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ABSTRACT
A sequence (fn: n=1,2,...)in a Riesz space L is order con-
vergent to an element f € L whenever there exists a sequence u \L 0
in L such that |fn—f' = u holds for all n. Sequential order con-

vergence defines the order topology on L. The closure of a subset 8

in this topology is denoted by cl(S). The pseudo order closure S' of

a subset S is the set of all f € L. such that there exists a sequence in
S which is order convergent to f. If S' = cl(S) for every convex sub-
set S, then S' = cl(S) for every subset S. L has the Egoroff prop-
erty if and only if S' = cl(S) for every order bounded subset S of L.
A necessary and sufficient condition for L to have the property that
S' = cl{S) for every subset S of L is that L has the strong Egoroff
property.

A sequence (fn: n=1,2,...) in a Riesz space L is ru-con-
vergent to an element f € L whenever there exists a real sequence
eni 0 and an element w € LY such that Ifn—fl < e _w holds for all
n. Sequential ru-convergence defines the ru-topology on L. The
closure of a subset S in this topology is denoted by S. The pseudo
ru-closure S;'u of a subset S is the set of all f € 1. such that there
exisfs a sequence in S which is ru-convergent to f. If L is Archi-
medean, then S:'ru = S for every convex subset S implies that
S'l_u =S for every subsej: S. A characterization of those Archime~-
dean Riesz spaces L with the property that é;u = S for every sub- *
set S of L. is obtained.

If p is a monotone seminorm on a Riesz space L, then a

necessary and sufficient condition for p to be g-Fatou (i.e.,
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0=< u, T u in L implies p(un) T p(u)) is that the set Sp = {f€ L:
p(f) = 1} is order closed. For every monotone seminorm p on L,
the largest g-Fatou monotone seminorm bounded by p is the Minkow-
ski functional of the order closure of S

A monotone seminorm p on a Riesz space L is called strong
Fatou whenever 0 < a T u in L implies sup p(uq_) = p(u). A charac-
te.riza.tion of those Riesz spaces L which have the following property
is given: ""For every monotone seminorm p on L, the largest strong
Fatou monotone seminorm bounded by p is pél(f) = inf {sup p(urr) :
0= u, T |£| }." A similar characterization for Boolean algebras is

also obtained.
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INTRODUCTION

A well-knoxfm result from the theory of Banach function spaces
is the following: 'for any given monotone function seminorm p, the
largest g-Fatou monotone seminorm bounded by p is pL(f) =
inf{lim plu ):0<u, T1£]3." J. A. R. Holbrook extended the re-
sult by determining those Riesz spaces L for which the family of
monotone seminorms have the above property; he showed that they
are precisely those Riesz spaces which have the almost Egoroff prop-
erty. In this thesis, a characterization of those Riesz spaces L
which have the following property is obtained: '"For any given mono-
tone seminorm p on L, the largest strong Fatou seminorm bounded
by p is pglf) = inf {sup p(uq_): 0<u_ 0 FAIIL

To obtain the above characterization, we introduce first in
Section I the various equivalent forms of the Egoroff property of
Riesz spaces. As a consequence, a new property called the strong
Egoroff property arises naturally.

In Section II, we introduce the order topology and the relative
uniform topology on a Riesz space. The result of Section I is then
used to show that a Riesz space L has the strong Egoroff property if
and only if, for every subset S of L, the pseudo order closure of S
is order closed, We determine also those Riesz spaces in which the
reiative uniform topology has the property tl‘lat, for every subset S of
L, the pseudo relative uniform closure of S is .relatively uniformly
closed.

Section III starts with the various equivalent forms of the al-

most Egoroff property (of Riesz spaces) which are similar to the
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equivalent forms of the Egoroff property proved in Section I. The

| proof of J. A. R. Holbrook's result is then modified. This leads

easily to a generalization to directed systems.

In Section IV we focus our attention on a particular monotone
seminorm p of a given Riesz space L and determine necessary and
sufficient conditions for p to be g-Fatou in terms of the order topolo-
gy of L.

Section V deals with Bonlean algebras. In this section we

show which form our results take on in the theory of Boolean algebras.
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I. THE EGOROFF PROPERTY AND STRONG

EGOROFF PROPERTY OF RIESZ SPACES

In this section we shall discuss the Egoroff property of Riesz
spaces and a property which is stronger than the Egoroff property
called the strong Egoroff property of Riesz spaces. Various equiva-
lent forms of thé two properties are given. We also introduce the d-
property of Riesz spaces. A Riesz space has the strong Egoroff
property if and only if it has the Egoroff propcrty and the d-property.

 Definition. An element f of a Riesz space L is said to have

the Egoroff property if, given any double sequence of elements (unk :

n,k=1,2,...)in L such that Osunka 'fl for n=1,2,..., there

exists a sequence 0 < va Ifl in I, and for every m a sequence

k{m, n) of indices such that Vo <y for all m and n.

nk(m, n)

A Riesz space€ L is said to have the Egoroff property if every

element of L. has the Egoroff property.

It follows that a Riesz space L has the Egoroff property if and
only if every element in the positive cone L+ has the Egoroff property.

Hence, we may restrict our discussion to positive elements.

For a subset S of a Riesz space L, we shall denote by (S)
the convex hull of S in L. Hence, f € (S) if and only if f = gxnfn
where the Kn are real numbers satisfying >‘n 20, Xn = 0 except for
finitely many n, Izlxn = 1 and each fn € S. ‘We shall next study vari-
ous equivalent coﬁditions for an element u € LT to have the Egoroff

property.
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Theorem 1. Let L be a Riesz space and u € L+. Then the

following statements are equivalent.

(1) u has the Egoroff property.

(2) _]'i 0<u nk Tk u in L, then there is a sequence 0 < v, T u

. - . < !
in L and for every n an appropriate k({n) such that Vi unk(n) tor
all n.

(3) f 0= nk Tk u Tu in L, then there is a sequence

0= v, T u in L and for every n an appropriate k(n) such that v =

unk(n) for all n.

(4) If 0<u nk Tk u 'T u in L, then there is a sequence

0L v T u in L such that, for every m, v_ < w for some element
m — g m m

Ym in <{U'nk}> :

We shall prove theorem 1 by means of the following theorem.

Theorem 2. ILet L. be a Riesz space and u € L+. Then the

following statements are equivalent.

. . . .
(1) _Ii u= Wy ‘lk 0 in L, then there is a sequence Vo l 0 in

L and for every m a sequence k(m,n) of indices such that Vo z

unk(m,n) for all m and n.

Jlom

{(2%) Ifuz u oy *Lk 0 in L, then there is a sequence v

— = - e - - 3 2 A
L and for every n an a,ppropr@.te k{n} such that Va ® Yk(n) for

all n.
, > . t .
(39 Hu u g Ikun\lf 0 in L., then there is a sequence vn‘LO
in L and for every n an appropriate k(n) such that vn2 unk( ) for
all n.

(4%) -I_g uz U ‘Lk u ‘L 0 }_1:1_ L, then there is a sequence
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i 0 in L such that, for every m, v_ 2 w__ for some element w
= : . m m m
in ({unk}) .
Proof. It is clear that (1') = (2') and (3'}) = (4").

(2') = (3'): Let uzu unLO in L. Setw , =u, -u_.

nk ik nk

Then u =2 w 0 in I, and so by {2') there is a sequence v; \L 0 in

nk \Lk

L such that, for every n, vr'1 P Wnk(n) for some k = k(n). Set N

>:( 2 .:
vn + u then vy lO and v oEW nk{n ) u unk(n)'

(4') = (1"): Let uzu 0 in L. We may assume that

nk \Lk

u g T n for every fixed k (since we can always replace U by

Uy V...V U }. Furthermore, we may assume that there exists a

5 ..t
sequence (un.n~1,2,...)1n L. such that uZun\LO and un:r‘O

. .
for all n. Now uz unkv u ‘Lk uni 0. By (4'), there is a sequence

o,

i 0 such that, for every m, v;;l = Yo for some element
me ({ wg Y un}>.

For every m, let K nk’ M k=1,2,... be the real numbers

such that K:L 2 0 for all n, k, knk = 0 except for finitely many n, k,
m _ .
Ekxnk =1 and W= nZk)\nk(u KVu ). For every fixed m,n, set

k(m, n) = max{k: k ;-" 0} and )\ = Zk;l{; then, for each fixed m,
k

)\;nz 0 for all n, }\;n = 0 except for finitely many n, Z}\Il;n =1 and
' n

sk > > m
vioEwW ikn(u )vu).

nk{m, n n

Set v__ = 2v>* . Clearly, v \L 0 in L. It remains to be
m m m
shown that for a particular M, N of natural numbers, there cxists

some k = k(M, N) such that VM \Ik(M N) *

Let M, N be given. Set y = sup{ & Xn :m= M}. We shall
nzN
first show that y = 1. Itis clear that 0<y <1, Moreover, we

have, for every m= M,



v 2 A My vu) 2 £ APy
m n n n

nk(m, n) a<N B R
m _ m _ m . .
= (E<N>\n )uN = (?Illkn ngNkn )uN = (1 y)uN H

but inf{v’l";1 tm = M} =0 and Uy # 0 as we have chosen it so; there-
fore, we must have y =1,
By the above argument there exists a natural number P > M
P

= 1 i
such that nngn 5. Consider

P .
M P = n n (unk(P, n) v un) = 2'ngN)‘n Yhk(P, n) ’

if we let k(M,N) = max{k(P,n) : A~ # 0} and recall that u_, 1 for
every k, we thus obtain

% P
vy 2 20 2 k(v N) 2 UNK(M, N)

and so Ve 2v’i‘vI = uNk(M, N} This completes the proof of the

theorem.

Theorem 1 now follows immediately from theorem 2 since
(1) ® (1'), (2) ®(2"), (3) ® (3'), (4) ® (4"'). An element u¢ L" has
the Egoroff property if and only if one of the statements (1) - (4) of
theorem 1, (1') - (4') of theorem 2 holds. More.over, a Riesz space L,
has the Egoroff property if and only if, for every u € Lt , one of the

statements (1) - (4) of theorem 1, (1') « (4') of theorem 2 holds.

In view of theorem 2, it is natural to introduce the following

]

strong Egoroff property of Riesz spaces.

Definition. A Riesz space L is said to have the strong Egoroff
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property if, given any double sequence of elements (u_,: n, k= 1,2,..,)

nk’

in L+ such that u g lk 0 for every n, there exists in L+ a sequence

Vo l 0 and for every m a sequence k(m,n) of indices such that Vi z

unk(m,n) for all m and n.

As for the Egoroff property, we have a similar result con-

cerning the equivalent forms for the strong Egoroff property of Riesz

spaces.

Theorem 3. ILet L be a Riesz space. Then the following

statements are equivalent.

(1) L has the strong Egoroff property.

(2) If u

0 in L 1 0 1
nk l’k in ., then there is a sequence vn \L in 1.

and for every n an appropriate k(n) such that v,z for all n.

unk(n)

(3) I w o lk un‘b 0 in L, then there is a sequence v l 0 in

L and for every n an appropriate k(n) such that v z unk(n) for all n.

(4) If u g lk un& 0 in L, then there is a sequence vm\L 0 in

L such that, for every m, Vo 2 W for some element W in

<{unk}> :

Proof., Exactly the same as the proof of theorem 2, omitting

"uz ' everywhere.

From theorem 2 and the above theorem 3, we have that a Riesz
space L having the strong Egbroff property has also the Egoroff
property. The converse of this statement ddes not hold. The Riesz
space of all real bounded sequences with the pointwise ordering has
the Egoroff property but not the strong Egoroff property (see [ 9 J).

However, if a Riesz space L. has the Egoroff property as well
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as the property that every decreasing (to zero) double sequence in L
is eventually dominated by some element of L+, then I. has the strong

Egoroff property. To be precise, we have the following definition.

Definition. A Riesz space L is said to have the d-property

whenever, given any double sequence (unk: nk=1,2,...) in L+ with

u lk 0 for every n, there is an element w € L+ such that for every

. . - <
n there is an appropriate k = k(n) such that Cok(n) S W

The d-property in a stronger form was first introduced by
L. V. Kantorovitch which he called regularity (see [ 4] and [ 11]).
Later on, H. Nakano introduced the notion of complete regularity,

which is the same as the d-property (see [ 107).

Theorem 4. Let L be a Riesz space. Then the following two

statements are equivalent.

(1) L has the strong Egoroff property.

(2) L has the Egoroff property and the d-property.

Proof. It is clear that if L. has the strong Egoroff property,

then L has the Egoroff property and the d-property. Conversely, let
L have the Egoroff property and the d-property. Let u ., \Lk 0 in L

for évery n. By the d-property of L there is an element w € L+

< 5 = . - =
such that, for every n, unk(n) w for some k = k(n) Set Wi

W kin )i’ n,i=1,2,..., then w2 Wi li 0. There is, by the

Egoroff property of L., a sequence vml 0 in L such that, for every

m,n, v for some i = i{m, n). Now, for every m,n,

= W,
m ni{m, n)

v n),and so L has the strong Egoroif

m = Wni(m, n) = un, k{n)}i(m,

property. This completes the proof of the theorem.
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A Riesz space L is called Archimedean if, for every u € L+,

" the sequence (n- lu: n=1,2,...) satisfies n "u ‘E 0. It follows that a
Riesz space L is Archimedean if and only if, for every u € L+,

enu l 0 for every sequence (en: n=1,2,...) of positive real numbers
sa‘f1sfy1ng € l 0.

The following theorem is due to W. A. J. Luxemburg.

Theorem 5. If L is an Archimedean Riesz space, then L has

the strong Lgoroff property if and only if L. has the d-property.

Proof. One implication of the theorem holds always. On the

other hand, assume that L. is Archimedean and has the d-property.

Let u lk 0.

Then nu

0 _ A .
Lk l‘-k ,and so by the d-property there is an

element u € L+ such that nu <u for all n. Let v_=n" 1u.
nk{n) n
Then v l 0 (since L is Archimedean), and u £ v_ for all n.
n nk(n) n _

Hence L has the strong Egoroff property.
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II. ORDER CONVERGENCE AND RELATIVE UNIFORM

CONVERGENCE IN A RIESZ SPACE

The Egoroff and the strong .Egoroff properties of a Riesz space
discussed in the previous section are analogous to properties of mono-
tonely convergent sequences of real numbers. In this section we shall
consider in a Riesz space two kinds of convergence of sequences which
are not necessarily monotone. They are the order convergence of se-
quences which induces on the Riesz space the order topology, and the
relative uniform convergence of sequences which induces on the Riesz

space the relative uniform topology.

Definition. A sequence (fn: n=1,2,...)in a Riesz space L

is order convergent to an element f € L. whenever there exists a se-

quence u_ | 0 in L _such that |[f -f| < u_holds for all n. This will

be denoted by fn - nf or simply fn - 1.

It éan be easily shown that the limit of an order convergent se-
quence is unique, i.e., if fn - f and fn - g, then £ = g. Monotone
convergence is a special case of order convergence, i.e., if fn T f or
fn l f, then fn -=f; moreover, if fn -1, g, 8 and A,y are real

numbers, then )».fn tug, "~ Atug.

It is not true that, in every Riesz space L, if fn - f in L and
)\n -+ X in the real number space, then )\nfn - Af. However, if L is

Archimedean, then fn - { and )\n'—* A imply that ann -\ (see [9 ])

A subset S of a Riesz space L is called order closed if for

every order convergent sequence in S the order limit of the sequénce
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is also a member of S. It follows immediately from the definition
that the empty set and the space L itself are order closed and that
érbitrary intersections and finite unions of order closed sets are
order closed. Hence, the order closed sets are exactly the closed

sets of a certain topology in L, the order topology (see [ 9 ]). It is

evident that the order topology in L satisfies the Tl~separation
axiom, i.e., every subset of L. consisting of one point is order
closed. A subset V of L is open in the order topology if and only if
fn -fin L and f € V implies that fn € V for all but a finite number
of the fn. It follows that if fn - f, then fn converges to f in the

order top blogy.

For any subset S of L, the pseudo order closure S' of S is

the set of all f € L. such that there exists a sequence in S converging

in order to f. The order closure of S, i.e., the closure of 5 in the

order topology, will be denoted by cl(S). Evidently we have SCS S§'C
cl(S). Taking closures, we obtain cl(S)E cl(S') € cl(S), so cl(8') =
cl{S). Hence, replacing S by S' in the first formula, we obtain also
that

S' & (S") & cl{S") = cl(s),
and by induction it follows that

S & 8 (8! S C ... S cls).

Furthermore, we have the following theorem.

Theorem 6; (1) A subset S of L is order closed if and only if

S=8"', i.e., S=S8' already implies that S = cl(S"').

(2) A subset S of L satisfies S' = cl(S) if and only if S'=(S")%
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Proof. (1) If S is order closed, then the order limit of every

order convergent sequence in S is in S, hence S =S'., Conversely,
assume that S = S8'. Let fn €S and f —~f. Then { € S' by the defini-
tion of S', and so f € S by the assumption that S = S'. This shows
that S' is order c;osed.

| (2) It follows from the formula S'< (S')' € cl(S) that S'=cl{S)
implies S'= (S')'. On the other hand, assume that S'= (S')'. By(l),
S' is order closed and so S' = cl(8'). But cl(S8') = cl{S) holds always,

hence S' = cl(S).

We are interested in finding a condition on a Riesz space L
which ensures that S' = cl(S) for every subset S of L. From the last
theore¥n it is sufficient to find a condition under which S' = (S')' for
every subset S of L. In order to do this, first we prove the follow-

ing theorem.

Theorem 7. Let L be a Riesz space. Then the following

statements are equivalent.

(1) L has the strong Egoroff property.

(2) If fnk -'kf in L, then, for every n, there is k= k{n) such

that 'fnk(n) - £

(3) If fnk K fn - f in L, then, for every n, there is k = k(n)
such that fnk(n) - f. | |

(4) 1f fnk ___‘k fn - f in L, then there'is a sequence {g_:m =

1,2,...) in ({fnk}> such that g _ - f.

Proof. (1)={(2). Let { f in L.. By the definition of

nk "k

order convergence there exists for every n a sequence U l’k 0 in




-13-
L, such that Ifnk—fl < u for all n,k. By the assumption that L has
the strong Egoroff property and by theorem 3 of the last section,
<
unk(n) v for

some k = k(n). Now Ifnk(n)-ff < Wok(n) s v_ for every n; hence,

there is a sequence vy ‘L 0 such that, for every n,

fnk(n) - f.

(2)=(3): Let f f - f in L.. There exists, for every n,

nk k ‘n
. +
a sequence u lk 0 and a sequence u l 0 in L~ such that

|f -f_ | £ u__ for all n,k and |f —fl £ u_ for all n. Then, for
nk n n n

nk
every fixed n, U Tk 0 and so by (2), for every n, there is an ap-

propriate k(n) such that u - 0. Let the sequence (vn: v=1,2,

nk(n)
.v.) in L be suchthat v_ | 0 and u <v_ for all n. Then
n v nk(n) n
= 1sfi - s <
w un+vn satisfies w l 0 and !fnk(n) f! unk(n)+un wo for all
n; hence, fnk(n) - 1.

It is clear that (3) = (4).

(4) = (1):" It is sufficient by theorem 3 of the last section to
show that if Uy lk u l, 0 in L, then there is a sequence Vi l 0 in
L such that for every m, v_ 2 w__ for some element w__ in

m m m

({unk}). Let U g lk u l 0 in L. Then u u_ -~ 0. By (4)

nk “k ‘n
theré is a sequence (wm: m=1,2,...)in <{unk}> such that wo 0.

Thus, there is a sequence v l 0 in L suchthat v. 2 w_ for all
m m m

m. This completes the proof of the theorem.

A Riesz space L is said to have the diagonal property (Ior.

order convergence:), whenever fnk “k fn —f in L, there is for every

n an appropriate k(n) such that fnk(n) "y f. A Riesz space L is said

to have the diagonal gap property (for order convergence), whenever
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fnk ~k fn = { in L, there is for every m an appropriate k(m), n(m)

 with n(l) < n(2)<... such that fn f. The diagonal prop-

(m)k(m) “m
erty and the diagonal gap property have been introduced by W. A. J.
Luxemburg and A. C. Zaanen (see [ 9 7]). Condition (2) in theorem 7
is the diagonal property, and it is clear that (2) implies the diagonal
gap property, while the diagonal gap property implies condition (3) of
theorem 7. It follows then that the diagonal property, the diagonal gap

property, and the strong Egoroff property are equivalent.

Now we are ready to answer the question: under what condi-
tions does a Riesz space L have the property that, for every subset
S of L, the pseudo order closure and the order closure of S coin-
cide? A surprising result is that, if, for every convex subset S of
L, the pseudo order closure and the order closure of S coincide,
then, for every subset S of L, the pseudo order closure and the

order closure of S coincide.

Theorem 8. Let L be a Riesz space. Then the following con-

ditions are mutually cquivalent.

(1) L has the strong Egoroff property.

(2) S'=(S")' for every subset S of L.

(3} St = (s8') for every convex subset S of L.

Proof. (1)= (2): Let S be any subset of L. It is clear that

S'C (S')'. For the reverse inclusion, let £ € (S')'. By the definition
of pseudo order closure, there is a sequence (fn: n=1,2,...)in 8!
and, for every n, a sequence (fnk: k=1,2,...) in § such that

fnk 1 fn — f. By the assumption that L has the strong Egoroff prop-
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erty and theorem 7, we have fn ~ f for some k = k(n); hence,

k(n)
f€8'. Thus, (S')'< St.

It is clear that (2) = (3).
{3)=(1): By theorem 7, it is sufficient to show that, if

fnk “k fn -+ { in L, then there is a sequence (gm: m=1,2,...)1in

ok '-'kfn-*f in L, We write S =

({f ,}>. Then {f € (S")", and so by our assumption { € S'. Hence,
nk

({fnk}) such that g - f. Let {

there is a sequence (gm: m=1,2,...)1in ({fnk}) such that g__ - f.

This completes the proof of theorem 8.

We have, in Riesz spaces with the strong Egoroff property,
the order topology has the property that the closure of any set con-

sists of the set itself plus all its order sequential limit points.

A subset S of a Riesz space L is called order bounded if

there exists an element u in L+ such that l.fl < u for all £ in S.
The Egoroif property, in a way, is the strong Egoroff property re-
stricted to order bounded subsets. This last statement is clarified by

the following theorems 9 and 10.

Theorem 9. "Let L be a Riesz space. Then the following

statements are all equivalent.

(1) L has the Egoroff property.

(2) Z:—f-_fnk—’kfé—rl L and the set S = {fnk: n, k = 1,2,...}33

order bounded, then, for every n , there is k = k(n) such that

f f.

nk(n) -
- - 1 = M = 1
(3) If fnk K fn f in L and the set S {fnk' nk=1,2,...}

is order bounded, then, for every n, there is k = k(n) such that
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oy £
(4) I £ 5

is order bounded, then there is a sequence (gm: m=1,2,... )}_1}_ (S)

f -fin L and the set S={f ,:n,k=1,2,...]}
n — —_—— nk

such that 8m ~ f.

Proof.. Similar to thc proof of theorcm 7.

Theorem 10. Let I. be a Riesz space. Then the following

statements are all equivalent.

(1) L has the Egoroff property.

(2) S'"=(S")' for every order bounded subset S of L.

(3) 8'=(S")! for every order bounded convex subset S of L.

Prooif. Similar to the proof of theorem 8.

Besides order convergence, we introduce the relative uni-

- form convergence of sequences in a Riesz space.

Definition. Given an element u = 0 in a Riesz space L, we

shall say that the seqﬁence (fn: n=1,2,...) in L converges u-

uniformly to the element f € L whenever, for every ¢ > 0, there ex-~

ists a natural number Na such that [fn-f[ < gu holds for all n= Ne .

uniformly to £ whenever fn converges u~uniformly to f for some

u € L+. Relative uniform convergence of fn to f will be denoted by

fn ~ f (ru) or simply fn - f (ru).
-It follows immediately that if fn - f(ru}, fn - g(ru) and A, u

are real numbers, then )\fn g, - Af + g (ru). Furthermore, a se-

quence (fn: n=1,2,..,) converges relatively uniformly to f if and

only if there is u € Lt and a real sequence (en: n=1,2,...) with
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gn\!, 0 such that |fn—f| < e u for all n. Thus, if the Riesz space L
is Archimedean, then fn converges relatively uniformly to { implies
that fn converges in order to f; and so if L. is Archimedean, then the
limit of relative uniform convergence is unique, i.e., fn - f(ru) and
fn -8 (ru) imply that f = g. In a non-Archimedean Riesz space, the
limit of a relatively uniformly convergent sequence is not necessarily
unique. By wé.y of example,l let R2 be the lexicographically ordered
planc (i.e., RZ is the linear space of all ordered pairs f= (f,£,) of
real numbers, with the ordering defined as: f< g for f= (fl, fz) R
g = (gl,gz) whenever f; < g;, or f; = g, and i, = gz). If £=(1,1)
and fn = n_lf for n=1,2,.. . then fn -+ 0(ru) in RZ. On the other
hand, if g=(0,1), then 0 < fn-g < n—lf for all n and so also

v fn—*g(ru) in RZ.

If a Riesz space L has the d-property, then order convergent
sequences are relatively uniformly convergent. To see this, let
!
fn -+ 0. Then Efnl < u and u \[, 0. From the d-property, Gy 0
implies the existence of a sequence k(n)T of indices and an element
-1

wert such that u <£n "u. For kin) m<k(ntl) we set A__=n.
k(n) m

Then [f l < X_lu. Hence, f = 0(ru).
m m ‘ n
Relative uniform convergence is stable, i,e., it has the
property that for any sequence fn = 0 (ru) there exists a sequence of
real numbers (A\_:n=1,2,...) such that 0 <\ T o and A _f ~- 0{ru).
n n n'n
Indeed, given that fn = 0 {ru),there exists an element u & L+ and a

sequence of real numbers (en: n=12,...) with € l 0 and ‘fn! < eu

poj=

for all n,and so )\n =g satisfies the conditions mentioned above.

n
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Order convergence is not necessarily stable. By way of example, let
fn » n=1,2,..., be the elements of the space {foo with the first n
coordinates zero and all other coordinates equal to 1. Then fn L 0,
but for any sequence .of real numbers )\n satisfying 0 < )\n T o it is

impossible that ann -+ 0, simply because }\nfn is not bounded from

above. We have, however, the following theorem (see [ 9 ]).

Theorem 1l. In an Archimedean Reisz space, order con-

vergence is stable if and only if order convergence and relative uni-

form convergence are equivalent.

Proof. In an Archimedean Riesz space, relative uniform

convergence impliesi order 'convergence. Assuming stability of order
convergence, it will be sufficient, therefore, to prove that order con-
vergence implies relative uniform convergence. To this end, let
fn - 0. Since order convergence is stable by hypothesis, there ex-
ists a sequence VO < )\n T oo such that Anfn - 0. It follows that the se-
quence (Kn!fn‘ :n=1,2,...) is bounded, i.e., there exists an element
u € LY such that A lf | £ u holds for all n. Then EMIE x;lu holds
for all n, and so fn - 0 (ru).

Conversely, if order convergence and relative uniform con-
vergence are equivalent, then order convergence is stable because

relative uniform convergence is so.

If L. is a Riesz space, then the property that order conver-
gence in L is stable is weaker than the property that L has the strong

Egoroff property.
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Theorem 12. If a Riesz space L has the strong Egoroff prop-

‘erty, then order convergence in L. is stable. (The strong Egoroff
proi)erty of an Archimedean Riesz space L is, therefore, a sufficient
condition for order convergence and relative uniform convergence
Lo be equivalent in L. )

Proof. Let L be a Riesz space having the strong Egoroff

property. Let fn = 0 in L. There exists, by definition, a sequence
u ‘LO in L. and lf l £ u_ for all n. Then the double sequence

n n n

w o, S nU o, k=1,2,... satisfies U lk 0 for every n ; hence, by
our assumption that L. has the strong Egoroff property and theorem 3
of the last section, there is a sequence W l 0 in L and for every n,
there is k = k{n) such that w_ 2 u . We may assume that k(n) is

n nk(n)
strictly increasing in n, For every m=1,2,... there is some n
such that k{(n) < m < k(ntl), weset A =n and v. =w_. We then
m m n

have XmT oo and vml 0. Furthermore, for every m, if n is such
that k(n) £ m < k(n+1)}, then

= < = < =
>\rnurn M nuk(n) unk(n) = Ya Vin °

Thus, for every m, A [f SA _u_<v__;hence, A_f = 0. This
m m m'm

m| m m
shows that order convergence in L is stable.

Stability of order convergence in a Riesz space is not a suffi-
cient condition for the space to have the strong Egoroff property. The
following example shows the existence of a Riesz space in which order
convergence is stable but the space does not have the strong Egoroff

property.

Example. Let L be the Riesz space of all real sequences
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f={f(1), £(2), ...} with only finitely many non-zero terms; the order-
" ing is coordinatewise. We shall first show that order convergence
iﬁ L is stable. For this, it is sufficient to show that, for u l 0 in
L, there is a sequence OS)\nToo such that }‘nun - 0. Let u l 0 in L.
There exists a finite set F of natural numbers such that u, vanishes
outside of F for all n. For every n, set y = max{un(i): i€ F},
then pni, 0. We may assume that My # 0 for all n. Let (vn) be the

1
sequence in L such that Vn(i) = p.: if i € F and vn(i) = 0 otherwise;

1
- -2 .
let An =M, % Clearly, vni, 0 in L andl)\n T ool. For every natural
L e s . "E = B o= ow (). if
number i, if 1 € F, then )\nun(l) S;(Hn) My H’n Vn(l) ; if i $ F,
then A_u (i) = 0 =v_(i). It follows that A u < v for all n and so
nn n nn n

)\nun - 0. This completes the proof that order convergence in L is
stable. To see that L does not have the strong Egoroff property, we
take the sequence u et such that, for every n, u has its first n
coordinates equal to 1 and all other coordinates zero, and we let

-1
nk = k u for n,k=1,2,...+ Then U ‘Lk 0 for every n. There

u
is, however, no v € L satisfying v 2 Uk (n) for all n because it

would imply that v(i) = uy (i) = k(i) !>0 forall i=1,2,... -

If L. is an Archimedean Riesz space, then we can show that L
has the strong Egoroff property if and only if order convergence in L
is stable, provided L has the following property which we will call

the O-property.

Definition. A Riesz space L is said to have the o-property if,

for any sequence (un: n=12,...)in Lt , there exists an element

u € L+ and a sequence (hn: n=1,2,...) of real numbers such that
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u =X u for all n.
n n —————.

Theorem 13. Let L be an Archimedean Riesz space. Then

the following conditions are equivalent.

(1) L has the strong Egoroff property.

(2) L has the d-property.

(3) L has the o-property and order convergence in L is

stable.

Proof. Let L. be an Archimedean space.

(1)2 (2): Theorem 5 of Section L

(1) = (3): Since L has the strong Egoroff property, order
conve;gence is stable in L.; it will be sufficient to show that the
strong Egoroff property of L implies the o-property of L. Let
(un: n=1,2,...)be a sequence in L+. Then k"lun \Lk 0 for every
n. Hence, there exists, by the strong Egoroif property of L, an
element u € L+ and for every n an appropriate k(n) such that
uz k(n)"lun for all n. Set )\n = k{n); then u < Knu, for all n.

(3) = (1): Assume that order convergence in L is stable and v
L. has the o-property. Let u g lk 0 in L. Under our hypothesis
that order convergence is stable and L is Archimedean, order cén-
vergence and relative uniform convergence are then equivalent;
hence, Wy T 0 (ru). There exists a double sequence of real num-
bers €% lk 0 and W ¢ LV such that u g = £x%n for all n,k. By
the o-property of L, there is an element w € L+ and for every n
k=1,2,...) such that u w'.for all n, k

a real sequence (6 < 6n

nk ’ nk Kk

and Snk lk 0 for every n. Since Snk J’k 0 for every n, by the strong



Egoroff property of the space of real numbers there is a sequence
(;J.m) of real numbers such that Mo \L 0 and, for every m,n,

= = . =
Mo 6nk(m,n) for some k = k{m, n). Now the sequence Vi = MW

satisfies Vi J, 0 and, for every m,n,

unk(m, n) = ank(m, n)" = m*

Hence, L has the strong Egoroff property. This completes the proof
of the theorem.
It is an interesting fact that almost all the results we have

proved for order convergence hold for relative uniform convergence.

A subset S of a Riesz space L is called (relatively) uniformly

closed whenever, for every relatively uniformly convergent sequence
in S, all relative uniform limits of the sequence are also members
of S. The empty set and L itself are uniformly closed, and arbi-
trary intersections and finite unions of uniformly closed sets are uni-
formly closed. Hence, the uniformly closed sets are exactly the

closed sets of a certain topology in L., the relative uniform topology

(see [ 9 7).

If L is Archimedean, then the relative uniform topology satis-
fies the Tl-separation axiom, i.e., every set consisting of one point is
closed. Conversely, if every set consisting of one point is rclatively
uniformly closed, then L is Archimedean. Indeed, if not, there ex-
ist strictly positive elements u and v in L stch that v < n—lu holds
for n=1,2,...+« It follows that the sequence (fn: n=1,2,...), with
fn = 0 for all n, satisfies I'fn-vl < n—lu forall n, so fn - v {ru) as

well as (trivially) fn - 0 (ru). This contradicts the hypothesis that
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the set {0} is relatively uniformly closed. To summarize, we have
that L is Archimedean if and only if the set {0} is relatively uni-

formly closed.

A subset V of a Riesz space L is open in the relative uni-
form topology if and only if, for every sequence (fn: n=12,...)in L
which converges relatively uniformly to a point f € V, we have fn€ A%
for all but a finite number of the fn. It follows that if fn - f(ru),

then fn converges to f in the relative uniform topology.

For any subset 5 of L, the pseudo uniform closure Sl"u of

S is the set of all f € L such that there exists a sequence in S con-
verging relatively uniformly to f. The closure of S in the relative
uniform topology will be denoted by S. Evidently we have

ScSL, EL )& - CS. We have also the following theorem.

Theorem 14. Let L be a Riesz space. Then

(1) A subset S of L is relatively uniformly closed if and only

if S=8' , i.e., S=8' already implies that S=S.
— ru —— ru

(2) A subset S of L satisfies S' =78 if and only if 8' =
ru ru

(s! !

ru ‘ru’

Proof. Similar to the proof of theorem 6.

We shall discuss under what conditions the pseudo uniform
closure and the relative uniform closure of S coincide for every

‘subset S of a Riesz space L, or, for every subset

S = (s )
ru Ira ru

S of L. We prove first the following theorem.

Theorem 15. Let L be an Archimedean Riesz space. Then
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the following statements are equivalent.

(1) L has the o-property.

(2) If £ nk kf(ru) in L, then, for every n, there is k = k(n)
such that fnk(n) - f(ru).

(3) If f nk k (ru) and f - f(ru) in L, then, for every n,
there is k = k(n) such that fnk(n) = f{ru).

(4) If f Tk kf (ru) and fn = f(ru) in L, then there is a se-

quence (gm: m=12,...)in ({fnk}) such that gm ™ f(ru).

Proof. (1}=(2): lLet f k Tk f(ru) in L. There exists a se-

quence (un: n=1,2,...) in L" and a double sequence (enk: n, k=1,

A

2,...) of real numbers such that ¢ L 0 for all n and {f -f[
nk vk _ nlk

€ k% for all n,k. L has the o-property implies the existence of an

.+
element u € L. and a real double sequence (6_,:n,k=1,2,...) such

nk’
that an—fn' < ﬁnku for all n,k and énk \|/k 0 for every n. Since

the space of real numbers has the strong Egoroff property, there is a
real sequence ('yn: n=1,2,...) such that Y, \l»'n 0 and, for every n,
Y, 2 ﬁnk(n) for some k = k(n). Now |fnk(n)-f' < 6nk(n)us Y0 for
all n and so fnk(n) - f (ru).

{2) ® (3): Let f nk k (ru) and f = f (ru) in L. There ex-

ists a sequence (un: n=1,2,...)in L , an element u in L+, a real

double sequence (enk: n,k=1,2,...) and a real sequence (en: n=1,

.+ ) such that e_, J‘k 0 for every n, J, 0, |f oK nl < e u, for

all n,k and |f -fl < ¢ u for all n. For each fixed n, ¢ ,u - 0(ru);
n n nk n
hence, by (2), for every n, there is k = k(n) such that '

nk(n)u - 0 (ru}, and so there is an element w € L and a real se~

quence (6n: n=1,2,...) such that 6n‘L 0 and ¢ ( )unS an for

nk(n
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all n. Now we have

- <
lfnk(n) f] < enk(n)un + € u 6nw + e u -

If we write vy = & +e  and v = wtu, then ynl 0 and lfnk(n)-fl Sy,v
for every n; hence, fnk(n) - f(ru).
It is clear that (3) = (4).

(4) = (1): Let (un: n=1,2,...) be any sequence of elements of

+

L . There is no loss in generality to assume that u T We shall

show that there is an element w € Lt and a real sequence
A :n=1,2,...)suchthat u £ A _w for all n.
n n n

Let u be an element of L+ such that u> 0. Set ok =

lu.n-*-n-'lu for n,k=1,2,... and wn=n~1u forn=1,2,... -

-

Clearly, w wn(ru) for every n,and w, 0 (ru). By (4),

nk “k
there is a sequence (vm: m=1,2,...)in ({wnk}) such that
Vi -0 (ru).

For each fixed m, since v__ is in {({w_, }), there is a se-

m nk
quence of real numbers (er:l: n=1,2,...) and for every m an appro-
priate index k{m, n) such that }\Ir:l 2 0 for all n, )\nm = 0 except for
m m

ini = = .
finitely many n, Ekn 1 and Vo E)\n Wok(m, n)

Since v, 0 (ru), there is an element w in LY and a real
sequence ¢ l 0 suchthat v < ¢_w for all m. Then

m m m
m
<

E)\n Wok(m, n) = €m% for all m.

Denote by A the set of all natural numbers n such that
)\;n # 0 for some m. Clearly, A is non-empty. We claim that A

has infinitely many elements. Suppose A is finite. Let M be the

largest number in A. Then, for every m, we have
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1 1

e w = TA ZZan-uEM-'u;
m n n nk(m,n) a n

but by the assumption that L is Archimedean, e W \L 0 and so

M-lu < 0, which contradicts that uw> 0.

It remains to be shown that for a given natural number N,
there is some positive real number )‘N such that Upg < )‘NW' Let N

be given. By the above argument that A is an infinite set, there is a

natural number n(N) in A such that n(N) = N; so knm(g) # 0 for some

m = m(N). We then have

m(N) m(N) -1
em(N)w = Exn Wak(m(N), n) = %kn * K(m(N), n) Yn

m(N)

= >‘n(N)

. k(m(N), n(N))” lun(N)

Set >‘N = € (N)" (Knm(%) )-1 + k(m(N), n(N)). Recall that u Tn | we

thus have KNW p= U This completes the proof of the theorem.

As a direct consequence of the last theorem we have:

Theorem 16. Let L be an Archimedean Riesz space. Then

the following statements are equivalent.

(1) L has the o-property.

(2) Si‘u = (S'ru)‘ru for every subset S of L.

(3) Sty = (S'ru)'ru for every convex subset S of L.

If L. is an Archimedean Rlesz space having the O-property,
then the relative uniform topology in L has the property that the

closure of any set consists of the set itself plus all its relatively uni-

form sequential limit points.

From theorem 13 and theorem 16 we have:
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Theorem 17, If L is an Archimedean Riesz space and L has

- [ 1oyt
the d-property, then Sru (Sru)ru for every subset S of L.

We conclude this section by summarizing several important

results.

If I, is an Archimedean Riesz space, then relative uniform
convergence of a sequence fn to f implies order convergence of fn
to f, which implies immediately that every order closed set in L is
relatively uniformly closed. Hence, in an Archimedean Riesz space,

the relative uniform topology is stronger than the order topology.

If 2 Riesz space L has the d-property, then order convergence
of a sequence fn to f implies relative uniform convergence of fn to
f£; hence, in this case the order topology is stronger than the relative

uniform topology.

If, in an Archimedean Riesz space L, order convergence and
relative uniform convergence are equivalent {or, equivalently, if L is
Archimedean and order convergence in L is stable), then the pseudo
order closure S' and the pseudo uniform closure S;u of any set S
are identical, and the same holds for the topological closures cl(S)
and S. Thus, in an Archimedean Riesz space where order con-
vergence and relative uniform convergence are equivalent, the order

topology and the relative uniform topology are identical.

[

If L is Archimedean and L has the strong Egoroff property,
then order convergence and relative uniform convergence are equiva-

lent in L, the order topology and the relative uniform topology are
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identical, and this topology has the property that the closure of any

'set consists of the set itself plus all its sequential limit points.
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III. THE ALMOST EGOROFF PROPERTY OF RIESZ SPACES

In Section I we discussed the Egoroff and strong Egoroff prop-
erties of Riesz spaces. A related property which has been introduced
by J. A. R. Holbrook is the almost Egoroff property. In a Riesz

~space with the almost Egoroff property, the largest o-Fatou mono-
tone seminorm P M majorized by a given monotone seminorm p can
be constructed explicitly., We show that, in a Riesz space with the
generalized almost Egoroff property, the largest strong Fatou mono-
tone seminorm o majorized by a given monotone seminorm p can

also be constructed explicitly.

Definition. An element f of a Riesz space L is said to have

the almost Egoroff property if, given any real number ¢ with O0<e<1

and any double sequence of elements (unk: n,k=1,2,...)in L such

that 0 < L Tk I:El for n=1,2,... , there exists a sequence

0= v?nT I:fl in L. and for every m a sequence k(m, n) of indices

such that (l-e)ve for all m and n.

m = unk(rn, n)

A Riesz space L is said to have the almost Egoroff property

if every element of L has the almost Egoroff property.

We can easily see that the Egoroff property of a Riesz space
implies the almost Egoroff property of the same space. The converse
is not necessarily true. We shall see later that for Archimedean
Riesz spaces the two properties are equivalént. Let us first discuss

the various equivalent forms of the almost Egoroff property.

Theorem 18. Let L be a Riesz space and u € L+. Then the

following statements are equivalent.
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(1) u has the almost Egoroff property.

(2) I OSukau in L and 0 <¢ <1, then there is a se-

quence 0 < v Tu in L. and for every n an appropriate k(n) such

that (1—(-::)vn <u for all n.

nk(n) ———
< . L . ;
(3)£_f_0 unkaunTuELdnd0&e<l,thentherelsa

sequence 0 < vfl T u in L and for every n an appropriate k(n) such

e

(4) EOSunkaunTu_iEL and 0 < ¢ <1, then there is a

for all n.

€ : e
< - <
sequence 0 < v Tu in L such that, for every m, (l-e)v z

for some element z _ in ({unk}) .

In order to prove theorem 18, we first introduce the following:

Theorem 19. Let L be a Riesz space and u € L+. Then the

following statements are all equivalent.

(0') u has the almost Egoroff property.

(I uzu 0 in L and 0<g <1, then there is a se-

kk

[ . . .
2 v v -
quence u l 0 in L and for every m a sequence k{m,n) of indi

ces such that vf‘n + Cﬁ 2 u

nk(m, n) for all m and n.

(2'Y If uzu 0 in L and 0 <g <1, then there is a se-~-

nk ‘Lk
e . .
quence u = v_ l 0 in L and for every n an appropriate k(n) such

€ >
that v +eu= .unk(n) for all n.

(3") If u= unklkun\LOEL and 0 < ¢ < 1, then there is a

€ . | .
>
sequence u=z v l, 0 in L and for every n an appropriate k(n) such

5
that Va + esuz= unk(n) for all n.

—

(4') IfuZunkikuniOEL and 0 < g <1, then there is a

sequence u 2 vE iO in L such that, for every m, v- +eu> z_ for
m —_ m m
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some element z_ in ({unk}) .

Proof. We shall show that (1') = (0!) = (1')= (2') = (3') = (4") =

(1%).

t 1. 3 —
(1') = (0'): Let OSunkau in L and 0<g <1. Set Wi =

‘u~u_, . Then u=z= Wk lk 0 and so by (1') there is a sequence u 2

nk

£ e
=
w J, 0 such that, for every m,n, w__+eu Wnk(

H

) for some
e _ -1 e 4t ‘
k = k(m,n). Let AN (L-¢) [(1~e)u-—wm] . We then have
~ _ € € o
0= Vo T u and (l-s)vma unk(m, n)°

(0')= (1'): Let u=zu 0in L and 0<g<1. Set w , =

nk ‘Lk

nk
- . = ! i <
u-u Then 0 Wi Tk u and so by (0') there is a sequence 0
w® 1 u such that, for every m,n, (l-g)w® <w _, , for some
m ' ’ ' m nk{im, n)

k = k(m,n). Now v& = u-w® satisfies uz v 1, 0 and v& +cuz
m m m m

unk(m,n)'
It is clear that (1') = (27).
(2') = (3'): Let uZunkl unl 0 and 0<eg<1, Then u=z

(unk-un) lk 0 for every n; there is by (2') a sequence u = Wi i 0

such that, for every n, wfl + cu= for some k = ki(n). Set

“nk(n)” 'n
vo=u-~ (u -Wf; - un)+. Clearly, uz= vi l 0. It remains to be shown

that vg +eu=zu To this end, we observe that u-wfl-un <

nk(n)*

€ + . €
- - - - 2 - » L) =
(l+eh unk(n) and so u-{(u W un) unk(n) gu, i.e vn+ Eu
unk(n)'
It is also clear that (3') = (4'). ‘
(4')= (1'): Let uZunklkO in L and 0<e<1l. We may as-
sume that U Tn for every k (since we can always replace u g by

U V.eo V unk)' Furthermore, we may assume that there exists a



sequence (yn) in L+ such that:
i p-]

(i) u Y, l 0,

(ii) vy £ cu for all n.

For if such a sequence (yn) does not exist, then u= Uog ‘Lk 0 implies
that for every n there is some index k{n) such that unk(n) < eu,and
so the sequence (vfn) with V::n = 0 for all m satisfies the required
conditions.

We shall construct from the sequence (yn) 4 seguence ux unlo
such that inf{a20: u_ < au for some n} = ¢. To this end, consider
the number B = inf{q = 0: ¥, S au for some n}. Since yn‘fi' eu for
all n, we have ¢ < B. Set u = eﬂnlyn; then the sequence (un) has
the above required conditions.

— 1

Now we have u = (unk \Y un) J/k w v‘, 0. Set 6§ =¢/4. By (4'),
there is a sequence u = w6 \L 0 such that, for every m, w6 +téuzz

m m m
for some z  in ({unkv un}> . Then, for every fixed m, there are
real numbers erln, n=1,2,... satisfying k;nZ 0 for all n, K:l =0

. m _ & m
except for finitely many n, Izlxn =1 and wm+6u 2 %)\n (unk(m, n)V
un) for some k = k{m, n).
e _ & + € .
Set v. =u-(u-2w_) . Clearly, uzv J, 0. It remains to
m m . m
be shown that for a particular pair M, N of positive integers, there
. €
= 2 .
exists some k = k(M, N) such that vM+ cu uNk(M,N)
Let M, N be given. Set y = sup{Z A m= M}. We shall
nZN ‘n
first prove that y = 3/4. Itis clear that 0 y< 1, For every mzM

we have
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(@]

m
W + du = g)\n (unk(m, n) v un)

m m
= nEN)‘n Y = (nEN)Ln )uN

m m .
(g}\n ‘ngNkn )uN 2 (1"Y)uN ;

since inf{wfn: m 2 M} = 0, we then have bu = (l—y)uN. Recall that
e = inf{g 2 0: unS gu for some vn} , so either l-y=0 or ¢ <
(1-\1)-15. Substituting 6 = ¢/4, we obtain y = 3/4.

By the above argument, there exists an integer P = M such

that T )\Pz 1/2. Consider
n=N n

) P
ZWP p- ZE)\n unk(P,n) - 26u;
if we let k(M, N) = max{k(P, n) : )\i # 0} and recall that U Tn , wWe
obtain
2wl = 2( £ %) “26u = u -26u
P aaN D’ UNK(M, N) Nk(M, N) .
Hence
e 2 € = - - 6 -
v 2 Vp u-{(u ZWP) z uNk(M,N) 26u ,

and so vi4+ gu = UNk(M, N) 28 required. This completes the proof of

the theorem.

Proof of theorem 18. It is clear that (2)« (2'), (3) % (31},

(4) ® (4') in a similar way as the above proof of (0') & (1'), Hence,

theorem 18 follows immediately from theorem 19.

In a Riesz space L, an element f has the Egoroff property
implies that £ has the almost Egoroff property. The converse impli-
cation does not always hold. For counter-example, see [3], p. 72.

However, the following theorem due to J. A. R. Holbrook (see [3])
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is true.

Theorem 20. If an element u in a Riesz space L is such that

n-lul 0 (in particular, if L. is Archimedean), then u has the Egoroff

property if and only if u has the almost Egoroff property.

Proof. One implication of the theorem holds always. On the

other hand, assume the element u in L has the almost Egoroff prop~
-1 .
ertyand n "u l 0. Let 0= Uk Tku in L, Forevery p=1,2,...
there exists, by the almost Egoroff property of u, a sequence
P. _ _ < P ey
(vm. m=1,2,...)such that 0 v Tm (I-p ")u and, for every m,n,
v o<
m
Clearly, v T and v__ = u for all m. Moreover, if w is such that
m 'm m

v < w for all m, then vp
m m

1 m
= . = \% PR °
unk(m, n, p) for some k = k(m, n,p). Let AP A v Vo

< w for all m,p, so that (1—-p-1)us w

for all p or u-w < p-lu for all p; but p'lul 0, therefore, u<w.

Hence, v T uw. For every m,n,p, since vI < u , for some
m m nk{m, n, p)
k = k{im,n we have, for every my,n, v. < u where
(m, n, p), , ymn, Vo S W)

k(m, n) = max{k(m,n,p): 1 £ ps m}. Therefore, u has the Egoroff

property and the proof of the theorem is complete.

We shall next study a characterization of those Riesz spaces

which have the almost Egoroff property.

An extended real valued function p on a Riesz space L is

called a monotone seminorm on L if:

(i) 0= p(f) < oo, plftg) < p(f)+plg), ‘and p(Af) = Ap(f) for all
f,g in L. and real A 2 0,
(ii) p is monotone, i.e., lf| < |g| implies p(f) < plg).

It follows immediately from (ii) that p(f) = p([fl) for all f in L.
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A monotone seminorm p on a Riesz space L is g-Fatou if

0< unT u in L implies that p(un) T plu).

A given monotone seminorm p may not itself be g-Fatou, but
the existence of the largest element Py 2mong those monotone o-
Fatou s_eminorms majorized by p is not difficult to show. In fact, we
can easily show that:

pM(f) = {supp'(f): p' is g-Fatou monotone seminorm and p'<p}.

In general, it is not known how to construct P M explicitly in
terms of the given monotone seminorm p. However, there are three
cases of interest in which the seminorm Py TRY be constructed ex-

plicitly.

To facilitate the discussion, we introduce the Lorentz semi-
norm p; associated with a given monotone seminorm p. If p is a
monotone seminorm on a Riesz space L, then, for every { in L,
pL(f) is defined by:

pp(f) = inf{ lim p(u): 0 u T 1€} .

We can easily see that, for any given monotone seminorm p on L,
is again a monotone seminorm on I.. Moreover, p = P, z Pype
PL, =P if and only if p is o~-Fatou, Py =Py implies that plLS Pog,-

P1,

We now go back to the discussion of special cases when PM

can be constructed explicitly in terms of p.

*

If the Riesz space L is a real Banach function space, then

Py = PL for every monotone seminorm p on L (see [67).

If a monotone seminorm p on a Riesz space L is of the form
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p(f) = ¢(1f|) for every f in L, where ¢ is a positive linear functional
on L (i.e., ¢ is a real linear functional on L such that ¢(u) = 0 for

all u in L+), then Ppi = PLL (see [67).

The third result is due to J. A. R. Holbrook. This result
gives also a characterization of those Riesz spaces having the almost

Egoroff property. Hence, we shall study it in detail.

Before we state and prove the fesult, notice first that p= pM;
hence, we have pLZ PML = Pm S© that P1, = Py if and only if P1, is

g-Fatou, i.e., P, = PL*

Theorem 21. Let L be a Riesz space and u € Lt

(1) If u has the almost Egoroff property, then pL_(u) = pLL(u)

for every monotone seminorm p on L.

(2) I pL(u) = pLL(u) for every monotone seminorm p on L

such that p(u) < o, then u has the almost Egoroff property.

Remark. The following proof is a modified version of J. A. R.
Holbrook's proof (see [3]). We will see later that this modified proof
leads to the desired generalization we have in mind.

Proof of theorem 21. (1) Itis clear that pLL(u) < pL(u). On

the other hand, suppose pLL(u) < @ ; in this case, there must exist
0= u T u and, for every un, 0= U Tk u such that p(unk) < g for
all n,k. By the assumption that u has the almost Egoroff property
.and by theorem 18, there exists, for every 0<e<l, a sequence
0<v® Tu such that, for every m, (l-e)v€ £z for some z in

m m m m

€
- < :

({unk}> . We have then (1 e)p(vm) p(zm) < g for all m; hence,

pL(u) < (l-e)-la. Since this is true for every 0 <e <1, we obtain
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pL(u) £ q. Therefore, pL(u) < pLL(u)'

(2) It is sufficient to show that if 0= u_, Tu_ T u in L and

nk n
0 <eg <1, thenthere is a sequence 0 < v:n T u such that, for every
€ .

- <
m, (1 e:)vm z for some z_ in ({unk}> .

Let 0 < Uk Tk un'Tu and 0<eg<1l. Let e = e/2 and define
p on L as follows: for f in L,

= i : = = ini

p(f) 1nf[n,2kank a2 0 forall nk @, 0 except for finitely

many n, k, n?kank(unk

Vemu)= l1£] 1.,

= oo if there is no such finite sum covering |£1 .

It can be easily verified that p is a monotone seminorm on L. More~
over, p{u)< oco; in fact, p(u)< cl-l .

Now p(unk) < 1 for all n, k; then pL(un)S 1 for all n and so
pLL(u) < 1. By the assumption that pL(u) = pLL(u) for all monotone
seminorms p with p(u) < oo, we have pL(u) <1, Set €, = (2—6)-16.
Then pL(u) < lte, implies that there exists a sequence 0 < W T u

e _ -1 +
and, for each m, p(wm) < 1+€2' If we let Vo (1-¢} (wm-—eu) s
we have 0 < vfn T u. It remains to be shown that, for every m,
e .
- <
(1 e)vm z_ for some element z_ in ({unk}> .

For each fixed m, since p(wm) < 1+€2 , there exist, by the

definition of p, real numbers arr:;(, n,k=1,2,..., such that

m m )
= - .

Ok 0 for all n, k, Uk 0 except for finitely many n,k, 0<
m m

n‘?kmnk < l+ez and n?kank(unk Ve 1u) > W We then have

1

- -1 m
(1+€2) Ym S.n?k(l-*-ez) cj“nk(unk v elu)

.

-1l m
< 2 (lvep) oy te
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m ,~1 m _ m .
n?kank) "o and z_ = n?k)\nk w o then, for every m,

. . -1
i 1+ .
z_ is an element in ({unk}> and ( ez) w_ Sz +eu Note that

m —
Set lnk =

+ € + _ -1 + .
(wm-eu) < [wm - (wm+u)] = [(1+€:2) Wm-elu] ; hence,
€ + . .
- = - <
(1 e:)vm (wrn eu) z_ as required. This completes the proof of
{(2).
The following results can be obtained directly from theorems

20 and 21.

Theorem 22. Let L be a Riesz space. Then PM = PL for

every monotone seminorm p on L if and only if L has the almost

‘Egoroff property.

Theorem 23. Let L be an Archimedean Riesz space. Then

Py = PL for every monotone seminorm on L if and only if 1. has the

Egoroff property.

Theorems 21 and 22 can be generalized in a natural way to

directed systems instead of sequences.

Let p be a monotone seminorm on a Riesz space L. p is

said to have the strong Fatou property whenever, for every u € Lt

and for every indexed subset (uT)_of LY such that 0 < uTT u in L,
sup p(uT) = p(u).
Every monotqne seminorm p dominates a iargest monotone
seminorm P having the strong Fatou property, namely,
pm‘(f) = sup {p'(f): p'<p and p' is a monotone seminorm having

the strong Fatou property }.

If, for instance, ¢ is a positive linear functional on L and
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p¢ is defined by p¢(f) = d)(lfl) for every f € L., then pc|>m can be ob-
‘tained explicitly as follows: for every f € L,
p¢m(f) = inf {sup p(uT): 0< U T1£1 3
(see [77).
“We can have the same explicit construction for py, in terms

of p, for every monotone seminorm p on a Riesz space L, pro-

vided L has the generalized almost Egoroff property.

Definition. An element f of a Riesz space L is said to have

the generalized almost Egoroff property whenever OSu% T% uTT ,f‘

T T
and 0 < ¢ < 1, there is an indexed subset (vi) of L+ such that

0sv® T |f| and, for every yu, (1-¢)v® <z  for some element z in
" b b=
({u .
oy

A Riesz space 1. is said to have the generalized almost

Egoroff property if every one of its elements has the generalized al-

most Egoroff property.

For every monotone seminorm p on a Riesz space L, we de-
fine by: for every f€ L,
Pg y
= i : 0< 1.
pgl) = inf{sup plu): 0<u T 13
Clearly, Po is again a monotone seminorm on L, p = Pe 2 Py
Pe=p if and only if p has the strong Egoroff property, Py S p, im-
plies that Pls < Pog- Since p = P> we have Pe > Prg = Pn2 S©
Pp = Pg if and only if P = Pgg -

Theorem 24. Let L be a Riesz space and u € L+.

(1) If u has the generalized almost Egoroff property, then
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ps(u) = pm:(u) for every monotone seminorm p on L.

(2) 1f p£(u): P££(u) for every monotone seminorm p on L

such that p(u) < oo, then u has the generalized almost Egoroff prop-

ertz.

Proof. (The following proof is an exact analogue of the proof

of theorem 21 except that sequences are replaced by directed sys-
tems. )

(1) It is clear that p££(u) < px(u). Conversely, suppose that
A > pxs(u); in this case, there must exist 0 < uT Tu and, for every

v, thereis 0<u T u_ suchthat plu, )<\ for all »_. Since u
'%T 'M.T T %T T
has the generalized almost Egoroff property, there exists for each ¢

with 0 < ¢ <1 adirected set 0 < vi T u such that, for every y,

(1-¢)v® <z for some element z in ({u }) . We then have
S M M o

(I-e)p (vz) < p(zu) <X for all y; hence, (l-e)ps(u) £ A for every

0<e<1, thus ps(u) < X . Therefore, ps(u) < p££(u).

(2) Let 0su, T u Tuand 0<e<1. Set e;=¢/2 and
T R T 1
define, for every f€ L,

=i :q, 20 for al dwu,a =0
p(f) = inf { E @, fa, or all 7 an Hpo O except for
T " T T
finitely many 7 and #_, Zqo (u Ve,u)=z |[f|},
T My Ry K 1

= oo if there is no such finite sum covering ‘;fl .

It can be easily verified that p is a monotone seminorm on L and

p(u)S‘e1 . .

Now p(unT) <1 for all 7 and " ; then px(uq_) <1 for all ¢

and so p££(u) < 1, Hence, by assumption, px(u) <1, Set €, =

(2-6)-16 . Then ps(u) < l4+g., implies that there exists a directed set

2
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2 for all .

If we let vE = (l—e)-l(w -eu)+, we have 0 s v© T u. It re-
M M (S S Y

0w u and w )< l+e
uT p(u

mains to find, for every p, an element Zu in ({uK }) such that
'T'
(1-e)vi =<z .
M M

For every fixed |, since p(wu) < l—i-c2 , therc exist rcal

numbers a}: such that ai 2 0 for all ¢ and %'r’ CL'L; = 0 except for

T T T
finitely many 7 and »_, 0< X o <lte, and Tt (u ve,ulzw .
T Ho A 2 o A A 1 u
T O T T
We then have
-1 -1
(1+e.) 'w < Z(l+e,) a* u +e,u.
2 2 1
H Ay e Mo
-1
Set \MW = (=t Vvt and z =% AM u, ; then, for ever z
He e R " SR e

« . - _l <
is an element in (1u%’r}> and (l+e;2) WLl zp-i-elu. Note that

(wu-eu)-l- < EWH- -;— (wu+u):[+ = [(1+€2)_1wu-81u]+ ;

hence, we have (l-e)vi = (Wu-Eu)+ < zu as required. This completes

the proof of (2).

Theorem 25. If L is a Riesz space, then Pp = Pg for every

monotone seminorm p on L if and only if L has the generalized

almost Egoroff property.
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IV, 0-FATOU PROPERTY OF A MONOTONE SEMINORM
ON A RIESZ SPACE

In the last section, we obtained a charactcrization of thosc
Riesz spaces in which PL is g-Fatou for every monotone seminorm
p. In this section, we focus our attention on a fixed monotone semi-
norm p in an arbitrary Riesz space L, and we obtain necessary and
sufficient conditions for p as well as P, to be o-Fatou, in terms of

the order topology on L.

A monotone seminorm p on a Riesz space L is called a

Riesz seminorm if p(f) < co for all £ € L. A linear subspace S of L

is called an ideal in L whenever S is solid (i.e., whenever it follows
from €8, g€ L and |g| < |f]| that g € S). If p is a monotone
seminorm on a Riesz space L, then LP = {f€L:p(f)<o} is an

ideal in L and the restriction of p on LP is a Riesz seminorm.

Theorem 26. Let p be a Riesz seminorm on a Riesz space

L. Then fn = f(ru) in L implies that p(fn-f) - 0, and so in particu-

lar plf) ~ pl0).

Proof. Let fn - f(ru) in L ; then there is u € Lt and a real

sequence € l, 0 such that Ifn-f| <e u forall n. It follows that
plf -1) -~ 0.

Since p(f) - p{f ~f) < p(f ) < p(f) + p(f_-f), so p(f_-f) = 0

implies p(fn) - p(f).

Theorem 27. Let p be a Riesz seminorm on a Riesz space L.

Then p(u_) } 0 whenever u_ } 0 in L, if and only if p(f_~f) » 0 when-

ever fn—*f in L.
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Proof. Assume that p(un) l 0 whenever u \L 0 in L. Let

£ —£. Then there is u LO such that If ~f| =z u for all n and
n n n n
hence p(fn-f) -0,
Conversely, assume that p(fn—f) - 0 whenever £ f in L.

Let un l 0. Then u = O,‘and so by assumption p(un) l 0.

Theorem 28. A monotone seminorm p on a Riesz space L is

o-Fatou if and only if p is lower semi-continuous with respect to

ordcr convecrgence. (p is lower semi-continuous with respect to

order convergence means that p(f) € lim inf p(fn) whenever fn - f
in L.)

Proof. Assume that p is g-Fatou. Let fn = f in L. Then

there exists a sequence 0 < u T |f] such that u < |fn] for all n.
Hence, by the o~Fatou property of p, p(f) £ lim inf p(fn).

Conversely, assume that p(f) < lim inf p(fn) whenever fn - f
in L. Let 0<su_Tuin L. Then p(u) < lim inf p(u_) = lim p(u )
implies that p(un) T p{u). Hence, p is g-Fatou.

For every monotone seminorm p on a Riesz space L, we
shall denote Sp by Sp ={f€ L: p(f) = 1}. Then Sp is a convex solid
subset of L. Moreover, p is a Riesz seminorm on L if and only if

Sp is absorbent (i. e., for each f € L. there is some real number

A >0 such that f € "J‘Sp for all y = X).

Theorem 29. A monotone seminorm p on a Riesz space L is

o-Fatou if and only if SP is order closed.

Proof. Assume that p is g-Fatou. Let fn - f and fn € Sp for

all n. There is u ‘LO such ‘that |f -f[ <u_ for all n. Then
n n n
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(lf]-u)+$ If ]ES and ([fl-u)+/f|f| Hence, f€ S
n n p n ' ! p’
Conversely, assume that Sp is order closed. Let 0 < u T u.
Clearly, p(un) T < p(u)./ Let A be such that p(un) <A for all n. Then
X-lun € Sp for all n and so )\ﬂlu € Sp , l.e., plu)s A, It follows then

p(un) T p(u) and hence p is o-Fatou.

To each convex solid subset S of a Riesz space L. corresponds
a monotone seminorm {g in L defined by:
q:s(f) = inf{A>0: f € AS} for every £< L.

1|;S is called the Minkowski functional of S.

Theorem 30. If p is a monotone seminorm on a Riesz space

L, then Pi, is the Minkowski functional of the pseudo order closure
of S .
- p

Proof. We shall first show that ¥ To this end, let

.

Py -
N S;, L
u€ L and pL(u) <q<o. Thereis 0< w T u such that p(un) <a

for all n. Then a‘lun € Sp for all n and so a-lu € S;). Hence,
1L'st (u) = qa.
We shall next show that p; < {o, . Let u€ Lt and Vo: <B<
L Sp SE)
. Then uct€ ﬁS;}. There is 0 < u_ T u such that u_ € ﬁSp for all n.

It follows that pL(u) < B.

- Theorem 31. Lel p be a monotone seminorm on a Riesz

space L. Then the largest monotone o~Fatou seminorm P g domi-

nated by p is the Minkowski functional of the order closure of S .

Proof. Let { be the Minkowski functional of the order clo-

sure of Sp' If 0= u T u and q;(un) <qgq < o for every n, then

u,ﬁlun € cl(Sp) for all n, and so aflu € cl(Sp), i.e., Y(u)<q. This
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shows that | is g-Fatou.
Let 1 be a monotone o-Fatou seminorm such that =% p. Then
-1
S £8S andso cl(S })Scl{(S )=8 . If §{f)<a < o, then f€cl(S )
p - n (Sprsclls ) =5, v ¢ o

c S'ﬂ’ and hence n(f) < a ; so n< {. It follows then that § = p,, and

M

the proof of the theorem is complete.

Theorem 32. Let p be a monotone seminorm on a Riesz space

L. Then S'CSS_ < (S') .
—— "p T p,~ Tp'ru

Proof. Let f€ s;. Then there exists 0 < u_ € sp such that

u T |f . Hence, p.(f)< 1. This shows that STCS .
n L . p P1,

let f € SPL. If g, = (I-n "), then pL(gn) <1 for all n and
g, f(ru). For every n ., since pL(gn) <1, there is OSunk'Tk |gn|

such that p(unk) <1 for all k. It follows that g, € S;) for all n and

so f € ( . This shows that S C (S')!

St)! .
p'ru P, p'ru
Let p be a monotone seminorm on a Riesz space L.. If S' is

order closed, then by theorems 30 and 31, is-g~Fatou. Whether

PL
the converse implication, i.e., PL, is g-Fatou implies that S:’ is
order closed, is true appears to be an open question. However, the

following theorem holds.

Theorem 33. Let p be a monotone seminorm on a Riesz space

L. Then PI, is g-Fatou if and only if the pL-closure of S;) is order

closed.

Proof. Since PL, is g-Fatou if and oh.ly if S L is order closed,

p
it is sufficient to show that the py -closure of S") is Sp . . We denote

_PL L
the -closure of S' by S!'
P, p y p

P
Since Sp is pL-closed and S}'D_C_S , so 8! I"CS . For

L P1, P T P
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the reverse inclusion, let £ €S . Then pL(f) <1 and s0 g =

P1, Py,

(l-n-l)f € S;). Hence, gn-f) - 0, and thus f € —S-E This com-

Pyl
pletes the proof of the theorem.

Theorem 34. If L is Archimedean and PI, is o-Fatou, then

the ~closure of S' is S'".
— P, s p— p

Proof. From the proof of the above theorem, pL-closure of

S;) is Sp . Under the assumption, it is sufficient to show that
L

P1, P

We have, by theorem 32 and that L is Archimedean, SpL c

(S')! < 8", On the other hand, PL, is g-Fatou implies that S is

pru— p : P1,
order closed, and so that S' & S implies that S' €S . There-~
p PL p P1,
fore, S = 8",
P1. p

Theorem 35. Let S be a convex solid subset of 2 Riesz space

.. Then (\ps)L: q;s,.

Proof. Similar to the proof of theorem 30.

Theorem 36. Let S, T be convex solid absorbent subsets of a

Riesz space L. Then §gq= §np if and only if S;u = Tl'u'

Proof. Assume that {o = {r. It is sufficient to show that

St €T

' . Tothis end, let 0 u€ S' . There is a sequence
ru— “ru ru

0= u € S such that u - u{ru). Since q;s is a Riesz seminorm, it

follows from theorem 26 that q;g(un) - LyS(u) and so \bs(u) < 1. Then,

by assumption, (u)< 1, and hence u € T! .
. P T ru

Assume that S' = T! . Ilis sufficient to show that §o = Y.
ru ru S T
Let u € L+. If o is such that wT(u) < a, then o lu €T and so

a,-lu € S;u. There is a sequence 0 < w € S such that u - a-lu(ru).
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Then, by theorem 26, ¢'S(un) - ws(a u) and hence \ps(u) L.

Theorem 37. Let p be a Riesz seminorm on a Riesz space L.

Then p, is o-Fatou if and only if (s'P)'ru = (s;)‘;u .

Proof. It follows from theorem 30 that Py, = 'J;s, . Hence,
p
Py, = ppy, if and only if ‘”s*p = (xps,p)L , or wsb = ‘“sg . Then by theo-

rem 36, PL is g~Fatou if and only if (S;);u = (Sg);u.

For every subset S of a Riesz space L., we define s” in-

ductively by

st = s,
11
st - (Sn l) .
For every monotone seminorm p on L, we define p n inductively by:
L
P = p
LI L
P, = P o1l
L L 1'L

The following theorem is a generalization of the result of theorem 37.

Theorem 38. Let p be a Riesz seminorm on a Riesz space L.

Then, for every n=1,2,... , p n is g=Fatou if and only if

L
n,' _ ,ont+l!
(571, = 55, -

Furthermore, if L is Archimedean, then p is g-IFatou
L
implies that S;ﬁl is relatively uniformly closed.

Proof. Since py =g » and (q;S)L = g for every convex
p

solid subset S, so p _ = Ygn for every n=1,2,.... It follows then

. L p t
from theorem 36 that p _ is o~-Fatou if and only if (S:)Yn =
. LR p ol
+1,!
(s™%) .
p ‘ru
1 H
If L is Archimedean, then (S) gsn“ = (Sn+1) ; and
p ‘ru p p ‘ru
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so the g-Fatou property of p 0 implies that S;H-l =
L

Sn-*-l is relatively uniformly closed.

n+1)'

(Sp ru

, l.e.,
In conclusion, we observe that theorem 33 may be used to
state the result of J. A. R. Holbrook (theorem 21) in the following
form: a Riesz space L has the almost Egoroff property if and anly
if, for every solid convex subset S of L, the Q/S, - closure of S' is

order closed.
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V. THE EGOROFF PROPERTY IN BOOLEAN ALGERBRAS
In this section we shall discuss a characterization (which is
similar to the one for Riesz spaces proved in Section ITI) of those
Boolean algebras having the Egoroff property. This result is also
generalized to deal with directed systems instead of sequences. We

shall also introduce order topology on a Boolean algebra.

Definition. An element a of a Boolean algebra B is said to

have the Egoroff property, whenever a1 Tk a for every n in B,

there exists a sequence b__ Ta in B and for every m a sequence

k(m, n) of indices such that bm <a ) for all m and n.

nk(m, n
A Boolean algebra is said to have the Egoroff property if every

one of its elements has the Egoroff property (see [87]).

If an element a of a Boolean algebra B has the Egoroff prop-
erty, then every element b satisfying b < a has the Egoroff property.
Hence, a Boolean algebra B has the Egoroff property if and only if its

unit element 1 has the Egoroff'property.

The complement of an element a of a Boolean algebra B will

be denoted by a'.

Theorem 39. Let B be a Boolean algebra and a € B. Then

the following statements are equivalent.

(1) a has the Egoroff property. .

(2) X a1 Tk a in B, then there is a sequence bn T a in B

and for every n an appropriate k(n) such that bn < 2 k(n) for all n.

(3) I_f_ ax Tk a T a in B, then there is a sequence bn T a
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n) —

in B and for every n an appropriate k(n) such that bn < 2 ( for
all n.

(4) If a_ Tk a, T a in B, then there is a sequence b . T a in

B and for every m an appropriate n(m), k{(m) such that bm =

| an(m)k_(m) for all m.

Proof. Itis clear that (1) = (2).

(2) = (3): Let a a T a in B. Then, for every n,

nk Tk

. .
2 1 V{a A an) Tk a, and hence by (2) there is a sequence c, T a such

< \% ! =
that, for every n, <, a’nk(n) (a A a,n) for some k = k(n). Set

= A < .
bn cn an , then bn T a and bn a'nk(n)

It is also clear that (3) = (4).
(4) = (1): Let a Tk a for every n. We may assume that

a’nk \Ln for every k (since we can always replace a % by a.1k A

A a We may also assume that there exists a sequence C T a in

k) ’
B such that a, # a for all n. Now . A a Tk a_ T a. By (4), there

is a sequence bn T a such that, for every i, bms 0 (m)k(m) A %h(m)

for some n = n{m), k = k{m). We shall show that for a given pair of

natural numbers M, N, there is some k = k(M, N) such that bM <

ANK(M, N)*

First, we claim that n(m) = o0 as m = o. To see this, ob-
serve that if, for some p, n(m) =p for infinitely many m, then
for each m, there exists m'=2 m such that n{m') = p ; but then, for

each b,
m

b, <b_, <
m m

<
*n(m')k(m!) " n(m) = %
{(recall that a.p is strictly less than a ), so that bm $ a, a contra-

diction.
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~Now let M, N be given. From the above argument there ex-
ists m" = M such that n(m') = N. ¥rom this, together with the fact
a .
that nk ‘ln , it follows that

by S b S
m

M & mk(m™) " Pam™) S Pn(m")k(m")

< a where k(M, N} = k{m'").

Nk(M, N)

This completes the proof of the theorem.

From the above theorem and duality, we have the following

theorems 40, 41.

Theorem 40. Let B be a Boolean algebra and a C B. Then

the following statements are equivalent.

(0) a has the Egoroff property.

(1) If R ‘Lk a' in B, then there is a sequence b __ i a'in B

[

and for every m a sequence k(m,n) of indices such that bm =

a’nk(m,n) for all m and n.

(2) If a_, lk a' in B, then there is a sequence b L a' in B

and for every n an appropriate k(n) such that bn z 2 k(n) for all n.

LI 3 1
(3) I a \Lk a_ l a' in B, then there is a sequence b i, a

in B and for every n an a,ppropria,ﬁe k(n) such that bn = 2 k(n) for

all n.

s

. .
(4) If 2 1 \lk a_ J, a' in B, then there is a sequence b __ J, al

in B and for every m an appropriate n{m) , k(m) such that bm2

[

a'n(m)k(m) for all m.

Theorem 41. Let B be a Boolean algebra. Then the following

statements are all equivalent.
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(0) B has the Egoroff property.

(1) If 3 % Tk I in B, then there is a sequence bm T 1 in B

and for every m a sequence k(m.,n) of indices such that 'hm <

ank(m, n) for all m and n.

(1') If a 3 ik 0 in B, then there is a sequence bml 0 in B

and for every m a sequence k(m,n) of indices such that b_ =2

ank(m,n) for all m and n.

(2) If a x Tk 1 in B, then there is a sequence bn T 1 in B

and for every n an appropriate k(n) such that bn < 2 1(n) for all n.

(2') If a i ‘Lk 0 in B, then there is a sequence bn l 0in B

i z
and for every n an appropriate k(n) such that bn a’nk(n) for all n.

(3) It a 1 Tk a, T 1 in B, then there is a sequence bnT I in

B and for every n an appropriate k(n) such that bn < a’nk(n) for all n.

(3%) _I£ a \Lk a ‘L 0 in B, then there is a sequence an/ 0 in

B and for every n an appropriate k(n) such that b = 3hk(n) for

all n.

(4) If a1 Tk anT 1 in B, then there is a sequence me 1

in B and for every m an appropriate n(m), k(m) such that bm <

an(m)k(m) for all m.

. . .
(4" I a_ ‘lk anl 0 in B, then there is a sequence bm l 0

in B and for every m an appropriate n(m), k(m) such that me

a’n(m)k(m) for all m.

A real function ¢ on a Boolean algebra B is called a finitely

additive measure if ¢ satisfies the following conditions:

(i) 0= ¢(a)< oo for all a € B; (ii) ¢{(aV b) = é(a) + ¢(b), whenever
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aAb=0; (iii) (1) # 0. If ¢ is a finitely additive measure on B,
then ¢ is monotone, i.e., a < b implies ¢(a) < ¢(b); $(0) = 0 ;
d{a) + ¢(b) = é(aVb) + $(aAb) for all a,b € B; ¢(a1 V...V an) =

n
§ d)(a..l), whenever the set {al, e an} is disjointed in B.

A [(initely additive measure ¢ on a Doolean algebra D is

called a countably additive measure if, for every countable disjointed

LI Y i » v = .
subset {al,az, } of B such that Y a_ exists &( v an} )i!c{)(an)
It follows immediately that for every finitely additive measure ¢ the
following conditions are mutually equivalent: (i} ¢ is countably ad-
ditive; (ii) if a T a , then .¢(a.n) T df{a) ; (iii) if a_ L 0, then

dla) | 0.

‘We say that a finitely additive measure ¢ is purely finitely

additive if every countably additive measure ¢' such that 0 < ¢'< ¢
is identically zero. K. Yosida and E. Hewitt (see [13]) proved the
important result that every finitely additive measure ¢ on a Boolean
algebra can be uniquely written as the sum of a countably additive
measure ci)c and a purely finitely additive measure ¢p. We shall
call ¢>C the countably additive part of ¢ and c{)p the -purely finitely ad-

ditive part of ¢.

For every finitely additive measure ¢ on a Boolean algebra B
we define a related function ¢L on B in the following way: for each
a€B, set '
¢L(a.) = 1nf{11nm ¢(an) Pa T al.

It follows that is finitely additive; <¢; ¢, = ¢ if and only if ¢
L 1 L

is countably additive; if § < ¢, then \yL < cl:L.
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A result due to M. A. Woodbury [12] and H. Bauer [ 1] states
that, for all finitely additive measures ¢ on a BDoolean algebra D, its

countably additive part ¢C is equal to ¢L.

If ¢ is a given finitely additive measure on a Boolean algebra
B and { is a countably additive measure dominated by ¢ (i.e., | £ ¢},
then q:L 2 y; =195 so0 that ¢C = ¢L is simply the statement that ¢L is
countably additive. The fundamental result concerning finitely addi-
tive measures, then, may be expressed by saying that, for every

finitely additive measure ¢ on a Boolean algebra B, ¢LL = ¢L.

We are interested in the condition under which ¢L = ¢LL re-
mains true for every ¢ in a larger class of monotone functions on the

Boolean algebra B. A function p:B = [0, 0] is called an outer

measure on the Boolean algebra B if p is monotone (i.e., a < b im-
plies p(a) < p(b)), p(0)= 0 and p is countably subadditive, i.e.,

a< (\J/? a_ implies pla) = %O p(a.n) . Given any function p:B -~ [0, o]
which @s monotone, we define PL, by:

pL(a) = inf{l;m p(an): aﬁ T al.

The following theorem due to J. A. R. Holbrook represents a
characterization of those Boolean algebras which are Egoroff; it is
also an analogous to the result concerning seminorm on Riesz spaces

discussed in Section IlL

[

Theorem 49. A Boolean algebra B has the Egoroff property

if and only if, for every outer measure p on B, Pr, = PLL" In fact,

(1) if B has the Egoroff property, then PL = for every

PLL

monotone function p: B - [0, ],



55

(2) if PI, = PLL for every finitely-valued outer measure p on

B, then D has the Egoroif property.

(The following proof is a modified version of J. A. R. Hol-
brook's proof (see [2]).)

Proof. (1) Clearly P LL < pp,- On the other hand, suppose

pLL(a) < )\ ; in this case, there must exist a, T a and, for each n,

a1 Tk a such that, for all n, k, p(ank) <X. Since a_x Tk a Tain

B and B has the Egoroff property, by theorem 26, there exists a se-
<

quence bm T a such that, for every m, bm 31 (m)k(m) for some

n = n{m), k = k{m). Thus, p(bm) < pla )k(m)) <A for all m, so

n{m
that pL(a) £ A . Since this holds for all A > pLL(a) , we therefore have
pra)=p; g (a).

(2) It is sufficient to show that the unit element 1 of B has
the Egoroff property. Let ankT anT 1 in B. We shall find a se~

1 <
guence bm T 1 in B such that, for every m, brn 2 (m)k(m) for
somc n = n{m), k= k{(m), We may assume that a #1 for all n
(otherwise, if there exists an = 1, then the sequence b__ = a
m Nm

satisfies the condition).

Define a function p on B as follows: for each c € B,

0 if c=0,

]

plc)

[ G

i <
if 0<c a1 for some ank s

= 1 otherwise.
It is evident that p is a finite-valued outer measure on B. Moreover,
-1 3 = L
2 1 Tk anT 1 and p(ank) > for all n, k imply that pLL(l) = 3.

Hence, by the assumption, pL(l) = 1. This means that there exists a

sequence me 1 such that, for every m, p(bm) = +, and so, for
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every m, b_ < a

m n{m)k(m) for some n = n(m), k = k(m) as required.

This completes the proof of the theorem.

Replacing increasing sequences by systems which are directed
upward, we can get a result which is similar to the result of the last
theorem. First, we define the generalized Egoroff property in

Boolean algebras.

Definition. An element a of a Boolean algebra B is said to

have the generalized Egoroff property whenever a, T% aq_ T a in B,
T T e

there is an indexed subset {bu] of B such that b!-l T a and, for every

U, there exists an appropriate T (depending on ) and a KT = uT(p,)

such that b = a .
such that ()

A Boolean algebra is said to have the generalized Egoroff

property if every one of its elements has the generalized Egoroff

property.

If an element a of a Boolean algebra B has the generalized
Egoroff property, then every element b € B satisfying b < a has the
generalized Egoroff properlty. Hence, a Boolean algebra has the
generalized Egoroff property if and only if its unit element has the

generalized Egoroff property.

For every monotone function p: B = [0, ], we define the
function pg on B by: for each element a in B,
pgl@) = sup [infpla ):a Tal.
It follows immediately that Pe is monotone; Pg < p for every mono-
tone function p; Pg =P if and only if, for every a € B, a T a im-

plies sup p(a_) = p(a).
T T
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Theorem 43. A Boolean algebra B has the generalized

Egoroff property if and only if, for every outer measure p on B,

Pg = Pog- In fact,

(1) if B has the generalized Egoroff properfy, then po = pogp

for every monotone function p : B - [0, ©],

(2) if Pg =Pgg for every finite-valued outer measure p on B,

then B has the generalized Egoroff property.

Proof. (1) Clearly = . On the other hand, suppose
£ Peg = Pg PP

p££(a) < X ; in this case, there must exist a_ T a and, for each 7,

there exists a T a_ such that for all 71 and »_, pla )<A.
T KT T T MT
Since a, Tu a_ T a and the Boolean algebra B has the generalized

T T
Egoroff property, there exists bu. T a such that, for every y, there

is some -r and o = nT(u) satisfying bU < a Thus, p(bu) <

KT(U) ’
p(aKT(Q))< A for all |, so that ps(a) < X. Since this holds for any
A > p££(a), we therefore have pg(a) < ijS(a)'

(2) It is sufficient to show that the unit element of B has the
generalized Egoroff property. Let aK Tn a_ T 1 in B. We may

T T
assume that a # 1 for all 7. Define a function p on B as follows:

for each ¢ € B,

]
(=]

plc) if c=0,

[ O

if O<c£a.K for some T and u,q_,

"
= 1 otherwise.

‘

It is evident that p is a finite-valued outer measure on B. More-

over, since a T a_11and p(a_ )=7% forall 1 and »_, we have
%T KT T KT T

p££(1) = £. By the assumption, p£(1) = %. This means that there ex-

ists a directed system bu T 1 such that for every u, p(bu) = %; thus,
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for every |, there is some r and _= KT(Q) such that b < anT(u)'

Therefore, the unit element of B has the gencralized Egoroff property

and the proof of the theorem is complete.

We shall next discuss order convergence of sequences and

‘order topology in a Boolean algebra.

For every pair of elements a,b of a Boolean algebra B, we
shall write a A b = (a'A b) V(a A b'), Then the following inequality
holds:

aAb s (aAc)V(icAb) . (A)
Furthermore, a.‘A b=0 ifanonly if a =b.

Definition. A sequence (an: n=12,...) in a Boolean alge-

bra B is order convergent to an element a € B whenever there ex-

ists a sequence bn\L 0 in B such that a, Aas bn for all n. This

will be denoted by a -, @ or simply a, —a.

It follows from the inequality (A) that the limit of an order con-
vergent sequence is unique. Moreover, it can be easily shown that

i l- -
anTa or ania implies that a_ ~a

A subset S of a Boolean algebra B is called order closed if,

for every order convergent sequence in S, the order limit of the se-
quence is also a member of S. As for Riesz spaces, the order
closed sets of a Boolean algebra B are exactly the closed sets of a

certain topology in B, the order topology.

For any subset S of a Boolean algebra B, the pseudo order

closure S' of S is the set of all a € B such that there exists a se-

quence in S converging in order to a. We shall denote the order
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closure of S, i.e., the closure of S in the order topology, by cl(S).

.Then we have SCS'C (S"VM'& ... &Ecl{S); S is order closed if and

only if S = S8'; S'= cl(S) if and only if S' = S".

Theorem 44. Let B be a Boolean algebra. Then the follow-

ing statements are equivalent.

(1) B has the Egoroff property.

(2) If a2 in B, then for every n there is some k(n)

such that ank(n) — A,

(3) It a1 T @, "2 in B, then for every n there is some

k{n) such that ank(n) - a.
(4) If a , = a —a in B, then for every m there is some
=~ Tk k n - b

k(m), n{(m) such that an(m)k(m) - a.

Proof. (1)=(2) Let a1 Tk @ in B. Then for every n there

is bnk ‘l’k 0 such that a Aacs bnk for all k. By the Egoroff prop-

erty of B, there is bn i, 0 and for every n an appropriate k(n) such
< -
that bnk(n) bn for all n. Hence, 2 kin) ~ 2"
(2) #(3): Leta; - a —ain B. Then a . Aa — 0 for
all n. By (2), there is for every n an appropriate k(n) such that
a’nk(n) A a,” 0. It follows from a‘nk(n)Aa' s (a'nk(n)Aa’n) A (anA a)

that a - a.
Il

k(n)
It is clear that (3) = (4).

(4) = (1): Let a an\LO in B. ':F‘hen a 0.

nk J’k nk k %n "
Hence, by (4) there is for every m an appropriate n{m), k(m) such

- 3 <
that an(m)k(m) 0, and so there exists bm l, 0 such that an(m)k(m)

bm for all m. Therefore, B has the Egoroff property.
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An immediate consequence of the last theorem is:

Theorem 45. Let B be a Boolean algebra. Then B has the

Egoroff property if and only if S' = (S')' for every subset S of B,

The following theorem is similar to theorem 29 of Section IV.

Theorem 46. Let p be an outer measure on a Boolean algebra

B. Then p = PI, if and only if, for every real ¢ >0, S(I = {aEB :

pla) < ¢} is order closed.

Proof. Assume that p = Py Let ¢ > 0. If a € SOL and
a_ - a , then there exists b_ |, 0 suchthat a A a<b_ for all n.
11 11 Ii il
The sequence c_ = a ADb! satisfies ¢ Ta and ¢_ < a_ for all n.
n n n n n
Thus, by the assumption p = Pr,» We have p(cn) T p(a) and so aESa.
This proves that Soc is order closed.
Conversely, assume that for every ¢ >0, SOL is order closed.
Let a T a. Ifa realn number g is such that p(a.n) < q for all n, then
a € Sa for all n and so by assumption a € Sa, i.e., p(a)=<gqg. This

proves that p = P,

Theorem 47. Let p be an outer measure on a Boolean algebra

B. For every o > 0, define

5% = {a€B:p (a)<a)
Sa = {a€B:pla)sal.
PL,
Then S~ = U S ie |
Proof. Let a € SaL. Then, for every ¢ >0, pL(a) < qte

implies the existence of at T a such that p(a,e) < gte for all n.
n n n

Hence, aES&_i_e forall ¢ >0 and so a€ 0 _s! .

e>0 “gte
. N ﬂ ]
For the other inclusion, let a € U Scc+€ . For every >0,
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. . . . € e
a€ S(1+€ implies the existence of a 'I\n a such that a_ € SOL+€ for
all n. Then .pL(a) < gte for all ¢ >0 and so pL(a) Sq, i.e.,
p
a€s L .
a

From the last two theorems we have:

Theorem 48. Let p be an outer measure on a Boolean alge-

bra B. Then Pr, = PLL, if and only if, for every o > 0, the set

N 1 :
e>0 sa,+e is order closed.
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