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ABSTRACT

This is a theoretical study of diffusion problems in transitional
rarefied gases with surface dissociation and recombination reactions,
The method of composite solution, which is a simplified version of the
exact composite expansion theory with similarity to the mean free path
method, has proved to be very successful.

Both the methods of Lester Lees and of composite solution have
been used to solve the problem of simultaneous heat and mass transfer
of a partially dissociated diatomic gas of transitional rarefaction from
a hot fine wire to a surrounding cylinder. We have employed a sticking
probability to describe the dissociation reaction of the diatomic gas
at the Wire but have used continuum type boundary conditions at the
outer cylinder, We have also assumed a small total temperature
variation and a small mole fraction of the dissociated atoms. The
results obtained by both methods are identical and agree very well
with the existing formulas in many limiting cases.

Owing to its simplicity, the method of composite solution was
applied to the problem of a subsonic viscous flow past a sphere for
small Mach number but arbitrary Knudsen number., This problem was
considered both as a prerequisite for the investigation of mass transfgr
from a sphere to a stream of gas mixtures and as a means to acqﬁire
familiarity with tfze matching procedures. The result for the drag
force agrees with the known formulas in both the free molecular flow

limit and the continuum limit. The agrecement with experimental data
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in the transitional flow regimes is less satisfactory.

The method of composite solution was then applied to the
problem of mass transfer from a sphere to a partially dissociated
diatomic gas. Surface recombination reaction was assumed to take
place at the sphere while the flow conditions were the same as those
in the previous problem. Small mole fraction of the dissociated atoms
was also assumed, with the implication of a uniform temperature
field. The concentration and flux of the dissociated atoms were found
in terr;rls of the sticking probability of the recombination reaction.,

The problem of simultaneoué diffusion and reaction of dissoci-
ated atoms in the interior of a sphere is also very interesting and
pfactica.lly important, We have studied the special case of a very fast
reaction where the concentratioh of atoms at the surface of the sphere
is given. A new method of solving this unsteady state diffusion prob-
lem with moving boundary was proposed and has proved to be more
advantag.eous than' fhe existing ones,

Finally, the sticking probabilities employed in the previous
problems were obtained for various mechanisms of dissociation and
recombination reactions. These sticking probabilities turn out to be
constant over a wide range of Knudsen number and vanish in the

continuum limit.
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Chapter 1
INTRODUCTION

1.1 General descriptions

A rarefied gas flow is a flow where the mean free path of the
gas is comparable to some characteristic length of the flow field. The
gas then does not behave entirely as a continuous fluid but rather shows
some characteristics of its coarse molecular structure. Although the
mechanics of rarefied gases has been a subject of many invéstigations
since the time of Maxwell (24), it is not until recently that a large
amount of both experimental and theoretical results has been obtained.
Problems that have been studied include those in the field of vacuum
engineering aimed at developing pressure and temperature measuring
devices, in the field of aerosol mechanics with some applications in |
the problem of pollution, in high altitude aerodynamics with interest
in drag force and heat transfer, and in supersonic flow with sharp
velocity gradient in shock waves. Other problems involve the |
dissociation and ionization of molecular gases, the condensation of
low temperature gases in wind tunnels, and some other phenomena
caused by the departure of gases from perfect gas behavior due to
high speed flow. In some chemical processes such as the reduction
of finely ground ore particles and the hydrogenation of cdal, rare-~
faction effect has also to be taken into account.

It has beeﬁ found convenient and successful to divide the field
of rarefied gas flow into several different flow regimes, corresponding

to greater or lesser rarefaction, These are characterized by the
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 Knudsen number Kn which is defined as the ratio of the molecular
mean free path to some significant dimension of the flow field. The
latter, for example, may be the dimeﬁsion of a solid body', the
boundary layer thickness, the diameter of a temperature probe in a
wind tunnel, or the thickness of the shock transition zone. Flow with
large Kn is called free molecular flow, for under such conditions
intermolecular collisions can be neglected. On the other hand, flow
with small but not negligible Kn is called slip flow,., In slip flow,
the departure from continuum behavior is slight and manifests itself
Primarily in the phenomena of velocity slip and temperature jump at
the boundaries. Flow with intermediate Kn is called transition flow
and its behavior lies between the above two. Finally flow with
negligible Kn will be referred fo as continuum flow. A complete
discussion on the ranges of the various flow regimes has been given
by Schaaf (26) (27).

Present knowledge about the transition regime is very limited
since most investigations in the rarefied gas dynamics have been con-
fined in the free molecular flow regime, the slip flow regime, and that
portion of the transition regime immediately adjacent to the free -
molecular flow regime. Theoretical as well as experimental work in
the transition flow regime is needed urgently because of the importance
of information about this regime. Besides, problems with chemic-al
reactions have bee.n seldom studied although the phenomenon of molecu-~
lar dissociation is known to be a major characteristic of rarefied gas
flow, and there is a growing evidence that rarefaction effect has to be

considered in many chemical reaction systems with low pressure
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- and/or with fine particles. Those p'roblems require a thorough under-
standing on the kinetics of chemical reactions and often involve very

. tediogus calculations because.of the existence of a second molecular
species.

It is the purpose of the present research to study some t}'leoréti"
cal problems involving the effects of surface chemical reactions on
rarefied gases in the transition flow regime. The results will be found
useful in studying certain chemical processes involving fine particles,
the interaction of dissociated oxygen with high altitude vehicles, and
the effect of surface dissociation on the heat transfer to a temperature

probe.

1.2 The Boltzmann equation

The study of rarefied gas dynamics in the transition regime is
based on the Boltzmann equation whose derivation can be found in many
textbooks such as-Chapman and Cowling (8). A rigorous mathematical
derivation of the Boltzmann equation from Liouville's equation of
classical mechanics is given in the famous article of Grad (11), which
also contains a thorbugh discussion on its range of validity. The

Boltzmann equation is

8f af of _ &f )

where { = f(_&._,_x_‘,t) is the distribution function for the gas molecules

such that

dn = £(§,z,t) 4% (1-2)

e



4=

. is the number of molecules at T with velocities in a small volume of
a3t centered at £, £ isthe random velocity, r is the position

I _@ﬁ represents
5t T°P

the change of the distribution function due to molecular collisions.,

vector, F is the external force, t is the time, and
Equation ({-1) is valid under the assumptions that only binary col-
lisions are important and that the collision time is only a small part

of the life time of the molecules.

1.2.1 The equation of change of molecular properties

All molecular properties can be expressed as mean values of
some functions of the random velocity £, For example, the average
veiocity u is the mean value of §, the pressure tensor Pij is that
of mgiﬁj , the temperature T is the mean value of m |§ ]Z/Bk where
k is the Boltzmann constant, and the heat flux g is that of %m_&_ |€ | 2,
Multiplying equation (1'-1) by a function ¢ of the random velocity and
integrating over all the velocity .space, we obtain the generalized

equation of change of molecular properties,

oy oy 8 oo (B0 %Y = naT ;
T T o( G+ & r L " 3%) = nlVeor, ? (1-3)
where U = %IS Yf d3§ is the average value of { and Alpcoll is the

change of § due to molecular collisions.
There are several representations of the term nAcholl « The

one given by Hirschfelder, Curtiss and Bird (14) is

nATpcou. =5S§S(¢'.-¢)Ufifb db dn d3§1 a3t , | (1-4)



-5-

where f is the distribution function. for the molecule under considera~
tion which has properties qJ" and after and before the collision,
f1 is the distribution function for the molecule that collides with the
first molecule, b is an impact parameter, m is the azimuthal
angle, and U= |_§_1 - £| is the relative velocity of the two molecules.
The function ' depends on _‘-:I._1 » £, b, and the intermolecular force
that governs the collisioln. A graphic illustration can be found in
Figure 3 on page 42. Notice that equation (1-3) is also called the
moment equation of the Boltzmann equation,

For certain functions of the random wvelocity, A—\Lcoil. is known
to be zero by virtue of the conservation laws. These are l[J(i) = m,
_Ly(z) = mé, and 41(3) =mlE ]2';_ and are called summational invariants
for encounters, |

In a mixture, equation (1-3) can be applied to each component
with Amcoll. replaced by a sum of Ai—@coll. , AZTpcoll. , etc. which-
are the change of the function ¢ due to collisions with species 1, 2,

etc., respectively. That is,

nAy = naim nAZTPcoll.+ ces o (1-5)

coll, coll. *

1.2.2 Solution of the Boltzmann equation for a uniform gas

In a steady flow of a uniform gas the distribution function has
a simple form which can be obtained either by Boltzmann's H-theorem
(8) or by statistical thermodynamics (10). This function, called the

Maxwellian distribution function after its first derivation by Maxwell



- (24) in 1866, is
| 3/2 m(E - u)°
t=n(ggy) o [ T } ’ (1-6)

where u is the mean velocity of the gas stream, m is the molecular
mass, n is the number density, k is the Boltzmann constant, and

T is the temperature,

1.3 Methods of solving the Boltzmann equation for non-uniform gases

Although Maxwell's original paper has been published more
than a century, .no_method has been developed that can solve exactly
the Boltzmann equation under general non-uniform conditions. How-
ever, solutions have been obtained for many important special cases.,
Among these is the pioneering work of Enskog who used an infinite
series for the distribution function and assumed that the first term is
Maxwellian, Enskog and Chapman (8) have succeeded in calculating
the transport properties of gases in terms of the intermolecular
forces. Since then not much progress has been made until recently
when Grad (12) proposed the idea c;f sblving the moment equation (1-3)
instead of the Boltzmann equation itself. In this way the distribution
function can be approximated by a function including parameters to be
det.ermined from moment equaj:ions. Grad used a distribution function
which is a Maxwellian multiplied by a sum of He.rmite polynomials
and obtained good results in some linearized problems. Another
improvement was made by separating the distribution function into two

parts, each being valid only in a certain velocity range. Gross,
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" Jackson and Ziering' (13), as well as. Krook (15), used this method by
setting each part equal to a Maxwellian function multiplied by some
polynomial. Wang Chang and Uhlenbeck (31) used a Maxwellian
function multiplied by a function which is the sum of some Sonine-
Legendre polynomials. Ziering (32) applied this method to solve a

diffusion problem, the first of its kind.

1.3.1 The method of L.ees

All the methods mentioned above have not utilized the geometric
effect for problems with curved boundaries. Those problems call for
a larger freedom inthe choice of the form of distribution functions.
Lees (19) has proposed the "line of sight" principle for constructing
the distribution function in a region outside a solid body. At each poinf
an infinite number of lines can be drawn tangent to the body of influence.
The opposite extention of these lines .forms a cone called the cone of
influence (Region I in Figure 1). The distribution function will have
the form :t'1 if the velocity of the molecule lics inside the cone while
it assumes the form fz if the velocity lies outside the cone {Region II

in'Figure 1), where

2/2 mlf -, (x,0)] %7

£ = n1(£’t)('znk?1(_1;,t)> exp [‘ ZRT (2, 1) J ’ (£-7)
| 3/2 m[ £ -y {z,t)] % 1

2= nz(ﬁ't)( anTIZ(_;,t)) °xp [’ 2KT,(x,t) j ‘ (1-8)

Here n,, n,, T1 » TZ' s u, are ten initially undetermined func-
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tions of r and t. A proper number of moment equations is required
in order to solve for the undetermined functions.
Lees and his coworkers have applied the above method to the
following problems:
Plane couette flow (20),
Rayleigh's problem (21),
Flow generated by a suddenly heated flat plate (22},
Conductive heat transfer from a thin wire to a concentric
surrounding cylinder (22) (23).
The good agreement of Lees' results ﬁ/ith experimental data provides

the motivation for further applications of the method.

1.3,2 Limitations of the existing methods

All the existing methods are, in addition to their approximate
nature, subject to many limitations. Sfrictly speaking, they apply to
monatomic gases-only. For polyatomic gases the exchange of trans-
lational energy with rotational energy and vibrational energy will
require a more general and more complicated forfn of the Boltzmann
equation. However, in most cases the exchange between translational -
energy and rotational energy is assumed to be very fast. The vibra-
tional energy for most diatomic molecules is very small except at
high temperatures. For example, at 1000 °K 0.251% of the hydrogen
molecules is in the first excited state and has a vibrational energy
corresponding to 0,0142 kT. Therefore the vibrational energy can be

neglected.
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The type of intermolecular force appears in the collision term
and has direct influence on the results. Methods using half or full
range polynomial expansions can handle any type of intermolecular
forces arising from a spherically symmetric potential. In Lees'
method the collision integrals can be evaluated éxplicitly only for
Maxwellian molecules, i.e. molecules with an intermolecular force
obeying the inverse fifth law. A more general force law would greatly
complicate the numerical work.

In addition, the interaction between gas molecules and the solid
surface, entering into the boundary Conditions, depends on the crystal-
line form of the surface and the adsorbed gas films. Experimental
dafa are usually interpreted in terms of various kinds of accommoda-
tion coefficients. In the case of chemical reactions, it is convenient
to describe the surface reactions in terms of a "reaction rate constant”

or a "sticking probability,” Both of them, however, may depend on

the gas density, the temperature, and the history of the surface.
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Chapter 2

I—IEAT AND MASS TRANSFER FROM A HOT FINE WIRE
TO A SURROUNDING CYLINDER--METHOD OF LEES

2.1. Description of the problem

A hot fine wire is placed at the center of a cylindér filled with
a partially dissociated diatomic gas whose mean free path has the same
order of magnitude as the radius of the wire but ig much smaller than
the radius of the cylinder. The temperature of the wire and the tem-
perature of the cylinder are kept constant with the former being higher
than the latter., We assume that both the wire and the cylinder are
inert to the gas but that the molecular gas particles will dissociafe
into atoms on the surface of the hot fine wire while the atoms recom-~
bine into molecules at the outer cylinder. At steady state there is anet
flow of heat (energy) and of the dissociated atoms toward the outer
cylinder, As an éxample we may consider hydrogen at a pressure of
’10 mm Hg as the medium with 0,05 mm Nichol wire at 1500 °F and
2 cm glass cylinder at 1200 °F.

The main cha;racteriétic of this problem is that the gas is in
transitional flow regime near the wire while it behaves like a continuum
near the surrounding cylinder. The method employed by Lees (22)
solving a pure heat transfer problem will be used in the present
chapter. We shall neglect the end effect to consider this problem as
two dimensional. Furthermore, the mole fraction of the dissociated’

atoms is assumed to be much smaller than unity.
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2.2 The two-sided distribution functions

At each point in the space between the wire and the cylinder
two plancs can be drawn tangent to the wire. These two planes form
two regions 91 and QZ such that all the molecules and the atoms
with velocities located in the region 8'21 behave like being emitted
directly from the wire while those with velocities located in Qz are
" not influenced by the wire at all. We now assign different distfibution

functions in different regions as follows:

3/2 m,
) [

£2 :
f11 = nii(m eXP_ ZkT (& ):': ¢€Qi (2-1)
f, =
1 m1 . - m 2 T - .
f12= niz('é‘?rﬁ“g) eXP| - ZkT (Ept )J’ e, (2-2)
m, (372 My 2 2] |
fa1 = nu(’z?r'l?’r’i') exP [' 2KT, (ptE) s #ER, (2-3)
£,= |
‘s m, \3/2 M k2 p2] '
f22 = 122 ZwkTZ) - xP [' 2KT, e oef, (2-4)

where :t'1 and fz are the distribution functions for the atoms and the
molecules, Dy By Doy T, T1 , and T2 are six variables to be
determined later. The random velocity £ is written in cylindrical

. . ) L e2_e2, .2 .
coordinates with ¢ = arc tan ér/ﬁe and §p = %r + E,e. m, is the
atomic weight and m

, is the molecular weight. Mathematically Q1

and 9’2 are defined by

={¢|a=¢=r-a} | (2-5)
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='{¢[n-as¢s.zw, or 0= ¢=a} (2-6)

with
Ri :
@ = arccos = , (2-7)

where r is the distance of the point from the center of the wire and
Ri is the radius of the wire. Figure 2 is a schematic diagram showiﬂg
all the definitions and some of the boundary conditions.

The number densities N, 0, and the mean radial velocities
uir, Uy for t;he atorms and the molecules, the local temperature T
and the heat flux q. in the radial direction can be expressed in terms

of the six variables,

1T - 2@ T+2a

i P i e TP (2-8)
. -2« T+t 2 _
Ny, = o0y T 0, (2-9)
3 2

T2 T :
_ 2mic\2 T1t1 T M2t }
Yy © ( cos & o7 (r-2a) +n, (w+2a) ° _ (2-10)
11 12
1
1 2. a
0. = (;2.1115)2 cos a f2171 ~ "2272 (2-11)
2r n21(1r—201) +n22(7r+2a/)
. (m-2e)(ngy +0, )T + (w+2a)n, +n, )T, (2-12)
(7= _Za)(n“ + n21) + (17+2.a)(n12 + n22) ? ,
: 1
J5 2n 3n 3n.,. =
- k 2 3/2(7 11, 3/2 22
9, = k(?ﬁ') cosa[T1 . ( -Jml VYm ) ( VmZ)J
—el

+n1u1 E1 . (2-13)
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- where -E'?l is one half of the bond dissociation energy.
The first five equations can be obtained easily by direct inte-
gration while the last equation needs some detailed discussion which

is given in Appendix 2A.,

2.3 The moment equations and the boundary conditions

In order to obtain all the physical quantities of interest, we have
to find the six variables defined in equations (2-1) to (2~4) by solving
six moment equations. In fact more than six moment equations can be
formed and our choice is based on taking the six which have more physi-
- cal significance than the others. A more rigorous way is to linearize
all the equations and pick up the six which neither conti'adict each
other nor give trivial information. The six moment equations which
meet these requirements are obtained by successively letting Y in
equation (1-3) be the mass of the atoms, the mass of the molecules,
the total momentum in the radial direction, the momentum of the atoms
in the radial direction, the total energy, and a linear combination of
the heat flux for the atoms and for the molecules, .both in the radial

direction.

2.3.1 Continuity equation for the atoms

We consider the mass of an atom, which does not change under
ordinary collision, as the function . The collision term in equation
(1-3) is clearly zero while the left-hand side, after integration,

becomes
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rnjuy = c' , (2-14)

where C' is an integration constant.

Substituting equations (2-8) and (2-10) into {2-14), we obtain
1

2 1 1
(igl;) o (g T - ny, T3 = C' (2-15)

2m

2.3.2 Continuity equation for the molecules

If we let | be the mass of a molecule, we get an expression
similar to that in equation (2-14) with different integration constant.
However, using the fact that the mean velocity is zero at any point,

we obtain

Cl
™o, T -5, (2~16)

which, by substituting equations (2-9) and (2-11), becomes

i
2

1
27k\? rcosa 3 __C! :
( mz) o Ty - 0Tl = -7 - (2-17)

2.3.3 Conservation equation for the total momentum in the radial

direction
We take ¢ to be m § for the atoms and m,§ for the mole-

cules to obtain the following equation in the radial direction,

dprr

dr rr pGG

where the collision term is zero and pij is defined by
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Carrying out the integration in equation (2-19) and substituting into -

equation (2-18), there is obtained
{sin Za!-Za)-g-(n T, -n,,T,+n,,T, - n,,T.)
der V1171 1272 2171 2272

d
+1r-a? (nliTi +n12T2 +n21'I‘1 +n22T y=0 . (2-20)

2.3.4 Conservation equation for the total energy

Since the total energy is conserved during the process of col-

lision, the heat flux in the radial direction must satisfy the relation
rq, = B! , ' (2-21)

where B' is an integration constant. Using equation (2-13), we have

1
Zn 3n,, . Zn 3n =
k) 3/2( 11 21\ _ 3/2( 712 22
x(Z5) r°°8°‘[T1 fmi”’T@) T2 (¢m1 *WZ)J
B - cu~E~<13.1 . (2-22)

2.3.5 Momentum equation for the atoms in the radial direction
The collision term in this equation no longer vanishes because
of the interchange of momentum between the atoms and the molecules.

Following the same step as in section 2.3.3, we have



-18-

| 3 d . d
(w- 2a+sm2ar)r-a—;(n“T1) + (r+2a-sina)r a—f(nizTZ)

«C'

1
- TN o F) -
= = 2.1rA1(8md12) (n1 +2n2) R (2-23)

where in the last term, m is the reduced mass mimz/(mi-%'mz), A1
is a constant in the collision integral, and c'l12 is the constant of inter-
molecular force potential, In evaluating the collision integral as given

in Appendix 2B, the intermolecular potential is assumed to be

Maxwellian.

2.3.6 Equation of heat flux in the radial direction

In general we can write two equations of heat flux, one for each
species, However, as we need only one more equation, we choose a
linear combination of them which gives rise to simpler expressions.

Letting ¢ be m1_§|§ Iz, the radial component of the moment equation

becomes
de e -e
irr irr 7160 _ -
dr + r - niALPi coll, ’ (2-24)
where
- 2 .3 .
eiij-gmifigigj\gl a’e . (2-25)

The evaluation of the collision term is given in Appendix 2C. A

similar equation for the molecules is

de e - e .
2rr Zrr 200 _ - -
e T = 0,805 coll, - - (2-28)
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. where

i szfzéiéj le|%a% . (2-27)
Combining equations (2-24) and (2-26) together, we obtain

| . d 2 e d 2
(w- 2a +sm20)-a—1;[ (nil-n21)T1] + (17+201-sm2.a)—&;[(n12- nZZ)TZ]

1 3 3
- 2 \2 2
-(4m 11) 5cosa(——-—]1) AZ{—(n“T1 n,, 2)[n“(ﬂ' 2a)+n12('n'+2a)]

c' ™4 z . .
-—Z-R-;(—Z-E—)[(Tr-Za+s1nZa)n“T1+(1r+2a—s1n2a)n12T2]
TR ( Zk) [(“'2“)n11T1 t{rt2a)n, ,T 2]}
: 3 3
+ (8md %i a(k ) -5( Tz)[ (m-2a) +n, ., (wt2a)]
: md,,)* 75 cos ng, T 1 "Ryt T 22\

A
l 2

1 .
ZR —~% ) [(17-2«cv+stcv)n11T1 +(-n-+2a-sm2a n, 2]
1
3¢ (™2
———ZRi =i ) [ (w- 2a)n21 + (m+ Za)nZZTZ]

4
3¢t T2

+ w (= ) [(m-2a)n,,T, +(1-r+2a)n12T2]

1
1, T, 2

——Z-P?i— -—2-15-1—) [(7-2a tsin2a)n,, T, 'r(n-+2a—sinZa)n22T2]
33

+ 7 (n Tz-n TZ)[n {(w-2a) tn (1T+Za)]}

BT R Tl iy VAL ¥ 12
. 1 3 3

- (4m2d22)2§ sa(kzw {(n‘21 i‘ ZzTg)[nZI(w-Za)+n22(w +2a)]

Ry
\2
:{IZ{C Zki) [(w=2a+sin 2<:v)nle1 +{7r+2a-sin Za)nZZTZ]'
3~fzc 4 |
- (Zk )[(Tr Zoz)n21 1 -l~('n'+20z)nZz 2]} s (2-28)

where we have used thevfact that m, = Zm1 to simplify the equation.
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.d11 and d22 are force constants for the atoms and the molecules
respectively, and A2 is another constant arising from the collision

integral.

'2.3.7 Boundary conditions

We have used, first of all, the condition that the mean velocity
is zero in evaluating the continuity equations. The conditions for the

temperature field are

'I‘1 = Ti at r = Ri (2-29)

TZ = T0 at r= RO (2-30)

Wheré Ti is the temperature of the wire, T.O is the temperature of
the cylinder, and R0 is the radius of the cylinder.

For chemical reactions, the condition at. the outer cylinder
can be written in a form appropriate to the continuum conditions. The

recombination rate is equal to the flux of the atoms toward the cylinder.

We have
nu, = krn at r= RO (2-31)

where kr is the rate constant for the second order recombination

reaction. Using equation (2-14), we obtain

—

: 3
= (€ = _
n1 = (m at r = RO . (2-32)

On the other hand, the condition at the wire cannot be obtained in this
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way so that we have to resort to the sticking probability concept for

the dissociation reaction. The sticking probability T is defined as

Jos=J
T =—Z—1-.——-g-9- at r=R, , (2-33)
I2i

where jZi and j20 are the incident and the reflected fluxes for the
molecules, We assume T to be constant without going to details
which will be discussed in Chapter 7. Carrying out the calculations for

the fluxes, we have

Doy ¢ Ty z '
g =1 -—\ = at r=R, . (2-34)
s no,o 'I‘.2 i

The last condition is a statement that the density at some given point is
known. This is equivalent to the condition that the total number of
molecules and atoms is given since the two conditions are linearly

related. We choose the number density of the molecules to be

= n. at r=R. .. (2-35)

2.4 - Simplification of the moment equations

We are going to make the moment equations dimensionless by

letting

n

- 11

2415 o (2-36)
i
n

- My -

Ny = n'i"' ' (2-37)
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n
- _ 21 : . -
n,y —-——-—-ni , (2-38)
n
- 22
nzz = _IT 2 (2-39)
Ty
Ti = "',I'r'i » (2"40)
T0 .
€ = 1 - -—‘I‘-—i-. ’ (2-42)
T = -]%;: , (2-43)
R= 59 - (2-44)
Ri ?
1
2rm, . ¢
_ C! i
C=1x KT. ) ’ (2-45)
ii i
1
2

o)
i

(B'-C'EL) /Ty nR (5 ) ) - (2-46)

kTi
2mm.,
i

We also define the following characteristic quantities:

. 2kT. . 3
1 .

v = ('}';ri') ; | (2-47)

kT 3

m, -
i 1
P — (___.. , (2-48)

k| 3A2'n' Zd“)

kT, m %
i 2
Moy = ' (2'49)
2 3A21r ( Zdzz )
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kT

i

. — 2 N
P12 A, ( ) (2-50)
i “m7md
12
p.i\/—'rr
MT amy ! (2-51)
i1
i
N crrmov (2-52)
i 2
D
i2

niiTi - nisz =C , (2-54)
== A2
n,, T, -5,,T,=-%C , (2-55)
2 T 42 T -1..T
(sin 2a - 2a) = (1—111'1'1 n,T, 1121T1 nZZTZ)
d e = .= = .— = .= ==
— . + - -
+ d}'(niiTi Tn12T2+n21T1 nZZTZ) o , (2-56)
3 3
3 — =2 3 — =2
(2n +:/’En21)T1 (Zn12 +:/:2_n22)TZ =B , (2-57)
. d
(sin Za-—Za) (n11 1 12 2) +T— (n“‘]’.‘1 +n12 2)
dr dr
iR tfmmze oy, )+ TR ig N
=2 N, zL 2T Ny Ty Dya"enaal| »

(2-58)
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{w-2atsin Za) [(n11

1)T ] +(1r+201 SLanx)
dr

[ (m yT2
& -0 zz z]

3

3 .
42 i1 Z -
15 71_{(311 {7y Ty L 2010y + (r+2a)m

7o)

1 . — .
+—4C[ (v-2a +sin Za)n“T1 +(w+2a - sin Zoz)n12 2]

3 —_—

-EC[(w-;a)n -f-(-n'+2c1.f)n12 2]}
__2__5_1__1_' 5(n ‘T‘% 3)[ (7 - 2a) +0,,, (7 +2a)]
5, = ngTy-nyToln,ylw-2a) Tnyolm

{ .
--‘IC[('rr-Zaf-k'sxn_Zoz)n11 1+(-rr-r2cv-sm2a/)n12 2]

3 - = - =
+ZC(1T- 2..0.')n21T1 +{w+ ZQ)nZZTZ]

]
mlw

Cl(w-2a)n 11T1+(1-r+201 T]

1272

i . .
+EC[(w-2a+Zs1na)n21 1+(11+2.ar sta)nzz 2]

W
w

-'ff _EZZ %)[(1\' Za)n +(-n'+2q)-r—112]}

T, (- 20) *(n +22)5,,]

1 . _— =
+ '§C[ (r=-2atsin 201)n21‘T1 +{(mr+2a - sin 2a) n22T2]

[}
bl

C[(w—Za)n21 1+(1r+2.a)n22 2]} . (2-59)

Notice that the relative importance of the collision terms depends on '

the ratio R.l/)\2 whose inverse is a measure of the degree of rare-
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faction. In the present case all Ay, '}\12, and )\.Z have the same

order of magnitude.

The boundary conditions become, after simplification,

—

Ti =1 s at -1: =1 ’ (2"60)
"f2=1-e , at r=R , (2-61)
n, =alc at =R , (2-62)
PR S

ny (T4 F "
c =l -——— , at r=1 |, (2-63)
S n,,(T,)?

22' 72
EZ=1 , at r=1" |, (2-64)

where n1 and '1_12 are dimensionless number densities normalized

with respect to n, and A is defined as.

[+
(S

kTi 2 _
A= [ 21rm1 ) / (krniR ) 1 (2-65)
Also we define azo as

CYO = arc cos

» (2'66)

ol 1=

which will appear later in the results.

2.5 Solution for constant temperature

Equations (2-54) to (2-59) cannot be solved analytically without
some simplification. Let us take the temperature field to be constant.

Concentration gradients can still exist if the surface of the wire has
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. catalytic effect on the dissociation reaction. The variables are now

- reduced to four and only four equations are needed. The two equations
.to be discarded are equations (2-59) and (2-57). The former is ir- v
relevant since there is no heat flow while the latter is less exact than
the remaining equations because the internal energy is calculated
approximately. In addition, we keep equation (2-58) so that the binary

diffusivity may appear in the results. Therefore we have

n“—n12=C- ) (2-67)
- - V2 ' :
Doy =Dyy = = 5 c , (2-68)
npq gy Fogy g = E - (2-69)
L@, ,+5 )~-lcfi—ﬁ-i(" s5 )+ 2Wz-1C | (2-70)
— TR T = 2\ ™Ml Ty ’
dr kizr
where K is an integration constant.
Solving these equations we have
S
3 | )
7 = idc+ Y2t sch om0 M{E-g@)] b L (2-71)
i1 2 ™
C

. e
;12=%%-c+‘[2“'1zca+zE+? 12{F-f(a)]} . (2-72)

C
_ 15 ' '
;21=%{-‘[2-2-c-‘%—'-320a-E-'£ 1‘7‘[5*-—f(oz)]}, (2-73)
3 )
I5
;22=%{3§:c-\[‘1'12cq-E-? 12[F-£(a)]} , (2-74)
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.where F is another integration constant and 612 and f(a) are

defined as

A D
My Dy
812" R = R+~ (2-75)
1 1
_C

o 45

f(a)=-":i-‘[i—'-1—)§-3‘ (cosa’) % da' . (2-76)
0

The results depend primarily on the dimensionless quantity 612 which
is the ratio of the mean free path to the radius of the wire or the ratio
of the difussive velocity to the random velocity. Therefore 612 is a
quantity proportional to the Knudsen number and will be used to

characterize the degree of rarefaction.

2.5.,1 Free molecular flow regime

In this case . 612 becomes infinity so that we have

f(a) = EL\CZ_TE_QQ_“ , : (2-77)

and all the -ﬂij,s are constant, This result is what we have expected.

Applying the boundary conditions there is obtained

1
ap-a 2V2 ¢ V2o . 2
- _ 0 S S -
M T T Z-0c +A( 2-0 ) ' (2-78)
S S
_ ‘ o 20‘S , . :
TR Tl | (2-79)

as the concentration distributions. It is interesting to note that there
are atoms near the inner surface no matter how fast the recombination

reaction at the surrounding cylinder is, This is not true in the case of
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- two parallel plates where '1-11 vanishes everywhere when A vanishes
because both @, and o are zero., This shows the importance of the

radius of curvature in a problem with general geometric shape.

"2.5.2 Continuum flow regime

This is the case where 612 approaches zero. The results in

Chapter 7 show that o vanishes in this regime and consequently C

vanishes, Equations (2-67)Ato (2-70) now becomes

n=n, _ (2-80)
N,y =0, (2-81)
nyy TRy TRy Ty = E (2-82)
4 @ +n o)=L CE (2-83)
—nyTag, z2 T =
dr _ 612r

where we have used the assumption that —ﬁi is small compared with

unity. Solving the above four equations with boundary conditions given

by equations (2-62) and (2-64), we obtgi_n T
| _ V2 - s, ,log :_13
n1'=-1-%\fz- S,,logR ’ (2~8.4)
1- -12\/—2 - Sizlog -__-R-—
n, = £, (2-85)

1 —
1- -2-\[2~ SizlogR

where
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(en
S

S.. = lim . (2-86)
ta §,,~0 612 |

depends on the mechanism of the dissociation reaction. Equations (2-84)
and (2-85) are identical to the steady state solutions of the ordinary

diffusion equation.

2.5.3 Transitional flow regime

We shall use the assumption that n, is much smaller than n,

to treat the case of transitional flow. The equations to be solved are

nyy -'{112 =C , _ (2-8T7)
Ty - Ezz = - %ch s (2-88)
n 4 +,n12 + n,, + n,, = E , (2-89)
SICTEL PR (2-99)
dr 5121'
The solution is
. on‘s _
V2o a, 2V2 ¢ V2o 3 t &6,,{2-0c )1og.r
A= | py log R+ — et + A7) e s
1 5, (2-0_) T 2-0 2-0 V2 o
12 s s s -
: 1 52 )logR
12 _
V2o o 20«

s
- ——-—-—-————612(2 - o_s) log r ~ T O_S) s (2-91)
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, \/-Zo's _
V2o «. 2V2¢ 2o 2| B Z-c)i°BT
m, =1+ 5 logR +-2 —=2 +a(5—2) 12 s
2 6122—0‘) T 2-0 2-0 V2 o
S S S =g
1- R )1ogR
i2
\/-Zo‘s _ Zo‘sa
+612“-0's) log r * TI“Z"O‘SS * (2-92)

Equations (2-91) and (2-92) agree with both equations (2-78) and (2-79)
by taking the free molecular flow limit, and with equations (2-84) and

(2-85) by taking the continuum flow limit.

2.6 General solution by the method of linearization

To linearize the six moment equations given by equations (2-54)
to (2-59), the temperature variation is assumed to be small., In
general the sticking probability T is also small except in the free
molecular flow regime. The assumption that ?11 <<1 and IEZ— 1 I << 1

affords considerable simplification. At a large distance from the wire,

?112 and ?122 are the main contributions to n; and n, respectively.
This implies that ?112 << 1 and [?122- 1| << 1, On the other hand,
?111 ‘and —ﬁiz contribute equally at the wire to ?11 so that ?111 << 1.
Similarly ?121 and _ﬁzz contribute equally to 1—12 at'the wire so that
[n,, -1] <<1. Welet

?111 = Yi H (2"'93)

NV (2-94)
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n,  =4i+tz, , ' (2-95) |
n,,=1tz, , (2-96)

7f1 =i+x , ' (2-97)

T, =

Substituting these relations into equations (2-54) to (2-59) and neg-

lecting all second and higher order terms we obtain

Yy -¥,=C ~ (2-99)
z, ~2,=B , (2-100)
X - %, = Y2c-2B , (2-101)
Sy, ty.tz, ta tx, tx) =0 (2—.102).
— W T YT B TETRIT X ’

CR,
d 1
——_—(Yl + yz) = - — s (2-103)
dr N, ST .

12 |
4 7CR, W2 CR, 16BR,
—(y  tyy-2y-2;5) == — + — + — , (2-104)
dr 3)\.121' 1 2\2;' 15 )\.Zr'
with the linearized boundary conditions,

x, =0 at r=1 , (2-105)
X, = € at r=R , (2-106)
(xi-xz) +~ 2(21-22) = -0 at r=1 , (2-107)
i( +y,) +f-9( -y,) = AYC  at ?.= R (2-108)
2TV T WYy g
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+ z

= 0

2
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The solution of these equations is

where

at

5v2 A

- - 1,- 2
xy= x, = b€ - o (1 5)(4'* 5%, ) ’

¥1° YZ:\/’2 T

)

x1+ X2

Y1+Yz

z1+zz

__ 4 _ay (L
=-16c-ac_to(1-8) (8 +

5v2 Ny
16 )\12

5v2 N,

1
= -c +o (1-6)(F t—g— )
s (4 8)»12

'-u-a)@e+%as+u

2

15v2({1-8)\

5v2 x2>
s 4)\12

S

it
q

+2A(h69§

15v2 (1-8)\

.

2 lo

(s 192 ) 220

log R

g T

+u-6)(26+1

- 48

M2

lo

2

gR

5V2N, o

w1
n
-

)

log r
log R

0

——

log T

2
o ta
s s 4)»12 )

1+

4 R,
i

15 A

log R

logR

(2-109)

(2-110)

(2-111)

(2-112)

(2-113)

(2-114)

(2-115)

(2-116)
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. The quantity 6 is defined to éimplify the results but also serves as a
measure of the degree of rarefaction., §—0 represents continuum
flow while § — 1 .represents free molecular flow.

All the physical quantities can be obtained by substituting

these results back into equations (2-8) to (2~13) as

T,-T 5«fzx
To= 0 "‘" - 5’(4 3 v
i 12
5v2 \ _ -
+lz“'5) (2€+%Gs+ X : "s) log ©
12 log R
: 5V2 A, .
a o 1 2
+ ;66- ;05(1-5)(7_," +"—""—'8 )\12) ’ (2-117)
15v2 (1 - )\ - V2c i
1 2 log T S 2
— = 1- + -a)+ A(V2 , (2-118
o, - %s T 85X, ( logR> —=(ap-a) + A(V20,) ( )
n2_1+ '15«f2(1-5)>\2 log T
n. o FERN - =
By s 12 log R
52N, —
+(1'-5)(€+%"s+8>\ 2">10g—r—
12 log R
5V2 X, I |
[ s to -0 (1-8)(g TGT_)J ; (2-119)
2kT. 4 . BV2A, o
D 1 2
Q= 'rrR.lnikT.l(n_mz ) [3ae.+ o - 3¢S(1-5)k4+ 8}\12” , (2-120)
kT. %

Ji ZmRu-mi( 1) , (2-12-1).
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| ST

‘ . lcTi
Typ = ~V2mRio m,(

) , | (2-122)

where Qr is the total heat transfer rate per unit wire length, and -

J, .. er are the mass transfer rates per unit wire length for the

atoms and the molecules.

ir

The results do not depend on \,, showing the negligible effect
of the atom=-atom collisions since the concentration of the atoms is
" low, However )‘12 appears in equal importance with )\.2 although
collisions between the atoms and the molecules are far less frequent
than those between the molecules themselves. This is due to the fact
that collision between different species has an effect on the momentum
equation while collision among the same species has effect only on the

heat flow equation,

2.6.1 Limiting case of no dissociation reaction

If we set oy equal to zero to represent the situation of no

dissociation reaction, we obtain

T.-T . -
o =361 +22) + (16 20BE (2-123)
i "o T log R
2KT, 1
Q= 3miRik(;r—r;1—2—) (T~ To) (2-124)

where we have approximated @y by /2 since R>> 1,
Equation {(2-123) agrees exactly with that of Lees (22). The
first part of the right-hand side represents a "local" collision~free

temperature distribution weighted by the rarefaction parameter &
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while the second part represents the'temperature field caused by
collision. If we take the continuum limit of equation (2-124) we obtain
—_45ﬂp2k(Ti- TO)

= — (2-125)
4v2 m, log R

roo

Comparing this with the solution obtained from the heat equation, we

conclude that

45kp,  45p,C

2-— = A4 (‘Y-i) ’ (2'126)

K. =
_ 8«f2mz 8\/-2mz

where Ky is the thermal conductivity of the molecules. This formula

agrees exactly with the one given by Chapman and Cowling (8). Also

we have

S LI (2-127)
Q" i5\ ? ' -
00 1+ 2 —
4R, logR

which is identical to the expression obtained by Lees {22).

2.6.2 Fourier limit

This is the case of continuum flow with 6 — 0., However, as
we have discussed in section 2.5, the sticking probability L becomes

zero in this limit. L.et us assume that

O- N
lim —g‘? =s , (2-128)
§—0

where S is finite. Taking this limit on equations (2-'117) to (2-122),
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~we obtain the following results:

Ti-T  ogT -
T = —— (2-129)
i 70 log R
B 45v2 M log T
oSy (1-2E5) (2-130)
i 12 log R
12 15v2 . M2 1ogF , logT
=1+ L 5o EL 08¢ | (2-131)
i’ _ 12 log R 10g—1-2
15 nkT, A,
Q. =—— L2 (3¢ +25 - %{-Z-si—z-—) (2-132)
4V2m,log R 12
151rp2
J = ——"=5 , (2-133)
4/210gR
15 T,
Jy, == ———=5 . (2-134)
4¥210g R

These agree with the solution of the appropriate continuum type equa-
tions. In equation (2-131) the second term is due to diffusion while the
‘third term represents the variation of concentration with temperature.
In equation (2-132) the first term is the conductive heat transfer while

the other two represent the contribution to energy transfer by diffusion.

2.6.3 Knudsen limit

This corresponds to the free molecular flow regime where the

effect of collisions is negligible. Taking 6 = 1, we obtain

T (1 + %-T-) , (2-135)

oo

T:-Tp
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n, \/'20' é
% = = (2y- @) +A(xfz(r ) , (2-136)
n

2 acl c
;1—1--1+1T(2€ to) (2-137)
Qr = Jir = er =0 . (2-138)

Here the temperature field is independent of T and it has a jump at
the wire v&ith a value of half the total temperature variation., The jump
is almost zero at the cylinder. It is very interesting to notice that the
value of n, at the wire depends on ‘ozo. In contrast, in the two parallel
plates geometry there is a temperature jump of —é— on both plates and
.thé values of ng and n., are both constaﬁt. |

2

2.6.4 Limiting case of uniform temperature

We wish here to set in equations (2-117) to (2-122) Ti = T0 to
see whether the results agree with those of section 2.5 or not. We.

have € = 0 so that

T.-T : 5V2\ -
i 1 2\ (logr
=¢ (1-8{(= + L 2.8 (2-139)
T, s (4 8\, >(10gR 2 )
n 15{zx
S e —_—2(1- 5)(1 ——&-—) 2o +A(wfzcr) (2-140)
By s 12 log R
n, 152 "2
o =l e (1- 6%
s 12 log R
' . 15V2 ),
- logr _ a\, e -
+ (1 - 8¢ (4 o~ ( 2") +Z0 . (2-141)

12 logR
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' 1
2kT.. 2

Q= miRikTi<—;T-r}l~j) [o's -3¢ (1- 5)(%+§%)2)J . (2-142)
KT, 1 :
3, = ZnniRimlvs(TTrr—l-;) , (2-143)
KT, 2 :
I, = —\[aniRimzas(“m;) . . (2-144)

Apparently the results do not agree with those of section 2.5 since the
tgmpkerature field is not uniform even with Ti_ = TO. This phenomenon
is caused by the collisions between the molecules and the atoms. We
have assumed a fast exchange between the rotational energy and -
translational energy of the molecules. Hence the translational energy
‘is not conserved during a collision process and, therefore, the tem-
perature field will change since it is defined as two thirds of the
translational energy. The nonvanishing heat flow in equation (2-142)
is due to the difference of the energy carried by the molecules and the
atoms.

The concentration fields given in equations (2-140) and (2-141)
.agree very well with those obtained in section 2.5 provided that T

is small,
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Appendix 2A

CALCULATION OF THE HEAT FLUX

The heat flux q. consists of two parts, the translational energy
flux and the internal energy flux. The first can be calculated by direct

integration to be

) 3 3
3 5,0 n : 5 /0 n <3
of" = x(2K) COSQ[T.;-(_J_i_Jr L) ol (HE 2] 2any)
* " \/ifnl \[mz \/-m1 \/-mz

by using the distribution functions given in equations (2-1) to (2-4). As
for the second part, the internal ene‘rgy carried by the molecules con-
tains the rotational energy, the vibrational energy, and the electronic
energy, while that carried by the atoms has only electronic energy. '
We assume that the exchange between translational energy and rota-
tional energy is instantaneous while the vibrational energy can be
neglected except at high temperatures. Choosing the electronic energy
of the atoms to be one half of the bond dissociation energy _E-T , We

can set the electronic energy of the molecules equal to zero. Let us

write

q;nt =n.u —Eel + qro’c

1%y 2r ° (2a-2)

where q;nt is the internal energy flux and qzzt is the rotational
energy flux carried by the molecules. Using Euckens approximation
and assuming that the distribution of rotational energy is independent

of velocity, we have
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rotational
siate
ot 3
CEE Z .1 23 2 478 (2A-3)
J
where
f21j' for 4>€Qi s (2A-4)
£5= .
fZ.Zj' for ¢ € QZ , (2A-5)
with

. es exp {-[E, (T N/ (kT,) (-6
2ty Zexp{ [E T/ GeT))) ’

exp {- [E,(T,)]/ (kT,)}

f =f
22 ez Zexp{ [E,,(T )]/ (kT )}

. (2A-7)

We have, here, introduced two distribution functions for each rotational

state. Direct integration gives
1 1

| 1 1.
rot_ k Frot 2 =rot 2 |
Gy = °°S“<T‘wmzﬁ 218, (TT -n, K, (Tz)TzJ v (2A-8)

where EZOt(T) is the average equilibrium rotational energy per mole-
cule. For symmetrical diatomic molecules, a good approximation

from a quantum mechanical treatment is

r°t (T) = KT . (2A-9)

Thus we have

1

oo FE (G 22y

N —=el
)J +n1_u1rE1 .

(2A-10)

)
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Appendix 2B

COLLISION TERM IN THE MOMENTUM EQUATION
FOR THE ATOMS

The average momentum of the atoms changes because of col-

lisions with the molecules, Detailed mechanism of collision must be

studied in order to understand the total variation. Let £, _§|1 »my,
and _§_2, -é.;_’ m, be the velocity before collision, the velocity after
collision, and the mass of an atom and a molecule respectively,
Referring to Figure 3 where U = _§_Z - _§_1 is the relative velocity,

we have the following relations:

S5 T, 0 U, (2B-1)
\ Zrn1
Ey b, - (e s Ve . . (2B-2)

rn1 +m2 - —'=a

where L, is a unit vector pointing to the closest point of approach.
This vector can be expressed by an orthogonal set of unit vectors.
We choose one of them to be E/U and the remaining two arbitrarily

in the plane perpendicular to U. Hence

U .
=:_ ) . - . . . 23_3
0 =G cos © +_e_131n6co_sn _e_zsmesmn { .‘)
The relation between 6 and Y is
cos?0 = (1 -cosx)/2 . (2B-4)

The collision term in the mornentum equation after putting ¢1=m1_§1
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Fig.3 DEFLECTION OF MOLECULE
IN RELATIVE COORDINATES
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" becomes

ng 8y on =Sgggmi(él“ENUf1<§1)fz‘§z)b db dn d3‘¢=1 d3gz .

(2B-5)
Let
‘ | 2wproo
J =§ S. NJ'i_ 4’1) bdbdn , (2B-6)
0 vo
'and .
(i) P fale i
Q =g (1-cos ¥X)bdbdn . (2B-7)
0 vo ‘
We have the following relation for Y, = m1_§_1 :
s=muat . | (2B-8)

Hirschfelder (14) has givén the relation of Q(l) with the intermolecular

force arising from a potential

d .
P(r) = --—1n—2 . (2B-9)
r

For Maxwellian molecules with n = 4, we have

8d,., \3 » .
o) = 217(—_-—1-22) A, , (2B-10)
mU- :

where m is the reduced mass and Ai's are constants listed in

" Table I (14). From these we have

n Ay co11=§5‘2"(85%2)34‘\1(§2'§1)f1(_§1)f2(§2) a¢, &, . (2B-11)



n 4 6

-4 4

We then substitute the expressions for f1 and fz into equation (2B-11),

take the radial component, and integrate to get the final form of the

collision term,

= (n2+-2-n1) . (2B-12)

[ ied

ny By oy~ ~2m(8md,,)

Table I. Values of .Ai for different values of n

8 - 10 12

14
. 0.298  0.306 0.321

o0

0.333 0.346 0.356 0.500
, 0.308 0,283 0.279

0,278 0.279 0.280 0.333
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Appendix 2C
COLLISION TERM IN THE HE‘AT FLUX EQUATION

The equation of the heat flux employed in this chapter is a
linear combination of the two individual heat flux equations for the
atoms and the molecules. The collision term for the atoms consist
of two partsl, the change due to collisions with molecules and the
change due to collisions with atoms. We are going fo work out the
first part and obtain the second by interchanging the subscripts. With

4’1 =m, |_§1 }zgi , equations (2B—1)' and (2B-2) give

RRE 45(201. H)(Ea'§1)§-1 + ZEw(Ea' _g)z_g_1+2?n—(_qa- _I_I_)ga[-‘,i,i '2

o )2 — 2 3 g
+4mw(§_a- U) (Ea. 51)-9-01 + 2mw (Ea 1) &, (2C-1)
where
Zm2
WE T e (2C-2)
)

Substituting equations (2C-1), (2B-3), (2B-4), and (2B-7) into equations
(2B-6), we obtain an expression for J which is too long to be given

here. Since J is a function of _§1 and _§_._2, and
n A0, o=\ \ JUE(E L, (E,) a8, a’t (2C-3)
17271 coll 1=1172=2 i 2’ .

the collision term is obtained by integrating the right-hand side of

equation (2C-3). In fact we have
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Sglg lziff a’t, a’t,

_kcosa{ 2k )
B mm m,

NI)—a

33
(n“Tf-niZTg)[n21(11-2a)+n22(1r+2a)] , (2C-4)

€ ENE, 1,1, d3§ a%
3

1
kCOSa

= 4'n‘m n,; T{-n,, z)“" Zatsinze)n, T,

+(1r+20z—sin201)n12 2] P (2C-5)

2
§§ 6,1 81,015, %8, @8,
1

_ 3kcosa, 2k )"‘ %_ 1 } .
© TZwm, \wm,; (ny  Ti-n, T (m-20)n,, T+ (7t 2a)n,, T, ]

(2C-6)
and three similar expreséions-by interchanging the subscripts 1 and 2.

These are used to obtain the first part of the collision term as

1
— — 5 2kcosa
- A
n Aoy o1 = - (8mdyy)* =g
: 1

X(TA, +4A )-1—(—2—1‘—)2( T3en, T n, , (r-20) 40, ,(r +20)]
1 2'm \wm LRI Gl b TR Ut s FA L

C' . .
+ (24 -104,) m-l[ (m-2a+sin2a)n,, T, +(wt2e-sin2a)n, ZTZ]

3C!
SR Ri [(Tr-Zcz)nz1 1—J-(-m“Zoz) ZZTZ]

+ (4A -14A
L 2

5)

_3¢C'

+ (A, +10A,) Tm ® 1R [ (w- 2a)n, T, +(nt2a)n

12 2]
+ (8.A T2A ) R [('rr-Za'I'sinZa)n T +('rr+7.a sin 2a)n
1 3 .3_

1 [ 2k \2 2 2 i
+(.-16A1+8A2)?n—2 ;—n-;z) (n21T1 -nZZTZ)[nii(Tr—Za) +n12(v+2a)]} .
' (2C-7)

22 2]
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- The second part is obtained by changing the expressions of fz to those

of fi' We have

n By on

3 3 1
1 = 5 : \Z
5 2k cos a 2 2 2k 2
= - Rl - - e
= -(4md;)) = A T, , T n, (= 2a)+n12('rr+2a)]<n_m1)

1

+ Zn%ﬁ—i[‘(w-ZQ-i-sin Zae)n1 1_’I’1 +(wt2a-sin Za)nizTZ]

+ (2C-8)

3C__[(m-2a)n,,T +(r+20)n
m R.1 1171

T,] .
) 1272

We can derive the collision term for the molecules in a similar way.
The right-hand side of equation (2-28) is obtained by subtracting twice
the collision term for the molecules from the collision term for the

atoms.
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Chapter 3

HEAT AND MASS TRANSFER FROM A HOT FINE WIRE
TO A SURROUNDING CYLINDER -- METHOD OF
COMPOSITE SOLUTION

3.1 Introduction

The problem of the previous chapter will now be investigated -
by a different approach based on perturbation methods. Since there
are two characteristic lengths R, and R, with different order of
magnitude, regular perturbation cannot be applied to this problem.

We have, therefore, to resort to singular perturbation methods such
as those presented in the books of Van Dyke (29} and Cole (9).

Physically, we notice that the‘ gas behaves like a éontinuum
near the outer cylinder since its mean free path is quite small com-
pared with the radius of the cylinder. Near the inner wire, however,
molecules and atoms collide with the surface of the wire far more
frequently than among themselves. This suggests that the distribution
function in the Boltzmann equation can be expressed by two series;
one valid in the region near the cylinder and another valid in the region
near the wire. We could then match the two series and obtain a com-
posite solution which is valid in the whole region. -Mathematically,
however, this method cannot be carried out easily because of the com-
plex expression of the collision term in the Boltzmann equation.

An alternate method is suggested based on the same physical
argument with less rigorous mathem#tical justification. First we

obtain the distribution functions for the atoms and the molecules near
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. the wire by assuming free molecular flow there. Near the surrounding
cylinder we will not be concerned with the distribution functions but
we shall solve the transport equations of continuum type directly. Then
we match some macroscopic quantities to determine the unknown con-
stants in the two solutions and obtain the composite solution by appro-
priately overlapping the two solutions.

We shall refer to the solution near the cylinder as the "outer"
solution and that near the wire as the "inner" solution. Since the
matching procedure is the most crucial in this method, its details

will be given in section 3.4.

3.2 The "outer" solution

In the region near the surrounding cylinder, transport equations
of the continuum type are being used. f‘irst of all, the equation of
motion implies a constant pressure field since there is no bulk flow.
Applying the ideal gas law therelis obtained for the total number density

n

n= 2. (3-1)
The fact of no bulk flow also implies

jir_= ’Zer ! (3-2)

where j1r and er are the atomic and molecular fluxes in the radial
direction. Two other equations, the equation of continuity of the

atoms and the equation of 'energy, are written as
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rj, =0 ., (3-3)

4
dr
d
-CT.I: rqr =0 ’ (3-4)

where q, is the radial heat flux. Relations between the fluxes jir

and 9. and the appropriate gradients have been given by Bird et al.

_(1) as

dx
i o= 1 _1,TdT .
Jip T nDiZ dr TD dr °’ (3-5)
- ., 4T PRI -
9 = -Kyp g7 T H THp o (3-6)

where Xy is the mole fraction of the atoms, D is the binary

i2
diffusivity, DT is the thermal diffusivity, "{12 is the thermal con-

ductivity of the mixture, and I—I1 and I-I2 are the enthalpies carried
by each atom and by each molecule respectively.

In general the thermal diffusivity is small so that the second
term on the right-hand side of equation (3-5) is negligible unless
there is a large temperature gradient. We can approximate H1 by

5 =el

7 ... =el
-EkT +E1 and I—I2 by -sz, with E

1

dissociation energy. Consequently equations (3-3) and (3-4) become

defined as half the bond

dx

d 1y _ . o
ar r(nDiz =) =0 (3-7)
. dx., =
d aTt . (3 —el 17 i
'&?r["iz'&+('4kT+E1>nD12 er_o : (3-8)

which are the differential equations to be solved.

Two of the boundary conditions are given at the cylinder,
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‘ namely

w
o
L
i
o]

0 s (3'9)
. 2
31r=krn1 at r==RO , | (3-10)

where we have assumed second order kinetics for the surface recom-~
bination reaction. In order to solve equations (3-7) and (3-8), two

more boundary conditions are required. We let
T="T at r=R. , (3-11)
Sip =iga at r=R, |, (3-12)

as the two other boundary conditions where the values of Ta and jia
will be determined in the matching process.

The bindary diffusivity D12 and the thermal condu.ctivity Kyo
are functions of temperature and concentrafions. However, under the
assumption of small temperature variation .and small fraction of the
atoms, we could approximately treat them as constants corresponaing

to the conditions of the wire. In addition, K can be replaced by K

12 2’

the thermal conductivity of the molecules.
Solving equations (3-7) and (3-8) with the boundary conditions

(3-9) to (3-12), we obtain

iy R iRz

1a™i T 1a=1\?

n, = - ——— log =— * , (3-13)

i b, R, ( krR0>

T=T, -(T =T )1c>g (Ro/) (3-14)
T 0 "2 Tog (Rg/R)
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T T'-Ta log (Ry/x)

.T. -
_ {770, 70
ny =n; + ( T, TTT Tog (RofRi))“i
e (R (3-15)
D g5 ’ .
12 '
R,
e Tda T . (3-16)
T - T R.
a 0 1./3 —=el i.
=g a0 1iCyy i -
=1 logRy/R.} T (4 tE ) T Jla’ (3-17)

where n, is the number density of the molecules at the wire and 'I'.1

is the temperature of the wire.

3.3 The "inner" solution

Free molecular flow is assumed in the region near the wire
where the collisions between the gas particles are far less important
than the collisions between the gas and the wire., We assume that the
incident fluxes coming from infinity are in Maxwellian distribution with

“temperature Too and number densities n and n, . Thus the

ic0 200

incident fluxes jli’ jZi of the atoms and the molecules are given by

fre

kT .32

j“-:‘nim(anc;i) ? (3.'18)

[

kT .3 S
J2i nZoo(ZTrmz) o (3-19)

The outgoing fluxes jio’ jZ.o coming from the surface of the wire are

assumed in Maxwellian distribution with temperature Ti and number

- densities ny . and Ny

o

i =n (—-—-——kTi (3-20)
o T P4 217m1> ’ :
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1
i =n Eﬁ—)z (3-21
J20 = P21\ Zwm, , )

The temperature and concentration fields can be calculated as

1 o 1, a '
TG 3) Tz t3) (3-22)
1 o i, a
Ty “nii(i'?r)+n1oo('i +'1'r) ’ | (3-23)
n, =n,(3-2) +n, (5+9) (3-24)
2 2i\2 w “2o0\2 w/ '

. n1
where we have used the assumption K— << 1 in obtaining the tempera-

2

ture field. The angle o is defined as

R

@ = arc cos — . (3-25)

On the surface of the wire, the condition of no accumulation implies

Bgp 205 =3, F2p - ' : (3-26)
Another condition is formulated by defining a sticking probability o
for the dissociation,

- 3217 J20

, - (3-27)
32

S

which is taken as a constant. Detailed study of the sticking probability

will be given in Chapter 7. ‘
From the above two relations, we obtain formulas for the heat

flux A2 the flux of the atoms jir’ and the flux of the molecules er’

all in the radial direction and evaluated at r = Ri’
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q, = 2j KT~ T _) +3j,(T.-T_) +oj, kT, , (3-28)
jir = Zo-sti : ' | (3-29)
Jar =7 sl o (3-30)

where we have assumed that the energy carried by an atom is 2kT
and that by a molecule 3kT. Further simplification is achieved by

replacing n,, by n; and T_ by T, in the expression for f,; so

that
KT, 3 '
Jip T Z.O—sni( ZTrmz ) ' - (3-31)
kT, 3
Jor 7 "sni(znmz > . (3-32)

3.4 Matching
Two different kinds of quantities are to be matched. The tem-~

perature T and the number densities n, and n., are intensive

2
quantities while the heat flux 9. and the molar fluxes jir and er

are extensive quantities, When matching an intensive quantity, we
match the "innezr" ‘s‘olution at r = oo with the "outer" solution at

r= Ri‘ This is a general matching principle suggested by Prandtl (29).
The extensive quantities in both solutions will be matched at the same
position, r = Ri‘ This is necessary since matching extensive quahtities

at different positions makes no sense. Specifically, the matching

equations are
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lim (T)outer = 11m (T)lnner s (3-33)
r**R.1 -0

lim (ni)outer = lim (ni)inner ? (3-34)
r--*Ri 00

lim (nZ)outer = lim { Z)inher ! (3-35)
r—R. -+ 00

(Jir)outer = (Jir)inner at r = R.1 , (3-36)
douter = (9edinner at ¥ =R; ! (3-37)

The above conditions are combined with the expressions obtained in

the previous two sections to give

Ta = TOO s : (3-38)
Jia 1 Jia :
—-——-——Di log - ( ) n = n ’ (3-39)
n, + Ti- Ta n,=n (3~-40)
i -'I‘i i 2oo ’ .
1
2

jia B chni(ZmZ ) (3-41)

K (T -T )
Rlog(R /R)

3

G I kT, = 25y KT =T )+35,,(T;-T )to J, kT,
(3-42)

We now define
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2
7\.2 = 'kTi % , (3-43)
45k (5
2
D
: 12
2 2rm )Z
1 L
[ Ri kTi )3_"2
A = J ’ (3"4.‘5)
] krniRO m,, :
5= ! (3-46)
4 R; Ry 7
1 +—1—5- <~ 10g —ﬁ-
2 i
T
0 .
€ = 1 - “‘T" ) . (3 47)

and substitute these together with equations (3-18) and (3-19) into

equations (3-38) to (3-42) to obtain

— 1 -
T, = 6T, +(1-8T(1 -z o) , (3-48)
A (1-8) 3
_15V2 2 2
Moo "% T8 i N6 tA (Jz o-s) s (3-49)
1
n, =mn + ni[ e tz o (1- & . (3-50)

3.5 Results
Substitutiﬁg the expressions for Ta and jia into equations

{3-13), (3-14), and (3-15), we obtain for the "outer" solution

T,- T log (R;/7)
T € - -8 - g oI R/R) (3-34)

1
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15v2 M (1-8) log (Ry/7)
7% T8 TN ,8 Tog (Ry/K))

1
+ A(\/-Zo- )Zn. , (3-52)

it

| log (Ro/r) 3
ni-l-[e -.(1-6)(6- ———-—7——10g R R)_]

5V2 Ny g-p log (Ry/7)

- n.o . {3-53)
8 "i's 7\12 & log (RO/Ri.)
Equations (3-22), (3-23), and (3-24) yield the "inner" solution,
Ti- T 1 o T .
T, ={(5t+ -)[set+t—r (1-8)] ., (3-54)
vz :
- 15v2 2 1-§ \2 : 1l « ' _
TRE R b v + A(\f20'8> n +V2e (5-9n, ,  (3-55)
o s
n, =mn, T 7‘_[56 +---§(1-6)]ni . | (3-56)

The composite solution is obtained by the following method. For any

variable v, we write

+ (v). - lim (v). ., (3-57)

v = (v)
outer inner inner
. 00

in order to satisfy the boundary conditions at both ends. When this is

applied to the present case there is obtained

T.-T o
i

= 5e+T§(1-5)+(1-5)(e- )——S——+ [6€+——-(1-6)]
“i : 1ogR

-

of

(3-58)

n A - ' - 3
1 is5¥2 "2 1-8 log T 1« 2
T =c (1 - __)+\/_20'S('2': TT) +A(\/-2 O‘S) .

i s 8 A, & log R

(3-59)
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n ' A ' - G -
?1'§= (o 1.2\/2 }\2 1_66 1ogi+(1_6)(€__6§)10g_r
1 12 log R log R
o s |

+ 2lee+-2(1-8)] (3-60).

where T and R are defined by

; = -é_. ) (3-61)
1 .
R
- 0 _
R“ "R""' . (3 62)

.

The total heat flow rate Qr and the mass flow rates Jir and JZr

for the atoms and the molecules are

[

. ZkTi. 2 o,
Q= -rrniRikTi( mz) [36c +—2(1-8) +o ] ,  (3-63)
1
le 2
Jip = 2““1Ri““1“s<?55;> , (3-64)
1
KT, \2
J. =-V2 m.R.m.o ( ) . (3-65)
2r 1717727 s wm.,

3.5.1 Limiting case of no dissociation

We put o = 0 to describe the case of no dissociation. Equa-

tions (3-58) and (3-63) then give

T.-T - '
..__.,_Tl_T = .2(1 F2% (1.5 R8T (3-66)
i 70 i log R .
1
2KT, \*
Q_ = 3mRKT - Ty (—W;n-;) , (3-67)
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which are identical to equations (2-123) and (2-124) in Chapter 2.

2.5.2 Fourier limit

In this limit we have 6 = 0 and let
o

lim —5-5- =S . - ' (3-68)
§—0

Taking this limit on equations (3-58) to (3-60), and {3-63) to (3-65),

there is obtained

T.-T - ‘
i - logr , . (3-69)
i"To 10gR
! 15y2 M2 log T
—= = 8=z (1 - — ) (3-70)
i 12 log R
n N - - :
E.?:=1+5185‘[2}\2 logr ;elegr | (3-71)
i 12 log R log R
15ﬂpzk 3
Q= — (3¢ 59T, , (3-72)
42 mzlog R .
15 'n'pZS
Jir = "—'——'—'—"':_—" » (3-73)
4/2 1og R
15 -np.ZS
JZr = - ——, (3-74)
a2 log R '

where By is defined as the viscosity of the molecules by

1
ZkTi. 2 .
by =amy () Ay - - B
1
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- Equations (3-69), (3-70), (3-71), (3-73) and {3-74) agree exactly with
equations (2-129), (2-130), (2-131), (2-133) and (2-134) respectively.
However there is a difference in the heat transfer rate Qr between
equation (3-72) and equation {(2-132). This will be discussed in the

next section.

3.5.3 Knudsen limit

In this limiting case we set & = {1 in equations (3-58), (3-59)

and (3-60) to obtain

Ti-T = ._1. + 2 (3;76)
T.-T 2 T A

i 0
n 3

1. 1_¢ ( ‘ ' .
= = o (5-2)+a(V2s,) | (3-77)
ko
2 -y yoe (3-78)
n : m

The first two are the same as equations {(2-135) and (2-136), while the
third one differs from equation (2-137). It seems that equation (3-78)
is preferable, for when combined with the temperature field, it

satisfies the ideal gas law while equation (2-137) does not.

3.5.4 Limiting case of uniform temperature
When the temperature of the cylinder is equal to that of the

wire, € =0, so that we have
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Ti-T:q(i;G)(—i—-+ a 1logr (3-79)
T. s 12 ' 6w
i 1 og R
n 15v2 M 1-6 og T 2
a %8 X (1' )“[2" ('Z'")*A({z") ,
i 12 log R
(3-80)
_r_l__?==1+0_ 15v2 K2'1-5.10gr (1_5)(01 log r
n. s 8 N, 6 ’6’ ’
i og R log R (3-81)
2KkT, . '
- 3
Q_ = mR.kT o ( ) ( , (3-82)
1
kT. 2
J = 2m.R.m,o ( = ) .
ir i1l s ™
1
_ 1 2
er = -'\/-2 'n'niRisz’s ( —m—x—l—g) . . (3—84)

Here the temperature field is not uniform even if there is no tempera-
ture difference between the wire and the cylinder, This has been

explained in section 2.6, Notice, however, that the temperature field
is uniform throughout the whole region in both the continuum flow limit

and the free molecular flow limit.

3,6 Comparisons and discussions

In Chapters 2 and 3 We.have used two entirely different methods
to solve the problem of heat and mass transfer from a hot fine wire to
a surrounding cyliﬁder. The results obtained by these two methods
agree with each other quite well, Although experimental data are not

available for comparison, ‘the formulas obtained agree with the existing
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ones in many limiting cases.,

The main difficulty in Lees' method is the calculation of the
collision terms, In the conservation equation for the total energy,
the assumption that the vibrational energy of the diatomic molecule
is hegligible at ordinary temperatures and that the rotational energy.
exchanges instantaneouély with the translational energy has been made,
In the equation of the radial heat flux, only the translational energy
flux has been considered, because there is no way; to account for the
interchange between the translational energy vﬂux and the internal
energy flux. This does not affect the heat transfer problem for a
monatomic gas investigated by Lees (22). In a mixture where diatomic
molecules are present, the error involved in this equation has an
effect in the final results. However, a modification can be made as

given in the next subsection.

3.6.1 Modification to the solution of Chapter 2

We shall follow the procedure Lees (22) employed to obtain the
heat transfer rate of a diatomic gas from a hot fine wire from that of
a monatomic gas, ‘Since the formulas for diatomic and monatomic
gasés differ only in coefficients, Lees took the continuum limit of the
formula for a monatomic gas and compared it with existing formula to
evaluate the coefficients for a diatomic gas. Similarly, we can éalcu-

late the heat transfer rate at the wire in the continuum flow regime to

be
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' 4T 5KT, KT,
Qr = -ZTrRiKZ'a? - * Zm 'Iir * Zm ‘TZr
r—Ri 1 2
15 mu kT,
= il _@er3s) .
4/2m logR

(3-85)

Equation (3-85) agrees exactly with equation (3-72) of this chapter,

while equation (2-132) of the previous chapter shows inconsistency.

1, 52 M2
Consequently we replace the term = + —— —— in the results of
12

4 8 M\
Chapter 2 by —-é in order to make equation (2-132) the same as

equation (3-85). The results after correction are

T.-T

ir =%5€+—:~%(1-‘5)+(1-5)(€*%)M~E—+356
i log R T
O_SQ'
+'6‘Tr(1"6) )
n A . - . , 1
2 L L2185 ) g (§-2) £ a(fee,)
o8 12 log R
n 7\ - o . —
"2y +¢515g[2 )\z 16-510g_r_+(1_6) (e__ég)logi
™ 12 log R log R
+ Z[ 8¢ +GS(1-5)]
T e !
s
.Z.k'I‘i e 1
Q, = mRKT, () [36c +o t50(1-8] ,

1Tm2

| SIS

kT, .
i

Jyp = 2myRymy (’ﬁ%‘;) '

(3-86)

1

(3-87)

(3-88)

(3-89)

(3-90)
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. s
kTi L2
Tpp= V2 miRimz(‘m“rT;) ’ (3-91)
o
where in equation (3-88) we have replaced —;—56 + o + —1—%(1 - 8) by

o .
o¢e +-g§(1 - 8} in order to satisfy the ideal gas law. It is interesting

to see that these modified results are exactly the same as what we

have obtained in this chapter.

3.6.2 Numerical results

Having modified the solutions of Chapter 2 to agree with those
of the present chapter, we Wish to preée_nt some numerical results.
Figure 4 is a plot of Qr/Qoo versus the Knudsen number with dif-
ferent values of the sticking probability o where Qoo is the radial
~ heat flow in the continuum limit. To make the plot valid near the
RaTi 0

for Uy ‘In Figure 5 the reduced temperature field is plotted as a

continuum flow regime we have used the empirical formula

function of the radial position with different values of Knudsen number
‘where the sticking probability o is assumed to have the form

Kn . . <o
Ba+0.1°" Finally the group 5n1/€ni is plotted in Figure 6 versus

the radial position with different values of 6.

3,6.3 Conclusions

The method of composite solution seems to work very well in
this problem. The equations for both the "outer" solution and the
"inner" solution are simple. It needs only a few calculations, and yet

its results are identical to those obtained by Lees' method including
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Fig.4 HEAT TRANSFER FROM A HOT FINE WIRE TO A
SURROUNDING CYLINDER
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" the corrections of section 3.6.1., We shall, hereafter, use this method
to solve some more complex problems as described in the follo_wing
chapters,

Since matching is the most crucial procedure in this method,
we have to be very careful about the property of the quantity being
matched. As we have stated in section 3. 4, matching extensive
quantities at different position makes no sense at all, Finally we
like to point out that there is no exact rule for matching because it is

an art and depends on each individual's taste.

'3.6.4 More about the sticking probability

We would like to say a few words about the case when the
sticking probability " o is not a constant. This happens in the regine
between the transitional flow and the continuum flow. As will be dis-
cussed in Chapter 7, the sticking probability T if it is not a
constant, is a function ;)f the incoming flux j.Zi onl-y.1 In the previous
solution we have approximated j,. by n, (kTi/Zwm2>z. Therefore o_

is known and the results are not affected at all,
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Chapter 4

FLOW OF A RAREFIED GAS PAST A SPHERE

4,1 Introduction

We consider the flow of a rarefied gas past a sphere because of
the prominent effect of rarefaction-on the drag force and the role the
sphere plays as an important geometry. This problem has been
studied extensively by various theoretical approaches as well as ex-
periments. However, most previous methods are dealing with small
.ra,nges of Knudsen number and therefore have limited applicability.
Recently Cercignani (7) gave an expression for the drag force coef-
ficient over the whole range of Knudsen number, which agrees very
well with Millikan's data (25). In this chapter the method of composite
solution is applied also for the whole range of Knudsen number to
serve as a means to acquire familiarity with the matching procedures.
Although the result seems to be somewhat inferior (see Figure 7), this
method has the adyantage of requiring very simple calculations and |
can be applied to more complex problems such as the one in Chapter 5.
We shall only cons ider isothermal flow with low Mach and Reynolds
numbers, Problems with other geometry and other flow conditions
can be handled similarly. |

This problem has two characteristic lengths, the radius of‘ the
sphere and the mean free path of the gas. We observe that no matter
how large the mean free path is, there is a region far from the

sphere that the gas can be viewed as a continuum. On the other hand
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' no matter how small the mean free path is, there is a region so close
to the sphere that interaction between the gas and the sphere is more
important than the collisions among the gas particles themselves.
Having these in mind, we shall solve equations of continuum type for

the region far from the sphere to obtain the "outer" solution and shall

use free molecular flow theory to obtain the "inner" solution near the
sphere, The composite solution is then obtained by matching which.
will be given in section 4.4.

We shall use UO’ P> and p as the velocity, the pressure,
and the density of the upstream gas; T the temperature of the system;
m the molecular mass of the gas; and a the radius of the sphere.
We assume the kinematic viscosity v to be constant. We shall use

polar coordinates as well as Cartesian coordinates with the X axis

pa.rallel to the upstream wvelocity.

4,2 The "outer" solution

Since fhe gas in the "outer" re.gion can be taken as continuum,
we use the equation of motion and the equation of continuity to describe
the flow field. In fact, we take Oseen's equation as the equation of
motion, and apply the equation of continuity for an incompressible
fluid. A complete discussion on the validity of Oseen's equation is
given by Lamb (18). Furthermore, a..mlo.dern treatment based on per- .

turbation theory can be found in the book of Van Dyke (29). We have

e

UO :-EVp-l-vVB s (4-1)
AV

e

=0 |, (4~2)
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with the boundary conditions

E=Ue at r

0—x

n
8

(4-3)

1]
8

P =D, at r (4-4)

where ey is the unit vector along the X-axis, and u, p, p, Vv all
have their conventional meanings. The two boundary conditions given
here are not sufficient to solve the problem. A third one is necessaiy
to make the solution unique. This will appear when we match the
"outer" solution with the "inner" solution in section 4.4. Defining

dimensionless variables,

_ I »

r= "‘:; ’ (4-5)

— b-P

Py (4-6)
PU,

.

U= - _e_ ° (4_7)

- UO X _

We can write the equation of motion and the equation of continuity as

25=-Vp+ a3 , (4-8)
. L
X e
Ve T_ﬂ' =0 , (_4"'9)’
with the boundary conditions,
u=0 at r=o , (4-10)

=0 ' at r=o0 , o {4-11)
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where

R, =— . (4-12)

Equations (4-8), (4-9), (4-10), and (4-11) can be solved to give the

results (see Appendix 4A),

U= -Vt -Zlg-IVx - Xe (4-13)

— o

p= 22, (4-14)
ox

where

00

P = Z KﬂPl(cos 9)?'u+1) , ' (4-15)
£=0
fos) ,

X = E-EIPJ (cos G)héi)(igi?) exp (gISE) , (4-16)-
£=0

where P, is the Legendre polynomial, hj(zi) is the spherical Hankel

function of the first kind, and g4 is defined as

Re :
g =5 \ : (4-17)
The coefficients —.Kﬁ and Eﬁ are unknown constants and will be deter-
mined later when we match the "inner" and "outer" solutions.
According to Lamb (18), we need to keep oﬁly two terms in the:
series of equation (4-15) and only one term in the series of equations
(4-16). In fact, we can show that the drag force coefficient will not be

improved by taking more terms. Thus we have
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. Bo -
-ﬁa = {1 + — exp [—-gir(i - cos 0]} (_e_rcose-gesln 0) -

Zgir
A, 2A,cos6 B
0 1 0 i 1 —_
+{:—+ — + —+——-:—> exp [ -g r(i-cose)]}e
7 e 281 \ 7 girz 1 T
Aisin 0
e | (4-18)
r .
% — 2
: 2 Ocose A1(3 cos 0 -1) 5 |
P=Py - prU, = + —3 J ’ (4-19)

r

where e., €5 are unit vectors inthe r,6 direction.

4.3 The "inner" solution

We look for an "inner" solution based on the assumption that
the distribution function for the molecules coming toward the surface
of the sphere is Maxwellian. That is,

3
;= £ (o) EXP{‘ A (gr'wr)_zﬂge'we)z%i]}' » (4720)

where p is the density, m the molecular mass, T the temperature,
W the mean velocity, and £ the random velocity. The third com-
ponent of the mean velocity vanishes since the problem is independent?
of the azimuthal angle.

The stresé tensor, which contributves to the aerodynamic force
on the sphere, is calculated in Appendix 4B. In the present case the

only significant components are Prp and P.g given by
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‘ _ pkT
Prp = _r?l—{,fw ) )]
+-°:2~f [ exp (-Si) - \/'-rr"Sr(i -erf (Sr) )1 \ R (4-21)
Ph.g = "° E-l—‘l-se[exp (-si) - Jnsrti - erf (8_) o, (4-22)
mvVr

where Sr and S, are molecular speed ratios defined as

0
Wr
Sr = o 1 , ' (4-23)
(55)
Yo
2kT
(&%)

' are the accommodation

erf (Sr) is the error function of Sr,and o, O
coefficients for the shear stress and the normal stress. Schaaf (26)
has given a complete discussion on the various kinds of accommodation

coefficients. By using the assumption of low Mach number flow there

is obtained

. ,
i

= kT[ —-——s +o (-—--—) J , (e-25)
Pg = oL g (4-26)
mTim .

4.4 Matching

This is the crucial point of the present method since it provides
the boundary conditions needed for both the "outer" and the "inner"

solutions. The principles given in Chapter 3 will be employed here for
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the velocity field and the stress tensor. We match the velocity of the
"outer" solution at r = a with the velocity of the "inner" solution at

infinity. That is

lim (E)outer = lim (I—J-‘)'mner . (4-27)
r—a r—00
This leads to the result,
B ) .
W=Uyit+ -z—é-i- expl -gi(l - cos 0}] ({grcos 0 -_e_esme)

+ U SK +2A cosG-i-E-Q—(l-i--i—)exp‘[- (1-cose)]le
0) 0 | 2g, ' gy g4 =r

+'A'1Uosin Oey o . (4-28)

On the other hand, we shall match the stress tensor of the two solu-

tions at the same position, namely at r = a,

(I-_—).)outer = (g)inner at r=a . (4-29)

Schaaf (26) has identified the component P with the thermodynamic
pressure p in the free molecular flow case. In the continuum flow
regime, the relation between Pro and the velocify gradient is given

by Bird (1)
: ou_ '
_ 9 ( Yoy, 1 Y
Pro © p[r-—g(—;) ¥ r 90 _l (4‘-30)

where p is the viscosity of the gas. Evaluating p and P.g at the

sphere, we obtain

P=Pg - pUS[-KOCQSG +.Ii(3 COSZS -1y, ' (4-31)
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Ui
o { — = )

Pog= —0 6A1+Bocose exp[—gi(i-cose)] sin 8 (4-32)

By equating (4-25) with (4-31) and (4-26) with (4-32) we obtain

Kocos e +_§1(3 cosze -1)

B
£
= zaR )\_[cose+A0+ 2A1c056+ (1 +2g,cos0)] , (4-33)
Zg1
6Ki+_B_0cos o(1 - g, tg cos 0)
oa - -]-3—0
-z.x,[-i +A, - zé—i-(i-g1+g1co$ eyl . (4-34)
where we have used the ideal gas law,
po =55 (-35)
and have defined N\ and I as
(4-36)
(21('1'
1:4—0"(2-1-27) . . | (4-37)

Since the functions 1, cos 0, 3 cosze -1, «.. form an orthogonal set
for 0 from 0 to w, their individual coefficients must be eciual on

both sides. Therefpre

oo

A, + 9.0 , (4-38)
2 2
gy
—— a_ﬂ _B—
A, = ZR)\(i +2A1+-§-) , (4-39)

1
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B
- _ ca — 0

and other relations that are not needed.

Solving equations (4-38), (4-39), (4-40), we obtain

_ . 6 Kn +%0‘ y
A = s (4"41)
0 2 U.a
L2En (S +oRn+o-Zg, ©
7 nte-5g
a c L0
Knt+t— +— g
A, = L 4 41 ' ’ (4-42)
1 12Kn2 +(-9:+6)K .S
- 7 TR T 58y
_ 6 Kn +-§-0'
BO =-g s (4-43)

1 12Kn2 o ')
- +(-[+6)Kn'ro‘ -—Zgi

where Kn is defined as

Kn =

i

. | (4-44)

4,5 Results and comparisons

The drag force on the sphere can be calculated by taking the

X~-component of the equation

£=P.8. " Prplp | (4-45)
and integrating it over the whole surface of the sphere:

4(L+2¢)Kn +(3+Re)ot

. (4-46)
12 Kn%+ (c+64)Kn +ob (1 -%9 |

FD = ZTrUOp.a

The continuum flow limit of this equation,
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- LT
(F = 6'rrp.an(1 + TZRe) s (4-47)

D)cont.

agrees with Stokes' formula for low Reynolds number flow. On the

other hand, the free molecular flow limit is

2 kT 4v- '
(Fplf.m. = SoPa" & -3—’-’- L +2¢) , (4-48)
where
(4-49)

__Y
So = ——7
(ZkT >E
3 m
For the case of diffuse reflection, where 2= 2 +_72_r and o =1, we have

2

_ 16 m kT
(F = == V(1 + g = Sppa” . (4-50)

D)f.m.

which agrees exactly with the corresponding expression given by
Willis (30).

Defining a drag force coefficient CD- as

F
- D ‘ -
CD-l 2.2 , ‘ (4_51)
3 Pl
we obtain
Cp _ 3Kn[4(f +20)Kntof(3 +Re)]

= , (4-52)
(CD)f.m. [12 Kn2‘+(0‘+61)Kn +o-ﬂ(1 -%Re)] £ +20) :

where (CD)f m is the drag force coefficient in the free molecular

flow limit. Values of CD/(CD)f m. are listed in Table II and plotted

in Figure 7.
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Table II. Drag force coefficient on a sphere

versus the Knudsen number Kn

The present

results
Kn (Eg. (4-52))
100.0 ' 0.986
50.0 0.973
20,0 ' 0.936
10.0 0.881
5.0 ' 0,791
2.0 0.617
1.0 0.468
0.5 0.331
0.2 0.191
0.1 0,117
0.05 0.067
0.01 0.016

Millikan's
formula
(Eg.(4-53n
0.996
0.992
0.981
0.962
0.925
0.824
0.685
0.499
0.264
0.147
0.078
0.016

Sherman

's

formula

(Eq. (4-54))

0.994
0.988
0.971
0.943
0.892
0.767
0.622
0.452
0.248
0.141
0.076
0.016

In his famous oil drop experiment Millikan (25) obtained from

the data of the drag force on a sphere the empirical formula,

C

1,648

D =
mﬁﬂm;1,a4+%-
) 1

Sherman (28) also proposed an interpolation formula, -

+ 0.414 exp (-0.876/Kn)

1

0,685V

2 Kn

(4-53)

(4-54)

Both formulas are tabulated in Table II and plotted in Figure 7 for

comparison.
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(CD)f.m
| —
- |
\\' ——— MILIKAN'S EQ.
\ —.— SHERMAN'S EQ.
1\ — —— COMPOSITE SOLUTION

Fig.7 DRAG FORCE COEFFICIENT OF A SPHERE
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Appendix 4A

SOLUTION OF THE DIMENSIONLESS OSEEN'S EQUATION

We shall solve

du
— =-Vp+ =V,
ox e
Veu=0 ,
with the boundary conditions
u=0 at r=oc ,
p=0 ' at r=o ,

following the method of Lamb (18).

In the first place we have

Vep =0 ,

therefore, a particular solution is obtained if we write

Ve |,

led
i

13
9x

g |
]

?

where & satisfies
Ve =0 .
We complete our solution by writing

!
»

=-Vo+

fcl
F=4|

(4A-1)

(4A-2)

(4A-3)

(4A-4)

(4A-5)

(4A-6)

(4A-7)

(4A-8)

(4A-9)
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where u' , the rotational velocity field, satisfies

o'

— - -——Zig v, (4A-10)
ox : i

Veu' =0 . (4A-11)

Here we have written, for simplicity,
‘Re
g = 5 - (4A-12)

Taking the curl of equations (4A-10) and (4A-11), there is

obtained
_ 8o
w= Zgi—:— R (4A"13)
ox
Vew =0 , (4A-14)
where -_o-> is the vorticity given by

=V A

el
=%

. (4A-15)

From the symmetry of the problem, the X-component of E) must

vanish so that if we put

w =0 (4A-16)
X
o =-2X (4A-17)
y o0z
% = 2% (4A-18)
z —

R .

equation (4A-14) is obviously satisfied and equation (4A-13) gives
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3:[('52 - 28, 2 )x|=0 . (44-19)
oy ox :

-f’: [(—52 - 2g, —?—_—)X}:O , © (4A-20)
0z 0x

which, upon integration, lead to
('ﬁz - 2g, —"?-_:) X=0 . ~ (4A-21)
]
xX

The right-hand side of equation (4A-21) is in general a function of X.
Since, however, this function has no effect on the final results it has
been set equal to zero.

Using the vector identity,

VZE' = - curl curl E' + grad (-V_‘E‘) s (4A-22)

we obtain from equation (4A-10)

du' i _
—=-57—curl v . (4A-23)
ox g‘i
Therefore we have
ul = —2-1——T7X- Xe . (4A-24)

To find @ and X, equations {4A-8) and (4A-21) are solved, under the

restriction that eéluations {4A-3) and (4A-4) must be satisfied, to give

m .
3 = Z AP, (cos o)7 Ut (4A-25)
£=0 .
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[e0]
X = Z B, P, (cos 0)b}H (ig,T) exp (g, (4A-26)
£=0 .

where PI is the Legendre polynomial and hii) is the spherical

Hankel function of the first kind. Finally we have

I

"

1
<l
K
+
<
ke
”

(4A-2T7)

. (4A—28)

ol

"
o |o
sils
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Appendix 4B

STRESS TENSOR IN THE "INNER" SOLUTION

Two components of the stress tensor, P and P.g° will be
calculated on the surface of the sphere. Since each of them consists

of a part due to the incident molecules and a part due to the reemitted

molecules, we write
p=(p ) i )  (4B-1)
P © (pre)i - (pre)r ’ (45'2)_

where the minus sign in front of (Pre)r arises because of change of
normal direction during reflection. From the definition of stress

tensor, we have

oo o0} 0 «

(707 0 et
ri

-~ VvY-00vY-0

pkT

mvw

(7 ] e e

pkT

)

rr’i

1]

(p

1]

{-sr exp (-59) +Jn(}2+si)(1_-erf(sr))_},,,. (4B-3)

[t}

(Pre)i

S {exp (-8%) - Vs (1 - erf,(sr))} , (4B-4)
mvw : :

where Sr and Se ~are the molecular speed ratios defined by

(4B-5)

0
"
::J -
HiR

H
o~
8
S’

o
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WG
Sp= — 1., (4B-6)

(ZkT)Z
m
and erf (Sr) is the error function of S.. To obtain (prr)r and (pre)r,

we define the accommodation coefficients ¢ and o' as

(Pre)l - (Pre)r

R N R R (4B-7)
' (prr)i - (prr)r
KR P S B (4B-8)

where (pre)W and (prr)w correspond to molecules reflected with
Maxwellian distribution at thé surface temperature., The values of o
and ¢' vary from i to O and depend on the nature of the solid gas
interaction. The case o =¢' =1 is called diffuse reﬂeétion as all
the reflected molecules are in Maxwellian distribution, while the case
o =¢' =0, in which no molecules are reflected in Maxwellian distri-
bution, is called specular reflection,

It can be calculated easily that (Pre)w =0 and

: 1
(b)), = 3(2mkT)?j (4B-9)

where jr is the reflected flux which in steady state is equal to the

incident flux j; given by
A poo 0 3
SR R
-Q0%Y -0 ¥ =00
- 1

.a -
= & () [exp (-82) - Vws_(1 -erf(Sr))J . (4B-10)

.
1}



-87-

Combining all these together, we obtain equations (4-21) and (4-22).
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Chapter 5
- FLOW OF A PARTIALLY DISSOCIATED GAS PAST A SPHERE

5.1 Introduction

In this chapter We consider the same flow problem as before,
wifh the flow niedium being a partially dissociated diatomic gas. Sur-
face recombination reaction of the dissociated atoms will be considered
here. From now on, we shall refer to the dissociated atoms as species
1 and the undissociated molecules as species 2. We assume the mole
fraction of species 1 to be small so that the temperature field can be '
taken as constant.

We shall solve this problem in a way similar to that in Chapter
4. All the assumptions and notations in Chapter 4 still hold in the

present case,

5.2 The "outer" solution

Since the variation of concentration is small, all the physical
properties are assumed to be constant. The diffusion equation is

written as

. 2 |
—DIZV X (5-1)

(u- V)x1

where 3 is the mole fraction of species 1., Using the fact that the

diffusivity D12 has the same order of magnitude as the kinematic
viscosity v for the gas, an approximate equation similar to the Oseen's
equation for equation (5-1) can be obtained. In dimensionless form it

is
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1_ 1 =2 '
o5 Re ch *1 e (5-2)
b'd
where
aUO
Re = — , (5-3)
Sc =...l)... , (5_4)'
12

with given boundary condition at infinity,

In addition, we have the dimensionless Oseen's equation and the

equation of continuity,

"8":='VP+-R-:3VE , (5-6)
X

Veu=0 , (5-7)
with

—_\3_= 0 at T=o , : (5-8)

=0 at T =oo |, (5-9)

where E and p have the same meaning as in Chapter 4. The missing
boundary conditions ét the sphere will be determined in the process of
matching. Notice that the equation for x, is independent of the flow
field because of the assumed low Reynolds number. This fact will

simplify the matching procedure in section 5.4. The flow 'field has
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- the same solution as before,

— ——— 1 ——

u=-Veé + E—g—i-VX- Xf._x R (5-_-'10)

B: 'a_—f_ii_ » (5"11)
0 x

where € and X are given by
$ = Z EIPI (cos 6)-1:-0“_1) , (5-12)
m .
— 1), — —
= Z BIPl(cos 9)1'11(Z )(lgir) exp (gig) . (5-13)

‘where g4 has the same meaning as in Chapter 4. Similarly, equa-

tions (5-2) and (5-5) yield

Z C (cos G)h( )(1g2r) exp (gzx) s (5-1_4) |
where
Re Sc
gz = 2 * (5'15).

Following Chapter 4 we take one term in the series of equations

{5-13) and (5-14) and two terms in that of equation (5-12) to obtain

B

u= U {1+ 0 exp[-g,7(l -cosB)]} (e_cosB~-e,sin0)

1 ="U - 1 Cr 2
Zgir

i 0 /1
= t——= + 25 (_—_— 2) exp| - gir(i -cos @)}t e
r 1 'r gy

3:&0 2A . cos 0 B

A, :
+ :1:-—3- Upsin@eq , (5-16)
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. . fu— ‘ —— 2 - *
p=py - pUs(By 225+ & 2005001y (5-17)
T T ‘
EO _ _
X =X - exp[ -g,r(1 - cos )] . (5-18)
8,7

For future matching, we calculate the shear stress P.o and

the flux of species 1 jir on the surface of the sphere to be

Uk -
Pg= ——(6Asin0 +Bysin0cos0) , (5-19)
e |
Jir == P2 7 [
mO r=a
C.D
=- 91274 4 oeh] (5-20)
g2
ag;™Mg '

where the second and higher order terms of g and g, have been

neglected, and EO is the upstream mean molecular mass.

5.3 The "“inner" solution

The "inner" solution is very complex because of the surface re-
combination reaction of species 1. Formulation of the boundary con-
ditions at the sphere depends on the nature of reaction and on the degree
of rarefaction, For simplicity we define the sticking probability as the
fraction of the incoming flux of species 1 that undergoes recombination.

That is

Jy; =
ol =t 10 (5-21)
s Jis
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~ where j1i is the incident flux and jiO is the outgoing flux for species
i1, In the transitional flow regime this sticking probability is indepen-
dent of both the incident and the oﬁtgoing fluxes.

Following Chapter 4, the parts of species 1 and 2 coming
towards the sphere are assumed to be in Maxwellian distribution with
mean velocities W—i and V_[Z respectively. It should be mentioned

that W, and \E_Z, to be determined by the matching procedure, are

1
different because of the diffusion effect in the "outer"” solution. Thus

we have
| 3

Py (™ . 2 2, 2
5= - (omer) exp {- gpr[ (61~ Wi )T+ (61 g- W) *EL) . (5-22)

3
m
£21 r'ﬁg (2 kT) ex P{ sl 65, er)2+(gze-w29)?-+g§¢]} ., (5-23)

where the density Pis the molecular mass m,, the random velocity
é-i are for species i. Because of the symmetry of the problem, the
mean velocities V_zi and V_y_z have no components in the azimuthal

direction,

It can be calculated easily that the incident fluxes for species

{ and 2 are -

_ji'i = —————-) [exp ( S1 ) -\/-rrS (1 -erf(S Nl . (.5—24)
1

=2 (KL [ exp (<52 ) -vs, (1 - ex£(s, ))] (5-25)

Y21 T m, Zn'mz) SXP 75! TV S L T e R

where erf (Sir) is the error function of Sir and
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w

S, ==L (5-26)
ZkT)-’-
TR

Szr __ L] (5'27)
ZkT)

Using the definition of the sticking probability and the fact that at
steady state there is no accumulation of mass on the surface, we

obtain the outgoing fluxes,

(1-o! )-—-—-(ZT ) [exp (-5 ) - Vs, (1 - erf(s, )]
(5-28)

jio

1
cLp A z
20 © ; (2 [exp ('Sizr) - ‘f"_sir(i -erf (S, )]

1
p B :
2 kT 2
+'n?;('2"'_2) [exp (-85 ) - VS, {1-erf(S, N] . (5-29)
Hence the net outward flux of species 1 is

e T 0 714

P
-0‘-—-—-

Sm1

an) [ exp (- s ) - Vs, (1-exf(s, D] . (5-30)

The normal pressure and the shear stress on the surface of the sphere
can be calculated in a way similar to that of Chapter 4, only with more
terms involved. In fact, each of the species contributes independently

so that

Pop = Py TR, o | (5-31)
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pre = (pre)1 + (pre)z | ’ (5"32)

where the subscripts 1 and 2 représent the parts contributed by species
1 and 2. If we define 0-'1, cr'2 the accommodation cqefficients of the
normal stress and Tys 0, those of the shear stress for species 1 and

' 2, we get

Py kT
P,y = (2-0)) mh[ *sy exp (-5 )+\fnr(2+s1 )1 -erf(s, )]

'0"1 p, kT 2
t=(1-0l) , [exp(-S7.) -\fwsir(i -eri(S, NI (5-33)
p, kT
<Prr’z=(2‘“'z’;h[ -5, _exp (-85 ) +Vn(5 +55 )(1 - erf (s, ))]
2
p, kT ,
+V2olol 41“‘1 [exp(-sfr) - Vs, (1 - erf(s, ))]
cr'Z kaT 2
t = - [exp(-S5) - w/—-n'SZr(i -exf(S, )] (5-34)
p kT 2
(P_g)y = -0y v; [exp (-57) - vV S, (t-exf(s, NS¢ (5-35)
m1 o™
p. kT
2
(pre)2 =-0, — \/_Tr[exp (- S ) -vr S (1 -erf (SZr))] SZe . (5-36)
2
" where
W : _
Sig =21 - (5-37)
(ZkT z
aa |
W .
Sy = —y . (5-38)
F 2kT \2
=)
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~ Finally using the low Mach number assumption, we obtain

P..=Py-l4-0i(2-3)] f\%fpoY1 - [4-0y(2- )] ———-po(i -Y,)

- —O;E(o"l ‘—[?— rr ALE -Vr S, )Yipo , | .(5-39)

P.g = -Gi%-"@ Po¥y - "zf‘}z;e‘f’o‘1 ERFUN (5-40)

jjp=- ol —-E-i—P———l—(i -Vrs, ) (5-41)
(Z-rrmikT)z

where we have used the ideal gas law,

P, Py
= (L1 2 : -
Pg = m, + m )kT o (5-42)

and the definition of the mole fraction for species 1 at infinity

p,/my
Y, s . . (5-43)
Sl

my m,

5.4 Matching

Matching is extremely difficult in this case because the "inner"
solution contains so many terms. In order to simplify fche problem and
to get a clear view of the results, we have to use the assumption of
low mole fraction of species 1 and neglect all second and higher order
terms in it. The matching principles employed in Chapters 3 and 4

will be used. They are
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lim (I—lz)outer = lim (ul) inner ' (5-44)
r—a r—+oo
Hm (%) rer = HM (X0); 00 o (5-45)
r—~a o
(g)outer = (=p)inner at r=a , (5-46)
(Jir)outer = (Jir)inner at r=a . (5-47)

where equation (5-44) holds for i =1 and 2. These lead to the follow-

ing relations:

B,
A +2A cose+————(1 +2g1cose)]e

W, = Uo(cos egr- sin ege) +U0[ 1
: Z.g1

W,

By ' ™

—ié—-(i-g1+g1cos 6)]sm69_e- =D, ,Vx,
1 YlmO r=a

’ (5’48)

UO[Ai'

' B
cos Ge - smeee) +U0[A +2A,cos 0 +—= (1 +2gicos G)]e

1
. Zgi
~ B ™Dy,
+U0[A1--—2--—(1-g1+gicos 6):|sn:16e6 ——Vx, , (5-49)
&1 (1-Y0)m0 r=a

W = Yol

C
0 . 5
Y1 = X1 - —g—;(i - g + g,cos 9) , (5-50)

2r = Y 2
pUO[-AOcos 0 - A1(1 - 3 cos"0)]

1Y, pW, L{(1-Y,)p.W. o'c'
- 1¥0 1r+ 1¥0 Zr+ 3 )%Po(i > (5-51)
<2kT

(hk'r' 2 2wk T \2
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U
——[6A,+B,cos 8(1 - g, +g,cos 0)] sind

oY, peW 1o o(1-Y,)paW,q , (5_52)

i (ZwkT i ( 2wk T )%3
COD__i_ZP - - -—-—-—--) : (5-53)
ag,m, (211'm kT)?- | (ZkT)

where, for simplicity, we have taken equal accommodation coefficients"

for the two species:
o, =0,=0 , . (5-54)
o"1 = 0"2 =g , : (5-55)
and { is defined by
L=4-g"'(2 _zzr) . (5-56)

Solving equé.tions (5-48) to (5-53), we obtain (see Appendix 5A) expres-
sions for AO’ A _B—O' _C_JO as

2

3+12Kn(1 A, - KnA caa B A |
— 2 ol 2
Ao = anAz Up2 24k 12.Kn 2 Kn ’
—}——n—(iZA) (1-8,)F55=(1-a,) +2- g,
{(6-57)
' g,
-;:+ 221 - /_\.)+——+1an2
I = ’ (5-58)
1 24Kn n
LED(1-24, )+12-———(1—A yr2ER(1-A) t2-g,
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. | 5
+12Kn(1_A )_ZKnA _ 480 A
- o 2 al
By =gy z )
280 (1.2a)+22KRG a1 2ER A )2 &y
_ W[ZG‘;gZX
- Cp = mm————
0 2Kn+\[20_
e s
where

A - (1 ‘/'2) V2 o! X1

1 ) an+ﬁ¢ ’
G S
1
A *(1 )ﬁ-cw o5 Xy
2"’ "'""" .
_ an-+vza;e
_ g
G= -2 ,
84
Kn = Ld T .
ZkT)E
Tl'mz

5.5 Results and discussions

. {5-59)

(5-60)

(5-61)

(5-62)

(5-63)

(5-64)

We are interested in finding the concentration distribution, the

molar flux of species 1 toward the sphere, and the effect of the recom-

bination reaction on the drag force. First of all, the mole fraction x

1

in the "outer" solution can be obtained by substituting the expression

for EO into equation (5-18)

V2ol X, ) _
(x,) = X —exp [ -g,r(l -cos8)] .
1’ outer 1" 2Kn 2 O_S " 2

G

(5-65)
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To get x, in the "inner" solution, we have to calculate the number

densities for the two species. It can be shown that

S
1 Py
n, == — (1 +sina - 2———cos oz) +-—(1-o- )———(i-x/-'rrS )(1- sina) ,
1 2 m, i m,
(5-66)
P S P
n, =-;—-—42—(1 +sina-2——z‘—r-cosza)+-1- 2 (1 -vYu s, )
m, _ T 2 m, 2r
&' 1 Py .
\-[——n;—u Vus, )| (1-sina) , (5-67)
where n, and n, are the number densities for species 1 and 2, and
a
@ =arccos = . (5-68)
Therefore
(xi)ihner = Tii‘ln
B S
0_l
=Y,[1 --z-s—(i-sinoz)] . (5-69)

Substituting the value of Y1 from Appendix 5A, we obtain

2Kn
o L — +2 o-sgz(i ~ cos 0)

. G
(x,). =[1--=2(1-sina)] X, .{5-70)
1'inner 2 2Kn +\/—2Cf's 1.

G
Finally we use equation (3-57) to obtain the composite solution,

V2o! X U,r
x, =X, - s 1 iexp[— 0 (1-—cose)_\
1 1 2Kn +\/'20_. r 2D
v 12
Kn

12
i
o . 27D, +\fzasUOa(1 cos 0)/2D, ,
- (1 -sina) X, . (5-71)
p) ZKn . 1
+v2a
Y 12 8
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- On the surface of the sphere we have

(1--—)r2KnI> +¥2 ¢! Ualt - cos 6) /2D, ]
1 2] «

s = 7 EU§EI> , 20!

X (5-72)

10

From equation' (5-20) the molar flux of species 1is calculated to be

Jza'x D

p
i { 12
o= - iz, (5-73)
ir ZKn D,, +~fz¢ am

where the minus sign means that the net flux is actually coming toward
the sphere. Finally the drag force on the sphere can be found using

the formula in Chapter 4:

2 AZ 100‘KnA2
4Kn(l-4A )(1+2T)+(3+281)‘7 8 Kn -+ 3 _T-_]

2
F_ = 2mU a[—A +
D 07 372 12Kn

(1-2A )+(6T£)Kn(1 -4)) +o(1-g1/2)
(5-74)

We will look at some limiting cases and some numerical results.

5.5.1 Continuum flow limit

According to chemical kinetic theory the sticking probability o"s

vanishes in the continuum flow regime in such a way that

=S ., (5-75)

where Sk' is finite. Therefore by taking the continuum limit we obtain

— exp
1 1 V2D, ., T
L+ 12
S, v

k

X1 a U.r T
[-2D12(1-cose)J , (5-76)
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fzniz U,ya

Skv + ZD12 {1 - cos 0)
Xy = X1 , (5-77)
V2D
, 12
1+ T
k
D,,p
5. = - L 2%, ,  (5-78)
ir e i
\[ZD am .
{4 — 12 0
S v
k
F_ =6r U.a(l + -= Re) (5-79)
D 0 12 !

where in equation (5-79) we have neglected AZ since its value can be

shown to be less than 0.035 Xi' . INotice that if Sk is zero we would

get a uniform concentration field and zero flux. On the other hand,

if Sk is infinity, we would have
a UOr l

x1=X1 il-—lzgxp [- ZD (1-cos Q)J (5-80)
an

X, = ==——(l-cos50)X , (5-81)

is ZD12 1

D, p -

. 1

= ==X, . (5-82)
am

The quantity x, in equation (5-81) is very small because of the

éssumption of low Reynolds number flow. All these results agree with

existing formulas.
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5.5.2 Free molecular flow limit

In this limit Kn becomes infinity so that

_ . . _
X, = Xi[ 1 - 3 o“s(l -sina)] , (5-83)
x, =X (1 -+¢" (5-84)
is 1 2 s ’
By
. i P [_KT \?
Jir - O-SX]____ kam ) » (5-85)
m 1
0
4/ 2
Fp = §) =% —r%-;kTa L +20) (5-86)
where
. _ Y
S, = —— . (5-87)
(ZkT )E :
)

Equation (5-83) gives a simple idea of how the mole fraction of species
1 varies with the distance from the sphere. Equation (5-84) shows
. that X, has half the value of X1 even if o"s is unity. Equation (5-86)

shows that in the present approximation the drag force is not changed

' by the recombination reaction.

5.5.3 Numerical results.

Since the results contain so many parameters, they cannot be
plotted in a two-dimensional diagram unless we specify some of the
parameters whose effects are not so important. We shall neglect the
terms proportional to the Reynolds number and take the Schmidt number

Sc to be unity,
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—= =1 . (5-88)

We also use an empirical formula for a-'s (Chapter 7),

SkKn
[ S, : _
°s T T+ pS Kn (5-89)

where B is a constant. With these relations equations (5-72), (5-73),

(5-84), and (5-85) yield

*1s 1
= 1] (5"90)
1 g)¢. m. Vv2s
1 41—k
772 T+ps Kn
i .
R Pei— . (5-91)
Jir'f. m. 1 N/_ZSk
i

NI SR
2 T+ pS Kn

These two equations are plotted in Figure 8 with various numbers of

B and Sk. The change of drag force due to the recombination reaction

as a function of Knudsen number is

, 4(¢ +2)Kn(1-A,) +34 - 8Kn2A2+-—1—9—KnA '

LA+ - 3 2

F 372 12Rn®(1-2A) +(1+64)Kn(1 -4 ) + 4 |
Fplg I T2 Ko * 31 » (5-92)

12 Kn+(1+64)Kn + 2

where (FD)O is the. drag force with no recombination reaction.

Values of [FD/(FD)O] -1 are plotted in Figure 9 for the case of diffuse
reflection and X1 = 0.1. The drag force correction due to the recom-
bination is so small that we are not sure whether Figure 9 is correct

or not.
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Appendix 5A

[}

SOLUTION FOR A 0’ o

0° Ai’ B

We shall solve for —15—;0, Zi s EO ; EO the following equations:

- U

' —B'
w, =1, (cos 6e -sinbeg) + UO[A +2A1c059 +— (1 t2g,cos 0)] &,
_ Zgi
~ B . 72
+UO[A1--2———(1—g1+g1cos 0)] sin@egy- ——D,,Vx, , {5A-1)
g4 Yim0 r=a
-B'
___2— Uo(cos Oe - SLnGee) + UO[A +2A1cos B+ —= Zg (1 +2gicos 9)]e
' 1
By my D,
+U[A,- 1-g, +tg,cosB)]sinbe Vx , (5A-2
ol A Zgi( gt 1] eqt = A (5A-2)
C
- 0 -
Y1 = X1 - -é—z—(i - gz + gZCOS 9) » (5A 3)
pUS[ A cos 0 - K (1 - 3 cos?0)]
2(1 - .
_ LY, p W, . N (1 Yi)poW2 1 y (1 _—_) (1 ) o
(2T ')? (ZwkT') o (sz> ¥1Po
my ) 1
| (5A-4)
o Ll — .
, T[ 6A,tBjcos 0(1 - g, +g cos 0)]sin©
oY, p W (i -Y )p W
: 1¥0 7 18 1 26 .
= - —F - f , (5A-5)
(211‘1('1‘)3 : 2mkT\2
™y Mo
C.D,_p 'Y, p W
a_gzmo (2mm  kT) ZkT)a
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First we define

Kn = ——— (5A-7)
L ( 2KT )a '
’ TTI'D‘2
_ g
T==2- (5A-8)
g4 12

Equations (5A-3) and (5A-6) can be solved for EO by neglecting the

second term on the right-hand side of equation (5A-6). Thus we

obtain
1
Co = ;féasgzxi : (54-9)
= +v2¢!
= s
2Kn/G+v2 clg,(1-cos0)
Y1 = ZKn ° (5A"10)

+v2 ¢!
- S

G

Substituting these results into equation (5-18), there is obtained

Bx, V2 ol X,
- _ _ , (5A-11)
or 2Kn +42 5 )a.
r=a -é S
[ »
L - \;;ngzxime : (5A-12)
r _ ( + 42 o-') a
r=a 'G S

By using equations (5A-1), (5A-2), (5A-11) and (5A-12), equations

(5A-4) and (5A-5) can be simplified to
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o ' : o' X
cosG+X1(1 -3c0329)] = (1 - -1-—)(0-'17-£) I —
V2 2 Kn +\/-20"SG

' Sgi‘Kn’[ KO

\/_20' X i
+2¢g 1[ oS\l cos 0 +E +2E, cos 0
1 ( \/'2) Z-Ién_‘_\[z _l 0 1

B

+—2 (1 +2g, cos e)J, (5A-13)
Zg1
ZKn[éxi-F_Eocos 6(1 - g *g,cos )]
- B . Yee'x, -
—_ 0 i s 1
g |-14E, -1 - g, +g, cos0) || 1+ (t- ———-—-—-—-J (5A-14)
[ 1" 2g, - TE1T8 1 #( Jz) 2Kn+‘/'2

Since the functions 1, cos 6, 3 cosze -1, etc, form an orthogonal set
for © from 0 to w, we have from equations (5A-13) and '(5A-14) the

relations,

_ o _ By
4g1_KnAO=Jz(1+A1)(1 +2A1+—g—1-) , (5A-15)
B,
2g1(1+A1)(A +-—-Z)-A2=o , (5A-16)
Zg1
_ — -B-o 9 '
{24, Kn = [1 -_A1+—2—g-1-(1-g1)J (1+a,) , (5A-17)
where
 V2e'X
1 s 1 '
A o= (1 -—=— , (5A-18)
"1 (\/—2 2_Kn+\[2.
G
S , o' X
Azz 1__1__>.,2—£cr'rr 571 — . (5A-19)
V2 2Kn+V2¢' G
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Solving equations (5A-15) to {5A-17), we obtain

2
. 12 Kn 2Kn 24 Kn
i, i 3+cr (1-4,) - 2024 2200 A
0 2g, 2 2¢g ’
{ 1 24Kn® (1-24 )+12Kn(1_ )+2Kn(1_A)+2_g
ol J] 1 i
(5A-20)
12Kn ZKn .24:Kn2
_ 3+ (1-4,)- A,- SRR A
B, = -g, > g , (5A-21)
-Zﬁéf—rl—( - 2A )+12Kn( -A )+2Kn(1 A)t2-g,
_ %+——-—2Kn(1 A)+ 2t 24,
A1= . (SA-ZZ)
—————-2";Kn (1-20,) + B2 (1A )+ 28218 ) +2- g,
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Chapter 6

REACTION OF A PARTIALLY DISSOCIATED GAS
WITH A SPHERE

6.1 Introduction

In this chapter we consider the flow of a partially dissociated
diatomic gas past a sphere with surface recombination reaction and
diffusion and reaction of the dissociated atoms in the interior of the
sphere. We assume this latter reaction to be instantaneous due to the
high reactivity of the dissociated atoms so that the diffusion process
of the atoms inside the sphere controls the total rate. Also the product
of the reaction is assumed to be solid. Examples of such reactions are
the formation of hydrides and the oxidation of the transition metals.

The general problem is very complex because the diffusion
process inside the sphere is in unsteady state which, through boundary
relations, causes the flow field in the gas stream also to be in unsteady
vstate. Besides, a complete study of the gas-solid interaction on the
interface is too complex to be included in‘the present work, We shall,
therefore, take a simple case where diffusion of the dissolved atorhs
inside the solid is so slow that the flow field in the gas stream can be
considered in steady state, with modified boundary conditions which
include the effect of diffusion in the sphere. In section 6.2 we shall
study the interfacial phenomena to find the relation Between the fluxes
in the gas stream and the concentration of the atoms in the solid. In
section 6.3 the unsteady state diffusion equation with infinitely fast

chemical reaction will be solved. Finally the effect of the solid-gas
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reaction on the gas stream will be given in section 6.4

6.2 Interfacial relationship between the atomic flux in the gas solid

Ehases

Let the concentration of the dissolved atoms in the solid sphere

be c with saturation concentration c*, and let the fraction of the sur-
face sites occupied by the adsorbed atoms be 61. The rate that the
adsorbed atoms penetrate into the sphere rp is proportional to the
surface concentration of the adsorbekd atoms and the vacancies available
for the atoms inside the sphere, That is

% o
rp-‘zkpei(c -c) . ' {6-1})
On the other hand, the rate rg at which atoms in the solid phase jump
to the surface is proportional to the concentration of the atoms in the

sphere and the vacant sites on the surface. That is

= ko(i -08,)c . (6-2)

To 1
The net flow through the surface of the sphere, which can be expressed
by Fick's first law of diffusion inside the sphere, is the difference of.

these two equations. Thus we have

[ax}

-D2E -k

< 0(1—61)c+kp91(c—c*) , (6-3)

where r is the position vector written in spherical coordinates. The
diffusivity Ds is small so that if we neglect the left-hand side of

equation (6-3), we have
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¢

C
Ko(1-0))

kp01

. | (6-4)
1+

The assumption of small D_ also implies that 61 is actually inde-
pendent of the diffusion process in the sphere since its effect is small,
We shall use the empirical formula for 01 ,
B
- ii '
8 =T¥ B, (6-5)
based on the results in Chapter 7. Substituting equation (6-5) into

equation (6-4), we obtain

5311 . >:<’
C =_1Tﬁ;: c ) (6-6)
where
k .
B=g2p' . - (6-7)
0

as the relation between the concentration of the dissolved atoms in the

sphere and the incident atomic flux of the gas stream.

6.3 Diffusion of the dissolved atoms inside the solid sphere with

infinitely fast chemical r_eaction
We assume that the reaction between the dissolved atoms and
the solid is instantaneous so that there is a moving reaction boundary
with a position at r*. In the region r*< r < a the reaction has been
completed while in the region 0 <r < r* no reaction has taken place.
The moving boundary r* starts from the surface of the sphere and

decreases to zero monotonically. Therefore the diffusion is described
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%g' = —]:-ZS —éa—; (rz 'g%) for r <r<a , (6-8)
c=0 ' for 0=<r=<gy" , (6-9)
with
c=0 at t=0 , forall r , (6-10)
¢ =cy at r=a , for t>0 , (6-11)
c=0 at r=r , for t>0 , (6-12)
where we have defined
SITE (6-13)

Ch = = C .
0 1+]331.1

In order to carry out the solution, we need one more equation to show
the v#riation of the moving boundary r* with time, This relation is
obtained by considering the mass balance at r#= where the diffusion
rate per unit area must be equal to the reaction rate per unit volume

swept by the moving boundary in unit time. That is

S
oc _ = .dr : .
Bl XT; . g (6-14)

with initial condition
*
r =a at t=0 |, (6-15)

where c is the concentration of the pure solid and N is a stoichio-
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" metric constant depending on the type of chemical reaction. Equations
(6-8) to (6—12) and (6-14) to (6-15) forfn a well posed mathematical
problem whose exact solution has not been obtained analytically. We
shall discuss the approximate method used by Bischoff (2) and shall

propose a new approximate method.

6.3.1 The pseudo steady state solution

Bischoff (2) has proposed a method which he called the pseudo
steady state solution by considering first the steady state solution of
. . . * . * .
the diffusion equation with fixed r , then letting r vary with t

according to equation (6-14) to obtain

%
c. a ~-7r.a
R, 1i_0 -~ "0 -
ettt ) (6-16)
T
0
* o, .
where ry is the solution of
tD ¢ :
£
I PRI P R SU- R (6-17)
0 0 2 - .
a- nc

Equation (6-16) has been commented upon by Bowen {4) who gives é.

® . .
formula for r based on a perturbation solution,

COtDs'

, : c~tD
r¥=a[1—0 s+%€'(
' . _caz —c 2 —ca
-ﬂs M a 1’]s

2 -
) (1 : —37: COtDZ) + J L, (6-18)

where €'

is a perturbation parameter. However, as discussed by
Bischoff (3), what Bowen has solved is a reaction controlling problem'

instead of the diffusion controlling problem under consideration here.
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6.3.2 The unsteady solution
We shall use Laplace transform to solve the unsteady state

diffusion equétion, equation (6-8). Written in dimensionless form,

the transformed equation is

-~ 1 d {=2dc’
sc = 5—\7 —) (6-19)
r2 dr( dr)

with boundary conditions

—_ 1
c=s — at r
s

"
)

(6-20)

1]
o

< at

H
1]
=

(6-21)

where s is the transform parameter and ¢ is the transformed con-
centration normalized with respect to cj. ‘Equations (6-19) to (6-21)

%
can be solved by taking r as constant. Using inverse transform we

obtain
. co .
% 2a(sinK.r ~tanK.a cos K.r)
< . alr-r) n i i L o (-KZtD)
€0 ra-r)) K.r(a-r )secK PR
ria Ir i=1 ir r S la. )
(6-22)
where
K. = 1T % ’ . i= 1’2)3: seo0 . (6"23)
L oa-r

The value of —g% is calculated from equation (6-22) and then substituted

into equation (6-14) to give

ar® __SoPs® i 1+ N 2 exp (~K2D 1) | (6-24)
dt =~ = % * L, P i7s J g -
ne r (a-r) . .

-

S i=
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- with the initial condition,

ro=a at t=0 . ~ (6-25)

"The initial value problem (6-24) and (6~25) can be solved numerically
but it is intercsting to obtain an approximate analytical solution by

considering K.1 as constant and integrating equation (6-24) to give

3 03]
: bc a” (tD -3
¥ : *
a3-3r 2a-i-Zr 3 = _O ;___ZE‘; +z -—2—-2(1 —exp(-K.ZtDs)J , {6-26)
: neg 0 a i=1 Ki - ' :

6.3.3 Comparisons and discussions

Numerical results for both the unsteady and the pseudo

1

steady state solutions are plotted in Figure 10. The two curves coincide

at small t for cO/T'lcs = %X 10—3, but deviate somewhat at large t.

Mathematically, if we make a total differentiation of equation (6-12)

with respect to time, we would obtain a necessary condition for the

. ¥
moving boundary r ,

ar’ _ ac/st
r _ _ Oc -
&t = Bc/er | __* | (6-27)

It can be calculated that the unsteady solution satisfie.s this rotation
while the pseudo steady state -solution does not. This indicates a

strong support for the unsteaciy solution over the pseudo steady state
solution. Furthermoré, the pseudo steady state solution requires a
small co/_ﬁc:S to make the series in equation (6-16) converging fast

so that it is not valid for liquid-gas interaction where CO/T‘]CS usually



¢Ol

NOILNTOS J1VIS AQV3LS 0an3sd 3HL
HLIM NOILNTOS I1VLS AQYILSNN 3HL 40 NOSI¥VAWOD O1bid

0/5Q 4
20l . 10l 00l | 1-0l

-117-

NOILNTOS 31V1S
AQVv3Ls odn3sd

2 sk
_

c-OlX

ol

NOILNT0S
ALVLS AQVILSNN

lo 1
-



-118-

" has a value around imity. The unsteady solution does not require this

restriction and, therefore, has a broader range of application,

6.4 The effects of the gas-solid reaction on the gas stream

Although we have stated at the beginning of this chapter that
the gas-solid reaction does not change the steady state nature of the
gas stream, it does have effects on the gas stream because the total
incident mass flux is no longer equal to the reflected one. To obtain
a new relation, the flux for the dissolved atoms js inside the sphere

has to be calculated. From equation (6-22) there is obtained

m
) Dt (6-29)

£ .
r Za .
IT(t) = % T 2 % exp[—-(
a-r —a-r a
be a dimensionless function of time, so that, after substituting equation
(6-13), equation (6-28) takes the form

N DS T(t) ‘ ini %

jS - - a 1 + pjii Cc . (6"30)

Now if the sticking probability o"s is defined in the same way as in

Chapter 5, we have

N )
oo Zda; T35d4 - (6-31)
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However, instead of equation (5-21), the conservation law on the sur-

face of the sphere becomes

Jgg F2ipy tig T g T2y (6-32)
which implies
D T(t) ..
. o s IR 8 * -
Jio ‘311(1 s T TFE,, & ° ) - (6-33)

With this new boundary condition replacing equation (5-21), the prob-

lem in Chapter 5 can be solved once again to give

Ve(oltol)X, Uyr
% =X = exp[ (1 - cos G)J
1 1”7 ZKnD +\/—2(0' +0‘) r ZD
ZKn \/' i
4 =5-D,,*t3 2(0' ta ) U, a(l - cosG)/D12
--2(0"51‘0';)(1 - sina) >R X,
~—D, +2(o-s+0'r)
(6-34)
\[2(0"+0")X1 D, ,p
7 = - 6—35)
Ir ZKn — ! (
D +\f2(0"+0') am
282 100K
4Kn(1-A! )(1+27)+(3 +2gi)o-+8Kn - - —%—EA'
Fp = Z"Han[ I vy 1 J
| (6-36)
where
D I'(t)
0.;':: ﬁP().Xi Sa' C'* ! (6-37)

1+8 +
(Zm‘nlkT)z
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L \f2(¢'s+¢;)x1
Al = (1 - =2 6-38
1 a ) 2Kn +V2(a' +¢!) ( )
= S r
G
(- 4v2)6 - ST - Av2)e! +ol 1)
A'z b1 X . (6"39)

2Kn +v2 (ol tol) [¢ 1

Notice that a'; plays a role similar to o , except that it is a function

1
S
of time. In general, D_ is small and 0';' can be neglected.
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Chapter 7
THE NATURE OF THE STICKING PROBABILITIES

7.1 Introduction

In this chépter we shall investigate the nature of the sticking
probabilities employed in the previous chapters. We consider only
the case of dissociation and recombination reactions of a diatomic gas.
We are particularly interested in hydrogen because a large amount of
work has been associated with it. Both the sticking probability for the
dissociation reaction o and the sticking probability for the recom-
bination reaction o"s will be discussed., We shall start with the most
general case by considering all possible mechanisms and get an over-
all picture. Then We discuss the mechanisms proposed by Brennan (6)

and Laidler ‘( 17) separately.

7.2 General case

When a solid surface is placed in contact with a partially dissoci-
ated diatomic gas, its surface is covered with adsorbed atoms and
adsorbed molecules and is under the constant bombardment by both the
atoms and the molecules in the gas stfeam; Lét L be the total number
of active sites per unit surfacie-area, 61 the fraction of the surface
sites occupied by the adsorbed atoms, and 92 the fraction occupied
by the adsorbed rﬂoiecules. Also let jii and j21 be the incident
fluxes for atoms and molecules respectively. The most general

mechanism which covers all the possible reactions is
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Yy
G, +S = sG, ,
k
1
¥,
G+8 = 8G ,
k)
Y3
SCM-G«——*SG2 ,
k
3
ky
SG. +S = 2SG ,
2
kg

where S is a surface site, G is a gas atom, and Gr2 is a gas mole-~
cule.

The vy's and the k's are functions of temperature only, and

will be taken as constants in the present analysis.

In order to find 61 and 62, and then the sticking probabilities
Ty and o', we make a steady state assumption on the adsorbed atoms
and molecules to obtain

yijZi(i—Gi-GZ)L - kiezL +Y3j1i61L - k392L

2.2 2 _
+1e50°L% -k (1-0,-0,)0, L5 =0 (7-1)
Yol3{1-01-0) 0 - kp0y L= v3]y:0 L + k305 L
' 2. 2 2 _
- 21<591L + 2k4(1 —91—92)921_4 =0 , (7-2)

which yield the following expressions for 91 and 62.

1
2
5 ’
(kg ¢y -k d 7)1 (7-3)

. 2 2 2
g = ~licg o5 Lty 03)+[ (I 05 LHd &5) "Ik ¢ -4, d7k,) (4 &) Litke, o LT
T
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) 2 '
i ko ¢y # kybudq

by b, thy by L
0y = 20y 95170, 35) (7-4)

o 2 |
if ~k5¢1 = k4c[>4cp7, and

_ (2ygdpitypdy ) 70,

W};.ere
by = 2y TRy T2y 5ot vodyy o (7-6)
by = gV dp;t (R tR)v iy o A7-7)
1 . .
by =3[k Hegdkyt (k) Hhg) v o+ ik, tha)vydy;
N L 2 (7-8)
Y1 ¥3dgidp;7 Yp¥adgi o |
by = 2k F kg kot vady s s (7-9)

1 e oo .
b = 35 (2ky TR (ko= Yo i ;724057 Y504 5)

{ . . .

Tk TRy ko Tyai M2yt vaigy) 0 (7-10)
¢6 = (2k1+k3)(2Y1j2i+ YZjii) H (7'11)
b7 = Rpm¥aiys T 2¥ydps T YRdyg (7-12)

The sticking probability o is the ratio of the molecular dissociation

rate to the incident molecular flux. That is,
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Y1 -04-0,)L - K 6,L
o =

S

: s (7-13)
J2i |
ile the sticking probability cr's is the ratio of the atomic recombina-

on rate to the incident atomic flux, That is

~

2

. Voigs(1 -0, -0,) Lty 5,0, L- k)0, L-k,8,L

oL . (7-14)

J13

In general both T and o"s are functions of temperature through their
relationship with the reaction rate constants k's and y'é, and are
functions of pressure through their relationship with the incident ﬂuxes..
In all the cases we have conSidered, the temperature on the surface

ié uniform so that the variation of sticking probability with tempera-
ture need not be considered. Equations (7-13) and (7-14), giving the

the most general expressions for T and o"s, are very tedious because
the expressioné for 61 and 62 are very complex. In order to get a
better picture, we‘ are going to take some limiting cases in the next

two subsections,

7.2.1 Free rnoiecular flow limit

In this case both j1i and jZi are very small so that equations

(7-3) and (7-4) yield the same result,

(k3+2k4L)y1321
kz(k1 +k3 +k4L) !

CY5dg s
9, = 12<11+
2

(7-15)

while equation (7-5) becomes
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) Yidp; '
e T e e, (7_16)
2 TK Tk TR, L |

Therefore from equations {(7-13) and (7-14) we have

v, k,tk, L)L
o= ETRETRL (7-17)
s 17 %37 %
oL = Oy) =0 (7-18)

where in equation (7-18) we have 1:;111: Yy equal to zéro to insure no
dissociation reaction. Notice that o, is a constant while o-'s is pro-
portional to the incident flux jii’ béca.use the dissociation reaction
is of first order while the recombination reaction is of second order-

in the free molecular flow regime.

7. 2.2 Continuum flow limit

In the continuum flow regime we shall discuss the dissociation
and recombination reactions separately. For a pure dissociation

reaction we assume Y3 = 0 and obtain

legvyd oy (kg g Yo iy

6, =- . —, (7-19)
1k, Fhg)yyJop® (g TRadvody g o

after letting both 111 and jZi‘ approach infinity.

From equation (7-5) and (7-13) we obtain

k2k3y1L

Tk, Tk

o = . N . (7_20)
s (ky¥k)Yydp; 30 ¥d 15

In the case of a pure recombination, we set k3 = k4 = 0 to obtain
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kK, Y53, ‘
112911
0, = — : : (7-21)
1 (vydpytyadihvsdy;
2y, k, L
o = ol l . (7-22)

R FYPYRA P IR

These results confirm the fact that both o and cr's become zero

when either of the incident fluxes becomes infinity.

7.3 Mechanism by Brennan

7.3.1 Dissociation reaction

Brennan (5) (6) has investigated the problem of atomization of
diatomic molecules on metal surfaces in a thorough and systematic
way and has concluded that the mechanism involves a fast equilibrium
relation maintained between the adsorbed atoms and the molecules in
the gas stream, and a rate determining reaction in which an adsorbed
atom breaks away. However, the former relation is no longer true
when we reach the free molecular flow regime. Modification can be
made by applying the steady state assumption on the adsorbed atoms

to the following reaction mechanism:
51
G, t28 == 258G
2 K
-1
1{2
SG — S+G

Thus we have

L°-k,0,L=0 |, (7-23)

- 22
2k, (1-0)°L%- 2k _ 0 20,

2.2
171
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which gives

. L oo 2 /1013
5 =k132iL+-4k2 [ ki, L{~ k tk_,L) +k2/16] (724
1 KL - k_iL : ,
if kyj,#k_y, and
K, j,.L
o, = ——E (7-25)
2k, j,L +5k,
if kj, =k_;. The sticking probability o, therefore is
1
_2 koL
S J2i
Ly [k,j..L+ k - (k L( Lk L) +k2 /16)2]
_ 272t 51l 27 iy -1 2
321(k1321 k-i) '
(7-26)
if k JZi#-k 1 and
Lk k,L° |
g-s = T 3 (7-27)
2kiipl T3k,
if kijZi = k—i‘ In the free molecular flow limit we have
, |
o =k, L° , (7-28)

from cither equation (7-26) or {(7-27). From the transition regime up

to the continuum regime, Brennan has claimed that k, is negligible

2
so that
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1 i s
__Zkaligdpy) "L (7-29)
S . (1 o: \F 5 : -
33 (lkydp )% + (k%)

Notice that if 'kij21<< k__1 , we have

L
{ (k)2
-132i -

while if kijzi >> k_1 » W& have

0' = . - (7-31)
J21

All these agree with experimental results given by Brennan (5) and con-

firm our assumptions in the previous chapters.

7.3.2 Recombination reaction

The recombination reaction has the mechanism,

k—Z

G+s5 = sG ,
k2
k_y

ZSG-”ZS+G2 .

Using the steady state approximation for the adsorbed atoms, we

obtain

. 2
k_zgii(i—el)L -k 91L -2k_,67L"=0 , - {7-32)

2
171

2

which gives
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, . ) X 1
otk pigy) * LUtk iy )" 48k ki1l

;= , . (7-33)

® 4k_, L

Therefore the sticking probability for the recombination reaction is

2k 19‘;‘1.2
o' = ——
s J1i
k,0, L
=k .(1-0,)L - —% . (7-34)
-2 1 Jii ‘ _

Inthe free molecular flow limit where the surface is only sparsely

covered, we have

ko,
9 = % i ¢ - (7-35)
2
éo that
(. : — -
¢l =0l ) =0 . | | (7-36)

On the other hand, by taking the continuum limit there is obtained

0

H

1 1 s (7-37)

' 2 eme— v 7-38
o i ( )

7.4 Mechanism by Laidler

7.4.1 Dissociation reaction

Laidler (16) (17) disagrees with Brennan and proposes another

mechanism for the dissociation reaction,
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ZS+G2 = 2SG ,

G.+S — SG+G .
2
ks

Following the same procedure as that in section 7.3.1, we apply the

steady state approximation to the adsorbed atoms to obtain

S 2.2 2.2 . _ _
Zkigzi(l-ei) L 2k_,8{L"+ k;j,.(1-0,)L =0 , (7-39)
and this implies that for kijz.laé k_1
~(le_ Lt Flgd, ) + [ (k_ Ltdky, 02+l (i3, -k )1.2]2
3921 3921 JiRgdptk g
6y =1- & T .
13 kg
(7-40)
and for kijZi = k_1
. k_l )
0, =1 - . (7-41)
2k 1L +1 5 k3_]2
- Therefore we have fér kijZi #k_y
k332 (t-6,)L
0-s 2]
J2i
Kk L[(k L+2k 324k (ki iook L2 E-(k L4+ Ry5,0)
_ 33ps R LN -1 3321
2_ (kpjpi- kL

(7-42)

and for kljZi =k_y
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1
i,k L

= z 3 ‘11 : . (7-43)
2k 4L T ak30p;

Taking the free molecular flow limit, we have

O-S =—%k3L s (7-44)

while taking continuum limit, we obtain

2
kL

[+ 3 = > . (7"45)
24

8

7.4.2 Recombination reaction

The recombination reaction has the mechanism,

k-Z

S+G = SG R
ky

G+ SG — 5+G, .
k5

By using the steady state approximation for the adsorbed atoms, we

obtain

k_zjii(i-ei)L—kzeiL-k__3j“61L=0 R . (7-46)
which implies
X i
-2°1i
0, = : - , (7-47)
bk oy Ty TR gl
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- and the sticking probability o-; is

SRR W St C (geag)
s kTRt k gl

Laidler claims that, except at high temperatures, most metal surfaces
are fully covered by atoms even at very low pressure., This implies

that k2 and k_3 are so small fhat

o' =k L , (7-49)

which is a constant. However, the value of o"s does not vanish when
we take the continuum limit. This can be explained by the fact that
we have neglected the adsorbed molecules which actually occupy all

the surface area in the continuum flow regime.

7.5 Conclusions

We have discussed the most general mechanism Qhere all the
possible reactions are taken into account, as well as the two mecha-
nisms proposed 'by'Brennan and Laidler. From the present analysis
and the arguments given by Brennan and Laidler we may draw the
following conclusions:

1. The sticking probé,bility for the dissociation reaction o
is a constant over a wide range of Knudsen numbers from the free
molecular flow reéirne to the Itransition regime, while above the
transition regime it becomes inversely proportional to the square root

of the incident flux.,
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2. The sticking probability for the recémbination reaction
0'; is a constant in the transition regime énd is proportional to the
incident flux when the pressure beéomes extremely low.‘
| 3. In the continuum regime, both T and G"S are inversely

proportional to the incident fluxes for molecules and atoms respectively.

This iraplies that both o and o*é are zero in the continuum regime.

These conclusions confirm our assumptions in the previous
chapters that the sticking probabilities N and o'; are constants in
the transition regime and become inversely proportional to the incident

fluxes in the continuum regime.
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NOTATIONS

Constant defined by Eqs. (2-65) and (3-45).
Constant coefficients.

Constants in collision integrals.

Radius of sphere.

Integration constants.

Constant coefficient,

Impact parameter, Figure 3,
Integration constants.

Constant coefficient.

Drag force coefficient,

Concentration of gas in solid sphere.
Saturation concentration of gas in solid sphere.
Defined by equation (6-13).
Concentratio.n of pure solid in sphere,
Laplace transforrn.of c.

Binary diffusivity, equation (2-50).
Diffusivity of gas in solid.

Thermal diffusivity.

Intermolecular force éonstants.
Integration constant.

Average electronic energy per atom.
Average rotational energy per molecule.

Rotational energy states for a molecule.
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Unit vectors.,.

Efxergy flux tensor, equatfxons (2-25) and {2-27).
Error function of x.

Integration constant.

Extern‘al force vector.

Drag force.
Molecular distribution functions.

Function defined by equation (2-76).

Surface force vector.

Symbol of a gas atom.

Defined by equation (5-63).

Defined by cquations (4-17) and (5-15).
Molecular enthalpies.

Spherical Hankel function of the first kind.
Defined by equation (2B-6). -

Mass transfer per unit wire length for species
Incident fluxes.

Reflected fluxes.

Total fluxes.

Fluxes in the radial direction.

Flux in solid sphere. |

Knudsen number, equations (4-44) and (5-64).

Defined by equation (6-23).

i
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k Boltzmann constant.
kr - Recombination rate constant, equation (2-31).
kp,k0 Constants, equations (6-1) and (6-2).
ki Reaction rate constants in Chapter 7.
L - Concentration of surface sites.
yi Defined by equations (4-37) and (5-56).

m,m,,m, Molecular (atomic) masses.

™ Reduced mass.

"r'fxo Average molecular mass.

n,ni,nij Number densities.

51,'1—11‘]. Dimerisionless number densities.

P, Legendre polynomials.

PP, Thermodynamic pressures.

g,gi Pressure tensors.

Qr ' Total heat transfer per unit wire length.
Q(i) Defined by equation (2.B—7),

q Heat (energy) flux vector.

trans. -Translational energy flux vector.

int. Internal energy flux vector.

sz'ot- .Rotational energy flux for a diatomic molecule.
Ri Radius of wire.
_R0 Radius of cylinder.

R Dimensionless radius of cylinder.

Re Reynolds number.

T Position vector.

T Dimensionless p.osition vector.
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o

T Radial distance.
T Dimensionless radial distance.
rp Rate atoms penetrate into sphere.
T, Rate atoms jump out to surfacé of spheré.
r* — Moving boundary.
_1:* Dimensionless moving boundary.
r: Solution of equation (6-17).
S Defined by equations {2-128) and (3-68).
Sr,se,so’. Molecular speed ratios.
Sb s Sir s S, 8
Siz Defined by equation (2-90).
S’k‘ - Defined by equation (5-75).
Sc Schmidt number.
s Laplé,ce transform parameter.,
T,Tj Temperatures.,
_T_,’_I‘_j Dimensionless temperatures.
Time.
U Relative velocity in collision integral.
U0 o Upstream velocity., |
u,u, Local velocities.
v Molecular speed, equation (2-47),
l_N',E/’_.l Mean velocities.
X Dimensionless function in equation (4-16).
Xy Mole fraction of species 1 at infinity.

»
[

Mole fraction of species 1.
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Mole fraction of species | at sphere,

{ Mole fraction of species 1 in matching process,

Greek Letters

o Angle defined by equations (2-7) and (3-25).
a, | Angle (defined by equation (2-66).

B,pB' Empirical constants.

I°(t) Defined by equation (6-29).

Y; Reaction rate constants in Chapter 7.
Ai,A{ Dimensionless constants.,

8 Defined by equations {2-116) and (3-46).
6,5 Defined by equation (2-75).

€ Defined by equations (2-42} and (3-47).

€' Perturbation parameter,

M Azimuthal angle.

M Stoichiometric gonstant.‘

¢ . Polar angle.

Gi‘ | Fraction of surface sites occupied by species i.
KosKyo Thermal conductivities. |

A o Mean free path.

)\1 ,)\2, >‘12 Mean free paths defined by equations (2-51) to (2-53).

e Viscosity.

'p.i o Viscosities defined by equations (2-48) and (2-49).
% Kinematic viscosity. |

E:E_ié{ Molecular random velocities,

P,pP. Mass densities. -
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Sticking probabilities.
a! Defined by equation (6-37)

o,0', T 0'; Accommodation coefficients.,

@ Dimensionless function in equation (4-15).
O(r) Potential function of intermolecular force.
ol Angle in Figure 2.

¢i Defined by équations (7-6) to (7-12).

X Angle in Figure 3.

g . Function of random velocity.

[ Mean value of xp..

Ay Change of  due to collisions.

S'Zi‘ Regions defined by equations (2-5) and (2-6}).
w Defined by equation (2C-2).

el

Dimensionless vorticity.
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PROPOSITION 1

SIZE DISTRIBUTION OF PARTICLES CRYSTALLIZED
FROM ASTATIONARY SUPERSATURATED SOLUTION

A mathematicél method is developed to calculate the rate of
forfnation of crystals pf spherivcal shape in a stationary slightly super-
saturated solution. As time goes on crystals are growing and new
nuclei are being formed unfil finally all the supersaturated solute is
" precipitated. Then the particle size distribution can be found from

the time each crystal is formed and the growth rate of the crystal.

Ina slightly supersaturated solution nuclei will be formed by
small agitation., The rate of formation of new nuclei is proportionél

to the degree of supersaturation by the relation (3),

dN _ * 4 - '
a—' —'k1V(C-C ) ) 4 (I"i)

where N is the total number of nuclei in the solution, t is the time,
c is the concentratioﬁ of the solution, c* is the saturation concen-
tration at the same temperature and pressure, V is the available
volume for nucleation, and k1 is a proportional constant to be deter-
mined by experiment.

The par.ticle growth rate is a very complicated function of the
time through which the particle has grown, the concentration of the
solution, and the other particles presented. For the present case,

the solution is slightly supersaturated and the equation of Rhead (4) as
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- well -as Coriell and Parker (1) can be used with a small modification.
They give the equation of the radius of a growing sphere with constant

concentration in the solution,

1 ( .
= 2MDgt)%¢ (I-2)
where 1
X &
ve (S (1-3)
2(C-c)

under the assumption }\2 << 1, where R is the radius of the particle,
DS is the surface diffusion coefficient, and C 1is the concentration
inside the precipitate. For a solution with variable concentration,

we differentiate R® with respect to t to get

dr®

& 4)\D . (I-4)

Therefore, there is obtained

t Z(C—C*)D ~—21- '
R LS @
0 C-c

where r_ is the critical nucleation radius.
Because small particles have higher chemical potential than
larger ones, new nuclei formed near a particle with larger size tend

b

to be dissolved away. This is called "Ostwald ripening. " Consequently
there exists a minimum distance- d from a particle so that any new
nucleus formed at a distance less than d will be dissolved away.

For each particle fhere will be a corresponding volume %17 (R +d -l'rc)3

in which no nucleus can be formed. The total volume for nucleation
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* must be equal to the initial volume subtracted by the volume in which

nucleation is inhibited.

t
- 4 3 dN
V = Vo - S 3 (R +d +I‘C) ar dr . (1I-6)

(I-7)

bt
(¢]

whe_re
Y& '
2 (1-8)

k3 = ZmeT

where kT is the thermal energy, Yy is the surface energy of the

particle, £ is the atomic volume, and kz is a geometrical factor of

the order of unity. Substituting equation (I-6) into (I-1), we obtain

‘315’ K, (c-c 4fv g 31T[R(t'r ) 4+d(t,7) 1 ]3%15017}, (I-9)°

where
1
2

(Swt T2[c{t'tT)-¢ ]D dt_'+r(2:) , 1-10)

x

R(t,7) =
C-c

]

k -
d(t, ) —%[M-1J ) (I-11)

A Te

The concentration c of the solution can be related to the precipitated

mass by the equation

(‘ —wa (t, 'r)-—-— dr , (I-12)

0vYo
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where o is the initial concentration, m is the molecular mass and

p is the density of the solute. Simultaneous solution for ¢ and dN/dt
as functions of time can be obtained from equations (I-9) and (I-12) by
applying numerical methods. At a final time t when ¢ = c*, both
dN/dt and dR/dt become zero so that no further precipitation occurs.

In fact, ti satisfies

t
1 R
%
So %ﬂRs(t,T)p% ar = (cy-<ImV, . (I-13)

The final distribution of particle sizes can be found by the equation,

dN _ dN | dt 1
-c—i_ﬁ'dtde' ’ (I-14)
where dN/dt is given by equations (I-9) and (I-12), and
.D .
_El-_R_ - S[ C(t)—C ] . (1-15)
dt : :

R(C - ¢

Here we take the absolute value of dt/dR because the earlier the
particle is formed, the larger it grows, so that dt/dR is negative.
After solving equations (I-9) and (I-12), equation (I-14) can be solved
immediately. |

The final particle size distribution, i.e. equation ({I-14), should
coincide with experimental results. From equatién (I-9) it is noticed
that more nuclei are formed at an early stage, while equation (I-15)
shows that particles with larger radii grow more slowly, Therefore,
most particles fall into the region near the mean radius and the distri-

bution function is like a normal distribution.
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It is also ihtéresting‘to find the radius of the largest

particle, which is

o

This can be compared with the largest particle found in experiments.,

dt'+ r . - (I-16)
0 c-c* ¢ :

Sti 2lclt)) -c"1D 2}%
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PROPOSITION II

A METHOD OF SOLVING THE BOUNDARY VALUE PROBLEMS
FOR THE DISTRIBUTED CHEMICAL REACTION SYSTEMS

Of the distributed chemical reaction systems, those with a
single reaction in a planar region present the simplest problem for
analysis due to the fact that theby' can be described by a single state
variable. In particular, cvhemical reactions with second order kinetics
appear more frequently than any other reaction. We shall discuss the

following reaction system:

2A, = A

1 2

with uniform temperature in a region bounded by two parallel planes,
by introducing a new iterative method as a modification to the existing
Picard's method. Numerical examples turn out to support this new
method very strongly. The same theory holds for cases with variable
temperature field as long as all the physical properties can be taken
as constant. A complete general description may be found in the book

by Gavalas (2).

The conservation equations are

d”c 2
D1 5 = k1c1 - ZkZCZ s (I1-1)
dx
dz'c:2 2 :
DZ 5 = - 3 kicl + kZCZ s (II'Z)



~-148-

2
D2 the diffusivities for Ay and Ay, ky and k, - the reaction rate

_where c, and c., are the concentrations for A1 and AZ’ D, and

constants. We shall consider the following boundary conditions:

dc {
= =0 at x=0 s (II-3)
¢, = ¢, at x=L |, . (11-4)

for i=1,2,
Adding equation (II-1) with twice of equation (II-2) and using
boundary conditions (II-3) and (II-4) we obtain |
D

1
5 = CZ._O + 2——,;((:10- c1) s (I1-5)

Cc

which combined with equation (II-1) yields

dey f .2 [ +D1 ( 1 | (I1-6)
D =k, <c;-2K]c == (C, A~ C . -
1 dxz 1{ 1 20 2.D1 10 1 }
where
kZ
K= <% , . (11-7)
ky
- Now ifwe let
D,K D K 2 | D, -z
1 11771 1
ci—A
0= , (I1-9)
ciO-A
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2

k,L D,. -
_ 1 : 1
k-[—ﬁ———(ZA+K—ﬁ—)J , (II-11)
1 27
kiLZ,
A= (CiO-A)-ﬁ-l'-— N (11-12)
we obtain from equation (II-6)
d®u .2 2
S =kt (IT-13)
d§
with
us=1 . at  E=1 , (II-14)
du _ g at £ =0 (II- 15)
'ag . "

Although equations (II-i3), (II-14) and (II-15) can be solved analytically
in terms of elliptical integrals, we shall proceed to develop a method
of iteration which can be applied to multireaction systems. The existing
Picard's method uses the left-hand side of equation (II-13) as main
operator and iterate on the right-hand side. We shall, however, obtain

the sequence, u,, u,, Uys e by solving

dzu
- - KPu, = Mk%u,2. (IT-16)
i 1-1
d¢ .
with
u.l'= 1 at £E=1 (11-17)
du.

J'.— - -
=0 at £=0 , (II-18)
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.for i=0,1,2,... , where we set

u_ =0 (1I-19)
and
M = _7\7 . (11-20)
k

It can be easily shown that

_ cosh ké

Y = Cosh k (H-21)

To obtain u, in terms of U the Green's function is constructed

using standard methods, Friedman (1), as

_ cosh kx sinh k(1 - £)

<z
k cosh Kk 0=x<§

G(§ ,x) = . (II-22)

_ cosh k& sinh k(1 -x)
k cosh k

E<x=1

From this we have

: 3
u, () = - kM sinh k(i-QS cosh kx u.z (x) dx
i 0 i-1

cosh k

1

o Sio K{1-x u % (x) dx+ S350 i

_ kMcosh k
cosh k

cosh k

for i=1,2,3,.0. &
To prove the convergence of the sequence u;, we have to show
first the boundedness of U Clearly iuo |=1 andif we assume
lui-il =1, we want to show [uii = 1 under constraint, if any. From

equation (II-23) we have

,» (II-23)
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. e
-y €) l_s k[MLilsﬁlf:“ —@S‘O cosh kx dx

1
k|M|coshké . _ cosh kE
+ cosh & : sinh k(1-x) dx +-———————cosh T
h k
= M| +(1- IMI)————-—-—ijshﬁ . | (II-24)

If we restrict |M| =1, we get [ui] =1 for all i.

Now we let

ViTu ot Uy (I1-25)

for i=1,2,3,.., and have from equation (II-23)
v. =1M)y ©(11-26)
i 2 !

by mathematical induction. Therefore, for | M | <% , the sequence
Vi' converges to zero and from theories of convergence the sequence
- u; converges to é. value u. It can be shown that once the sequence
u, coanverges, the limit is the solution of equations (II-13) to (II-15),

From the definitions of M, A\, and k, we know that M is
bounded by

-—12-<M<oo . {I1-27)

The above investigation has taken care of the range - —;— <M <% . For

M 2—% , we write equation (II-13) in the form

SFulu-1) | (11-28)

where
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-kl +M) , (II- 29)

with the same given boundary conditions. Obviously k is real since

M is always larger than - L. We now form a sequence u

2 ° 1
by solving
2
d u,
i —2— _ M —2-— - -
5 - k W = T +Mk ui-—i(ui-i 1) (I1-30)
dé _ ‘
with
Gi: 1 at E=1 (11-31)
du; _
= =0 at £E=0 , (11-32)
for i=1,2,3,... , where we have set
u,; =0 . (1I-33)
There is obtained
a - cosh k& . ’ (1I-34)

cosh k

The Green's function for equations (II-30) to (II-32) has the same form

as that of equation (II-22), only with k replacing k. Hence we have

— £ -
() = - poh Keih RO e ooy T, [T, Go-1] ax
' | cosh & 0 : :

M kcoshké .

- - sinh k(1-x)uw. ,(x)[u. | (x)-1] dx
1i+M cosh® YE i-1 i-1"
4+ cosh kb . (II-35)

cosh k



-153-.
We shall show by mathematical induction that the following

‘relation holds for all i:

—

0<%, =t . ' (11-36)

From equation (1I-34)-it is obvious that

equation (II-36) is satisfied by '1_10. Now if we assume that 711-1 '

satisfies equation (II-36), the value of 31-161-1' 1) lies between -—i—

and 0., Therefore for M > 0 we have

u (§) =

il -

e T £

1 l:./[M k siph k(f ) S cosh kx dx
cosh k 0

t = h k&

— sinh R(1 - x) dx + 2252 58

coshk V¢ cosh k

1M kcoshkE

L TEM

3
1+7}M
+

coshké _
M 1 -

cosh k

IS

M
X

1 , (II-37)

and

T.(6) = SoshkE o4 (11-38)
t cosh k

Therefore equation (II-36) holds for all i.

Next we have to show the convergence of T'Li. Let

V. = u. - u.
i i i-1 °

(1I-39)

for i =1,2,3,.es s« It can be shown by mathematical induction that

=3 () (=) (040

Therefore v. converges to zero and Tli converges to a limit which is

the desired solution,
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The numerical example shown belﬁw confirms the conver~
gence theory just proved and also shows how fast the sequence con-
verges. We take, for simplicity, k .to be unity and use the first
method of iteration to calculate the values of du.l/d«’_i, at £ =1 for
different values of M, Table I shows that the sequence u, convergés
for M upto 2 although the theory holds only for |M|< % « The
limiting values in all cases agree with those obtained from the exact
solution whose details willnotbe given here. For large values of M,
the second method of iteration is used to give values of dﬁi/dg at
€ =1 shown in Table II where the rapidness of convergence can be

easily noticed.

Table I. First method of iteration (k = 1)

At & =1 M= 0.1 M = 0.5 M= 2 M = 10
- dug /dE 0.76159 0.76159 0.76159 0.76159
dui/dé 0.80814 0.99499 1,69569 5,43242
du, /d§ 0.80642 0.96419 1.27548 4,92537
du3/d§ 0.80701 0.96876 1.48747 135,742
Exact solution ; g5¢7g 0.96884 1,41825 2.74212

du/d§
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Table II. Second method of iteration (k = 1)

At £= 1 M= 2 M= 10

du, /dé 1,62689 3.30789
du, /a¢ 1,41344 2.75211
dGZ/dg ‘ 1.41753 2.65922
Exact solution .

We have, thus, demon_strated a new method of iteration which
gives a fast converging sequence for this special single reaction
system. For multi-reaction systems, iterative methods prove to be
effective for different individual cases. Therefore, more work is
suggested along this line in the future in order to achieve a general

method.
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PROPOSITION III

LIGHT INTENSITY INSIDE AN INFINITELY LONG CYLINDER

In the research paper "PHOTOCHEMICAL REACTION EN-
GINEERING" of Cassano, Silveston, and Smith (1), the light intensity
inside an infinitely long cylinder is obtained by applying Lambert's
law for monochromatic radiation to the cylindric coordinates, Their
result shows a singularity at the center of the cylinder with an infinite
light intensity. Physically it is not the case because the center of the
cylinder is neither a sink nor a source. This leads to the investiga-.

tion of the problem and the proposition of a new mathematical model.

Lambert's law is
Vel=-plI] , (I1I-1)

‘where 1 is the intensity of light aﬁd p is the attenuation coefficient
which represents the absorbability, Lambert's law states that the
amount of light going into a point is equal to the amount of light absorbed
there. In case the medium does not absorb light, i.e. p =0, we have
V+1=0 which is identical to the continuity equation for incompressible
fluid.

The authors of the above paper have applied Lambert's la\x} to

the cylinder by writing

19 .. )
12 m=sur (111-2)

with boundary condition,
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I=1 at r=R , (III-3)

where R is the radius of the cylinder, The solution of this first

order ordinary differential equation is (1)

1=1 2 lexp[-WR-m)] +exp[-p®+0)]| . (1I-4)

Equation (III-4) not only has a singularity at r = 0 but also gives a
value which does not satisfy the boundary condition at r = R. There-
fore the validity of this mathematical model is doubtful.

In actual physical cases, we can hardly obtain infinite light
intensity at a point. The idealized condition where the intensity at the
center of a cylinder is infinite is that there is an infinite number of
soﬁrces at the surface of the cylinder, each of them having the same
monochromatic coherent 1'1gh’c which is focused at the center of the
cylinder. In the present case the light is neither coherent nor focused
‘at the center,

The reason why equation (III-4) is wrong is that we cannot apply
equation (III-1) to get equation (III-2). Although the problem is axially
symmetric, the light beams are not all directed to the center of the
cylinder. If we consider a light beam wixich starts from the surface
and goes toward the center of the cylinder, it will penetrate the center
and keep going until it hits the opposite wall, After that, part of the
light will reflect back , part of it will diffuse back and the remaining
part will be absorbed. Consequently, not all the light beams are
radially directed and equation (III-2) is not valid.

The exact solution for the light intensity inside an



~-158-

infinitely long cylinder depends on the nature of the surface and the
medium. For simplification, we shall consider the surface to be
purely diffusive, i.e. the white wé,ll, and the medium to
absorb light without scattering, e.g. gases at low pressure and low
temperature. We can then apply Lambert's law in the following way.
Considering a point P in Figure 1, we try to find its intensity
due to a beam coming from a point Q on the wall. Let the coordinates
of P and Q be (r cos 0, r sin 8) and (R cos ¢, R sin ¢), the line
joining the two points has a slope tan « given by

R sind - r sin 0

tan&:Rcosc#—rcose'

(III-5)

Let _'{_Q be the intensity along the beam coming from the point Q. Its

components are

12 =-Ncosa (11I-6)
Ne-PRsine |, | (I11-7)
y
where
- )gQ} . (111-8)

Along this light beam, Lambert's law becomes

g = e (III-9)

Substituting equations (III-6) to (III-8) into equation (III-9), we obtain

Q- Q
o1 . o1 . R -
cos '-5-}-{— + sin —5'-};_ = p.I . (111 10)
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Fig. | RELATION BETWEEN THE POINTS P AND Q.
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_ If the intensity at Q is I_, the value of 9 at Q is I, /2n
because the source is equally distributed in all directions. Therefore

the boundary condition for equation (III-10) is
at x=Rcos¢é,y=Rsind, (ITI-11)

The solution of equations (III-10) and (III-11) is

I
12 = -¥ exp [ -Ry cos (¢-a) + pxcosa +pysina] . (I11-12)

The intensity at P influenced by Q is, therefore, obtained by substi-

tuting the values of x and y at P into equation (III-12) to be
Q L |
I(P) = 5_ exp [ -Rp cos (¢-a) + rp cos (6-a)] . (ITI-13)

The total intensity at point P can be obtained by integrating equation
(III-13) either with respect to ¢ or with respectto «. The former
measures the sum over all the sources while the latter measures the
sum over all the directions of the beams. Doth of them give the same

results. We shall eliminate the angle ¢ to get

I : 1
IQ(P) = -Z% exp -{-p[ RZ- rzsinz(a-e)] 24 pr cos (a-e)} . (III-14)

The total intensity at the point P is

Iw. 2w 2 2 .2 1 ¥
I(P) = _2*1—75‘ exp {-—p[ R%-r“sin“(a-0)]2 tprcos (a—e)% da . (III-15)
[e] !

Letting y= « -6, we have
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L, (2mo 2 2..2.%
I(P) =—2-T—TSI exp[ ~p(R“-r“sin“Y)é+prcosy] dy . (II1-16)
-0
For most gases, W is very small so that equation (III-16) becomes
o 2 2. 2.%
I(P) =-2—T-r§ [1-w(RE-rsin“Y)2+ pr cos ¢] dy . (II1-17)
) -0 .
Carry'ing out the integration we obtain
IW 1 T '
I(P) =—2;[2n - 4HRE(51:,R-)] . (I1I-18)

where E(i m,=) is the elliptical integral of the second kind which
2 TR g

 has the asymptotic expansion,

.6
1 Ir - 1 1 3 1 3 5 kY T ee e °
E(zmg)=3m gi'—(R) '*“(z z R) Z.Z.2\R e E
(I11-19)
Therefore, the final result is

UP) =1 %1'|~LR[1 ( ) 1 3 (r 4_' 12325 (£>6- jl(

N 2 R 2242 224262 R S

(1I1-20)

This new formula has the following advantages over the old one:

1). The solution is independent of 0, which is the true physical
case, although we have started with an equation involving 0. o

2). Equation (III-20) gives IL(P) = Iw at r = R, which sa‘ti;ﬁes
the boundary condition.

3). There is no singularity at the center of the cylinder.

4), _I(P) increases with r, which means the closer to the wall
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the higher the intensity.
5). If u=0, we have I(P) = Iw everywhere. This is true
because in a vacuum cylinder with purely diffusive wall of same

intensity, the intensity in the cylinder is everywhere uniform.

It is further suggested that this same problem can be
studied by considering the light beams to be in a more realistic

three dimensional space.
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