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ABSTRACT

The relations among organs and proceséés resulting in the hormonal
control of human metabolism are inferpreted mathematically for the
derivation and analysis of models using control systems theory and
systems engineering techniques, A dynamic nonlinear model for glucose
homeostasis including four controlling hormones is derived from the
current biological knowledge of the normal system and simulated for
comparison with experimental data, Mathematical algorithms are devel-
oped and demonstrated for the identification of the'parameters of the
proposed model and a series of experiments is proposed to yleld the
minimal requisite data for the application of the method. Control
systeﬁs analyses are undertaken on the proposed model to demonstrate a
consistent methodology for investigations of complex metabolic éontrol

systems in the intact animal.
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L. INTRODUCTION

In many respects the fileld of biological and medical systems is
a challenging new frontier for systems engineers. For our purposes a
system may be thought of as an interacting group of components and pro-
cesses reacling to varlous inputs to produce various outputs consldered
as an entity. Only recently have the tools and methods become avail-
able for a systematic study of high dimensional nonlinear biolbgical
processes, The aiea of physiological control systems related to
metabolism is one which seems to be particularly amenable to the
methods of investigation familiar to control systems'engineers.

All animals are equipped with numerous intercoupled control
systems which serve to maintain the animal's internal equilibrium
regardless of outside influences; this condition.is known as homeostasis,
In the case of metabolism -- the processes involved in the animal's
utilization of energy -~ control is effected by specific hormones which
are released by the endocrine system in direct response to deviations
from the equilibrium state. Hence metabolic homeostasis is a consequence
of interactions among the activity requirements of the organism, protein,
lipid, and .carbohydrate metabolism, and the control effected by hormoneca,

Although homeostatic systems in humans exhibit gross features
familiar to control systems engineers, they also have some unique
chafacteristics. Any specific control system beiﬁg considered in the
intact animal inevitably is coupled to many other control systems. In
the few instances where quantitative information has been obtained about
the vehavior of a subsystem, surgery was performed on the animal, inev-

itably changing the dynamic characteristics of the very processes under
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study in a manﬁer impossible to ascertain., Hormonal controls are
always nonnegative and at least‘two different controls are required to
move a controlled variable in opposite directions. Many of the impor-
tant processes of metabolism are inherently nonlinear and few of the
system variables are directly observable.

Consequently, the study of human metabolic control requires a
mebthodology that makes use of experiments performed only on the in“ta.c'b
system, The theory of control systems possibly can furnish such a
methodology, but it has not been applied effectively in the area of
metabolic control. Before such applications can be made the metabolic
control system must be characterized mathematically. Although there is
a growing awareness among some life scientists that an undérstanding of
the dynamic operation of the metabolic control system will only result
from a systems approach, most of what is known about the system is un-
suiltable for use in a systems context. Most of the physiological experi-
ments which have been performed on the system were designed to study
local properties and not to elucidate subsystem behavior within the
context of a complex multiloop coupled system, hence these results are
difficult to interpret from a systems viewpoint. |

It is the‘purpoée of this investligation first to systematize the
current physiological knowledge of metabolic control in order to
establish the scope of the overall system, to derive and substantiate
by.system experiments a mathematical model for portions of the overall
plant and controller, to develop and apply mathematical algorithms for
the identification of parameters in the proposed model, and to

motivate a logical sequence of human physiological experiments to sub-



stantiate the model,

It should be emphasized that thé primary aim is to establish a
methodology for the investigation of the human metabolic control system.
It is expected that the proposed model will be only one of an evolu-
tionary series of mathematical representations of the system eventually
reéulting in a comprehensive dynamic model of metabolism. However,
these immediate results should accelerate bio-medical research on other
homeostatic systems, they may promote the eventual development of
better characterizations of metabolic abnormalities leading to improved
diagnostic techniques, they are a necessary prerequisite for the devel-
opment of auxiliary controllers for conditions such as diabetes, and
they may promote new developments.in the theory of automatic control

systems.
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IT. THE METABOLIC CONTROL SYSTEM

[1,2,3, 1]

2.1, Introduction.

All vital processes require energy, which is obtained from chemi-
cal reactions occurring in the living cell., The oxidation of
various substances is the principal mechanism for the liberation of
“energy. The total energy available from the breakdown of a molecule of
a particular food to CO2 and HZO is inherent in the bonds linking
the atoms together. It follows from thermodynamics that no more than
the total bond energy can be derived from the complete breakdown of a
substance regardless of the number of intermediate steps in the process.
The energy obtained from chemicai bonds is used in the organism for the
production of heat, muscular contraction, and electrical activity. The
phosphorylations from carbohydrate are the means by which the energy
liberated from oxidations is prevented from being dissipated as heat ahd
is temporarily held in the high energy bonds of adenosine triphosphate
(ATP) for subsequent use by reactions requiring energy.

Metabolism involves numerous coupled pathways composed of enzyme
controlled chemical reactions (Appendix A). The rates of these reac-
tions are not coneltant but vary as & function of physiologic require-
ments. The metabolic system changes in response to food inputs, during
the subsequentbpostabsorptive vhase, and in response to external factors
such as exercise and exposure to cold. Since animals require a continu-
ous but variable output of energy, and replenishment by the ingéstion of
food occurs periodically, a means must be provided for controlled energy

storage and release,
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Ingested food accumulates in the stomach which releases
bartially digestéd food to the.intestine from which absorption occurs.
The durabtion of the following postabsorptive phase is determined by
eating habits, During thése two periods, metabolic energy is altern;
ately undergoing net storage or release.

In the absorptive phase, glucose provides the major energy source,

being oxidized to CO, and H20 in tissues, In addition, a small

2
amount of fat 1s oxidized, but most is stored in adipose tissue as
triglyceride (lipogenesis). Excess carbohydréte is stored as glycogen
(glycogenesis), but most of it is converted to fatt& acid and subse-
quently stored as triglyceride in adipose tissue; the latter process
results in more energy stored per unit volume,

As the postabsorptive phase progresses the oxidation of fatty acid
becomes the predominant energy source rather than glucose, The fats so
utilized are derived from adipose tissue. ‘The brain and central.nervous
system depend mainly on glucose for fuel and oxidize it at a steady
rate in both phases. In contrasf to most tissues, the brain does not
require the presence of insulin to utilize glucose. This constant sink
on glucose supplies would rapidly deplete the extracellular fluid of
glucbse if the liver'did not increase its rate of conversion of protein
and amino acids to glucose (gluconeogenesis) during the postabsorptive
phase. During the postabsorptive phase insulin levels decrease and
muscle and adipose:tissues oxidize less glucose but more fatty acids,
conserving available glucose supplies for the brain., Under postabsorp-

tive conditions, the mixture of fuels being consumed is estimated to be

about 20% carbohydrate, 70% fat, and 10% protein, Since the brain is
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the primary coﬁsumer of glucose most of the tiséues are oxldizing fat
almost exclusively during this phase,

The endocrine glands, through the production and release of
hormones, control the exchange between stored fuels, viz. protein,
triglyceride, and glycogen, and their mobilized equivalents, viz, amino
acids, trigiyceride derivatives, and glucose respectively, so as to
maintain the homeostasis of the organism under varying environmental
conditions. Hormones are substances secreted by endocrine glands into
the general circulation which carries them to specific sites of action
elsewhere in the organism. Here they affect the rates of action of
specific processes without contributing significant amounts of energy
to the surrounding tissues. The following hormones exert dominant
control on the processes of carbohydrate, lipid,'and protein metabolism:
insulin, glucagon, epinephrine, corticosteroids, growth hormone, and

thyroid hormone,

2.2. Carbohydrate Metabolism.[u’5’6’7]

The principal product of carbohydrate digestion and the dominant
circulating sugar i1s glucose. The normal fasting level of glucose in
plasms is 80-100 mg/loo ml or 80-100 mg%. From plasma, glucose diffuses
to interstitial fluid and then.enters the cells of tissues. In the
cells it is phosphorylated to glucose-6-phosphate and then either con-
verted to glycogen or catabolized. Glycogen formation from glucose is
called glycogenesis and the reverse process is called glycogenolysis.
Glycogen, the stored form of glucose, is present in most tissues, but

the major supplies are in liver, kidney, and skeletal muscle. Glucose
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catabolism can ocecur by oxidation and decarboxylation to pentoses,

the "direect oxidative" circuit, and by cleavage to trioses to pyruviec
acid, the "Embden-Meyerhof" circuit., Under conditions of relative
oxygen lack, glycolysis, the breakdown of carbohydrate to pyruvic and
lactic acids, is more dominant than glycogenolysis in muscle; the lactic
acid released to the circulation can be converted back to glucose by
the liver (gluconcogenesis). Other precursors can be converted to
glucose by the liver, viz. glycerol from fat and some amino acids from
protein. Conversely, glucose is converted through pyruvic acid to the
amino acid alanine then to protein by the liver. Glucose can be con-
verted to fat throughipyruvic acid to acetyl - Co A, but this circuit
is not reversible. The "citric acid cycle” or Krebs cyclé, is a
sequence of reactions in which acetyl - Co A is oxidized to 002 and H
atoms. This cycle is the common oxidative circuit to CO2 and HEO of
carbohydrate, fat, and some amino acids. '

In contrast to other tissues, liver and kidney contain the enzyme
glucose-6-phosphatase, hence glucose-6-phosphate can be converted in
the liver to glucose from which it can be discharged into the circula-
tion. The uptake and release of glucose by the liver is under the
control of various_hérmones. In the kidney, glucose is freely filtered,
but at normal glucose levels essentially all of it 1s reabsorbed. How-
ever, when the plasma glucocse concenﬁration exceeds spproximately
180 mg%, reabsorption saturates and glucose 1s excreted into the urine.

A normal 70 kg, man with a liver mase of approximatcly 1.8 kg. and
muscle mass of approximately 35 kg., would have 75-125 g, liver glyco-

gen, 180-250 g. muscle glycogen, and assuming a glucose distribution
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and interstitial fluid volume) of 14 4, and a glucose
concentration of 100 mgh, 14 g. of glucose in circulation. Assuming a
caloric requirement of 120 cal/hr., the maximum available carbohydrate,
approximately 390 g., would supply the body's needs for only about 13

hours, ie. (390)(4.1)/120 = 13.3.

2,3. Fat Metabolism.[u’5’6’7]

The supply of neutral fat (triglyceride), within<adipose tissue,
is the major source of chemical energy for the living organism., These
fat reserves are constantly being broken down and resynthesized, The
stored form of fat, triglyceride, is converted within the adipose
tissue cell to free fatty acid and giycerol (lipolysis) which in turn
are released into the general circulation, Fatty acids are the form in
which lipid is transported from storage depots to the tissues for
oxidation, which occurs by the breakdown of fatty acids to acetyl-CoA
which then enters the Krebs cycle. The glycerol fraction yielded
during lipolysis is not metabolized to an appreciable extent by adipose
tissue, but is transported to the liver where it is converted to glucose
(gluconeogenesis) through conversion to phosphoglyceraldehydé.

Apparently all tissues of the mammalian organism so far examined
can oxidize free fatty acids completely-to COZ_ and HZO' Glucose is
convertéd to fat through the synthesis of fatty acids from acetyl-CoA
and the subsequent conversion to triglyceride (lipogenesis), which
occurs in adipose tissue and to a lesser extent in other tissues,
including the liver, This circult through fat as an intermediate is

the dominant pathway for carbohydrate utilization, The partial
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oxidation of féts in the liver leads to the formation of ketones which
in turn can be oxidized by other tissues. Most amino acids can lead to
glucose formation (gluconeogenesis), and in this manner eventually
conlribute to fat formation (lipogenesis). In addition, some amino
acids increase ketoné formation and thereby can be converted directly
to fat, The size of the fat depot obviously varies, but in the normal
individual may amount to 10% of body weight, or for a 70 kg man, 7 keg.
The fate of.free fatty acids in the adipose tissue cell is a
~ function of the amoﬁnt of carbohydrate available, When the intake of
carbohydrate exceeds the :'meedia‘te energy requirements of the organism,
the adipose tissue cell converts glucose to fatty acids and consequently
to triglyceride (lipogenesis) for fat deposition. Since. a~glycerophos=-
phate, formed from glucose, is essential for the esterification of fatty
acids to triglycerides, fat deposition can occur readily only in the
absorptive phase. Only during this phase, when blood sugar and insulin
levels are high, the latter promoting entry of glucbse into the adipose
tissue cell, will glucose be converted at a significant rate to a-gly~
cerophosphate, Adipose tissue contains active lipases that continuousiy
hydrolyze triglyceride to free fatty acid and glycerol (lipolysis).
In the absorptive phase most of this fatty acid is recycled back to
triglyceride., However, in the postabsorptive Phase, when blood sugar
and insulin levels are low, O~-glycerophosphate is not abundant and free
fatty acid leaves the cell for tfansport to other tissues to be

oxidized,
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2.4, Protein Metabolism.[u’b’b’7]

Ingested protein is broken down to amino acids which are absorbed
from the gastrointestinal tract. Amino acids are not stored in
tissues, but are converted back to protein or caﬁabolized by deamination
and further oxidation; Reserves of protein accumulate in the liver and
poésibly in the muscle. The body's own proteins are being continuously
hydrolyzed to amino acids and resynthesized. Interconversions between
amino acids and the products of carbohydrate and fat catabolism at the
level of the common mefabolic pool and the Krebs cycle involve transfer,
removal, or formation.of amino groups.

Deamination; the first step in the metabolic breakdéwn of amino
~acids, occurs in the liver. The deaminated residues of amino acids
fall into two groups, those which are glycogenic, i.e. capable of being
converted to glycggen and glucose, and those which are ketogenic, 1.e.
capable of being converted to keto acids., The keto acid formed can be
reconverted to an amino acid by reamination, directly catabolized to
CO2 and HZO’ or converted to carbohydrate (gluconeogenesis) and fat.
The conversion of keto acids to carbohydrate is the major source of
glycogen obtained by gluconeogenesis, |

2.5. The Endocrine System.fl’4’7’8’9]

The operation and effects produced by the endocrine system
(ductless glands which discharge their products into the general circu-
lation), are closely coupled to events occurring in the nervous system.
Common to the two systems is their ability to synthesize and reiease

specific chemicals that are capable of being transported over finite
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- distances to théir sites of action. Many endocrine glands through
~ their hormones act on the nervous system, and endocrine glands can be
sﬁimulated 6r inhibited by products of the nervous system, The func-
tional interdeﬁendence of these two systems 1is so pervasive that they
are often referred to as a unit, the neuroendocrine system,

| The hormones act upon target tissues and organs by affecting the
enzymes determining the rates of specific melabollc processes without
contributing significant quantities of matfer or energy to the
constituent cells, ZFach endocrine organ probably has a nominal rate
of secretion which changes as a function of other humoral changes,
neural mechanisms, or physiolbgical'needs, in such a manner that the
effect of the hormone is to induce changes tending to counteract the
original secretion stiﬁulus. In contrast to the rapid coordinations of
the body controlled by the nervous system, hormones which are trans-
ported in the general circulation and must be carried through interstitial
fluid in order to reach their target tissues, regulate processes such as
- those of metabolism in which events take place over longér periods of
time, The sequence'of evolutionary devel opment of these regulatory
mechanisms seems to have been: nerve cells pro@ucing neurohumors,
neurosecretory cells producing neurohormones, and finally endocrine
glands producing hormones, Control in humans, consisting as it does of
all three mechanisms, is highly coupled and interdependent and to some
extent redundant,

The isolation and identification of the active principle of a

hormone is often extremely difficult, requiring the combined efforts of

many speclalists. The nature of the various known hormones differs but
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most of them are unstable and many are proteins difficult to separate
from other cellular substances. Finally, hormones are present in the
body in minute concentrations; in many cases the only measure of
their presence is their éhysiological activity.[lo’ll’lz]

In the sequel, attention will be focused upon six hormones which
are believed to exert the dominant effects upon the processes of
metabolism in humans, The pancreas produces two hormones which affect
metabolism: insulin from the beta cells and glucagon from the alpha
cells. Insulin is a protein (molecular weight about 6000) which is
produced by the beta cells of the islets of Langerhans in response to
the concentration and‘rate of change of the’concentrationElB] of glu-
cose in blood. It is the only known hormone whose effects result in a
lowering of the circulating levels of blood glucose, Insulin is usually
measured in terms of "units", one unit being equal to 1/23 mg. The
basic peripheral action of insulin is to facilitate the transport of
glucose across the tissue cell membraneglu} (See Appendix B for a
description of transport processes.) However, evidence also exists
that insulin decreases liver glucose output (glycogenolysis), increases
liver glucose uptake (glycogenesis), decreases liver glucose formation
from other precursoré (gluconeogenesis), and inhibits the release of
free fatty acld from adipose tissue. Some studies have shown that
insulin virtually stops liver release of glucose and increases its up;
take by a factor of about three}ls] and increases glucose transport
into the adipose tissue cell while curtailing fatty acid releasegl6]

A typical plasma insulin concentration in the postabsorptive phase

is 10 - 20 pU/ml. Measured by the radioimmunoassay method, typical peak
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levels afler an oral glucose input are 100 - 140 pU/mLElT} Direct
measurements of plasma insulin indicate that the normal human secretes
only about 50 U/day. After intravenous infusions Qf 2 g/min glucose
and 20 pg/min glucagon for €0 minutes, the level of endogenously gener=
ated plasma insulin measured by immunoassay, declined with a half-life
of 7 = 15 minutes in normal humansgl8]

Although the remaining five hormonce pertinent to this investigoa-
tion all tend to be hyperglycemic, i.e. their effect is to increase the
level of circulating glucose, the opposite effect is believed to have
been observed with gluecagon, viz. that glucagon, in addition to its
hyperglycemic propert&, can stimulate insulin release in normal subjects
by a different mechanism than does glucosegl9’zo’21’22] This effect.

is opposite to the well demonstrated hyperglycemic effect of glucagon,
but this is at present a controversial subject, In

this investigation, glucagon is treated simply as a hyperglycemic agent,
It has also been observed that insulin response following an intravenous
injection of glucose differs from that following an ofally administered
dose, having a less rapid but more pronounced dynamic response in the

[23]

lat%er case. The existence of a "gastrointestinal factor" has been
postulated to account for this seemingly anomalous observationgzu’25]
In this investigation, only responses to intravenous inputs are consid-
ered. See Appendix C for a déscription of "glucose tolerance tests",
Glucagon, a polypeptide with a molecular weight of about 3450, is
produced by the alpha cells of the islets of Langerhans within the

pancreas. It is secreted in respbnse to a below normal plasma glucose

concentration and acts on the liver to stimulate glycogenolysis and
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also gluconeogenesis from proteinEZGJ It reactivates liver phosphor=-
ylase. which increases the conversion rate of liver glycogen to
glucose-l-phosphate and ultimately to glucose-b6~phosphate and to’free
glucose, There is no readily demonstrable effect on glycogen breakdown
in muscle. The fact that blood pyruvate and lactate levels do not ine
crease after a glucagon input indicates that it has no effect on
muscle phosphorylase. A typical postabsorptive plasma concentration
of glucagon in humans is 1 mpg/mi,

The adrenal glands, located superior to the kidneys, consist of an
inner part, the medulla, and an outer part, the cor:tex, which have
different endocrine functions. The adrenal medulla secretes epine-
phrine (adrenaline) whose effects are similar to»stimulation by the
sympathetic nervous system, the nerve endings of which secrete
norepinephrine, Norepinephrine is also produced by the adrenal
medulla, in fact it is a precursor for epinephrine. Both of these
substances have the same effect on metabolism, but that of norepine-
phrine is about one fourth as effective. In this investigation both
are treated as one quantity.

Epinephriné is a catecholamine of molecular weight 183.2. It has
been estimated that the blood of normal resting man contains about
1 mug/ml 6f total catecholamine (epinephrine and norepinephrine),
Small amounts of catecholamines are released into circulation continu-
ously, but secretign increases in response to sympathetic nervous |
impulses, hypoglycemia, and physiologic stress, Most investigators
agree that hypoglycemia stimulates the secretion of epinephrine almost

exclusively while anxiety and related emotional states stimulate mainly
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norepinephrine secretion,

A basal rate'of epinephrine production is thought to be
éstablished by signals from the hypothalamus (that portion of the
brain which is attached to the pituitary gland by vascular and neural
pathways) through the splanchnic sympathetic nerves. Production rates
abéve nominal are stimulated by a glucose concentration that is below
nominal and by a rapldly falllng glucose concentration, When glucose
is above nominal, but rapidly falling due to the insulin effect, it is
believed that insulin release is attenuated. Experiments show that

cpincphrine inhibite insulin eecretion directly at the beta cell

levelE27’28]

[29]

Epinephrine has two pronounced metabolic effects: it

reactivates liver phosphorylase promoting glycogenolysis as much as

[30]

three times above the unstimulated rate, and increases lipolysis in
adipose tissue liberating fatty acids€3l] The concentration of epine-

phrine observed during the reaction to insulin induced hypoglycemia is
about 2 - 3 mug/mL€32] Epinephrine may also.act on muscle glycogen
breakdown with a resulting increase in plasma lactic acid.

The adrenal cortex produces several sterold hormones affecting
metabolism. The most pronounced effect on carbohydrate, protein, and
fat metabolism probably is exerted by hydrocortisone with a molecular
weight of about 285. Henceforth we will use the term corticosteroid
to refer to the hormones of the adrenal cortex affecting carbohydrate,
fat, and protein metabolism. The adrenal cortex is stimulated by ACTH
(adrenocorticotropic hormone) from the adenohypophysis (anterior

pituitary). The adrenal cortex secretes its hormones continuously for
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normal metabolism and increases its secretion in response to almost
any change in_the internal of exterﬁal environment as mediated by
ACTH secretion,

The total concentration of corticosteroids undergoes a cyclic
variation with a period of 24 hours; in man the peak occurs around
8 AM. (16 + 10 pg/100 mt) and at 4 P.M, is about one half this value
(8 £ 6 p.g/lOO mf,)l.:33] In metabolism, corticosteroids are hyperglycemlc,
tending.to increase plasma glucose both by reducing peripheral uptake
by inhibiting glucose bhosphorylation in muscle and adipose tissue£3h]
and by increasing the availability of protein and fat for conversion to
glucose by hepatic giuconeogenesisg35’36]

Growth hormoné, (somatotropin) is a protein produced by the
anterior pituitary with a molecular weight of about 21,500g371 The
anterior pituitary is stimulated to release growth hormone by "growth
hormone releasing factor" from the hypothalamus when plasma glucose is

(38]

below nomingl or when plasma glucose is falling rapidly but not

necessarily below nominalgl7’391 This effect appears to be independent
of insulin, glucagon, and epinephrine, Howefer, it has been found that
insulin induced hypoglycemis stimulates growth hormone secretion and
that the simultaneoﬁs administration of corticosteroids attenuates
itEuO] Growth hormone increases lipolysis and decreases lipogenesis
in adipose tissue, thereby increasing the level of circulating free
fatty acidsg37] As a consequence of more fatty acid in circulation
there is a decrease in phosphorylation of glucose in muscle hence a
[3k4]

decrease in glucose uptake by these tissuest A single injection of

1 mg of growth hormone in normai_subjects has led to a threefold
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increase of frée fatty acid in plasma after a delay of about one hour.
This effect is the result of increased release of free fatty acid from
adipose tiséue depotsgul] Growth hormone also selectively accelerates
the transport of specific amino acids into cells promoting protein
synthesisg37]_

The plasma concentration of growth hormone fluctuates widely in
response to physiologic stimuli such as eating,[hz] exercise, and
psychological stress. Normal persons, after an overnight fast and
before arising, have a growth hormone concentration less than 3
mug/m{, but under a suitable stimulus concentrations as high as 70
mpg/m& have been dbsefvedgho] The normal rate of excretion of growth
hormone has been found to be 10 - 125 ug/dayE43] In normal sdbjécts,
after an insulin input, a drop in plasma glucose to less than half its
initial value is followed by a five-fold increase in plasma growth
hormone from an initial value below 5 mug/m&g39] However, a rapidly
falling plasma glucose has stimulated growth hormone release to concen-
trations as high as 50 mpg/mLEuh] Calculation of the turnover of
endogenously secreted growth hormone indicates that it leaves the circu-
lation with a half-time of 20 - 30 minutes if simple first-order removal
kinetics'are assumedEul] In an experiment in which the mean fasting
blood glucose level among several subjects was 63 mg% and plasma
growth hormone was 8.3 mug/mi, and in which insulin was infused at a
rate .0l units/kg weight/hr. for one hour, growth hormone secretion was
stimulated when blood glucose decreased approximately 10 mg%g38]

The principal function of thyroid hormone is that of a catalyst

for the oxidative reactions of the body's cells, it thus maintains a
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1é#el of metabolism in the tissues that is optimal for their normal
function. Thyroid function is controlled by TSH (thyroid stimulating
hormone) of the anterlor pituitary. The principal hormone secreted
by the thyroid is thyroxin, an amino acid of molecular weight 776.9.
However, another active form of the hormone on peripheral tissues may
be‘triiodothyronine, which has one less iodine,

Approximately 100 ug of thyroid hormones are secreted per day.
In addition to their overall metabolic effect they accelerate the rate
of absorption of monosaccarides from the gastrointestinal tract.
Thyroxin is normally degraded at a rate 51 ug/day. The half 1ife of
thyroxin is about 6 days and that of triiodothyronine about 2.5 days,

In the derivation of é mathematical model which is to follow in
Chapter III, the specific effecte of only insulin, glucagon, epinephrine
and growth hormone upon carbohydrate metabolic processes will be

inecluded.

2.6. Hormonal Control of Metabolism.

In the previous sections we have tried to be consistent in
sumarizing what may be a consensus on at least the first-order effects
of the hormocnes affeéting carbohydrate, protein, and fat metabolism,
However, the picture one obtains from the increasing mass of
rhysiological investigation on this subject is neither clear nor con-
sistent, The fact:that the metabolic plant is comprised of several
intercoupled loops with at lecast six and poseibly more controls, is
making itself abundantly clear as more conflicting results on the

operation of various portions of the system are obtained, Until a
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consistent in#estigative framework for the overall process is estab-
lished, and a methvodology derived to design physiological experiments
in a systems context, the classical methods of investigation applied
to this problem are likely to lead to even a more confused state of
. affairs,

A diagrammatic summary of the previous sections dealing with the
metabolic plant is fresented in Figure 1, This diagram represents
what may be the minimal desired complexity for meaningful results with
a dynamic description of metabolic control, The boxes represent "state
varilables”, and the arrows connecting the boxes represent processes.
Tne control signals, hormones produced by the endocrine glands, affect
the dynamics of the processes connecting state variables., This type
of description of a system, although common among lif’e scientists, is
the exact dual of an engineering representation,

As shown in Figure 1, the metabolié plant consists of three major
intercoupled controlled locps. There is now a fairly general consensus
that plasma glucose is a regulated variable in the classical control
system sense, It is also possible that certain variables in the pro;
tein and lipid loops are regulated£9] but these effects are not as
well substantiated; The regulation of plasma glucose appears
to be effected by two essentially distinct pathways. Oné is mediated
throughvthe pancreas which releases insulin when plasma glucose is
above nominal and glucagon when plasma glucose 1s below nominal, The
other is mediated through the hypothalamus and remaining endocrine
glands, i.e, anterior pituitary, adrenal, and thyroid, responding to a

low or decreasing plasma glucose concentration. The nominal concentra-~
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tion is believed to be determined by the higher cortical centers of
the central nervous system and the hypothalamis is capable of sensing.
‘deviations in plasma glucose ffom the desired levelEuS]

When the plasma concentration rises to some point between 100
and 150 mg% - normally as a result of the ingestion of food - the liver
stops releasing glucose into plasma and begins to store the excess

[Le, ]

glucose as glycogen, Simultaneously the tissue utilization of

glucose increases under the influence of insulin; adipose tissue

stores glucose as triglyceride[l6’h8] and muscle stores glucose as
glycogengugj When the plasma concentration of glucose falls below

nominal by approximately 5 ~ 10 mg%, growth hormone of the anterior
pituitary is released at an increased rate, promoting gluconeogenesis.,
The pancreas responds by releasing glucagon and the adrenal medulla
by releasing epinephrine, both of which promote glycogenolysis and
gluconeogenesisgsofsl] Hydrocortisone from the adrenal cortex and
triiodothyronine from the thyrold also are released under the stimulus
of hypoglycemia, The evidence suggests that the pancreas and adrenal
medulla perform comparator action directly, releasing their respective
hormones as some function of glucose actuating error, whereas the
hypothalamus functions as a comparator for the remaining hormones,
The hormone controller appears to respohd as proportional, derivative,
and integral functions of the actuating error between the nominal and
the actual plasma glucose concentration. |

By classical indirect calorimetry it has been determined that a
normal 70 hg. man under basal conditions requires about 1800 calories

of fuel in one day. In this 24 hour period the liver output of
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glucose is ap?roximately'l8o g., of which 1hLk g. are oxidized by the
brain and nervous system, and 36 g..are metabolized by red cells and
white celis to pyruvate and lactate., The resulting 36 g. of pyruvate
and lactate are recycled to liver to fuel gluconeogenesis. The
fuel source mix consists of 75 g. of protein converted to
‘ amino acids to fuel gluconeogenesis in liver and 160 g, of adipose
tissue triglyceride which converts to 160 g, of fatty acids and 16 g,
of glycerol, the latter going to liver for gluconeogenesis, Of the
160 g. of fatty acids, 40 g. are removed by the liver which partially
oxidizes them to ketones, providing the necessary energy for liver
function. The remaiﬁder of the body uses these ketones, and the re-
maining 120 g. of fatty acids. The precursors for hepatic gluconeo-
genesis, 16 g. of glycerol, 36 g. of lactate and pyruvate, and 75 g.
.of amino acids are inadequate to provide 180 g. of glucose, however
the differéncevis made up by hepatic glycogenolysisgsz]

In our view then the overall metabolic control system is com-
.prised of a "plant" consisting of processes relating the three storage
forms of metabolic fuels (protein, triglyceride, and glycogen) to six
metabolic fuels (amino acids, fatty aclds, glucose, pyruvate, lactate,

and keﬁones)EBB] three inputs (protein, fat, and carbohydrate), at
least one regulated output (plasma glucose), and a "controller" pro-
ducing six control signals (insulin, glucagon, epinephrine, growth
hormone, corticosteroids, and thyroid hormones). The metabolic control
system is nonlinear and multidimensional with normal and parametric
feedback, The parametric feedback arises from the changes-induced by

hormones in specific enzyme-catalyzed reactions and membrane transport
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mechanisms thereby resulting in parametric changes to the dynamics
assoclated with these processes or subsystems. In addition, many
metabollc processes eihibit saturation and threshold properties,
The interpretation of these stateménts in terms of differential
"equations requiied for a dynamic description of system behavior will

involve nonlinear mathematics, Hence the first step in systematizing

conclusion that the system is inherently nonlinear and multidimensionél.
Any meaningful attempt to describe the system mathematically cannot
ignore these facts.

A meaningful dypamic description of the metabolic system at the
level of detail depicted in Figure 1 is predicated upon finding suitable
mathematical representations for all of the proceéses linking each pair
of State’variables. Although we by no means have the required experi-
mental data to carry out this task at the present time, it is neverthé-
less worthwhile to express the relations indicated in Figure 1 at least
in functional mathematical form. Only in this way will the areas in
which more physlological information is required be specifically
identified allowing suitable experiments to be designed to yield these
data, |

There are twenty-two state variables indicated in Figure 1, hence
twenty-two coupled nonlinear differential equations comprise the
dynamic model of the metabolic plant, The controls, acting at the
site of the processes connecting state variables, will requirc six or
twelve differential equations depending upon whether one or two-com-

partment distribution dynamics are assumed,
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Let: x & state variable vector (22 x 1)
w a cohtrol variable vector ( 6 x 1)
v 2 input  variable vector ( 3 x 1)

then functionally, the overall plant may be written:

be

= £(x,u,V) (1-1)

- where f is (22 x 1) and the hormonal controller may be written:

e

= g(x,:’c,u) (1'2)

where g 1is (6 x 1). TFor a more detailed specification of the
system we make the following definitions,
Let the inpﬁts be designated:

1 8 Ingested carbohydrate

<
te

Ingested fat

e

Ingested protein

Let the states be designated:

i

Plasma glucose concentration

o>

Xy Plasma free fatty acid concentration

ne>

x3 Plasma triglyceride concentration

>

Plasma ketones concentration

>

Plasma glycerol concentration

ne=

Plasms pyruvate and lactate concentration

e

Plasma amino acid concentration
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£ Liver and kidney glucose concentration

P
co
e i

9 Liver and kidney glycogen mass

e

Xy Muscle glucose concentration

=

Muscle glycogen mass

i

X Liver amino acid concentration

e

xl3 Liver protein mass

1>

Muscle tissue amino acid concentration

>

Muscle tissue protein mass

>

Adipose tissue free fatty acid concentration

1>

xl7 Adipose tissue triglyceride mass

1>

Adipose tissue glycerol concentration

ne>

Triglyceride metabolizing tissues triglyceride mass

>

X0 Liver triglyceride concentration

>

51 Liver free fatiy acid concentration

ne-

Liver ketones concentration

Let the controls be designated:

>

Uq Plasma insulin concentration

ne>

Plasma glucagon concentration

[

u3 Plasma epinephrine concentration

ne>

Plasma growth hormone cmcentration

e

Plasma corticosteroid concentration

e

g Plasma thyroid hormone concentration
For purposes of illustration, processes will be depicted functionally
except that all trensport proccsses will be expressed in terms of

linear diffusion kinetics. The processes represented by each function

are in one to one correspondence with the arrows linking state variables
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in Figure 1 and are written on the right hand side of the following

equations taking the arrows clockwise for each variable starting at .

the top of each box,

171

]

1 2 '
£ (x5 vy, ug) = £7(xq,u¢) - fi(xl’xlé’ul’uh) = ¥y (%9 -%g)

= Ypluy)lxy =201 - fi(xl)

1
T5(p, Vo) = v3(xp-xy0) - v (g2 6) - fg(xz’“6)

1 A
= 15(x3,75) = vg5{xgmxp0) - f3 3%19) f3("3’ %))

i

" Ye(ymxgp) - fi(xh’ué) - £,(m,)
- v, (x.=x )+fl(x Xo U ,0,4 u.)-fz(x Xap Uy )
7V'5 18 5357719 U3l 5 g 5\ X5 %G Uy
1
- Telig gy, ) - folxgug) - Tplxgx w) +
fu(x Xo U, U )
6\% 6 *107 M3 Y5

1
f,_{(x,T,v3) f (XT:XB: l.l ) 'YB(X"{-XJ.Z)
1 2
- yl(x8—xl) + f8(x8,x5,ul) + f8(x8,x9,ul,u2,u3)

L
+ fg(xB,x@ul,uZ) + f8(x8,x7,u2,uh,u5)

(1-3)
(1-4)
(1-5)
(1-6)

(1-7)

(1-8)

(1-9)

{1-10)
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. 1
Xy = f9(x9,x8,ul,u2,u3) (1-11)
Vo X, o= =y (u ) x -x]-fl(x xuu)-fz(x x
10710 2Y71/"710 L 0V1 e 375 10Vl
u3,uh,u5) _ (1-12)
Xon = T (K Xy g Uy Uy, U ) | (1-13)
117 1Ml R s

D 1 » 2 » .
i = 7 YalFipmay) v Tiplyxey) - f1p00 53,0, v) (1-2)

. 1
)5 = fl3(xl3,x12,'ul,u2,uu,u5) - fi,3 (xl3)' (1-15)
- l 2 .

gy = = Yol ey d = ), (e %0550, 9, W, u5) = £, (), u5) (1-16)
L] l .
X = fl’j(xls’xlh’ul’uz’ uh,u5) (1-17)

. 1 2
Vighi6 = = W (xgmxp) - fglxygug) - Fplx g Rl A Rty »U5)

+ f.‘sl_6(xl6’xl’ul’ uu) (1-18)
. 1 | 2 '
%17 = T (g ¥pe s Ve Wy Ug) + Ty (0, x4) - fzgw (17 %16 0
uzs uh,’ u5) (1‘19)
. 1
V1g¥18 = T18(%18r X1qr o g Wy i) = Yo (xygmxs) (1-20)

*

*19 = fiQ(xl9’x3) - f§_9(XJ_9Ju6> - fi9(xl9,x5,u3,u ;u53u6) (1-21)
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. L
Vaota0 = T20(a00%a10W) = ¥5(xp0-%3) (1-22)

1 2
VorXpr = = Ya3(Xpy%p) = T51 (3p0, %0500 ) = Ty (X5, %00 1,) (1-23)

. 1
Vog¥en = Top(Fapr¥p1t1) - Yelngpxy) (1-24)

The detailed mathematical representation of this model for the
metabolic plant requires the specification of 48 functions representing
processes (f‘;), 2 variable permeability functions (ya. (ui)), 7
permeability constants (yj ), and 16 distribution spaces (Vj)‘

If we define the exogenous input of hormones by Wiy °0t o, Vg

then the controller can be functionally written as follows if one-~

compartment distribution for each hormone is assumed.

. l . '

U, = gl(wl) + gi(ul, u3,xl,xl) | (1-25)

U.u, = gl(w )+ 2(11 Xq) (1-26)
c gty E Ba\Wn) + o, Xy . :

vu, = gl-(w Y + gz(u X.,%. ) (1-27)

3%3 = 833 3\ XXy

UG, = gr(n ) + gl 2 ) (1-28)

Ly = 8y Wy )t 8 (U, X, X ~

Uols = ge(ws) + go(ug,x,) (1-29)

515 = 85\W5 5\45: X1

UL, = g 2(ug,x,) (1-30)

eig = 8glvg) + gglugxy | -3



29
Whére it has been assumed that all six hormonal controls are generated
as functions of the plasma glucose concentration.
Solving the inverse prdblém, i.e, identifying system model

parameters based on noisy observations on the variables x, through

1
x7, for the complete system is a formidable task even if we assume

the requisite experimental data to exist., The only possible approach
at this time is to focus on specific portions. of the system while
lumping in an appropriate manner the neglected portions, In the sequel

a detalled derivation and analysis of a model for glucose metabolic

conbrol will be presented,
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ITT. MATHEMATICAL MODELS OF THE GLUCOSE CONTROL SYSTEM

3.1, Introduction,

Owing to the complexity of the system depicted in Figure 1 and
.the paucity of experimental data that can suggest reasonably valid
analytical models for the relevant subsystems, we have tried to con-
struct models using as small a set of basic analytical building blocks
as possible with parameter values chosen for any specific process
within a given class to accommodate ithe behavior of thal process, The
real objective in this work is to demonstrate by means of examples
what control systems techniques can contribute to our investigative
teehniques end underatending of these biological regulation asystems,
Although a great amount of physioclogy has yet to be learned about the
relevant. subsystens involved before a definitive model can be
established, it is our belief that the systems analyst ecan contribute '
to this effort now by systematizing our knowledge about the metabolic
system in a consistent mathematical framework, by suggesting to the
biological scientist specific experiments. suggested by model building,
simulation, and analysis, and by determining analytically the dynamical
conseguences of conflicting theories concerning the operation of
specific portions of the system,

Beginning with the recognition that the system contains inherent
nontinearities such as saturation effects and threshold phenomens, the
models are constructed from first order nonlinear differential
equations. All the models are simulated by digital computer and
compared to data dbiained from controlled experiments, performed on

young normal adult male subjects,
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Our current understanding of the interrelated processes and
physical organs coﬁstituting the metabolic system and its endocrine
control is depicted in the generic diagram shown in Figure 2., This
diagram represents an attempt to systematize the physiologic facts
summarized in Chapﬁer I1 as a first step in the eventual derivation of
a-detailed metabolic control model consistent with established engine

eering control systems concepts, theories, and techniques.

3.2. Mathématical Models of Metabolic Processes.

A mathematical model of & physical process or group of processes,
i.e. a system, is a concise representation of the major characteriétics
' of the system in a form which historiecally has proven to be of major
significance in understanding physical phenomena., Entire fields of
applied mathematics have heen developed in response to the challenges
to our understanding presented by various groups of physical phenomena.
Common to most of these efforts has been the use of differential egqua-
tions to represent the behavior of physical processes, making possible
descriptions of the "dynamic" behavior, i.e. as a function of time, of
systems. These mathématical methods have been most refined for linear
systems, l.,e. these for which the principle of superposition is valid.

Mathematicallyy a model of a system is a "transformation' of the
inputs or stimuli to the outputs or responses both of which are de-
fined intuitivelylor subjectively based on our understanding of the
system, A differential or differential-difference equation represen-
tation of stimuli-response transformations usually involves intermedi=-

ate variables called "state variables"”. From a mathematical viewpoint
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the choice of states is not unique, but this does not make the
representation of 'Ehe system ambiguous since the states are unique
within a similarity transformation, In blological systems a reasonable
choice of unique states results by insisting that the state variables
represent biologicéllj meaningful entities, for example see Figure 1.
Oﬁviously, the very cholce of differential equations for representing
a physical system involvés subjective judgment.

The first matter for consideration in the construction of a model
is to decide whether a deterministic or stochastic‘form is appropriate
for the phenomenon of interest. The appropriateness of a deterministic
model is influenced by the "repeatability" of each of the experiments,
If it is not possible Lo conduect an experiment on the same subject
under identieal environmental conditions several times and observe
identical responses then either a deterministic model is meaningless or
all the causes which influence the model have not been considered.

Given a hypothesized model, the next step to consider is the so=-
called "inverse problem". This is the problem of determining the nu-
nerical values of the parameters in a model by suitably processing the
data avallable on the stimulus and the associated response., This
problem is far from trivial even from the strictly theoretical point of
view., The dinverse problem 1s oflen cauplicated by questions of "dbser-
vability”. Usually we are not sure whether the stimuli-response data
contain enough information about the parameters, and typically we are
unsure whether the response to the given stimilus is reasonably

sensitive to changes in the values of the parameters,
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Assuming that the in&erse problem is meaningfully defined and
algorithms are available for its solution, the model should next
satisfy certain predictability requirements. The model with parameters
numerically determined based on the necessary stimulus-response data
should yield predicted responses which can be corroborated expezfiment-
aily for different stimuli.

One of the major difficulties in constfucting accurate models of
metabolic systems is the limited reliable data that is available which
is in a form useful for solving inverse problems. The solution of the
inverse problem requires that data be obtalned for different stimull
on the same individual with extraneous factors reduced to a minimum,
It does not make sense from the modeling point of view to use glucose
tolerance data from one individual and insulin tolerance data from
another, Moreover, it 1s extremely important that the responses of
interest be sampled at a rate that is consistent with the model., For
example, a large number of models can be constructed which will agree
very well with the response to an oral glucose load if only four data
points spaced every half hour are taken. It is also very important to
know precisely the'exact times at which various stimuli were applied
and the various responses were sampled., Model parameters are often
extremely sensltive to the instants of time at which certaln events
occur,

The metabolic control system modeling problem is to find mathe-
matical repreéentations for the detailed processes depicted in Figure
2 and to relate them in a consistent manner resulting in an overall

analytic representation of the metabolic system. The previous cbserva-
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tions imply that a meaningful system model for metabolism will involve
nonlinear mathematics, hence the analytic difficulties implicit in
these efforts will necessitate the use of extensive computation
facilities for simulation purposes. As will be seen in the sequel, a
brief survey of efforts to model the glucose homeostatic system, most
of the reported work 6n this problem avoids the above mathematical
difficulties by introducing assumptions which ignore either or both the
‘multidimensionai and nonlinear aspects of the problem, Also charac-
teristic of all the reported attempts at modelihg the glucose control
system 1s the use of I1n vltro data on subsyslems taken from animal.
experiments, somehow extrapolating such numbers to that of a 70 kg,
human, and finally simulating the system by trial and efror to mateh
qualitatively a human subject's response to an intravenous glucose
input. There have been no reported attempts to establish a methodology
whereby a proposed model of human metabolic‘control can be obtained by

experiments performed directly on the human subject,

3.3. Reported Efforts at Modeling Glucose Regulation,

The first reported attempt to illustrate how the concepts of
control systems engineering can be applied to the study of glucose
homeostasis was supplied by Goldman in l960E5u] He summarized quali-
tatively the major metabolic subsystems and controlling hormones
relevant to glucdse regulation.and represente& their interconnection
in a block diagram suggestive of a multi-loop feedback control system

(see Figure 3). Goldman did not attempt to develop his model in any

more detall, but discussed the eventual application of modeling efforts
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iﬁ characterizing clinical abnormalities and in endocrine system
¥esearch. Assuming that glucose regulation-can be viewed as a classi-
cal regulating system, Goldman emphasized the need for new experiments
to understand the physiological mechanism of set-point establislment
and to identify which possible modes of control exist in this
physiological system, Although this work does not enhance our
physiologlcal knowledge of glucose metabolism per se, it constitutes a
logical first step in any detailed mathematical modeling of the system
by identifying the major subsystems involved and their logical inter-
connection in a systematic manner consistent with standard control
systenm terminology.

The next published work is that of Bolie[55’56]

illustrating the
use of analog computers in simulation of mathematical representation of
glucose regulation. The first model treats the interaction of liver,
kidney, pancreas, insulin, and glucose in two compartments, the vascular
and extravascular, The model is a gross treatment of the glucose regu=-
lating system, involving only one controlling hormone and being strictly
linear except for a renal threshold. It qualitatively reproduces
insulin and glucose behavior after simulated 6 minute infusions of

gluéose and insulin of 50 g. and 2 units respectively. The model is

represented by Equations (3-1) through (3-4):

VR, = I, +-(Ie-1v) Pr+ K6, - KT, (3-1)

i.e., the rate of accumulation of insulin in the blood stream equals

the rate of injection plus the rate of transfer from the extravascular
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compartment plus the rate at which it is released from the pancreas

minus the rate at which it is degraded in the wvascular compartment.

Vi = (L) P - K1, a (3-2)

ie. , bhe rate of accumulation of insulin in the extravascular insulin
space equals the rate of transfer from the vascular space minus the
‘rate at which it is degraded in the extravascular space.

VG, =Gy + (G -G) B, - £(G,) - K,I - K6, (3-3)
i.e., the rate of accﬁmulation of blood glucose equals the rate of

injection plus the rate of transfer from the extravascular compartment

minus renal excfetion and stofage in liver,
VoG, = (Gv-Ge) B, - K, - K,TGe (3=4)

i.e., the rate of accumulation of extravascular glucose'equals the
rate of transfer from the vascular space minus tisgue utilization,

Known nonlinear effects have been linearized and represented by
the constants Ki through K#. The renal nonlinearity f(Gv) consists
of a threshold and constant gain. This work illustrates on a limited
scale the use of simulation in verifying the consistency of a proposed
model, |
[56]

Bolie's second paper neglects renal excretion and lumps the

vascular system and extravascular system into one compartment. . The
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model then reduces to two first-order linear differential equations:

I.
=—V—l--a1+aG \ (3-5)

| o bl

G,

1
F-YI-8G (3-6)

Qe
i

where () represents the sensitivity of insulinase activity to
insulin concentration, (B) represents the sensitivity of pancreatic
insulin output to glucose concentration, (y) represents the combined
sensitivity of liver glycogen storage and tissue glucose utilization
to elevated glucose concentration, and (5) .represents the combined
sensitivity of liver glycogen storage and tissue glucose utilization to
elevated glucose concentration.

The parameters of this model were derived from data obtained from
various sources, in some cases values were "éveraged" across species!
No aftempt was made to verify the behavior of the model by predictabil-
ity of experiments, It is evident that at best the model parameters
are dhoseh optimally with respect to bne experiment. |

The next published effort in modeling of glucose regulation is
‘that of‘Seed, Acton; and StunkardESYl The model relates liver, kidney,
brain, pancreas, vascular and extravascular compartments, and a sub-
stance Z, presumably related to hormone action, in terms of three
dependent variablés connected by piecewise linear ordinary differential
equations, The equations represent respectively, the rale of change of
glucose'in the "fast" compartment, the rate of change of glucose in

the "slow" compartment, and the rate of change of substance Z in the
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liver. The expressions in square brackets are zero unless the condi-

tion noted below each bracket is satisfied.

Gp = = Dgly + DG - LG, - MG, - B - [Mfo-mf] - [RGf-r]
et} leget)
-P 7 I -
+[ngg3+ (1] | (3-7)

{z < Lp} {t < LT}

Gg = Do - DG - [MSGS-mS] (3-8)
{GS > L.}
Z ==-c, -CZ+FG, | (3-9)

These equations were simulaled, and by trial and error parameter
adjustment showed qualitative agreement over a limited interval with
some kind of an "average" of plasma glucose after a 25 g. infusion
taken over 70 normal subjects. These data were obtained by Amatuzio[.:58]
However, tﬁis method of model verification was found to yield physiolog-
ically unrealistic parameters.

These investigators then expanded the model to include two new
. compartments, red blood cells and plasma., The equations represent,
respectively, the rate of change of plasma glucose, fast ccmpartmént
glucose, slowvcbmpartment giucosa, red blbod-cell glucose, and sub-

stance Z in liver.
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>

¢ == (DprP-DfPGf) - (D.G~D _G.) =

2 ps“pPep’s’ ~ g

- [PéZ-p ] -1LG

f
Z <L
(z <z}
Gp = (Dprp-Dprf) - MG, - [Mfo-mf]
{6, > Ly}

Gy =.(DPSGP—DSPGS) - MG, - MG -n ]
{ag > L.}
. Gp Ge
Go = KVGC G+ G¢ - G, + G¢
P . o
Z =FG, - [CZZ +,cz]

{z >0}

The authors sttempted to substantiate all parameter values

- [RG_-r] = B % (1] (3-10)
ﬂ;p >L} {t <1}

(3-11)

(3-12)

(3-13)

(3-14)

from

published experlmental results vefore computer simulations were under-

taken, Again, roughly qualitative reproduction of experimental results

was obtained.

In view of the more recent results obtained in hormone

effects and the fact that these are not explicitly included in this work,

the deficiencies of the model are substantial.

As in the previous two

efforts, the model essentially amounts to a more scphisticated attempt

at curve-fitting one specific stimulus-response characteristic, that

resulting from a glucose input,
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In 1962 Be.;Liles|:59:I evaluated by experiments on dogs the coeffici-
ents in the Bolie model. In addition he proposed a five~compartment
model in terms of linear ordinary differential equations and discussed
preliminary estimates of the parameters. The compartments consist of
arterial blood, pancreas, liver, splanchnic area minus pancreaé and
livér, and peripheral tissue,

A schematic illustrating lhe mcdel is shownlin Figure 4, The de-
tailed equations of the model.are given by (3-16) through (3-34), but

they can be represented by the vector equation:
X = Ax + T (3-15)

where x and f are eight-dimensional vectors, and A is an 8 x 8
constant coefficient matrix.
Insulin and glucose concentrations in the extracellular fluid of

peripheral tissue are represented by:

. Fb .

by = - g [57,] (3-16)
F M

. P : b

Gb E :\-].-: Gb-Ga] - ‘v; . (3"17)

The concentrations of insulin and glucose in pancreas efferent blood are

represented by:

[T-1.1+ & (3-18)
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3 Fﬁ MP )
G === [G -G ] -=& (3-19
o) Vé P a V? 7

The concentrations of insulin and glucose in splanchnic tissues efferent

blood are represented by:

F
* S
=-v [1.-1.] | (3-20)
4 FS MS
G = WGl - (3-21)

And the concentrations of insulin and glucose in the liver efferent

blood are represented by:

. ‘m D
I, === [-1I,+1]-= (3-22)
4 Vz L w Vz
F
. 2 H
G, ==-=[~-G, +G ] = = (3-23)
4 VZ L uy Vz
It can be seen that blood flow rates are related by:
Fp + Fs = E&
(3-2k)
F{ + Fb = Ft

Continuity of transport rates requires that:



+ = -2
I, + Py = BT , (3-25)

- -26
RGo v PG = TG (3_ )
F,G, + F,.Gy = F,G, | (3-27)
F,I, + B, = F.I (3-28)

Insulin production is linearly related to circulating glucose:

R = KTGP : (3-29)

Destruction of insulin by the liver 1s made proportional to the concen-

tration of insulin leaving the liver:

D =K]I, | | (3-30)

Storage of glucose by the liver is made linearly proportional to glucose

and insulin levels above some minimal levels:

H=H_ + Kil(GlfGo) + K%Z(Il-lo) (3-31)

The rates of metabolism of glucose in peripheral tissde, splanchnlc

area and pancreas are represented by:

Mb - Mb .+ Kb (G.b—Gl) + Kb (Ib"Il) (3“32)
o} 1 2 )
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M = MSO + Ksl(Gs-Gz) + Ksz(IS-IZ) (3-33)

=
l

5 MPO + Kpl(GP-GB) + KPB(IP-Is) | (3-34)
Values for the parameters of this model were obtained mostly from
in vitro data taken on various animsls. No attempt was made to compare
the performance of this linear time~invariant model with actual experi-
mental data on an intact, animal, Because of the linear approximations
made and the inclusion of only insulin as a controlling hormone, at best
the model could only represent the system under small hyperglycemic per-
turbations about the nominal'state, l.e, for small glucose inputs only.
As we have seen, Bolie's work resulted in a model which can be

represented by the vector equation:
x=Ax+ f+g (3-35)

where x, f and g are bh-vectors and A isa L x bk constant
coefficient matrix, The 4 components of x represent glucose and in-
sulin concentrations in the vascular and extravascular compartments, T
inciudes a nonliﬁearity for renal excretion and g represents glucose
and insulin infusions, Bolie then reduced the order of the system by
two to emphasize intravascular glucose and insulin coefficients, ob-

taining a system of the form:

X=Ax+ g (3-36)
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where x and g are 2-vectors and A is a 2 x 2 constant coeffici-
ent matrix, The g. vector again represents glucose and insulin
infusion.
In 1963 I/\Tred.e[é“):| extended these results to a linear model repre=-
senting glucose metébolism as a function of the hormones insulin, glu-
cagon, epinephrine, cortisol, thyroxin and growth hormone. His model

can be represented:
X = Ax + T (3-37)

where x 1s a T-vector representing plasma concentration of glucose
and the six hormones under consideration; A is a 7 x 7 cmstant
coefficient matrix; and f is a T-vector representing infusion rates
of glucose and six hormones,

Wrede attempted to derive the parameters of the model, i.e., the

*)
coeflicienls of the A matrix in (3-37), from the avallable experiment-
al data. The author recognized that a desired goal in modeling is a
physiologically meaningful representation in contrast to "curve-
fittingh. Becausc of the linearity of the model, all of the substantial
body of control sysfems analysis Techniques could be brought to bear on
the problem, By striving for equation consistency and analyzing'how
equilibrium constraints dictate model behavior, he was able to establish
theoretical values;fqr unobservable parameters.

Analysis of the model yielded numerical values for certain parame-

ters which were remarkably close to the experimentally determined values.

However, of more interest is the fact that this model for the first time
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predicted physiological consequences that had not been experimentally
corrohorated at tha£ time. Tt is, of course, also possible that these
conclusions were anomalous artifacts resulting from inadequacies of the
model. However, this work does demonstrate on a limited scale how
model.building and éimulation can be useful in studying metabolic pro-
ceéses. - The author also simulated glucose and insulin tolerance tests
on the model, obtaining qualitatively correct behavior for some of the
components of x.

Although the limitations in Wrede's model are clearly‘evident, his
is the first attempt al conslrucliag a model lhat includes all of Lhe
kxnown hormonal controls (except sex hormones) believed to affect adult
glucose metabolism, All such efforts prior to Wrede considered only the
effects of insulin, whereas he considered the effects of six hormones,
albeit in a linear manner only.

In 1964’M0Lean[6l] published a brief summary of glucose homeostasis
focusing primarily on Goldman's work. He attempted to incorporate ner-
vous system effects explicitly in a modified system block diagram.
However, owing to our very rudimentary understanding of mathematical
representations for neural processes, successful modeling of such pro-
cesses await the results of more basic research.

Keeping ih mind the complexity of the overall metabolic control
system as depicted in Figure 1 we see that the above reported results
are representative attempts at achleving some kind of s mathematical
representation for certain portions of the complete system, Common to
these efforts is a restricted emphasis on glucose metabolism, lipid and

protein metabolism being neglected.
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In 1965 Shamestéz] reported on a mathematical model for the
dynamic response of glucosc in ex'tracellular fluid and intracellular
hepatic fluid, insulin in plasma and interstitial fluid, and free fatty.
acids (FFA) in extracellular fluid to a glucose input (Equations (3-38)
to (3-h2)). |

veée =5y + K (GG ) - K, (G~G, ) - B - [k3+kuIi+k5(Fb—Fe)](Ge-Gt)

(3-38)
¢, |

V,G, =1y - BI |=——2— |-k (G, -G ) (3-39)

LL 1 67 p G{-%MP{) k_l.&e .

o 2 2

VPIP =D, + k,_(Ge + .k,?Ge - kB(IP—Ii) - kglp (3-40)

v, = k8(IP—Ii) - klOIi (3=k1)

VF, = b3 - kll{[k3+ l}Ii+k5(Fb-Fe)](Ge-Gt) - Pb} - kL F (3-42)

Pancreatic insu;in production is made proportionél ta the square of
extracellular glucose and exchange between the plasma and the inter-
stitial space is by simple diffusion (see Eguations (3-40) and (3-L41)).
Equation (3-39) reflects the fact that simple diffusion relates extra-
cellular fluid glucose and hepatic intracellular fluid glucose and the
assumption that the Michaelis-Menten Xinetics of the hexokinose-glucose-
6-phosphatase system are rapidly changed to produce net phosphorylation

by plasma insulin through a constant. Both removal of FFA through oxi-



50
dation and recycling through adipose tissue stores are represented by

a linear process and lumped into the constant k) The rate of

o
. decrease of FFA 1s proportional through kll to the increase in the

rate of peripheral utilization of glucoss above the basal rate. These
effects are repfesenfed by Equation (3-42). Egquation (3-38), represent-
ing sources and sinks for glucose, contains the hepatic term as in
Equation (3-39), a sink linearly related to glucose concentration above

a threshold for renal excretion, a constant for CNS utilization, and a
term linearly related to the extracellular fluid to the peripheral tissue
intracellular fluid g?adient weighted by insulin and FFA concentrations.

It was the intent of the author to study some aspects of glucose
regulation from a theofetical systems viewpoint using experimental data
in the reported literature. The model treats only one aspect of the
glucose regulatory system, that pertaining to an elevateé glucose condi-
ticn. Combined into the model are data from both in vitro and in vive
experiments 1n animals and man, This is the first reported attempt to
include in a model of glucose control the effects of free fatty acids,
It constitutes a correct step toward the eventual mathematical.represenn
tation of the full metabolic control system depicted in Figure 1, of
which the glucose control system per se forms only a part,

Early in 1967 Cerasi published the resulﬁs of some work on analog
simulation of glucose :c-egula.’t:.ion’:.63 ] The model repi'esents insulin and
glucose in one compartment and includes renal excretion, peripheral
glucose uptake, and insulin secretion. The release of insulin in

response to glucose concentration is represented in two phases, the re-

lease of stored insulin and the release of newly formed insulin, The
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model 1s not strictly linear, since the uptake rate of glucose by
peripheral tissue, for example, is répresented a8 proportional to the
product of ihsulin and glucose concentrations, and a renal excretion
threshold is included. The author claims successful simulation of many
experimental tests performed on humans in the hospital laboratories.
HoWever, it is apparent that the model is an insufficient represeﬁtation
of the glucose regulatory system, considering'what is known about the
metabolic processes and the hormonal controls involved. The basic
purpose of the author was to represent in a mathematical fashion the
behavior of glucose and insulin concentration after a glucose input by
means of a lumped modél.
Some more recent work on glucose modeling is due to Wolaver.[643
His model consists of four first-order nonlinear differential equa-
tions depicting the behavior of glucose and insulin in two compartments,

the vascular and the extravascular, i.e. functionally:

Vg o (BG) = £;(BG,BI) - £ (BG) + P,(CG-BG) (3-13)
W & (a) = By (Ba-Ce) - £;(Ba,BI) (3-14)
Vg %’E (BI) = £,(Ba) - (X)(p1) + P (CI-BI) (3-45)
v; & (en) = 2 (BIcD) - (0)(CT) (5-46)

Teking the by now familiar approach, Wolaver attempts to obtain reason-

able numbers for as many parameters as possible from published experi-
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mental dava, and determines the remainder by fitting the model response
to experimental resﬁlts. The author recognizes some weaknesses of the
model such as the questionable practice of extrapolating animal data to
humans and the gross lumping of hormonal effects into one control signal
called "insulin",

A model is not very useful unless it can predict in a consistent'
menner the responses to stimuli different from those used to determine
. the parameters of the model, It is evident that very little substantia=-
tion of the proposed models has been carried out in the literature by
proper predictions,

"Most of the proposed models of glucose regulation are concerned
only with the hyperglycemic response., This approach ignores the all im-
portant effects of the hyperglycemic hormones which play an essential

role in over-all glucose homeostasis,.

3.4. A New Approach to Modeling Metabolic Control Systems.

A somewhat different approach to the modeling problem has been
taken by the author in contrast to the methods surveyed in Sectioh 3.3.
Dasically, the me'bho_d is motivated by the kinelic theory of enzyme-
catalyzed chemical reactions and corroborated by in vitro and in vivo
experimental animal data. These considerations lead to a specific
mathematical functional form for the input-output relation representing
a. process or group of related processes., Reliance is then placed on
mathematical algorithms to estimate the values of the parameters of the

process representations from in vivo human experimental data.
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Since many of the processes under consideration involving different
~ state variables have similar functional forms relating input to output,
the model can be constructed from a relatively small number of function-
al forms representing subsystems., The most critical part of the pro-
dedure is the design bf suitable experiments which are feasible on
“humans to solve the inverse problem, i.e. experiments must be designed
which excite only portions of the overall system at any one time in
order to uncouple subsystems from one another and reduce the dimension-
ality of the parameter estimation problem to manageable proportions.

A comprehensive mathemoticel model of the metabolic control system
will involve thousands of coupled noalinear differential equations
representing enzyme-catalyzed chemical reactions. However, our knowledge
of the extremely complex and manifold series of reactions involved in
the proceéses of metabolism is still rudimentary. In addition, the
popular method of viewing this subject is through the so-called "steady-
state" approximations of Michaelis-Menten or Briggs—Haldane (see
Appendix A) which has become an entrenched tool, of limited utility in
systems studies, to the biological scientiét.

A great amount of work has been done in recent years on computer
. simuiation of the differential equations representing series of enzyme~

[65,66] [67]

catalyzed reactions. For example, Chance and Macnichol

simulated the equations for the reaction:

k k
St 5

E+8 & ¢ E+ P (3=k7)
K

yielding a solution of all the variables as a function of time, It is
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obvious from an inspection of the curve ¢(t), that the approximation
" upon which thc‘validity of the algebraic Michaelis-Menten equation
depends, i.e, dC/dt = 0, is valid at only one point., Since the object
of the Michaelis-Menten representation of biochemical kineties is to
allow a determination of the rate constants of the reaction from experi-
menfal measurements to characterize the behavior of a reaction such as
(3-47), it is clear that such an approach is inferior to determining
the complete time course of all the variables in the reaction by solving
the differential equations,.

[68]

Other investigators have simulated the equations for a series

of such reactions involving intermediates such as:

kl kK k

- ) 95

E+8 & ¢ £ C & E+F (3-48)
kz k“ k6

And yet more sophisticated simulations of multi-enzyme systems have been
éerformed. For example, Garfinkel[69] has similated a model of the
mammnalian muscle phosphofructokinase system which includes 22 differen-
tial equationslrepresenting 22 chemical species involved in 42 chemical
reactioﬁs. This series of reactions constitutes only part of the overall
proceés of glycolysis, but the author expresses the opinion that 1t may
be the point of control for the process since it is the only knowh
enzyme in this pathway the activity of which can be turned on and off,
Coincldent with efforts at simulating complex sequences of bio-
chemical reactions other investigators have turned to completely analy-
tical investigations of biochemical kinetics. For example, Miller and

Alberty[7O] derived the complete analytic solution for the differential
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equations governing the following reaction:

k k
l .
E+ S ;i ¢ :? E+ P _ (3-49)
ks k),

for the case k; = k;. In the general case, X, # k,, they derived a
perturbation approximation., The implications of the so-called "steady-
state" view of enzyme kinetics as opposed to an analysis based on .the
underlying differential equations have been very clearly stated by
Heineken, Tsuchiye, and Arisg7l] These authors show that the equation
of Michaells-Menten 1s the degenerate case 1n a singular perturbaﬁion
of the full kinetic equations under the assumption that the enzyme 1s
present in a relatively small concentration. Results such as these do
not seem to be widely known emong biological scientists who continue to
view the pseudo steady-state models as the sine qua non of enzyme
kinetics investigations,

For the purposes of the present investigation we seek a suitable
mathematical representation for a coupled sequence of enzyme-catalyzed
reactions. Many of the processes involved in glucose metabolism, e.g,
glycogenesis, glycoggnolysis, gluconeogenesis, ete., will be represented
as iﬁ Figure 5, For example, if the subsystem referred to represents
hepatic glycogen formation then the input represents plasma glucose
concentration [mg/lOO mi] and the output represents the rate of forma-
tion of glycogen [mg/min]. The control in this case refers to the
possible hormonal effects on certain enzymes in the glucose-glycogen

pathway. In general, a plot of the rate of product formation as a

function of substrate concentration with enzyme activity as a parameter
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for a multi-enzyme sequence of reactions is "sigmoid" in shape, i.e.
the process is rate-limited at some saturation value, In addition,

for the specific subsystem mentioned atove, gross experimental animal
data reveals the same genefal saturation characteristicg72] A suitable
analytic form for such a subsystem should be characterized by as few
pafameters as possible (to facilitate the solution of the inverse
problem -- see Chapter IV), but it should be rlexible enough to repro-
duce the main features of coupled sequences of enzyme-catalyzed reac-
tions and gross experimental data for such sequences, and it should be
conglstent with the detailed dynamic descript.ion of such o subgystem
involving all known intermediate state variables as these are eventuall&
established.

In addition a model for such a subsystem must admit the incorpora-
tion of control effects by hormones, It is now commonly accepted that
feedback control is exerted at the site of enzyme action in such a
sequence of reactions, somehow affecting the enzyme's affinity for its
substrates either in a positive (positive effector) or negative
(negative effector) manner., As Atkinson{75] has shown, if we view
enzyme activity as a’parameter in a generalized sigmoid response curve
for a regulatory enzyme then in some cases a change in the enzyme's
activity shifts the entire sigmoid in the v-8 plane. However, there
is also evidence that in addition to control effects that lead to a
different affinity;of the enzyme for its substraté the maximum rate of
Lhe reaction, its saluration value, can also be cha,nged??h’?'s] Almost
hothing is known concerning the actual molecular basis for modulation of

an enzyme's kinetic behavior. However, it is thought that feedback
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control is usually exerted on only one enzyme in a metabolic pathway.

Returning to the specific subsystem discussed above, hepatic
glycogenesis, it is belileved by'some that control is effected by the
hormone insulin although there is no general agreement on this point.
Insulin is believed to have an effect on the rate of phosphorylation
resulting in an increased rate of uptake of glucose for glycogen
formation. At this point it is conjectural exactly how such a control

(62]

effect should be modeled, however following Shames and extrapolating
from the investigations of Atkinson quoted above, we will represent such
a hormone effect as a change in the saturation value of a reaction
sequence, This kind of control action is characteristic of the endo-
crine control of carbohydrate, protein, and fat metabolism. Henceforth
we will refer to such control effects as "parametric feedback".

Since the so-called sigmoid behavior seems to be‘characteristic of
multistep bimolecular processes and bimolecular processes are general
enough a framework for chemical kinetics, because any multimolecular
reaction may be thought of as a multistep bimolecular process, an
analytic form that reproduces the double saturation of the "sigmoid"
may serve as a model for one or & coupled series of such reactions. It
has been shown that fhe "steady-~state” behavior of a linear system of
complexes has some si.milaritie‘s' to the "steady-state" behavior of a
simple bimolecular systemg76] Many different kinds of such multistep
processes exist wiﬁh many different forms of feedback but for somé such
processes such as ecquences of scrially coupled linear systems of com-
plexes the functional form of the input-output relation is identical in

(771

any part of the sequence:; For these reasons we have selected the
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following functional form to represent many of the subsystems involved
in metabolic control which are composed of seguences of enzyme-

catalyzed reactions with hormonal control entering parametrically.

Y=Yyt Q tanh[ﬁ(x-xo)] (3-50)
where Yo = (yh + yz)/z (3-51)
a=(y, -v,)/2 (3-52)
In the cases where the lower saturation value, Yys can be taken as
zero, the expression reduces to:
T
¥ =35 {1+ tanh[p(x-x,)]] (3-53)

In Equation (3-50), x represcnts substrate concentration (or input),
and y represents the rate Qf product formation (or output). An exper-
imentally obtained "sigmoid" can be represented by an expression such
as (3-53) with a choice of three parameters, Y B, and x.

it remains to suiltably incorporate parametric control effects in
an expression such as (3.53). From one point of view catalytic reac-
tions in a biological system can be regarded as biologically effective
amplifiers. Often a small amount of a substance such as a hormone can
greatly influence the production of another substance; the hormone may
act as an activator or an inhibitor of the enzymeg78] As a consequence,

and consistent with the previous remarks concerning possible control



60
action we will incorporate these effects as a change in the saturation
value of a sequence of reactions; if u represents plasma hormone

éoncentration Then (3-53) is modified to the following to account for

control effects, i.e. functionally:
fla) | L
Y =5 {1+ tanh[ﬁ(x-xo)]} (3-54)

An expression such as (3-54) for a subsystem comprised of the
series of reactions relating plasma glucose concentration to the rate of
formation of liver glycogen for example, is a grossly lumped reprgsenta-
tion, but one which is unavoidable at this point in time to elucidate the
system characteristics of the hormonal control of carbohydrate, fat,
énd protein metabolism, Nevertheless, the model is believed to be well
enough motivated that detailed investigations of the intermediate
reactions of such subsystems will substantiate the functional form
chosen for the overall input-output relation,

Detailed modeling of all the intermediate steps is hindered by
problems of observability since all of these processes are taking place
within the living cell., However, some work has been done along these

(79, 80] [80]

lines’ For eiample, London has attempted a detalled kinetic
simulation of the major intermediate steps in the plasma glucose-
hepatic glycogen subsystem, His model, which includes a constant rate
of gluconeogenesis? contains 32 parameters for this subsystem, and is
based on enzymatic reaction mechanisms and kinetic data in vitro

pertaining to 6 reactions which convert plasma glucose to liver

glycogen (see Figure 6). The entire model is constructed under the
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assuﬁption of "steady-state” kinetics and interpreted in terms of
individual reaction mechanisms using the Briggs-Haldane kinetic theory.
The behavior of London's model confirms the fact that a specific glucose
concentration deftermines the net rate of glycogen synthesis or glucose
production, ﬁhe steédy—state concentration of the three intermediates,
and the rates of the six enzymatic reactions. The rate of glycogen
formation 1s extremely sensitive to the glucokinase-glucose-6-phosphatase

[62] have modeled the control effect of

enzyme step. Some authors
insulin in this overall reaction as occurring at this point, For our
purposee in this investigation, the precise point of action of such &
control will not be delineated since the enzyme upon which the control
acts 1s not a state variable in evidence at this level of modeling of
the systen.

The function form, (3-53) will also be used to model the complex
processes of hormone generation and release (see Section 3.5). Other

processes such as distribution dynamics, accumulation, and degradation

are represented analytically in a straightforward manner.

2.5. Modeling the Endocrine Controller,

A1l of the hormones included in the subsequent models of this
investigation represent the physiological sequence, generation and
secretion, distribution, accumulation, and degradation as depicted in
Figure 7, for example for one~compartment distribution dynamics. The

symbols in this figure. are defined as follows.

e & [mass/unit volume], plasma glucose concentration error.
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H(t)

e —a| fle)

Figure 7. Single Space Hormone Model,

Lo~

; - - o= g
€

Figure 8. Typical Saturating Nonlinearity.
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He

1 = [mass/unit time], rate of hormone secretion.

H(t) 3'[mass/unit time], rate of exogenous hormone intravenous
input,
r, £ [mass/unit time], rate of hormone input to distribution
. space.
rg & (mass/unit time/unit volume], rate of hormone input to unit
distribution space.
r), A [mass/unit time/unit volume], rate of disappearance of
hormone from unit distribution space.
u Q [mass/unit volume], plasma hormone concentration,
f(e} = [mass hormone/unit time: mass glucose/unit volumel, hormone

generation and release function.

8 [1/unit volume], distribution space.

e

=
1t

& [1/unit time], disappearance coefficient,
In tefms‘of differential equations this basic model is written:
u.= - Ku + Ki[f(e) + H(t)J (3-55)_

In the cases where a specific hormone secretion mechanism is believed to

be rate aependent, (3-55) is modified to the following:



6l
= - Ku+ K[ (e) + £,(8) + H(t)] (3-56)

In this model, K, represents the extracellular fluid distribution
space (plasma and interstitial fluid) and since simple first-order dis-
appearance kinetics are assumed, Ké represents the combined disappear-
ance rate coefficient.

Physiologically, hormone secretion rates are expected to increase
monotonically from some nominal value until saturation occurs under the
appropriate stimulus. This action is represented by the symmetric non-
linearity:

r=ry+ tanh[B(e-eo)] (3-57)
i.e. f(e) = r, where r is hormone secretion rate [mass/unit time],

e is the stimulus [mg glucose/100 m¢ plasma], and

=
]

o (rh + r&)/z (3-58)
a = (z, - r£)/2 (3-59)

These symbols are deplcted in Figure 8 for a typical nonlinearlty
representing insulin secretion as a function of plasma glucose error,

The parameter B is defined in terms of the slope at (eo,ro),

fle) = r

ot @ tanh[B(e-eo)] _ (3-60)
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%g =aB sechz[a(efeo)] (3-61)

arf

a-e— = ﬁ (3-62)
e=e

The typical situation encountered, as depicted in the diagram, is one

for which T, = 0. Then (3-60) reduces to,

T

h- :
f(e) = 7= {1 + tann[p(e-ey)1} (3-63)
Three parameter values completely specify this nonlinearity: Ty By
and e,. However, the value of f(e) when e is zero represents the

nominal secretion rate of the hormone under equilibrium conditioms, i.e.

when the plasma glucose concentration is nominal.

A
£(0) Br (3-61)
If we specify Ty and e, and require r to pass through T om when
e =0 then B 1s dictated, i.e.
Toom = To = @ tanh[p eO] (3-65)
r.-r
5 = %_ tanh-l 0 - nom
0
r -7
1 h nom e
B = 2e in T (j—bO)
0 nom
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The parameters = are the most convenient char-

r
h’ non’ 0

" acterization of fhe'secretion nonlinearity from the viewpoint of what

and e

the physiologist can measure. However, these parameters will be ob-
tained, not by direct physiologic measurement, which in most casges is
impossible in vivo,'bﬁt by using the systems techniques of Chapter IV.
Nevértheless, it is helpfui to try to get reasonable approximations for
these'parameters from direct physiological measurements, In terms of
the estimat;on of parameters problem, such considerations can lead to

" reasonably valid "firsf guesses”, It isn't parﬁicularly difficult to
conceive of an experiment which Will‘yield the parameter =r , the

h

maximal secretion rate, But ry and Thom 3TC most easily obtained

from the u which they dictate, For example, in equilibrium conditions
a nominal plasma hormone concentration u, can be measured., Assuming
known values for K, and KZ’ then Toom SR be obtained as follows.

1
From (3-55) and (3-57),

u= - Ku+ Kl{ro + O tanh[a(e-eo)] + H(t)} (3-67)
Since no exogenous input exists in this case, and r = T om by
definition:

us=-Ku+ K r - (3-68)

Teking the Leplace transform of (3-68), setting u(0) = 0, and letting

the measured value of u be u :
nom
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' Ki I‘nom
u(s) = 5= —3 . (3-69)
then
X r
uncm'= lim s = lK ngm
50 M
K
1 ,
nom ~ K. Tnom (3-70)

Hence T om can be obtained from measurements on u and T can be

h
obtained in a similar manner under an appropriate stimulus e, The

parameler e is more difficult to motlvate physlologlcally, but 1t

0
should be possible to approximate it fairly closely from data on the
resulting u from steady stimuli e, at various levels.

All of the modeling discuséed in Sectlon 3,7 uses the above type of
secretion nonlinearity as a function of glucose error or the derivative
of glucose error and one or two-compartment distribution kinetics, In
Chapter IV, the inverse problem for two-compartment hormone distributian
kinetics is discussed hence the appropriate equations will be introduced
here. The two compartments in this case correspond to the plasma space
and the interstitial fluid space; simple diffusion kinetics connect the

two spaces.

Iet: U,
P

plasma hormone concentration

>

u interstitial fluid hormone concentration

i

<3
1

a plasma volume
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<
1

8 interstitial fluid volume

=
ot

N
]

exogenous hormone rate input

H
—
®
~
i

A .
endogenous hormone secretion rate

g

‘plasma space disappearance coefficient

e

diffusion coefficient

b interstitial fluld space disappearahce coefficient

Q
]

Then the model analogous to that of (3-55) is:

V.ou = ad(ui - up) - O U+ f(e) + H(t)

(3-71)

<
=
Il
Q
=

- ug) - oy g . )

Whether this is a more appropriate model to use at the present time,
instead of (3-55), is debatable., The variable uy of course is not
observable, i.e. 1t can not be measured directly, whereas wu_ can be
measﬁred_directly. The inverse problem for (3~71), i.e. identifying

the requisite parameters from experimentai data on intact systems, is
presented in Chapter IV. It may be possible sometime in the near future

to measure uy directly by means of a technigue known as lympatic

cannulatlon,
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3.6. Modeling the Metabolic Plant.

The glucosc ‘control system is viewed as a classical regulator with
the desired circulating level of glucose determined by the central
nervous system. The liver, the primary short-term reservoir of glucose,
is sensitive to 'I:he. giucose actuating error which is by definition the
difference between the desired level of plasma glucose and the actual
circulating level, For ease of simulation, and without loss of gener-
ality, all dynamics can be represented in terms of deviations from the
ncminal state.

The models discussed in Section 3,7 deal with glucose metabolism
alone; the functions associated with protein and lipid metabolism are
relegated to future efforts., However, the glucose controllsystem has
been modeled with a view to Ilncorporating these [unctions and the loop
coupling (primarily the processes of gluconeogenesis) with a minimum of
modification to the glucose loop model. Accordingly, the present
models incorporate the following processes associated with glucose
metabolism: hepatic glycogenesis, hepatic glycogenolysis, renal excre-
tion of glucose, hormone independent tissue utilization of glucose,
hormone dependent adipose tissue utilization of glucose, hormone depend-
ent muscle tissue utilization of glucose, storage mechanisms, and
circulation dynamics.,

These processes are altered dynamically by hormonal controls through
parametric feedback, typically altering the saturation value of a series
of rate limiting reactions, in such a way that the concentration of
glucose in plasma is regulated to some nominal level. These processes

are represented in the way indicated by (3-54), The explicit functional
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depehdence between process dynamics and a hormonal control signal is
* discussed in Section (3.7). |

Reasoneble numerical values for the model parameters were first
obtained from published results in the biologic, physiologic and
medical literature. However, the final values were obtained by simu-
)lafing certain experiments on normal male subjects, The models repre-
sent a 70 kg. normal moale adult under relatively benign laboratory
conditions, Since all experimental inputs'to,the subject were admin-
istered intravenously with the subject in the post-absorptive state,
no gastrointestinal ﬁract dynamics are included in the models. Confi-
dence in the models was obtained by simulating the response to a glucose
infusion, insulin infusion, insulin followed by periodic glucose.inputs,
ahd insulin infusion followed by a glucagon input, all with the same set
of model pafameter values. The observed data consist of a continuous
record of piasma‘glucose concentration and spaced samples of certain
hormoﬁes over a time period of approximately 100 minutes, the usual
~duration of these tests. The experimental technique employed and the
method by which the instrumentation yields o continuous record of plasma.

glucose are briefly described in Appendix D.

3.7. Models of the Glucose Control System.

" We will preseﬁt three models of the glucose control system in this
Section. The firs# model is preliminary in the sénse that modeling
techniques were still being investigated during its derivation end the
controller incorporates only two controlling hormones strictly in a pro-

portional conlrol mode, The second model 1s more rerined, contalning
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all of the mosf important ﬁhysiological functions involved in glucose
" regulation and the dominent short-term controlling hormones with more
complicated distribution dynamics, The third model clears up some of

the problems associated with the second model,

3.7.1. Two Hormone Model,

In terms of differential equations this model can be expressed:

c = - Kl9c +'K18[F(t) + fLo(c,xz) - fLU<c’xl’y3) - @R(C) - fU(c,xl)-GU]
(3-72)
X, = = Kgx, K [1(t) + £(e)] (3-73)
%, = = K % + Klo[Gm + £,(c)] | (3-74)
where:
¢ = plasma glucose concentration, [mg/100 mi]

»
il

1 = Plasma insulin concentration, [uU/me ]

x, = plasma glucagon concentration, [mug/mi ]
&3 = liver glycogen content, [g]
F(t) = intravenous glucose Input rate, - [mg[min}
GU = central nervous system mean glucose utilization rate,
[mg/min]
I(t) = intravepous insuiin input rate, [U/min]
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G(t) = intravenous glucagon input rate, [pg/min]
fLO(c,XZ) = liver glucose output rate, [mg/min]
fLU(c,xl,y3) = liver glucose uptake rate, [mg/min]

f,(c) = renal excretion rate, [mg/min]

peripheral tissue glucose utilization rate dependent

£(exp)

on insulin, [mg/min]

Klg = hormone independent tissue utilization rate

coefficient, [1/min]

This model is depicted in a control system format in Figure 9. The
considerations that led to the initially chosen parameter values will °
be presented. The final values chosen, however, resulted from the
simulation of several systems experiments.

It is commonly accepted that the rate of hepatic glucose uptake
for glycogen formation is a direct function of the plasma glucose con-
centrationgu7] A mean disappearance rate of glucose in normal subjects

has been measured to-be 3.71 x 0.40 mg‘%;/m:’m.[81:l

[82]

Assuming a 1k liter extracellular space and a 4 mg%/min disappear-

ance rate this implies a total of 560 mg/min. If it 1s assumed that

[heé] then

of this total 10% is the amount being taken up by liver
56 mg/min are being stored in hepatic tissues with the remainder going
to peripheral utilization and fat storage. From Figure 9 and the pre-

vious comments we have:
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£ (e, vs) = N (3-75)

where ¥y, = Ki3(y3) e

e=R~-c¢
) =K v oy tamnlpy (s - xp)] (3-76)
€, - K * K1
% - EEE%%jEEE
Kyp(vg) =5 (1 - tanblpy (v - )1} (3-77)

A reasonable value for K, is then about €0 mg/min., The function
Kl(xl), represents the dependence of the saturation value of the glu~
cose uptake rate for storage as glycogen on the plasma concentration of

insulin. At this time it is difficult to justify a value for KlH

directly from the physiological data., However, some studies have shown

[15]

that insulin increases liver uptake rate by about three,

implying a

value of 180 mg/min for K+ Other considerations indicate that this
[6k]

is too low a value. For example, Wolaver indirectly derived a

glucose uptake function from the data of Soskin and Levine[83] and

(841 4

Wierzuchowski extrapolated" to humans which yields uptake rates as
high as 3000 mg/min when C is approximately 400 mg%h. From the limited
number of glucose tolerance tests which we have performed in this inves-

tigation such uptéke rates for liver appear to be much too high.
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The function K13(y3) acts as a switch, attenuating the uptake of
glucose for storage as glycogen when the hepatic glycogen stores are
replenished, For a 70 kg man with a 1.8 kg[851 liver the maximum
glycogen storage achievable is believed to be on the order of 125 g.
In normal metabolic control it is thought that this store is never fully
depleted under normal conditions, but is lowered only to about 75 g.
before protein and lipids are substantially mobilized to provide fhe
precurscrs for gluconeogenesis€u9’52’86’87] Under these'conditions we
would expect the hepatic glycogen stores under postabsorptive conditions
to be on the order of 75 g. Under the assumption that such storea can
be fully replenished over a three hour period after an oral glucose
input, a maximum uptake rate by liver of 278 mg/min would be indicated.
Accordingly, for the purposes of simulation, we have taken a guessed

value for K,.. of 300 mg/min,

1H
The only remaining function in the glycogen storage pathway is

Ks/S, representing the accumulation process, i.e.

t
y3(t) =,[%5[V1(T) - ¥y, (T)] ar (3-78)
A ,
0

Assuming that one gram of glucose results in the storage of one gram of
glycogen, the dimensions of the variables in (3-78) require that’

K5 = ,001. In Equation (3-76), K, varies from X,  to X, as the

hormene insulin x,, varies from 10 pU/mt to 510 uU/mé. These

values will be justified in the diseussion of the insulin release and

distribution pathway.

The body at rest utilizes approximately 200 mg glucose/kg/hrgssj
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Assuming a 70 kg. man and that all of this glucose is supplied by the
liver, we obtain a'faéting state release rate of about 230 mg/min, In
tﬁe-fasting.state and under the influence of glucagon, rat liver can

6]

achieve a mean glucose release rate of 0.7 mg/min/g’.:2 Assuming that
human liver can achieﬁe substantially the same output, and assuming a
livér mass of 1.8 kg., we obtain about 1250 mg/min as the maximum liver
glucose release rate under the influence of a stimulating hormone,

Accordingly, in the following equations we take the preliminary parameter

- values K, = 1250 and K, =230 mg/min.

K, (x,)

1
£rolex,) = =2 {1+ tanh[py (e-e)]}  (3-79)
| | ,
KZ(XZ) =K, '+ aKZ tanh[BKZ(xz-xo)] - (3-80)
K...+ K
2H T 2L
K20 =
K. -K
°H ~ 2L
O = 2

In Equation (3-80), K, varies from Ky to K as the hormone

2
glucagoh X5, varies from 1 mug/m¢ to 3 mug/mf. These values will be
Justiried in the discussion of the glucagon release and.distributiad
pathway.

‘Normally the quantity of glucose in urine is negligible, but if

the blood sugar concentration reaches a level of approximately 180 mg%

(the renal threshold) the tubular reabsorption capacity of the kidney is



I

exceeded and glucose. is excreted via urine. As a first-order approxima-
tion this process is represented as an excretion rate proporticnal to
the absolute blood glucose concentration once the threshold has been

exceeded, i.e.:

ﬁR(c) = Klz(e) e (3-81)
where: e=K-~-c¢
2
Kyp(e) = Kppg + Oqp tanhlByo(e-eq)] (3-82)
X C Bpow * Ky
120 = z
o - aem” MaL
K12 = 2

Actually we have made KlZL = 0 and a preliminary value for KiZH =
- .375 which results in an average renal excretion rate of LO mg/min
once threshold is exceeded in a 30 g intravenous glucose inpuf tast,
The normal glucose uptake rate by the brain has been determined by
several independent studies to lie between 5.5 and 6.2 mg/min/lOO gE88]
Since the normal weight of the brain is 1400 g., a total glucose ﬁptake
rate Independent of plasma glucose concentration of about 80 mg/min is
indicated. This 1s Incorporated in the model as a constant sink fér
plasma glucose, i.e. GU = 80.
The data of Soskin and Levine [83] for total periﬁheral glucose
utilization "extrapolated" to that of a 70 kg. man results in'a doubly

saturating nonlinearity varying from 260 mg/min at c¢ = 90 mgh to
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610 mg/min at ¢ = 470 mg%h. Since insulin has been demonstrated to
[48, 89, 90]

“increase glucose upfake up to three times this variation may
be accounted‘for completely by this effect. From a material balance
viewpoint we must recall that the fasting level liver release rate of
glucose was 230 mg/ﬁin of which 80 mg/min was directed to CNS oxidation,
Henée to be.consistent the insulin dependent peripheral utilization rate

must vary from a minimal level of 150 mg/min at nominal insulin levels

or xq = 10 pU/mL. Hence in the equation for peripheral utilization:

2
fU(clfxl) = Vg0 * %g tanh[By6(xl-xo)] (3-83)
N + ¥y
where ( y60 = -ég;g-‘éé
Yer =~ YeL,
ay6 = 2

We take Vg = 610 mg/min and yo = 150 mg/min, The effects of exer-
cise on peripheral utilization[gl] have not been incorporated due to
the extreme difficulty of quantifying such effects at the present time,

The remaining plant parameters, KlS and Kl represent the

9
glucbse distribution space and hormone independent periﬁheral utiliza=-
tion, respectively., Since it is impossible to determine the distribu~-
tion of peripheral glucose utilization between the variables Vg and

Vg from current physiological data, we can only guess at KJ_9 and

rely on simulation of experiments for more carefully substantiated values,

If we choose Ki9 = .01, for example, then at c = 150 mg%, hormone

independent peripheral utilization is 70 mg/min, if Coom = 100 mg% and
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the glucose space is 1k, Assuming a distribution volume of 1k4

© dmplies KlB = .00715. If the set point R = 100 mg% then the simule-
tion represents absolute quantities, however a "deviations from
nominal” simulation results if we set R = 0, ‘GU = 0, and change the
appropriate nornlinearities above to have minimum values of zero under
equilibrium conditions. The function F(t) represents an intravenous
infusion of glucose. For all of the experiments simulated this input

took the form of a finite duration step, i.e.

A, , OstsT

F(L) = (3-84)

o, t>m '
For an infusion of 30 g. over a period of 5 minutes, for example,
L = 6000 an Ty = 5.

Equation (3-73) represents the secretion, distribution, and

degradation of insulin:

™
i

1 = - Kgxq + K#[I(t) + fl(c)]

2 2
where : I(t) = (3-85)
o, een ,
¥y | ]
£(e) =22 (1 - tanh[gys(e-eg)]} (3-86)
Y50 =~ 3
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Here I(t) reﬁresents an intravenous input of insulin and the function
fl(c) represents the endogenous release of insulin as a function of
plasma glucose concentration@gz] We expect plasma insulin concentra-
tion x,, to vary from a fasting concentration of about 10 uU/m&[lTJ
[18]

to a maximum level of about 510 pU/mi under maximal stimulation of
the pancreas. The values of y5H and y5L required for such results
can be determined once K7 and KB have been established., The half-
life of endogenously secreted insulin has been determined to lie in the
range 7-15‘minE18] and 7-1/2-11 minE93], also a disappearance rate of
2%/min has been reportedpu] Sinecc a half-life of 7 minutes corresponds
to a time constent of sbout 10 minutes (7/tn(2)), and 7 = 1/Ky, then
for such a value Kg = .0L. If a distribution volume of 1k 4, is
‘assumed then the dimensions of the appropriate varisbles in (3-73)
require that KT = T1.5, With Kﬁ and Ké thus determined ySH and
Y5y &re found by using (3-69) and (3-70).

Equation (3-7l4) represents the secretion, distribution and degrada-

tion of glucagon:

X, = = K%, + KiO[G(t) + fz(c)]
: A3 s O.s t < 73
where: G(t) = (3-87)
0 ,;, > T3
f(‘)-ym{l tanh[B_ ( )1 (3-88)
Sle) = —= + tan By7 e-eo)} 3=
_Im T

Y.
T a
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e=R-c

The function of glucagon is to stimulate hepatic production of
glucose in order to maintain the plasma concentration of glucoseE26’50]
If we assume a distribution volume of 144, +then the dimensions of the
variables in (3-74) require that Kg=7.15. The disappearance rate
of'circulating glucagon in rat has been reported as 80% in 5 ming95]
This implies that Kll = .,321 hence the time constan# for this hormone,
if first-order kinetics are applicable,is 3.l12 minutes., With K10 and
K thus determined y7H and y7L are found by using (3-69) and
(3-70).

The remaining parameters in the argument of the hyperbolic tangent

nonlinearity, i.e. B and e were chosen in each specific case to

0’
yield a smooth variation over the dynamic range of thé independent
variable,

Some of the initial simulation results obtained using this model
were reported by the author in August l967§96] For these simulations
initial conditions were chosen to represent a normal human plasma<
glucose regulator in steady-state, i.e., in metabolic and endocrine
equilibrium, hence parameter dependencies were represented in terms of
deviétions from the nominal state.

Conrildence was obtained in the model, and the paraméter values
justified from the literature above were in some cases modified, to
simulate the respohse of a subject to an intravenous glucose input
F(t), and an intravenous insulin inpuf I(t). At this stage of the

investigation distribution spaces for glucose, insulin, and glucagon,

K18’ Kﬁ, and Kio respectively were viewed as adjustable parameters
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in accordance ﬁith the accepted view among biological scientists that
these spaces are different depending upon the substance in question
and in some cases are capable of dynamic variation, such as the glu-
cose space for example, which by many investigators is believed to
increase under the influence of insulin., In retrospect the author
believes that this is the wrong approach to be taken for modeling
purposes. Whether we are dealing wilth a one compartment distribution
space for glucose (plasma and interstitial fluld) or a two compartment
model connected by a transport mechanism these spaces should be viewed
as relatively fixed physical entities. However, biological scientists
sometimes view this extracellular space as being enlarged to include
some of the intracellular space under the demonstrated effect of insulin
to allow entry of glucose inside the cells, In the opinion of the
author this practice of viewing the demonstrated disappearance of glu-
cose from the.extracellular fluid space as due to the enlargement of
the spéce is an asrtificial and not very informative way to look at dis-
appearance dynamics, Rather, the distribution of glucose in circulation
should be viewed as a strictly mechanical affair and a lowering éf clr-
culating glucose due to entry into the intracellular compartwment should
be viewed as part of'the dynamics of peripheral utilization of glucose.
Accordingly this view takes precedence in the discussion of the refined
model to be presented later.

After some confidence was obtalined in the model of Figure 9 an
attempt Wé.s made to simulate the results of a rather complicaled testl
that had been performed on a normal adult subject some months previously,

The approach followed in this experiment has been described elsewhere£97]
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but a brief presentation of the experimental technique employed_with
" the human subjectvan‘d the equipment which yields continuocus blood
giucose'concentratio@ measurements are presented in Appendix D. The
test was performed for the specific purpose of determining how much
glucose would be re@uired to be exogenously administered to maintain
the‘subject's plasma'glucose concentration at or near nominal after a
potent hypoglycemic agent had been administered. Ten units of insulin
were administered at the start, plasma glucose was continuously moni-
tored, and depending upon the monitored plasma glucose concentration
Vdrying guantitles of glucose were injected every two ﬁinutes in an
attempt to manually maintain the subject's plasma glucose at or near
nominal for a period of 100 minutes. The monitor has an inherent time
delay of approximately eight minutes. The subject's glucose'respopse
is shown in Figure 10 and the actual administered glucose input is
fshownrin Figure 11. The effect of the equipment time delay which limits
the performance of the human in the control loop in such a control |
scheme is clearly evident in Figure 10 since relatively poor control
was achigved. The initial rise in the plasma glucose resﬁonse is be-.
lieved due to trace gmounts of glucagon in the initial intravenous
injeétion of.insulin.

It is a reasonable expectation thaﬁ the performance obtained in
this experiment can be improved through the application of feedback:
controi techniques;and automating the entire procéduré to remove the
human experimenter from the controller. The most important new
facilityvrequired to be added to the control loop is a predictor

to alleviate the problem of basing control
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on delayed ovservations. These possibilities will be discussed fur-
ther in Chapter IV.

This experiment was simulated with the model of Figure 9. In this
case the insulin input I(t), was simulated as an impulse function of
- magnitude 10 units at time zero, and the glucose input F(t), was
simulated as a variable step function exactly as depicted in Figure 11.
Before this particular simulation was undertaken the parameters of the
nodel were chosen to reproduce experimental results due to a glucose
input alone and an insulin input alone., These parameters were then
viewed as more or less constrained and a simulation of the data in
Figure 10 was sought such that the model's simulation of a glucose or
insulin inﬁuﬁ was not deteriorated from that obtained previously. The
simulation results are shown in Figure 12, Obher choices of parameters
vielded a closer match to the actual response, but resulted in less than
satisfactory glucose alone or insulin alone responses., The respénse
shown was obtained with circulation volumes for glucose, insulin, and
glucagon of 26, 7, and 14 liters respectively (kl8’ k7, and klO)’
degradation factors of .07, .03, and .222 respectively (k19, kB’
and kll)_corresponding to time constants of 14,43, 33.33, and k4.5
minutes respectively. Physiologic considerations dictate circulation
volumes within a factor of about two and the same can be said of degrad-

[98, 991

ation factors based on tracer experiments The maximun freedonm
in choice of parameters was found to lie in the area of greatest
physiologic variation, viz. parameter values for Uhe nonlinearilies

fLU(c,xl,y3) the rate of uptake of glucose by liver as a function of

glucose error and insulin concentration, and fU(c,xl) the rate of
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glucose utilization by tissue under the influence of insulin.
The rather large difference between data and simulation in the

period O < t < 30 minutes was later corrected by incorporating a
first order lag with a time constant of 1.5 minutes to account for
circulation dynamics;

| Although this crude model did not adequately reproduce the finer
detalils of the actual response this limited success supports the general
approach to the problem and indicates that the inclusion of the remain-
ing hormonal controls as well as more complex control laws should yield
better results. It should be mentioned at this point for the benefit
of those unfamiliar with biological systems problems, who might tend
to be rather critical of the results depicted in Figure 12, that there
are many factors mitigating against accurate results in such biologic:.al
experiments, There are many important environmental and experimental
factors which tend to corrupt the cbserved data in a manner extremely
difficult to ascertain., For example, we estimate ex post facto that
the measuring instrument in this case had an error standard deviation
on the order of 5% at a glucose concentration of 100 mg%, In addition,
we have other evidence that this error varies in a nonlinear manner
as a function of glucose concentration., Such effects, have as yet
not been quantitatively determined. Another error was certain to be
introduced from the possible nonhomogeneous mixing of the glucose sol-
ution administered intravenously. In addition, the continuous glucose
nonitor, aside from the pure time lag of about eight minutes, also
has an inhefent first-order lag or time constant of about one to one

and a half minutes, Unfortunately,
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these parameters had not been determined at the time of the
expériment hence the available data could not be corrected
for these effects. Finally, from our knowledge of the recon-
structed experimental scene, Figure 11 represents a math-
ematically idealized view of what may have happened during
the course of the experiment. Biological systems studies
present many unique challenges in experimental technique
wnich must ve resolved before any meaningful results can be
expected to emerge from an analysis of the resulting data.

As an illustration of how control systems techniques
can improve experimental methods, the above experiment, in
which the human experimenter inserts himself in the control
loop to administer glucose after cbserving the delayed
subject's response to an insulin input, was simulated with
The model described above and a simple control law of the
following type was used to determine the control function,

F(t).

t
F(t) = K c(t) + X, ‘—dﬁ%@ + KS/c(t) at (3-89)
. C 0 :

Ko attempt was made to optimize some criterion function of
glucose deviation from nominal, but the coefficients in

(3-89) were selected by .
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simulation to obtain better control than that which was achieved
menually. With K, = - 200, K, = - 50, and K, = - 10, the simlated
response shown in Figure 11 by the line connecting black dots was ob-
tained. The resulting F(t) yielding this system response is illus-
trated in Figure 1k énd the simulated insulin response is illustrated
inAFigure 15. If the model used in this simulation is representative of
the dynamics of the real system - Subject Z ~ then we would expecf the
experiment - lOu regular insulin administered at t = 0 =~ repeated
with the open loop glucose input policy illustrated in Figure 14 will
yield better results than those obtained when the glucose input pulicy
was manually determined, i.e, the experiment should now yield a response
more similar to the black dots in Figure 13, How this enﬁire experiment

could be done autamatically with a closed-loop control system incorpora-

ting a predictor will be discussed in Chapter IV.

3.7.2. Preliminary Four Hormone Model,

[116]

This work has been reﬁorted elsewhere hence only a brief
summary of the simulation results will be included here. The detailed
Justification of each process representation will be deferred to
Section 3.7.3 in the presentation of the more refined four-hormone
model, The first model was changed to incorporate muscle and ad;pose
tissue glucose utilization affected by insulin and growth hormone.
Glycogenolysis is made a function of both glucagon and epinephrine; A
first-order lag is included for the peripheral effects of insulin to
approximate distribution through the interstitial fluid space. Circula-

tion dynamics for glucose are also incorporated as well as insulin and

epinephrine secretion as a function of glucose error rate. The
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capability of epinephrine to inhibit insulin secretion is included.
© Pure time lags are placed after each input funection to acecount for the
different dynamic stimulus seen by the system depending upon whether a
substance 1s exogenously or endogenously supplied.

The model for the metabolic plant is shown in Figure 16 depicting
thé control of liver function, renal function, and peripheral utiliza-
tion of glucose by four hormonal controls through parametric feedback
in a one-compartment configuration, The model used for the four compon-
ent hormonal controller is shown in Figure 17 and includes both rate
and proportional control modes as well as cross coupling between two
of the controls.

The model can also be represented as follows:

Tigéy * &y = Gl8[F(t-Tl) + fLo(cl’hZ’h3) - fLU(cl’Xh’hl) - ﬁR(cl) -

Ggey - £ (xq7) = L (xy7,0,)] (3-90)
1'11 = - Ky + KB{Kl(h3)[fl(cl) + fz(él)] + I(t-1,)} . (3-91)
hy = - K h + Kpo[f5(eq) + G(t-13)] ‘ (3-92)
1&3 = - Kyhy + Kzo[fu(él) + fs(él) + E(t-1),)] (3-93)
By = - Kby + K lfg(e)) + 8 (t=15)] (3-94)

where;



92

*TOPON JUETd OTTOQBISH 2500NTH AIeUTWIToId ‘9T omMITd

2 T e
Iy S YN D!

(lwoo1/6w)

m_xg¢£ vo_mvu m_x
Clx n
1+s72 1,
A & 5 Iy
Hyy Clx
2ly {''x)
6 e
Oly 9
13)S ¢y =
ox ('a)=|9
mwuamzvnu&hi s

(uw /Bw) 4

Ly
9@
8x

@.AN:vnwumm

el

) @

[ix(wy'gfexf=— (%) %9

To 6



e|"—'—'D W| (e|) |

g—={Wole,)

el——-l» Wzo(el)

& ——s{W2|(€})

G

93
,;7 I{U/min)

e“TzS

W W
W4:: 5 K5 6

K,(h3) L = hy (pU/mi)
-
W
7Kg
;G (p.g/min)
e‘T3S
Y2
oﬁ)—o—ls- & hp (mug /ml)
:VI?:
K” -3
'gE (g /min)
e'T4$
W20
Woo——Wa3
|
Wp Kzo@@o < o> h3(mpg/ml)
W
24 Kz
$S(pg/mm)

el————a—wsohp_

L
s

Kz

Figure 17. Preliminary Four Hormone Controller Model,



oL

t
| - (-7)
Cxyy (8) = 2L f S n, (1) ar (3-95)

(@]

"\'7 5

The parameters of this model were manuallyladjusted to simulate
the results of two experiments. In the first, 15 g. of glucose was
infused over three minutes in a normal male subject, and in the second,
5u of regular imsulin was injected at t = 0 followed by 1 mg, of
glucagon at t = 58 minutes; the results of the simulations are shown
in Figures.lS and 19 fespectively.

Using the same parameter values resulting from the above in the
model, a 30 g. infuéion of glucose over three minutes'was simula ted.
The comparison of the model predicted behavior with the subject's
response to this new input is depicted in Figure 20.

Figures 18 and 20 illustrate one of the problems associated with
obtaining data in intact biological systems, the solid lines in both

cases showing discontinued recordings due to experimental difficulties.

3.7.3. Refined Fouf Hormone.Model.

3.7.3.1. Plant,.

T“he glucose melabollc plant model is shown 1n block dlagram form
in Figure 21. The following discussion can be followed most easily by.
referring to this diagram.

We take the sizc of the glucosc space Vg’ ‘to be 25% of bedy
weight, or for a 70 kg. man to be 17.54 Whicﬁ breaks down as follows:
interstitial fluid 10.52, plasma volure 3.54, red blood cells, liver,
brain, and intestinal mucosa 3.54. Since the glucose molecule is so

readily diffusible throughout these spaces we are considering the whole
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as dne compartment.  However, in a dynamic sense, any changes to the
rate of input or exit of glucose from this space is accompanied by a
time lag before the change is homogeneously distributed throughout the
medium, Accordingly a first-order lag is inserted to account for
distribution dynamics. The time constant T is thought to be a
fraction of a minute and is primarily accounted for by the time re-
guired for a few complete circults of the systemlc circulation,

The desired plasma concentration of glucose is believed to be
determined by the central nervous system and is representéd by a regu-
lator set point, R. There is evidence that the brain reacts to a
glucose antagonist by activating mechanisms to increase the blood glu-
cose levelgllY] In the post-absorptive state, for example, plasma
glucose may fall to 75 me%, but under normal conditions not much lower
than this. For our purposes we initially take R = 100 mgh. The
comparator action indicated is believed to be performed by the
hypothalamus at the base of the braingus]

Since the brain appears to utilize glucose at a steady rate
independent of plasma glucose cozacentrafcion,[']'1'8:l a constant sink B on
plasma glucése is iIncluded. Several studies have determined that‘the
normal glucose uptaké rate by brain lies in the range 5.5 to 6.2
mg/min/lOOgESB] For a 70 kg. man’'a 1400 g. brain is expected, indlcating
a reasonable value of 80 mg/min for B.

Hepatic intragellular glucose and extracellular fluid glucose seem
to be connected by simple diffusion kinetics since when glucose - Clu

is injected intravenously a rapid equilibrium results which seems to be

independent of hepatic uptake or release of unlabled glucosegll9] At
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any point in time hepatic glucose output equals the rate of breakdown
- of glycogen minus the rate of formation of glycogen from glucgse or
other precursors. Cahill's data on rat liver in the above gquoted
reference indicates that when extracellular glucose c_ = 80 mgh,
liver is releasing glucose into the circulation the rate of which
decreases to zero as c, inereases to about 145 mg%. At this point
the gradient reverses, with liver performing a net uptake of glucose
at a rate which reaches maximum when C, = 100 mg%h. From these data

and those of Madison[lzo] on dogs, Shamest62]

computes figures for mean
hepatic glucose output when e, = 80 mg% and uptake when e, = Loo n@ﬁ@
which when transformed.to that of 70 kg man are 163 mg/min and‘709
’mg/min, respectively, These figures correspond then to the fasting
release rate of gluéose when hormonal controls are at their nominal
levels and the maximum uptake rate of glucose in the 5yperglycemic
state presumsbly stimulated by insulin,

Other investigators seem to have cbtained similar results., For

[121]

example, Seed, et.al.[57] using the data of Shreeve use a hepatic

glucose release rate of 100 mg/min at Cy = 110 mg%. They also assume

that liver becomes a net sink for glucose when c, = 143 mg% based on

[122]

Myers data that when blood glucose is elevated 30 mg% over fasting

level there is no difference between the glucose concentration in ar-
verial and hepatic venous blood. However, in view of the fact that in
the resting postabsorptive state the plasma glucose concentration re-

mains constant with no excretion of glucose into the urine, under these

conditions glucose production and utilization are equal€123] But . the

(831

data of Soskin and Levine in eviscerated normal dogs indicates a
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peripheral utilization rate of about 225 mg/kg/hr at c, = 100 g%

increasing in sigmoid fashion to a maximum of about 525 mg/ke/hr when
_c, = 500 mgh. Comverting this data to that of a 70 kg man yields
Tasting and maximum peripheral utilization rates of 260 mg/min and 610
mg/min respectively. Therefore, at nominal plasma glucose concentra-
tion we should expect the net hepatic release of glucose to be in the
vicinity of 260 mg/min, of which we are allocating 80 mg/min to be
utilized by brain and the remainder, 180 mg/min to be utilized by other
tissues all of which we lump in the "peripheral utilization sink".

We repreéent the.hepatic uptake of glucose for. conversion to gly-

cogen, using the symbols of Figure 21 as:

d. + oLu

s e )
X, = =t {1- tanh[b9(xl-xlo)]} (3~96)
where a, is chosen such that when X, = - 300 ngh, x, = 700 mg/min.
For example, if we expect that at x; = - 300 mg%, Uy, = 520 wU/md,,

and at x, = O mg¥, Uy, = 20 uU/mi, then

Xlo = - 150
b9 = .02
d9 = 128
A = 1.1

10 and b9 Ahaving heen chosen to yield a smooth

variation in the hyperbolic tangent as X varies between O and

The parameters x
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- 300. With the above parameters, insulin is seen to increase the
" rate of hepatic uptéke of glucose by avfactor of about three which haé-
Been reportedElS]
Although there i1s little doubt that insulin is important to the
regulation of liver metabolism,there is little agreement on the pre-
ciée role played by ihsulin. Some view the effect as attenuation of

glycogenolysis while others have it as the acceleration of glycogensis.

It has been found that insulin added to rabbit liver slices in vitro

increases the incorporation of Clh from labled glucose into hepatic
glydogenE12h] Others also have found increased glycogen synthesis to
be the process which is more directly stimulated by insulin actionglz5]

[62]

Fpllowing Shames we take this view of hepatic insulin action and
represenl it‘as in Eépation (3-96).

It is interesting that some investigators have interpreted the
rapid synthesis of glycogen observed after a glucose input to be due
to the possible error rate sensitivity of the liverfu7] whereas as we
~will see in the sequel, this effect is explainable in terms of the rate
sensitivity of inéulin release which in turn rapidly increases glyco-
genesis through parametric feedback as in (3-96). |

An édditional effect has been incorporated in the plasma glucose
to hepatic glycogen pathwéy to account for the theory that under normal
conditions glycogen stores have a definite maximum value of about 125 g.
and are never fully depleted in the healthy snimal. It is believed for
example, that glycogen deposits normally will not fall below 75g. before

the processes of gluéonéogenesis become fully active supplying the re-.

quired glucose for hepatic glucose release, Accordingly we include an
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attenuation factor in the hepatic glycogenesis pathway which is a

- function of hepatic glycogen stores. Again referring to Figure 21:

x = 1f(e) e - (3-97)
£, (c,) =32'- {1- tanh[bg(c, e ;)1 | | (3-98)
where:
bg = 0.6
cgo = 125,

Hepatic glycogen storage is then a function of the difference be-

tween the rate of glycogenesis and glycogenolysis or:

g

cg(t) =-f-.OOl[X2(T)-X5(T)] aT + cg(O) ‘ (3-99)
0

where we take cg(O) = 75 g. as the initial value for the size of the
hepatic glycogen store in all experiment simulations undertaken,
The process of glycogenolysis is modeled as two functions in order

to separately incorporate the reported effects of glucagon and epine-
[34]

phrine on accelerating glycogenolysis: The remarks made above,

“however, allow us to obtain the parameters of the x. and x), nonlin-

3

earities under conditions of nominal hormonal control concentrations.

We wish to establish xs(O) = 260 mg/min and Xx. approaching zero as

5
e approaches =~ 45 mg%h, corresponding to a nominal hepatic glucose
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release rate of 260 mg/min and the cessation of net glycogenesis as

g approaches 145 mg%. It remains to choose an appropriate saturation
value of k5 at an appropriate value of e, There is no direct
physiologic data in existence which would allow this, but since we
would expect the glycogenolytic capacity of the liver to be stimulated
to full production even in the absence of glucagon and epinephrine by
a developing hypoglycemia, then a value of e = 75 mg%, i.e,
¢ = 25 mg% seems reasonable, With this information the saturation

e

value can be obtained from:

X5H
x5 = 5= {1 + tanh[p(e-e,}1} (3-100)

Choosing e = - Ls, beH = 75, hence e, =15 and B = .0334 for a
smooth variation over the specified range of the independent variable

then:
*sgE
260 = —2= {1 + tann[.0334(-15)]}

or Xgy = 960, These values will now be equally distributed between
x3 and x), under the condition of no hormone effect present because
we have no data upon which to base any other arrangement at this time.
Hence for the glucagon affected glycogenolytic process we have:

_‘dlo + O%.uzp
X3_ >

{1+ tanh[blo(e-eos)]} (3-101)

where by = 033k, eo5 = 15., and dyg * o, u2p(o) = 480, Here
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uzp(o) refers to the fasting concentration of glucagon in plasma,.

- Similarly, for the epinephrine affected glycogenolytic process we

have:
d.a + C,
11 :
X = ~———-§—§-—1 {1+ tanh[bll(e-eoé)]} (3-102)
where b, = .0334, eog = 15, cand djq + a3-u3(0) = 480, Here u3(0)
represents the fasting concentration of epinephrine in plasma.

The maximum rates of glycogen breakdown observed in vivo[126] are

about three times as great as the maximum rates of glycogen deposi-
tionglz7} Since the evidence presented above is for a maximum rate of
glycogenesis in the presence of insulin of about 700 mg/min, then a
maximum rate of hepatiec release of glucose of about 2100 mg/min in the
presence of glucagon and epinephrine would be indicated,

The normal response to insulin hypoglycemia includes an abrupt
and substantial increase of the hepatic glucose ocutput, which begins to
rise before the declining blood glucose level reaches L0 mg%§128’129]
It is generally stated that the glycogenolytic action of glucagon is
mediated through activation of hepatic phosphorylase; There is a
direct correlation between the activation of phosphorylase and glyco-
genolysis over the physiocloglc range of glucagon concentrationgz6]
Hepatic glucose output rates in excess of l(mg/min)/g liver during
- peak glucagon action on the isolated rat liver have been observelgl?’oJ
This marked stimulation of glycogenolysis occurs at plasma glucagon

concentrations of 4 mug/mf. Assuming the same effect in man and an

1800 g liver implies a saturation value for %3 of 1800 mg/min.



10k
Values in the same range as that quoted above have been reported by
.Shoemakergl3l] Using a fasting plasma glucagon concentration of
.0.5 mug/me, a maximum physiologic concentration of 3.5 mig/mi, and a
desired maximally glucagon stimulated glycogenolysis rate of 1500
mg/min implies that in Equation (3-101) we require approximately
dip = 310 and a, = 340 if we assume an unstimulated maximal rate

for x, of 480 mg/min,

3
The glycogenolytic effect of epinephrine on liver is also believed
to be mediated through activation of liver phosphorylaseElBZJ Although

a glycogenolytic action of epinephrine on the isolated liver could be
demonstrated only at the near lethal concentration of 100 mug/ u§l33]
it is still_believed by some that the concentrations of epinephrine
observed during the reaction to insulin-induced hypoglycemia, 1.e.

2 to 3 mpg/m&g32] have a definite glycogenolytic effect. In fact, it
has been reported that physiologic epinephrine can increase the rate of
glycogenolysis by a factor of three€3o]

In order to obtain first guesses on parameters for Equation (3-102)
we will assume that epinephrine enhanced glycogenolysis can increase the
satuvration value of Xy to 1000 mg/min. Hence using a fasting plasma
epinephrine concentration of 0.5 mug/m&, a maximum physiologically
induced concentration of 2.5 mug/m&, an epinephrine independent
meximum x), of 480 mg/min, anﬁ an epinerhrine induced maximum x) —of

1000 mg/min implies that d.. = 350 and «

11 5 = 260 in Equation

(3-102).
It will be noted that effects upon gluconeogenesis have not been

incorporated per se in the model since the impact of such effects on
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the behavior of the glucose control loop is not felt. To this loop, non-
glucose precursors functlon simply as an alternate glucose scurce and
need be spécifically delineated only when coupling among fat, protein,
and glucose regulation are implemented. The tobal glycogenolytic

effect of the liver ils represcnted;
x5 = x3[f3(ulp),e] + xu[fu(u3),e] (3-103)

Plasma normally contains anywhere between 70 and 140 mg% of glu-
cose with only minute traces excreted in the urine., Under these condi-
tions virtually all the filtered glucose is reabsorbed, As the
concentration of glucose in plasma rises, the rate of passage of glu-
cose through the renal glomerules rises proportionally until the
reabsorption capacity is exceeded. Some glucose will begin to appear
in the uriﬁe as soon as e, = 180 mg%, but the rate of reabsorption
will continue to rise somewhat until the excretion rate is a linear
function of e_. From the data of WooLe 134] (Figure hﬁ, Page 13),
and assuming a constant glomerular filtration rate of 125 m&/min, we
compute that this constant excretion rate is 1.25 mg/min and is
reached approximately at c, = 320 mg%h. Since we represent renal

excretion as follows:

xg = £5(e) e (3-104)
dyp -
f5(e) = = {1- ta.nh[blz(e-eo,_{)]} (3-105)
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From the above we have, d,, == 1.25, b, = .0h3, and o7 = - 150.

Other sinks for glucose not accownted for by B, f5(e), end =
Xz[fl(ulp)’xl] are lumped togéther in the peripheral utilization
sink, The major components of this sink for glucose are muscle and
adipose tissue glucose utilization, but other smaller yet sign’ificant
glucose users such aé red blood cells are also included. Two functions
will be used to represent the effects of insulin and growth hormone on
peripheral glucose utilization rates,

It is now generally accepted that the chief peripheral effect of
insulin is to facilitate the transport of glucose from the interstitial
fluid space across the cell membrane to the Interior of the cé El35]
Adipose tissue has been found to be extremely sensitive to insulin,
responding by accelérated glucose uptake measured as a factor of six
in the presence of 0.1 U/m& insulin in rat adipose‘tissueE136] Other
investigators have found insulin to accelerate adipose tissue take up
of glucose up to a factor of three in dog and manE89’9O] It is also
‘generally accepted that the action of insulin on muscle is extremely
rapid and accelerates the transfer of glucose acrcss the cell men-
braneE137] In contrast to the peripheral effects of.insulin, growth
hormone has been found to decelerate tThe rate of transfer of glucose to
intracellular spacesEl38]

We will represent the aboveveffects by the fungtions x7[f6(uli),e]

Cend f,(w;). Interstitial fluid insulin, will increase the

Y14
saturation value of the peripheral glucose take up nonlinearity and

growth hormone will attenuate the net glucose utilization rate. We

have:
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d.. + oy u. .,
1
x, = __§_§__E_££ {1 - tanh[blS(e_e08)]} (3-106)

From the previous remarks we desire fasting x7 to be equal to

180 mg/min. It will be shown in the disecussion an the controller model

that as plasma insulin, u

1p Veries from 20 wi/md  to 520 pU/mi,.

interstitial fluid insulin, w,, varies from 1k wU/mt  to 346 pU/me.
Hence we must have X, = 180 mg/min when u,; = 1h uU/mi. Having
chosen €y8 = - 100 and b13 = ,0067 to yield a smooth variation over

e = [-300,100], implies a nonhormonal dependent saturation value for
XT of 870 mg/min. If we allow the insulin effect to increase this

rate by a factor of three, or X, = 2610, then d4.. + 0%, 1k = 870 and

13

diq + O, 346 = 2610 implies that in Equation (3-106) we must take

3
d13 =797, and o = 5.24%, Growth hormone then attenuates this rate

as follows:

xXg f7(uui) g (3-107)

£ (w,;) = 5 {1 - tanhloy, (u, -u,; )]} (3-108)

There 1s no quantitative'data in existence which will precisely estab-
lish the parameters of (3-108), but for initial first guesses we will
take .. =50 and by = .0k and establish more meaningful values
by simulatlon of experiments.

Whereas hepatic glucose storage and release are probably affected

by the concentration of insulin in the portal vein, the peripheral rate
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of glucose utilization is more likely dependent upon the concentration
of insulin in interstitial fluid. Similar considerations apply to the
other hormones included in the controller and motivates the explicit

inclusion of two variables for these hormonal distribution and degrada-
tion kineties.

 Plant Equations.

Referring to Figure 21 we have:

{ée + ée = %— [F(t) + X3[f3(ulp),e] + xu[fu(u3),e] - xz[fl(ulp),fl(cg)e]
g _
- fs(e) e - f'_((u)-l»l) Xv—{[f6(uli);e] - B} (3"'109)
ég = .001 {x2£f2(u1p),fl(cg)e] - x3[f3(u2P),e] -_xh[fh(u3),e]}
(3-110)
Let:
A
21 = ¢
%2 : 2y
z, & 3
then:
é:[_ = Z2 ' (3‘111)
2, = =22y + = (F() + x,(5) - x5() = xg(t) - xy(8)]  (3-112)

g

N
I

3 = .00L {xz(t) - x5(t)} . (3-113)
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£, = % {1 - tanhlog(c -c )]}

d, + O, u

x, = _EL._EE;—EE {2 - tanhlby(x;-x,)1]

xy = f10 * ZZ “2p {1 + tanh[b, (e-e )1

5 - f_l.l_i;.s.f; {1+ tanhlby (exe ) 1) (3-135)
£5 = E%Q {1 - tanh[blz(e-eo7)]}

x, = T3 Zﬁ g ténh[blB(e-eoa)}}

l by
£, =% {1 - tanh[o,, (u,,-w,, )1}

Definitions of Terms,

R é [mg/loom&] plasma glucose concentration set point
72 [mg/min] exogenous glucose intravenous input
B 2 [mg/min] CNS glucose utilization

& [mg/100ml] plasma glucose concentration

0
il

>

(g] hepatic glycogen store

e

[mg/l00mt] glucose actuating error

e

1 [mg/100mt] effective glucose actuating error for
glycogenesis.
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11

e

e

1

1l > ] e He> e 1l

ne>

[mg /min ]

[mg/min]

[Ir'g/min].l

[mg/min]
{mg/min |

(mg/min]

[mg/min]

[mg/min]
(g /min]
[mg/min]
[100m¢ ]

[min]
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hepatic glucose uptake

glycogenolysis as a function of glucagon
glycogenolysis as a function of epinephrine
total hepatic glycogenolysis

renal glucose excretion

peripheral glucose uptake as a function of

insulin

peripheral glucose uptake as a function of

‘growth hormone

total peripheral glucose uptake
glucose entering system circulation
glucose entering glucose space
glucose space

systemic circulation time constant

[1/g Glycogen]

[g Glycogen]

[mt-mg Glucose/min-pU Insulin]

(100mL fmg Glucose]
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[mg Glucose/100mt ]

[mg Glucose/min]

[me-mg Glucose/min-mug Glucagon]
[100 mt/mg Glucose]

[mg Gluéose/loom]

[mg Glucose/min]

[mt-mg Glucose/min-mig Epinephrine]
[10C mt/mg Glucose]

[mg Glucose/100mt]

[mg Glucose/min]

(100 mt/min]

[100 mi/mg Glucose]

[mg Glucose_/lOO ml.]

[mf-mg Glucose/min-mpg Insulin]
[100 mt/mg Glucose]

[mg Glucose/100 mi]

[mg Glucose/min]
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b, = [mt/mig Growth Hormose]

ne

4,4 = [mug Growth Hormone/mi]

3.7.3.2. Controller,

Since insulin has a high molecular weight (about 6000), its
diffusion across capillaries may contribute significantly to the
dynewlc behavior of lhe endogenously generated substance, Experimental
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evidence suggests a bi-exponential decay of I labled insulin in

manggu] Hence we would expect that at least a two-compartment m&del
composed of plasma and interstitial fluid will be required to represent
the dynamic behavior of insulin distribution and degradation, Unless
simulation results indicate otherwise we will take V. = 3.5 4 and

Vi = 10.5 £ for the size of these spaces. Simple passive diffusion is

assumed to connect the two compartments. Insulin degradation in the

plasma space 1s represented by parameter aq and in the interstitial
space by parameter a3. We then have:
Vp Upy = 8y Upp t éz(uli - ulp) + W5(t,e,e)
(3-116)
ViUpy = mag Uy +oap(uy - uyy)

*
where w (t,e,e) represents the endogenous secretion of insulin as a

>
function of glucose error and error rate and any exogenous input.
The mean, basal plasma insulin concentration in man has been
measured to be 21 uU/m&El39] From the data of Berson and Yalow£9u}

the coefficients of (3-116) have been computed to be:
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2, = 248 m¢/min
a, = 309 od, /min
a3 = 156 m&/min

These nurbers imply the following time constants for the plasma space

and the interstitial space.

(3-117)

1
[O)Y
[§V]

\O
B
[l
=]

T, = | (3-118)

30.1

il

Since decay dynamics are usually characterized in terms of the "half-
lire" by blological scilentists, for comparison purposes the above time

constants imply from T = In(2) 7 that Tl/? p = 4,35 min., and

1/2

Tl/2 ;= 20.8 min,

Given the steady-state value of plasma insulin, wu, (ss) =

lp(
21 uU/mb, we compute uli(ss) and the required rate of endogenous

insulin secretion, w5(ss). From (3-116), in steady state:

w5(ss) 248 (21) + 309[21 - uli(ss)]

(3-119)
0

- 156 uli(ss) + 309[21 - uli(ss)]
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e u_li(ss) = % 21
= 1k pU/m'fJ
e w5(ss) = 0074 U/min

In other words, given the above degradation factors for insulin in the
plasma and interstitial spaces and the diffusion coeffilcient, a steady-
state insulin secretion rate from the pancreas of ,0074 U/min resulis
in a steady-statc plasma insulin concentretion of 21 pU/m& and a
steady-state interstitial fluid space inéulin concentration of
1k pU/me.

Although the variable Uy g is not directly observable at the

present time it may be possible eventually to measure u directly

1i
by means of lymphatic cannulation., The value chosen for the plasma
space insulin degradation coefficient, aq yields a rate of insulin

destruction (al/V? = .071 1/min), close to Madison's observations on

dog, 1.e, 0.1 ]./m:i.n,[:"ho:| and Mortimore's observations on rat, i.e,
.08 Zl./minglhl:l As we have seen above, the steady-state endogenous

secretion rate of insulin required to maintain ulp(ss) = 21 uU/mt and
uli(ss) = 14 pU/mt is 00Tk U/minr Taking Metz's measurements on
dogs£92] assuming an average weight of 16 kg,, and a 50% destruction
rate of insulin in first hepatic passage results in an endogenous
secretion rate of .00875 U/min.

It is now generally accepted that insulin is released as some

function of glucose error. Although explicit quantitative data are
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lacking for a precise characterization of this relation, many of the
remarks msde in the biological literature point to the possible depend-
ence of insulin secretion on both the glucose error and the derivative
of glucose error. Insulin generation as a function of error rate has
(112]

been suggested by Tepperman: As shown in Figure 22 the model for

insulin generation is as follows:
6¢. .
vy = 10 {Im(t) + f8(u3)[wl(e) + w,(e)l} | (3-120)

where wl(e) represents insulin secretion proportional to glucose

error,

o

wi(e) = 5= (1 = tannlby (e-eg; )1} (3-121)

wz(e) represents Insulin secretion proportional to glucose error ratg,

o

wy(8) = 52 {1 - tenn[b, (é-¢ )1} (3-122)

and f8(u3) represents the inhibition of insulin secretion by

epinephrine:
1

The parameter values for (3-121) are obtained by consildering that

wy =0 when e =20, w; = .007h U/min when e =0, and w, = max

1 1"

secretion rate when e = - 180. We obtain wy max from (3~119) with
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Wi
€ ——o= wl(e) L

& —o wzé)

Figure 22, Insulin Secretion,

U|'

02@

Figure 23. Insulin Distribution and Degradation.
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wl(ss) = 248(520) + 309[520 - uli(ss)]
0 =~ 156 uli(ss) + 309(520 - uli(ss)]
e uyy(es) = g2 (520)

1]

346 pU/mt

Heunce w or dl = ,183 U/min. From Lhese values we now cbtain

Jmax

by. Since ey = - 80. we have:

s - L -1 .0915 - .007k4

1l 80 ~.0915

= .02

The function wl(e) is now completely specified. The weakest justifi-
cation of parameter values here 1is dl, but properly designed systems
experiments can yleld this information just as wl(O) was obtained.
This will be further discussed in Chapter IV,

The basic idea underlying the error rate insulin secretion non-
linearity (3-122) is that a too rapidly rising plasma glucose concen-
tration will cause more insulin to be generated at a particular glucose
concentration than would otherwise be the case. We choose as first
guesses on the parameter values of (3-122) to have Wz(é) vary from
minimm to meximm over the range e = - 10 mg%/min to e = - 60

mgh/min  with w = d, = .09 U/min, Consequently, éOl = = 35 mgh/

Zmax
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min, d, = .09 U/min, and for a smooth variation over this range,

bZ = .08.

The resﬁits of several experiments suggest that epinephrine some=-
how can inhibit the secretion of insulin, in fact, epinephrine is
believed. capable of this action directly at the site of the B-cellE27]
Porte's results show that even a relatively small amount of plasma
epinephrine, probably a fraction of a mug/mi{ can completely inhibit
the secretion of insulin in spite of the resulting hyperglycemia., In
the representation of this particular effect, Equation (3-123), we will
vary the inhibition by epinephrine smoothly over th'e range
ug = [0.5,2.5] mug/mt. Henée in (3-123) we take Usg = 1.5, b3 = 2.0,

Since glucagon has a relatively high molecular weight, 3&50, it is
expected that at least a two~compartment model for distribution and
degradation will be required to represent its dynamic behavior., Al-
though measurements of labeled glucagon decay have been made,[lMZJ clear
and unequivocal data are lacking upon which to base computation of
degradation factors and a diffusion coefficient. As previously men-
ticned, however, the disappearance rate of circulating glucagon in rat
has been reported as 80% in 5 min£95] which translates into a time
constant of 3.12 minubes 1f first-order kinetiecs are assumed. Glucagon
is rapidly inactivatled by liver!lhg’lhu] and 1ts concentratlion 1in
fasting dogs has been measured to average 0.5 mug/mL with peak values

of L mug/mi in hypoglycemic dogsglu5] Glucagon release is believed

to be stimulated by neural pathways as a function of hypoglycemia.ga6]
In addition to the degradation rate mentioned above, plasma glucagon

levels measured by immunoassay have indicated a half-life of about 10
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minutesfzz] i.e. a time constant of about 1% minutes.

The model shown in Figures 24 and 25 for glucagon sceretion,

distribution and degradation is as follows:

vauzp = -y Uyt aS(uzi_uZP) +'wll(t,e)
(3-124)
V, u,. =

- ag Uy; + ag(u, ~up;)

~where wll(t,e) represents the endogenous secretion of glucagon by

the pancreas as a function of glucose error and any exogenous input,
We will assume a mean basal plasma glucagon concentration of

0.5 mug/mﬂ and initial guessed values Ior degradation and diffusion

coefflcients of:

ay, = 350 md /min .
ag = 250 md /min
These values imply:
V:p _
T = m (3-125)
= 4,52 min
) = 3.13 min,

T1/2 D
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cL(t)

W

Figure 24, Glucagon Secretion.

¥

o
(6]
<:P_

Figure 25. Glucagon Distribution and Degradation.
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V.
1

i a5 + ag

-
i

(3-126)

15.6 min,
. Ti/2 ;= 10.8 min,
Given the steady-state value of plasma glucagon, uzp(ss) =

0.5 mug/mt, we compute uZi(ss) and the required rate of endogenous

glucagoh secretion, 'wlo(ss). From (3-124), in steady-state:

Wlo(ss) = 350(0.5) + ka5[0.5 - uzi(ss)]
(3-127)
0 =~ 250 uzi(ss) + Lh25[0.5 - uzi(ss)]
.o, uzi(ss) = %%%) 0.5
= 0.32 mug/mt

0.252 ug/min

.,. Wlo(ss)

In other words, given the above values for degradation factors and thé
diffusion coefficient, a steady-state glucagon secretion rate of

.2b2 ug/min from the pancreas results in a nominal plasma glucagon
concentration of 0.5 mug/mi{ and a nominal interstitial‘fluid space
glucagon concentration of 0.32 mpg/mi.

As shown in Figure 24 the model for glucagon secretion is as
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follows:

Wiy = 103[GL(t) + wlo(e)] _ (3-128)

where wlo(e) represents glucagon secretion proportional to glucose

error,
&
wio(e) = 5= {1+ tanh[by (e-e ;)] (3-129)
The parameter values for (3-129) are obtained by considering Wi = 0
when e = - 20, Wy, = 0.252 ug/min when e = 0, and Y10 max
occurs when e = 60, We obtain W10 pax TTOD (3-127) with
Uy = 3.5 mig/ut.
Wy o(ss) = 350(3.5) + k25[3.5 - u, (ss)]
0 =~ 250 uzi(ss) + U25[3.5 - uzi(ss)]
., | k25
uZi(ss) =575 3.5
= 2.2 mug/mi
Hence w,n . or 4 = 1.78 ug/min. Since gy = 20, we have:
b = L1 tann~t |82 = .252
L T 20 .09

= ,045
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which completely specifies the function (3-129).

Because of the low molecular weight of epincphrine, 183.2, we
would expect it To be freely diffusible across the capillary membrane,
hence rapid dynemic equilibrium between plasma epinephrine and inter-
stitial fluid epinephrine should be the rule. For this reason a one-
compartment (extracellular fluid, v, = 144.) model for the distribu-
tion and degradation of epinephrine should be adequaté for our
purposes , see Figure 27,

As already mentioned in the discussion on insulin dynamies above,
epinephrine will be secreted in response to a too rapidly falling
plasma, giucose concentration., Hence in the epinephrine secretion model
shown in Figure 26, epinephrine is secreted as a function of glucose
error and glucose error rate., Epinephrine has an extremely fast dis-
appearance ratej a half-life of 10-30 seconds has been estimatedEZ9J
We will take the fasting level of epinephrine to be 0.5 mug/mé. The
concentration observed during the reaction to insulin-induced hypo-
glycemia is 2~3 mug/mLE32] Consequently, the range of endogenously

secreted epinephrine will be taken as [0.5,2.5] mug/ml.

We have for epinephrine secretion, distribution, and degradation:

,Vé 3 = 7 AUy 103[EP(t) + wzo(e) + wzl(é)] (3-130)

where wzo(e) represents glucose error epinephrine secretion and
wzl(é) represents glucose error rate epinephrine secretion.
We will assume a mean basal plasma epinephrine concentration of

0.5 mig/mt, a distribution volume of fourteen liters, i.e. v, = 1,



125

EP(1)

e — wzo(e)

——— \.VZZ

Figure 26, Epinephrine Secretion.

Ehle

Figuré 27. Epinephrine Distribution and Degradation.
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and a decay time constant of 0.5 min., i.e. &, = 2.8 x lOu md /min,
Given the steady-state value of plasma epinephrine, u3(ss) =

0.5 mpg/m&, the reqﬁired rate of endogenously secreted epinephrine is

obtained from:

. 1 ¥20(0)
u_3(ss) = _l_igl s Ve + . S . (3-131)

hence the nominal rate of epinephrine secretion when the glucose error
is zero is WZO(O) = 14 pg/min,
The secretion of cpincphrinc as a function of glucose error is

expressed by:

d .
_ 2
wzo(e) = == {1+ tanh[b5(e-eo3)]} (3-132)
Parameter values for (3-132) are obtained by considering Woo = O when
e = - 10, wy, =1k ug/min when e =0, end Woo max OCCUTS When

e = L0, Hence 03 = 15 and since w is obtained from (3-131)

20 max

with u3(ss) = 2.5 mig/ml, or Yoo max = d5 = 70 pg/m;n, “then b5 is
obtained from:
1 -1 /35 - k)
b5 =15 tanh \ 75
= .046

The error rate epinephrine secretion nonlinearity, wzl(e) where:

a
W, (8) = —g {1+ tanhlb (-5 )] (3-133)
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reflects the belief that a too rapidly falling plasma glucose concen-
" tration will cause épinephrine o be‘secreted even in a hyperglycemic
sfate. However, there doesn't exist any quantitative data upon which a
mathematical representation of this effect could be based., Consequently
we will choose as a reasonable first guess to have WZl(é) vary from
minimum to maximum over the range e = 2 mg%/min to & = 10 mg%/min
with woy o = dg =~ 35 ug/min. Hence é02 = 6 mgh/min, and for a
smooth variation over the range e = [2,10], b, = 0.5.

Since growth hormone has a high molecular weight, 21,500, we
should expect at least a two~compartment mode.l to represent its
dynamics of distribution and degradation will be required. Random
plasma specimens from normal subjects usually exhibit a growth hormone
concentration less than 5 mug/mLE39] we will assume a mean basal growth
hormone concentration in plasma of 1 mug/mt. Growth hormone is secreted
when plasma glucose is below nominal; a drop of more than 10 mg% below
nominal results in a noticeable secretion of growth hormoneg38]
During insulin-induced hypoglycemia, with initial values of plasma
growth hormone less than 5 mug/mL, this concentration was observed to
rise by a factor of five while plasma glucose fell to less than one-

[146]

half of its initial value: After an insulin inpuf plasma growth

[4o]

hormone rises to its maximum usually in about one hour; This
maximum typically is in the vicinity of 50 mug/mL. This response is
obtained with an insulin input of 0.1 U/kg which causes an average drop
in blood glucose to 34% of its original value. Measurements of plasma

[1h7]

growth hormone by the radioimmunocassay method indicate a plasms

half-life in adults of twenty to thirty minutes., There is evidence
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accumulating that the secretion of growth hormone is under hypothalamic
'controlghl] It is conjectured that a rapid fall in blood glucose even
without hypoglycemia is also capable of stimulating growth hormone
releasegu“] In this investigation we will view growth hormone secretion
strictly as a function of glucose error since the evidence for error
rate dependence is somewhat contradictory to other documented evidence
on the mode of secrefion.

The model shown in Figures 28 and 29 for growth hormone secretion,

distribution, and degradation is as follows:

Y uhp = - ag uhp + a9(uhi-uhp) + 103[GH(t)+w3O(e)]
| (3-13%)

Vi Uy = - Wy oagly )

where the endogenous secretion of growth hormone is represented as:

q ,
W3O(e) = §Z {1+ tanh[b7(e-eou)]} . (3-135)

We will assume a mean basal plasma growth hormone concentration of

1 mug/m&. Based on the cbserved varlation in growth hormone concentra-
. R (1481 ., . . , » . .
tions due to age and sex, this chuice of basal concentration applies

to young adult males. We will also assume initial guessed values for

degradation and diffusion coefficients of:

100 wi/min

ag

o
I

125 mi/min
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GH (t)

e ———a-w30(e) IO3 33 w3{

Figure 28. Growth Hormonc Seerction,

U4p
A

Vig

PFlgure 29. Growth Hormone Distribution and Degradation.
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85 = 80 mt/min

. These values imply:

Vv
R -
o Eg % ‘ (3-136)
= 15.56 min,
o Tl/? b= 10.78 min.
Vi
T, = =———— (3-137)
1 a9 + alo .
= 51.2 nin,
¢ * Tl/2 i = 35.5 min,

Given the steady-state concentration of plasma growth hormene,
uup(ss) = 1 mug/mi, we compute uui(ss) and the required rate of

endogenous secretion, W3O(ss), from (3-13L4):

w3o(ss) = 100(1) + lZB{l—uhi(ss)]

(3-138)
0=-80u,(ss)+ 125[l-uui(és)]

o e u)_)_i(ss) {%

o |

0.61 mug/mt
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v _w3o(ss) = 71h9 ug/min
The parameter values for (3-135) are cobtained by considering W3O =0
when e = - 10, vy, = .149 ug/min when e = O, end wyy ... oOccurs
when e =70, We obtain wy, .. from (3-138) with W, = 50 mug/ml .

W3O(ss) =100(50) + 125[50 = uui(ss)]
0=-280 uhi(ss) + 125[50 - uui(ss)]
o.a : - 125
uui(ss) = 555) 50
= 30.5 mug/mi

Hence w

30 max T d7 = 7.5 ug/min. Now since eol = 30, we have:

1 -1[3.75 - .149
7 = 30 tenh 3.75

o'
It

= ,065

which completely specifies the function (3=135).

Controller Equations,

Referring to Figures 22 through 29 we have:

Vo g = - Aty ap(uyymuy) ¢ 10°(m(t) + £g(us ) [y (e )+, (€)1}
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Vilyg = - aghyy +oa(ay o)

| Vpﬁzp = -l + oA (U'Zi-u?.p) + lOBI[GL(t)-i-wlO(e)]
ViﬁZi = - ad,, ¥ as(uzp-uZi)
Vi, = - ang 103[EP(t)+w20(e)+w21(é)]

Vil == 8.+ a9(u)+Pqui)
where:

: dl

wy(e) = 5= {1 - tanh[b, (e-e )]}

e, .
wg(e) = T {1 - ta.nh[bz(e—eol)]}

2g(uy) = 5 {1 - tanhld(uz-uy )]}

d
wlo(e) = 2—” {1+ tanh[bu(e-eoz)]}

d ) .
WZO(e) = —2-‘-5- 1+ tanh[bs(e-eo3)]}

d
W, (e) = §-6- {1+ tanh[bé(é-éoz)]}

a ,
wyole) = -él {1+ tan[b, (e-ey,)]]

Vi = = agiyy, + ag(uy;-w ) + 10°[CH(b )y (e)]

(3-139)

(3-140)
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Simulation Equations.

wy = wy(e)

W, = wz(é)

'W3 = ‘Wl + W2

W), = f8(u3) Wy (3-141)

=
i

106[wu + IN(t)]

5

b =i {-au +a_(u,.~u,_) + w.}

1p Vp 11lp 2V 11 T1p 5

u =-]-'—{-au + a (u,_~u .}

1i Vi 3711 2 1lp i

10 = ¥10le)
w. = 103[w,  + GL(t)]

1L 10

(3-1k2)

Q. =

Lo{-au +a (U, ,-u, ) + Wi}
ap Vp L7 2p 5V72i 2p 11

. 1
w,, = \7: {- aglys + as(uzp.-uzj_)}
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Va0 = Wap(e)
Wap = Wp ()
(3-143)
- 105 ‘

Wy, = 10 [W.ZO * Woy ¥ EP(t)]

L= = [- a_u. + w.__]

37V, 7 %3 T Yz
W3 = w3o(e)
W.. = 109[w, . + GH(t)]

31 30

(3=1kk4)

U =—J:-{—au + oa (W .- ) + W}

bp vp 8 Lp oM ki 31
u —}-—{-au + a (u _=u )}

b =TT a0 * A (up s

Definitions of Terms.

VP & [md ] plasms volume
v, = [mt ] interstitial fluid volume
v, = [mt] extracellular fluid volume (Vp + Vi)
IN 2 [U/min] - exogenous intravenous insulin input



GL

EP

GH
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I I 1l 1l e i ] ] It ] Il

e >

Il

i

[ng/min]
[hg/min]
[ug/minl
(LU /me, ]
[mug/m@]
(mug/me ]
[pU/me]
(g /me]
[mpg/me]
[mug/m&]
[U/min]
[U/min]
[0/nin]
[U/min]
(uU/min]
[ng/min]
[m.g/min]

[ug/min]
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exogenous intravenous glucagon input
exogenous intravenous epinephrine input
exogenous intravenous growth hormone input
plasma insulin

plasma glucagon

plasma growth hormone

interstitial fluid insulin

interstitial fluid glucagon
interstitial fluid growth horméne
extracellular fluid epinephrine
pancreas insulin rclcase

pancreas insulin release

total pancreas insulin release
effective pancreas insulin release
total insulin into plasma space
pancreas glucagon release

total glucagon intoc plasma space

adrenal medulla epinephrine release
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30

31

21

ne> > lie>

g

1 It 1l > il

>

e

[bg/nin]
[mué/min]
[ng/min]
(mug/min]
[mt/min]
[t /min]
[m /min]

[mt/min]

(me/min]
[t /min]
[mf /min]
[t /min]

[m&/minj

[m»{’,/min] |
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adrenal medulla epinephrine release

total epinephrine into extracellular space
anterior pituitary growth hormone release
total growth hormohe into plasma space
plasma insulin degradation coefficient
plasma glucagon degradation coefficient
plasma growth hormone degradation coefficient

extracellular fluid epinephrine degradation

coefficient
insulin diffuslon coefficient
glucagon diffusion coefficient

growth hormone diffusion coefficient

interstitial fluid insulin degradation coefficient

interstitial fluld glucagon degradation coefficient

interstitial fluid growth hormone degradation

coefficlient

[U Insulin/min]

(100 md/mg Glucose]
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[mg Glucose/100 mt]

[U Insulin/min]

[100 mt/(mg/min) Glucose]
[ (mg/min) Glucase/loo mi]
[t /g Eplnephrine]

{mug Epinephrine /mi]

[ng Glﬁcagon/min]

{100 M/mg Glucose]

[mg Glucose/1C0 mi]

(ug Epinephrine/min]

[100 mt/mg Glucose]

[mg Glucose/100 mi]

(ug Epinephrine/min]

[100 mt/(mg/min) Glucose]
[ (mg/min) Glucose/100 mi]
(kg Growth Hormone/min]
[100 mt/mg Glucose]

[mg Glucose/100 m]
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IV, SYSTEMS TECHNIQUES IN THE STUDY CF METABOLIC CONTROL

4.1. Introduction.

In this chapter we formulate and demonstrate the feasibility of én
approach to estimate the parameters in the proposed model of Section
3.7.3. The system parameter estimation problem is formulated in terms
of a sequence of subsystem parameter estimation problems. These in
turn are converted to multi-point boundary value problems and.algorithms

[149]

based on the method of quasilinearization are developed for their
solution. Controlled experiments performed by digital computer demon=-
strate the feasibility of this approach. An algoritﬁm is derived for
the complete system identification which 1s based on the results of
subsystem identification. A logical series of physiologic systems
experiments 1s specified from the data requirements of the estimation
algorithms, Further applications of systems techniques are considered
including the modifications required of the above scheme in order to

implement sophisticated closed loop control experiments on the metabolie

systenm.

4.2. The Inverse Problem for Metabolic Control Systems.

Any mathematical representation of a physical system is by
necessity an idealization of reality imposed for analytical tractability.
To the extent that our basic physical understanding of metabolic pro-
cesses is sufficieﬁt to permit a description in terms of ordinary non-
linear differential equations wlth certaln free parameters, tThe
derivation of an accurate quantitative model constitutes a problem in

parameter estimation, the so-called inverse problem.
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Using the symbols of Section 3.7.3, the complete system is

" represented as follows. Here let:

£1(0%,8) & 5 {1 + tanhlo(x-g)1] | (h-1)
£,(0%,8) £ 5 (1 - tann(a(x-p)]} | (k-2)
e =R =~ 2z, (1+-3)

Then the plant equations are:

(1)

Z, = =

alp

1
Z,, + ;; {(d +0l UL ) f fl(b8,23,c Je,x lO

- (dl 2U'2p) fl(blO’e’eOB) - (a u3) fl(bll’e’eo6)

8158, (P preseqy) & = (dygrayuy) £5(by5,e,e0)

£, (0,05, 0,0) = B+ F(t)) (4-5)

= (10'3){ (a +ozlul ) fZ[b9, fl(b8,23, cgo) e,xlO]

- (d 0%y )fl(b (d 7+00 )fl(b

112 % 206}
(4-6)

10 05)

And the controller equations are:
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. 1 6
Uy = ;; {'a1u1p+a2(uli-ulp) + (107) {fz(b3:u3:u3o){dlfz(bl’e’eOl>
s a,(0,,8,80)] + I(t)} | (4-7).
G, == {eau. +oa(u_-u )] (4-8)
17 RN T %2 p T
. 1
Uy = 5 Lmeyupy ¢ agluy uy ) + (20°) [y £ (b e, ) + GL(E)1} (4-9)
p
ﬁZi = %; {-aéuZi + a5(u2P-u21)} (4-10)

(-au (103)[d5fl(b5,e,eo3) + dgf (b é,80,) + ER(%)1)
e (4-11)

oF
1]
<[+

Yp = %— {‘aBuhp +oaglu =u, ) + (1°3>[d7f1(b7’e’eou) + GH()1} (h-12)

H

=y ey oag(w,,mmy)) (+-13)

Hence the plant model contains twenty-seven free parameters and the
controller model contains thirty-three free parameters. The inverse
problem then becomes, given a knowledge of the inputs F(t), IN(t),
GL(t), EP(t), and GH(t), 0 <t < T, and possibly noisy measurement
of zl(t), 0 <t <T, and samples ulp(ti), U
w, (t;), 0<% t; < T, obtaining numerical values for the free parameters

(ti>’ u-3(ti>3 and

which results in model behavior which is in some sense a valid repre-
sentation of the behavior of the actual systen,

Estimation ftechniques have a long history with the ubiquitous

method of least-squares for example, dating back to-Legendre[lSO] and

[151]

Gauss, Comnon to all such techniques applied to the identification
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of unknown éystems is the use of input-output data to.infer something
‘about the charactériétics of the system. Of the many different
methods that exist éertain broad categorizations are suggested such as
sequential and nonsequential schemes, time domain and frequency damain
methods, and those applicable only to linear or to both linear and non-
linéar systems., Classical frequency domain methods such as impulse
response and random response involve the intermediate construction of
transfer functions. On the other hand, classical statistical schemes
such as least~squares regression, maximum likelihood estimation, and
Bayeslan estimation require valid statistical representatlons of
measurement errors. Modern computer oriented methods treat the under-
lying differential equations directly cbviating the introduction of
restrictive constructions such as transfer functions. But in addition,
computer methods are adaptable to other than least-squares criteria
such as min-max optimization, and more varied solution aéprcaches such

"
as gradient techniques“lsz], random search methods,[l53,l5u] and

[155]

dynamic programming.,

The approach we will use is nonsequential, allowing camputations

to be done off-line, it is applicable to systems of ordinary nonlinear
differential equations, 1t does not require a statistical model of
measurement errors, and it uses a least-squares criterion with solutions
obtained by a modified guasilinearization methodgls6’157]
Iet the system be described by:

x = g(t,x,a,u) ; x(0) =x (b-1k)

0]



1h2
where:
x is an nx 1 state vector
g isan nx 1 vector function differentiable with respect to
X and O
¢ is an r x 1 parameter vector
u is an mx 1 input vector

Iet the observations upon the system be described by:
y(t) = H(t) x(t) + 1 (k-15)

where:
vy is a g x 1 output vector
H de a g x n known matrix
T 1s a ¢ x 1 random vector representing measurement error
about which no specific statistical form will be assumed
Suppose a least-squares criterion is used to fit the model output to

the observed data, Define the residual error:
e(t) = y(t) - H(t) x(%) ' - (k-16)

where X%(t) represents the sclution of (4-~14) with an estimated param-

eter vector & and initial conditions x(0). 1If N observations are

gvallable &t discrete instants of time then:

N N
DG lE = D e - me) 212 (4-17)
i=1 Yo +
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N
IR CAECHEIHRNCHECHCHIY
i=1 ’
The weighting matrix Qi is positive semi-definite. In the controlled
experiments of 4,3 this matrix is taken as the identity matrix,
The problem of finding a least-squares estimate of the parameter

vector «, given:

X = %(t}x’a:u) ) X(O) = XO

u(l) ; 0= tsT

y(t3) = H(sy) x(8;) + 7

is then equivalent to minimizing (L-17) with respect to a.

The problem of simultaneously determining all the free parameters
in Egs.(4-4) through (4-13) 1s a formidable task. However a method is
suggested which takes advantage of the structure and function of the
system, It 1s possible by suitable choices of inputs and observations
to isolate independent subsystems within the overall system. By de-
signing several experiments and using the data in a specific order a
hierarchy of subsystem parameter estimation will be established which
will result in full identification of all the system parameters, For
each subsystem parameter estimation problem the 'ir_lput 1s specified as a
continuous function of time over the durationl of .the experiment, For
observations we assume continuous measurement of plasma glucose concen-
tration and discrete samples of the plasms concentration of the four

- hormones included in the controller. Since in all cases, observations
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will be made on only a subset of the states in any particular subsystenm,
" the parameter estimafion problem constitutes a multi-point boundary
vélue problen,
Suppose, for example, that N >n + r noisy measurements are made
1» ‘the Tirst component of x, i.e. we have y(ts),
i=1,2, -, N

y(ti) = Xl(ti> + )

The remaining n~-l initial conditions on x, XZ(O), cee, xn(O) and
the constant parameter vector «, must be determined such that the
trajectory resulting from the solution of (4-1k) with these values
satisfies the remaining N-1 measured values of xl(t). This is pre-
cisely formulated as a multi-point boundary value problem by adjoining

the constant parameter vector «, to the Eq.(L-14). Let:

dLo (4-18)
22 3} (4-19)
£ 2108 (4-20)

then the MFBVP is, given N >n + r nolsy measurements on zl(t) =
xl(t), determine the remaining n + r - 1 initial conditions on =(0)

such that the solution of
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z = £(t,2,u) ’ (4-21)

approximates the remaining N-1 measured values of zl(t) in a least-
squares sense, |

This problem willlbe solved by a generalized root finding teche
nique, the Newton-Raphson-Kantarovich method. An analysis of the
éxistence, uniquenessJ and convergence properties of the method is

- given by Kalaba[lsa]

who shows for example, that when the method con-
verges 1t does so guadratically, For compuler applications this is ﬁhe
chief advantage of the method compared with other schemes such as Plcard
successive approximation which exhibits first order convérgence. The

Newton-Raphson-Kantarovieh method converts the nonlinear multipoint

boundary value problem:

z = £(t,z,u)
(4-22)

Z<ti) =Y(ti) s 1=2312, *»¢ , N

to a sequence of linear multi-point boundary value problems which are
solved recursively.

Iet iterations be denoted by Xk, then expanding (4-21) in the
space of functions =z(t), O < £ <T and retaining terms to first order:

2= 2(,250) + (E)] L2 (4-23)
a=Z
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where the Jacobian matrix has the 1J term (afi/azj). The solution

“of (4-23) must satisfy the boundary conditions z§+l(ti) =.Xl(ti)’

i=1 2, *++ , § in a least-squares sense. Since (4-23) is a linear

differential equation in +the variable zk+l we have the general
solgtion by superposition:

205y = a5 (e) gL L B () (l4=24)
where kkl(t) satisfies the matrix differential equation:

#he) = @) L ) (1-25)
made unique by the initial condition, for example:

#L0) = (4-26)
and pk+l(t) is the solution of the nonhomogeneous equation:

O R O A -l A O R O
made unique by,

5H(0) = 0 (1-28)

In Eq. (4-24), Bk+l is an (m+r) x 1 constant vector selected in

such a way that the solution of (4-23) satisfies the appropriate boundary
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- o . L,
conditions. In the case of N =n + r exact observations, B is

' obtained by solving a system of n + r linear algebraic equations,
With N >n + r noisy observations, y(ti)J i=1, 2, o, N, zk+l(t)

is made to approximate the data in a least squares sense by minimizing

N
> lletsy) sy = w(s)IE
ic1 N | |
lo(e, )T (5,) 81+ 58,0 = (e )IE (h-29)
i=1 '
with respect to Bk+l. Here G(ti) is a ax (ntr) matrix with the

first n columns identical to H(ti) and the remaining r columns

identically zero. Differentiating (4-29) with respect to the n+r

components of Bk+l results in an n+r linear algeoralc system to be

solved for BKH'.

Gl gl kel

B = b (4-30)
where:
N
A S e ) e ey) aley) @) (4=31)
i=1
N
L _ z k+1(t ) 6° (6 [y(5; )G (%) k+l(ti)] (h-32)

“i=1l
where primes denote the matrix transpose.

The computational algorithm proceeds as follows:
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1. Select.a zeroth iteration zo(t), elther by specifying a
complete vector function over the time interval of interest,
0<t<T, orbyspecifying a vector initial conditicn
z°(0) and integrating (4-21) to dbtain zo(t), 0 <t <T,

2. Using z°(t), O <t < T, solve (4=-25) for @l(t), 0<t=<T
and (L4-27) for pl(t), 0<t <T,

3. With these results and the appropriate data, y(ti),
i=1,2, *»+ , N, solve (4-30) for al.

L, Cbtain zl(t), 0<t<T from (U-2L).

5. Repeat steps z. through k4, for as many lterations as desilred

or until an appropriate convergence criterion is satisfied.

The above procedure requires the storage of the matrix @k*l(t)
and the vector pk+l(t) over the time interval of interest at points
determined by the size of the integration interval. For large problems
or where a very small step size is required for numerical stability,
this approach can easily exhaust the core storage capabllity of even
the most modern large digital computers. In such cases an alternate
approach whichvrequires more computatlon time can be used, After Bk+1;

the new estimate for the initial conditions, has been obtained the

following systems of equations are solved simultaneocusly:
skl L Of ki1 K+l
) = ()| kT () 5 §(0) =1 (4-33)
4=Z

L) - oe(s, 2N u) (%;:)l k(pk+l(’b)—zk(t)) 5
Z=2

50 =0 (4-3W)
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s 20y = gt (4-35)

Hence the fundamental matrix and particular solution need be stored only
at the points of observation, t,, for Eq.(4-30) and in addition a
vafiable step size integration algorithm can be used to solve (4-33),
(4-34), and (4-35) ensuring numerical stability. In the sequel, results
obtained by both methods will be reported.

It would appear from the above that in general (nrr)2 + 2(n+r)
differential equations must be solvgd simultaneously along with aﬁ
n+r algebraic system at each iteration. However, with an r-dimensional
constant parameter vector, the last r -rows of the fundamental matrix
and particular solution vector have the trivial solutions O or 1.
Introducing‘the consequent simplifications in the remaining nontrivial
‘equations results in a system of 2n + n(n+r) differential equations to
be sélved for each iteration, a reduction of 2r + r(nt+r) equations,

Section h.3 contains the results of "controlled experiments” in
parameter estimation performed upon the proposed glucose regulation
system model. For this purpose reasonable numerical values are
substitﬁted in the Eqs.(u-h) through (u-13) to generate "ideal" system
behavior,  Observations are then deliberately corrupted to simulate
laboratory measurement errors and the resultant "data" along with
"gueSSedf values Qf the parameters of interest are introduced in the
parameter estimation algorithms., The object is to demonstrate the
feasibility'of the approach for this class of problems and to specify

the data which will be required to use the scheme to obtain numerical
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values for the proposed model which represents the specific normal
' éu‘bjec‘b upon whom 'b_he cxperiments have been performed,
Equation (L4-15) represents system observations. The noise model

used in the controlled experiments is as follows:
7(ty) = PlRl(ti)[zl(ti}l + PR, () (L4-36)

where, for example, =z,

1 1is the state variable measured, R, and R,

are statistically independent uniformly distributed random variables in
the range [-0.5,0.5], and P; and P,
0=<P, P, =1l. For example if P, = 0.2, when =z; = 100 the maximum

are constant coefliclents,

possible error is + 10%; for small values of the measured variable the
second term in (L-36) dominates. In the results vo be reported, the
phrase "10% noise" implies that P,

The numerical algorithm used to solve the required differential

=P, = 0.2 in Eq.(L4~36).

equations consists of an Adams-Moulton predictor-corrector formula with
the method of Runge-Kutta-Gill used to start the integration. Variable
step-size capability is an integral part of the method to automatically
control truncation error, and double precisioﬁ computation is incorpor-~
ated where appropriate to control round-~off erfor. The numerical al-
gorithm used to solve the algebraic system, (4=30), consists of
Gaussian elimination with iterative improvement and accuracy controlled
by a tolerance setting and a limitation on the maximum number of forward

and backward passes,
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4.3, Algorithms for Subsystem Parameters Estimation.

Five core a]gorithms have heen developed to identify parameters
in five representative subsystems of the overall model of Section 3.7;3.
The underlying idea of the subsystem approach to the identification
problem 1s that experiments can be performed which excite only portions
of fhe overall system thereby uncoupling loops and allowing specific
portions of the system to be treated independently, For example,
referring to Figures 22 and 23, which depict the model for insulin
generation and subsequent distribution and degradation, an intravenous
infusion of insulin IN(L), causes a hypoglycemic response which re-
sults in an uncoupling of insulin secretion dynamics from insulin dis-
tribution and degradation dynamics. Therefore given an input IN(t),
0O <t < T and sampled measurements on u - i,e. ulp<ti)’
i=1, 2, *++ , N, the estimation algorithm can focus exclusively on
o9 a3. Then fixing these parametefs and
specifying e(t), O <t < T which would result from an infusion of

the parameters viy Vis 8, &

glucose F(t), O <t < T, allows us to identify the parameters of

the secretion dynamics. Although some details may differ from subsystem
to subsystem the above constitute the essential ingredients of the
apprdach.

It was found that five basic subsystem parameter estimation
algorithms will suffice to identify all of the parameters of the
proposed model from systems experiments which are feasible on human
subjects and data which are obtainable, The manner in which the sub-
system algorithms must be used is indicated in Section 4.5. The

required systems experiments are presented in Section L.k,
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Algorithms A through D are applicable to estimating the parameters
of the controller whiie algorithm E applies to plant subsystem identi-
fication., In all cases the total simulated system time was T = 100
min. In each case the detailed estimator algorithm equations are given
in Appendix E. .

A. One Compartment Distribution Dynamics,

Mcdel: x == KX+ kih(t) ; x(0) = Xy (4=37)
Tnput: n(t) ; 0<t<T | (4-38)
Observations: y(ti) = x(ti) + 1 (4+-39)
Estimate: kl’ kz

If this model represented one compartment dynamics for insulin,

for example, then representative values for the parameters might be

5

k, = .07 representing a disappearance time constant of approximately

il

70 representing approximately a 14 £, distribution space,  and

i)

[+

14 minutes. The initial condition used was x(0) = 10 uU/mf + 7. The

input used in this instance was:

1 Umin , 0<t<5min
h(t) = { : (4-ko)

0 t > 5 min

2

These numerical values were used to generate the true trajectory of
(4-37) which was then corrupted as in (4-36) té represent the
"obaservations™, |

The behavior of the estimator is depicted in Figure 30. In all

cases the estimated value of the parameter is given as a function of
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the number of observations., Results are shown for initial guesses of
parameters deviating 20% and 50% from the true values, with 5% and
20% observational noise. In addition observations were either equally
spaced, Figure 30-1,3,5, and 7 or clustered about the peak in the
response, Figures 30-2,4,6, and 8. The results show that only five
sample points :esult in a reasonable estimate of the parameters even
with 20% roise on the observabions and an initial guess which is 50%
in error! The important characteristic of all these results is the
vattern of improved esfimates as more observations are included. Other
combinatione of initial guesses and other random nolse samples led to
substantially the same pattern of results., TFor each obsérvation set,
the estimated paraméter value is that resulting from three iterations
of the algorithm.

Although the feasibility of the algorithm was demonstrated with
numerical values representative of insulin dynamics, the method is
applicable to any other hormone of interest with numerical values and
dimensions modified accordingly.

Much effort has been expended in biological leboratories to develop
techniques for estimating parameters such as biological decay constants
by means of radioactiﬁe tracer injection. These methods are much more
time consuming and demanding of investigative expertise than the
experiment required to implement the above scheme., In this case an
intravenous infusion of insulin is administered over five minutes and
five or more plasma insulin samples are taken over a period of 100
minutes. This total time period is not a fixed quantity, but coﬁld be

reduced to something more convenient experimentally with no substantial
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change to the estimator aléorithm. The indications are that present
knowledge of.the reqﬁired parameters for "initial guesses" and hormone
assay techniques are well within the level of accuracy demonstrated to

ve sufficient for convergence of the algorithm in Figure 30,

B. Two Compartment Distribution Dynamics.

Model: X, = (l/vl)[-alxl+a2(x2-xl) + h(t)]
. (L=k1)
X, = (l/vz)[-a3x2+a2(xl-x2)]
Input: h(t) , 0<t<T (k=L2)
Observations: y(t;) =x,(t;) + 1 o (B=b3)
or:
yl(ti)-= Xl(ti) + ﬂl
(L=bl)

vo(ty) = x,(t) + M,

a

Estlmate: 815 255 3

If this model reéepresented two-compartment dynamics for insulin,
for example, then true parameter values (as derived in Section 3.7.3.2)
might be vy = 3.5 4. the plasms space, vy = 1.5 4. the interstitial

fluid space = 248 mt/min the plasma space disappearance coefficient
? - H

81

&, = 309 m{/min the diffusion coefficient, and a, = 156 the inter-

2 3

stitial fluid disappearance coefficient., Typical initial conditions are

x1(0) = 2L uU/mt + 1, x

2(O) = 14 pU/me + 7. The input used in this

case was:
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1 Umin , 0 <t <5min
{ (4-45)

0 , t>5min

These numerical values were used to generate the true trajectories of
(4=k1),

The operation of the estimator for observations assumed only on
%, ‘the plasma concentration of the hormone, is illustrated in
Figures 31-1, 3, 5, 7, 9, and 11. Results are shown for initial param-
eter guesses deviating 20% and 50% from the true values, with 2% and
5% measurement error on X . The indications are that approximately
25 samples suffice to obtain recasonable parsmetcr estimates under the
experimental conditions simulated,

It should be emphasized here that although thié algorithm is no
more difficult to use than the one-compartment algorithm the advantage
over classical méthods of estimating these parameters is more dramatic,
The variable x. i1s not directly observable and values for the parame-

2

ters a_, and a, can only be conjectured from indirect evidence.

a 3

However, in the event that techniques such as lymphatic cannulation

are perfected to allow a measurement of X interstitial fluid hormone

2’

concentration, the operation of the estimator can be markedly improved.
Figures 31-2,4,6,8,10, and 12 display the results obtained assuming

cbscrvations on both xq and. X Although the same initial guess

errors have been aésumed, the algorithm displays much better properties

even with 20% measurement noise on both x, and x,! Here about five

1 2

neasurements of both %y and X, are sufficient to obtain close

estimates when 5% measurement error is assumed compared with about 25
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samples required when only Xq

It might be asked at this point why the parameters Vi, the

the interstitial fluld compartment

is dbservable,

plasma compartment volume and Vo)
volume were assumed known? Reiterating the modeling point of view care-
fully devcloped in Chaptcr 3, thesc distribution volumes are viewed as
mechanical froperties of the system and such phenomena as the entry of
glucose into intracellular spaces is considered not as an enlargement
of the distribution space, but as an actlve blochemical removal mechan-
sim from the viewpoint of the interstitial fluid volume. The results
of numerous bilological investigations have fixed these parameter values
with far more acburacy than any other parameter in the system under
study. 'For example, for a 70 kg. young adult male the plasms volume is
3.5 1, exclusive of red blood cell volume, and the interstitial fluid
volume is 10.5 4. These values very with age and sex but those
variations are well documented statistically. Accordingly, in this
investigation the abo#e numerical values are assumed as well as Vé =
17.5 4. for the mechanical distribution volume of glucose which
includes plasma, interstitial fluid, and red blood cell volumes. On
the other hand, when a one-compartment distribution model is assumed,
as ié the case for epinephrine in Section 3.7.3.2, the distribution
volume cannot be assumed knowr since it is an artificially which has to
represent in a lumped fashion plasma volume, interstitial fluid volume,
and the diffusion process connecting these two compartments. Accord-
ingly, in Algorithm A both the distribution space parameter and the
disappearance coefficient parameter are required to be estimated from

experimental data,
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C. Error Proportional Saturating Nonlinearity.

Model: X = = KX + kl% {1 + tanh[B(c~y)]} (4=k6)
Input: e(t) 3 0t <T (b=li7)
Observations: y(ti) = x(ti) + T (L-L8)
Estimate: a, B, Y

Equation (L-L6), for example, might represent the secretion of
insulin as a function of plasma glucose concentration, c(t), into a
onc—compartment distribution volume. The choice of onc or two-
campartment distribution dynamics is irrelevant to the operation of
the estimator for secretion dynamics since in elther case the parameters
are assumed znown, having been determined through the use of either
Algorithm A br B.

To simulate the hyperglycemic response which would be'expected
from an intravenous infusion of glucose of approximately 15 grams over

5 minutes, the following function was used for c(t):
e(t) = hoo (e~¥/10 _ o~/5) (4-49)

Fixed parameter values assumed‘were kl = 70, kz = ,07, and the true
trajectory was generated with variable parameter values « = 0.3,
B = .078, and vy =25, The initial condition on (4-L46) was taken to
be x(0) = 10 pU/m + 1.

The estimator algorithm results are displayed in Figures 32-1, 3,

5, 7, 9, and 1l for equally spaced observations over [O,lOO] ﬁinutes
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and in Figures 32-2, L4, 6, 8, 10, and 12 for observations clustered
~about the peak in the response, which occurs in this case at approx-
imately t = 20 minutes. These results indicate that eleven sample
points seem to be sﬁfficient for reasonable estimates.of the parameters
even with initial guesses deviating W0% from true values and 20%
measurement error.

It can ve seen from these results that the parameter B8 1is the
most difficult to estimate properly in this particular case which would
indicate that the trajectory, x(t), 0 <t <T is least sensitive to
variations in L. Such a result can alsc be obtained 'by performing a

standard sensitivity analysisgl601 Proceeding formally,

x ford
ﬂn%&w=x&ﬂ@%ﬂy+(ak M+($$
0

AR + (%X;) ay
0 Yo
(4-50).

where higher order terms have been truncated. Expressions for the

gradient terms of (4-50) are obtained from (L-L6):

k =
Sk, oL 1+ tamlple-y)]} @0 )
@ nFong enea’len] 5 =0 ) Gs1)
O K X : o .2 3x,y
G Ry Egesem Byl ; (5 "0 J
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e

ne>

, % ) (k-52)

ne>
&

BT Y D

Then the dynamic sensitivity equations for ¢, B, and <y are:.

aul kl

5t KUy =5 {1+ tanh[p(ec-y)I1} u, (0) = 0 R

au2 kl o

5 kou, = == afc-v) sech™[B(e~v)] u2(0) =0 > (%-53)
au

EEQ + iy = - &y % B sechZ[B(c-y)] ; u3(0) =0  J

Trajectory variations can now be detérmined from (4-46), (4=50) and
(4-53) for any small perturbation in «, B, and vy. Although the
result is already known in this case and has been obtained by an entire-
ly different means, some situations might require such analysis before-
hand in order to motivate a weighting matrix {see Eq.(4-29)) for

improved performance of the estimator algorithm.

D. Error Proportional and Error Rate Saturating Nonlinearity.

o
. . 1
Model: X = = k2X + ks {1+ tanh[ﬁl(C-Yl)J}

Q

+ k) 5= {1+ tanh[p(cmy,)]}  (b-5h)
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Input: e(t) 5 0<t<T (4-55)
Observations: y(ti) = x(ti) + 1 ' (4=-56)
Estimate: al’ Bl’ Yl’ azJ 621 YZ

Equation (4-54) might represent the secretion of insulin as a
function of plaéma glucose concentpation, and the derivative of plasma
glucose éoncentration when glucose is increasing. Again, the choice
of a one-compartment model for distribution is irrelevant to the
operation of the estimator for secretion dynamics,

The response of plasma glucose to a finite duration step input of

glucose is simulated by Eq.(4-49), from which we also obtain de/dt,

An attempt to estimate all six parameters of (4-5k) simultaneously
by means of the gquasilinearization algorithm was unsuccessful. However,
an alternative approach is suggested by the fact that the rate
secretion term of (4-54) is operative only When. de/dt > 0. With a
forcing function, c(t), that rises exponentially to a peak at t = 7
min and decays exponentially thereafter, the rate secretion term will be
excited only in the interval [0,7). In the interval [0,7] %Doth rate
and proportvional modes are execlted, while in the interval [7,T} only
the proportional mode is excited. It should be possible then to segment
the identification algorithm to exploit this fact.

The identification problem is segmented into two passes. In the
first, only the proportional mode terms are obtained which are then

fixed and used in the second pass which obtains the rate mode terms.
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For the first pass:

Model: X == kx+k §£ {1+ tanh[Bl(c-yl)]} ;

x(10) = %, (4-57)
Input: c(t) 3 0=t =T (4-58)
Observations: y(ti) = x(ti)'+ M3 0=t 2T (4-59)
Estimate: o, By, vg

where observations are confined to the interval [lO,T] and the initial
condition for (4-57) is y(10). For the second pass let 0y, B, and

Y1 be fixed at the estimated values cbtained from the first pass,

then:
. al 052
Model: X = - kx + Ky o= {1+ tanh[p, (e=v, )13 + Xy T
{1+ tanh[ﬁz(é-yz)]} (4-60)
Input: | e(t) 3 0=t <T (4=-61)
é(t) ; 0<t<T
Gbservations: y(t;) =x(t;)+ 1 ; 0=t =T (4-62)

Estimate: az, 62, Yo

The true trajectory was obtained with the following parameter
velues: Xk, =70, k, = .07, a; =0.5, By =.078, v, =25, a, = 0.5,

B, = 0.25, and vy, = 20. The estimator algorithm results are displayed
2 ? 2
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in Figure 33. Here o, =FH, B, =BF, v, =0, o, =GH, B, =BG
l 2 l 2 l 2 4 2 2

2
~and Yo = CD. Figures 33-1, 2, 3 depict estimation of the proportiocnal
rmode terms, while Figures 33-4, 5, 6 deplct estimation of the rate

mode terms., Results are displayed for 2% and 10% measurement error,

25% error in the prbportional mode parameter initial guesses, and 15%
error in the rate mode parameter initial guesses,

It is evident that more studies could be performed in this particu-
lar case to select an input which enhances the operation of the
estimator algoritim; While the proportional mode is excited by any
hyperglycemic lnput, the rate mode can only be properly exclted by a
rapldly rising input. Even with a fixed glucose input to be simulated,
eg. 15 grams, some cholce of input magnitude and duration will be more

suitable to the estimation problem than othcrs. Further commente will

be directed to this topic in Section 4.6,

E., Error Proporticnal Compound Saturating Nonlinearity.

d +a . x ,
Model: il (l/T){; X, - —2—§2-§ {l—tanh[b9(e—eo)]} + F({%

o]
11

2= (L) %

3 (1/vp) - agXy + az(xu—x3 + =4

o
1}

{1- tanh[bl(e-el)]g}

X), = (l/Vi){- agXy, + az(xs-xu)}

e =R =~ X2
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Input: F(t) 3 0=st<T : (b-64)

»ObServations: yl(ti) = xz(ti) + Ty
| (4-65)
yp(6y) = x5(85) + 1,

Eslimale: d9, a9, b9, and &g

The system, (M—GS), represents the model dynamics pertinent to the
process of glycogenesis., Accordingly, it includes the compound non-
linearity for hepatic uptake of glucose as a function of plasma glucose
error and plasma insulin, distribution dynamics for glucose, and the
secretion and two-compartment distribution dynamics of insulin., We
assume that numerical values for all parameters other than those of
the compound nonlinearity have been previously obtained by application
of previous algorithms. All other plant processes involving the glucose
error as input and a hormonal control as)a variable parameter can be
identified in an analogous fashion,

The fixed parameters used were vg =175, T=0.8, v_= 3560
v, = 10500, a, = 2h§, 3, =309, ag = 156, 4, = .07, by = .0535,

e

1 == 20, and R =100. Initial conditions assumed were x,(0) =0,

1
X2(0> = 100, x3(0) =21+ T, and xu(O) = 14 + 7. The numerical

values taken for the parameters to be estimated in order to generate

g =3 Dg=0.1,and e =- 30,

The input taken was a finite duration step, corresponding to an intra-

the true trajectories were d9 = 90, a

venous infusion of glucose of 6 g/min for 5 minutes.
The resulis obtained on this problem are displayed in Figures

34-1, 2, 3, and 4, Under the conditions assumed, i.e. 20% error in
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initial parameter guesses and 5% or 10% measurement error, the results
indicate that 11 sample points result in reasonable parameter estimates

with significant improvement on parameters and a. only after

dgr Pg 9

31 samples have been assumed.

L, Physiologic Systems Experiments for the Inverse Problem.,

The system identification algorithm of section 4.5 requires that
data be obtained from five basic physiologic experiments. These
- experiments must be performed on the same experimental subject under
conditions which are controlled and reproduced Lo the.greatest extent
possible,

The required experiments are as follows:

I. Insulin infusion

a, U/min , 0<t < T

IN(t) = (4-66)

0 , T St ST

II. Glucagon infusion
a, pg/min , 0<t <7

GL(t) = (4-67)
0 y To <t =T '

III. Epinephrine infusion
a g /min 0t =T,
3 " / ? 3

EP(t) =¢ (4-€8)
. 0 7. <t =T

IV, Growth Hormone infusion
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=

8, ug/min , 0 <t =7

GH(t) = (k-69) .
0 . T)-l- <t =

3

V. Glucose infusion

a5 g/min , 0=t < Ts

F(t) = (k-70)

0 5 TS < t.s T

- During each experiment samples must be obtalned on the variables u

1y’

u and Uy e In addition plasma glucose c(t), must be con-

zp) '\.13,
tinuously measured over the course of the experiment, [0, T].

The magnitudes a;, and the durations of the infusions 75, Tor
these experiments have not been specified and can ve chosen for experi-
mental or physiologié convenience. However, in the controlled experi-
ments of Section 4.3 the following numerical values we?e taken:

&y =1 U/min, 7, =5 min, ag = 6 g/min, 7. =5 min, and T = 100 min.

>
Although many other experiments which could be performed suggest
themselves, it seems that the above constitutes the simplest experimental
requirements for the application of the methods under investigation.
Once the experimental techniques for the above have been perfected then
more ambitious experiments and identification algorithms can be explored.
To the best of our knowledge, the above series of experiments have
never been performed on the same subject, or at least have nol been
reported in the literature. But even with these minimal experimenfal
requirements many problems of technique are encountered. For our

purposes careful consideration must be given to insuring reproducible

re-experimental subject regime, to minimizing catheterization trauma
dJ & P )
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and to obtaining a more precise characterization of measurement errors
-assoclated with the assays of insulin ulp’ 2p’

and growth hormone uup. Some studles have been per-

glucagon u

epinephrine u

3}
formed on the effect of catheterization on serum levels of growth
hormone and glucosegl6l] Such studies for all the variables under cone-

sideration must be performed before we can have any confidence that the
data reflect system dynamics and not unwanted experimental disturbanées.
Since hormone assays are extremely complicated procedures and vary from
laboratory to laboratory more careful consideration must.be given to
measurement variance. With these expected errors more accurately
specified, the model which we have used for the controlled experiments
of section L.3, i.e. Eq.(l-36), can be adapted to the experimental
situation for the measurement of each specific horméne. Since the
measurement error model used in the controlled experiments was extremely
conservative, these new error models may result in better estimator

performance with less required sampled data,

L,5. An Algorillm for the Identification of the Complete Model.

The model of Egs,(4-4) through (4-13) is to represent a 70 kg.
young adult male, Aécordingly, 6n the basis of physiology we cbtain
several distribution volumes; viz. vb, v, and Vg The glucose
regulation set point R, and the rate of glucose utilization by the
brain B are assumed known. The parameters associated with hepatic
glucose uptake attenvation are also assumed known since measures of

glycogen deposit would be required for their determination., In the

normal subject, however, these dynamics are not excited. The time con-
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stant associated with systemic circulation is also assumed Xnown.
"In the controlled experiments of Section 4.3 these parameter values
were taken: v, =3.54 v;=10.54, vy = 17.5 4, R = 100 mg%,
B = 80 mg/min, and T = 0.8 min, Initial conditions on the differen-
tial equations are determined from measured values of the variables
under observation. Hénce the following parameters remain to be

identified on the basis of experimental data.

Controller (31 parameters)

Insulin
Distribution: 8y, 85 ag
Attenvation: h3, Yy
Secretion:
Proportional; d;, Dby, oL
Rate:. dz’ bg, €01
Glucagon
Distribution: &), a5, ag
Secretion: d)., bh’ €5
Epinephrine
Distribution: v, a
e’ 7
Secretion:
Proportional: ds, b5, 03
Rate: d6’ b6’ €50
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Growth Hormone

 Distribution: ag, o

Secretion: d7, b

Plant (21 parameters)

Glycogenesis

Glycogenolysis dlo’
djj}

Peripheral Utilization -dl3’
By

Renal Excretion d, 5,

Using the data of experiments I

algorithms A through E of Section (k.

¥ *10

72 ok

d9, a1qs b9, X0

b

8120 Y100 €05

8135 P11y €0

81)» P13 Epg
Y10
b

12> o7

through V of Section (4.4) and

3), the above parameters are ob~

tained by performing subsystem estimation in the following order.

Estimated parameter values obtained are fixed and assumed known in the

subseQuent steps,

Step Algorithm Experiment
1 B I
2 B _ IT
3 A : III
Y B v -

Cbservations Estimate
ulp(ti) 85 8 83
uzp(ti) 8, 8, 8
u3(ti) Vs B

w5 (%5) - agaga
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5 D v ulp(ti),c(t) ' dy,0,e475 4,
_ Poso1
6 C I . uzp(ti),c(t) dy,, oy, €0,
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L,6. Control of Metabolic Systems Experiments.

Recent laboratory efforts have been directed to the implementation
of feedback control technigues in various metabolic systéms investiga~

[162] have attempted to main-

tions. For example; Andres and co-workers
tain an elevated blood glucose by means of an initial open-loop glucose
input policy followed by corrections made at ten minute intervals based
on batch determinations of blood glucose level. The approach taken is
highly intuitive and very laborious to implement depending as it does on
2 high level of investigator-experiment interaction. Another approach,
representative of a truc closcd-loop fcedback control system, has been
[163]

implemented by Kadish; Here a continuous glucose monitor with an

inherent time delay of approximately seven minutes generates a voltage
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proportional to blood glucose level, A control law of the bang-bang
type with dead-zone then determines whether insulin or glucose will be
infused for control. To the best of our knowledge this is the most
ambitious attempt at implementing closed-loop feedback control of a
metabolic system experiment. However, the scheme suffers from two
serious deficiencles which may be amenable to analysis. First the
effects of the inherent time delay in the measurement apparafus must be
overcome, Second, the dead-zone in the control law is much too great to
allow & fine control of blood glucose. While the latter problem is
easlily overcome, the complications arilsing from an inherent time delay
of seven minutes are more seriocus. Clearly some kind of prediction must
be included in the feedback control loop.

We will cxaminc the fcasibility of polynomial prediction in this
application. We assume the presence of a continuous glucose monitor
with an inherent time delay of p minutes (6 <p <8) and the compu-
tational capability of a small digital computer such as the PDP-CS,

The computer will operate in the data collection made to obtain blood
glucose samples at intervals of one minute and will perform any

necessary calculations between analog-to-digital conversions.

In the general least-squares polynomial approximation[l6h] to dis-
crete data g(ti), we seek an approximation of the form:
n
5(8) ~ ) & (t) (k-71)
k=0
which holds over a set of N+l points, t., t see t where

O) 1’ ? N’

N = n, 1in the sense that the aggregate weighted squared error is
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minimized, i.e.

N n 2 .
i ) lt)|e(sy) - ) gty (h-72)
8% i=0 ' k=0

This imposes the conditions:

N n a
2 ) )| s(6) = ) e (s)| p=o0 (4=73)
dli-0 k=0

Performing the indicated operations results in the n+l "normal”

equations:
N n N
D ot des(t) Y e (s) = ) by (s elt;)
i=0 k=0 i=0
J=0, 1 *++, n (4=7l)

When N =n, the system (4-7lh) is equivalent to requiring that (L-71)
be an equality at the n+l points, i.e. we obtain n+l equations in

the n+l unknowns ak.

Denote the sampled data x(ti) = b,;, with sampling interval

A = 1 nin, and meke a prediction over p intervals., Iet:

b.

i discrete cbservatlons

o+
1]

current time (glucose monitor time)

i predictor time (experimental subject time)
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A = sampling interval

Then:

x(t_ ) = x[(n+p)al (4=-75)

n+p

Denote the approximating polynomial:
. n -
x(t) = ) at® ot = | (4-76)
k=0

Assuming n+l observations with N = n and a unity welghting ylelds:

2 n
ay + aqh + a2A toers A A= bo
(4=77)
a. + a (EA):+ a (ZA)Z + e ra (28 =0
0 1 2 nt 1
a~ + a.(nA) + a (nA)2.+ cee g (nA) =
0 1 2 n n

This algebraic system yields Qny Bq5 ;8. The prediction is then

cbtained from:

. |
x(ty, ) = ) ag@p)als | (4=78)
k=0 '
T§ obtain :'c(tn_l_p), evaluate:
n .
Rt = )k a[(eep)al™t (4-79)

k=0
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%
n+p
" To obtain '/‘ x(t) dt, evaluate:
0
t t t
n~+ n n+
fx(t) at =f x(t) dt + f x(t) at
0 0 %
) n
n
®x K+l ‘
—c_+ Z = [pa] (4-80)
k=0

where cn may be obtained directly from the data.
To be specific we will assume n = 2, i,e. three observations

will be used to fit a parabola., Let:

tn+p = predictor point
tn = current data point
t, 1 = previous data point
’tn-z = first data point
We must fit;
x(t) =a, + at+ a 12 (4-81)
0 1 ‘2

Let the observations be designated:

x(t

n-Z) =D

(b ) =b | (-82)
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Hence we obtain:

2

ag + alA + aZA = bO
ag + a;(20) + a2(2A)2 =D, (4.83)
2 +\él(3A) + a2(3A)2 =D,
which mﬁst be solved for ay &y, and gz. Since A =1 we obtain:
fao\ ~ 3 -3 1 7 fbo\
g ay > = | - 2.5 L - 1.5 < b, P (4-8k4)
LaZJ L 0.5 -1 0 Sd L bZJ

Hence by using a three-point observation window the matrix of'(h-BM)

can be precom?uted and stored, The alternative of using a higher order

polynomial with each observation 1s impractical because of the huge

demands upon computef capability made vy the matrix inversion problem,
The three polnt predictor algorithm is then as follows:

1. Read at least three data points:

x(0)

]
(=2

x(1)

I
o’

x(2) 5

1i
o
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2. Compute e

3. Obtain agy, a;, a, from (L-84). "

. n+p
L., oObtain X(tn+p)’ X(tn+p)’ and '{ x(t) dt from (4-78, (4-79),
and (L-80) respectively. )
5. Transfer bz - bl’ bl - bo;

6. Read the next data point X(tn) & b,.
T. DRepeat from step 2,

Preliminary/trials with this algorithm on the types of problems
encountered in this inﬁestigation have not been satisfactory. The
typical situation in which the above would find application is as
follows: dinject intravenously an insulin dose sufficieﬁt to induce a
significant hypoglyéemic response and mechanize a control law for
glucose infusion based on predicted glucose concentration to maintain
the subject's blood glucose at or near nominal. The control law could
be of the following type:

tIl-I‘
f(tm_P) =k x(tm_p) + k, z'c(tmp) + kg fx(t) dat

| 0 (4-85)
where f(t) = mg Glucose/min, The predictor algorithm will work
satisfactorily only for small and slowly varying excursions of blood
glucose about the nominal value, It is incapable of predicting a majof
change in response that occurs over a short time interval. These are
preclsely the events of greatest importance for effective control. The
problem cannot be circumvented by the use of higher order polynomials
since these run the risk of having the data window overlap the time at

which an important event is expected. This is clear from an examinastion
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of Figure 13 which is a typical response to be expected from an
insulin input, |
Even supposing that sultable predictions are available, however,
it remains to select a criterion and determine a method by which k.,

L
ko, end k; of Eq. (4-85) are to be obtained. Without entering into
a discussion of the possible applications of optimal control theory to
this problem, which at this stage of these iﬁvestigations present
serious questions of formulation, a feasible approack would be to use
the method of Section 4.5 to obtain a subject model, apply (4-85) to
the simulated experiment on the model to determine -kl, ka, and k3 in
a least-squares sense, and finally use these coefficients with the

predicted states in the actual experiment. A less ambitious goal would

be t

(o]
7
(]
ok
jopl
D
n
)
=
)
ot
(D
o

use of k., k and k, on the simulated experiment with the model,
as an open-loop glucose input policy in the actual experiment. Such an
approach was discussed in Chapter 3 using the preliminary two-hormone
glucose model.

Returnirg to the problem of deriving adequate predictions of the
states to be controlled, it would appear that the only feasible solution
meetingAthe experimental and physiologic constraints must involve same
kKind of model simulation in real time. That is, the contfolier mist
.contain a subjéct representative system model to simulate system
response at least :p sampling intervals In the future of actual data
upon which closed loop control is to be ba.sed.. Again two albternatives
presenﬁ themselveé. The model can he obtained off line by the methods

of Section 4.5 or the model can be obtained on-line by means of
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sequential estimation‘tedhniquesgl65’l66’167’168] Both approaches
require computation facilities which exceed the capabilities of most
bilological or medicgl laboratory installations., But in addition, the
mechanizatibn of an approximate vector nonlinear sequential filter may
require such excessive computation time that the types of closed loop

control possibilitiés which we have discussed would ve severely

constrained.
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V. CONCLUSIONS

5.1, A Unified View of Metabolic Control.

The major organs and processes.comprising the metabelie funetion
of the intact organism can be considered as the 'plant" to be controlled,
and -the endocrine system can be considered as the "controller" which
produces control signals, 1l.e, hormones, in response to external or
internal disturbances in such a way that the organism’'s homeostasis 1s
maintained. Within the framework of differential equations the systen
may be represented:

x = £(x,u,v) | (5-1)

% - gl u) (5-2)
where:

x is an (nxl) metabolic state vector
u is an (mxl) internal hormonal control vector

v is a (pxl) external inpuv vector

or equivalently:
z = h(z,v) (5-3)

where:
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The metabolic control system consists of several major intercoupled
control loops related to carbohydrate, protein, and lipid metabolism,
Models for the Individual loops can be constructed independent of one

another and coupling dynamics can be dntroduced al the final stage of

metabolic control system model development.

\n
N
-

Techniques for Developing Mathematical Models

Developing mathematical models for metabolic control systems is a
necessary prerequisite before advanced analyses can be undertaken. The
modeling procedure is an iterative one starting with a proposed model,
simulating experiments, and correcting deficiencies in the model,

Heretofore, modeling efforts have relied primarily on physiologic
ensermble information to justify numerical values for parameters., This
investigation has yieided a feasible technique for obtaining model
parameters Lrom experlmenlal data on the intact living organlsm. Such
information should be more representative of the processes which are
being modeled than data obtained from surgical animal preparations.
Since our primary interest is a comprehensive model for humans, the
technique allows the experiments to concentrate on human experimental

subjects.
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‘As a.vehiclé for demonstrating the method this investigation has
yielded a more compréhensive dynamic ﬁaﬁhematical model of glucose
regulation than any now extant. Although we do not have the required
data of Section 4.4 perfdrmed on one experimental subject, which would
allow a subject model ﬁo be derived, enough simulations have been per-
formed with the "refined four-hormone model” to be convinced that the
model contains all of the necessary dynamics to reproduce such systems

[27] [72]

experiments as those performed by Porte and Madison,

5.3. The Design of Metabolic Systems Experiments.

Mathematical models are, in addition to being a necessary pre-
requisite for advanced analyses, an Invaluable aid in the design of
systems experiments.' Even a cursory review of the literature related
to metabolism reveals the fact that most experiments in metabollism are
component oriented rather than systems oriented. In such situations
the effects of inter-process coupling and feedback upon the variable
or variables under observation are often ignored. WNaturally the results
obtained from such experiments must be viewed with suspiclon when used
in a systems context.

Mathématical modéls of metabollic control can help to ameliorate
this situation in two ways. First, the very process of deriving such
models forces us to express in much more precise terms the relationships
among cdmponents and processes comprising the system. Second, the
digital computer can be profitably‘applied through model simulation to
check the consequences of conflicting hypotheses and in fact‘to simulate

experiments. 1In the early stages of model development any conflict
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between model behavior and system behavior is interpreted as a deficiency
'of the model which should be modified appropriately. But precise models,
by answering questions of state variable observability and parameter
sensitivity for example, can improve the design of experiments by pre-
cisely specifying precautions to be considered and the results to be

expected from particular measurements,

5.k, Future Efforts.

The Wayé in which models of metabolic control must be improved are
clear from the previous remarks. Additional hormonal controls, eg.
corticcsteroids, thyroid hormone, and sex hormones must be included.
Models for the protein and lipid loop must be developed and coupléd
together, Finally gastrointcstinel dyneamics must be included to allow
simulation of oral inputs to the system. Eventually, it may be possible
to consider neﬁral control effects in addition to hormonal controls.

Applications of control systems techniques in this area have hardly
begun. EIforts directed at the inverse problem such as those of Chapter
L can be improved. Here the identification problem was formulated with
no thecretical justification for the type of input used. However, in
biological systems, system or subsystem inputs can usually be charac-
terized at least qualitatively as a single or rather small set of
functions, It would seem reasonable to seek an identification scheme
which could make use of such knowledge of the inpuﬁ to improve the
identification algorithm, It would be of ﬁore general interest to see
whether the ldentification scheme itself could prescribe the input in

order to "optimize" the identification process.
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As we have éeen,'implementation Qf sophisticated ciosed loop
'experimen‘ts will réqﬁire the development of scquential state and
pafameter estimation schemes, In addition attention must be directed
to the criterion to be used for control, Although a least~squares
criterion has been sﬁggestéd the possibility of whether other criteria
sudﬁ as min—ﬁax might be more meaningful in such applications requires
investigation, Finally it would be interesting to seek answers to what,
if anything, the hormonal controller optimizes in the functioning of
- metabolic processes. It would seem that this is the most fruitful area
of sthdy for applications of optimal control fheory.

The present investigation has considered only models of glucose
regulation for a "normal" subject. The development of automatic methods
for diagnosing metabolic abnormalities will require numerous investiga-
tions of models representing abnormal responses. We believe that the
investigative framework established in these studies will be conducive

to these developments.
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APPENDIX A

ENzyvE KIneTIcs T2 100, 101

Enzymes are proteins with catalytic properties and are produced by
all living organisms. By catalysis they increase the rates of nearly
ali intracellular cheﬁical reactions. Without catelysis by enzymes,
these reactions would occur so slowly that life as we know it would not
be possible. For almost every organic compound that occurs in nature
there is an enzyme capable of reacting with it and bringing about some
chemical change.

Enzymes are made reaction specific by the primary structure of the
enzyme protein, i.e, the sequence of amino acids in its ﬁolypeptide
chains, The enzyme content of an individual cell is under slrict
genetic control through DNA. The most significant property of enzymes
1s their high degree of specificity for theif substrates,

All chemical reactions, including enzyme-catalyzed reactions, are
to some extent reversible. Within the living cell, however, reversi-.
bility may not in fact occur because reaction products are promptly
renoved by a further series of reactions catalyzed by other enzymes,
Tae living cell may be envisioned as a steady-state system maintained
by a unidirectional flow of metabolites.

Many enzymes catalyze reactions of thelr substrates only in the
oresence of a particular nonprotéin organic compound called the co-
enzyme., Unless both enzyme and coenzyme are present, no catalysis
takes place,

.Certain proteolytic enzymes concerned either with digestion or with
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the clotting of the blood are originally produced and secreted as
inactive enzyme preéursors which are called zymogens or pre-enzymes,

In some instances the formation of pre-enzymes may be regarded as a way
of protecting the tissues that secrete proteolytic enzymes from
autodigestion,

Certain highly purified enzymes consist of several molecular spec-
ies, The term isozyme is used to describe enzymes which, although they
catalyze the same reaction, are chemically or physically distinct.

Although over 1000 different enzymatic activities have been detect-
ed in animal and plant tissues and in microorganisms, as yet only about
75 of these have been isolated as purified crystalline proteins.

The fundamental theory underlying all chemical reactions is the
collision theory. Anything that increases the frequency of collisions
between molecules will increase the rate of their reaction. At high
concent?ations of reactants, collision frequency and hence the reaction
velocity will be high. For reactions involving two different molecules,

A and B, with molar concentrations FA] and [B],

A+ B —=» AB (A-1)
then,

Rate, = kl[A] [B]

And for the situation,
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n m

A+ 2B —=> AB, (A-2)
Rate, = k [A] {BJZ
1 1
In general for,
kl
nA + mB =% A B (A-3)

2

Rate, = kl[A}n (81"

and for the reverse reaction,

Ratez k2 [Aan]

In equilibrium,

Ratel = Rate2

n poel
K [AI[BIY = k,lAB ]
k. (A3 ]
£ by ()
2 [A]" [B] 4

where Kéq denotes. the equilibrlium constant. Notlce that although the
equilibrium constant for a reaction indicates the direction in which a
reactlon would be expected to proceed, it does not indicate whether 1%

will take place spontanecusly.
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Most factors affecting the velocity of enzyme-catalyzed reactions
"do so by changing reacﬁant concentration, These include:

(1) Enzyme Concentration: The initial velocity v, of an

enzyme~-catalyzed reaction is directly proportional to the enzyme con-
centration [E]. The enzyme is a reactant that combines with substrate
forming an enzyme-substrate complex ES, which decomposes to form a

product P, and free enzyme:

k

kl 3
E+8 2 ES 2 E+ P - (A-5)

Note that [E] cancels out of the final equilibrium constant

expression:
kl
E+8 2 E+7P
Ky
Raﬁel = kl[E] [8]
Rate, = ku[E] [P]
k
1 [P]
fea T, T TET (a-6)

Thus the enzyme concentration has no effect on the equilibrium constant,
i.e. enzymes affect rates not rate constants hence the K.eq of a

reaction is lnvariant with rcspcet to catalysis by enzyme,

(2) BSubstrate Concentration: If the concentration of the substrate

[S] is increased and all other conditions are kept constant, the
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initial velocity v, measured when very little subsirate has reacted,
incrcascs to & maximum value V, and no further, Velocity reaches a
maxirum value which is unaffected by further increases in substrate
concentration because even at very low concentrations the substrate is
Still present in excess of the enzyme by a large molar ratio. If an
enzyme with a molecular weight of 100,000 acts on a substrate with a
molecular weight of 100 and both are present at a concentration of

1 mg/mp, there are 1000 mols of substrate per mol of enzyme. Some real-

istic figures are:

(E] 10_8 mols

.01l pg/mt

-3

[s] 10 - mols

Il
fl

1 mg/ml

gilving a lo5 molar excess of substrate, The net effect is that the
enzyme limits the attainable maximum velocity., The substrate concentra-
tion that produces half the maximum veloceity is called the Kﬁ value or
Michaclis constant, It is determined experimentelly by plotting v as
a function of [8] (see Figure A-1l). The Michaelis-Menten equation
describes tnis dependence of the inifial velocivy of an enzyme-catalyzed

reaction on [S] and on Km:

V= 5] ' (&-7)
m

Manipulating (A-7) we obtain:

K
i

v

L
v

l .

BT S | (8-8)
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i.e., the equation for a straight line relating 1/v and 1/[S] which
represents a more convenient means for estimating Km.
Equation (A-7) can be derived as follows for the reaction where
the enzyme combines reversibly with its substrate to form an intermedi-
ate complex which reécts irreversibly with a second substrate to yield

frée enzyme and product.

Il

E+ 8 E+ P (2-9)

T

Applying the law of mass-action Ifor the concentration of enzyme-sub-

strate complex,
¢ = kl(E-C) g - (k2 + k3) C (A=-10)
Assuming that the concentration of the enzyme-substrate complex doesn't

change, at least over the period of time required to take a velocity

measurement, i.e. C = 0, then,

ES
CTETE (A-11)
—x s
1
The rate of breakdown of enzyme-substrate complex is given by,
P = kG (A-12)
. k3 ES
P = EZ‘I_K'?;_" | (A-13)
+ S
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Defining,

A
V, 2 kB - (A=1h)
v&p (A-15)
A k2 + k.
K £ 2 (Briggs-Haldane form of K) (A-16)

.m kl
We obtain the rate equation (A-7) with the Briggs-Haldsne form of the
Michaelis constant. However, when k3 << kz, i.e. when the breakdown

of complex is slow compared to the rate of achievement of equilibrium

between enzyme and substrate, then

k
K & R-i; - (A-17)
and (A-f) assumes the form originally specified by Michaelis and
Menten,

(3) Temperature: Over a limited range of values the velocity of
an enzyme-~catalyzed reaction increases as temperature increases. The
velocity of many biologic reactions roughly doubles with a lOOC rise in
temperature, and is nalved by a decrease of 10°C. For animal enzymes,
optimal temperatures are close to that of the body.

(4) pH: Optimal enzyme activity is generally observed between
PH values of 5.0 and 9.0.

(5) oOxidation: The sulfhydryl SH, groups of many enzymes,

notably the dehydrogenases, are essential for enzymatic activity.
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Oxidation (dehydrogenation) of these SH groups, forming disulfide
linkages (S-S), brought about by many oxidizing agents including the
0, of air, results in loss of activity.

(6) Radiation: Enzymes are highly sensitive to short wavelength
radiation. This is in part due to oxidation of the enzyme by peroxides
formed by such radistion,

To measure the amount of an enzyme in a sample of tissue extract
or other biologic fluid, the rate of reaction catalyzed by the enzyme
in the sample is measured.

- Much of our knowledge about the pathways of metabolism has come
from In vitro studies of purified enzymes.

An inhibitor (metabolic antagonist) is a compound (other than a

substrate) that combines with an envyme and results in decreased cata-

lytic activity. Inhibitors are of two general types: competitive and
noncompetitive, Competitive inhibition of enzyme activity is gradually
reversed by an increase in the concentration of substrate, They have
structures closely resembling that of the substrate and are inhibitors
for only a single enzyme, Noncompetitive inhibitors, e.g. heavy metal
ions Ag+, Hé++ or iodoacetic acid (reacts with ~SH groups) will
inhibit many enzymes; Since these inhibitors bear no structural
resenmblance to the substrate, an increase in the substrate concentration
is generally ineffective in reiieving noncompetitive inhibition. Com~
petitive and noncompetitive inhibitors may be distinguished by kinetie
analysis. Waen l/v is plotted against l/[S] at various concentra-
tions of inhibitor we obtain the curves of Figures A-2 and A-3. Non-
canpetitive inhibitors lower the maximal velocity V, by lowering the

effective concentration of active enzyme; but they leave . Km unchanged
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since it is independent of enzyme concentration. Competitive inhibi-
'~ tors do not affcet ‘V, but raise Km because at the concentration
of substrate that half-saturates the enzyme in the absence of inhibitor,
the concentration of free enzyme is decreased by the amount combined
with imhibitor. |
In terms of the initial velccity diagram, these effects may be

represented as in Figure A-k,
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APPENDIX B

TRANSPCRT PROCESSES

The intracellular-extracellular concentration differences of many
substances reflect the characteristics of the cell wall rather than
thosé of the cytoplasm., That region of the cell wall which sustains
concentratlon and electrical gradients and manifests the transport

mechanisms peculiar to living systems is called the cell membrane,

M, > M
& cell ¢
M, My
Mgy =¥, +M - (Mc + M.b) (B-1)
Mivans = Mg = My =M, = Yy (B-2)
M .. 1is the net flux entering the cell while M is the net
cell trans

transport through the tissue layer, The intrécellular concentration can
remain constant (Mcell = 0) even if transcellular net flux is present
(Mtrané %lo)'

A substance transported through a menmbrane iIs in equilibrium if its
net flux across the membrane is zero and all movement through the mem-
brane 1s due to passive forces, e.g. electric potentials or concentration
gradients.

Passive forces are those that develop spontanesously and don;t depend

on an energy supply linked to metabolism, e.g. diffusion, migration of
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ions in an electric field, osmosis.

Active forcce arc those that use the energy created by biologic
metabolism at the site of transfer,

Two factors control the rate with which a substance passes through
a mewbrane: the magnitude of forces responsible for the movement such
as éoncentration and potential gradients, and the ease of movement of
the particle through the membrane; the latter is denoted permeability
or conductance. The ease of particle movement within a membrane depends
in turn upon the mode of transport.

Diffusion through a membrane which is aided by combination with
carriers is called facilitated diffusion. In general small particles
are found to pass through membranes more rapidly than largér ones. For
many biological membrancs, the major mode of transport for small lipid-

insoluble particles is through membrane pores,

Passive Mechanlsms.
Diffusion. The unidirectional flux M;.,, of a solute at concentra-
tion Cl’ is proportional to the concentration with the constant known

as the diffusion permeability B2P.

My, = ¥Cy
Similarly,
Mop = G,
. Moy = P(C] - C,) (B-3)
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Permeability is related to the average diffusion coefficient D, and

the membrane thickness x

o
P= = (B-4)
0
Incorporating'area, A, we obtain the total transport:
- DA
MA = = (C; - C,) , (8-5)
0
In differential form;
x ;
M= - D(-&;) (B-6)
Or more generally,
M=a=Dv(C (B'7)

In practice these equations are written in terms of activities rather

than concentrations:
(B-8)
where: vy sl

The activity may be viewed as an effective concentration., As concentra-

tion increases activity decreases. Concentrations in biological fluids
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usually are less than 0.0l molar. At these relatively low levels,
‘little error is made by assuming that concentraﬁion and activity are
approximately equal unless the particles in solution are ions or there
are sites of attraction which immobilize certain solute molecules. The
ionic strength of blood plasma is about 24k mEq/L., resulting in an
activity coefficient of approximately 0.7 for all univalent ions;
activity of polyvalent ions is even smaller.

In summary, the diffusion equations should be modified: (1) if the
" particles are charged, by multiplying the concentration by the activity
coéfficient to account for the electrical interaction between particles,
(2) if some of the solute molecules are bound, by substituting the "free
concentration” for the total concentration, and (3) if the solute mole-
cules are dissolved gas, by substituting partial pressure for concentra-

tion.

Electrical Forces: The electrical flux through the membrane

depends on the potential difference, (Vi - Vz), the concentration of

particles C, the electrical permeability m, and the charge on an

individuval ion =z,

Mot =20 C(Vl - Vé) . (8-9)

We can express the permeability:

m = 'EIBZ (B-10)

where 7T 1s the membrane property for electrical migration analogous to
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D in the case of diffusion, At constant temperature, the ratio be-

‘tween 1| and D is constant.
J1_ 5 (B-11)

wheré F 1is Faraday's constant, the net charge per mol of univalent
ions (96,496 coulombs), T is the absolute temperature in 0K5 and
R 1s the gas constant, the thermal energy per degree temperature

- (8.31 joules per mol per degree centigrade).

Writing (B-9) in differential form,

M=-7m2zC %% '
or,

M=-72CE (B-12)
Membrane current density is,

JozFw (B-13)

2 .
z ch(vl - v2)

where g = 22 Fu C is the specific membrane conductance for a particu-

lar lonic species, so

-V,) (B-14)
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is the Ohm's law analog for.biologic membrances,

Water Movement. and Qsmosis: If the pressures on each gide of a

membrane are not equal, water flows from the side of higher pressure %o

the side of lower pressure.

where Ph is the hydrostatic permeability of the membrane., Water can
- also move by a mechanism similar to that responsible for solute diffus-

ion, this 1is called osmosis. If C_, =2 C

> 1 water will move from side 1

to side 2:

Q = POS{Q(HBO)I - a(H,0),] (B-16)
where the teims in the brackets are the thermodynamic activities of
water on the two sides of the membrane.

Water activity is not determined by water concentration but rather

by the total concentration of all particles dissolved in the water,

a(HBO) =1 - kz Cy (B=17)
i

where k 1is a constant with approximate value 0.018.

Active Transport.

Two mechanisms are used by living cells to hold materials out of
equilibrium across membrances, One is the transport at O2 into the

cell and CO2 out of the cell., The combination of O2 with metabolic
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substrates makes free energy available at the expense of substrate
‘energy. Part of t'his. energy ie uscd to provide the gradien‘ts for O2
and 002 diffusion. The second mechanism is the coupling of metabolic
energy to transport within the membrane, i.e. active membrane transport.
So an active force méy be viewed as a means of transferring energy
reléased by biochemical reactions to particle movement through the
memrorane,

Most sustained active transport is aerobic; thus oxygen is con-
sumed so that the withdrawal of either the substrate (e.g. glucose) or
oxygen eventually stops active transport.

For simple passive diffusion, the unidirectional Iflux increases
linearly in direct proportion to the concentration. In contrast,'an
actlve transporting system would be expected to be limiled by tlhe rate
at which it can supply energy to the transported particles., In other
words the flux rate is concentration limited at low concentrations, but
transport mechanism limited at high concentrations. So a plot of flux
vs, concentration levels off as the active transport mechanism becomes
saturated! Saturation can also be evidenced by those passive diffusion
processes facilitated.by intramembrane carriers; there are limitations
on the number of carriers and the rate at which they can shuttle across
the membrane, |

Quantitative Aspects.

The net flux for simple passive movement within a membrane from the
combined effects of diffusion and electric migration, where B = F/RT

is given by,
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M=~D (§§-+ zBC %%) -. (B-18)
or,
M= -D e 2PV L (V) (-19)
ax
where CezﬁV is called the electrochemical activity. Its natural log

multiplied by RT 1is the electrochemical potential u, which represents
the work necessary to accumulate a concentration C, at potential V,
starting from an initial state,

= BT 1n(ce?®V

T-'
!

)+ ko

©
It

RTInC+ zFV+p, . (B-20)

Further development depends on specific circumstances.

No net flux; Nernst equaticn,

For an lonic species in equilibrium, i.,e. no net flux,

_ -ZfV & - zZBV
O==-De = (ce™ )

% (CEZBV) = 0O

= CeZBV = constant

¢+ ¢ C.e = C.e (B-21)
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Rearranging we obtain the Nernst equation:
C
1 1 _
v, -V = 7 1‘“(6‘) (B-22)

This equation has three major applications: (1) development of a
critérion for passive equilibrium, (2) prediction of the menmbrane
potential, and (3) derivation of the Gibbs-Donnan relation., The Nernst
. equation can also be used to determine the necessity for and the
direction of membrane forces other than simple passive diffusion and
electrical migration,
A merbbrane potential can be naintained by purely passive means,
If the permeating particles are influenced only by simple passive forces,
the resulting concentration distribution is called a Gibbs-Donnan equil-~
ibrium, |

Net flux; Ussing equation.

Integrating (B-18),

. .
zBV zBV zZBV
e _ 2 ., 1 (B-23)
MI- ) dx = Cze Cle
1

however V and D can only be approximated within the menbrane so the
integration is impossible to perform from physical data. However, 1if
we consider unidirectional fluxés for le, C; =0 and for M12 s
C, =0, =0,

‘7‘ ezﬁV Zﬁvz
Mop | =~ dx = Cpe
1

and
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-j} ezBV ' zﬁVl
Mg j =3~ &= G
1l

Taking the ratio ylelds Ussing's equation:
-2 (B-2k4)

Summary.

If the net flux through a membrane occurs against an electrochemical
gradient, active transport is indicated. If the net flux is in the
direction of the electrochemical gradient and the unidirectional flux
ratio fits Ussing's equation, no forces other than simple passive‘
diffusion in an electriec field need he postuléted. Tf the previous is
true but the equation doesn't apply then the simple passive mechanisms
walch led to (B-24) are insufficient explanation to account for the ob-
served fl.uxesglozz|

An example of the above consideratlons occurs in the glucose control

[57]

model proposed by Seed, Acton, and Stunkard for the passive carrier
transfer process between glucose in plasma and glucose in red blood cells.

They obtain:

§ =XV L .= (B-25)
where:

G, & Glucose (grams) contained in all the circulating red blood
' cells.,



e

v, &

2
I

[}
pASE
I

A
¢, 2
g

213
[mass/unit time] into a unit volume of intracellular water.
If [g/min] into 1 liter, then X = C.75 (58.86).

Volume (liters) of water contained in all red blood cells,

& Glucose (grams) in plasma.

& Mass action equilibrium constant for the combination of

glucose with glucose carrier in the red blood cell wall,
Here it would be expressed as grams of glucose in plasma
corresponding to the concentration represented by the

equilibrium constant.

Same but expressed as grams of glucose contained in the red

bloocd cells,
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APPENDIX C

CARBOHYDRATE TOLERANCE TESTS

At the present time there is no widely accepted standard clinical
procedure for dlagnosing a faillure of the glucose control system,
diabetes mellitus. The criterla in use for diagnosing dlabetes by means
of the "standard” orél glucose tolerance test or the "standard"

intravenous glucose tolerance test vary from clinic to clinicglo3’lou’

105, 106]

The tolerance test consists of administering a given quantity of
glucose either orally or intravenously and measuring the body's response
by sampling the concentration of blood glucose at some chosen times
over an appropriate time interval., The intravenocus toierance test
avoids the variable absorption from the gastrointestinal tract making
it more reproducible and of shorter durationglo7’108]

Most uses of this test involve ropidly clevating the concentratlion
of blood glucose and determining a single constant of the subseguent
decay. The inherent assumption here is that glucose disappearance from
plasma follows simple first order kinetics, i.e. that it is a passive
process with the rate of disappearance proportiocnal to the concentration.
Obviously, the whole host of active processes that come into play under
these coﬁditions carnot be accurately represented by such a grossly
lumped model. Nevertheless, much effort has been éxpended in an attempt

to diagnose diabetes by the evaluastion of an exponential decay constant.

e

If: CO The blood glucose concentration when suitably elevated

>

k = The disappearance rate of glucose from the blood
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-kt

then: c(t) = Cy @ | | (c-1)
By evaluating k in this way it has been found by Amatuzio[Bl} that the
mean disappearance rate of glucose in normal subjects was 3.71 = .4 per
cent per minute with a range of 3.0l to 4,85 %/min, In subjects with
mila'diabetés mellitus not requiring insulin it was 1.81 + .51 %/min
with a range of 0.93 to 2.46 %/min, It has also been demonstrated that
the disappearance rate of glucose is reproducible in the same individual
and independent of the glucose load.

Even if the glucose tolerance test was an infallible test for
disgnosing diabetes, it gives no indication of where in the complex
glucose control system the abnormality might lie. It isn't unrealistic
to expeét that the derivation of a comprehensive mathematical model for
the metabolic control system will eventually motivate a procedure that

not only can dlagnose an abnormality but also pinpoint its source.
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APPENDIX D

EXPERIMENTAL PROCEDURES AND THE CONTINUOUS

MONIZORING OF BLOOD GLUCOSE

The experimental procedure used with the subject is as follows.
One end of a double-lumen catheter is introduced into an antecubital
or rorearm vein and the other is connected to the glucose monitor. A
sterile heparin solution is pumped at 0.2 c.c. per minute through the
inner lumen to approximately one quarter of an inch at the distal end
of the catheter lnside the vein, At this point the heparin mixes with
- the in-flowing blood froam the subject and the heparin-blood mixture is
withdrawn through the outer lumen of the catheter at C.4 c.c. per minute
for Passage through the instrument. The amount of blood withdrawn is
0.2 c.c. per minute, or 12 c.c. per hour.

The operation of the continuous glucose monitor is based on the
followiﬁg considerations. The enzyme glucose oxidase (G.OD.) catalyzmes
the oxidation of glucose by oxygen whereby gluconolactbne and hydrogen
peroxide are formed:.

G.0D.

C6 le 06 + O2 > C6 HlO 06 + H2 O2 (D-1)

Glucose Gluconolactone

A number of colorimetric methods have been devised for following this
reaction, based on the fact that HZOZ in the presence of a peroxidase
enzyme will oxidize certain colorless substances to highly colored ones.

These may be summarized as:
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Peroxidase

H, O, + "Chromogen” _ > "Color" . (D-2)
The intensity of the color is proportional to the amount of HZOZ
present and this in turn is proportional to the amount of glucose
oxidized in (D-1). These methods are subject to interference by sub-
stances which will react with HZOZ or with the colored species,

An alternative method of measuring the extent of reaction (D-1) is
to monitor the amount of O2 consumed., The problem here is the
instability of HZOZ with respect to decomposition into water and
oxygen. To the extent that this occurs, some of the oxygen consumed in
(D-1) will be liberated again and the ratio of O2 consumed to glucose
oxidized will be affected, One way around this problem is to ensure
that a1l the HZOE decomposes., This reaction is catalyzed by an enzyme
catalase whick is usually a contaminant of G.0D. preparations anyﬁay.

Thus we have:

Catalase

and the net reaction (D-1) + (D-3) is:

1 G.0D.
C,H . O, + =0 —> C, H,. O, + H_ O
6712 V6T T Va2 Catalase | & 10 76 2

(D-4)
This insures a constant glucose to O, uptake ratlo, but unfortunately
lowers the sensitivity of the method since only one-half mole of 0, is

consumed per mole of glucose,
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A solution to the sensitivity problem is to provide for the

destruction of peroxide by routes not leading to 0, formation, In

2

the method of "coupled oxidation,’ alcohol is added to the reaction mix-

ture., The reacticn of peroxide in the presence of catalase then

becomes:

' Catalase
——-——-——9 ; e
C, Hg 0+ H, O, C, H, O + 2H, 0 (D-5)
Acetaldehyde

Ancther way of removing peroxide uses the non-enzymatic reaction with

I catalyzed by ammonium molybdate:

: . _ Ammonium
H2 O2 + 2H + 2 I

> I, + 2H, O (D-6)
Molybdate '
We use both approaches by providing for reactions (D-5) and (D=6). This
is because the enzyme soluticn contains catalase and in the absence of
alcohol reaction (D-3) is competitive with (D-0), However, catalase is
not particularly stable, and is gradually depleted from the solution so
that I~ and molybdate are required also. The formation of I2 in
(D~6) is also advantageous in retarding bacterial growth in the reagent.

The rate of (D-l) is ©pH dependent so that the reagent must be

buffered. To summarize this rather complex affair:

G.CD.

catalase, -

I”, ethanol, gluconolactone
molybdate + glucose =——————> -+ acetaldehyde  (D~7)
buffered and/or I

at pH 6.0 T 9 e

G.0D., reagent
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The net result of this reaction is that one mole of O2 is consumed
‘per mole of glucose present,

Under the conditions we use the reaction can be shown to be kin-
etically 1st order in glucbse and independent of oxygen. Thus we have
in the delay line the situation of Figure D-l., Where;

6. =g, T (p-8)

and Gi and Gf are the initial and final glucose concentrations. The

oxygen consumption, A0 is equal to the chahge in glucose concentra-

2
tions as seen above, hence:

-kT)

20, = Gy - Cp = Gi(l -e (D-9)

and the O2 consumption is proportional to the initial glucose concen-
tration., T 1s chosen to give a substantial fraction of the reaction
(4-5 half-lives). Note that k is a function of G.OD. concentration,
PH and temperature, all of which should be constant,

The oxygen sensors are polarographic, i.e. they produce a current

proportional. to the oxygen level at an essentlally fixed voltage. Very

rovghly, we have the configuration of Figure D-2, where:

vV = iR
i = K[Oz]
V e [OZ]

The teflon membrane protects the cathode from deposits of protein and
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Figure D-1. Monitor Delay Line.
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A
—Kcl gel

Figure D-2., Sensor Configuration.
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other substances. It 1s permeable to O2 but not <o HZO'

> LoH™ ‘ (n-10)

Cathode: OZ + 2 HZO + ke
Ancde: bag + he +4CTT ———s LAgCL (D-11)

In a flowing solution the current is limited by the diffusibn rate of
02 to the cathode., This is highly temperature dependent and as a re-
sult the sensor output increases with temperature (~2%/°C).

As a check on the operation of the continuous glucose monitor
and Tor calibration of lhe inslrument as well as correcllions Tor
drift due to the laboratory environment, batch samples of blood

glucose are determined by the method described in reference [115].
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APPENDIX E

ESTIMATOR ALGORITHM EQUATIONS

Algorishm A,

Let the system be represented:

X = = kx + k h(t) . (E-1)

with parameters kl and kz to be estimated. Iet:

e

e

X B | (E-é)

>

Then:

- 2221 + Zg h(t)

i,=0 (2-3)

Omitting iteration superscripts for convenience, nontrivial terms, of

the fundamental matrix and particular solution are:

CP.-l_;l.:“ZZ‘CP.'L:L H -CPll(O)=l .
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P12 "~ %2 %277 ;o 9,(0) =0

. ' . (B-1t)
QPlS == Zz C.Dlg + h(t) 5 @13(0) =0 .

P =-Zy Ptz % 3 p(0) =0

The'algebraic system to be solved for the updated initial condition is:

N

i=1

(E-3)
i=1 2, 3
Algorithm B.
Let the system be represented:
VX, = - oagx 4 aa(xz-xl) + h(t)
(E-6)
[ az(xl-x2
with parameters a1, | 85, 8y to be estimated., ILet:
&
Zy =%
A :
z, = %, (E-7)
é .
23 = aq
A
z), =&,
A
z. = a
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Then:

=
I

(l/vl)[- 232y + Z)-L<ZZ-Z1) + h(t)]

Ne
il

5 (l/vz)[- 252, + zu(zl-zz)]

é3 -0 (E-8)
z), = 0
é5 -0

Omitting iteration symbols for convenience, nontrivial terms of the

fundamental matrix and particular solution are:

dpy = (A/v)=(25%2 )01 + 7,9p9] 3 9.(0) =1

%1z = (l/vl)[;(23+zh)¢iz + B Ppp] 3 9pp(0) =0

913 = (/v )[-(z5%2) )0y 5 + 2955 - 24] 5 p5(0) =0

b = Wpl=(Egra ey, + 2,922, ] 5 0p,(0) = 0

brg = (A/v)l-(agtz) ) 5 + 2,951 3 95(0) =0 (E-9)
by = (L/ve)l-(2r25)9,) + 2,91, 5 9,9(0) =0

b = (/Vpl=(Br25)0n0 + 2,81 | 3 900 =2

Ops = (1/v2)[-(z4+zé)¢23 + 2951 o ©,5(0) = 0

Qo = (L) l-(zrag)ey, + 4P 29-2,] 3 9, (0) =0
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@25 = (l/vz)[-<zu+z5)¢25 +z) - ZE] 5 @25(0) = 0
By = (Wv)(2372,) (20)) + 7, (p,=2,) + B(8)] 5 p,(0) = 0

(E=-10)
By = (L/vy)l(zy+25) (2,mp,) + 2,(py-2,)] 5 2,(0) =0

Assuming observations on x, only, the algebraic system to be

1

solved for the updated initial condition is:

N
Z Pp5 (B )leppq (35081 = 0y5(83)B, + 14 (8,)8, + @y, (8,08,
i=l .
+ ®15(t1)55 + pl(ti) - Y(ti)] =0 5 J = l: 'f. 2 5
(E-11)
In the event that observations on both =x. and x_ are possinle

1 2

the above system modifies to:

N
Z (tpuc?ll+cpzjc921)ﬁl + (‘Plj‘Plz”“‘sz‘Pzz)Bg + (cplj@l3+m2jtp23)f33
i-1

(900 525, 0By, + (5P 5+ P, 595585 (E-12)
N
i=1

where all variable terms are evaluated at times tl! tz, ree tN'

Algorithm C.

Let the system be represented:

% = - 'kzx + K 92‘- {1 + tanh[p(c~y)1} ' (E-13)
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with parameters @, B, Y to be estimated. Iet:

then:

e > e

>

b4
. 2
2y = = kz, + k — {1+ tanh[z3(c(t)-zu)]}
22 =0
s -0
“3
z, =0

Umitting iteration symbols for convenience, nontrivial terms of

fundamental matrix and particular solution are:

by =

= - B 5
kl .
- k2¢12 + 5= {1+ tanh[zB(c-zu)]} ;
k. o . kl z_(c=z, )se hz[z (c=z) )] ;
T Fofiz g Eprempssech Laglen gl
ky 2
- kz@1u - Bt sech [23(0"24)] R

(E-14)

(R-15)

the

(BE-16)
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| I')l = = Kby + klZZZB(ZM - %) sechzfzs'(c-zu}] 5 pl(O) =0 (E-17)

The algebraic system to be solved for the updated initial condition is:

N

) oys() oy (80081 + 9108008, + @15(8,)8
i=1

+ o (608, + py(ty) = w(8)l =0 5 §=1,2 3, 4  (z-18)

Algorithm D.

Let the system be represented:

k
. 1 .
R {ozl +a tanh[ﬁl(c-yl)] + 0+ aztanh[ﬁz(é-yzjjj
(E-19)
with parsmeters o, Bl’ Y1 and Ay 52, Yo to be estimated.
Phase 1 - Error Proportional Terms.
!
%= - kx4 Iy = {1+ tanhlBy (e=v;)]]
Let:
7, 2x
1 =
ly é
Zy =Gy
. (E~20)
-4
z3 = ﬁl
&
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Then:
2) = = Kz, + k== {1+ tanh[z3(c-zu)]}
Z, =0
. (E-21)
23 = 0
2), =0

Omitting iteration symbols for convenience, nontrivial terms of the

fundamental matrix and particular solution are:

orq = = Kyppq 3 90(0) =1

kl _
$1p = = Ko, + 5= {1+ tanh[z3(c-zh)]} H @12(0) =0

k) .2 '
¢l3 = - kZ@IS + = ZZ(C—Zh) sech [Z3(C_ZM)] 5 ¢13(O) =0
] E c
bp)y = = By, - 5= Zg%s sech [23(C'Zh)] 3 9q(0) =0

' (E-22)
k

B) = - Ky + 5= 2,8 (27-0) seoh’[z;(e-2,)] 5 By (0) = O
(E-23)

The algebraic system to be solved for the updated initial condition is;

N

jg: @lj(ti)[¢ll(ti)ﬁl + @lz(ti)ﬁz + @ls(ti)BS

i=1 T

+ @14<ti)34 + Pl(ti) - Y(ti>] =0, =1, =+, L

(E~2k)

At the final iteration, let: .
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k+1

e

k
AR (B-25)

1eg

e+l
|4

Phase 2 - Error Rate Terms.

104 (04
= -k kg (L tennlBy (ev)]) + Iy 2 (1 tannlpy(eey,)])
: (E-26)
Iet
'Zl é X
A .
Z2 = az (E_27)
Z., é BE
g A
y = Y2
Then:
&
2y = = KyZy + Ky 5= {1+ tann[p,; (e-vq)1]
z, ’ A
+ ky 5= 1+ tanh[z3(é~zu)]} (E-28)
z, =0
%y =0
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Omitting iteration symbols for convenience, the nontrivial terms of the

fundamental matrix and particular solution are:

$1 = = K95 H ¢11(0> =1

k:L
frp = = By, + 5= {1+ tanh[z3(é-zu)3} 5 9,(0) =0

i, | 5
¢13 = = k2¢13 - 5 zz(é-zu)sech [Z3(é'zh)] 3 ¢l3(0) =0 (E-29)
Py, = - B0y, - ;E 2223sech2[z3(é—zu)] 5 @14(0> =0

%1
By = - kpy + Ky 5= {1+ tanh[ﬁl(C'Yl)]}

kl > '
t 5 zzzS(BZLL-é)sech [23(¢"Zh)] ; pl(o) =0 (E-30)

The algebraic system to be solved for the updated initial condition is:

N
ZZZ 915()Lop7 (8108 + @15(%308, + @p5(%;)85
i1

+ o, (808, + Dy (8)=y(t)1 =0 5 =1, «e0, b (8-31)

where. B, in (E-31) should not be confused with B, in (B-28) and

(E-30).

Algorithm B.
Let the system.be represented:
d_+a_u

% = (/)¢ x = —ELEQ-lB - tanh[bg(e-eo)]} + F(%)
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%, = (1/vg) X (B-32)
e a
i3 =,(l/vp) - ag¥g + az(xh-x3) + 10° §£ {1 - tanh[bl(e-el)]}

%), = (l/vi) {~ agX), + az(x3—xh)}

with parameters 'd9, 2gp bg, and e to be estimated., Iet:

e

He>

X, (8-33)

ing

>

>

Then:

Do
—
i

7 +7. 7, ’
(1/7){- z, —( 2 23 6){1 - tanh[zY(R-zz-zg)]} + F(t)}

S8
]

5 (l/vg) Zy
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= (l/vé) ~a- 7. + az(zk—z3) + 106 ! {1 - tanh[bl(R— Z—el)]}

173
j“‘ = (l/vl) {_- a3Z)+ + ZZ(ZB-ZLF)} . (E-3J+)
.’25 =0
i7 =0
i8 =0

Omitting iteration symbols for convenilence, nontrivial terms of the

fundamental matrix and particular solution are:

2ot Z '
b1 (1/7)~ Ppq - (_é_ii_é) ZYSechzfz (R-z -28)]@21

-
—g f1- tanh[z (R~ Z, 8)]} P31 ) @ll(o) =1

ZtZoZe
by = (1/7){- 01 - = szech [z (R~2z -28)] 0,
Z6 )
- 5= (1 - tanhlz, (R-2p-2g)1] @35 ) 5 95(0) = 0
25+Z326
¢l3 = (1/7){~ 913 == z7Secn [z (R -z, 28)] Po3
Zg
- —— {1 - tanh[z (R-z 28)]} P30 ) 3 wl3(0) =0
Z_+7_ %
), = (l/T){: 9y), = 2 23 6)z7sech2[z7(R-zz-zs)] Do),
- {1 - tanh[z7(R-zz-z8)3} Pa), » 3 ¢y, (0) = 0
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b8

It

[}

1

‘(l/T) - (915 "'( 2

233

Z_+%_ 7,

306

2z

5 )ZYSech [z (R~ -z, 28)] Py

- 32 {1 - terilz, (Rz,-2g)1) g5 - 7 (L - temhlz (R-z,2g)1) )

Z-I-

(l/rr = C'Pl6 5

'22‘Z8)]3Q36 -

¢5(0) =0

Z2.%Z

)z7sech [z (R-z _28)1@26 6 {1 - tanh[z (R

23 {1 - tanh[z (R-2,-2g)1} ) 5 ©14(0) = O
Z

(1/~)4- ¢17 - <Z5+

Z
- Eé {1 - tanh[z

[27(R'zz'28)] :

(l/T)' - Q9:1_8 "( 2

{1- tanh[z

ml O\N

[27(3-22-28)] R

Afv) ey s
(}/Vg) Pps 5
(1/vg) @15 5
(A/vg) 2y ;

(fv,) 95 |

Z.Z
23 6)z7sech2 [27 (R—ZZ-Z8> JQPZ"('

24257 5
T(R-ZZ_Z8)]} Py + ——§-—~ (R-z,-zg)sech

CPl—((O) =0

ZotZa%

___E_——>z7sech [z (R-z 8)]@28

(B-2,-2g)1} 95 - <Z5;Z3Z6) szechZ
9,(0) =0
9,1(0) =0
9pp(0) = 1
¢23(0) = 0
1, (0) = ©
9p5(0) = 0
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bpe = (Mvg) 916 5 9e(0) =0
byy = (Wvg) g s 9gg(0) =0
bog = (l/vg) P18 ; @28(0) =0
].06(1l o
6?31 = (l/v (al+a2)CP3l + 2 blSGCh [bl(R'Z -e:L)](PZl
z%,l} 3 931 (0) = 0
. 64
Gap = (l/v {(al+a2)cp32 + 10 El-' blsechzﬁbl(R-Zz-elﬂﬂsz
2‘%2} 5 935(0) = 0
' a
¢33 = (l/vp {‘ (a,l+a.2>cp33 + 106 -2-‘]: blseCh2[b1<'R_z2-el)]CP23
- . (E-35)
. G
a1, = (l/vp){ (a 2)cp34 10 —-bls ech” (b, (R~ Z, )]‘qu
d
. 6
by = (l/vp){ (a,+ 2)@35 #1107 5= bysech” [b, (B-zyme ) oy
* 2%5} 5 935(0) = 0
: d
€P36 = (l/v (a.l+a )@36 + 106 7= blsech [bl(R Z -28)]@26

+f_/\\,

82%u6

e
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, ‘ 6
) @37 = (l/Vp) - (al+32><937 + 10 l b SeCh [b (R ZZ 8)1@27

6%

f-PjB = (l/vp) - <al+ad)ch8 + 10 "‘" hlSPC‘h [b (R—? —ZB)]CP28

+ a8 H @38(0) =0
byp = (v;) (= (agrag)e, + a0} 5 @,(0) =0
g = (1/vj_) {- (a2+a3)cpu3 + agcpgg} 3 ‘Pug(o) =0
by = (L/vy) {- (a2+9‘3)CPM + a?.(??)h} ;@ (0) =1
CPL6 = (l/Vl) {" <a‘ +a’3)<10)+6 + aZCP36} 3 QPLI-6(O) = Q
b = (1/v5) {- (a Hes)o, a5 9n(0) =0

by = (1/vy) L= (agras)ayg + apesg] 5 @g(0) =0
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22,

by = (1/7)¢- P, - <_§_§§_—> z7sech2[z7(R-zz-z8)] P,

2326 ‘
> L

z
6
- = {1 - taﬁh[ZT(R—ZZ-Z8)]}_p3 +

Z +2Z Z6 ' 5
+ 52 3 z7[2(zz+z8)-R] sech [z7(R—zz-z8)3 + F(t)y3 p(0) = 0

1 - tanh[z7(R—22-z8)]}

b, = (l/vg) Py 3 p,(0) =0

by,

(E-36)
6 %1

= (l/vp) 10 -—-blsech (b (R-'7 -Pl)]pd - (a +a. )p + a,D),

5 .
6 1 - 2 -
+ 10 = [}l - tanh[bl(R-zz-el)j} - blsech [ol(R-zz-el)j z%}

3 py(0) =0
= (l/Vi ) - (a +a3)Pu + azp3} H pu(o) =0

Assuming observations on ¢ and ulp, the algebralc system to be

solved for the updated initial condition is:

N N

{}: 8 () X' K 8(t >} B = Y (s K ly(s,)K B(ty)) (5-37)
i=1 i=1 ‘

where

01 0 0 0 0 0 ©

0 01 00 0 0 ©

and:
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(' (8)K'Ka(t,)) = 9y (y ) (B) + 055 (%; )y (8,)

Jk
(8" (£ [y(by)= KD(6)D) = (50 [y (52, (8,)]
J
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