential tapef

function, viz.

o€ - 1)

f=g-= (4.31)

where here ¢ >> 0 is an arbitrary constant playing much the same role
as both E and m in the previous class. It will be recognized at once
that now the differential equation has no singularity at £ = -a, and
hence no difficulty associated with confluence of the latter with the
point £ = 0 at Z = 0. Indeed the exponential taper does not provide the
pointed tip case.

In order to make the presentation of solutions in this report
more complete, therefore, the equations for the case of exponential

taper will be summarized here without detailed development. The

differential equation becomes

2
‘ & - o,
%g—%ﬂc ~§)§§+ T ey pg2em2et L L (4. 32)
where —_
- é - [
P = -= - €
== P
~k
3 = e
—X c

T = Te
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The solution has the form

(e e
= g3 n
== > 3t
n=o
with
al R ¥
n-2 s
_ , =¥ (-c)
-r(rt3)a = e(r+d)a | + T Z T Zn- (s+2) (4.33)
5=0

n-4 s

oF < (-2¢)

o Z Y a‘n~(s+4)
s=0

satisfying z(0) = 0, and with the statement of the second boundary

condition remaining

d T+ Mo
C AR v
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V. EXPERIMENTAL RESULTS

A short series of experiments was run to obtain experimental
verification of the théoretica;l results for the case of the uniform strut
under equal axial and tranéver,se loads. The strut was the narrower
leg of an "L cut as shown on Figure 12. The wider leg acted as the
elastic support for the strut; its flexibility could be varied according
to the length ,2/ which was left unclamped, as indicated in Figure 13,
The latter also indicates the method used for loading the strut.

A loading hook was suspended from the pin in the free end of
the strut, Over this hook was stfung a thin piano wire with horizontal
and vertical runs, as shown. The wire was loaded by dead weight to
produce equal horizontal and vertical force components at the pin,
when the té;t specimen and the horizontal wire were leveled. The
horizontal wire was apprcaximateiy fifteen feet long, or as long as
possible in the space available, in order to minimize angular errors.
Of special importance here was the necessity to reduce side load on the
strut produced by the load in this wire when the strut deflected in
buckled mode. Even so these extraneous loads often proved troublesome
during the tests.

The specimen itself was clamped to a rigid frame of heavy steel
channel and angle iron construction. This same frame supported a

. %
simple fulcrum arrangement which sensed the lateral deflection of the

A light, elastic wire feeler on one end of a lever completed the connec-
tion through a penlite battery to light a bulb when it was brought into
contact with the strut. The other end of the lever actuated the dial gage.
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strut tip and actuated a diél gage. There was thus no side load
produced on the strut by the dial gage. The frame also served as a
deflection limiter for the side motién of the weight pan, and prevented
the catastrophic failﬁre éf the specixﬁen if the buckling léad was
accidentally reached during loading.

The method of determining the critical load was the one
commonly described as Southwell's method. Due to unavoidable eccen-
tricities the strut deflected elastically (but not linearly) at subcritical
loads. The load P was increased, the deflections § measured, and
the ratio P/S plotted against P, At buckling P/§ — 0 and the corre-
spondiﬁg P is the critical lead. However the loading can be stopped at
a reasonable margin shoert of critical load and the curve extrapolated
linearly to zero. The method is illustrated in the experimental loading
data of Fié;‘re 15,

It will be récogn’ized that the root boundary conditions for the
strut, i.e. the elbow of the test specimen, are difficult to relate, in
detail, to the ideal boundary conditions assumed in the analysis. Runs
1 and 2 were used to detj:ermine that an effective length for the sfrut
could be taken as p,eﬁ = 7,7", which is a not unreasonable value from
the point of view of engineering approximations. Using this value and
denoting the support geometry by primed symbols, then it is easily seen

that the support flexibility coefficients can be written
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it B

€ = =T

Qeff c
{5.01)

I c

P i ®

where

ct3 ct3 t
B = E-—I—z— » C =G —1'-6—(5.333 - 3, 362‘)

[¢]
I

width of strut

o
1]

thickness of strut

The coefficient 4 must be modified, howevgr, to account for the fact
that the wide leg of the specimen, under action of load P, has applied
. to it both an end moment and an axial load. The effect is non-linear,

and /\t is a function of the load P; the effective value of M can be

written

a9 57

/'Aeff ::/4_ E* (%J_T, ' (5. 02)

A series of tests were made in which the unclamped length, ﬂl ,
had the values 0, 2, 4, 6 and 8 inches, and the critical loads P = T
were determined as above. The critical load ratio, expressing the
effect of the elastic support (see, for example, Figure 8), was then

computed as

L= - (5.03)
o
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where Po was the load for ﬂl = 0. When expressed as a ratio in this
manner, the errors introduced by the uncertain boundary conditions
tend to be minimized. The final results are shown by the experimental
points on Figure 14, | The original data are shown on Figure 15.

In order to compare the experimental points with the theory,
equatic:ns 5.01 and 5.02 were used to determine i and € for each point.
In addition since, when P = T, the parameter p is a variable, it was
necessary to identify p for each point. However the value was never
much different from p = 1, to which the chart on Figure 8 applies.
Actually over the range of the tests 2/3 < p < 3/2, but as it turns out
the critical loads are relatively insensitive to p in this range, The
solid curve on Figure 14 represents the theoretical results of Figure 8
with small corrections for the corresponding deviations in value of p.
From the é;)mparison on Figure 14 it is concluded that the test series
confirms the trends predicted by. the theory for elastic supports on

uniform struts.
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APPENDIX 1

SAMPLE CALCULATIONS FOR UNIFORM STRUT

(a) Determination of a form = 0 (A = 1); p =1

- - '
s T S5 ¥ 3) (as-4 + ats~-2)

8 Yo Y Y2 Y3 Y4
0 1. 00000
2 -0. 10000
4 -0. 03572
0. 003572
6 0. 002513
-0, 000066
8 | 0. 000406
-0. 000069
0. 000001
10 -0. 000022
0. 000001
12 -0. 000002

0. 0000005
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APPENDIX I (cont'd)

SAMPLE CALCULATIONS FOR UNIFORM STRUT

{b) Determination of critical load, m = 0 ( Q =1);p=

10

12

H

> a7t

#

A
o

1,.00000

1.00000

1;6’:/4"-2

-%Z{[l +Mp+E (s+3i’fas - (s+3)as}

s+3 T
ZZ.( 3 _'3_)as

-0,33333
-0. 16667

-0, 08333

-0.58333

0.03333

0.01191
0. 00833
0.00754

0.00149

0. 06260

-0,00119

-0.00084
-0.00020

-0.00014
-0, 00025
-0, 00010

-0.00001

-0,00273

0. 000022

0, 000023
0.000004

0. 000007
0. 000004

0. 0000007
0. 0000025

0. 00006

0:
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APPENDIX 1 (cont'd)

SAMPLE CALCULATIONS FOR UNIFORM STRUT

1st approx. A,° = 0. 34030 24, = 012520
(Tl“l)'z = 0.21510
T, = 2.156 , ¢11/?‘ = 1.468
2nd approx. (T"Z'l)2 = 0.21166
T, = 2173, 6,02 = 1,474

(c) Approximate effect of elastic supports, m = 0 ( l = 1) p = 1:

A_ = 1.000
A, = -0.58333 - _é‘—%-?’-é—

A,= 0.06260 + 0.045244 + 025000 €

TI/TO l:z-owéz/uzoj

€ =0 0.2 0.4 0.6

0 1.000 0. 744 0.579 0. 470
0.4  0.781 0.610 0.498 0.411
0.8  0.640 0.517 0. 430 0. 366

1.2 0. 542 0. 449 0.381 0.330
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APPENDIX 11
SUMMARY OF CALCULATIONS FOR POINTED. STRUT

m = 1, £=0;p=1

(a) Critical load, € = M= 0

l1st approx. AO = 1,0000

A, =-1.2500 A% = 1.5625
A, = 0.4045 24, = 0.8090
A, =-0.0587
(7, 7H?% = 0.7535
T, = L.152, o, M% = 1.073
_ 1/2 _
2nd approx. T, = 1.170 , ¢, = 1.082

2

(b) Approximate effect of elastic supports:

Tllfo [To o €= M= Q]

€= 0 0.2 0.4 0.6
0 1. 00 0.88 0. 76 0.67
0.4 0.83 0.73 0.64 0. 56
0.8 0. 70 0.63 0.56 0.50

1.2 0.61 0.55 0.50 0.45



Li 7 7
@ V /// 7 /// /// v / ///v
/// //

FIG. la  THIN STRUT ON THE END OF A STING
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FIG. Ib THIN STRUT MOUNTED FROM PITCH-ANGLE SECTOR



<:..—-/" /_BO,CO
Changes of ﬂ_:_'_ , o
Independent | -2 h X —
Variable _ -
(See alsoFiq.7) d B 3 !
0~ 2 |
. ) - £-x
Definitions : £=1-hl,6 §-= v L= (1-hx)
Rigidity Functions : f = Bix) . (=—hx)" = Cm
Bo
g= S (™™
Co
| o 7 -
Misc. Relations : a 7 £ T
) {+a = -
=(a+1)f—a-= — . [-= = L+0-2)
§=(a+Nf-a — 0= 3

Taper Forms: £ =0~ a= 0~ "pointed” strut

m=0 ond/or £=1 ~ a=®O~ uniform strut _
m= | ~ linear chord variation at constant thickness (cf.footnote,p.22)

m=3~ linear thickness variation at constant chord
m=4~ linear variation of similar cross— sections

FIG.2 SKETCH DESCRIBING NOTATION FOR THE TAPER FUNCTION Cm



u = Bending Deflection = u(x)
B = Torsional Deflection= B(x)

Xx-y =Plane Occupied by Undeflected Strut

y -u =Plane of Root Section of Undeflected Strut — with
Elastic Support the Root Section Deflects as a Spring in.

Rotation about the x and y Axes with Different, Arbitrary
Spring Rates

»

x -u = Plane of Undefiected and Deflected Neutral Axis for
Thin Cross Sections

FIG.3 SKETCH SHOWING DEFLECTED STRUT AND COORDINATE
AXES
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Approx. Method
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FIG.5 CRITICAL COMBINED LOADS FOR THE RIGIDLY SUPPORTED,

TAPERED STRUT - - — MARTIN AND RICHARDSON RESULTS



FIG. 6 DISTRIBUTIONS OF RIGIDITIES REPRESENTED BY THE
TAPER FUNCTION (™
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FIG.9 EFFECT OF ELASTIC SUPPORTS IN COMBINED LOADING---
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Pointed Strut, Z=0,m=1|

08 — —

Lateral Load,
$2vs. ., (p=00)
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04 / -
Axial Load, T vs. €
(p=0)
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o) L
0 02 04 0.6 08 1.0
€, p
FIG. Il EFFECT OF ELASTIC SUPPORTS FOR UNCOMBINED

LOADS --- /=0, m= 1
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FIG.12 LINE DRAWING OF TEST SPECIMEN
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Lateral Deflection
of Strut Measured
in this Plane

Clamped End
of Specimen
N
Anchor for / I“E
Load Line ' +
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=) /\/ £/
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A +P=w

FIG.13  SCHEMATIC DRAWING OF EXPERIMENTAL SETUP
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FIG.14 COMPARISON BETWEEN THEORY AND EXPERIMENT
FOR UNIFORM STRUT
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