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HOLOGRAPHIC DIELECTRIC GRATING:
THEORY AND PRACTICE

Milton M. T. Chang

ABSTRACT

A holographic dielectric grating is a diffraction graling com-
prised of a periodic variation of the refractive index of a medium, and
is produced by the interference pattern of two monochromatic waves.
Emphasis ie placed upon photographic emulsion as the medium for record-
ing the pattern, but the treatment is general and includes any material
that can have an internéi modulation of the refractive index. Three
topics are treated: the effective dielectric constant of the emulsion,
the diffraction of light by dielectric gratings, and the techniques for
producing gratings with high efficiency and good resolution.

The photoéraphic emulsion is treated as an artificially loaded
material, i.e.- as a sﬁspension of grains in a gelatin base. A Mie
scattering theory analysis is used and the effect of adjacent scatter-
érs on the local field is accounted for by the Lorentz-Lorenz relation.
The optical density of the emulsion is shown to be proportional to the
number of grains present. The effective index varilation after
bleaching is proportional to the pre-bleached optical density, which
implies that the emulsion should have a linear density vs. exposure
curve to effect a sinusoidally modulated index of refraction. A
relation between the modulation transfer function (MTF) of bleached
and unbleached emulsion is derived. Means for improvement of the MIF

is also obtained analytically.
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The diffraction of‘light by a dielectric grating is analyzed
Vusing the Raman-Nath formalism which is generalized to include loss.
Graphs are presented showing the diffraction efficiency versus the
index modulation for a wide range of thicknesses and loss. The peak
efficiency for arbitrary emulsion thickness can be obtained from mea~-
surements at a specific thickness. The conclusion is reached that
Presently available emulsion should be made thicker, preferably in the
20-30 micron range.

The basic physicél processes of various holographic materials
are described. The processing techniques of photographic emulsion are
emphasized and the merits of various bleaches are evaluated. It is
found that resolution can be increased by using a reversal process.
The dielectric grains in an emulsion processed this way are round in
shape. A desensitizing dye can be used to stabilize the grains. A
method of extending the dynamic range of the photographic emulsion
using a pre-flashing exposure technique 1s also described.
| Several experiments are proposed, and recommendations are
made which may serve as guide-lines for the development of more sult-

able materials for holographic recording.
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INTRODUCTION

The lerm dielectric graling has been wldely applied to gratings
which are produced holographically, i.e., the interference pattern of
two monochromatic plane waves are recorded in a medium, so that a periodic
variation‘of the amplitude transmittance or index of refraction results.

_ Better hdlographic materials and more powerful lasers are now available,
so that largé gratings of excellent quality can be produced commercially
and the more general forms of gratings, such as Fresnel zone plates,

can be used to replace conventional optical eléments. '

Our main interest is to gain some insight into the diffraction
process of holographically produced gratings. To do so, three separate
topics must be studied. These are the diffraction problem for a
dielectric gratling with a sinusoidally modulaled index ol reflraction,
an appropriate formulation of the effective index of refraction, and
the techniques for producing such gratings with the specifications
obtained from the first two topics. In this study, we placed our
emphasis on photographic emulsion which is the most commonly used
material, but with slight modification the problems treated here are
applicable to any materials that have an internal_index modulation.

We start by giving a survey of the materials that are now
available and the basic processes of image formation and chemical
treatments of photographic emulsions. Specific recommendations are
made to improve the linearity and decrease the scattering ﬁoise of the
commercially available emulsions. A formulation of the index of
refraction of bleached emulsion is derived, and the result is correlated

to the pre-bleaching density. This is necéssary because it is difficult



to measure the small index change. We have also included in this
formulation the modulation of the index of refraction for each spatial
frequency, and related that to the pre-bleaching modulation transfer
function. From this method of presenting the index of refraction, we
can 1mmediately see that it is possible to improve the modulation at

a particular spatial frequency to unity. This opens the possibility

of producing gratings with extremely small line spacing which could not
otherwise be produced even at grcat expense. In relating the index
change to its pre—bleachihg density, we are able to specify the required
characteristic curve for an emulsion that will enable one to produce a
truly sinusoidally modulated index of refraction. In Chapter 3, the
diffraction of light by a dielectric gfating is analyzed using the
Raman-Nath formalism which is generalized to include loss. With
specific parameters encountered in holographic materials, the coupled
wave equations are solved using a digital computer. A significant
result obtained is the determination of the maximum diffraction effi-
clency obtainable for a lossy grating with a fixed thickness. In
Chapter L4, the results obtained are correlated and the specific
recommendations made can serve as a guide-line for photographic chemists

to develop the most desirable emulsions.
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CHAPTER ONE

HOLOGRAPHIC MATERIAL

1.1 Introduction

Material +that can be used for holographic recording must satis-—
fy two basic needs. It must at least be able to resolve fringes of a
few wavelengths' S€DParation and it must be able to retain the inform-
ation recorded while interrogation takes place. Ideally though, the
requirements are: (1) Infinite resolution for high density information
storage without grain noise, (2) Dimensional stability so that a faith-
ful reproduction of the original wave-front resulte, (3) Real time
recording without processing, which can be erased for future use,

(4) Losslessness so that highly efficient reconstruction can result,
(5) No thickness limitation so that storage capacity can be increased.

These are Jjust a few requirements that present day applications of
holography call for. As new applications for holography are discovered
ofher requirements may become more apparent.

At present, many holographic materials are available, but none
sgtisfies all of the above réquirements. The most commonly used is the
- photographic emulsion. Other materials are photochromic materials,
photoéensitive plastices, ferroelectric crystals, photoresists, thermal
plastics, dichromated gelatin and photopolymer systems. In this chap-
ter, the characteristics of each material in relation to holographic
applications will be described briefly, and the description of photo-
‘graphic film will be given in more detail. The significant contribu-
tion described in this chapter is that we have found.by pre-flashing

the film plates with a short burst of light, we are able to increase
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both the linearity and the dynamic range of the film. Another signifi-
cant result is the use of reversal prbcess to increase the quality of
the gratings produced and one such process is described here. This
reversal‘process differs in principle from the normal process, which
involves either bleaching or tanning (1.1). Stabilization of the final
grating using desensitizing dye is. described here forrthe first time.

A numerical method of fitting the H-D curve is also given in this

chapter.

1.2 Photographic Emulsions

Photographic emulsion is most coﬁmonly used for holographic
recording because it can be used over a wide spectral range with rela-
tively high sensitivity. It can resolve approximately 3000 lines/mm
and,when processed properly, it has very low loss so that high diffrac-

tion efficiency is made possible. The disadvantages of using photo-

- graphic emulsion are that it requires processing, is not rcucablec,

lacks dimensional stability, has grain noise, and is limited to thick-
nesses of less than 50 microns for uniform processing. The resolution
and thickness of a few commercially available films used for
hologfaphy are listed in Table 1.1. A good reference book fo; various
aspects of photographic emulsion is a text by Mees and James (1.2).

The two volumes on photographic chemistry by Glafkides are found to be

1.1 "Methods of producing phase holograms with conventional photo-
graphic materials'", Prepared by Speclal Applications, Eastman
Kodak Company, Rochester, N.Y. 1968.

1.2 C. E. Mees, T. H. James, The Theory otf Photographic Process, Mac
Millan Company, 3rd Edition 1966.
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most valuable (1.3).

Photographic emulsion is a colloidal suspension of small silver
halide crystals in gelatin. A typical emulsion contains 20 - 40% by
weight, 5 - 10% by volume, of silver halide crystals, although the
specific amount for each emulsion is not generally known. After
being exposed to light, it has to be processed before it can be-
displayed. Processing involves a combination of development, stop,
fix, wash, bleach, wash and rinse. Each of these steps will be
described below.

1.2.1 Exposure

When photographic film is used for picture taking, the speed
of the fiim is rated by iils ABA nuuber, from whiclhh one can compute
the relative exposure reguirement of two different films. In most
cases, holographic recording is done with a single spectral line from
a laser, thus the ASA number becomes meaningless, because 1t is
standardized with daylight exposure. In addition, the neutral density
of the processed holographic film is so high compared to that of
ordinary films that the ASA number, a guide number determined for
density between 0.1 to 0.8 above fog, is not very reliable. In
shorf, the relative speed of different films must be determined
experimentally and specifically for each wavelength. |

During exposure, a latent image is formed in the silver halide

crystals. The theory of latent image formation is a controversial one

1.3 P. Glafkides, Photographic Chemistry, Vol. 1,2, Fountain Press,
London, 1960.




.
and the commonly accepted theory has been put forth by Mott and Gurncy
(1.5). They assumed that sensitive specks are present on the surface
of the crystal; they can be either metallic silver or silver sulfide.
When a photon is aboorbed by the silver halide crystal, a halide ion
becomes‘a free electron and a halide atom. The electron is free to
move about inside the crystal and‘will eventually hit the sensitive
speck and get trapped. Trapping is possible because the conduction
band of the crystal is at a higher level than that of the metallic sil=-
ver. After collecting an electron, the siliver speck becomes negatively
charged and sets up an electric field.v Since the positive ion is free
to move about in a silver halide crystal which is an ionic ecrystal, it
is attracted by the field and moves toward the negatively charged
speck. As more photons are absorbed, more silver atoms will aggregate
at the surface of the crystal. There is a balance of neutral halide
atoms. They afe not very mobile, but are able to exchange electrons
with neighboring halide ions and move effectively to the surface of the
crystal to be absorbed by the constituents in the gelatin.
It has been determined experimentally that a grain can be

developed only after any speck has collected four or more silver atoms,
and in most cases, the whole grain is developed. The gquantum yield
(number of silver atoms obtained per absorbed photon) is approximately

108, since each grain contains about 109 silver atoms. If we assume

1.5 N. F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals, Oxford Press, London 1957.
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that 1% of the incident photon is absorbed, then the overall quantum

S.and 106.

yield is between 10

The characteristic of a given emulsion is often described by
the Herter-Dreffield curve (H-D curve); that is, the density of the
emulsion’is plotted against the logarithm of the exposure. It is found
by Wyant (1.6) that by pre-flashing the plates, one is able to increase
the slope of the H-D curve at the lower portion of the H-D curve. This
method, and baking of the plates, have long been used by astronomers as
standard practices to compensate for the reciprocity failure. A com=-
prehensive discussion is given by Miller (1.7).

We have pre-flashed the 649-F plates with an electronic flash
to a neutral density of 0.15 before exposure. Plots of the H-D curves
Tor the flashed and unflashed plates are shown in Figure 1.1. We see
that there is a slight decrease in the gamma for the pre-flashed
plates. A more important difference is that the pre-flashed plate has a
larger region of constant slope, which means that it has a wider
dynamic range. We also see that it can reach a higher ultimate density.

These observations can be explained simply in the following
manner. As we have mentioned before, a grain could be developed only
if a speck has more than 3 or 4 silver atoms. By flashing the plates,

we distribute one or two silver atoms in most of the grains, therefore

they can be developed after absorbing fewer additional photons. It has

1.6 J. C. Wyant and M. P. Givens, J. Opt. Soc. Am. 58, 357 (1968).

1.7 W. C. Miller, Publications of the Astronomical Soc. of the Pacific
76, 328 (196L).
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been shown by Frieser (1.8), using statistical methods, that the H-D
curve shifts in the manner shown in Figure l.l1 when less photons are
needed to initiate development.

The difference in the ultimate density is due to the fact
that only a limited number of grains will be developed during the short
development time. Certain small grains that would not normally be
developed during this period for the unflashed plates are now developed.
This causes the ultimate density to increase. ‘This fact may also be
part of the reason the H-D curve has a smaller gamma. It has been
shown by Frieser that an emulsion with grains of more uniform size has
a higher gamma.

We note that the points did not fit the curves very well.
This is attributed to the mechanical shutter used to expose the plates,
which is not a very accurate and reliable timing device.

Figure 1.2 is another H-D curve for 6L4L9~F film, which has been
developed in a special spray developer. The solid curve is obtained by
a device designed specifically to evaluate the characteristics of films.
Noting the similarity of this curve to the Bode plots in circuit theory,

we conjecture that the functional form is

Yo oY |T/T
D= _loglo (I_-t)_i_s_ (1,2—1)
(1) T+ o

1.8 H. Frieser and E. Klein, Photographic Science and Engineering L,

264 (1960).
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where o, B, Y are arbitrary constants to be determined and T is the
slope of the straight portion of the H-D curve. These three constants
can be determined from the values of the maximum density, the minimum
density, and the density at the exposure where two of the asymptotes
meet. We have determined that for this curve the values of the con-
stants are o = 0.48, B =L4L.6, ¥ = 3.42 and T =2.50 and the result-
ing function is described by ﬁhe dots in Figure 1.2. We see that the
fit is extremely good. We note here that a larger Y (e.g., ¥ = 4)

gives an even better fit.

1.2.2 Development

After exposure, the film can be developed either by the physi-
cal development or the chemical development method. In the physical
development method, the silver halide is etched away leaving the silver
speéks in place. Then the silver ions from the developer (which is
generally a solution containing silver nitrate) will aggregate around
the silver specks. (This is referred to as the post-fixation physical
development.) This development technigue has the advantage that the
developed silver grains are round. It has the disadvantage that the con-
ftrast’is low and the fog level is high. In addition, it is difficult to
control the reaction. The reason for the desirability of round grains is
that they are less lossy due to surface current and cause less scatter-

ing noise. The developed silver for the chemical development comes from

~the grain itself. The mechanism by which silver is formed is similar
to that of the formation of the latent image. In this case there is a

potential difference between the crystal and the developer (Redox
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potential difference) so that the silver speck acts as an electrode.

As the silver ion moves towards the silver speck, it is neutralized by
the electrons from the developer and tends to push the silver arriving
first outward. This causes the developed silver to form into thin long
strips.

When developing very thick emulsions (say above 20 microns)
caution must be exercised so that the development process is uniform
throughout the wholec leycr. This can be done by soaking the plate in
cold developer. Once the plate is thoroughly soaked with the developer
the temperature is raised for the development to take place.

Tt may be of interest to see what is present in a typieal
developer and see what is the function of each chemical. The most
commonly used developer for Kodak 649-F is D-19. The elon and
hydroquinone are organic reducers or developers. Sodium sulfite is a
weak solvent for silver halide and serves the additional task of a
preserver. Sodium carbonate acts as an accelerator and potassium
bromide acts as a restrainer. A weak solvent is needed to etch away
some crystals and expose the internal specks, a preserver slows down
the oxidation of the reducers, and an accelerator increases the pH
factor of the developer (more alkaline) thus decreasing the Redox
potential of the developer, allowing the silver ion to move faster
towards the speck. A restralner slows down the fogging process by
lowering the degree of ionization of the silver bromide by reducing

the concentration of the silver ioms.
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1.2.3 Stop Bath

The stop bath is an acid solution; usually acetie acid. It
changes the pH of the surrounding silver halide crystal, which is to
s8y, changes the relative potential difference between the crystal and
the developer. This stops the reducing action of the developer. It is
found experimentally that an abrupt change of pH may cause the gelatin
to shrink or wrinkle, so & quick rinse with water between different
solutions is generally considered a good practice.

1.2.4 Fix

Sometimes it is advantageous not to fix the plate, so that the
shrinkage is minimized. The cause of shrinkage 1s discussed in
Section 1.2.5.

A fixer generally contains sodium thiosulfate (hypo) which
changes the un@eveloped silver halide into a silver complex, in this

case Na3(Ag(S 03)2), which is soluble in water. Hypo does not, in

2
~ general, react with silver although it has been reported that it

réacts with very small silver partiecles in an acid solution. One must
‘be cautious about the total number of film plates processed in a given
fixer bath. This is due to the fact that as the concentration of hypo
decreases, it is more likely that the unsoluble complex salt
Na(Ag(SQOB)) wi;l form (1.9). Such formation can be quite detrimental

to the image reconstructed from a hologram. This point will become

clear after reading the section on bleaches.

1.9 L. Pauling, General Chenmistry, 2nd Ed., W. H. Freeman, San Francisco
16853
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1.2.5 Wash

After fixation, the film must be washed in running water so
that all the soluble silver complex salts can be dissolved. After
this step, the emulsion becomes a suspension of silver particles in a
gelatin medium. Small volds exlsl where the undeveloped grains have been
removed, but as the gelatin dries; it collapses into these wvoids.
This, in fact, causes the emulsion to shrink.

1.2.6 Bleaching

It is desirable to change the dark silver grains into dielec-
tric grains with low loss. In Chapter 3 we see that the phase grating
is capable of very high diffraction efficiencies. The theory of arti-
ficial dielectric will be discussed in Chapter 2. What is required of
a bleach is, then, that it must be an oxidizing agent. That is, it
must be able to oxidize the silver into a silver salt, which may be
substituted later by the salt of a different metal if so desired. We
will describe various bleaches that can be used for bleaching holo-

. graphic plates. OSpecific remarks on the merit of each bleach, relating
to diffraction efficiency will be discussed in Chapter 4 . A few of
the bleaches described here can be found in a paper by Upatnieks (1.10).

1.2.6.1. Chromium intensifier. Dissolve 10 grams of potas-

sium dichromate (K20r207) in 1000 cc of water and mix in 18 cc of
concentrated hydrochloric acld. The bleaching time is approximately
30 seconds or until clear. The final products in this case are silver

chloride and chromic oxide.

1.10 J. Upatnieks and C. Leonard, Appl. Optics 8, 85 (1969).
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1.2.6.2. Kodek chromium intensifier. This is a proprietary

product and its exact formulation is not known. Dissolve part A and
part B as direqtéd. Bleach thé fixed film plate in solution A until
cleared, rinse it in running water and soak in part B until the yellow
stain disappears. Wash the plate with rumnning water for 10 minutes.

This product is more convenient to use than the chromium
intensifiér because no acid is involved. However, it is found experi-
mentally that if the pre-bleached density is very high, this bleach
leaves a reddish-yellow color on the plate which causes scattering
noise and loss.

A variation in the use of this bleach is to use part A only.
A fai}ly stable salt; probably silver chromate is formed.

1.2.6.3. Mercuric chloride bleach. Mix 20 grams of mercuric

chloride with 1000 cc of water, and add 3 cc of hydrochloric acid.
After bleaching;the plate must be rinsed in 1% hydrochloric acid solu-
tion and washed thoroughly. A variation of this bleach is substituting
the hydrochloric acid with 10 grams of sodium chloride, or 20 grams of
potassium bromide, or simply a more concentrated solution of mercuiic
“chloride.

Caution must be exercised when handling HgCl, which is
extremely poisonous and may be absorbed by the skin.

1.2.6.4. Potassium ferricyanide cutting reducers. Potassium

ferricyanide is a powerful oxidizing agent which will oxidize the
silver grains into silver ferrocyanide. This compound can be found in

part A of Kadak's Farmer's reducer. The reaction is quite slow and may
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take up to 15 minutes.

A modification of this is by mixing 20 grams each of potassium
ferricyanide and potassium bromide into 1000 cc of water. This bleach
works much faster and produces silver bromide as its end product. If
20 gramsvof potassium iodide are used instead of the bromide, then the

end product is silver iodide.

1.2.7 Reversal Processing

Reversal process in the normal phbtographic sense means that
a positive image is obtalned from a negative material. From a holo-
graphic point of view, we are merely applying Babinet's theorem in
diffraction. The usual procedure is to develop the emulsion without
fixing it, so that both the silver grains and silver bromide grains
are present. The silver can then be oxidized into a soluble salt,
leaving the undeveloped silver bromide grains. For positive slides, the
emulsion is redeveloped to form dark images. For holographic work, as
mentioned in Section 1.2.6, we prefer dielectric grains; thus the
rédevelopment step is omitted. |

The reversal process has a distinct advantage over the
bleaching technique described in previous sections: the grating made
this way has very low scattering noise if the correct reversal bath
is used. This is reasonable because the grains present at the end for
reconstructing the image have not been developed and, &s a result,
are round, rather than elongated. Electron micrographs of the
developed silver and the grains after the reversal process are shown

in Figures 1.3 and 1.4. The difference is immediately obvious when
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FIGURE 1.3a SILVER HALIDE
CRYSTATS TN TINDEVETLOPED 10ET0

(Magnification 1.68X10h

)

FIGURE 1.3b DEVELOPED SILVER
GRAINS IN 10ETO

(Magnification l.68Xth)

FIGURE 1.3c UNDEVELOPED
SILVER HALIDE GRAINS¥* AFTER

HNO3 REVERSAL BATH IN 10ET7C

(Magnification 1.68X10h)

¥ The grains are the small dots, the gross structure is the torn
gelatin.
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FIGURE 1.4a DEVELOPED SILVER
CRATNS TN ALOF SHOWING GRATING
STRUCTURE

(Magnification 0.31XlOh

)

FIQURE 1.)b SAME AS ABOVE

(Magnitication 1.68X10h)

FIGURE 1.hc UNDEVELOPED
SILVER HALIDE GRAINS AFTER

HNO3 REVERSAL BATH 6LOF

(Magnification 1.68K10u

)
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Figure 1.3b and 1.4 are compared with 1.3c and 1.lkc,respectively.
Three standard reversal baths are given in Reference (1.3).
The cerium sulfate formula given there does not work (the plate remains

dark even after prolonged'soaking) and is omitted here. We have found

PR e - o %y mTar admnla rratr AF cmnammme TS alhd e Flha coma bemoalr rrtdl Teadd o
@ pad v TN & O LU ALCT wWAa, Vi auvige LML L DllLilEy LIS o 1 vaonh wWiull UCULUuCl
results using nitric acid. The process is described below.

1.2.7.1. Permanganate reversal bath. Dissolve 3 grams of

potassium permanganate in 1000 cec of water and add 10 ce of concentrated
sulphuric acid. This solution reacts with silver to form silver sulfate
which is soluble in water. Some brown manganese dioxide is also formed
on the emulsion and can be cleared by soaking in a solution containing
10 grams of sodium bisulfite in one liter of water. The plate must be
washed thoroughly because the sodium bisulfite solution will sensitize
the grains.

1.2.7.2 Dichromate reversal bath. Dissolve 8 grams of

potassium dichromaté in one liter of water, and add 10 cc of concentrat-
ed sulphuric acid. Again silver sulfate is formed and dissolved in
water and the plate can be cleared by the sodium bisulfite lye described
above.

1.2.7.3. Nitric acid. The unfixed plate is immersed in a

shallow basin of water. Pour 1l:1 concentrated nitric acid into the
water until the plate starts to clear. The plate is taken out when
it becomes clear, and is rinsed and dried¢ The 10ET0 emulsion tends

to become fragile, but the 649F stands up quite well to thls treatment.
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Micrographs of gratings produced by different processes are
shown in Figures 1.5 through 1.8. Thé ﬁagnification in fhese micro-
graph 1is soox; and the spatial frequency of these gratings is aboﬁt
400 lines/mm. The Agfa 10ET0 and the Kodak 649F are typical emulsions
used for holographic recordings. Figure 1.5 shows the unbleached
~gratings with a density of approximately 0.5. Figure 1.6 shows gratings
that were bleached by the chromium intensifier described in Section
1.2.6.1. The difference in the quality of the two gratings is imme-
diately obvious. The gratings shown in Figure 1.6a has much more
scattering noise than 1.6b. We can also see a difference in the
quality between those shown in Figures 1.5 and 1.6. This is the reason
why it 1s customary to use unbleached holograms when resolution is more
important than the brightness of reconstruction. Figure 1.7 shows the
gratings produced by the nitric acid reversal bath. We can see
that the qualiiy of these gratings even surpasses that of the unbleached
~gratings. This is particularly noticeable for gratings produced on the
10ET70 plates. Figure 1.8 shows gratings of poor guality resulting from
using the other two reversal baths described.

1.2.8 Rinse

After all the processing has been completed, the film plate
is immersed in distilled water containing a small amount of Kodak Photo
Flo. This reduces the surface tension of the water so that the film
-will dry smoothly without too much local surface shrinkage. It also
causes the water to flow off so that a minimum amount of water mark

remains.
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FIGURE 1.5a 10ET70 (D-19, 5 MINUTES, TOOF;
RAPID FIX) UNBLEACHED.

FIGURE 1.5b 649F (D-19, 5 MINUTES, 70°F;
RAPID FIX) UNBLEACHED.
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FIGURE 1.7a 10E70 (D-19, 5 MINUTES, TO°F;

UNFIXED) HNo3 REVERSAL BATH.

FIGURE 1.7b 64OF (D-19, 5 MINUTES, 70°F;

UNFIXED) HNo3 REVERSAIL. BATH.
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FIGURE 1.8a 649F (D-19, 5 MINUTES, T0°F;
UNFIXED) DICHROMATE REVERSAL BATH.

FIGURE 1.8b 64LOF (D-19, 5 MINUTES, T0°F;
UNFIXED) PERMANGANATE REVERSAL BATH.
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1.2.9 Swelling of the Emulsion

Thé processéd emulsion tends to shrink, because various salts
and constituénts in the gélatinvhas been washed off. It is sometimes
necessaxy to compensate for this loss. Proper swelling is particularly
important when we are dealing with reflection type'holograms, where the
spacing of thé grains is important‘for true color reproduction.

Thére are several'ﬁechniques. One method proposed by Lin
(1.11) requires soaking the processed emulsion in a 6% triethanolamine
water solution for a few minutes. The length of soaking time depends
: upon the amount of exposure and the process involved. Another method
is described by Upatnieks (1.12), which involves soaking the emulsion

in Pakosol at twice the normal concentration.

1.2.10 Desensitization

In almost all the bleaches described in the previous sec-

tions, the final products are silver salts which are sensitive to
light. When exposed to intense light, they will turn black as the
‘salts decompose info silver and their respective by-products that
,make.up.theasalts. This causes undesirable attenuation of light.

It is thus desirable to find some methods to stabilize these

1.11 L.H. Lin and C.V. LoBianco, Appl. Optics 6, 1255 (1967)

1.12 J. Upatnieks, Private communication.
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salts., Upatnieks (1.10) suggested soaking the processed emulsion in a
solution containing their respective cupric halogens (e.g., CuIZ). The
motivation for such a procedure is to add an excess of halogen ions in
. the emulsion, thus reducing the likelihood that the halogen ion formed
by splitting off from the gilver salt will be absorbed by the constituents

of the gelatin. However, the disadvantage of soaking in these solutions

is that they tend to crystalize, causing unwanted scattering noise.

In Chapter XLII of Glafkides (1.3) a discussion on
._desensitizaiion by dye is.given. We have soaked plates which have

béen bleached by the chromium intensifier in a solw n containing 1/2
grams of 147% safranine aconc in one liter of water for 30 seconds, and
let dry. We have also soaked the plates in the above mentioned dye
solution with 10 grams of sodium sulfite added. In both cases, the
plates turned dgrk at a much slowver rate than the untreated plates,
although the latter solution seems to work only where the density is

low.

1.3 Photochromic material

| Photochromism is a property exhibited by certain organic
énd inorganic compounds, in that, they show reversible color or optical
density changes. We will describe two photochromic maﬁerials~which
have been used successfully to make holograms. They are photochromic
~glass and alkall hallde single cryslals. Their properties and the
physical mechanisms involved in each process will be briefly described
below. Certain photochromic sodalite films that are available com~

mercially will not be described here because they are thin, incapable
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of reaching density higher than unity and are subject to fatigue.

1.3.1 Photochromic Glass

Photochromic glass is borosilicate glass containing silver
halide crystals (1.13) of approximately 50 to lOOX in size and spaced
500 to lOOOX apart. The physical mechanism involved is very similar to
that ofvthe photographic emulsions. The difference is that in this
case the host material, glass, is nonpermeable to the halide atoms, so
that they are available for recombination with the silver as soon ae
the exposing field is removed. This is called thermal féding and can
be slowed down considerably by cooling. In addition, since the grains
cannot effectively use sensitizers in their host medium, they are only
able to absorb in the blue and near the ultraviclet region of the
spectrum. Furthermore, the quantum gain is less than one because no
development is involved. Visible light between 5500-6500R can also be
used to bleach the darkened plate. The mechanisms involved here are
not well understood, and it is surmised that photo-ionization takes
place which accelerates the recombination of the silver and the bromide.
Thermal fading cannot be optimally used for data storage, but selective
bleaching can be used to cause amplitudc trensmittancc variations for
light diffraction.

Generally, the plate is first darkened with an ultraviolet
source, such as a xenon arc lamp, to a density of .8 for a 5 mm thick
,sample. It can then be exposed with any laser in the visible range.

In most cases, the laser light is not intense enough to bleach the

1.13 G. K. Megla, Appl. Optics 5, 945 (1966).
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 Plate fast enough for the thermal fading to be negligible. It is then
desirable to shine thé UV light on thé glass plate while bleaching takes
place. Once the hologram is storéd, the plate has to be cooled to
retain the image.

One definite drawback in using photochromic glass is its
speéd. We see that thé quantum yield is less than one, so that we
expect the sensitivity of this material to be about six to eight orders
of magnitude slower than that of photographic film for reaching the same
density. (Typical material with special sensitizers is about four ordgrs
of magnitude slower than the 6LOF plates). Thermal fading time can
vary from a few minutes to a few weeks depending upon the type of
material chosen. Thermal‘fading makes this material somewhat unsuitable
for long term data storage, but can be used adequately for real-time
systems. The gamma, sloée of the density ¥versus logarithm of exposure
curve, is low and is typically less than one. This makes it unattractive
for applications in image restoration, match filtering and optical data
processing. In most cases, a gamma greater than unity is desirable.

The resolution of this materiél is high; holographic gratings of spatial
frequency 2000 lines/mm have been successfully recorded.

1.3.2 = Alkali Halide Crystals

Alkali halide crystals with appropriate impurities are avail-
able commerclially for holographic use. One such crystal is potassium

bromide with potassium hydride and is described on page 149 of
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Reference (1.5). Potassium hydride (KH) is incorporated into KBr dur-
ing the formation of the crystal, and the H ion takes the position of
a normal Br ion. This gives rise to a new absorption band in the
ultraviolet, called the U-band. When a photon in the UV is absorbed,
it 1lifts an electron into a free state, changing the hydrogen ion into
a neutrél atom. The neutral hydrogen atom can diffuse away leaving a
vacancy for the electron. An electron taking the place of a negative
ion is called an F-center and has absorption characteristics determined
By the crystal structure. For potassium bromide crystal the absorption
band for the F-center is in the red and the crystal appears blue. When
a photon in the absorption band of the F-center is absorbed, it may
free an electron from an F-center and the reverse process may take
place.

In using such crystal for holographic recording, it is first
irradiated with ultraviolet light until it turns blue. It is then
bleached with laser light. This bleaching or ionization process is
highly temperature dependent. A standard procedure to speed up the
bleaching process is heating the crystal to 80°c.

There are several disadvantages in uéing this crystal. It has
an extremely low sensitivity, about two to three orders of mggnitude
lower than that of the 64LO-F at 63288. During the writing period,
heating is quite undesirable as the interference pattern becomes
unstable due to the hot turbulent air. This disadvantage may be over-
come b& placing the whole holographic setup in a vacuum chamber.

We have produced holographic gratings of approximately 1500

lines/mm without special precautionary measures and have obtained an
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efficiency of less than one percént.

1.4 Photoresist

Photoresist is a formulation of liquid resins which is sensitive
to light in the ultraviolet spectrum. The resist polymerizes when
exposed and may be selectively dissolved by a "developer'". One such
developer is the trichloroethylene. Sheridon (1.14) has found that
_gratings with efficiency up to 73% can be produced this way. It has
al;o been found that a small change in the index of refraction takes
place due to polymerization. Maurer (1.15) found that an index change
of .01l is possible in an undeveloped photoresist and has made gratings
with an efficiency of 60%.

1.5 Thermoplastics

Thermoplastic can be used for holography by applying the tech-
nigque of xerograph. The thefmoplastic is first coated on a photocon-
ducting substrate. It is then charged on both sides with opposite
electric charges in the absence of light. When it is exposed to
light, the charge at the exposed portion are able to move closer
towards each other through the photoconducting substrate such that
a higher static potential exists there. If thc platc ic now hcated,
different static potentials will cause different amounts of deformation
as the plastic becomes softened. Urback (1.16) has demonstrated the
possibility of holographic recording with such material and holograms

of reasonable quality have been produced.

1.1 N.K. Sheridon, Appl. Phys. Letters 12, 316 (1968).

1.15 D.W. Maurer and E.E. Francois, IEEE Conf.on Laser Engineering
and applications, Washington, D.C. (1967).
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1.6 Photosensitive Plastics

Certain thermal plastic résin coatings that contain light
sensitive diazonium salt also seem to bé applicable for low spatial
recordings. One such film utilizes the Kalvar process (1.17). The
diazonium salt is sénsitive to ultraviolet light and releases nitrogen
during exposuré. By heating the sample, the air bubble is made to

expand and form microscopic vesicules which have an index of refraction
close to unity. The difference in the index of refraction, as shown
inlthe next chapter, can cause the index modulation needed for holo-
graphic process. After céoling off, the plate can be exposed to light
and the image is permanent if all the diazonium salt decomposes and the
nitrogen diffuses away before it is subjected to heating,

Such film has not been used in holography thus far because
a good laser operating in the 3000 2 range is not available and the
film is only suitable for low spatial frequency recording since it has
a resolution of only SOO lines/mm.

1.7 Ferroelectric Crystals

Single crystal lithium noibate (LiNbO3) has also been used
to record holograms. When exposed to light of short wavelengths, photo-
excitation frees the trapped charges which can drift a short distance

before becoming retrapped. The field created by the space charges

1.16 J.C. Urback and R.W. Meier, Appl. Opt. 5, 666 (1966).

1.17 W. A, Siefert and W. F. Elbrecht, Photographic Science and
Engineering 5, 235 (1961).
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causes changes in the refractive indices due to electro-optical effects.
Chen (1.18) has made diffraction gratings with 1600 lines/mm and
obtained 40% efficiency. It is observed that the recording has a finite
life time and may be erased by heating. This material has the potential
of becoming a very important medium for optical data storage.

1.8 Dichromated Gelatin

It has long been known that when gelatin is treated with water
soluble dichromates and chromates, the gelatin becomes hardened and less
soluble in water. Recently, Shankoff (1.19) has demonstrated that
highly efficient gratings with good resolving power can be produced on .
dichromated gelatin. Efficiency of 95% has been observed and the speed
is comparable to that of 649F in the blue region of the spectrum.
Development consists of aglitating in water for 30 seconds and dipping
in isopropanol for fast drying. It is perhaps due to this fast drying
that resolution~of 4000 lines/mm was observed. The structure of the
developed gelatin is still uncertain, but it is safe to say that much
of the diffraction is due to surface effect, which makes it somewhat
less suitable for high density data storage than some of the materials
described above which involvekinternal index modulation.

1.9 Photopolymer

A photopolymer system contains a monomer, & catalyst, a
photo-oxidant and a fixing agent has recently been used to record

holograms (1.20). In this system the photo-oxidant is activated by

1.18 F.S. Chen, et al., Appl. Phys. Letters 13, 223 (1968).
1.19 T. A. Shankoff and R. K. Curran, Appl. Phys. Letters 13, 239 (1968).

1.20 D. H. Close, et al,, Appl. Phys. Letters, to be published;
"Hughes Photopolymer System", Hughes Aircraft Co. TM=-871 (1966).
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~ the photons absorbed so that it oxidizes the catalyst. The catalyst in
turn initlates vfree—radical polymerization. Filxlng can be done by
heating or by éxposing the system to ultraviolet light which deactivates
the oxidant. Stablé holograms has beén recorded and gratings of
approximé.tely 1000 lines per millimeter with efficiency of L5% has been
obtained. The disadvantage of such a system is that it is found to be

noisy, which is due to scattering by long polymer chains.
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CHAPTER TWO

'DIELECTRIC CONSTANTS OF PHOTOGRAPHIC EMULSIONS

2.1 Introduction

_Developed photographic emulsion is made up of a random
: suspénsion of silvér particles in a gelatin medium. TFollowing the
bleaching process described in Chapter One, the silver particles are
changed into dielectric grains. Electron micrographs of typlcal
emulsions developed in D-19 show that the grains are not round, but are
elongated and are approximately 5008 in length(see Figures 1.3 and 1.k4).
The purpose of this chapter is two fold. It makes possible
the correct formulation of the index of refraction which is essential
for calculating the diffraction efficiency when loss is included in the
analysis. The effective index of refraction of the emulsion, composed
of gelatin and the grains, each with a different index of refraction, is
analysed as an artificial or loaded dielectric in this chapter. The
other purpose of this chapter is to establish the relationships of many
factors between the bleached emulsions and their unbleached counterparts.
We have related the effective dielectric constant of a bleached emulsion
to the pre-bleached density and the modulation transfer function (MIF)
before and after bleaching. This is a necessary step because both the
MTF and the effective dielectric constant of a bleached emulsion are
difficult to measure, whereas the MTF and the density of unbleached
emulsions can be measured with automated equipment. The importance of
this analysis can be illustrated with an example. If we expose the

emulsion with a sinusoidally modulated intensity as shown in Figure 2.1
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. to obtain a sinusoidally modulated index of refraction, we need an
emulsion which has a linear curve of the index of refraction change
versus exposuré. In practice, it is almost impossible to obtain this
curve, particularly at low exposure. However, from the analysis to be

© given in»this chaptér, wé can specify the required density-exposure
_ curvé instéad which can bé easily obtained for all emulsions by replot-

ting théir H-D curvés. Another result of some importance is that we

have shown analytically that the MTF can be improved to unity for a

_givén spatial frequency. This opens the possibility of producing

~gratings with extrémely small line spacings which could not otherwise

be produced even at a great expense.

2.2 ' Effective Dielectric Constant

The theory of artificial dielectric material was under
intensive study -in the development of microwave lenses. Noteworthy is
the work of Lewin (2.1).The scattered field of a single grain is first
derived and the field contributed by neighboring grains is either compen-
sated by adding all the scattered fields or by applying the Clausius-
Mossotti relation (sometimes referred to as Lorentz-Lorenz formula)
(2¢2).v Iﬁ this analysis we will consider that each grain is spherical
and is much smaller than the wavelength. |

The polarizability of a grain much smaller than a wavelength
based on the scattered field uéing Mie's theory(2.2), is given by

asel(ee; el)/(52+ 261) where a 1is the radius of the sphere, e; and

2.1 L. Lewin, J.I.E.E. 9k, 65 (1947), Part 3.

2.2 M. Born and E. Wolf, Principles of Optics, 3rd Edition, Pergamon
Press, Oxford (1965)
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&, are the dielectric constant of the medium and the scatterer, res-

pectlively. Applying the Lorentz-Lorenz formula

8w - Y
= (1 4+ >N -
e/el ( 3 a) / (1 3 Na)
where a is the polarizability, N is the number of grains per unit

volume, one- obtains the following expression for the effective dielectric

constant ¢

2 .

{1+ 3f/[(e2 + 281)/(52 - e ) - f1} (2.2-1)

1
"
Where f =N 3 Ta".

f is called the filling factor, which is the volume of scatterer per
unit volume of the medium. We are only interested in (e - gl), the
effective index change. By examining the tabulated results of the
effective dieleetric constants of scatterers with common geometric
shapes, it is concluded that our results are correct to within a multi-
plicative constant (2.3) by assuming the grains to be spherical.

In the case of silver €, = ', + ie"2 where eé and 55
are the real and imaginary parts of €5 For this analysis, we have
assumed that %aremains fixed over the entire range of densities encount-
ered for a given emulsion. For £ << 1 , equation 2.2-1 can be

2.3 S; B. Cohn, Proc. of Symposium on Modern Advances in Microwave

Technigues, Polytechnic Press, N.Y. (1954), p. L65.
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simplified to

: 2 ne 2 2 2
= + 1. R - + ! '+ +
n nl{l 1 5f(€2 €, 251 8162)/[(62 2el) 62]}
+ i{h.5 tn_e_e"/[(e! + 2¢ )2 + 6"2]}
112 2 1 2
=n' + ifa" (2.2-2)

Therefore, for a given thickness L and wavelength A , the density

D is given by

D = .4343 " (2nL/A) (2.2-3)

The wvalues of 8'2 and e"2 depend on how loosely the silver grains
are packed and are related to the "covering power" (1.2) of a given
emulsion.

Using €g to denote the dielectric constant of the grain after

bleaching, (again assume f +to be small) equation 2.2-1 becomes

[n]
I

- £
nl[l + 1.5 ' Eé_]_-.]

=n +f' /n ’ T (2.2-h)
E. -
vhere fAn = 1.5 n, =1
e3+2€l

f' is related to £ by
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(Molecular volume of dielectric)

£ o=
Molecular volume of silver

f= ¢f (2.2-5)

where we call ¢ the expansion factor. Equation 2.2-5 mnust be
modified accordingly if during the bleaching process some of the silver
salt is dissolved.

For an emulsion with D = BIt, where £ is a proportionality
constant, I is the intensity of the light exposing the film, and t
1s'the total exposure time (we have neglected the reciprocity failure
effect here), that is, an emulsion with linear density versus exposure

curve; then we obtain
f = gItd /(.8686 wln") (2.2-6)

This equation can now be used in equation 2.2-4 to find the effective
index change after exposure (Or between portions of the film with

different exposure).

n-mn = nl;BItA An/(.8686wLn"nl) : (2.2-7)
Equation 2.2-T7 shows that for an emulsion with D = BIt , the index
change is linearly proportional to the exposure.

In making holographic spatial filters, it is generally desirable
to have a material that has a linear amplitude transmittance - versus
exposure curve; this point has been emphasized by many authors (2.4).

We note that in arriving at this result, the Kirchhoff diffractipn

formula has been used, which implies that the film is so thin that only

the transmittance on a surface need to be considered. Therefore in

2.4 A. Kozma, J. Opt. Soc. Am. 56, 428 (1966).
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© comparing their result with the éondition D = BIt given above, we have
to show that the two are equivalent when the film becomes sufficiently

thin. The amplitude transmittance is given by

A

T = o"AL/2 _ 47D/2 (2.2-8)

amp

where A is the "absorbency" of the emulsion per unit thickness, and

L is the thickness. For small AL , the exponential can be expanded,

Tamp =1 - AL/2 (2.2-9)

but from equation 2.2-8 we see that D = AL log e = 4343 AL,therefore

T
amp

1 - D/.8686

1 - RIt/.8686 (2.2-10)

which indeed has the linear dependence to the exposure as cited in the
literature.

In the case of making a grating, the film plate is exposed to
two plane waves as shown in‘Figure 2.1. The intensity of the exposure
is given by T _[1 + cos(Kx)] , where K = L4rm sin6/A and is often
referred to as the spétial frequency. The index of refraction after

exposure and-processing is given by

n= nl[l‘+ BL Iot(l + cos Kx)\ An/ (.8686w Ln"nl)]
=n, o+ n(l + cos Kx) (2.2-11)
or
€= e + 2nln(l + cos Kx) for small n (2.2-12)

where we define
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n = BLI_tA An/(.8686 7Ln" ) = f'An

From Chapter One wé see that the dielectric grains are generally
lossy. The small index change due to the presence of grains may be
expressed in the complex form n =n' + in" . It can be substituted
into 2.2-11 and 2.2-12 directly.

We noté that the sinusoidal modulation of the index of refraction
as given in 2.2-12 is made possible only because the emulsion has the
D = BIt response.

We further note that d4different exposure merely changes the

"

values of n' and 1" but not their ratio. This ratio is determined

by the factor An as defined in equation 2.2-kL.

2.3 The Modulation Transfer Function (MTF)

The modulation transfer function of an emulsion describes how
well the film records different spatial frequencies. An analogy can be
drawn - to the frequency response of an amplifier near Lhe cutoflfl
frequency. The emulsion is exposed with a sinusoidal pattern of the

form (1 + cos Kx); and the MIF is defined as (1.2)

T - T,
M= _max min

Tmax + Tmin (2.3-1)

where T and T . are the maximum and minimum intensity transmit-
max min :

tance of the film after development. In other words, the'exposed film

has an intensity transmittance given by T = ( 1 + M cos Kx) where K

is the spatial frequency of the pattern used. For the case of bleached

plates, the MIF has not been well defined, and it seems reasonable to do
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"s0 in terms of the ratio of thé amount of index modulation to the total
index change as a function of thé spatial frequency. That is, for each
spatial frequency the film plate should be exposed to the same illumi-~
nating intensity. The phase shift can then be measured by an inter-
ference microscope. Such measurement has been carried out by Hannes
(2.5).

Using the definition of density D = loglo(l/T) and equation
2.2-3

D = loglo(l/(l+M cos Kx)) = .8686m Lfn"/A (2.3-2)

I may be expressed in terms of D and is really dependent on the
position x , neglecting diffraction effects. Substituting £ into

equation 2.2-4 and using 2.3-2, one obtains
n =ng -AngA/(.8686m Ln")loglo(l+M cos Kx)

The net index change, the difference between the largest value of index

and lowest value of index, is

= = AngA/(.86867 Ln") loglo[(l+M)/(l—M)] - (2.3-3)

At first glance equation 2.3-3 has a singularity at M = 1;

here we will show that M i1s always smaller than unity.

2.5 H. Ha.nnés, J. Opt. Soc. Am. 58, ko (1968).
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therefore

)=l a-2T7T (2.3-k)
ml

n

M = (1- Tmin)/(l * Thin

max
Consequently, the maximum value of the factor loglo[(l+M)/(l—M)] is
~given by loglo(l/Tmin - 1) = Dmax' Most of the published data on the
MIF of films actually has M greater than unity. The reason for this
is because M has been normalized to its value at zero spatial frequency.

By using the definition of D given in 2.3-2 we obtain from

2.3-3 +that 5nmax = f'An, which implies a modulation of unity.
Equation 2.3-3 shows that 1f we know the modulation transfer

function of a film, we can calculate the effective index modulation

after bleaching. Furthermore equations 2.2-11 and 2.2-12 must be

modified to
n=n, +n(l+ —QE—-cos Kx) = n. + n(l + M' cos Kx) (2.3-5)
1 T Anf? 1
= Sn_ = 1
e =g + 2nln (1 + T COS Kx) e * Ae (1 + M' cos Kx) (2.3-6)

‘Hannes has measured the index modulation of the Agfa AgePan
FF film as a function of spatial frequency. Unfortunately the modulation
transfer function of this film is not available to us. In Figure 2.2
the modulation transfer function of a similar film, Kodak high contrast
copy (2.6) , is presented. The factor Loglo[(l+M)/(l-M)] for each M
is also calculated and plotted in the same figure. It is expected that
M' drops off faster than the above factor at higher spatial frequencies

because molecular cross-linking of silver complexes probably takes

2.6 Kodak Pamphlet #PL9, "Modulation Transfer Data for Kodak Films",
Eastman Kodaek Company, Rochester, New York (1967).
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place during.the bléaching process, which effectively decreases M'.

| Let us examine Figure 1.k more closely, paying special attention
Lo the grating structure shown in the flrst electron micrograph. We can
see immediately the reason for M to be less than one. This is due to
the presence of grains in regions where there is no exposure. In the
next section, a method of increasing the MTF of a dielectric grating is
proposed.

2.3.1  TImprovement of the MIF

An improvement of the MIF of a film is of great interest. In the
discussion here, we are not improving the MIF in the sense of improving
 the resolution of the film material. If the MIF is zero at a certain
spatial frequency, then the method of compensation described below will
not help. This method only improves the modulation if the recording
already exists._

It is obvious then by examining the electron micrograph, that
one method of increasing the MTF is to dissolve the grains where they

are not wanted. We can write equation 2.2-11 in the form

n=n, + n(l - M) + nM'(1 + cos Kx) (2.3-7)

If we uniformly subtract an exact amount of grains that contributes the
small index change n(l - M'), we have effectively increase the
modulation to unity ! By examining equation 2.3-T we note that the
amount of subtraction depends upon M' which is a function of the spatial
frequency. This equation can serve as an analytic basis that the
resolution can be increased if indeed such a chemical solution,which

subtracts the number of grains uniformly, can be found.
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It has long been known that superproportional reducers and

certain intensifiers can be used to increase the resolution of films
(2.7). The superproportional reducers tend to attack the individual
~grains more than an aggregate of grains. This tendency suggests the
possibility of improving the index modulation uver a _range of spatial
frequencies which éan then be applied to producing better holograms

when the object subtends a small angle from the plate.

2.7 F.D. Perrin and J.H. Altman, JOSA L2 L62, (1952).
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CHAPTER THRER

THEORY OF DIELECTRIC DIFFRACTION GRATINGS

3.1 Introducllion

A diffraction grating is an optical élémént that changes the
amplitude and phase of an incident wave in a périodic manner. There
are two main types of diffraction gratings, the transmission type and
the reflection type. In this chapter we will deal only with gratings
of the transmission type. The term"dielectric gratings"has been widely
applied to gratings which are produced holographically, i.e., the
interference pattern of two monochromatic plane waves is recorded in a
medium, such as a photographic emulsion, so that a periodic variation
of amplitude transmittance or index of refraction results. Our main
interest in studying such a grating is to gain some insight into the
process of image reconstruction in holography, which is a more general
form of grating. A comprehensive treatise on the subject of holography
cén be found in the thesis report of Matthews (3.1). His analysis
treats holography as a recording of the interference pattern of an
infinite set of plane waves with differeht amplitudes and directions.
‘The results obtained here perhaps even go beyond merely academic inter-
est. Better holographic materials and more powerful lasers are now
available, so that large gratings of excellent quality can be produced

commerciglly and in the more'general forms or gratings can replace con-

3.1 J. W. Matthews, "Theory of Holography", Sc. Report No. T, Quantum
Electronics Laboratory, California Institute of Technology,
Pasadena, California 1967.
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The basis of this treatment is similar to the generalized
theory of Raman and Nath on the difffaction of light by ultrasound
(3.2). Btarting with the Maxwell's equations, a difference differen-—
tial equation is derived. An exact formal solution using Laplace
transformation, as well as approximate solutions for specific param-
eters are obtained. The conditions restricting their applicability
are precisely stated. Loss is also included in this analysis wﬁich
may be useful for many practical situations.

A computer solution of the difference differential equation,
using the parameters which we encountered in holographic gratings
produced on photographic emulsion, is presented. And wé have
established the maximum obtainable efficiency for a substrate with

a fixed thickness.

3.2 Generalized Raman-Nath Theory

A series of papers were published by Raman and Nath to explain
the diffraction phenomena ohserved when light propagates through an
ultrasonic column. In‘the first two papers, they assumed that a plane
wave propagating through the grating has no amplitude change, but
emerges with phase modulation. The output wave is then decomposed into
a spectrum of plane waves. This theory is later modified to include
both phase and amplitude chahge as the wave propagates through the

medium. This is often referred to as the generalized theory. An

3.2 C.V. Raman and N. S. N. Nath, Proc. Ind. Acad. Sci. A 2,406,413
(1935); ibid., 3, 75, 119 (1936); also N. S. N. Nath, Proc. Ind.
Acad. Sci. A 4 (1936); ibid., 4, 8, 499 (1938)
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excellent summaryiof their decxivation is éivcn by Born and Wolf
(2.2) and is included here with some modification for completeness.
A very comprehensive survey of the theory of ultrasonic diffraction
theory up to 1964 can be found in a report by Gill (3.3) and in a
recent book by Berry (3.4). Another useful reference is a paper en-
titled "Unified approach to ultrasonic light diffraction" by Klein and
Cook (3.5).

‘ Maxwell's equations and their constitutive relations in a

source-{ree, non-magnetic medium can be written as:

- - > =
curlE——l-.a_H cle:J:.EP_
c 3t c ot
-> ->
divHE = 0 divD = 0
> >
D = eE (3.2-1)
Using the vector relation
-> -> 2-—>
VxVxE=V(V +«E) -VE
N > o
Vx (VxE) =vx (-1 _1 3D
c 3t <8 32
and noting .
-> D ->
V+E=V - (EJ =D - v(g) + <V + D)

3.3 S. P. Gill, U.S. Office of Naval Research Contract Nonr 1866(24)
‘ NR-384-903, Tech. Memo. 58'(1964).” |
3.4 M.V, Berry The Diffraction of Light by Ultrasound, Academic Press,
London (1966).
3.5 W. R. Klein and B. D. Cook, IEEE Trans. on Sonie and Ultrasonics
SU-1hk, 123 (1967).
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VPE-vlDB.ve)=2L12D (3.2-2)

2 02 3t°

For the geometry shown in Figure 2.1 on page 41 , we see that

>
D 1is perpendicular to V(1/e); therefore 3.2-2 can be reduced to

-> 2
VE = - 9—2- €E (3.2-3)
’ (o]

—).
If D is in the plane of incidence, it can be shown ,by assuming that

> >
- £y
D has a variation of elk * in space,
>
V3D - Ve) = 0 (Ae K/K)VE

and msy therefore be neglected*.
From Chapter Two, the index of refraction of a grating is of

the form:

¥ =
n, + n(1+M'cos Kx) n,

[n]
[}

+ (n'+ in")(1+M'cos Kx)

g * Ae{1+M'cos Kx) = e, * (Aet+ ibe")(1M'cos Kx) .- (3.2-b)

™
n

Substituting into equation 3.2-3, one obtains

3°E 0L 5
Z-P' Z+£D_
9x° Byz' c?

{el+ As[l+-%.M'(eiK?+ e—in)]} Ez =0 (3.2-5)

*
© It will be shown later in the discussion that for the worst case
encountered in holographic gratings, Ae K/k is about 0.01 .
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Assuming that EZ is composed of a spectrum of plane waves in the form

= i(k sin 8x + X cos 6 y)+ ifKx
E =Ziﬂ'e( y-) U, (y)
2 2 2

(.Q, = Os ils iz: “.) (3-2—6)

where k = nk = (nl+ n)k and nosin 8@ =nsin 6 = (nl+n)sin e .

This expansion is & logical one, since it takes into account both the
oblique angle of incidence and the periodicity of the diffraction grat-
ing. |

Substituting 3.2-6 into 3.2-5 and equating the coefficient of
each exponential to zero, we obtain

ﬁi(y) + 2ik cos © ﬁz(y) - (2££K sin 54-22K2) Ug(y)_+

%ﬂ@ M'Ac/ (e + As)[um(y) - Uz_l(y)}_ = 0 (3.2-7)

with the boundary conditions
UO(O) = 1
(0) =0 and i}z(o) = 0
The intensity in each diffracted order is given by
B(y) = U (v) U*(y) i(k sin 8x + k cos &y)|°
| )= oY L Ji |e
For the lossless case, the above equation is reduced to

P,= Uy(y) ) (3.2-8a)
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If the grating is lossy, k, sin 8, and cos 6 all become complex and

it can be shown that the exponential factor can be simplified to

ei(i sin 5x'+ k cos &y) e - e—Equ(K cos y+sin y)y

where
L
2

[+

N = (n + n') = (n, + Ae'/np)

n'"/ag = ae"/ (2n:21“+ Ae")

2 2.2 1/h
- __ed-x") .2 {1+ Lh
q [J. N2(1+K2)2 sin 9.+ —ﬂ_—-_%—ﬂ sin'&

NT(1+k<)

A
]

: 2
Y = = tan™t -—zﬁ——— sin®e [1- -é-i‘—f-—-— sinze} (3.2-8b)
2 N2 (14+¢2)° N° (1+k2)2
This is analogous to the results given on page 616 of Ref. (2.2) on
*
propagation through metaliic media .

Various numerical techniques have been used to solve 3.2-7 and

it was found that a more convenient variable to use is

X = %-y k M'Ae sec 6 /(al + Ae)
If the gelatine is also lossy, equation 3.2-L is modified to
n = (ni + in;) + ( n' + in")(1+M'cos Kx), :.K=(n$ + n")/ni and all
the n, in the above equation are changed to ni . In view of

equation 2.3-7, we can also take into account of the loss due to
M' smaller than unity by including the factor n(1-M') into n, .
This enables us to include loss due to the grains into the loss due

to the gelatin.
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Changing the variable in equation 3.2-T7, we obtain

%-i M'Ae sec2a/(el + Ae) UQ(X) - QUQ(X) - (x) + U (x)

Ugs1 o1

—2i(el + Ae )/(M'Ae) { 2% K/X sin B + zeKe/EE} Ul(x) =0 (3.2-9)

In the next section, approximate solutions of 3.2-9 under
various conditions will be derived and their validity discussed. It
has been implicitly assumed in the derivations jeading to equation
3.2-9 that the grating is immersed in-a liquid with a dielectric

constant (e, + Ae ) and a plane wave incident upon the grating at an

1
angle & at y = 0. The difference in the indices of refraction for

y >0 and y <0 is only the small index modulation; therefore the
reflection between interfaces is neglected. The equation can then be:
solved assuming that the grating extends to y = «» . For a grating
with finite thickness L , the diffraction intensity is simpiy
evaluated at y = L and again we neglect the reflection at the inter-
faces of L >y <L . The actual angle of incidence & and the
diffracted angles can be compensated for by using Snell's law. If
more accurate expressions for the amplitudes are desired, a correction
factor taking into account the multiple reflections for each -diffracted
beam has to be inciuded (3.6). For the specific case of photographic

~gratings, the emulsion coating usually has a glass back-plate which

must also be taken into account.

3.6 H. Kogelnik, JOSA 57, 431 (1967).
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This method of approach is also very convenient in obtaining
the direction of propagation of the emerging plane waves at y =L .

By substituting y = L into equation 3.2-6 we see immediately that
sin 92 - sin & = K/k

vhere G2 is the direction of propagation of the ith order diffracted

bean.
Equation 3.2-9 willl be referred to as the Raman-Nath equation,
although in their original work the second derivatbtive term was dropped

out because the value of Ae which they were interested in was much

smaller.

3.3 An Exact Formal Solution of the Raman-Nath Difference Differential

Egquation
The geometry involved in this diffraction problem ss described
in the previous section, with the grating extending from y =0 to
y = ®, is particularly suitable to the use of the Laplace transformation
to reduce it into an algebraic problem. Teking the Laplace transforma-

tion of 3.2~9 and applying the proper boundary conditions

2 A - _ - _ - _
Ap Vg(p) - r-sz(p) V$+1(P) +V£__1(P) B}LV%(p) (Ap 2)62,0 (3.3-1)

where V,Q,(P> = IUL(X) DX ax
0
A= %-iM'Ae sedeé/(el + Ag)

B, = 2ife, + Ae)(29K/k sin © + 22K /%2)/(M'Ae)
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FEquation 3.3-1 can be regrouped to form

c v (») - v3+1(P)‘+ Vo (@)= (e - 208 (3.3-2)

2

where Cl = Ap® - 2p - B

L

Equation 3.3-2 can now be solved as an algebraic eguation using the
standard matrix method. The use of the matrix method in connection

with this problem was first published by Extermann (3.7) and was also

used by Gill (3.3)
| 38, 4 L )
[« 0 ojoiolo o 0 0 0 O [o
L
1:o|o 0 0 0 0 0 O L0
_ [
-1 C.)1 0 0 o v
____3_! ilolo 0 0 3 0
0 0 -1 CyHl1]0 0 0 0 0 0| |V, 0
- T T T T
0 0 0] -1 C 1 0] 0 0 0 0 vV 0
R 1
0 0 0 0 -1C 1 0 0 0 0| |V | = |4p-2)
0O 0 0 0 0 =1lc 1 0 o o |V 0
I N -1

o 0o 0 o o o1-1le 1 o ol lv 0
l 2 -2

oooooo,O|-1!c310 v 0
I ) -3

6 0 0 0 0 00 0 |-l - . 0
| | |

0 0 0 0 0 0,0 ;0,0 oL L0 |
A A A
-1 -2 =3

(3.3-=3)
Equation 3.3-3 is broken up into nested determinants to make the solu-

tions in a more compact form. It can be solved by using the Cramer's

3.7 R. Extermann and G. Wannier, Helv. Phys. Acta 9, 520 (1936)
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rule in a straightforward manner.

V(e)=(ap -2) A 4 /D

Vi) = -(ap -2) 8, A /D= -8,/A V (p)

Vo(p) = (Ap - 2) 48, /D =-8./8, V. (p)

v (p) = (-1) (ap-2) &, . &  /D=-4 . /AYV . (p)
where & = 0,1,2,°°**

V_ (p) = (hp - 2)8.8 /D =2_/8  V (p)

v (p) = (Ap - 2)AlA_3/ZD

H

>
~
[
<
5

<
Q
i

(AP - 2)AlA-ﬂ:‘—l/ D= A—,Q,I—l / A-'f,’ V—,Q,"i"l(P)

vhere &' =0,1,2,'*" and D = COAl A_ + A2 A+ A A

1 -1 1 -2

The inverse Laplace transformation of eguations in 3.3-k constitutes &
formal solution to the Raman-Nath equation. Writing out the various

terms of 3.3~4 in more detsail we have

%
" "We remark that 3.3-4 is not directly applicable when truncation takes

place at & = 1,-1 %because D contains A2 and A o But this is

a simple situation where one does not need to express the solution in
such general form,
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- 1
A /A =
2/_.1 C,+1
' 02+1
C,+
3.
= : 1 1 1 . 1
— llm ——— it . ¥ s . @ —— _
g+x ¢t ¢t ¢ ¢t (3.3-5)
1 2 3 %

Whe_re N 1is the largest g retained for a truncated matrix

. 1 1 1 1
AJA, = lim E—m— s o e = (3.3-6)
3" %2 + 4t At + .
L >N 02 C3 Ch Cz
1 1
AJA = T (3.3-T)
A A A
. 1 0 N-1
<. A (=) (=) = 0 0 (==2) A
1. by’ tAg By N
= ———-—l -——l - —l— -—'1'——1.'__ * L] . -i—.
= (Cl + C+ C+ c )*(02 + 75 + o )*
2 “3 N C3 Cy N
Coe (G o+ ) (3.3-8)
N-1 7 T G
N
A2= (C + _.J_‘...+ _l_ o . _l‘_.)*(c + L L~ . . 1—)*
2 ot ot c 3 o c
3 Y N o ¥s5 N
(C. . +—=—)x C (3.3-9)
N-1- C N
K
Similarly, AL :
hp 11 o
N c _ (3.3-10)



~50~

- 11 1 1 1
= (C -, —_ —— e )
ay =€y o ot c \I")*(C-z Yo C ')*
273 - O30y ¥
1
(Cyeq * C-N')* Cp (3.3-11)

Parenthetically we remark that it is not necéssary for N' to equal XN.
As it stands, 3.3-b4 is difficult to work with and an exact

inverse transformation is difficult, if not impossible, to obtaiu. In

the following sections we will attempt inverse transformation of 3.3-L

under specisl conditions.

3.4 An Approximate Solution of the Raman-Nath Equation: Phase Modulation
Only

For the special case when we reduce equation 3.2-9 to

20, (x) + U, (X) =0, (X)) = 0 (3.4-1)
then
C2= "2P
Vo(p) = -2.4,4_; /D= (Ap-2)/(C_ + A, /A + Ao/ b))
= _2/(C+_%__%.__i_,.. i + i . i R
C, € Cq w C3 C, Co

|

(3.4-2)
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By using an identity for this continued fraction expression (3.8), we

obtain

1/2

v (p) = 1/(s% + 1) (3.4-3)
Similarly, substituting 3.4-3 into 3.3-4, we obtain

v, (p) = ~[(p?+1) 12 - p] 7 (pP41)1/2

V() = [(zP+)1/2 - 512/ (pP41)1/2

v, p) = (1) [(3P41)2 - p]*/ (pP41)1/2

V_,(p) = [(oP+1)H/2 - p)/ (pP41)2/2

V_(0) = [(pP%41)2/2 - p1%/ (3P41)1/2 (3.4-1)

Taking the inverse Laplace transformation of these expressions, we

obtain

U (x) = I (x)
U (x) = -3, (x)
U, (0 = (1) 3,(x)
U ()= 3. == (x)
_ AN
U ()= J,(x) = (-1)" 9_, (x) (3.4-5)

3.8 H. sS. Hall and S. R. Knight Higher Algebra, MacMillan & Company ,
London, 1957, p. 367.
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Let us examine the validity of the solution 3.4-5. In obtaining this
solution we have made certain approximations; that is, we have dropped

the terms

%-iM'Ae secd / (e_+ Ag) j;(x)

AT
z(x)
and

B,U,(X) = 2i(e + Ae)(20K/E sin § + 22K2/%°) / (M'Ae) 3,(x)

We have substituted dz(x) into UQ(X) for an order of magnitude
evaluation to determine the conditions for the validity of our approxi-
mation. Using the recurrence relationship of the Bessel function, we

obtain
32J2(x) = 2i(c1+ Ac)/(M'Ac)
C{2K/R 2in § X0 00 + 3 00T KBRKE (e xF 00exT 00D
(3.4-6)

Comparing this with Jg(x) and assuming jn(X) = O[Jn(x)], we obtain

the conditions of validity for 3.4-5. They are

(€1+ Ae) K - -

(i) 8i—MTA————_£ sinGxI=1#‘tan 6LK << 1

£
2

e.+ Ag) K R

(1i) 2i 5;3;____1;5. o = L sec 8/ << 1

' M'As k
(e,+ Ae) K2 _
(11i) b —2 T 2= K2L2M'Ac sec? B /(e.+ Ae) << 1

M'ae K0 1
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(iv) A= %.iM'Ae sec §/f(el+ de) << 1 (3.4-T)

These conditions are obtained directly from observations made
by examining equation 3.4-6, and are not indcpendent of each other.
For example, if 0 > 15° (4 sin 15° = 1), (ii) and (iii) are automati-
cally satisfied when (i) is satisfied. On the other hand, if 8 < 15°
then (i) and (iii) are automatically satisfied when (ii) is satisfied.
We further note that condition (iv) is seldom violated under most

experimental situations.

3.5 Approximate Solution of the Raman-Nath Egquation: Bragg Region

It is observed experimentally that when a transmission grating

is oriented near the Bragg angle (K = 2k sin ), most of the diffracted

Oth

pover is in the and -1°% order. If Wwe set U

=0 and
240 ,-1 ?
in the special case where |A| << 1, 3.2-9 can be easily solved. The
solution in this section was first derived by Phariseau {3.9) and can

be deduced directly from Section 3.3 by terminabting the exact solution

at N=1 and N' = -2 . It can be shown that
26_
V (p) = - ———=ro . (3.5-1)
° cCc +1
o =1
and
1 -2
V.(p) = —V (p) = ——=— 3,5-2
- \P C, o COC 1 (3.5-2)

3.9 P. Phariseau, Proc. Ind. Acad. Sc. A 4k, 165 (1956).
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where
C"l = “"2p — B—l

Taking the partial fraction of the above expressions, for example the

one in equation 3.5-2, we obtain

v, (p) = y (o - =)

2(p Pe pP-p, P-P

where

Py

[t}
==
t

+

coou e —t—— Y s -3 Y3
- 2(3‘1/4 -1) e e

Making the substitution B, = bic  we have

2, 1y1/2
o =1 sin[ (o +¢) x] _iox

£)1/2

(3.5-3)
(02+

. Similarly,

U_(x) = {eos[(o + B2 x1-10/(0 + 12 sinl(o + D213 2

(3.5-k4)

U 2(X) and U l(X) may now be solved as in the method of successive

approximations. Applying the result to equation 3.3-4, we obtain

Vp(e) =8 /b, V(@) = ==V (p) (3.5-5)
-2



—6h-

V. (p) = A,/ V () = - &V () (3.5-6)
' 1
where Vo(p) and V_l(p)' are assumed to be unchanged when Vl(p) and
v 2(10) appear. This is consistent with the original assumption that
only U'o( X) and U_l(x) contain any considerable amount of energy. The
inverse Laplace lransformation of 3.5-5 can be obtained in a stralight-

forwerd manner

ik_x ik, x ik ¥
U_(x) = -1-[ e + e + e - :]
-2 N (ke—kl)(kl-kB) (kl-kz)(k3—k2) (k2—kl)(k —kl) 5.501)
ik ; ik, X
(k. +k —ku)el 41X k elklx k.e °
U (x) = 3 (kl—ke)(k ) (k2 k. (k k). (k lk Yk -k )J
L _ 14 2Ty 7~ ey e R 1 ety e (3.5-8)
where kl =g +\/ 02+ i—
k, =‘0 - 02+ i‘—
k3 = 2(p-a sin §) = - iB_2/2
k) = 9-2_ (p +2a sin 8)
p = 2(e + 4e)/(M'ae) K2 /%2
a = 2(sl+ Ae)/(M'Ae) K/k
Y e - - 1 2.1 ) 2 1.1/2
Po(X) = U () U (X) = —=— [o7+ § cos™[(o+ {977 X] (3.5-9)

o=t =
T



P 1<x} =U_ () U_ ()" = %- 7 (3.5-10)

_1 -1
P_,(X) = § [l ) (k -k ) (k k)]

sinz[(k3fk2) g] sine_[(k3-kl) g] vsine[(kl—ke) %] )

+ +
kp=ky ky-ky k) -k, .
(3.5-11)

PL(X) = 3 [0 -k, (=, ) (i k) 17

. 2 _ X T .. P _ l
hklk2s1n [(k2 kl) ] ukg(kl+k2 k, )sin L(kl kh) 2]

2 L
+
o=k ky-ky,
: -y X
hkl(kl"-ka—kh) sin2[ (kh-ﬂg) —2-]
+ — (3.5-12)
L 2

For the case of exact Bragg angle incidence, the expressions are consi-

derably simpler.

P (x) = cos?(x/2) (3.5-13)

sin(x/2) (3.5-1L)

)
—
>
—

]

sin®l (p+ 2)x/2] sl Lo+ Px/2)

o)
!
\S]
.
>
S
L}
B
|
}

. 2
T L L : T + &in (g-)
P -3 T2 P-3

(3.5-15)
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=1 1 C oain2(X 2p 20 _1
Pl(x) “r7 I\ sin (2):+ — sin [(p 2)X/2l
P -1 P-2
+ —2p sinz[(p_+ Lyx/21 (3.5-16)
oo 2

By examining 3.5-15 and 3.5-16 we seé that there are two possible condi-~
tions for P_2 and Pl to be small. They are X << 1 and p > 1.

The condition p >> 1 1is a more general . condition than

X << 1 which is of only limited interest. We shall state the conditions

of validity for this solution as

(1) |4

|1/2 M'ae sec?® 8/(e + Ae)| << 1

and

(i1) o = [2(e tae)/(4e) K2/k2| »> 1 (3.5-17)

For the case of exact Bragg angle incidence, we can see from
equation 3.5-1h that the maximum diffraction efficiency takes place at

X =7 ; this implies that condition (ii) can be modified to
L sec 8 K2/ (k)| >> 1 (3.5-18)

This is comparable to the condition stated in references such as (3.5).
Equation 3.5-18 can be further simplified by the Bragg condition

K/k = 2 gin © , eo that wc can ptate it as

lQLK tan a/w! > 1

= |8Ln, sin 6 tan 8/A] >> 1 (3.5-19)
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In order to have some idea as to the value of p Dbefore it can
be considered to be much greater than one, Wwe plot in Figures 3.1

through 3.5 the normalized value of the diffraction efficiency; that is
1
P./ Z P. and the value sing(
251
that for the parameters chosen here with L=60 microns, A = 6328 & ,

x/2) for comparison purpose. We see-

ny = 1,5 and 0 = 7.50 , the solution is self-consistant in that P_2

and Pl are indeed small. This corresponds to p =8.60 . For the
case of © = 150 we see that the solution becomes self-consistant at
L = 15 microns which corresponds to p = 8.65 . From this we can
conclude that the solution given by 3.5-13 and 3.5-1k are very

accurate for p > 10.

3.6 Lossy Dielectric Gratings

In Chapter two we have studied the effective dielectric constant
of a lossy medium.. A more general form of the modulated index of
refraction for a dielectric grating is given by equatiohs 2.2-11 and 2.2-12,
In this section we shall study the effect of loss on the diffracted
power for. the approximate solutions derived in lhe two previous
sections. In most cases Ae" = O(Ae') so that the conditions for
their validity indicated previously still apply.

Strictly speaking, in the case of a lossy grating we can no

longer say phase modulation only, since there will be attenuation
as the wave propsagates through the grating. In this section when we
say phase modulation only, we are referring to the case similar to

that of Section 3.4 except the phase is now complex.
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Combining 3.2-8b with the solutions given in 3.4-5, we obtain

“the diffracted power

_ 2 —2kNg( Y + sin V)L (3.6-1)
Pg(x) - IJE(X)I e giK cos sin .

N, g, « and vy are defined in Section 3.2, X is a complex number

and may be written as X = X' + iX" . A useful identity for numerical
. .

computation is" (3.10)

L
T

Jn(X) J;(X) = J JO{[Q(X'z— X"%)- 2(X'2+ x"?)cos Q]l/z}cos né de
0

(3.6-2)
A similar expression can be derived for the case where the
incident angle is near the Bragg angle. At exactly the Bragg angle

P _(X) = e—Equ(K cos Y + sin Y)L lsin(X/Q)!g

~2KNg(k cos Y + sin Y)L [sin2(x'/2) + sinh2(X"/2)]

(3.6-3)

Equation 3.6-3 is plotted in Figure 3.6 and we see that the
exponential factor decreases more rapidly than sinhz(x"/2), so that
P_y remains finite as the argument becomes large. Several Interesting

observations can be made from this graph. The peak efficiency for

gratings of different thickness i1s the same and does not change by

*
In most instances the computer does not handle complex numbers and has

no subroutine for evaluating higher order Bessel functions.

3.10 N. N. Lebedev, Special Functions and Their Applications, Prentice-
Hall (1965).
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increasing the spatial frequency of the grating. Increasing the thick-
ness and the spatial frequency only changes the value of Ae where the
peak efficiency occurs. This indicates that less exposure is needed to
obtain the same optimum efficiency.

Let us examige the effect of M' , the modulation transfer
function, on the efficiency of a lossy grating. We see that in order
to reach X' = v for maximum diffraction'efficiency, we hawe to raise
Ae by a factor 1/M' . The exponential factor would be a much smaller
number when X reaches 7 , because M' 1is not present in the expon-
ential factor, which implies a decrease in the ultimate efficiency.

This points to the significance of increasing the modulation transfer

function, and is in agreement with the discussion given in Page 53 .

3.7 Numerical Solution

In Section 3.3 we have.derived an exact formal solution for
the Raman-Nath equation, but it is found to be of little practical use.
In Section 3.5 the method of terminating the set of infinite numbers of
the difference differential equations has first been used. Its use is
justified because the diffracted Qaves of higher orders have suffici-
ently small amplitudes so that they may be neglected. When more than
three terms are retained, the algebra becomes extremely tedious even
with this approach and it is difficult to obtain solutionsvin their
closed form. In this section we shall discuss and describe the solu-
tions obtained by using a digital computer. It is advantageous to use
a computer because equation 3.2-T may be solved without any simplifica~-
tion and it is possible to terminate the equation at any order, making

the analysis applicable to all angles of incidence. The only practical



-T6-

limitations are perhaps the availability of computer time and the com-
plexity of the program.

The basic approach involves the use of the definition of
derivative to evaluate the value of the function at an incremental
distance away from an originating point. This valuc is then uscd to
evaluate stili another point. Thg actual technique applied in the
‘DEQ subroutine is more sophisticated and uses the Runge-Kutta-Gill
method. The DEQ subroutine also offers the option of using a variable
mode, whereby the iteration interval is automatically changed when the
slope between two points exceeds a predetermined value. Figures 3.7,
3.8 and 3.9 are typical computer results. In these plots the thick-
ness ¥y 1s used as the variable with Ae as a parameter. Only Ul’
UO’ U-l and U_2 are retained and ® 1s chosen to be exactly the
Bragg angle.

From Figures 3.7 and 3.8 we see that for small Ae +the curves
agree favorably with the results obtained in Section 3.5 where
P—l = sin2 X/2 ; but as Ae increases as in Figure 3.9, the diffrac-
tion efficiencies depart significantly from those results. This is in
agreeﬁent with the condition of validity o >> 1 which we have
derived for such solutions.

The number of differentisl equations that should be retained
still remains to be déterminedo We shall again resort to self-

_consistency as the basic requirement. That is, if we can show by an

estimation that the amplitudes of the terms we have neglected are small,
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~then the truncation is justified.

Let us examine the specific case we have treated here with
truncation taking place at N=I, N'=-2 . From equation 3.3-U we see
that

V_s(p) =4 /8 3V 5(p) = C—i; v_s(p)

V_(p)/ (ap® - 2p - B_,)

3

Let us specifically examine the case Ae = 0.12. From Figure 3.9 we

see that

V_E(p) = z; a, sin w.y

is a reasonable expansion, and that the only a, of any significant -

magnitude corresponds to w. * 3 . Also for simplicity, set A =0

I
for this error estimation.
w-&a
-1 I°1
vV .(p) = .
-3 (2p +3_) 02 4 42
I
_ { MmIaI QmIaI go)
R RA 2 T2 2., 2 2,
(B_3+ th)(2p+B_ ) (B_3+ th)(P + wl)

3 I

B Lw.a
B }

(5% W) (2% )

Therefore



2w._a B X/2 2w_a
U_3(X) o —[““7s£‘i 5o €© v 5 Il 5 cos(wIX)
(B_3+ hmI) (B_3+ hmI)
B _a
+ 2-3 1 5 81n(w1xi
(B_3+ th)
. 2 _ 2
Noting that B__3 = IB_3I

with the parameters chosen for this plot; 3_3 ~ 10, wp = 3
|U_5] < lag| # [12/6h + 10/6L] = |a | 22/64
2
|57 = .03

a; 1s taken approximately as the maximum value of [U_2| in the region

of interest. Similar derivation can be carried out for the estimation
2
of |U |

» and it is found that |U,|° = 0.02 . The higher order terms

o 2

can also be estimated this way if we note that the dominant frequencies

for |U_3I are . w. and B;3/2 . A somewhat more general approach to

I
‘amplitude estimation for higher order terms is given in Reference (3.k4).

It suffices to state here that they are very small, such that for

the worst case, with the maximum Ae encountered , the total error

incurred by retaining only four terms is well within 5% for the range
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of thicknesses of interest.

‘3.8 Comparison of Results

We remark that Figures 3.8 and 3.9 depart considerably from the
curves shown in Figures 3.1 to 3.5, which essentially have the simple
sine-cosine variations. This is to be expected, since more "roots" are
involved as the expressions in equation 3.3-4 become morée complex.
Figures 3.8 and 3.9 show a close resemblance to the curves obtained by
Hance (3.11), who started from the simple "phase only" solution and
used an iterative method to obtain his result.

The computer solution differs from the simple sinusoidal solu-
tion in several ways. As expected, the sinusoidal solution overesti-

mates P and P . This estimation becomes worse as the value of

0 1

Ae gets larger because the conditions restricting the validity of the
sinusoidal solution are being violated. Furthermore, from these plots
the values of y for the maximum efficiency, with Ae as a fixed
parameter, are larger than those predicted by the solutions of Section
’3.5. This is to be expected, because if we plot curves of efficiency
versus Ae with y as a fixed parameter, the peaks of these curves
oceur at values of Ae smaller than those predicted by the solutions
of Section 3.5. This is indeed the case, because as the thickness

gets smaller, our solution approaches the Bessel function solution as

~ predicted by Section 3.4. The first order Bessel function has a peak

V3.ll H. V. Hance, "Light Diffraction by Ultrasonic Waves as a Multiple
Scattering Process', Physics Tech. Report 6~TL-6L-35, Lockheed
Aireraft Corp., Sunnyvale, California (196k4).
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at X = 1.85, whereas the sine‘solution has its peak at X =7 .

Figure 3.10 shows such a plot where we have used y as a
fixed parameter and Ae as a variable. The curves are obtained by
taking points from abseries of computer plots similar to those of
Figures 3.7, 3.8 and 3.9. From Figure 3.10 we can see that for y = 60
microns a peak efficiency of 98.5% can be obtained, whereas for a
substrate of y = 5 microns, the highest obtainable efficiency is
only 39.5%, which 1s close to the peak efTiciency of 33.9% predicted
from the "phase only" solution.

Similar plots have been obtained for the lossy cases, two of
which are shown in Figures 3.11 and 3.12. TFrom a series of these
curves we can determine the peak efficiency for a fixed thickness and
loss factor, and the result is shown in Figure 3.13.*% In each of
these cases the 60 micron curve fits equation 3.6-3 very well when
confirming our earlier assumption that within our range of losses the
conditions of validity determined for the lossless case still apply.
| The same procedure can be repeated using 8 as the varying
parameter. In this manner we can obtain plots showing the‘angular
dependence of the diffraction efficiency. This dependence has Dbeen
treated by George (3.12) using a different approach, and has been

verified experimentally.

*Ihe asymptotic value of this curve should have been 6.25% for the
5 micron case. The curve shows 5%. The discrepancy is due to the
simplification made in the 1/(eq+ Ae) = 1/(ey+ Ae') in the expres-
sion for Y , as we did not intend to include cases involving such
high loss factors at the earlier part of this study.

3.12 N. George and J. W. Matthews, Appl. Phys. Letters 9, 212 (1966).
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THEORETICAL

0 | 0.5 1.0
LOSS FACTOR Ae"/Ae'

‘FIGURE 3.13 MAXIMUM EFFICIENCY VERSUS LOSS
FACTOR FOR FIXED THICKNESS L.
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Figure 3.13 is_very useful in practice. If we are given an emulsion of
certain thickness to evaluate its merits, we can experimentally determine
the optimum efficiency by varying the exposure (see Figure 4.2). We
can then‘estimate the loss factor Ae"/Ae! and the optimum efficiency
for any othervthickness (assuming a linear density-exposure curve).
If we Obtain an efficiency of 26% for an emulsion of 5 microns with the
parameters shown in Figure 3.13, the loss factor is about 0.1 , we can
then interpolate the efficiency to be about 55% for an emulsion of 60
mierons.

The usefulness of 3.13 is not limited tu the paramelers slaled.
It gives a good estimation even for other parameters so long as we keep
the factor K2L/(k Sec 8) constant. This results from an estimation
in the order of magniﬂude of the errors made in truncation of the
coupled equatioﬁs. For example, if we decrease K and increase 6 in
accordance with the Bragg condition, we have effectively increased
the thickness, so that the sbove factor remaines constant. For a lossy
~grating, M' must be included to get an accurate prediction when

different spatial frequencies are involved.
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CHAPTER FQUR

HIGH QUALITY GRATINGS

4,1 Introduction

We have treated three tppics in the previous chapters without
much correlation between them. With the knowledge gained from these
topics, we are now in a position to formulate the requifements that
will enable us to produce better gratings and holograms. In the first
chapter we have described different holographic materials with special
emphasis on photographic emulsions. Different processing techniques
have been described and evaluated with reference to visual observations.
In the second chapter we have determined the required characteristic
curve that would enable us to produce gratings with sinusoidally
modulated index.of refraction. The modulation transfer function of a
bleached emulsion was described and a method of improving the modulation
transfer function at a specific spatial frequency has been proposed.

In the third chapter, a theoretical description of the diffraction

phenomena has been presented and we have determined the optimum

efficiéncy obtainable for a fixed thickness with the assumption that
the index of refraction is sinusoidally modulated. In this chapter,
we will start with a discussiqn on the various techniques of producing
high quality gratings, and state the specifications for new chemicals
and neﬁ emulsions with the knowledge gained from the earlier

chapters. We will then describe various experiments that we have
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conducted to produce such gratings, and compared qualitatively with
the theoretical calculations. We conclude this chapter and this

manuséript by proposing several experiments to extend this work.

4,2 Discussion and Summary

In describing the processing technique of photographic emulsions,
emphasis is placed upon how to produce dielectric gratings. From the
results of Chapter Three we see that only dielectric gratings with low
loss are capable of diffracting a large percentage of the incident
power into the first order. However, efriclency is often not the
most important criterion; equally important is the resolution of the
grating. It often requires a trade off between these two factors.

In the past, when resolution was more important,  the holograms
were simply fixed and the bleaching process was omitted. During the
latter process the grains tend to cross-link which causes severe
problems, esbecia.l]y when a large amount of grains is present. We have
solved this problem by omitting the bleaching step, using a method
similar to the reversal process. We used a developed but unfixed plate
end dissolved the silver grains, leaving the desirable silver halide
crystélsu Gratings produced in such a manner should have a better
resolution than the unbleached plates, because the undeveloped grains
are round, unlike the elongated "sea~-weed" shaped structure of the
‘developed silver grain. We have produced such gratings with good
resoluﬁion and an efficiency of 35% on O6L9F plates simply by dissolv-
ing the silver with concentrated nitric acid. The presence of such

volatile acids in an optical laboratory is generally undesirable as
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" they are dangerous to use. This really noints out the need for finding
a better reversal bath for the purpose described here.

By examining the micrographs of gratings produced by different
processes, one can easily determine the resolution of each grating
visually without actually doing an experiment to resolve two closely
spaced spectral lines. If resolution is the only requirement, then
certain bleaches can be immediately rejected. Similarly, if we are
mainly interested in efficiency, we can make plates with the same
uniform density and measure the transmittance after bleaching. This
will enable us to estimate the maximum efficiency from the curves.shown
in Chapter Three.

We have pointed out the need to study the use of desensitizers
or some other means to stabilize the grains inside the emulsion, and
have demonstrated that deeensitizing the gratinge with the use of a
dye is possible.

In Chapter Two we have correlated the index of refraction of
a bleached plate to itsvdensity before bleaching, thus establishing
the requifement for the characteristic curve of an emulsion that will
enable us to produce gratings with a sinusoidally modulated index of
refraction. The requirement is that the emulsion should have a linear
density-exposure curve. The need for such a grating has been indicated
in Chapter Three, where we have shown that such grating is capable of
obtaining 100% efficiency for sufficiently thick substrate. Any non-
linearity will only cause direct coupling between the zeroth order and

the second order, reducing maximum power diffracted into the Iirst
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order. To bé able to compare experimental results with our theoretical
curves, one muét produce gratings with a sinusoidally modulated index
of refraction. }

We have also obtained a relation between the modulation transfer
function of a bleached and an unbleached plate. This is an important
result, because there is no direct method of measuring the MTF of a
bleached plate, except by tedious measurements under an interference
microscope. The MIF of an unbleached plate is easily obtainable. A
significant contribution presented in this connection is a method of
improving the MIT at a specific spatial frequency to unity. This is
indeed an exciting finding which will enable wus to produce highly
efficient gratings of good quality at line spacings that could not be
produced by conventional methods. Furthermore, it 1s also applicable
to holograms, if" the scene subtends a small angle from the holographic
plate, because the fringes recorded have a small distribution in
spatial frequency with respect to the central frequency.

In the third chapter the theoretical aspects of the gratings
describéd‘above are studied. Numerical solution with parameters perti-
nent to photographic emulsion is presented. Loss has been included in
our solution since most of the bleaches produce gratings with small
loss. Through this careful analysis, we are able to establish the
maximum efficiency for a fixed thickness with a given loss factor. This
z.'esul‘t 'is summarized in Figure 3.13. |

We have shown that for a lossless grating thicker than 20

microns, the efficiency is approximated by sinz(x/2) where
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X = %‘YEM'AE Sec é/(el + Ag). For pictorial holograms the scene
uéually subtends over a range of . Both M' and Sec § depends
on ©. In order to obtain a uniformly bright field of view, it is
necessary to keep the variable ¥ constant over the range of )
the object subtends. Perhaps some effort should be devoted in

- producing M' of a desired shape.

4,3 High Quality Gratings - Experimental Result

Gratings‘have been produced on 6L9F plates for the evaluation
of various bleaches. The gratings are produced with a 6328 2 He-Ne
laser, with bofh beams oriented at 7.50 as shown in Figure 2.1 so
that the recorded spatial frequency is about 400 lines/mm. Maximum
efficiencies measured with 6328 § at Bragg angle are, 54% for
chromium intensifier (Section 1.2.6.1), 40% <for potassium ferricyanide~
bromide bleach (Section 1.2.6.L4), 23.5% for potassium ferricyanide-
iodide bleach ( Section 1.2.6.4) and 35% for the nitric reversal bath
(Section 1.2.7.3). The gratings with the least scattering noise are
those produced with the nitric acid reversal bath and the potassium
ferricfanide—bromide—bleach .

In order to compare experiment with theory, we have produced
a series of small gratings on a 649F microflat plate which has been
preflashedy: and bleached wilh chromium i,ntenSi‘fiex' for high eflficlency.
The measured efficiency is then plotted versus the logarithm of the
exposure. As indicated in Chapter Two, we should have plotted the

efficiency veraus cxposure if we have & linear density-exposurc curve.

It is plotted this way to show fthe detail over the entire range of
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exposure, because Figure 4.1 shows that the density-exposure curve is
hot linear. Although preflashing linearizes the H-D curve, it does
not change the linearity of the density-exposure curve, it only
increases the ultimaté density. Without flashing, we were unable to
obtain the peak as shown in Figure 4.2, because the "oscillation' at
higher exposure started to become dominant before the peak could be
reached; We expect the measured power for the higher order to be

. greabter than the theoretical prediction, due to non-linearity in the
density-exposure curve. Detailed plots showing ﬁhe theoretical
efficiency of a 15 micron substrate with different loss factors are
shown in Figure 4.3 and 4.4, We see that their shapes are in agree-
ment with those of the experimental data; we estiméte that this

emulsion has a loss factor of approximately 0.1.

L. L Some Possible Experiments

In viéw of the discusecion given in the text, major brecak—
throughs in the use of photographic emulsion are not in the hands of
those who are mainly interested in producing betteﬁ gratings and
hologréms. The problem is sufficiently well defined that the responsi-
bility is now on the shoulders of chemists who are éble to produce
thicker, better and more linear emplsions,-better reversal baths,
better developer for round grains and better desensitizers to preserve
the plates. The experiments described here may involve soﬁe chemistry,

but are still within the grasp of "electrical engineers".

Ji, 1,1 Developer and Chemical treatments

We have studied in Section 1.22 that it is the Redox potential
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difference between the grains and the developers that ie reeponsible
for making the érains long during development. One method of decreasing
this potential is to decrease the pH of the developer. This can be
achieved by decreasing the amount of sodium carbonate present in D-19.
The experiment calls for the extensive use of an electron microscope
to correlate the amount of accelerétor (sodium carbonate) present, to
the shape of the grains.

Another method of making the grains round is by a treatment of
KCN of various concentration (4.1). It is uncertain about the final
position of the grain relative to its original position. Thus it is
necessary to measure the scattering noise by varying the degree of

such treatment.

4. 4,2 Thickness of the Emulsion

We havehshown that by meking the grating thicker one is able
to obtalin a higher ultimate efficiency. We also note that to obtain
such efficlency one reguires a much smaller index modulation than
would be required for thin gratings. This imples that fewer grains
neced to be prescnt per unit volume. It perhaps offers an additional
advantage of reducing noise introduced by multiple scattering between
grains. On the other hand, a thick emulsion presents problems in
uniform development. Thus an optimum thickness should he determined

by experimentation.

4.1 T. H. James, Photographic Science and Engineering 9, 127 (1965).
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L. oh.3 Improvement of the Modulation Transfer Function.

The possibility of improving the MIF discussed in Chapter Two
merits attention. From the simple analytical basis for such improve-
ment we have indicated a different amount of compensation is required
for each spatial frequency. In practice one must also take into
account the exposure, because of the diffusion of light which causes
turbidity. It is necessary to determine the amount of compensation

for a given spatial frequency and exposure.
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CHAPTER 5

CONCLUSIONS

Emphasis is placed upon photographic emulsion as the medium for
producing dielectric gratings, but the treatment is general and
includes any material that can have an internal modulation of the
refractive index. Three topics afe treated: the effective dlelectric
constant of the emulsion, the diffraction of light by dielectric
gratings, and the techniques for producing gratings with high effici-
ency and good resolution.

The photographic emulsion is treated as an artificially loaded>
material, i.e., a5 a suspension of grains in a gelatin base. A Mie
scattering theory analysis is used and the effect of adjacent scatter-
ers on the local field is accounted for by the Lorentz-Lorenz
relation. The optical density of the emulsion is shown to be propor-
tional to the number of grains present. The effective index variation
after bleaching is proportional to the pre-bleached optical density,
which implies that the emulsion should have a linear density vs.
exposﬁre curve to effect a sinusoidally modulated index of refraction.
A relation between the modulation transfer function (MTF) of.bleached

(M') and unbleached (M) emulsion is derived. It is found that

M« log, [(1+M)/(1-M)]

Mcans for improvement of the MIF is alsoc obtained analytiecally.
~ The diffraction of light by a dielectric grating is analyzed

using the Raman-Nath formalism which is generalized to include loss.
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, Graphs are presented showing the diffraction efficiency versus the
index modulation for a wide range of thicknesses and loss. The peak
erriciency for arbitrary emulsion thickness can be obtained from meas-
urements at a specific thickness by using Figure 3.13. The conclu-
sion is reached that presently available emulsion should be made
thicker, preferably in the 20-30 micron range.

The processing techniques of photographic emulsion are
emphasized and the merits of various bleaches are evaluated., It is
found that resolution can be increased by using a reversal process.,
The dielectric grains in an emulsion processed this way are round in
shape. A desensitizing dye can be used to stabilize the grains and a
method of extending the dynemic range of the photographic emulsion is
found using a pre-flashing exposure technique.

It is hoped that with the results obtained and the recommenda-—
tions made, this work may serve as a guide-line for the development

of more suitable materials for holographic recording.



