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ABSTRACT

Measurements of the probabilities for Coulomb excitation

of the first 2" excited states in ;5Cd, 13°Cd, *%0Te and 1207e

have been made with 4“He, 12C and 16O ions. The deviations

observed in a comparison of the experimental data with the predictions
of first order perturbation theory are interpreted in terms of the
static electric quadrupole moments, Q,, of the first 2% excited states
of the nuclei. The deduced values of Q2 are found to lie in the ranges

-0.44 > Q2 > -0.97, ~-0.67 > Q222-1. 18, -0.16 > Q2 = -0.50 and

20,012 Q, > -0.40 ¢ - 10" 2%cm? for 14cq, Hbcq, 1261 gng
128 2 48”7 4877 4,52 116
| 52Te, respectively., The deduced values of Qz for 48 Cd and 480d

are found to be surprisingly large when compared with the predictions

of the vibrational model,
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I, INTRODUCTION

The Coulomb excitation process is a powerful technique
for the investigation of the structural properties of the nucleus,
Its particular advantages arise from the fact that the energy of
the bombarding particle is held below the Coulomb barrier. The
Coulomb repulsion prevents the surface of the projectile from
penetrating that of the target nucleus, thus restricting the inter-
action between the two nuclei to the well-understood electrical
force and enabling an unambiguous, model-independent measure-
ment of certain nuclear parameters.

Coulomb excitation has been used extensively to measure
the energies, spins, parities and E2 radiative transition matrix
elements of low-lying nuclear states (Alder, et al., 1956). The
ensuing wealth of systematic information made available has been
a major contributor to the development of the collective model of
the nucleus. As experimental equipment and techniques improve,
Coulomb excitation continues to provide the nuclear theorist with
the additional information he needs to test and improve his models.

This thesis describes a series of experiments in which
Coulomb excitation has been employed to measure the static
electric quadrupole moments of first-excited 2" states in the
even-even nuclei 1140&, 116Cd, 12'6’1‘e and 128Te. In Section II
the nature and theory of the Coulomb excitation process are
reviewed with emphasis on those aspects relevant to the design
of these experiments. The experimental apparatus and method,
and the analysis and results are presented in Sections III and IV,
respectively. A discussion of the assumptions and approximations



used in the analysis is given in Section V. In Section VI the
results are discussed in the light of existing nuclear models
and are shown to represent a challenging problem for the

theorist.



g
. THE THEORY OF COULOMB EXCITATION

A. Fundamental Assumptions

_ Coulomb excitation refers to the production of nuclear
excitations by a long-range electric interaction with a bombarding -
particle, In particular, when the energy of the bombarding
particle is well below the top of the Coulomb barrierl) , Ec, the
interaction between the projectile and target nucleus will be free
from interference by any nuclear forces. There are, however,
two additional conditions which must be satisfied before one may
proceed to the assumption of a classical orbit for the projectile
(Alder, et al., 1956). These conditions are:

(i) The de Broglie wavelength, \, of the projectile must
be much less than the distance of closest approach,
2a, in a head-on collision. This requirement may

be expressed as

wheré Z1 and 22 are the respective nuclear charge
numbers of the projectile and target, and v is the

initial relative velocity of the projectile. One half

the distance of closest approach in a head-on

1) X one takes r = 1,44 Al/ 3. 10'13cm for the nuclear radius,
the formula for the Coulomb barrier energy, Ec, has the
Y/
. . 172
simple numerical form, E_= (MeV),
| > T¢ A11/3 . A21/3




collision is given by

where m o is the reduced mass.

(ii) The energy lost by the projectile in producing a
nuclear excitation may constitute only a small

fraction of its initial energy.

Conditions (i) and (ii) are satisfied most easily by using
heavy projectiles, e.g., 4He, 120 or 16O ions to excite low-lying
( < 1 MeV) collective states. This is illustrated in the following

table in which the values of Ec and n are given for various

projectiles incident on 1ing and with energy equal to E (in MeV).

projectile E c n
et 9.9 0. 35
P 8.2 2.6
4
‘He 14.9 7.8
16 59,1 34, 0

The energy of the first excited state in ~12Cd is 0.56 MeV.



B. The Semiclassical Approximation

A classical treatment of the projectile orbit produces the
Rutherford differential cross section

| doR
dq

2 sint (2 (1)

]
I
1)
=

which describes the angular distribution of the scattered projectiles.
The differential cross sectionz) for the Coulomb excitation of a
state { {rom an initial state i may be written as

' do
do _ R
@ - fi-t @ (2)

where Pi—» P is called the probability for Coulomb excitation. Pi—» £
is given in terms of the transition amplitudes, bif’ by

P, .= (L + 1" }: | by | 2 3)
Mi’ Mf

where Ii is the spin of the initial state of the target nu_cleus and

Mi and Mf denote the respective magnetic substates of the initial -

and final states. The central problem of Coulomb excitation theory

is thus the calculation of the transition probability amplitudes blf

2) Hereafter, "cross section' is understood to mean the differential
cross section,



The amplitudes b i
time-dependent Schrodinger equation

.. are obtained from the solution of the
Hy = ir oF . (4)

Since the electric field of the projectile may be regarded as a

perturbation localized in time and space, one may write
H= H0 + Hint (t) (5)
and

"..E.E t _
v=) a ®|nre" " . (6)
n

H0 is the Hamiltonian of the free nucleus with eigenfunctions

dg
v, = |n>eh b

Hint(t) is the energy of the charge distribution of the nucleus in
the known, time-dependent electric field of the projectile. One
thus obtains the set of coupled differential equations

, LE -E )t
ha =) @E_ Ome" * Tam
m



for the amplitudes a, of the free nucleus eigenfunctions Y It
is noted that by, is equal to af(t - =} for a nucleus initially in
state i, i.e., with ai(t —~-e) = 1,

The classical treatment of the projectile orbit resulting
in (1), together with the quantum mechanical treatment, (4), (5)
and (6), of the nucleus in the time-dependent electric field,
produces (7) as the equation for the amplitudes of the free nucleus
eigenfunctions. Equation (7) is therefore referred to as the |

"semiclassical approximation'.

C. Multipole Interactions

The interaction Hamiltonian, Hint(t) , is separated into
its multipole components, of which there are four types (Alder
and Winther, 1966):

(i) the monopole - monopole interaction. This is
simply the interaction which produces the Rutherford
scattering and is subfracted out in subsequent
calculation,

(ii) the monopole - multipole interaction. The multipole
- moment of the target nucleus interacts with the point
charge field of the projectile to cause an excitation,

(iii) the multipole - monopole interaction. Excitation of
. the projectile proceeds through this mechanism.
Since (ii) and (iii) are incoherent, the latter need
not be of concern here.



(iv) the multipole - multipole interaction. This is
generally negligible,

Of the various monopole - multipole interactions, denoted
by EX and M), A =1,2,3,..., the electric quadrupole interaction
(E2) has been observed to occur most frequently in the Coulomb
excitation processg) . This is a consequence of the quadrupole
character of the collective oscillations and deformations prevalent
in nuclear matter, and also of the selection rules to which the
Coulomb excitation process is subject. For the case of E2 multipole
interaction only, H, .(t) becomes |

2
4 -3
Hy ) = 50 zleuz_zrp © Y, (6,0, 0,() A @2H @)

where
- 2 BT
mE2,W) = [ 1Y, (8,9)p (r)dr &)

and rp, ep and :pp denote the coordinates 4of the projectile relative

to the nuclear mass center. pn(?) is the nuclear charge density;
M (E2,u) is referred to as the E2 multipole moment operator of the

nucleus.

3) A few cases of El excitation are known, notably in 19}5‘, and E3
excitations have also been observed (Litherland, et al., 1963,
and McGowan, et al,, 1965). The relevance of a virtual E1
excitation to these experiments will be discussed in Section V,
Magnetic multipole excitations are inhibited by a factor (v/c)2
and are further reduced for large angle scattering.



D. Methods of Solution

There are several methods which may be employed to
solve (7) and thereby obtain the excitation probability. The
approximations used in these various methods will serve to classify

the various types or modes of Coulomb excitation.,

(1) First order perturbation theory

The excitation probability is assumed small such that
the amplitude a of the ground state remains constant and equal to

unity with all other a, << 1, In this case,

(1) 1 3 Egt
b S [ lE @)

i = A dt . (10)

A change of variable in (10) followed by integration over the orbit
of the projectile yields (Alder, et al., 1956)

dfr (8, E..) |
o) 2 SEa'®cy) 49 |
Pid " =Nt E 0 o8 (3) (11)

where

-14, 36A11/2Mf.E
_ i

3/2

(12)

Xig =
i (1+A1/A2)221222(2Ii+ 1)1/2
1/2
e o l1%h1 By (13)
£ 372

12,65 E
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BB = (B, - E)(L+ Ay/Ay) | '(14)l

and
M, = (LI m@EN]LY, a=2 . (15)

E is the initial laboratory energy in MeV of the projectile with
charge Z1 and mass A1 ina.m,u. 8 is the center-of-mass
angle through which the projectile is scattered by the target nucleus
(Zz,Az) and E; and E, are the energies in MeV of the final and
Initial nuclear states, respectively. The orbital integrals chz(e ,8)
have been tabulated by Alder, et al., (1956); the parameter By 1s
the ratio of the collision time (a/v) to the nuclear period (#/AE)
and indicates the extent to which the excitation process proceeds
adiabatically. The reduced matrix element Mfi connecting the
initial and final states is in units of e - 1072% cm?,

Xiog is a measure of the strength with which the final state
is coupled to the initial state through the interaction of the E2
multipole transition moment of the nucleus with the monopole field

4)

a sudden, i.e., § 5= 0, head-on collision. The assumption of

of the bombarding particle ™. xiz_'f' is the excitation probability in
perturbation theory may therefore be stated as Xiof << 1,
It is noted that
2

Mrs = B(E2, s-1) (ZIS + 1) ' (16)

4) Xiof is analogous to the parameter mn , which measures the
strength of the monopole - monopole interaction.
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where B(E2) is the same nuclear matrix element appearing in the
expression for the E2 radiative decay of the state s to the state
r. As a consequence of this, the Coulomb excitation process is
subject to the same selection rules which apply to the radiative
decay of the nucleus,

(2) Second order perturbation theory

The amplitude a, of an intermediate state z is
included in (7) to produce two coupled differential equations. The
transition amplitude bif in second order perturbation theory (Alder,
et al., 1956) then becomes:

bi(f) = bg‘) + % bi(z (17)
where
( | i(Ef - EZ)t
2 R
mf-(ﬁ) f dt(t|H_@)[z)e :
i(E - E,
¢ i( Zh 1')t',
x| dt' (z |Hy @) [ide. © . . (18)

-]

The summation in z is to be performed over all intermediate
states, including the initial and final states. Insertion of (17)
into (3) yields the perturbation expansion

- 2D, Zp(lz) Z p(22)

i-f i z—-f joz-f
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The terms P(lz) and P(22) describe the phenomenon of multiple
Coulomb excitation. For example, P(22) is the probability
072"t

of the projectile exciting a state of spin and parity 4 froma 0"
ground state by two successive E2 transitions.

To illustrate a situation which corresponds to the actual
measurements, one considers the excitation of a nucleus with 0"
ground state and two excited 2" states, which are labeled with
the indices i, f, and z, respectively (see Figure 1). The
Coulomb excitation of the first 27 state can then proceed by
direct excitation from the ground state (first order, i - f) or
by double excitation with either of the 27 states as the inter-
mediate state (second order, i~z -1 or i-1f-{f), Neglecting
terms higher than third power in Xinf ? the probability of ex-
citation of the first 2" state is

_ LD L(12) (12)
Prog = Piog + Pilpog + Pilgy (19)

The first term Pg%) (proportional to xiz_'f) is the first order
excitation probability defined by (11). The other two terms
(proportional to XiS_,f) arise from the interference between first
and second order excitation of the state £ where, in the second
order excitation, the states z and f are the respective inter-

mediate states. The term Pi—l»‘?—)»f gives rise to a dependence of
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the excitation probability on the static electric quadrupole
5 .
moment of the 27 state (the so-called "reorientation effect" )).

The second order terms P(22) in Figurc 2 are proportional

to x‘il_'f and are of the same order as the terms arising from the
interference between first and third order excitation. Calculations
to this order have been made by Masso and Lin (1965).

The probability Pﬁzz)_,f in (19) is given by

3/2 M . M,

(12) _ 27nm 3 zi " fz

Pi—'z—»f - 5 Xi—-pf ‘ Mz J(gzi’ gfz’ 6) . (20)
' {1

The quantity J (gzi’ 8y 0) is related to the orbital

integrals I\H( 8,&) and Bkn(xlxzéﬁz, 6) defined by Alder, et al.,
(1956), by the relation '

5)

The term ''reorientation effect' was introduced about ten
years ago by Breit and Lazarus (1955) who were the first
authors to suggest the possibility of measuring a static
quadrupole moment by Coulomb excitation. Recently, "re-
orientation efiect" has been used as a general expression to
cover any effects of the static quadrupole moment in Coulomb
excitation. Strictly speaking, however, it should be applied
(Breit and Lazarus, 1955) only to virtual transitions among,
and a redistribution of the final populations of the magnetic
substates of the final state, This "reorientation' of the spin
of the final state may be manifest, for example, in the angular
distribution of de-excitation gamma rays. However, for 180
degree scattering such virtual transitions and redistributions
are excluded and only the m = 0 substate is populated. On the
other hand, the effect of the static quadrupole moment on the
magnitude of the cross section is a maximum for 180°
scattering., In the experiments described here it is this latter
property which has been exploited.
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- M i :
I, 85,00 = E(—l) Yo, (5 01y (6,5, 4+5,,) By (225 .5, 6) -
(21)

Tables of the quantities Bku have been computed for positive §-
values by A. C, Douglas (1962). The term P(1 flf is obtained from
(20) by setting z equal to f.

The largest contribution to P arlses from P(l,';,l), which
is proportional to B(EZ2,i~f). The term P( )f, which is of the
order of magnitude of x?_’f, is proportlona.l to B(E2,i~f) and to the
static quadrupole moment of the state f, In order to obtain an
estimate of the size of this term relative to the excitation probability
of the first 27 state it is convenient to consider the quantity

12) , (11 |
1—»f)f/ 1—+f)' - @2

By substituting (11) and (20) into (22), one finds

4,8
(5) . (23)
it M @, (6, gf g sin (3

p=1.68 .

Writing x, . in terms of § ¢4 using (12), (13) and (14), one may
rewrite (23) in the form

p=-t L M M, x K(5, 0) (24)

Z 2
2 (1+ Al/A2)
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where

3(&4350, )
Sg dpo(8,54)/d0

sin"? (&) . (25)

K8, 8) = 1,90 5

The dependence of K(f—;in 8) on € £ and 6 is illustrated in Figure 2.
2
The static quadrupole moment Q;f of the state f is related
to the reduced matrix element Mff by

Q= -0.758 M, = +0.758 (L [m(E2) || ) . o (26)

From (24) and Figure 2, it can be seen that:

1) the ratio p is directly proportional to M, and thus
to the static quadrupole moment of the state {; a
determination of the sign as well as the magnitude of

Q2 is therefore possible.

2) p is roughly independent of § £ and therefore of the
energy of the projectile;

3) p is roughly proportional to Al’ the mass of the
projectile;

4) p is largest at backward scattering angles.

In the present experiments, therefore, one compares the excitation

probabilities for various projectiles scattered at angles close to

180°.
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(11) (12)
Since P " and P g

the ratio of the exc1tation probabﬂltles for different projectiles

are both proportional to (M 2)2,

is independent of B(E2, 0" - 2+), leaving M,, as the only nuclear
parameter in the ratio, Similarly, if the data are obtained under
the same experimental conditions, many factors important to the
determination of the absolute excitation probability will tend to
cancel in the ratio. Notably, this removes the uncertainty in the
efficiency of the Nal detector (+ 8% ) from the determination of
the quadrupole moment.

By way of numerical illustration of the above procedure,
the values of p(lfl) and p are 0,175. (M 12) and 0,131+ M,,,
respectively for 40 MeV 16O ions scattered from 1140(1 at 1650
in the laboratory system. The corresponding values for 10 MeV
“He bombardment are 0. 0163 - (Mlz) and -0, 036 - M22 If the

P12 p(12)

term g 0 (19) is small relative to iff» the excitation

probabmty for the first 2* state may be wr1tten as

P ; = (11) (1+p)

In this case, the ratio of the excitation probabilities obtained for
bombardment by 40 MeV %0 and 10 Mev *He ions is given by

1-0,131 M
1-0.036 M

22

P s (O
22

) 10. 74
Pi-'f ("He)
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)

Implicit in this treatment is the assumption that .“P(1 iofof
dominates P( l ¢ and other higher order terms which are not
included in the expansion (19), This condition is found to be

satisfied in these experiments.

(3) Symmetrization of first order cross sections

It is shown by Alder, et al., (1956) that the use of
symmetrized expressions for the adiabaticity parameter § £ and
the distance of closest approach 2a brings the classical first order
cross sections into closer agreement with the more accurate
quantum mechanical calculations. The symmetrized expressions.
for §ﬁ and do/dQ are

1/2
Z,ZA
1921 \-1/2  _-1/2
gﬁ 6.3%5 LE - AEﬁ) -E ] 27
and
(11) '
do AE,.. do
E2 (1 1) R

where & £ is given by (27), and ch/dQ is the (unsymmetrized)
Rutherford cross section. These symmetrized expressions for &
and for the first order cross section dcr(ll) are used throughout
the remainder of this thesis, “
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(4) Numerical integration of the coupled differential
equations

A perturbation theory treatment of the excitation
process loses validity rapidly as the size of Xyof increases.

Figure 3 shows for 11

4Cd the range of values of Xjg 352 function -
of projectile and bombarding energy6) . For large Xiog? either

the slowly converging perturbation expansion must be extended to
higher orders in Xjf OF different method of calculation must

be employed to account for the presence of non-negligible ampli-
tudes a, in (7).

The latier approach has been pursued by A. Winther
and J, de Boer (1965). These authors have written a computer
program which computes the cross sections for electric quadrupole
excitation in the semiclassical approximation by numerically
integrating the time-dependent Schrodinger equation (7) for a
system consisting of a nucleus with a finite number of states and
a projectile moving on a classical orbit., In addition to the
bombarding conditions, spins and energies of the target nucleus
levels, the program requires as input data the matrix Mrs between
all nuclear states considered in the calculation. A brief description
of this computer program is given in Appendix L

By varying the values of the reduced E2 matrix elements
M_ _ in the input to the computer program, one can study the

rs
dependence of the excitation cross sections on the different nuclear

6) In the experiments Xj.g Was typically 0. 3 for 16O bombardment
of 114Cd. One experimental datum was taken with 46 MeV 160
ions; X in this case was about 0. 5.
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matrix elements for various bombarding conditions. Since, in the
present experiments, it is found that this dependence is roughly
approximated by a perturbation analysis, it will be convenient to
retain the language of perturbation theory in discussing the results
of-the computer calculations. For example, in discussing the ‘
effects of a change in sign of any of the matrix elements in (20)
one may speak of the sign of the interference term involving these
matrix elements, indicating that these effects are in fact roughly
proportional to the product Mfi MZi Mfz'

In the analysis the computed cross sections have been
fitted to the experimental data in order to obtain values for B(E2,
ot - 2+) and for the static electric quadrupole moment, Q?.’ of the

first excited state.

E. Summary

It has been seen that the Coulomb excitation process

- provides a means of investigating certain features of nuclear
structure, notably the nuclear transition matrix elements B(E2), It
was further shown that an extension of Coulomb excitation theory
beyond that of a first order approximation enables a determination
of static quadrupole moments. It is interesting to note at this point
two significant features of these measurements: (i) nowhere in the
development of the theory has any reference been made to a nuclear
model, and (ii) the deduction of Q2 from the measured cross sections
does not require a separate estimation of an electronic electric field
gradient at the nuclear site, as would be the case in a measurement
of hyperfine structure, The electric field gradieht here is provided
by the bombarding particle, whose orbit is assumed to be known.
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III. EXPERIMENTAL APPARATUS AND METHOD

The experimental quantities to be measured were the

probabilities for Coulomb excitation of the first 2 states of 1MCd,

11_60d, 126Te and 128Te when bombarded with various heavy ions,

viz., 4He, 120 and 160. These probabilities were measured by
counting the de-excitation gamma rays in coincidence with the

scattered projectiles.

A. Heavy Ion Beam Production

The experiments described here were carried out With
particle beams from the ONR-CIT tandem accelerator. The 4He
ion beam was produced by the injection into the tandem of a 700

12 16O were

keV neutral 4tHe beam. Negative ion beams of ““C or
obtained by charge exchange of positive ions from the duoplasmatron
source, using as source gases methane and a mixture of 5 to 10% of

oxygen in hydrogen, respectively.

B. Target Preparation

Separated isotopes in the form of CdO and Te were obtained
from the Oak Ridge National Laboratory. The isotope enrichments
varied upward from 97% with the remaining constitution of the sample
known, The targets were prepared by the vacuum evaporation of the
separated isotope onto thin carbon foils. A light-weight material
such as carbon wés used for the target backing in order to produce
a wide separation in the energy of the 4He ions scattered from the

target material from those scattered from the backing.
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The thicknesses of the targets were measured by recording
the momentum profile of 1 MeV protons scattered at an angle of
1400. A second method also used was to compare the cross sections
for elastic scattering of low energy (about 4 MeV) 4He ions from the
target and from a nickel foil of known thickness. Values which were
estimated to be accurate to + 20% were thus obtained for the energy
loss of the projectile in the target,

Since the coincidence measurements do not require the
resolution of the inelastically scattered ions from the elastically
scattered ions, thicknesses corresponding to an energy loss of up
to about 1. 5 MeV for 160 ions could be employed. The thicknesses
of the various cadmium targets ranged from 250 to 450 ugm/ cm2.
Aiter the cadmium measurements were completed, it was realized
that thinner targets were preferable because of a resulting lower
random-coincidence count rate and count-rate loss. Furthermore,
since the probability for Coulomb excitation is strongly energy
dependent, thinner targets produced a smaller error in the correction
applied for the energy loss of the bombarding particle in the target.
For the tellurium measurements, therefore, targets of thickness

about 80 ugm/ cm2 were prepared.,

C. Detection System .

The arrangement of the detectors is illustrated in Figure
4, The heavy ion beam was confined to an area of 1.5 mm diameter
by a series of tantalum collimators before passing through the center-
hole of an annular solid-state detector. The target was placed about
one centimeter from the sensitive area of the counter which then
accepted particles scattered between laboratory angles of 155° and
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175°.

than sufficient to stop particles of all energies used in the experi-

The depletion depth of the detector (about 300 ) was more

ments,

The gamma detector was a 7.62 - cm - long by 7.62 - cm -
diameter NaI(Tl) crystal mounted at an angle of 58 degrees with
respect to the incoming beam, with its face about 3 cm from the
target center. This angle is near the zero of the Legendre poly-
nomial P2, which helps to minimize the effect of the anisotropic
gamma-ray angular distribution. For this particular geometry the
photopeak efficiency of the Nal detector is about 5% for gamma-ray
energies near 500 keV,

The coincidence circuitry consisted of a conventional fast-
slow coincidence system, with the fast coincidence unit modified to
provide a time-to-pulse-height conversion. A block diagram of the
electronic apparatus is given in Figure 5. A 400-channel analyzer
was gated by the slow coincidence unit which could be arranged to
require a time coincidence of some or all signal inputs from

(i) the fast coincidence unit;

(ii) a single-channel analyzer which selected pulses from
the gamma-ray spectrum corresponding to the photo-
peak of the 2t Lot transition;

(iii) a single-channel analyzer which selected pulses from
the particle spectrum corresponding to scattering from

cadmium (or tellurium),
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D. Procedure

Figures 6 and 7 show for 114Cd and 128Te respectively,
singles gamma-ray spectra and spectra gated by the requirements
(1) and (iii) above. Corresponding singles spectra of 16O ions are
shown in Figures 8 and 9, The relative thicknesses of the cadmium
and tellurium targets are appareht from the widths of the peaks in
these spectra. The single-channel analyzer level or "window"
settings are also indicated in Figures 6 through O.

The fast coincidence unit gave an output pulse proportional
to the time overlap of 90-ns-long clipped pulses derived from the
particle and gamma detectors. A time-to-pulse-height spectrum,
gated by a coincidence of signals from (ii) and (iii) above, is shown
in Figure 10. Delays were adjusted such that pulses in real
coincidence had about half-maximum time overlap to facilitate the
subtraction of the uniform random-coincidence background. This
subtraction was typically about 2%, never more than 5%, and was
known accurately enough so that negligible error was incurred.

The shape of the time-to-pulse-height spectrum was independent
of the bombarding particle.

After the subtraction of the random-coincidence background
in the time-to-pulse-height spectrum, the experimental datum is
the ratio, R, of the number of counts in the time-to-pulse-height
peak to the number of particles (counted by a single-channel analyzer
and scaler) scattered from cadmium or tellurium., Thus

n

1§2 fl dc

il (29)
&, do.
i=1 i

R =
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where dci is the cross section for excitation of the ith level and n
is the number of levels significantly populated in the experiment.
Figures 11 and 12 show the energies, spins and labelling indices,
i, of the levels considered in the analysis. The quantity fi is the
probability that, after Coulomb excitation of the state i, the sub-
sequent gamma decay produces a pulse in the window of the gamma-
ray spectrum. For i= 2 this is just the photopeak efficiency of the
gamma detector with a small correction for the anisotropy of the
gamma-ray angular distribution. '

E. Auxiliary Experiments

An alternative method of measuring the probability for
Coulomb excitation is to detect the inelastically scattered particles
by direct magnetic analysis of their energy. This method was
employed in the case of 114Cd to provide an independent check on
the particle-gamma coincidence experiments. The results were
- found to corroborate those of the coincidence measurements. A
description of the magnetic analysis experiment and its results is
given in Appendix II. A.

For the purposes of analysis it was necessary to know some
of the E2 matrix elements to the higher or "two phonon'' states., In
the cases of 114Cd and 116Cd this information was available from
the work of McGowan, et al., (1965). Only some of the matrix
elements required for the tellurium isotopes had been measured
previously (Gangrskii and Lemberg, 1962); in particular, the value
of B(E2, 4" o 2+) was unavailable, A short experiment using the
method of gamma-~gamma coincidence was performed to obtain these

values, This is described in Appendix IL B.
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An attempf to extend the measurements to include
bombardment by a 328 ion beam was made. The difficulties
encountered and results obté.ined are detailed in Appendix II. C.

The measurements and calculations performed with
regard to the efficiency of the gamma-ray detector and the
anisotropic angular distribution of the de-excitation gamma -

rays are presented in Appendix IIL
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IV. ANALYSIS AND RESULTS

A, Corrections Applied to the Raw Experimental Data

The experimental quantity obtained directly from the
measurement is the ratio R, defined in (29). The quantity, Pexp’
from which the quadrupole moment of the first 2" state, QZ’ is to

be determined7) , 1is given by

do 9
Pogp = "I (30)

Y do,
i=1 1

and is called the probability for Coulomb excitation of the first 2F
state. A number of small corrections were made in order to

extract P exp from the raw experimental data.

1) Since the Coulomb excitation cross section is strongly
energy dependent, the effective bombarding energy was taken to be
the incident ion energy, E, minus half the target thickness, 1/2 AE;
the cadmium targets were about 120, 800, and 1400 keV thick for
4H.e, 120 and 16O ions, respectively and the tellurium targets were
about 40 and 500 keV thick for 4He and 16O ions, respectively. A
calculation of the effective bombarding energy correct to order

(AE /E)2 proved the above method to be sufficiently accurate.

7) One could just as easily analyze the quantity R, but analysis of
the quantity P has the advantage of exhibiting more clearly the
effect of Q2 on the cross section for the first excited state,
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2) The anisotropy of the gamma-ray angular distribution
necessitated a correction of about 9% to the absolute yield in
normalizing the Nal crystal efficiency to 4rr geometry. This
correction, however, was essentially the same for all bombarding
conditions used in the experiments. For large scattering angles the
gamma-ray angular distribution depends only weakly on the type and
energy of the particle which causes excitation of the state. Also,
the effect of the quadrupole moment on the gamma-ray angular
distribution is negligible for large scattering angles. The coefficients
for calculating the gamma-ray angular distribution are obtained from

the computer program mentioned in Section IL,

3) The target nucleus possesses a recoil velocity after the
collision with the projectile. This velocity, however, is reduced as
the recoiling nucleus moves throﬁgh, and loses energy in, the target.
If the target nucleus decays while still in motion, the effective solid
angle of the ganima detector will be altered slightly. The maximum

6O ion bombardment

possible change in this efficiency occurs for 1
of a nucleus which then decays with its full recoil velocity, and this
change amounts to only 0.3%. The application of this type of

correction to the individual cases is discussed in Appendix III.

4) The contribution of cascade gamma rays to the coincidence
yield R must be taken into account, This contribution can be calcu-
lated given the cross sections dcri to the higher states and the cascade-
to-crossover branching ratios. The finite width of the gamma-ray
window may also permit acceptance of some or all of the gamma rays
from the upper member of the cascade transition. The cross sections
do i for the higher states were calculated with the computer program



28

using the E2 matrix elements MrS given in Tables 1 and 2, These
matrix elements were taken from the work of McGowan, et al.,
(1965), for the cadmium isotopes; the derivation of the matrix
elements for the tellurium isotopes is given in Appendix IL B,

114Cd was applied to the

A correction of about 0, 5% for
coincidence yield due to the de-excitation of the first excited state
by the internal conversion process. This correction was, of course,

the same for all bombarding particles.

5) The closer proximity to the single-channel-analyzer
threshold of pulses from the inelastically scattered particles, and
the pulse-height tail of the particle detector, resulted in slightly
different efficiencies for detection of the elastically, and the in-
elastically, scattered particles. A correction for this was deter-
mined from the shape of the particle spectrum at each bombarding
energy. This correction was made with great care since - at 4- 5%
for 4He bombardment - its magnitude was comparable with the
deviations being measured., A coincidence-gated particle spectrum
(see Figure 13) showed the same peak-to-tail ratio as the singles
spectra indicating that the counts in the pulse-height tail of the
singles spectra above the single-channel-analyzer threshold were
indeed substantially due to scattering from the relevant target
isotope. An additional small correction was made to the particle
count for particles scattered back into the annular counter from the
tantalum beam stop, which was about two meters beyond the target.

6) The center-of-mass motion also introduces a small
correction to the coincidence yield because of the difference in solid
angle subtended by the particle detector for the elastically, and the
inelastically, scattered projectiles. This correction amounted to
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"about 0.6% for 16O ion bombardment of 11-‘J‘Cd and was corre-

spondingly smaller for the other ions used,

7) The 126'Ife target contained a total of 3% of other Te
isotopes. The known gamma-~ray energies and values of
B(E2, 07 - 27) of 12%Te, 1281e, ang 130
1956; Stelson and McGowan, 1958) enabled a correction (1.5%) to be

made to the coincidence yield, This correction, however, was the

same for 4CHe and 16O bombardment, |

Te (Temmer and Heydenburg,

With the application of the above corrections to the measured
ratios R, the experimental values, P__ p(Al’ E), of the probability of
excitation of the first 2" state were obtained as a function of bom-
barding particle and energy. These values are listed in Tables 3
and 4,

B.‘ Presentation of the Data

A convenient way of presenting the experimental data to show
the effect of Q2 is to compare the measured values of P with those
calculated from first order perturbation theory (28). This is done in

Figures 14 through 17, The ratios P for bom-

/P..
exp’ " first order
bardment by the various heavy ions are plotted versus €. The values
of B(E2, 0" - 27) used in calculating Ppist order WETe taken from an

analysis to be described later,

C. Higher Order Effects

The large deviations from unity in Figures 14-17 indicate that matrix

elements otherthan (0+l| M(E2)|2") mustalso playa significant role in the
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~ excitation process. These other matrix elements are those which,

in the language of perturbation theory, lead to "higher order effecis'.
It will be seen that the dominant higher order effecct arises from the
existence of an appreciable static quadrupole moment in the first
excited state of the nuclei studied here.

The other higher order effects which can contribute to the -
excitation of the first 2 state are virtual transitions via the higher-
lying 2" levels. These, however, may be accounted for by direct
calculation provided the pertinent matrix elements Mrs are known,
The magnitudes of these have either been measured or estimated and
are given in Tables 1 and 2, The relative signs of these matrix
elements arc not known experimentally and this causes a considerable
uncertainty in the deduction of QZ'

In order to illustrate the above points and give a quantitative
indication of the dependence of the cross sections on the projectile
and its energy and on the magnitudes and signs of the matrix elements
M , the results of computer calculations of the cross sections, do, 5
for various sets of inputs are given in Table 5 ) The sign of M12
was taken to be negative in all cases. The last column of Table 5
shows in order the values of P derived from

(i) a computer evaluation including all the levels shown in

Figure 11 for 114Cd, (Pcomp);

(ii) a similar computation including only the ground and

first excited states, (th o lev el);

(iii) first order perturbation theory, (28).

8) The computer calculatlons for Table 5 were done at Rutgers by
Jd. de Boer.
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A study of Table 5 shows the following:

a) Apart from the matrix element M12 connecting the ground
state to the first excited state, the largest contribution to the cross
section for the excitation of the 2* state arises from Mzz, which is
proportlonal to the static electric quadrupole moment Qz of the first
ot state (26). Changing the value of M, , from 0to+1.0 (e- 10” -24
cm ) decreases the cross section d°2/ dQ by about 13% for 40 MeV

160 ions, The decrease is roughly proportional to M22'

b) The change in the excitation cross section doz/ dQ arising
irom a change in the signs of M1 4 and M17 amounts to 3.8% and 1. 3%,
respectively, for 160 ions. The fact that the signs of M1 4 and M17
are unknown thus contributes a considerable uncertainty to the final
analysis, The strong dependence of the cross section doz/ dQ on the
signs of these two matrix elements arises from the possibility of
excitation of the first 2" state via virtual transitions through one of
the higher 2" states, The interference of these virtual transitions
with the direct transition from the ground state gives, in second order
perturbation theory, contributions of the type P(lz) Lot of to the
excitation of the first 2" state which are proportlonal to the third
power of the interaction constant X5of" These contributions have
the same dependence on the projectile and its energy as the coniri-
bution P(()},_z_)_ ot ot which involves the static quadrupole moment,
It is to be noted that changing the signs of both M1 4 and M2 4 produces
only a very small effect on the cross sections; this is because the
interference term 'Pgﬁ.z_). 91+ o is proportional to the product
Myg Myy Moy

The excitation of the first 2" state by virtual transitions
through higher states with spins different from two, i.e., zero or

four, must also be considered. However, this process can only
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produce interference effects 1'nvolving terms of the order of X4;
which are small and contain no ambiguity in sign.

¢) Inclusion of the cascade-to-crossover branching ratio
¢ (Stelson and McGowan, 1961) to calculate the cascade gamma=-ray

contribution,

n o ,
Z 1 4. (31)
i=3 1 +c:i i

to the population of the first 2" state yields values of about 4% for
40 MeV %0 ions, 3% for 30 MeV 12C ions and 1% for 10 MeV
4He ions. This contribution is essentially independent of the signs
of the matrix elements and absolute values of these are known to
about + 20%.

d) The E2 matrix elements between states in the two-
phonon region have a negligible effect upon the excitation of the first
of state, This has been illustrated in Table 5 by changing the value

of M45 from 0 to 1,0, In the final analysis one is therefore justified

in setting Mrs= 0 for r,s.> 2,

e) The difference between Pcomp and Pﬁrst order 2¥ises

only partly from the inclusion of the higher excited states in the
calculation of LPc omp* Computer calculations including only the
ground and first excited states and with M22 = 0 yield values of

which differ from P

P two level 16 first order by,
as 7% for 40 MeV ~ O bombardment. Deviations of this order of

for example, as much

magnitude are, however, expected because of the decreasing

accuracy of a first order perturbation treatment as X1—¥ 9 becomes
larger,
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D. Least—Squafes Fit to the Data

The experimental values for M12 and M22 were deduced by
comparing the measured excitation probabilities with those calcu-
lated by the Winther-de Boer computer program. This comparison

was done in the following manner.

a) Preliminary values of M12 and M,, denoted by M'12
and Mz'2 , were obtained by using second order perturbation theory
to analyze several of the data for 16O ion and 4He ion bombardment.

This procedure is illustrated in Section II and Appendix II. C.

b) For a given projectile, A;, and bombarding energy, E,
the expression

Pth(Al’ E) = al(Al’ E)(Mlz)z T az(Al; E)(Mlz)z Mzz (32)

was taken to represent the dependence of the excitation probability
on M12 and M22.
perturbation theory, The coefficients a4 and P however, were

not taken from second order perturbation theory, but were obtained

This is, of course, the prediction of second order

from the computer program as follows.

¢) Two values of Pth(Al’ E) were calculated with the
computer program, first usmg Mlz’ M22 and M as input, and
then using M12 + AMlz’ 22 + AM22 and M as mput, where
A << 1; the values of Mrs’ the matrix elements to the levels above
the {irst excited state, were taken from Tables 1 and 2. Equation (32)
was used together with the above values of Pth(Al’ E) to solve for

a1 and az.
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The values obtained in this manner for a4 and aq depend
on the relative signs of the Mrs’ and also depend (slightly) on the
particular values of Miz and Mz'2 (although this latter dependence
vanishes in the limit of second order perturbation theory). However,
for small changes in M, , and My about Miz and Mz'z, (32)
reproduces to a high degree of accuracy the calculation of Pth(Al’ E)
by the computer program. -

d) Steps b) and c¢) were repeated for all the bombarding
particles and energies used in the experiments, thus obfaining a
set of equations (32), each linear in (M'lz)2 and (M12)2 Mzz. The
method of least squares was then used to obtain the value of M12 and
M22 which, when inserted in (32), best reproduced the set of experi-~
mental excitation probabilities, Pexp(Al’ E).

Because of the dependence of ay and g (and hence of the

quadrupole moment) on the relative signs of the Mr a separate

)
least-squares fit was performed for each possible ssign combination,
Thus, in the case of 114“Cd, four values of M, and M,, have been
deduced from the data.

The fitted values of M12 and M22 differed slightly from the
values of Ml'2 and Mz'2
analysis and used to calqulate 24 and g The resultant error in the
quadrupole moment has been carefully estimated and was found to be

less than 5% in all cases., This error could be eliminated by an

which were obtained from the preliminary

iteration of the fitting procedure or by using a more accurate
expression for Pth(Al’ E) than is given by (32). Such an expression

is

_ 2 2
Pth =ay+ a‘l(Mlz) + az(Mlz) M22 . (32a)
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'~ However, in view of the larger errors (+ 30%) in Q:2 arising from
other sources, it was felt that the small improvement in Q2
afforded by an iteration of the analysis would not justify the cost

of the necessary computing time.

It may be noted here that the value of Miz used to calculate
the a, and 3, has itself a minimum uncertainty of + 8% which arises
irom the uncertainty in the Nal crystal efficiency. This introduces
an uncertainty of about 6% in the quadrupole moment.

E. Results

The solid curves shown in Figures 14 - 17 represent the
" least-squares fits to the experimental data obtained by using the
values of M__ given in Tables 1 and 2 and with all M__ except M
rs 114 116%S 22
Cd and Cd both

indicate a decline in the values of Pex p/ Pfirst order at the higher

taken negative. Figures 15 and 16 for

4He energies, A possible explanation of this is the onset of
interference from nuclear reactions as the top of the Coulomb
barrier (~ 15 MeV) is approached. These higher energy points
(dotted) have accordingly excluded from the analysis. This has also
been done for the 4He data in the tellurium nuclei, although the
departure of the yield from Coulomb excitation theory appears to be
more gradual than in the cadmium isotopes.

The deduced values of M12 and M22 are given in Tables 6
and 7, Here and in Figures 14 - 17 the errors include only the
counting statistics. The total errors for the various values of M12
and M22 deduced for each nucleus are given in parentheses in
Tables 6 and 7, For M12 the predominant contribution to the total
error arises from the uncertainty in the Nal crystal efficiency (+ 8%),
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- while for M22 the uncertainties in target thickness, M,, and the
higher mairix elements each contribute to the total error.

Tables 6 and 7 show that the value of M22 determined
from the data may change by up to 30% depending upon the various
choices of the signs of the Mrs while the quality of the fit, indicated
by the value of chi-squared, is similar in all cases. It is therefore
not possible on the basis of the present experiments to determine
these signs. This is due to the fact that the interference term
responsible for this sign dependence is similar in behavior to the
interference term arising from a finite quadrupole moment.

It can be seen from Table 6 that, despite the fact that p
depends only weakly on the bombarding energy (see (24) and Figure
2), an analysis using the oxygen data alone is capable of yielding a
value of M22 which has the correct sign and order of magnitude. It
should also be noted that the value of M12 derived from the analysis
is rather insensitive to the signs of the Mr <°

In principle the B(E2) and quadrupole moment can be
determined from any two experimental data, either of different
energy or of a different bombarding particle, though the latter
constitutes the more sensitive measurement, The fact that a good
theoretical fit is obtained to the cadmium data points of three
different bombarding particles, covering a wide range of energies,
attests to the validity of the theory in describing the excitation
process., Only two different ions were used in the measurements _
on the tellurium nuclei since the quadrupole effect itself was smaller
and the validity of the method had already been established in the

cadmium measurements.
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To single out the effect of Q,, the data and fits of Figures
14 - 17 are replotted in Figures 18 - 21, normalizing now to
P, omp(QZ = Q). Pcomp(Qz = 0) is a computer calculation of P
using the fitted value of M12 and all the other matrix elements
in Tables 1 and 2 but with M22 = 0. Thus, if the quadrupole moments
had been zero, all the data points in these figures would be expected
to yield, in the least-squares fit, a common line of ordinate unity.
The slope of the 16O curves in the figures in which P is

exp

normalized to P is due partly to the decreasing accuracy

first order
of first order perturbation theory as the excitation probability
increases. |

From the above discussion and the similarities of Figures
14 - 17 and Figures 18 - 21, it is clear that the major part of the
deviations from first order perturbation theory may be attributed

to non-zero quadrupole moments of the first 2" states in these nuclei.
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V. DISCUSSION OF THE ANALYSIS

The preceding analysis rests on certain assumptions
concerning the excitation process; the validity of these will now
be discussed.

1) The treatment of the Coulomb excitation process in
the semiclassical approximation assumes that the projectile
follows a classical hyperbolic orbit, an assurhption which is valid
for large values of n (see Section I). At the energies used in
the present experiments the values of n for the bombardment of
114Cd with 4He, 120 and 16O ions are approximately 10, 30 and
40, respectively. The use of symmetrized'expressions for the
distance of closest approach and adiabaticity parameter further
improves the accuracy of the semiclassical approximation such
that, for the experiments reported here, the difference between
a semiclassical and a quantum mechanical treatment is expected

to be negligible (Alder, et al., 1956).

2) Only electric quadrupole interactions between projectile

and target have been considered in the analysis. '
Because of the selection rules applicable to the present

case magnetic interactions can only contribute to higher order
effects and not to the direct excitation of the 2" state. Such contri-
butions are, however, expected to be 100 to 1000 times smaller than
the E2 effects since magnetic excitations are intrinsically much
weaker for particles scattered at large angles (the cross section is
zero for 180° scattering) and for particles with non-relativistic

velocities.
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The effects of electric dipble interactions have been
discussed by Eichler (196 4). He considered the term in the
perturbation expansion arising from the interference between
virtual double E1 excitation via the giant dipole resonance and
direct E2 excitation from the ground state. In the type of experi-
ment reported here, the expected dependence of the double-E1
effect on the various bombarding conditions employed is sufficiently
similar to that of the static-quadrupole-moment effect that an
experimental distinction is impracticable, - However, according to
more recent calculations by MacDonald (1964), Douglas (1966), and
Winther (1966) based on the collective model, the magnitude of the
E1 effect is expected to be 5 - 10 times smaller than observed in
these experiments. Accordingly, the effects of virtual double E1
excitation have been neglected in analysis and also in the estimation
of the error in M22.

The eiffecis of E3 and higher multipoles have also been
neglected. Although a weak E3 excitation of a 3~ state at about 2
MeV has been observed by McGowan, et al., (1965), the contribution
of this process to the excitation of the ot state is considerably
smaller than the equivalent contribution from the second 2t state.

3) Only the lowest known excited states (6 for -+

%cq, 4
for 1160d, and 3 for 12'6Te and 128Te) have been included in the
computer analysis although only about 10% of the energy weighted
E2 sum-rule is accounted for by the transitions to these states.
This limitation seems justified on the grounds that other low-lying
states which could contribute significantly to the excitation of the
first 2 state should also have been observed previously through

their gamma decay. Furthermore, if the remaining 90% of the E2
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strength is accounted for by a single ""giant quadrupole" state at
about 10 MeV, and if a matrix element of equal magnitude is
assumed to connect this state with the first 2" state, then the
resulting interference term in the probability of excitation of the

first 2" state in 114Cd is found to be negligible.

4) The possible effects of nuclear reactions have been
ignored. While it is extremely unlikely that such effects are
important for the 12C and 16O ion bombarding energies used here,
it is known (Hansen and Nathan, 1963, and McGowan, et al., 1965)
that nuclear reactions may become appreciable for 4He bombardment
as the energy approaches the top of the Coulomb barrier (about 15
MeV for 4He on 114th). It is therefore especially important in
experiments of this type to establish the energy range within which
one may have confidence in a purely electromagnetic description of
the interaction. This is the reason why 4He data were taken over
a wider energy .ra.nge than was ultimately analyzed in the present
experiments,

An examination of the analyzed 4He data points in Figures
18 - 21 suggests that a small but finite slope is present in the data
for each nucleus. The significance of this slope, if real, is not
understood. It has been assumed that the 4‘He energies used in the
experiments and included in the analysis are far enough below the
top of the Coulomb barrier to make interference from nuclear
reactions extremely unlikely. The validity of this assumption
appears to be proven by the simultaneous fit to the data involving
the three different bombarding ions, It is noted, however, that if
a monotonic decrease in the 4He yield with increasing energy due

to nuclear reactions is actually present in the analyzed data, that
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this would lead to an underestimation rather than an overestimation
of the quadrupole moment. It would be interesting to extend the
4He data to higher energies up to and beyond the top of the Coulomb

barrier to examine this assumption further,
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V1. DISCUSSION OF THE RESULTS

Before discussing the results of the experiment, a few |
comments on the collective model are necessary.

The collective model of the nucleus in its simplest form
classifies the collective or correlated motion of the individual
nucleons into two basic types - rotational and vibrational motion.
Rotational motion is characterized by the existence of a permanent
equilibrium deformation; the nucleus may rotate about an axis
perpendicular to its (assumed) axis of symmetry. Vibrational
motion corresponds to an oscillatidn of the nuclear surface much
the same as can be experienced by a liquid drop. While it appears
possible that a nucleus may vibrate about an equilibrium deformation,
thus permitting a "mixing" of the characteristic features of rotational
and vibrational motion, the energies associated with the two types
of motion are usually sufficiently different that nuclei may be
empirically classified as either rotational or vibrational according
to the structure of their lowest-lying levels,

Rotational-type nuclei are found in the mass regionsg)

A =150 to 190 and above A = 220, The energy level structure of
10) in these regions is characterized by a J(J + 1)
energy spacing and a sequence of J-values O+, 2+, 4+, 6+, ete.,

even~even nuclei

9) Examples of collective motion are also known in other regions
of the periodic table, including probably the 1p-shell nuclei,

10) Only even-even nuclei will be considered in the discussion for
reasons of simplicity and because the nuclei investigated in
these experiments are all of the even-even type,
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with the energy of the first excited state usually in the 100 to 300
keV range. _

Vibrational nuclei, on the other hand, exhibit a quite
different level sequence and spacing. A triad of excited states
with J" = 0+, 2+, 4" is usually found at about twice the excitation
energy of the first excited state with J" = 27, The excitation
energy of the latter is typically 400 to 700 keV. Vibrational nuclei
are found in the mass regions A = 60 to 150 and A = 190 to 220,

It is apparent from an examination of their energy level spectra
that the cadmium and tellurium isotopes investigated here are
typical vibrational-type nuclei,

The simplest vibrational model considers pure ha.rmonié
quadrupole vibrations of the nuclear surface (Bohr and Mottelson,
1953). The equation of the surface may be expressed as

. .
R(s, CP)=RO(1+ y ocz’uYz’u(e,CP))

L)

M==2

where the “2, " are functions of time and are assumed small, By
expressing the Hamiltonian of the system in terms of the generalized
coordinates, “2, W2 and their associated generalized momenta, it
may be seen that the surface oscillations are equivalent to a system
of harmonic oscillators. The excitation quanta are Bose-Einstein
particles or "phonons' of spin 2 and even parity. The first excited
state is a one phonon state while the degenerate (07, 27, 4¥) triad

is obtained from the combination of two phonons. In the simple
harmonic model (SHM) the matrix element of the E2 operator
between states containing the same number of pure phonons vanishes
identically, Thus, in this model, Q, = 0.
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The fact that the experimental vaiues of Q2 determined
in the present work, and also recently by othersu) , are not zero
is perhaps not too surprising, however, when one notices that the
SHM provides only an approximate description of the actual nuclear
motion. An examination of the known properties of most vibrational
nuclei immediately reveals deviations from the SHM, (For the

114Cd'is taken as the case in point),

remainder of the discussion
The degeneracy of the two-phonon triad is removed and all of the
levels are seen to lie at more than twice the energy of the one-
phonon state. Furthermore, an examination of the matrix elements
in Table 1 shows that the selection rule forbidding E2 transitions
between states differing by other than one phonon is violated by the
small but finite value of B(E2, 2" - 07). There are also other
similar examples of deviations from the pure-harmonic phonon
model. It may be hoped that a more refined model which can
account for some of these deviations will also predict the measured
value of Q2.

Within the framework of the SHM, deviations from harmonic
structure are accompanied by the admixing of states of different
numbers of phonons, In other words, the 2" 5 0% crossover

11) Measurements similar to those reported here have been done

on 114Cd also at Oak Ridge National Laboratory by Stelson,

etal., (1965 ) and at A, W. R, E,, Aldermaston by Simpson,
et al., (to be published). Their values for Qg, -0.6 0.2

pbarn (Oak Ridge) and -0. 49 + 0. 23 barn (Aldermaston), agree
within the experimental errors with the value reported in this
thesis, -0.7 + 0. 2 barn,

A part of the experiments described here has been reported
in the literature (de Boer, Stokstad, Symons and Winther,
1964, and 1965).
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- transition is accounted for by the presence in the two-phonon state
of a small admixture of the one-phonon state, Similarly the
deviation of the transition moment ratio |

_ B(E2, 27 - 27)
B(E2, 2" - 07)

Ry

from the SHM prediction of 2 is an indication of phonon mixing,
Tamura and Ugadawa (1965) have taken the experimental value
R1 = 1.2 + 0.2 (McGowan, et al., 1965) gnd used it to calculate
the amount of two-phonon character present in the one-phonon
state on the basis of a simple model. In their model the wave
functions of the first and second excited 2* states are written

respectively as
Y2) = a;|1) +a,|2)
Y(2') = '3211> + a1|2>
with

2. 2_.

The one-phonon amplitude a4 and hence the admixture amplitude
a, are fixed by the relation

2(2a12 - 1)2
Ry= ————
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yielding af = (0, 86 and ag = 0,14, The magnitude of Q2 is given by

121 2
Q=5 /2 3429 2K, B

where $, a parameter related to the mean square amplitude of the
surface vibration, is derived from the B(E2, 0" - 2%) and is equal
to 0. 2. Evaluation of the above yields

]Q2 | = 0.58 barn,

The sign of Q2 is not predicted in this simple model but depends
on the nature of the force producing the mixing. It would appear
that the problem is solved by this simple model. This, however,
is nat the case. The quadrupole moment has been explaiﬁed at
the expense of the forbidden crossover transition. The model

predicts

BE2, 27 - 0%) _
+) A

0.14
B(E2, 27 - 0

Ry

whereas the experimenfal valqe is Réexp) = 0,015 + 0, 005,

The phonon admixture of 14% which explains R, and Q, produces
in this model a crossover transition rate almost an order of
magnitude too large. It is also possible that such a large phonon
admixture violates the original assumptions on which the model is
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12).

Rather than considering at this point the other vibrational

based. One cannot therefore regard this model as satisfactory

model calculations, all of which incorporate individual particle
structure to some extent, it is advantageous to look to another
collective model, the rotational model, as it is known to predict
large quadrupole moments, In the simple rotational model, all
transition and static E2 moments are related by Clebsch-Gordan

coefficients, In particular,
Q] = 0.91] €O [ m(E2)[2) |
The value of B(E2, 0" - 2%) is knox&n and the above relation gives
|Qy| = 0.7 barn

which agrees with the experimental value of -0, 7 + O, 2. The
rotational model predicts Q2 negative if the intrinsic deformation
is prolate. Here one can see the fundamental theoretical difficulty
posed by the measured value of Qz; 114Cd is a nucleus displaying
what appears 1o be a vibrational character in all respects except
one, the value of Qg which is rotational in character,

A rotational model capable of accounting for some ap-
parently vibrational characteristics is the asymmetric rotator
model of Davydov and Fillipov (1958), They consider the rotations
of a permanently deformed, ellipsoidal nucleus with three unequal
principal axes. The deviation from axial symmetry is expressed
in terms of the parameter vy which is empirically fixed by the

12) Neither do Tamura and Ugadawa. They wish only to show by
means of this model that a vibrational description can be found

which accounts for Qo. Whether this model actually accomplishes

this is open to question,
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. . . . ' + 114
ratio of the energies of the first and second 2" states. For Cd,

vy = 26. 8 degrees. One other parameter is needed to determine

QZ; this is QO’ the so-called "intrinsic' quadrupole moment, which

is related to the B(E2,0" - 2¥), The Davydov-Fillipov model predicts

|Q2\ = 0,3 barn .

Q2 is negative if one assumes a prolate equilibrium deformation,
i.e., assumes QO positive. Although this value of Q2 is still too
small, the asymmetric rotator model gives a more reasonable
description of 114Cd than the simple rotational model which has
no second-excited 2" state, A difficulty with the Davydov-TFillipov
model, however, is the lack of a 0" state to complete the two-phonon
triad, which is frequently seen experimentally.

To summarize the above discussion, one may note that
none of the phenomonological collective models considered thus
far - the pure harmonic vibrator, phonon-miking, simple rotational

model and the asymmetric rotator models - has been able to explain
114
Cd

all of the major characteristics of
A suggestion of the next direction which one might take in
searching for an explanation of this dilemma is provided by the
presence of the additional 0" and 2 states in the two-phonon region
- of 114Cd (see Figure 11), These are presumably intrinsic states
arising from the excitation of individual nucleons and should serve ‘,
as a reminder that individual particle aspects can influence the
collective propertiés of the mucleus.
The simplest model based on individual particle motion
is the ordinary shell model (Mayer and Jensen, 1955), For the

cadmium nuclei (Z = 48) one may take as the relevant shell model
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conf1gurat1on for the first excited state two proton holes in a
(g9 /2) conﬁguratmn coupled to angular momentum 2. Evaluation
of Q, (Tamura and Ugadawa 1965) glves

Q2 =-0,10 barm .

The sign is predicted correctly13) but the magnitude is too small.
This disagreement should not be taken too seriously, however,
since one should not expect such a S1mple shell model descr1pt10n
to work where collective motion is so clearly important.

A more realistic approach can be taken by coupling
individual particle motion with collective surface oscillations
(Bohr, 1953). In such a model two nucleons in the shell model
configuration (nt J) with principal, orbital and total angular quantum
numbers n, £ and J are coupled to a phonon of spin R. The phonon
~ and the shell model configuration states are then coupled to total
angular momentum T = 3 + R for the nucleus., Detailed calculations
by Macdonald (1963) yield ’

Q, = -0.30 barn.

However, in this model the 4" state occurs below the second 2¥ state
and the 0" state lies too high.

It is also possible to treat the collective motion on a
microscopic scale, The nucleons outside the last closed shell are

13) This model, however, would predict the wrong sign for the
tellurium isotopes.
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coupled by a pairing force, and the coordinates of the paired
particles are suitably transformed to those of quasi~particles
in a manner directly analogous to that used in the theory of
superconductors. A long-range quadrupole-type force is then
used to couple the quasi-particles and produce a collective
motion, The resulting equations are then "linearized" i.e.,
treated in various degrees of the random phase approximation
(RPA). RPA calculations by Tamura and Ugadawa (1965) yield
gquadrupole moments on the order of

Q2 =-0,08 barn .

The reason for this small value of Q2 is that the ordinary RPA-
treatment neglects precisely those diagonal terms which are
responsible for producing a quadrupole moment, Noting this,
Tamura and Ugadawa (1966) have made RPA calculations in which
the otherwise neglected terms are treated as a perturbation.
Their results show a more reasonable value of

Q2 ==-0,44 barn .

This model, as have all others, experiences certain difficulties,
It predicts

12, 140, 1, gy,

the opposite of which is observed experimentally. Also, it
predicts a positive value of Q, for the tellurium isotopes,
contradicting the experimental values.
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Other authors (Dang, et al,, 1966) have also made attempts
to calculate the large quadrupole moments observed in 114Cd.
These calculations differ in some respects from those proposed by
Tamura and Ugadawa but have in common the facts that i) they are
only simplified, exploratory calculations and are not to be taken as
final theories and ii) they both indicate that phonon mixing and
particle mixing may provide the mechanism for producing a large
quadrupole moment,

The present state of theoretical interpretation of the large
quadrupole moments observed in 114‘Cd and 116Cd is thus seen to
be far from satisfactory. Whether the final solution will be found
in terms of a vibrational model description or within the context of
some different, as yet unproposed, type of model must remain for
the moment a matter of conjecture.

A summary of the present experimental results, together
with some of the other known properties of the cadmium and
tellurium isotopes is presented in Figure 22, This figure shows

the ratios

B(E2, 2" - 27)
- B(E2, 27 - 0)

B(E2, 47 - 2")
B(E2, 2" - 0"
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B,
£
and
Ma2 _ (2F|mE2)2")

[ M ] | <2¥[|m (E2)]|0"Y]

It is apparent from Figure 22 that the variation in magnitude of the
ratio M,,/ |M12] for the four nuclei studied here follows a pattern
suggested by the other properties of the cadmium and tellurium
isotopes. In particular, as the transition moment ratios and energy
level ratios approach the value 2 predicted by the SHM or "phonon"
model, the magnitude of Moo/ \Mlz\ decreases foward the SHM
prediction of zero, Tables 3 and 4 show also that the magnitudes
of Q2 for the tellurium isotopes are smaller than those of the
cadmium isotopes; the neutron numbers of the latter are midway
between the major closed shells at N = 50 and N = 82, Finally, it
is noted that the sign of Q2 does not change in crossing the closed
proton shell at Z = 50,

In summary, the quadrupole moments of the first excited
states of “*%cd ana 116

surprisingly large, How large they are is emphasized by the fact

Cd, measured in these experiments, are

that 114Cd, a nucleus which otherwise shows characteristics of a
vibrational nature, possesses a static electric quadrupole moment
in its first excited state which is as large as would be obtained with
a rotational model description. Theoretical models, introduced
prior to the measurement of -QZ to account for the other deviations
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- from vibrational-type structure, predicted a value of Q2 which is
too small. Models introduced subsequently, and designed to
predict a large QZ’ i)iierience difficultj in reproducing the other
known properties of Cd., The systematic variation of Q2 for

the four nuclei studied follows a pattern which appears to be
consistent with the trend of the other observed deviations from

pure harmonic structure. No satisfactory theory exists to describe
all these deviations from pure harmonic behavior; the failure of
the existing theories to explain the large values of Q2 is especially

striking,
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APPENDIX I SYNOPSIS OF THE MULTIPLE COULOMB
EXCITATION COMPUTER PROGRAM

The computer program for multiple Coulomb excitation
written by Winther and de Boer (1965) provides the experimentalist
with an essential and convenient tool for the analysis of data obtained
from this type of measurement, Although the input requirements
and use of the program in the analysis for this particular experiment
have already been mentioned in Section II, it is worthwhile to
examine in brief some of the internal aspects of the program.,

| The program uses the semiclassical approximation (7)
together with the E2 multipole interaction Hamiltonian (8) to solve
for the amplitudes, an(t), of the free nucleus eigenfunctions. The
solution is obtained by direct numerical integration of the coupled
differential equations (7). The variables t and rp(t) in (8) are
replaced by

t == (¢ sinhw + w)

<l

rp(t) = afe coshw + 1)

where

such that (7) becomes
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da_(w) |

. 2
Fm S ) Q5w X xaw) (33)
K, S
where
C ~ 2,8 Mrs
™ ava

It is noted that Crs is proportional to_the interaction constant
Xinf defined in (12). ' _

The probability for the Coulomb excitation of a state N
from an unpolarized ground state (11) is given by

(34)

1 N V2
M

My, My
and the Coulomb excitation cross section for an unsymmetrized
calculation would then be obtained from (2).

In determin.mg a symmetrization procedure for a multiple
excitation calculation, the conditions of time reversal invariance
and unitarity were satisfied in addition to the requirement that the
symmetrization reproduce the limit of a quantum mechanical calcu-
gSymm , analogous to (27) was

rs? “rs
used in the factor Q, p(e, 8 g w) in (33).
I

lation, A symmetrized form of £
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1/2 |

Z.Z. A '
symm _ “17271 et l/2 o oq=1/2 :
Srs T 786,235 {[E- Er] (E Es] } (35)
where
E}=(1+A/A,)(E, - Ei)v (36)

and E, Er and Ei are the energies in MeV of the projectile, state
r and the initial state, respectively. The procedure for symmetrizing

¢ was to replace v everywhere with ./vrvs where

Irs

v, = (37)
with M the mass of the projectile. Half the distance of closest
approach, a, is replaced by ang where

Z1 Zze2
a = —— _ (38)
rs myvy
. ors

- This symmetrization procedure is exactly equivalent to an internally
consistent shift of the energy of each level and a renormalization of
the E2 matrix elements Mrs‘ The symmetrized calculation is thus
equivalent to an unsymmetrized calculation performed for a slightly
different nucleus. Unitarity is therefore not violated by the intro-
duction of symmetrized parameters and % P(N) = 1. \
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The requirement of time reversal invariance is given by
the relation

(21 + 1)qu do(N ~ M) = (2L, + 1)v12VI do(M - N) (39)

for the cross sections for the excitation processes N - M and

M - N. An examination of the differential equations (33), in which
symm
rs

shows that the equations are invariant under the conditions of

the symmetrized parameters €igmm and ¢ are employed,

reversed motion; reversed motion is the situation in which the

nucleus in state f is bombarded by a projectile of energy E - E% )
This invariance results in the relation

aIfo(Mi) = ay 3y (M) | (40)
: 1 1

from which follows

(ZIN + 1)P(N - M) = (21M+ 1)P(M - N) . (41)

Using (41), it is easily shown that

2
v .
dofN M) = o5 PN~ M, T, ) S s (g) (@42

satisfies (39).
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P(2) as defined in (42) is seen to be slightly different from

Pexp = doz/ § do; as defined in (30). The analysis has been
performed in terms of the quantities actually measured, namely
the ratios of cross sections as given by Pexp’ rather than in terms
of the excitation probabilities defined by (42).

It is noted that the symmetrized expressions II C. 15 in
Alder, et al., (1956), (28), and (42) are all equivalent in the limit
of first order perturbation theory,

The integration of (33) starts from the initial condition
that all ar(w = -Up) = 0 except for the ground state amplitude.
The range, Up, and initial step width of the integration, 2Aw, are
determined by the required absolute accuracy which is stated in
the input. A Runge-Kutta-Gill procedure is first used to generate
the amplitudes and their derivatives for four consecutive steps.
With these values as starting points, the faster Adams-Moulton
predictor-corrector integration routine is then used to complete
the calculation. A constant check on the accuracy of the integration
is maintained and an adjustment in step width executed whenever

necessary.
‘ The differential cross sections for each level may be
obtained either in the laboratory or center-of-mass systems.
The program also calculates the coefficients for the gamma-ray
angular distribution in x}arious coordinate systems. The formulae
given are sufficiently general to include the fact that, in multiple .
Coulomb excitation, the various levels may be populated not only
by direct excitation from the ground state, but also by electron

conversion and gamma-ray transitions from higher levels,
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APPENDIX II. AUXILIARY MEASUREMENTS

A. Magnetic Analysis Measurement

. It is also possible to detect Coulomb excitation by direct
magnetic analysis of the energy of the scattered projectile. This
method is particularly suitable when protons or alpha particles
are employed as projectiles, since the energy losses in the target
remain small. This type of measurement becomes more difficult
when heavier ions are used; large dE/dx energy losses for
heavy ions require an extremely thin target in order to be able to
resolve the elastically and inelastically scattered particles. A
measurement by magnetic analysis was made, nevertheless, in
order to have an independent check on the particle-gamma
coincidence method.,

The magnetic analysis method offers several advantages

over the particle-gamma coincidence method.

(i) It is not necessary to determine the efficiency of a
Nal crystal to extract the excitation probability.

(ii) The population of the first 2" state by cascade gamma
- rays is no longer a factor to be considered in the

analysis,

(iii) The measurement does not require electronic
coincidence circuitry with its accompanying dead-
time losses and random-coincidences. The principle
difficulty encountered with this technique is the low
counting rate.
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Data were obtained by this method for the scattering of
4He and 16O ions from 114Cd at a laboratory angle of 150 degrees,
The 4He and 16O energies used were 9. 76 and 40.7 MeV
respectively, both corresponding to § = 0. 30. Adequate resolution
of the inelastic and elastic partlcle groups was obtained nyGusing

o

bombardment) and a small spectrometer acceptance angle (about

thin targets (200 ugm/ cm2 for "He and 20 pgm/ cm2 for

2° total) to minimize the kinematical variation of particle energy
185 on 14cq at 1500,
The scattered particles were detected initially by a linear array

of sixteen solid-state detectors placed in the focal plane of a 61-cm

with angle (about 60 keV per degree for

double-focusing magnetic spectrometer. The total energy region
spanned by this detector array was quite adequate to cover the
region of interest but, because of the wide gaps between the
detectors, it was still necessary to scan across the spectrum in
several overlapping steps. A typical momentum spectrum obtained
with 4He projectiles is shown in Figure 23. For 16O bombardment,
however, the counting rates were so low that it turned out to be
impossible to obtain adequate statistical precision with the counter
array. After taking an exploratory spectrum with poor statistics
(see Figure 24), the sixteen counter array was replaced by a single
large detector, collimated by a 1.27 cm slit. This detector spanned
an energy region of approximately 200 keV, sufficient to cover either
the complete inelastic peak or the complete elastic peak for one
choice of the spectrometer magnetic field. By varying the magnetic
field of the spectrometer, the detector was set on each peak
separately; the number of particles scattered by the target was
monitored by a solid state detector placed in the scattering chamber

at an angle of 150° on the opposite side of the beam axis, The back-



61

ground under the inelastic peak was estimated by counting on either
side of this peak. This subtraction was about 2% of the inelastic
yield.

In calculating the ratio of the cross sections for the 16O
case, it was necessary to allow for the small difference in the |
charge state populations for the elastically and inelastically scattered
particles, This difference was measured by determining the yield
of elastically scattered 160 ions in the selected 6" charge state as
a function of the energy of the incoming beam. The difference
between the 67 charge state populations at the energies of the
elastic and inelastic groups was measured to be 1, 5%. _

The results of the spectrometer measurements are given
in the following table. The errors are almost entirely due to the
limited statistical precision of the number of counts in the inelastic

peak.

Projectile EMeV g Pexp x 1000
16 '
(¢] 40. 170 0. 301 75 + 4

4He 9.76 0.301 6.7+0.2

The analysis of the above experimental quantities was done
in a manner similar to that described in Section IV and yielded the
values

M,, =-0.709 + 0,012 e. 10" 2%cm?

12
24 2

M,,=+1.0+0,3 e. 100 ““cm

22

These values compare favorably with those given in Table 6 for the

particle-gamma coincidence method,
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B. Gamma-~gamma Coincidence Measurement

The analysis of the data required a knowledge of the matrix
elements Mrs connecting the levels populated in the experiment.
Gamma-~gamma coincidence measurements performed by Stelson
(1961) and McGowan et al., (1965) provided this information for the.
cadmium nuclei, Only part of the required information was available
r 126Te and 128Te.

The values of B(E2, 0 - 27) and B(E2, 0 - 2™) for 126,06
had been measured by Stelson (1958) and Gangrskii, et al., (1962),
respectively, These values together with the known cascade-to-

fo

crossover branching ratio (Perlman and Welker, 1954) determine
the B(E2, 2 o 2+) since the 2'* - 2" transition is known to be 98%
E2 (Wiedling, et al., 1960)%, |

In order to obtain a value for B(E2, 4 - 27), the following

126Te target prepared on a clean

experiment was performed. A
gold backing was bombarded with 42 MeV oxygen ions. Two gamma-~
ray detectors - one, a 10, 2-cm-16ng by 12, 7-cm-diameter Na(T1)
crystal and the other, a 20-cc lithium-drifted germanium detector -
were mounted on either side of, and close to, the target., The
germanium detector spectrum was gated by gamma-gamma
coincidences and the pulses from the Nal detector were required

to fall within a window set around the 667 keV (2+ - 0+) photopeak,

The Li-Ge detector spectrum is shown in Figure 25; it consists

14) The SHM predicts the 2'7 » 27 transition to be pure E2,
Gamma~-gamma angular correlation measurements by Lindquist
and Marklund (1957) on a variety of nuclei show that the
2" & 2% transition is genefﬁly greater than 90% E2. However,
one of the exceptions waf Te with a 50 + 10% M1 multi-
polarity. The decay of 227¢ was measured to be 92% E2.
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almost entirely of a background of real coincidences whose source
was most likely the 12‘C (160, p a)-nga. reaction from the carbon
accumulated on the target during bombardment. The peak at 667
keV indicated by the arrow in Figure 25 is due to the 2" - 0% gamma
rays from the 4" - 2" 2 0" and the 2 - 27 - 07 cascade transitions.
Their presence in the spectrum arises from the fact that the window"
in the Nal detector spectrum also accepted the upper member of the
4" - 2" 5 0" cascade and a fraction of the upper member of the
2t L2t Lot cascade, The estimated random coincidence contri-
bution to this peak was negligible.

The horizontal bar indicates the expected t)osition of the
gt Lot gamma ray. If the peak which appears under this bar is
assumed to be due to the 4 - 2" transition, and if the 1, 360 MeV

state in 126Te is indeed 4+, one obtainsls) a value of B(E2, 2" - 4%)

=0.23:0.10 %+ 1078 cm®, This means a value of B(E2, 4" - 3%
/B(E2, 2" - 07) of 1. 2 which is reasonable for these vibrational-type

nuclei (see Figure 22)., This value has been used in the analysis.
A similar experiment was not attempted for 128Te since
the energies of the upper and lower members of the cascade are so

close as to make their resolution difficult even with a Li-Ge detector.
To estimate the higher matrix elements for 128Te, the values of the
ratios B(E2, 4" - 2")/B(E2, 2* - 0%) and B(E2, 2" - 2*)/B(E?, 27 0")
12 1261¢, The B(EZ, 0F - 2%)

used in these ratios was taken from the work of Stelson (1958) and the

value for B(E, 2 0+) was assumed to be the same as in 126Te.

The resultant values of the Mi‘s for 128Te and 128Te are given in

were taken to be the same in 8Te as in

15) Since the face of the Nal crystal was only 1.2 cm from the
target, it was assumed that the effect of the angular correlation
between the 4* - 2% and 2+ - 0* gamma rays could be neglected.
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Table 2, It should be mentioned that these values are not overly
critical for the analysis, especially since their relative signs are
unknown, This latter uncertainty effectively puts an error of

+ 100% on these matrix elements, The error in Q2 from this
source is much larger than the corresponding error introduced
by the cascade gamma-ray correction due to the uncertainty in
the magnitude of Mr s

C. Sulphur Beam Measurement

In Section I D, 2 it was shown that the magnitude of the
effect of Q2 on the excitation pi‘obability is roughly proportional
to the mass of the bombarding particle. It was decided therefore
to attempt an extension of the measurements to include a still
heavier bombarding ion, 328. Sulphur was a natural choice because
it had previously been accelerated with the tandem and because it
is significantly heavier than oxygen.

Several difficulties were encountered in the production of
the sulphur beam which seriously limited the utility of this method
for measuring Qz. Some of these difficulties, particularly those
connected with the production of a negative ion beam, have already
been described in detail by Miller (1966), Briefly, they were:

{i) the introduction of H,8 into the negative ion source
had a detrimental effect on the ceramic insulators
separating the various acceleration electrodes in the
ion source. After typically twenty-four to thirty-six
hours of operating time, conductive tracks developed

across the surfaces of the insulators;
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(ii) although no oxygen was deliberately introduced into
' the duoplasmatron source a negative oxygen beam

of 80 keV energy was present with the same magnetic
rigidity as the 40 keV S beam. This had the effects
of loading the tandem with an unwanted beam and
making the selection of, and regulation on, the desired
sulphur beam more difficult. Post-terminal stripping
produced a number of beams of intensity comparable
to the desired beam at about the same terminal voltage;

(iii) the low net intensity of the S~ beam from the negative
ion source effectively prohibited the use of the 8"
sulphur charge state, limiting the maximum energy
to about 45 MeV, As this is less than one half of the
Coulomb barrier energy, the excitation probability
was rather low. This together with a low beam intensity
(& 5 nanoampere) produced a very low counting rate.

It was nevertheless possible to obtain a measurement of the
excitation probability of the first excited state in 116Cd under
bombardment by 328 ions. The negative beam was produced by
insertion of argon into the duoplasmatron source and HZS into the
exchange canal, Positive identification of the high-energy analyzed
328 beam was obtained' by scattering the beam from thin gold and
nickel foils and observing the ratio of the scattered particle energies.
With the tandem regulating on the 7" charge state, a beam of four
nanoamperes at 44 MeV was available at the target. In a net beam
- time of about five hours, 1280 coincidences were obtained,

The methods described in Section II D, 2 suffice for an

analysis of this datum. The experimental excitation probability
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obtained was 0, 38 _t 0.04%. The B(E2, ot - 27) obtained from a
comparison of this value with first order perturbation theory was
0.55+ 0,05 e . 10'48 cm4. To obtain a value for Q, one compares
the ratios of the experimental excitation probabilities of, for
example, 4He ions and 328 ions with the theoretical ratios by means

of the following equation

32
) _ pLD 325 1, , 32))
P oo Cre) P Fme) (1 + o Cae))

(see (19), (22) and (24) ). Using the 4He datum taken at a bombarding
energy of 9,02 MeV, one obtains

0.572+ 0,044 = 0,616 (1 - 0,123 M22)
M22 = +0,59 + 0,59
and

Q2 =-0,45+ 0,45 barn. .

The principle uncertainty in the value of Q2 thus derivegzis due tq
the uncertainty in the measured target thickness, The ““S ions

lost 4.1 MeV in passing through the particular target used. Clearly,
thinner targets would be required for measurements using 328 ions,

with even lower counting rates being the result,
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APPENDIX IO

GAMMA-RAY SPECTROMETRY

It was necessary to know the efficiency of the Nal gamma
detector in order to deduce the probability for Coulomb excitation.
This efficiency was determined in the following way. Point sources .
of gamma rays of various energies were prepared and placed at a
distance of 10 cm from the face of the 7.62-cm-long by 7, 62-cm-
diameter Nal crystal. The total efficiency and peak-to-total ratios
for the detector and source in this geometry were taken from the
Nuclear Data Tables compiled by Marion (1960) and were used to
determine the strength of the point sources. The calibrated sources
were then placed at the intersection of the beam and target and used
to measure the efficiency of the gamma-ray detector in the actual
experimental configuration, The major uncertainty in the resultant
efficiency is contained in the values of the total efficiency and peak-
to-total ratios initially used to calibrate the sources. The uncertainty
in the experimental efficiency was estimated to be + 8%.

The anisotropic angular distribution of the 2" - 0" de-
excitation gamma rays requires a correction to the isotropic-source
efficiency measured above. The gamma-ray angular distribution is
a function of 6 only, where 6 is the angle between the gamma-ray
direction and the beam axis, because the particle detector has
azimuthal symmetry. The probability, dW, that the nucleus in its
first excited state will emit a gamma ray into a solid angle dQ at an
angle 6 is given by

daw = 1+ 2y P2 (CO_SB) +ay P4 (cose) . (43)
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P2 and P 4 are the Legendre polynomials. Typical values of a9
and ay obtained from the computer program were 0,7 and -1, 6,
respectively.

The finite size of the Nal crystal tends to attenuate the
effects of the anisotropic distribution. The above expression fdr
dW must be folded with the efficiency of the Nal crystal (as a
function of @) and integrated over the volume of the crystal. This
procedure has been described by Pearson (1963). The value of
the correction factor K which multiplies the isotropic efficiency
is then given by

Io Iy
K= 1+a,=— Pz(cosel) +a, 3 P4(cosel)

(44)
ZJO JO

where 64 is the angle of the axis of symmetry of the Nal crystal
with respect to the beam axis., The factors Jz/ J 0 and J 4:/ JO are
referred to as Rose's smoothing factors (Rose, 1953). Since they
are dependent upon the source - detector geometry, they Werev
measured experimentally using a narrowly collimated source of
gamma rays. The results agreed with those obtained by inter-
polation of results found in the literature (Herskind and Yoshizawa,
1964). The correction to the isotropic efficiency due to the aniso-
tropic angular distribution amounted to about 9% but was essentially
the same for all bombarding particles and energies,

The de-excitation gamma ray is emitted from the recoiling

nucleus after a time ~ 10'11
21

sec, which is long compared to the
collision time (a/v ~ 10" “" sec.). The gamma ray will be emitted
at angle 9§ in a coordinate system moving with velocity v= Bc

relative to the labo;'atory syStem, provided the velocity of the
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recoiling nucleus is not appreciably attenuated by the target
thickness. The gamma ray will appear to have an angle 6 in

the laboratory system. For projectiles scattered at large angles,
the component of the recoil velocity perpendicular to the beam
axis may be neglected. A relativistic transformation of
velocities then yields

o=tan”l (SO . [y g%, (45)

cosd - B

The net result of the change in angle is to introduce small P,,
P3, and P5 terms into the laboratory angular dlstnbutlon. To
first order in g, (44) becomes

J J J
_ 2 4 2 1 2 3
K-1+.'=L23—192+a14J P+2B{(1--——- P+(5a2 2 4) 3
0 0 0 0
J
5 ;
*3"‘4351)5} '

The maximum value of the term in B proved small ( < 0, 003) for
40 MeV 180 bombardment of %cq {8 = 0,018), and was corre-
spondingly smaller for bombardment by lighter ions,

The energy loss of the recoiling nucleus in the target
effectively reduces the value of B to below that calculated for a
ireely recoiling nucleus., A calculation of the range of 17 MeV

114Cd ions (8 = 0,018) in 114Cd using the formulae of Lindhard,
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etal,, (1963) yielded a value of 200 ugm/ cmz. This range,

probably accurate to + 50%, is less than the thickness of any of
the 114Cd or 116
‘average energy of 8 MeV is assumed over the range of the recoiling

Cd targets used in the experiments, If an

nucleus, the time in which the nucleus comes to rest is of the order
of 107 %% second, which is much shorter than the lifetime of the '
excited nucleus. Therefore, no correction for nuclear recoil

was applied to the gamma-ray angular distributions for the cadmium
nuclei,

In the tellurium measurements however, in which the
targéts were only 80 ugm/ cm2 thick, a correction to the gamma-
ray angular distribution for nuclear recoil was applied. Since, in
this case, most of the gamma-~ray de-excitations for 16O ion bom-
bardment took place m a region just behind the target, a slight

16

difference in relative efficiency for 4Hc—:- ion and ~°O ion bombardment

resulted, The corrections to the yield for this were less than 0. 2%.
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TABLE 1

24 cmz) used in the computer

The matrix M, (in units of e - 10~
calculations, (Mrs)2 = B(E2,s~r) X (21S+ 1). Miz and M,, were
fitted to the experimental data, and the Mrs values for the higher
transitions were taken from McGowan, et al.,(1965), The assign- -
ments of the indices r and s are indicated in Fig., 11, Since no
measured value for M26 was available for 114(3(:1, this matrix

element was taken to have the single particle value.

) s 1 2 3 4 5 6 7
| - Mg,
1 0 M, 0 £0.09 O 0 40,09
2 | My, M, -0.31 -0.83 -1.35 -0.13 -0.31
3 0 -0.31 0 0 0 0 0
4 | 40,09 -0.83 O 0 0 0 0
5 0 -1.3 O 0 0 0 0
6 0 -013 0 0 0 0 0
7 | £0.09 -0.31 0 0 0 0 0
‘ | 116,
1 0 M, 0.147 0 0
2 | M, M, -0.66 -1.32 -0.31
3 | 40,147 -0.66 0O 0 0
4 0 -1.32 0 0 0
5 o -0.31 0 0 0




5

TABLE 2
The matrix M (in units of e« 10_24 cmz) used in the computer
. 2
calculations. (Mrs) = B(E2,s-7T) X (2IS+ 1). M, 5 and M, , were
fitted to the experimental data. The assignments of the indices
r and s are indicated in Fig. 12, The derivation of the values
of M M,, and M

14> Mog 24 is detailed in Appendix II, B,
S
r 1 2 3 4
1267,
1 0 M12 0 +0, 07
2 M, M,, -1, 10 -1. 00
3 0 -1, 10 0 . 0
4 +0, 07 -1. 00 0 0
128,
1 0 ) M12 0 +0, 07
9 M,, M, -0, 94 ~0. 90
3 0 -0, 94 0 0
4 +0, 07 -0. 90 0 0
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TABLE 3

Experimental values of P = d02 / i%_l__ 1 dci measured at a mean labora-
tory angle of 165°, E is the effective bombarding energy. The number
in parentheses is the power of 10 by which the value of Pex > and its
assigned error should be multiplied. Errors are random only., The
data obtained at 4He energies greater than 10 MeV have not been
incorporated in the analysis.

114

cd
Projectile EMeV g Pexp
169 46. 03 0. 250 0.134 + 0, 002 (0)
40.80 0. 300 0.868 + 0. 009 (~1)
40, 45 0. 304 0.828 + 0,010 (-1)
40. 05 0.308 0.802 + 0, 007 (-1)
36. 85 0. 350 0.552 + 0,007 (-1)
36,10 - 0.361 0.505 + 0, 006 (-1)
34, 85 0. 381 0.413 + 0, 007 (-1).
33,73 0. 400 0.362 + 0, 005 (~1)
33. 00 0,414 0.331 + 0, 004 (-1)
125 30, 04 0.300  0.561+ 0,006 (-1)
27, 14 0. 350 0.356 + 0, 004 (~1)
24,86 0.400  0.226+ 0.003 (~1)
‘e 978 0.300 0.775 + 0,012 (-2)
9,74 0,302 0.781 + 0, 013 (-2)
9. 71 0. 304 0.757 + 0,008 (-2)
8.78 0. 354 0.472 4 0, 006 (-2)

8.05 0. 406 0. 307 + 0. 005 (~2)



T

TABLE 3 (continued)

Projectile E g P

MeV exp
11,30 0. 240 0.138 + 0, 002 (~1)
10,73 0. 260 0.120 £ 0, 002 (-1)
116,

164 41,63 0. 269 0.110 + 0. 002 (0)
' 37.65 0.313 0.709 + 0. 012 (1)
34,55 0.356 0.491 4 0,007 (~1)
124 30.66 0,269 0.1705 x 0. 009 (~1)
27.173 0.313 0. 457 + 0,006 (~1)
25. 46 0.356 0.310 + 0. 005 (-1)
4He 9,966  0.269 0.102 + 0, 001 {(-1)
9, 019 0.314 0,659+ 0,014 (-2)
3, 304 0. 356 0. 445 + 0, 009 (-2)
12. 08 0. 200 0.211 + 0. 004 (~1)
11.35 0. 220 0.172 4 0, 003 (~1)

10.73 0,240 0.131 4 0,002 (~1)
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TABLE 4

4 126 128

Experimental values of P = dcz/ 1'2. dci for Te and ™~ Te measured

ata meanlaboratoryangle of 165° _1E is the effective bombarding
energy. The number in parentheses is the power of 10 by which
thé value of Pexp and its assigned error should fe multiplied,
Errors are random only. The data obtained at "He energies

greater than 10, 5 MeV have not been incorporated in the analysis.

Projectile EMeV 13 Pexp
126,

160 43. 21 0. 352 0.608 x 0. 006: (-1)
39, 56 0. 403 0.395 + 0,007 (-1)

36. 61 0. 453 0.268 + 0,003 (-1)

YHe 10, 44 0. 352 0.512+ 0,006 (-2)
9, 58 0.403 0.328+0,005 (-2)

9,15 0. 433 0.261+ 0,005 (-2)

8. 89 0. 453 0.219 £ 0,004 (-2)

11, 54 0. 302 0.804 0,008 (-2)

11, 06 0.322 ©  0.662+ 0,013 (-2)

continued



79

TABLE 4 (cont.)

Projectile EMeV g Pexp
128,

164 42,96 0. 396 0,437+ 0,006 (-1)
41,60 0.416 0.357+ 0,004 (-1)

39,175 0. 446 0.289+ 0,003 (-1)

37,08 0, 495 0,193 + 0,002 (-1)

4He 10. 11 0. 416 0.296 + 0,004 (-2)
9.67 0.446 0.229 + 0,004 (-2)

9. 042 0. 495 0.156 + 0.002 (-2)

11, 58 0.337 - 0.576+0.013 (-2)

10. 60 0.386.  0.377+0.004 (-2)
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TABLE 7

Results of a least~squares fit of the matrix elements M12 and M22

to the measured quantities Pexp given in Table 4. The values of the
other matrix elements are taken from Table 2, The sign of M12 is
arbitrarily chosen negative, Only random errors were used in the -
least-squares fit to the data, In parentheses are the total errors.

In all cases the number of experimental points used in the least~-
squares fit was 7.

Sign of Mig Mao i
M ' -24 2 -24 2
14 (e 10 “* ecm®) (e« 107 “* em”) squared
126Te
- -0.698 + 0,004(0.025)  +0.53 + 0,10(0.13) 8.7

128, o

- ~0.625 + 0, 004(0, 023) +0, 35 + 0, 09(0. 17) 9.2
+ ~0, 624 + 0, 004(0. 023) +0, 14 + 0, 09(0, 13) 8.3

e2 . 10""‘8 cm4

B(E2,0" - 2") = (M.lz)2

' _ -24 2
Q2 = -0, 758 M22 e« 10 cm



FIGURE 1

Illustration of the terms which contribute to the excitation of
state f from state i. The first and second order excitations
are denoted by double arrows and the interference terms by
single arrows. (Page 12)
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FIGURE 2

The quantity K(g £ 0) defined in (25) plotted as a function of
g £° The small slope of the curves indicates the weak dependence
of the function p on the bombarding energy. (Page 15)
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FIGURE 3

The interaction constant X defined in (12) calculated for the

excitation of the first 2" state in 1%

energy range from 0, 1 to 1. 0 times the Coulomb barrier and

were calculated using a value of B(E2, 0" - 2% =0.50 e2 .10
4

em”. (Page 18)

Cd. The curves span an

-48
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FIGURE 4

The arrangement of the detectors and beam collimation system
within the target chamber (side view). The arrow indicates the
direction of the beam. The items numbered (1) through (5)
comprise the beam collimation system. (1), (3) and (5) denote
tantalum collimators with inside diameters of 1.5, 1.8 and 2. 0
mm, respectively. A lead spacer (2) minimized background
gamma radiation from the first tantalum collimator (1).
Collimators (3) and (5), separated by an aluminum spacer (4)
prevented the beam scattered from (1) from striking the back-
side of the solid state detector (6). The sensitive surface of
the solid state detector had outside and inside diameters of 10
and 4 mm, respectively. The target (7) was placed about one
centimeter from the sensitive area of the solid state detector.
The face of the Nal detector (8) was 3.3 cm from the target and
the beam stop (not shown) was about two meters from the target,
(Page 21) |
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FIGURE 5

Block diagram of the electronic apparatus. (Page 22)
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FIGURE 6

114 16

-Gamma-ray spectra from the bombardment of Cdby 7O
ions. The window used to gate the time-to-pulse-height

spectrum is indicated, (Page 23)
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FIGURE 7

Gamma-ray spectra from the bombardment of 128Te by 16O

ions. The window used to gate the time-to-pulse-height
spectrum is indicated. (Page 23)
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FIGURE 8

Spectrum of 16O ions scattered from 114

Cd in the angular range
1559 < 6 < 175°. The elastic and inelastic groups are not
resolved. The window used to gate the time-to-pulse-height

spectrum is indicated. (Page 23)
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FIGURE 9

. Spectrum of 16O ions scattered from 128Te in the angular

range 155° < § < 175°, The elastic and inelastic groups
are not resolved. The window used to gate the time-to-pulse-
height spectrum is indicated. (Page 23)
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FIGURE 10

Typical time-to-pulse-height spectrum; the spectra obtained
in the bombardment of 114Cd, 116Cd, 126Te and 128Te were
all similar. The small slope in the randoms background is due
~ to a slight asymmetry in the timing pulses. The FWHM corre-
sponds to a time resolution of 4. 7 nanoseconds; the yield was
counted over the base-width of about 22 nanoseconds. The
subtraction of randoms background amounted typically to about

2% of the peak. (Page 23)
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FIGURE 11

114 116

Cd and
Mr s included in the analysis are indicated by arrows. The

Level schemes of Cd. The matrix elements

values of Mrs are given in Table 1, (Page 24)
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FIGURE 12

126Te and 128Te. The energies and spins

Level schemes of
are taken from Cookson and Darcey,(1965). The matrix
elements Mrs included in the analysis are indicated by arrows

and are given in Table 2. (Page 24)
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FIGURE 13

114Cd in the angular range

Spectra of 4He ions scattered from
155% < 8 < 175°% The position of the window used to gate the
time-to-pulse-height spectrum is indicated. The three large
peé.ks in the singles spectrum are due to scattering from
cadmium, oxygen, and carbon, respectively, The smaller
peaks are due to 4He ions which have lost some of their energy
in passing through the dead layers on the surface edges of the
sensitive area of the counter, The coincidence spectrum shows
a displacement relative to the singles spectrum due to the lower
energy of the inelastically scattered projectiles. A small peak
in the coincidence spectrum due to random coincidences appears
at the energy of the elastic peak, The peak-to-tail ratios for
the singles and coincidence spectra are seen to be the same,
indicating that all the counts above the window are due to

scattering from cadmium.,
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FIGURE 14

Comparison of the experimental quantities P = dcrz/‘z:idcyi for
4He, 12C, and 190 bombardment of 114Cd with those calculated
in first order perturbation theory. The deviations from unity

are attributed mainly to the quadrupole moment of the first 2"
state. The three solid lines represent the results of a computer
calculation in which the two parameters M12 and M22 were varied
to obtain the best fit {o the experimental data. Pﬁrst order

calculated using the fitted value of M12' The dotted points were

was

not included in the analysis. The experimental errors and those
quoted for M, , and M,,, are random only. (Pages 29, 35)
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FIGURE 15,

11

Analogue of Figure 14 for 118cd. (Pages 29, 35)
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FIGURE 16

Comparison of the experimental quantities Pexp for 4He and 16O

bombardment of 126Te with those calculated from first order
perturbation theory. The deviations from unity are attributed

. mainly to the quadrupole moment of the first 2" state., The solid
lines represent the results of a computer calculation in which
the two parameters M12 and M22 were varied to fit the experi-
mental data, Pﬁrs t order W2 calculated using the fitted value
of M12' The dotted "He points were not included in the analysis.
'The experimental errors and those quoted for M,, and M,, are

random only. (Pages 29, 35)
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FIGURE 17

128

Analogue of Figure 16 for ““ " Te, (Pages 29, 35)
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FIGURE 18

The data and least-squares fit of Figure 14 replotted but now
normalized to Pcomp (Q2 = 0), the latter being the value of

P computed with M22 = Q2 = 0 and with all other matrix
elements the same as before. Here the dispersion between
curves corresponding to the different bombarding ions is due
entirely to a non-zero quadrupole moment of the first 9" state.

(Page 37)
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FIGURE 19

116

Analogue of Figure 18 for Cd., (Page 37)
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FIGURE 20

The data and least-squares fit of Figure 16 but now normalized

to Pcomp(QZ = 0), the latter being the value of P computed with
M22 = Q2 = 0 and with all other matrix elements the same as
before. Here the dispersion between curves corresponding to
different bombarding ions is due entirely to a non-zero quadrupole

moment of the first 2* state. (Page 37)



122

060

001

0€0

Ge0

o0

Sv0

(A®W) S319Y3N3 NOI

(0=%0)""Y
d

Og) —> ‘e

oIQ-I'. 1

[

ol

ov

———

8¢

O
o Qe

" oW 5 Ol -8 LO'FOb0-= %D

gzi

-——

WO gy Ol -39 GOO' T80 = (42 =-,0'23)9: (3A-*'W) s3nTvA g3L113

=——2=== 404 LI SIYVNDS 1SV3I1 3JyV SIAYND TIN4

060

00’

FIGURE 20



123

FIGURE 21

128

Analogue of Figure 20 for ~“"Te. (Page 37)
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FIGURE 22

Systematic variation of some properties of the cadmium and
tellurium isotopes. In each case the maximum and minimum
values of M22/ I M22| are plotted (corresponding to both signs

of the interference term P0 grt gt ). The energy and

transition moment ratios have been obtained from Cookson
and Darcey (1965) and McGowan, et al., (1965), The errors
for the cadmium B(E2)-ratios are typically 20% while those
for the corresponding values in tellurium are probably 30% to
40%. (Page 51) '
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FIGURE 23

Momentum spectrum of elastically and inelastically scattered
ions at a laboratory angle of 150° following bombardment of a
thin 11‘]“Cd target by 9. 76 MeV 4He ions. This spectrum was
recorded in four overlapping measurements with an array of

16 counters in the focal plane of the spectrometer, (Page 60)
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FIGURE 24

Momentum spectrum of elastically and inelastically scattered

ions at a laboratory angle of 150° following bombardment of a
thin 114

recorded in two overlapping measurements by an array of 16

Cd target. by 40.7 MeV 16O ions. This spectrum was

counters in the focal plane of the spectrometer.. (Page 60)



350

NUMBER OF COUNTS

300

250

200

150

100

50

130

H4cq4(0)
[~ Q
Ei6, = 40.7 MeV
B emb = |50°
B H4¢4(0.558)

BRRAW,

]

298 300 302 304 306
NMR FREQUENCY (Mc/s)
FIGURE 24

30.8




131

FIGURE 25

Gamma-ray spectra from the bombardment of 126Te by 42 MeV

16O ions. The spectra were taken with a 20 cc lithium-drifted
germanium detector. The coincidence spectrum was gated by a
window placed on the 667 keV 2 - 0" transition photopeak
recorded by a 10, 2-cm-long x 12, 7-cm-diameter Nal detector,
The background consists almost entirely of real coincidences
whose source was most likely the 12C(160, p a)zsNa reaction
due to carbon accumulation on the target. The arrow indicates
a coincidence peak from the 2% ., 0% transition and the horizontal
bar indicates the expected position of the 4" o9t gamma ray.

(Page 62)
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