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ABSTRACT

- Three elastodynamic problems are studied., The first deals
with waves generated by instantaneous and uniform closure of a semi-
infinite crack, while in the second, a semi-infinite crack is suddenly
initiated in a continuous medium initially subjected to uniform tension,
The last of the three deals with a force moving at uniform velocity
along a semi-infinite crack, starting from the edge. The problems
are solved by means of the Wiener-Hopf integral methods. The

characteristic wave patterns and stress singularities are discussed.



Chapter

TABLE OF CONTENTS

INTRODUC TION
GENERALITIES
I. THE ELASTIC WAVE EQUATIONS

II. STRESS SINGULARITIES AND
CONDITIONS AT INFINITY

RADIATION FROM A DISLOCATION

I. FORMULATION OF THE PROBLEM

II. METHOD OF SOLUTION

III. THE INTEGRAL EQUATIONS

IV, SOLUTION OF THE INTEGRAL EQUATIONS
V. THE STRESS WAVE PATTERNS

VI. THE STRESS SINGULARITIES

UNLOADING WAVES GENERATED BY A
SUDDEN CUT

I. THE INITIAL AND BOUNDARY VALUE
PROBLEM

II, SOLUTION OF THE INTEGRAL EQUATIONS

III. FACTORIZATION OF THE KERNEL
FUNCTION F(¢&)

IV, THE STRESS WAVE PATTERNS
V. THE STRESS SINGULARITIES

CONCENTRATE}j FORCE MOVING ALONG
A CRACK

I. THE INITIAL AND BOUNDARY VALUE
PROBLEM

II. SOLUTION OF THE INTEGRAL EQUATIONS

Page

11
13
14
22

25

26

29
31

33
43

45

49

49



Chapter

TABLE OF CONTENTS (cont'd)

III, THE STRESS WAVE PATTERNS

A, '"Subsonic' Régime

B. "Transonic'' Regime

C. The "Supersonic" Régime
IV. THE STRESS SINGULARITIES
CONCLUDING REMARKS
REFERENCES

FIGURES

Page
50
51
54
56
59
60
62
63



Figure

10
11

12

13

14

15
16

17

LiST OF FIGURES

Initially Cut Stress Free Medium
Path of Integration for Dislocation Problem

Deformation of Path of Integration in
Dislocation Problem

Waves Radiating from a Dislocation

Stress Distribution Due to a Dislocation
(ref. Eq. 2.26 to 2,28)

Suddenly Cut Elastic Medium

Path of Integration [' and Branch Cuts for
Crack Initiation Problem

Paths of Integration for the Factorization of
the Kernel Function F(§)

Deformation of Paths of Integration in Crack
Problem

Stress Wave Propagation from a Sudden Cut
Concentrated Pressure Moving Along a Crack

Singularities of the Integrands of the Stress
Integrals ('"Subsonic" Regime)

Singularities of the Integrands of the Stress
Integrals ("Transonic'" Regime)

Singularities of the Integrands of the Stress
Integrals (""Supersonic' Regime)

Wave Patterns (Y'Subsonic!’ Regime)
Wave Patterns ('"Transonic' Regime)

Wave Patterns ('Supersonic' Regime)

Page
63
63

64

64

65

66
66

67

67

68
69
69

70

70

T2

73



1

INTRODUCTION

The present thesis deals with some problems of !'radiation'’ of
elastic waves. By ''radiation' is meant a process taking place in
problems of wave propagation where the medium contains a certain
point or line (the source) endowed with some prescribed characteristic
singularities, Thus the problems considered herein treat of phenomena
associated with the initiation of a half-plane dislocation (Chapter 2), of
a half-plane crack (Chapter 3) in an infinite elastic medium, and with
the motion of a line source along a half-plane crack (Chapter 4), the
medium being initially undisturbed in all these three cases.

For the solution of these problems, integral methods are
employed., These methods have long been recognized as most suitable
for prqblems of propagation of electromagnetic and acoustic waves (see
Reference 1 for an extensive bibliography), The literature on elasto~-
dynamic problems treated by these methods is rather scarce. Maue
(Reference 2) applied the Wiener-Hopf method as modified by Clemmow
(Reference 3) to the problem of diffraction of plane harmonic elastic
waves by a half-plane crack. Clemmow's version is different from the
original Wiener-Hopf method in that his formulation is in terms of dual
integral equations. Other formulations of elastodynamic problems
leading to integral equations amenable to Wiener-Hopf techniques were
given by Roseau (Reference 4) and De Hoop (Reference 5), In the
present thesis, Clemmow's approach is followed. The wave functions,

after being Laplace-transformed, are expressed as superpositions of
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plane waves, with the amplitude spectra as the unknowns, Application
of the boundary conditions gives sets of dual integral equations which
are solved by means of Cauchy's integral formula after splitting the
kernel functions into factors containing prescribed portions of the
singularities. The evaluation of the Laplace inversion integrals is
finally carried out by the Cagniard method (Reference 6) as modified

by De Hoop (Reference 5).
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CHAPTER 1

GENERALITIES

I. THE ELASTIC WAVE EQUATIONS

In vectorial notation, the equation of elastic motion, in the

als
Ol

absence of body forces, is:

(A+20)V(v.R) - pVx(Tx]) =

where
A,V elastic constants
p density
—.
u

displacement vector

Equation 1.1 can be decomposed into

2
v2a = Vl.za g
ot
and
2
7228 - sz ) (22&3)
ot
where
2 _ p
Vi T TxF 2R
2 _p
V2 ——p—
A = 7.2
2_0" = VXTI'

923
ot>

(1. 1)

(1. 2)

(1.3)

Xk

See e.g. P. Morse and H. Feshbach, '"Methods of Theoretical

Physics', Vol, I, p. l42.



1f we put
%= -ve + vxE P (1.4)

then, a solution of the system of equations 1.2 and 1.3 is

2
2 2 8%
Voé=v (1.5)
I 2
2
v = vt (1.6)
at

For the problems considered, we choose a system of Cartesian co-
ordinates x, y, z, such that there is no variation in the z-direction,
Moreover, the z-component of the displacement can be taken equal to
zero since the medium extends indefinitely in the z-directiorf#=
this reason, we can also take the vector "1” as pointing in the z-direction,
and in what follows, we shall consider it as a scalar. If u and v are

the displacements in the x- and y~directions respectively, then relation

1.4 can be written as:

uz_%,t% (1.7)
- .9 _oF
v = —W“—a—}-{— (108)

Denoting by 6}7’ 6x and txy’ the usual stress components, the stress-

displacement relations give:

3 1 2 ,9u 1
6Y—P{(“V‘"z'—z)—§+;——z
1 V2 1

(1. 9)

154

e
The arrow indicates a vectorial quantity.
This amounts to considering the problem as one in plane strain,



V1 V2 Y1
- _p {8V, du
‘ny =zl * oy I
V2

2 2
by _ .1 2, .2 oy 0%,
P 2 2'9xdy 4 2
6 x 1 2, , 2 ,9° 8%
i A 2(8x8y+82)
V1 V2 y
Txy 2 9% 1 %, 1 o'y
5 Z 5x0y Z )

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)
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II. STRESS SINGULARITIES AND

CONDITIONS AT INFINITY

In addition to regular boundary conditions depending on each
individual problem, it will be necessary to specify certain subsidiary
conditions based on physical reasoning. We have to distinguish an
actual source corresponding to an actual energy input, from a virtual
source giving no energy input. For an actual source, we have a
nonzero resultant external force; therefore the stress singularities

should be of the order
l as r~-» 0
T

r being the distance from the source.
For a virtual source, Maue (Reference 2) specified the

singularities to be of the order 1 . This specification does satisfy
r

the requirements that there be no net external force at the source, and
that the energy density be an integrable function of r in any neighbor-
hood containing the source. Maue's specification, strictly speaking,

has no logical grounds, since a priori there is no way of knowing what

the stress singularities are exactly. In what follows, the stresses are

r -+ 0, where 0 & « £ 1, The

specified to be of the order L .

r

. 1
actual solution, however, comes out to be of the order , r —» 0,
r

as predicted by Maue. As to the conditions at infinity, we only require

that the waves be diverging waves.

The present discussion of stress singularities is valid only for two-
dimensional problems.
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CHAPTER 2

RADIATION FROM A DISLOCATION
I. FORMULATION OF THE PROBLEM

Consider an infinite elastic medium with a semi-infinite cut
as shown in Figure 1. ﬁ?he cut is assumed infinite in the z-direction
and symmetﬁc with respect to the x-axis. The system being initially
free from stresses, suppose that the faces of the cut are suddenly, at
t =0, drawn into contact and welded together. It is proposed to study
the wave patterns generated by such a process. The physical phenom-
enon involved is called by Liove a dislocation, The static and pseudo-

dynamic aspects of dislocations have been studied by various authors-—-

4

see e, g, Rongved (Reference 7), Eshelby (Reference 8). The present
problem is however a purely dynamic problem whose characteristics
are essentially different from pvseudo—dynamic phenomena.,
Mathematically, the problem reduces to solving the two elastic
wave equations 1,5 and 1,6 subjected to the following boundary condi-

tions at y = O:

~H ¥ x 20

<
i
<
H

(2. 1)
=0 x 720

where the % signs refer to the values obtained as the x-axis is.
approached from above and from below respectively. In relations 2.1,

H(t) is the Heaviside step function defined as

The minus sign is necessary to ensure that the 4 stress be a

tensile one, att = 0+, along the cut, as shown in the final result,



H(t) t 20

1]
b

=0 t {0,

Conditions 2.1 mean that for positive values of t, there is a disconti-
nuity in the v-displacerhent of unit magnitude along the negative X -axis.
Together with the conditions 2.1, the u-displacement and all the
stresses are specified to be continuous at y = 0 except possibly at

x = 0, Furthermore, because of symmetry,

’U—xy = t_xy =0 at vy = 0 (2. 2)
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II. METHOD OF SOLUTION

Under a Liaplace transformation with respect to the time t

defined in the usual manner, the wave equations 1.5 and 1.6 become:
Vé-p 1 ¢ =0 (2.3)
VZ'\-?- - pzvzzﬂ}- =0 (2.4)

where the bars indicate I.aplace-transformed quantities, and p the
parameter of the transformation. In terms of & and ";, the conditions

2.1 and 2, 2 can, in view of relations 1.8 and 1. 14, be written:

9 , - —+ 9 o~ ~v7h S |
(F - F) (- A = -2
(X < 0: y = 0) (205)
= 0
(x2 0, y = 0)
2—+ 2 2 o
2 5eay * g - 2!
xoy 9y~ 9%
2— - 2 2
_ 97 ] 9~ \ap- _
_'28x8y+(g7_———2)‘\k = 0 (2.6)
v ox
allx, y = 0

where % was obtained as the Laplace transform of H(t), and the % signs
again refer to the values obtained by approaching y = 0 from above
and from below. The continuity of the displacements and stresses at

y = 0, x » 0, will be ensured by the continuity of the derivatives of ¢

and A up to and including the second order., Aty = 0, x { 0,however,
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since there is a jump in ¢ and W due to the jump in the v-displacement,
the derivatives of ¢ and M do not exist. The continuity of u and of the

stresses atx { 0, y = 0, thereforé, should be understood as meaning

y=0 x40 (2.7)
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III. THE INTEGRAL EQUATIONS

Let the solutions be of the forms:

2 R
§ = JP@)e' P {tb "ot Y'lngda

{(2.8a)
r
— _J - p{j; Jv22+§2y - 1§XJ
Y= T Qe dg (2.8b)
r

where p is a positive quantity, P(£) and Q(£) are two unknown functions,
the upper and lower signs refer to the upper and lower half-spaces
respectively (Figure 1 ), and T the path of integration to be specified
later on. In relations 2.8, the quantities le’Zz + §2 are given

positive real parts along the path of integration. For further use, we
specify their real parts to be positive throughout the § complex plane.
This is achieved by introducing branch cuts from -_I;ivl to ioco and

from iivz to tioo.. We shall return to this point later.

The representations 2.8 clearly satisfy the conditions at
infinity, since the wave functions decay exponentially with increasing
iyl

By means of formulae 1,7, 1,12 and 1.13, one can easily

verify that the representations 2.8 satisfy the conditions

= u

6; v = 0, all x

S
6T = b7

Mo+
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‘Condition 2.6 gives:

}{21% v Sref o) - (267 + v, 000 [HPERae = o
r (2.9)

for all x

which is satisfied by

P(g) = (267 + v,?)R(E) (2.10a)

Q(E)

2it vl2 + &2 R(g) (2. 10b)

where R(£) is a new unknown function., Condition 2.5 combined with

relations 2.8 and 2.10 gives:

j\lvlz+§2 R(g)eipgxdg = ;Lz_?' x£ 0 (2.11a)
f ZV2 P
= 0 x Y0 (2. 11b)

But condition 2, 11b also guarantees that ¢ and ¥ and their derivatives
of the second order, are continuous aty = 0, x» 0., The relations

2.11 are the integral equations of the problem.
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IV, SOLUTION OF THE INTEGRAL EQUATIONS

Define the path of integration [' as in Figure 2. Then the

system 2,11 can be solved immediately

R(E) = + g

1 1
41 2 2 ;
V2 P g J v12+§2

by applying Cauchy's integral formula. It is noted that the method of

(2.12)

solution used here will be applied again in the subsequent chapters,
with the only difference that the equations involved will be more com~
plex so that Cauchy's formula can be applied only after the kernel
functions hav.e been split into factors having singularities in prescribed

portions of the §-plane.
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V. THE STRESS WAVE PATTERNS

Because of the symmetry with respect to the x-axis, it is
sufficient to consider the upper half-space (y > 0) only. Combining

relations 2.8, 2.10 and 2,12 yields:

_ 2
2. V2 .
_ £ T -p{\’v +£ y-1"g'x}
o= 4o ! 1
D = -2—'1;]-:-——2—2- ——————— © dg (2.138.)
2, .2
V2 P r £ vy +£

1

(2. 13b)

¥ 1 p v, ey - it
T T2z | ¢ dg
vy P

After some rearrangement, the stresses -- in the Liaplace plane -- are

given, in view of formulae 1.12, 1,14, 2,3 and 2.4, by:

25" 2
v 2 v 2=
2 6y _, 0 2°2 .- 0
Zp - (axz - P 2 )(b - gxay (2‘- 143-)
27 2
v, 4 2 v 2—
29x 8 2°2 — , 0
7 = — - P -—2-—-)¢ + 750y (2. 14b)
oy
2= 2
v, T 2— v 2 -
2 ‘xy 8¢ 272 0
% = 3oyt "= - oz kg (2. 14c)}

In terms of expressions 2.13, the relations 2. 14 give:

2
v
D T [ Nty
= s ——ee

1
% T w2 —= g
2 p Elv it (2. 152)
-p +§7y ~ifx
+.;_L2jgr“‘+ A Jug
V2
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2
V
vzzé_x _ 1 (Vlz —z—"'g )(E +-——-—-) -p“ +£ y-lgx}

z el 2
" Y2 g ey, " |
(2. 15b)
- T i)
"I T2 J £ e
2
- \l 2 y-lgx
”—ﬁvzz =*2‘L*'1—2J (&2 +:’—-)ep“ g }
p ™
x 1 (2. 15¢)
; ‘1 J(g v --p-”v2 +§2y-i§x}
T 2%~ 2

To obtain the stresses in the physical plane, it would, in general, be
necessary to evaluate directly the inversion integrals. However,
Cagniard (Reference 6) pointed out that for functions of the form

shown in expressions 2,15, it is possible to tr‘ans‘form the variables

in such a way that they can be recognized as the Liaplace transforms of
certain functions of the time t, thus making the direct evaluation of the
inversion integrals unnecessary. This method has been applied rather
widely -~ see e.g. Pekeris (Reference 9), Garvin (Reference 10), It
was recently modified slightly by De Hoop (Reference 5), whose version

will be followed here,



16
Consider the first integral of relation 2. 15a

2
v 2
Er) el YQigX}dg =T (say)  (2.16)
| E Vv, +& © B ey ’
1 Vv,

Liet us define

t = ‘Jv12+§2y-igx (2.17a)

and choose a new path of integration such that t is real and positive on

it, Solving for §, we get:

_ t A t
£ =% ;—Z—vl sin 8 + i~ cos @ (2.17b)

where we have defined the polar coordinates r, 0 as:

2 2

r=\x"+7y 0 = tan~ '

0£ 04 (2.18)

X

Then, fort? >, Vs the new path of integration represented by relation
2.17b is a hyperbola whose asymptotes make an angle 0 with the
imaginary £-axis (Figure 3 ). In order to establish the equivalence
or non-equivalence of the two paths of integration, we remark that the
integrand of Iin equation 2.16 is regular everywhere in the £-plane,
except at the pole £ = 0 and along the branch cuts from i:iv1 to + 100,
which we introduced earlier. However, the branch cuts give no diffi-
culties since the hyperbola never crosses them. Therefore, for

0£ 9 ¢ %—, there are no singularities between I' and the hyperbola,



17

and we can Write:*
' v 2 v 2
L EEn 222 g
I = { + a: - = 2 e }e‘Ptdt (2. 19a)
A gil) , VlZ_l_gS.l)Z g‘_”’ V1Z+§(_HZ ,

where

(1) £2 2 . ¢

£ =i_z-v1 sin @ + i—cos @ (2. 19b)

T

Therefore, I, the inverse Liaplace transform of Y, can be obtained by

inspection:
2 2 (2.20)

Vs v
(5(1)2 )Z 8&“ (€£1)2+_%)2 8?';(1)

(1)‘{_;'%‘("‘1 ot 'ggn‘fvlag(l)z

with g(}._) given by relation 2,19b. The inverse Liaplace transform of

Iz, O, t)—H(tvr{

the second integral of relation 2. 15a can be deduced in exactly the

same manner by introducing the new variable

t = \’v22+§2y- iEx

We therefore get:

The two circular arcs at infinity give no contribution because of the
exponential decay of the integrand for 8 » 0, For 0 = 0 (y = 0), both
integrals of equation Z.15a have to be considered together. Itis . £
shown that as |§]| — o0, the two integrands combined behave like e'PS%,
The integrals over ' therefore do not converge in the strict
mathematical sense. We nevertheless attribute them a meaning by
considering them as the limit of 63’ asy - 0,
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2 2
) v v
oy -H(t-vlr){(gﬁrl)2+———§ 12 el (glD2 22 ag(_l)}

Zp 2wl ot =
gil)‘/vlerg&l)z g(_l) ,v12+§(1)2

{2.21)
: (t"VZr) (2) ( 2, .(2)2 agS—Z) (2) ' 2, .(2) 8§E-Z) ‘
+,~_zr_{g+' v, +§+ __a_E___g_ v, +§ _é..E_J

with g(}:) given by formula 2.19b and 5(2) given by:

2
g(:tz.) = 3 —;2- - vz2 sin 0 + i-t; cos 8 (2.22)

For > T £ ¢ ¢ =, the contribution of the pole £ = 0 should be taken into

account. Hence:
2 2
v, -H-v r)j(s(”z T2 02 aglD (¢l12,72 32 gD

2p T 2mi ot ot j
| §(1 ‘( g(l (1) lvlz+§(_1)z
v
+ 2:— H(- cos 0) ?(t v 9) (2. 23)
H(t Vz”) (2) { 73 (z"‘)z (2){ (2)2 ag(z)
{E +E - £ +E }
040l

with g(}:) and §(§) given by formulae 2.19b and 2,22, and (r(t-vly) being
a Dirac delta function. The representation 2. 23 is valid for the whole

range 0 £ 0 £ 7 (i.e. including 6 = %), provided that the step function

H(~cos 0) be interpreted as follows:



H(x) = 1 x> 0
=% x =0
=0 x {0

This is the case since at 0 = % {(x = 0) the hyperbola degenerates into
the real £-axis, and we can let the integral share half the contribution
of the pole § =

We get similar expressions for Ax and TXY from formulae

2.15b and 2, 15c in exactly the same manner:

2 2
v A
V246 " H(t-vlr)j(vlz-—-zz— +§gl) +€ 1)2) 3&&_1)
= 4 x
2p 211 ot
\ g&;)lvlz;ggjz
2 2

v v
s S AL

5t
(1)| 2, (12
EN v, 6 (2. 24)

2 2 2
(2vy "-vy v, 5
- 4-v1 H(~cos 0)9 (t - vly)

(2) (2)
H(t-v,r) ( () [2 2 8§+ (2) [ (2)2 g
“'EFT“'{gg J'Vz +§+) 5 " 5. +8

0 £04m
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4 2 1) 2 ,.(1)
V2 (xy Hlt-vir) { (1y2 V2 | 9%, (12, V2, 26
7o P 6 ) o BT }
2 (2) 2 (2)
H(t-v,r) ( (2)2, V2 9%y (2)2. V2 | 95.
T 2w {(E‘-l- o) ot (§ o) 5
0{o0¢m (2.25)

with g(}_) and §(;?E) given by formulae 2.19b and 2, 22.

It is clear from the foregoing expressions that the radiated
waves cénsist of three types. First, there is a sort of plane wave*
emanating from the surface of the dislocation - this is represented
by the second terms in equations 2,23 and 2,24, Next there are the
two cylindrical waves radiating from the edge of the dislocation with
the shear and dilatation wave velocities, respectively, Letus, first,
focus‘ our attention on the disturbances generated by the plane wave.
By itself, it gives rise to no shear deformation. However, since it
influences only the left half of the elastic space, it generates a dis-
continuity across the plane X = 0, The discontinuity involved here is
one in the v-displacement. This fact is in agreement with our
intuitive view that, since the two faces of the cut(y = 0, X ¢ 0) are
given an infinite vertical velocity att = 0, the particles belonging to
the right half space ( X » 0) do not '"have enough time'' to follow the
disturbance, and hence a discontinuity should exist along the plane

X = 0. Thus a dislocation suddenly generated along the half plane

*
For convenience, we shall call it "plane wave' although this is

clearly a misnomer.
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vy = 0, x { 0, gives rise to another one propagating with the velocity
of the dilatation wave velocity in the plane x = 0, The existence of
the piane wave in the left half space alone cannot satisfy the equilib-
rium condition throughout the whole medium. Thus the two cylindrical
waves come into the picture. It is remarkable that these waves do not
interact with(the discontinuous surfacey = 0, x ¢ 0, or with the
propagating dislocation along x = 0, This fact is to be contrasted with
phenomena to be found in the subsequent chapters when a dilatation
cylindrical wave interacts with a free boundary to produce shear waves.
The complete wave patterns for this dislocation problem are repre-

sented in Figure 4.
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VI. THE STRESS SINGULARITIES

To study the stresses more closely, it is necessary to substi~

tute for § in terms of the physical coordinates in the expressions 2,23
to 2. 25,

Thus, in terms of r, 9 and t, the stresses are:

V241'ré H(t-v;r) 3
2p ¥

/ 2
Z e . —t-g cos 0{3 sinZO- cosZO- 3V12% sinZO
\’ 2 2 2 t
t -v, T
1
4
+v Z_r_z_ - V2 r4
2 t2 4 t4~v12r2tzsin25
4
vy, s
+ —Z‘-’_l— H(-cos 9) (t-vly) (2.26)
2 2 22
N H{t-v,r) 3 os0)V2 ¥ cos20- 2 sino 2"
3 3 oS - Sin ——T—
2 2 2 r t
t -vz r

+ 3 sinzG - cosZO }
v 41\' H(t-v, r) 3
2"4 . 1

> < == —3 COs 0{3 sinZG - cosZO
P \l 2 22 r
t —Vl r

v, T v 2 2
2 2 ., r
-3 > sin 0+(vl -— )——2—
t t
2 2
(v 2 V2 )2 v
1 2 2 t4-v1 rt sinZO

(cont'd)
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2 2
V2 Zrz

2

H(t—vzr) t3 cos 0 2 2
- 3 > cos O - 2 sin Ovz
2 2 2 T t t
t -V, T

+ 3 sin%0 - cos® 0 f (2.27)

and

2
H(t-vzr) t’3 sin 0 {VZ r V., T >
2

3
\! tz-v 21'2 T 2t t
2
2

2 ' V2 f
~-3cos 04 2cos 0 } (2.28)

tZ

From these expressions, it is seen that as r — 0, the dilatational
stresses are of the order -1; « This corresponds to a concentrated
force at the edge, Furthermore, it is remarked that for t > 0, in

the plane of the dislocation (8 = w), the dilatational stresses are every-
where zero except behind the fronts of the cylindrical waves. This
means that if the edge were infinitely far away, the corresponding
picture would be a one-dimensional one, as this should be the case.

Ags mentioned in section V above, there exists a skew disloca-

tion,* traveling along the plane x = 0, away from the edge. It would be

natural to expect, therefore, that at a given time and a given radial

By skew dislocation is meant a discontinuity of the displacement
component tangential to the locus of the discontinuities.
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position, the shear is a maximum at x = 0. This suspicion is further
strengthenéd by the fact that the plane x = 0 is under pure shear
defofmation — c.f. the stress expressions 2,26 to 2,28. It turns out,
however, that this is not neceséarily the case. As shown in Figure 5*,
att = 10"5 sec, r = 4 cm, the absolute value of the shear, although a
relative maximum in th.é plane x = 0, attains its absolute maximum
at some othér positions, in fact in the neighborhoods of 6 = 150° and
0 = 30° A glance at the graphs of Figure 5 shows, on the other hand,
that the shear is not the item of major concern, since the normal
0

stresses are much higher in magnitude in the neighborhoods of 8 = 50

and 0 = 130°,

b

Figure 5 represents the stress ratios éx.zo’ 63’/60 and ’z;zy/do’

the quantity 60 being some constant of proportionality. It is the plot
of equations 2, 26--2, 28 for Vl-l = bx 105 cm/sec and

VZ_I = 3x 105 cm/sec.



25
CHAPTER 3

UNLOADING WAVES GENERATED BY A SUDDEN CUT

Having solved the problem of a cut that is suddenly contact-
welded, it seems natural to investigate the inverse problem, that of a
cut suddenly generated in a stressed medium. In fact, the latter has
been solved by Maue using conical coordinates (Reference 11), Our
excuse for investigating this same problem is that we would like to
relate it to the more general one of a line load moving along a half
plane crack*, which problem is readily amenable to the present
Wiener-Hopf techniques.

Consider an infinite elastic medium subjected to a uniform
tension T at infinity as shown in Figure 6. At timet = 0, the medium
is suddenly cut along the half-plane y = 0 x £ 0. It is proposed to

investigate the wave patterns generated.

These ideas will be cleared up in the next chapter.
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I. THE INITIAL AND BOUNDARY VALUE PROBLEM

The problem is to solve the two wave equations subjected to

the following conditions:

éy =T lyvl = oo, allt ¢ oo (3. 1a)
=T allx,y t>0 (3. 1b)
=0 y=0 x<0 t>»0 (3. Lc)
Ty =0 Iyl= o tco (3. 2a)
=0 y=0 allx, allt (3. 2b)

The stress patterns will be split into two parts: an initial static part

and a radiated part, i.e.,

_ 4

6Y g T (3. 3a)

b, = 6 4+ v (3. 3b)
_ 7ir)

’Z’XY = TXY (3. 3¢)

where the superscript (r) indicates the radiated part.

The representations 3,3 automatically satisfy conditions 3. la,
3.1b and 3.2a. The radiated stresses are derivable from the wave
functions ¢ and ¥ as defined previously., The method followed here is
much the same as in Chapter 2, We first take the Laplace transforms
with respect to t, of all the quantities involved, i.e., stresses,

strains, and the equations of motion. The latter then take the forms

2.3 and 2. 4.

Fort(O,E6X=6X-v((;y-l-éz):Oand y

— = - 1 -
E&Z_ (;Z- v(6x+6y) = 0, Hence 6X— géy where V Ty

v being Poisson's ratio, and E Young's modulus.
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As in Chapter 2, let

r 2 .2 .

$ = er(ﬁ)e—P‘& 1t Ynlngda (3.4)

¥ - '—FJ Q(g)e—P{i V2" Ynigx}d& (3.5)
r‘

be the wave functions (in the Laplace plane). Here again, the upper
and lower signs refer toy Y 0 andy £ O respectively. In view of
equation 2. 14, the conditions 3, lc and 3,2b give, in terms of the

representations 3,4 and 3.5:

2
v .
j{(f;ﬂém(g) i v, +E Q(e,)jelpg"da = —5—3-‘-’- (3.6)
r) P
X 0
and
v 2
i§1v12+§2 P(E) - (—— +&%) Q(g)} e'PEag = 0 (3.7)

r all X

where

2
&o = v, T/2p

Condition 3.7 is satisfied by:
2
_ k2, V2
P(g) = (§" + ——) R(£) (3.8a)

it Jvlz + &2 R(E) (3. 8b)

where R(£) is a newly introduced unknown.

Q(g)
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In terms of relations 3.8, condition 3.6 can be written:
' 2

’ \4
[l - e {omene )

T x ¢ 0 (3.9)

R(g)eiPERag = 62
P

On the other hand, the conditions of continuity aty = 0, x 0, are
9 _ A - -
5_37_’\",0 y=0 x>0 (3.10)

which is satisfied by

f\lvlz+g2R_(g)eipgxdg =0 x>0 (3.11)
.T‘

Equations 3.9 and 3,11 are the integral equations of the problem.
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II. SOLUTION OF THE INTEGRAL EQUATIONS

Liet us first define the path of integration [' as in Figure 7.
Since p is real and positive, equation 3.9, upon applying the theorem of

residues, is satisfied by:

2
. 4
{<g2+-§—)2‘- 62 (v, 2485 (v, 2489 JIR(E) SR

P

(0) .é. (3.12)

F‘t“

where L(§) is any function without zeros or singularities in the lower
£ half-plane, except at infinity where it is only required to be of

algebraic behavior. Similarly equation 3.11 is satisfied by

v, %+ E°R(®) = U(®) (3.13)

where U(£) is a function with corresponding properties in the upper

half-plane. Eliminating R(£) from relations 3. 12 and 3.13 gives:

ug)  _ _ 1 6o L e L 2 1
“”"—VI —~ Z 3 Z, 2T € Jo Bt e > FE)
(3.14)
where
2 "22 2
F(g) = —p’ [ ) - g (3. 15)

2 2|
Y2 1 l\](vl2 £%) (v, %)

Suppose that the function F(§) can be split into two factors, one being

a U-function, the other an L -function, i.e.,

F(E) = Fyl€) Fy (8) (3. 16)

where the subscripts U and L. have obvious meanings.
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Then we can rewrite 3. 14 as:

1 _6o 1 1 ~{1 1 ” 1 }
By, Fy (8 ) [Eiv, F L)

(3.17)

If we introduce the branch cuts from -‘Fiv2 to Fioo, then «‘§,+iv.2 and

\lg-ivz are U- and L-functions respectively, and a solution of equation

3,17 is:
() = - o §° 5 Ay —— £ : (3. 18a)
L(§) = \l&-ivz F; () (3. 18D)

From relations 3.13 and 3.8

R(E) = - L do 1 2 1 1
e v, ‘-VIZ ;3 FL;(O) —-ivz € FU({E.)\[(EHVZ)(VI +£7)
2 (3. 19a)
2 V2
p(t) = - L o % 1 £t 1
R Y ) . ‘ === F_(E)
2P FLON, g\ v, 2e) O
(3. 19b)
QE) = - — do 1 1 1 (3. 19¢)

Z 273 . :
™ v, v “p7 Fr(0) -y, FU(g)\, E+iv,
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II. FACTORIZATION OF THE KERNEL FUNCTION F(g)

Consider 2

] §+T) zl
21 - € J
"o f(v, 5+e% 785

This function is regular in the cut {-plane shown in Figure 7. At

F(§) =

infinity

F(E) ~ 1 + 0(—5) (3.20)
\El-» o0 E_Z

Furthermore, its zeros are at ;l:igR (simple zeros) where §R is the

reciprocal of the Rayleigh surface wave velocity:

SR 7 V1, 2 (3.21)
Hence
log F(£) = log Fyy(£) + log F (£) (3.22)
where .
1 log F(z)
log F
log Fy (£) = - ( OF (z) 4, (3. 24)
CU and C being as represented in Figure 8 - the circle at infinity
gives no contribution since log F(§) —» 0 from relation 3. 20, There-
El»> oo
fore
F(E) = Fy () F (&) (3.25)

b
See e.g. Reference 2,
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is the required factorization, FU(g) being regular and free from zeros
in the upper half-plane, and FL(E) being a corresponding function in

the lower half-plane.
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IV. THE STRESS WAVE PATTERNS

Because of symmetry it is sufficient to consider only the half-
plane of positive y. In the Laplace transformed plane, the stresses,

in view of relations 2,14, 3.4, 3.5 and 3.19 are given by:

-p { \1 vy +£ y-igx}dg

6, = — -Ig;— J AB)F
T

(

(3. 26)
1 K -PPyvy tE V'igx} 8o
T 27 —1;_ B(€) dg +
r
2
.-3- _ 1. X cie) e-p{ vy +.§ y-lgx}
x Zmi p
r { } (3.27)
1 K “PyyVy & y-ifx V4
+E1——p— S B(£) 2
rt
= 1 K -p {{v, "+t V‘lgx}
= - =X J D(£)
Xy 2 p
r > } (3.28)
-p Vv, +ET y-ifx
e S D(£) tV2 at
r
where
460 P 1
K = L (3.29)
vzz— 12 V2 FL(O)Z\J-iv2
(242 )
A(f) = Z_ (3.30)
V(e4iv ) v, 242 By (8)
EYE-ivy (3. 31)

B(g) = —-Fa'g——
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2. 2 V2 2 sz
(E7+v, "~ WE™+ )
Clg) = ¢ 2 (3.32)

Y (giv,)iv, 2+6%) Fi(8)

2
v

2 V2
(E"+——)
D(§) = (3.33)

\, §-!-iv2 FU(E)

For the evaluation of the Laplace inversion integrals, we follow, as

in Chapter 2, the Cagniard-De Hoop method. Consider the first

integral of formula 3. 26:

-p Yv +£7 y-iEx -
fA(i'.)-g- { : }dg = Ii(x y) (say) (3. 34)

Define a new variable:

t = 1vl +§2y-i§x' (3.35)

and choose a new path of integration such that on it, t is real and
positive so that expression 3,34 would be recognizable as the Laplace
transform of some function of the time t,

Solving for § from formula 3,35 gives:

g—i\’ 2 2 gin 0 + it 0 (3. 36)
= —-Z-Vl sSin I?COS .

1

where

r = x2+y 6 = tan”

X

Then, for % > Vie relation 3. 36 represents a hyperbola (Figure 9).
The integrand of—fl(x, y) is regular everywhere in the §-plane except

along the branch cuts from i'ivl totioo, and at the pole § = O.
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Therefore for 0 { e 4% there are no singularities between the
original path T' and the new path represented as T‘l in Figure 9,
Since on the other hand, the two circular arcs at infinity give no

contribution, we can write:

N R T e R R .
I = M 78t "M T )e a (.37
viT §+ -
where
g(_i) = —:—2— - vl2 sin O‘_+ i—tf cos 0 (3.38) .

By inspection, the inverse Liaplace transform of -fl is

Al el agelt) ael)
I,(r, 6, t) =H(t-v1r){ g“) T— - g(” xt } (3.39)
+ -
kg
0 £0¢ >

with A(€) given by formula 3. 30 and §(11._) by formula 3. 38,

For-—% £ 0 ¢ w, the contribution of the pole § = 0 should be

taken into account, i.e.,

At aell Aty pglV)
Il(r, 0, t) = H(t-vlr){ g(l) 5T - g(l) T }
+ -

(3. 40)
- 2wi A(0) y(t-vly)

%—,{Oéﬂ'

where ? is the Dirac delta function,
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Consider the second integral of formula 3. 26:

‘ ""“"‘z 2 .
fB(é)e P{ "2 +§J e }di = —I-Z(X ) (say) (3.41)
Tl

Define
t = \}v2 +§H- ifx

Solving for § gives:

t2 2 t
E,:i ;—2— -V, 51n0+1-fcos0 (3.42)

The integrand osz(x y) is regular everywhere except along the branch
cuts from i:ivz to tico and from -ivl to-ivz. For0< 0 ¢ FZ’ no
singularities lie between ' and the hyperbola represented by equation

3.42, and we can write:

- @ ag(?) ag'?)
L(r 0 p) = {B(gf‘)) - - B(¢!?) - je'Ptdt (3.43)
VZI'
where
(2) ¢% 2 . t
£y = % — -V, sin 8+ i— cos @ (3.44)
T

By inspection, Iz(r, 8, t), the inverse Liaplace transform of IZ’ is:

(2) (2)

ot J:
Lz 0, t) = H(t-v,z) {B(\?) —F- - B(g(_z)_ﬁ‘_} (3. 45)
00 4321

where B(£) is given by formula 3, 31 and 5(:‘:2) by formula 3. 44,
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For % £ 0 ¢ w, the situation is slightly more complex since
the hyperbola may cross the lower branch cut between -iV1 and -iv2 if
™ P 0 )T - cos-1 -:—1—, In the latter case, in order to have a new path
of integration equivalze‘ant to [' (the original path), we must add to the

hyperbola T‘Z (Figure 9 ) the two segments represented by

2
£ = i{_‘vzzuzzsing-i-%cos 0]:;{ (a——-’ 0)

-1 Y1 b
m-cos  — £ 0 & (3.46)

o~

and a circular arc centered at -ivl and of radius & { 5 0). In relation

3.46 the range of t is:

tg £t & vyt (3.47a)

tS = -v,rcos 0 +r Jvzz-vl2 sin O (3.47b)

While the contribution of the § -circular arc is nil, the path 3,46

where

together with the hyperbolic path PZ (Figure 9 ) gives:
(2) (2)
ag 0g"
L(r, 6, t) = H(t-vzr){B(ﬁf))—% - B(g‘_z’)—a—t—j

s 2£(S)
£(0) fs(t){:l.%(*e:;ﬁr - B(g_)}—a{'— (3.48)

%40(1‘!’

where B(E) is given by formula 3.31, and:

g(i) = :tX + i{-m sin @ + t? cos 0)2 (3.49)
Tr

(5~ 0)
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_ -171
fO(Q) =1 m~cos — £ 0€& T (3.50)
2
=0 outside
fs(t) = 1 tg € t £V, (3.51)
=0 outside
]
We have essentially found StY in quadrants 0 £ 8 < % and

_1_21'_ £ 0 4w . Wenowinvestigate the angular positions 0 = -TZL, 0 =0
and @ = T, For 0 = FZ’ the hyperbola degenerates into the axis of
real £, The '1n1:egral?1 therefore receives half the contribution of the
pole £ = 0 whereas TZ is not affected by the latter. At 9 = 0,
-i- +E - A(g) - gB(g) elpgxdg (3. 52)
1 2 3
ﬂ .
where A(§) and B(§) are given by relations 3.30 and 3.31. By an

asymptotic expansion of A(£) and B(§), it is readily shown that the
ipEx

Fg. as |E]—» . The

integral in equation 3,52 therefore converges. The combination

integrand of expression 3.52 is of the order

—fl +-fz is thus continuous at @ = 0, and its value is obtained by taking
the limits of expressions 3,39 and 3.45as 0 -0, At 0 = 7w, the
ipEx _

s |El— o, and (I; +1I,) again

integrand of -fl +Ez is of the order
converges (to zero).
In view of relations 3,26, 3.34, 3.39, 3.40, 3.43, 3.45 and

3. 48, we finally have:
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t

6 =X yiev, r) A(ggrl)) agf) NGRS
y = Zm 1T g0 B T T 5t [ 9t
vyt + -

-KA(0) H(- cos 0) H(t—v1 ¥}

t

9t
- Z%i_ H(t:-v2 r) { B(g(z)) ‘5‘"‘ - B(g(z) } dt

Vzl'

- B 1,000 £ (v)J {B(g ) - Bt )}

(3. 53)

(S)

where A(E) and B(§) are given by formulae 3,30 and 3, 31, g(:) by

by 3. 47, gf_ by 3.49, £,(0) by 3.50 and

2
3. 38, é(i) by 3. 44, tg
/ £(t) by 3.51.

The evaluation of 6x is carried out in exactly the same man-

ner in the angular interval 0 £ 0 & ;-. The situation changes when

we consider the interval% £ 0 { m because of the contribution of the
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pole £ = -igR (;,:), in the neighborhood of 8 = . Ccn'nsider.g;c in
equation 3.27. We again define a new variable t in each of the integrals

of this equation so that in the first integral

£ =% - vlz sin @ + i%‘cos e (3.53a)

o
HN‘N

and, in the second integral,

2
=Xz~
r

sin 0 + i% cos O (3.53b)
If we let © —» 7 in formula 3.52, the hyperbolas 3.53a and 3.53b tend
to the negative imaginary £-axis (see T‘3 of Figure 9 ). If% > §R,

the pole £ = - igR lies between )"3 and ['. We can now write the com-

plete expression for &X:

t (1) (1) (1) (1)
C(E)") 8¢ C(g'"') o
N --Z—I;-i—H(t-vlr)f { + + - -1
'VII'

- dt
x ggﬂ ot g(_1) ot

+ KC(0) H(- cos 0)H(t - vly)

t (2) (2)
ot ot

+2§5H“'Vzr)f {B(gf)’ - - B(ﬁ(.z))—m:‘j de

VZI'

voT 8§S
F o £,(0) £ (£) J {B(g ) - B(¢ )}——i dt
27 8 S + - ot '
tg (cont'd)

3

It is recalled that -igR is a simple zero of F;(£).
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+K lim {(O8) - EBENEHE]T (0- M- En) 4 Mo
£ ity (3.54)
0 £08 &

where C{£) and B(§) are given by formulae 3.32 and 3. 31, g(:é) by

3.38, £2) by 3.44, to by 3.47, £3 by 3.49, £,(0) and i(t) by 3.50

S
and 3,51,

The expression for TXY is obtained in a similar fashion, except

that there are no difficulties associated with surface waves:
C, = - =H(t-v,7) t p(gM) o8, p(gt?) 2. at
y © T Zmo\tV + ot - 7ot

Vll‘
t (2) (2)
9t 13
+ %H(t_vzr) J {D(giz)) a: - D(EEZ)) —a—t:—-j dt
VZI'
VT ) 8(£5)
K S s +
P E @i | {oeEd - D(e_)j ot at
ts

where D(£) is given by formula 3.33, £'4) by 3.38, 2 by 3,44, £
by 3.49, fg(O) by 3.50 and fs(t) by 3.51.

The wave patterns are now clear (Figure 10). First there is
a ''plane wave'' emanating from the surface of the cut. Next there are
the two cylindrical waves radiating from the edge with the velocities
of the shear and dilatation waves respectively, In contrast to the

previous chapter, there now appear two new waves: a surface wave
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propagating with the velocity of the Rayleigh® wave, and a head wave
propagating with the velocity of a shear wave, The head wave can be
consi'd;gred as the envelope of the éhear waves resulting from the
interaction of the dilata.tion wave with the free boundary. It is noted
that this is not the only type of boundary condition that gives rise to
this type of wave., It was found in (Reference 12) that a head wave
could be generated by interaction of a dilatation wave with a boundary

constrained to a given displacement and a given shear distribution.
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V. THE STRESS SINGULARITIES

To obtain the stress field at an arbitrary position, considerable
numerical work would be necessary. However, if one is interested
only in thé immediate neighborhood of the root of the crack, then some
approximation can be made, In effect, as r - 0, }gl - 00 and FU(g)"”l,
in view of equation 3,23. Therefore, for r - 0, the stress integrals
of the preceding section -- which are in fact double integrals - can be
approximated by single integrals by replacing the integral FU("g',) by
unity. While it is not our present purpose to go into numerical work,
it is of interest to point out that the stresses are everywhere finite in
the interior of the whole medium, even on the wave fronts, This is
seen by substituting for § in the stress integrals of the preceding
section (equations 3.53 to 3.55) in terms of the physical coordinates
r, 9, t. Such a substitution shows that as t m’vl, 2T the integrands of.

the stress integrals are of the order 1 , which is an inte-

2.2 2
Vl, 2T

grable singularity. This is to be contrasted with the situation prevail-
ing in the preceding chapter where the stresses were infinite on the wave
fronts. As to the stress singularity in the neighborhood of the root of
the crack, it is of the order-—}-— for t » 0. Take the stress éy for

r
instance (equation 3,53):



t () 2

__l__ at ) -1— log t + t - Vs r
Y ~ '—— v,T
r— 0 ,‘_r' VoI 1:2—v22r2 T 2

This result is in agreement with Maue's (Reference 11). Itis of
interest to note, furthermore, that the same order of stress singu-

larity has been obtained for the static case (Reference 13).

s

This expression was obtained by an asymptotic expansion of the
integrand in equation 3.53 for |§|-» o, i.e. for r —» 0, noting that
lim F’U(g) = 1.

i ¥ o
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CHAPTER 4

CONCENTRATED FORCE MOVING ALONG A CRACK

In this chapter, we deal with a problem which is closely
related to the preceding one. The latter was concerned with the sudden
initiation of'a semi-infinite crack in an infinite elastic medium initially
subjected to a uniform 6')7 stress. The physical process involved
therein can be considered as due to a force traveling along the x-axis,
in the negative direction (Figure 11 ), and of such a magnitude as to
cancel the initial surface stresses in the half-planey = 0 x £ 0. The
present chapter treats of the motion of a concentrated force* along a
crack, at various velocities. It will be instructive to study how the
wave patterns change with the velocity of the moving force, and, in
particular, when the latter velocity tends to infinity,

Consider an infinite elastic medium with a semi-infinite crack
as shown in Figure 11, The medium being initially free from stresses,
a concentrated force whose normal component {in the y-direction) is
unity and whose tangential component is 6**, starts moving att = 0+,
at a constant velocity co-}L in the negative x-direction, from its initial
position aty = 0 x = 0 (Figure 11}, Itis proposed to study the wave

patterns generated.

S

The motion of a force distributed over an area can be treated by a
proper superposition of motions of concentrated forces,

€ can be considered as a coefficient of friction.
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I. THE INITIAL AND BOUNDARY VALUE PROBLEM

The initial and boundary conditions are, in the Laplace plane:

- pc X
6 =-e ° x (0, y=0 (4.1)
pc x
Ty =6 x 40, y=0 (4.2)
| pc X

where p is the parameter of the Laplace transformation, and e
was obtained as the Laplace transform of Jd(t+ cox), (rbeing a Dirac
delta function,

Let

d¢ (4. 3)

/{P P {Vvl -H';Zy-igx}
J

) ¥
GESHCIE
i

Ir {\/VZ +§ Y-i§>§}

dg (4.4)

_ (

o = {iczl(g) + Qz“‘?)} e
E

n

where the upper and lower signs refer toy ) 0 and y £ 0 respectively,

be the solutions of the Laplace transformed equations 2.3 and 2.4. In

view of equations 2, 14a, 2.14c, 4. 3 and 4.4, the conditions 4.1 and

4,2 can be written:

2 pc X
v . (e}
Ji(Plth)(—gz——%—)i (1Q,+Q,)iE \}VZZHgZJ)elf”"-3 ag = .Dep2
x £ 0 - (4.5)
v 2 . PCOX
{ﬁPliPz)ig\}vlz+§2 + (2Q4Q,)(—— +g"‘ie1PX§ at = _GEEP_Z_

4 x 4 0 (4. 6)
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where the upper and lower signs refer to the values of the stresses
obtained by approaching the negative x-axis from above and from below
respectively and D = Zp/VZZ.

Conditions 4.5 and 4.6 can be satisfied only if:

2
P B V2 2
1(5) = - (—-2'— +§ )Rl(g) (4. 7a) |
Q(E) = ifyv,; +§ZR1(§) (4. Th)
P,(E) = it \v, +E° R,(£) (4. 7¢)
2 "'22
Q,(E) = (7 + —— IR, (E) (4. 74)

where Rl(g) and Rz(g) are two newly introduced unknown functions.
In terms of relations 4.7, the conditions 4.5 and 4.6 become

respectively:

2
v -
Jf(gz o) Py P A, §2>}R1<§> IPEEat

T\
pc x
- :173e ° x {0 . (4.8)
P
v 2
{(gz & (LR ?)}Rz(a) P gt
r
» Pc X
=-€De o xZ 0 (4. 9)
b

The conditions of continuity are:
8(1)1 _ 8/\{—2 _ ;; _ ;\-P— o
oy oy ‘2 1~

y=0, x50 (4. 10)
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where ——
- P ls\vl +§zy—igx}
4’1’ 2 = Pl, z(ﬁ)e : dg
— . TP \Jv +E" y-iEx
Y2 = jQ‘l, A8 the } a

In view of relations 4,7, the conditions 4,10 are satisfied by

| J‘lvlz s R (B)PFag =0 x Yo (4.11)
r
J \lvzz g2 R,(£) iPxE g - ¢ x>0 (4.12)

T

The equations 4.8 and 4.11, 4.9 and 4,12 are the integral equations

of the problem,
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II. SOLUTION OF THE INTEGRAL EQUATIONS

Consider the dual integral equations 4.8 and 4.11. They are
of the same type as considered in previous chapters, and are amenable
to the same techniques, the Wiener-Hopf techniques. Define the path

of integration'T' as being the £ real axis, and introduce the branch cuts

of Jvlz + §2 and v, + §2 as running from :I:iv1 to tico and iivz to
+ico, Then, a solution of the system 4,8 and 4.11 is:

(4. 13)

D i 2 1 1

_ 2
RE) =y —2—322
Vo ©Vy P

Fyl-ie )y -iv, E+ic FU(g)\] (E+iv,) v, +E%)

where FU(g) and FL(E) are given by equations 3,23 and 3, 24,
Solution 4,13 is to be compared with the solution 3. 19a of the
dual integral equations 3.11 and 3,12, Similarly, a solution of the

equations 4.9 and 4.12 is
(4. 14)
D 1 2 1 1
R (8 =2 & L
2 T 2 o % % B (cic )\ -iv, Etic Z
Vo V1 P FLiT% 2 o FU(g)Q (EHv, I E +v,

%)
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III. THE STRESS WAVE PATTERNS

For the sake of simplicity we consider the case where the mov-
ing force has only a normal component. Accordingly, € = 0 and

Rz(g) = 0, Then, from relation 4.7, fory » 0, we get:

&.). ) ] VZZ 2 —plwvl +& y-igx}

(—— +E7 R (E)e ag (4. 15)

7 = Jg +£° R (E)e Pifve y-igx}dg

(4.16)

We can limit ourselves to considering the half space y > 0, because of

the symmetry of the problem.

In view of relation 2,14, the stresses, in the Liaplace plane, are:

3- ) jE(g) P{mylng

v tie
+ fr g%e'f’ {V vz *E Y'ig’{}dg (4,17)
3 . fL(g) e
x +ic
r' O
2.
,? _ fM(g) e"P{V +§ Y"lng
xy ) E¥c_
» ‘("T"z .
%I%_)_e'l){ va *8 Y'ngjdg (4. 19)

(o]
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where
 2pp% .2 sz 2
E(§) = T‘z‘ (€ +—2—“) Rl(g)(g + 1Co) (4.20)
2
_ 2 2 2 .
G(g) = PP 6%\ (v, S50, 2485 R (E)(E + ic) (4.21)
2 v 2 v 2
2 2 2 2 2 2 .
L(g) = —‘-’i’z—w -~ £ (- +E°) Ry (E)(EHic ) (4.22)
V2
M(E) = ._TZPPZ e v 2hEl (L2 422 R, (E)(EH 4,23
) = - i vy -z ) 1( g 100) (4.23)
V2
The location of the pole § = -ic depends on the velocity of propaga-
tion of the force {(equal to -6]3- ). We consider the three régimes:
o
A) — Z T 4 ?rL corresponding to a force moving more slowly than
o 2 1 :

both shear waves and dilatation waves; this régime will be referred

to as a '"subsonic' one; {(B) ;}- L ( —_ Whlch will be called a
2

transonic'' régime; and (C) ?,L 4-\—’-—- Z E— which will be called a
2 o

""'supersonic" rkgime,

A. "Subsonic' Régime

If the force moves more slowly than both shear waves and
dilatation waves in the solid, the singularities of the integrands of the
“stress integrals are as represented in Figure 12, The evaluation of
the stresses in the (x, v, t) space is carried out in exactly the same

manner as in previous chapters. We simply record the results:
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: (1) (1) (1)) (1)
E(E)') o€ E(§ ag
d = H(t-vlr)‘é + + - J

¥ gg_l)‘}-ico ot g“ +1c ot

a(el?h ael®  G(el®) el
+H(t-vzr){ - }

g O gy O

£ (0 (a){ GiE,) _ Gle) {agi
+ £ (t -
51776 §§+ico g> +e, at

+ 8(04m b (t4e_x) (4. 24)
; i Ll el welt) ag!l
5 = Hlt-v;7) gil)ﬁ% gt ‘,E’E.]L)JriCo ot

G(&"”) atl?  ae®) gl j

- H(t-v,
§S_2)+ c ot gE.Z)'H'CO ot
) { G  aed) o]
- t) £ -
5°70 §S +He gs +ic i ot
- o

- Zwi{L(-ico) - G(-ico)}S (0)-m)§ (e x)
(4. 25)

o L(£)-G(£) " .
- Z.Trg }in'ilg ‘(——g;?c—— (E+E )}X\(O X(t—l-gR )
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M(ﬁ_(:)) agfrl). M(g(_l)) ag(_”'
Txy = H(t-vlr)igil)ﬁco ot &}_”ﬁco 5% j
- H(t—vzr){ l(i()gg-m) ai—Z) i I("Iz()gsz)) 3;_‘,22)
§+ tHe g " e

(4. 26)

M(ED)  M(ED) J ag>

- £ (t)£.(0) { — -
5 ° §§+ico §§+ico ot

where E(£), G(£), 1(§) and M(E) are given by relations 4. 20 to 4, 23,

gll) - i\{"t"f -v,?sino+ilcos o (4. 27)

E,(_i) 4 E-z- sin Q + 1—- cos © (4. 28)
s = v —s1n0+-—cosg}i(‘)‘w (4. 29)
£s J 2

and

1]

(3—» 0"
fs(t) =1 (-vlr cos 8 + r {Vz —vlz sin 9) £t ¢ Vo
(4. 30)
=0 otherwise
Vi
£008) =1 m_cos’ -~ 40 {w (4. 31)

=0 otherwise
The wave patterns are represented in Figure 15, They differ from
those exhibited in the preceding chapter in that there no longer exists

the '"plane'' dilatation wave emanating from the crack.
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B "Transonic' Régime,

If éhe velocity of propagation of the force along the crack is
between the velocities of shear waves and of dilatation waves, the
singularities of the integrands of the stress integrals are represented
in Figur/e 13. The stresses, in this case, are given by:

6. = m )iE(gSrl)) o)) il 3*3(.1)}
= H(t- T -
v R v v

e o
§+ tic g +ico
+ 15(t) fg.(g){ i‘gi) - :(f) ja§§

§++ico §_+ic0

*’gg(Q)G(-iCO)X(cox+qu -c "y +t)2mi

- 2mi §(6-m) E(-ic ) (t+c_x) (4.32)
$ e ){ nel) ael) welt) egll)
= o -
x 1t gSrl)ﬁco Bt §(_1)+ico St}
agl®h agl®  are!?) ag?
_H(t-vzr)tggzj_l_ico ot -’é(_z)+ico ot J

o ”i G(ED  alEd)  eed

- £ t -

S 6 §§+ico §§+ico§ ot
(cont'd)
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+ 2mi G(-ic) gg(o) ble x+ \}vzz.co?-yn)

- 2mi L(-ico) X(O-W)S—(t+cox)

- 2mi tim  {EEEOE) (e {Blo-md (s+epm)  (4.33)
§—’-1§R o
L el aell ety aglM
(XY'H(t”Vlr)(gg_”Hco at '5_3(_1)%:o at

H(t ){ migl?) oel?  me!?) agl?
- - T . : -
2 (@, T T Bt

+ic
o

- £ (t)f ('@){ -
578 g§+ico gf_"+ic0 ot

+ 2rmi g%(@)?(cox-%- \l\vz ~C, y+t) M(—ico) (4. 34)

where é(.;), §(,§), §§_ are given by formulae 4. 27 to 4. 29, fS(t), fg(Q)

M) M) Jaéf

by 4.30 to 4.31 and

gS(O) =1 -rr—cos-lf.c_’ L0 <&
6 v, =
2
= 0 otherwise (4. 35)

It is seen that in addition to the two cylindrical waves plus a head wave
and a Rayleigh wave, there now appears a fifth wave whose front may
be considered as the envelope of all cylindrical shear waves generated

by the moving force interacting with the boundary, The whole picture

is represented in Figure 16,
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C The "Supersonic'' Regime

If tile velocity of propagation of the force is greater than both
the x}elocities of sound, the singularities of the integrands of the stress
integrals are as represented in‘Figure 14, The stresses are then

given by:

et sl mElt) otV
b, = Hit-v;7) - f

§(1)+C ot -g(.”*ico ot

- gg (9)2ri X-(cox‘l- \Ivl —co2 y+t) E(—ico)

ael®h) agl?  grel?) ag!®
gS,Z)"'iCO ot g£2)+ico ot

+ H(t-rvzr) {

- (012mi Gl-ic,) (e xt \v, e L yH)

G G(g) jaed |
+fS(t)f O){ - Iat (4. 36)
g +1c

(1) (1) (1) (1)
L(E\) 8¢g L(g ") 8¢
6x = H(t—vlr)"( + + = - }

5(”“% ot 'g(-l)ﬁco ot

c . . 2 2
- gO(Q) 21r1L(-1co)g-(cox+ \}vl ~c, y+t)

SG(&‘Z’) oel?)  c(e!?)) agl? }

- H(t-v,7) (g(Z) i E(_Z)-\'ico 3t

+ gg(g) 2mi G(-ico} X(cox-f- (}vz -c y+t)

(E)-G(&)
- an_ilf?g { +1c (E+ig )Jg(@ -1r) §(t+ng) (4. 37)
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S jM(a‘”) oell Mgt gl
= V I'

xy Lg 1)+1c ot g“)+1c0 ot

- gi°N@) 2mi M-ic ) Fle x+ J,vlz-coz y+t)

M(&‘Z) a&f" m(el?) ae!? }

« H(t-v r) . -

+ gg(g) 2mi M(-—ico) X—(cox+ VVZ -c, v+t)

. iM(g M(£%) g ot® 38)
5 0 g +1c §§+ico } ot )

where the notations are the same as in the foregoing subsections A and

B, except for

I
-
=

(c) -1’0
8o (0) = -COS ;’-I £0 &
=0 otherwise (4.39)

The wave patterns are represented in Figure 17, The only difference

with those of the preceding subsection is the present existence of an

additional shock wave propagating with the velocity of a dilatation wave.

Asg the velocity of the moving force tends to infinity, it would be

natural to expect that both shear and dilatation shock waves (Figure 17)
tend to horizontal positions so as to become ''plane' waves. It

turns out that this is not the case. As the velocity of the moving force
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approaches infinity, the dilatation shock wave becomes a ''plane
wave'', but the shear shock wave actually disappears. To see this
fact,l let us look-at any of the equations 4.17 to 4.19. For example,
in equation 4. 17, the contribution of the shear wave is represented
by the second integral. If we let ¢, = 0, co-1 being the velocity of
the force, then, the residue of the second integral's integrand at

€ = 0is zero. The foregoing assertion is therefore deduced,
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IV, THE STRESS SINGULARITIES

It is shown in the same way as in the preceding chapter that
for t » 0, the stresses in the neighborhood of the root of the crack
vary as -—1—- What is more, the stress distribution in the immediate
neighborhoi»d of the crack's root at any t » 0, can be closely approxi-
mated by replacing F’U(g) by unity in the stress expressions of the
previous section. However, we shall not further indulge in this matter,
since a detailed discussion of the stresses would be outside the scope
of the present investigation., Suffice it to mention that the stresses
here are infinite on the wave fronts, being of the order L where R

R
is the distance from the front,
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CHAPTER 5

CONCLUDING REMARKS

To conclude, a word must be said about the uniqueness of the
solutions, With regards to the problems of dislocation (Chapter 2) and
of crack initiation (Chapter 3), it is observed that new solutions could
be gene.:ratedl by differentiating the present solutions with respect to
the x~coordinate any number of times., The reason for this is simple,
First, the x~derivatives of the solutions of the wave equations are also
solutions of the latter. Second, s\ince the boundary conditions in these
problems are either homogeneous -~ i.e. zero surface stresses along
- the*half-plane crack y = 0, x £ 0 — or else constant -- i, e. zero
shear and constant discontinuity in the v-displacement along the slip
half-plane y = 0, x ¢ 0 — it is clear that the x~derivatives of the
solutions satisfy homogeneous boundary conditions along the half~-plane
v = 0, x ¢ 0. Thus we would obtain an infinite number of solutions
by addingb to the present solutions their x-derivatives of any orders.d
However, we have determined the stress singularities to be of the order
—-]lf— , * —+ 0, for the dislocation, and of the order —-L-, r —0, for the

r
crack. If we differentiate the present solutions with respect to x, the

stresses in the neighborhood of the edges would vary as 11+n and
r
——i—L— (n =1, 2, ...) respectively, which would violate the criteria
(5tn) :
r

developed in Chapter 1.

e

With regards to the problem of a force moving at an arbitrary
velocity along a half-plane crack (Chapter 4), differentiations do not
give new solutions, since the boundary conditions are not constant
alongy = 0, x&£ 0,
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Thus we have at least ruled out the possibility of obtaining
an infinite number of solutions by differentiations. Although this
fact cvertainly does not constitute a uniqueness proof, the inference
tends to support our intuition based upon physical grounds, It is of
interest to note that similar situations arose in the case of a crack
in an ela.stostatic medium (Reference 13) and in the electromagnetic
diffraction by; a conducting half-plane (Reference 3), where, out of
the infinite number of solutions obtained, only one was selected as

compatible with physical requirements.
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