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ABSTRACT

This work is concerned with one of the imporiant problems remain-
ing in the theory of linearized supersonic flow: the study of non-
planar systems dealing with configurations which cannot be completely
solved with the existing theory - in particular, the study of inter-
action or interference between fuselage and lifting or control surfaces
in supersonic flow,

In Sections 1.2 and 1.3 the non-planar problems are classified and
the problem considered to be the fundamental wing-body problem for
linearized supersonic flow is presented. In Part II, this and related
problems are formulated in a manner suitable for Laplace transform
methods and subsequently the transformed solutions are presented in a
genaral form by the Green's function method.

Due to the inherent difficulties arising in non-planar problems,
related planar problems are solved in Part III, In Part IV, the
fundsmental wing-body problem is discussed in detail and in the light
of the results of Part III an approximate solution (in terms of the
pressure) in the region of greatest interest is presented; and a
quantitative estimate of the increase in 1ift due %o the intersciion

between wing and body is indicated.
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I. INTRODUCTICH

1.1 Preliminery Remarks

The theory of linearized supersonic flow has received a considerable
amount of attention during the last decade or so and an adequate framework
of knowledze has been developed to handle many problems of supersonic
flight. Hany of the imporitant concepts in supersonic flow and methods
used in solving these problems have been presented in the most recent of
von Karman's reviews given at the Tenth Wrizht Brothers Lecture (Ref. 1).
4 systemebic and fairly comprehensive presentation of the theory of lin-
earized supersonic flow has been given by W. D. Hayes (Ref. 2}, Ywith
special emphasis placed upon the study of planar systems®, Both of
these papers include extensive bibliographies. The present work is con=
cerned with one of the important problems remsining in the theory of lin-
earized supersonic flow: the study of non-planar systems desling with
configurations which cannot be completely solved with the existing theory.
The stationary (steady-state) problem only will be given here.

Due to the complexity of general non-planar problems very few works
on the subject have been presented with the exception of problems dealing
with configurations having axial symmetry, or conical properties (Bef. 3).
The development of the study of planar systems and of some of these special
non=-planar configurations 1s given in Hayes! paper. Specific reference to
some of these and other works will be made whenever previous concepis and
resulte are needed in the development of the present study. Befors men-
tioning the investigations of the few workers on more gensral non-planar
gystems, a brief survey of existing problems and a general classification

of them will be nmade.
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1e2 Hon-planar Problems

I¢ is emphasized that only those problems which satisfy the con-~
ditions imposed by the linearization of the flow equations are consid-
ered here. Fortunately, it appears at the present time that a great many
of these problems may be handled (at least formulated) under these rather
stringent restrictions. However, other seemingly unavoidable difficulties
arise, the main ome being that there is a great unlikelihood that even
ordinary non-planar problems, in the practical sense, can be solved with
the generality that planar systems can be handled. TYet, some interest-
ing and useful qualitative znd a few quantitative results of wide gener-
ality have been found. Reference to these will be made later,

Many immedictely imporisnt non-planar problems fall in the category
of interaction or interference between fuselage and 1ifting or control
surfaces, i.e., wing, tall, control fin, ete., The simplest configuration
of this type will be a combination of an axially-symmetric fuselsge or
body and near-planar appendages located in one plane passing (within the
linearized theory assumptions) through the axis of the body. Clearly a
formulation of the complebe problem for arbitrary planfoms situated at
arbitrary positions along the body is difficult. Consider then a single
wing plus body combination. The study of this "simplified® non-planar
system may be classified as follows, depending essentially upon the Mach
nunber and planform of the wing

Class A: Body plus slender, pointed wing (Fig. l.la)

Class B: Body plus wide wing (Fig. 1.1b)

Class C: Body plus narrow wing (Fig. l.lc)



a) Class A b} Class B ¢) Class C

Note: 1) Freeestream direction from left to right

2) Dotted lines represent Mach cone elements

Figure 1.1 Classification of Wing-Body Problems

This classification is given in the order of increasing difficulty of
snalysis., Many problems in Class A msy be handled by the approximate
method of Munk, sassuming a slow variation of the varisbles in the flow
direction. Spreiter (Ref. 4) has applied this method to slender wing-
body configurstions. This is essentislly a subsonic analysis which is
valid for sleander, pointed configurations in both subsonic and supersonic
flow, The present study is mainly concerned with problems in Class B.
The first attempt to study such problems appears to have been made by
Ferrari (Ref, 5), This method is essentially an iteration procedurs:
The body solution and wing solution are superimposed on each other.
First, a correction body potentisl is introduced along the body axis

%o cancel the wing potential (uncorrected for body interaction) suffic-

iently to satisfy the body boundary conditions. Second, a correction
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wing potential is introduced in the plane of the wing to cancel the body
potential (uncorrected for wing interaction) sufficiently to satisfy
the wing boundary conditions, This completes the first iteration. The-
oretically, this procedure may be continued using the corrected poten—
tials after each iteration and if the process is coanverzent, a solution
results. However, there appear %o be geveral inherent difficulities:
1) the boundary value problem for the corrsction wing potential cannct
be uniquely formulated,® 2) convergence of the iteration procedure, and
3) the rapidity of coumvergence, Henece, any resuits based on the first
few iterations are gquestionable., The difficult study of Class C prob-
lems rests upon the accumulated efforts of the previous analysis.

A& further classification of each of the above classes may be made
roughly as followse

1) Supersonic leading edge problems, i.e. wing leading edge-body

Junction, body nose — wing¥*,
2) terbody problems, i.e. wing trailing edge-body junction,
wing %ip —= body, snd wing — body — afterfin.

This is necessitated by the fact that additional physical conditions,
.2, Kutta condition, are usually needed tc formulste the latter problems.
Other considerations which mast be made are, for example, the wing posi-
tion relative to the body nose and fin position relative to other fins.
The present indications are that in many cases only a gqualitative anal-
ysis is feasible, Recent discussions with Lagerstrom and Van Dyke

(Ref. 6) =pparently verify this,

*This was pointed cut by De Prims
*% The grrow indicates the direction of influence



1.3 Remarks on the Present Study

As mentioned in the previocus section, 1.3, the slender configu-
ration problems of Class A can be handled by subsonic analysis, that
is, conditions in planes perpendicular te the flow direction are assumed
not to influence each other and the analysis reduces to the classical
potentizl (Laplace) problem of hydrodynamics in two-dimensions,

The study of problems of Class B affords no such simplification
elthough in certain regionsg of the flow some of the methods and resulis
of the study of planar systems are useful. As a general rule, it will
be found advisable to investigate completely plenar systems initislly,
that is, configuretions in which the sxially-symmetric body is replaced
by & planar one of the same planform., The principel leading edpge prob-
lems are shown in Figures 1.2 sad 1.3.

x ] s

a) Cese Ia, Planar b) Case Ils

Hote: W ils the free-stresm velocity

Figure 1.2 Leading Edge Problemss

Wing Leading Edge-Body Junction
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&) Case Ib, planar b) Case IIb

Figure 1.2 Leading Edge Problems:

Body Nese — Wing

Cases Ia and Ib are the planar systems correspording to Cases Ila and
IIb, respectively. Case Ila is a combination of an infinitely long
circular cylinder and semi-infinite wing. This represents the physical
problem in which the influence of the body nose may be neglected, i.e.
the wing is sufficiently far downstream from the nose. In Case IIb the
circular cylinder is replaced by a cone (or a more general pointed nose).
Case Ila is clearly a limiting case of Case IIb as the distance,. f, from
the leading edge to the nose becomes large and the half-angle, Y, of the
cone becomes small. The study of Case IIa is considered the fundamental

_problem for linearized suversonic fiow. Cases Ib and IIDb

will be studied here oﬁly in & gualitative way and some of the anslyti-

cal difficulties pointed out.
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11, FORMULATICON OF THE PROBLEM

2.1 Linearized Supersonic Flow Theory

The basic assumptions of stationery linearized supersonic flow
are well known and lead to the differential equation for the perturb-

ation potential, ¢,

Prx + Py = (M*1) gy =0 (2.1)

where M is the Mach number of the free stream velocity, W, nominally
taken to be in the positive z direction. The perturbation veloecity is

given by
{a, v, w) = grad 99 (2.2a)

where u, v, and w are the velocity components in the x, y and z direc-
tions, respectively: the condition for isentropic, irrotational flow

is identically satisfied snd is written

curl (u, v, w) = 0 (2.2p)
The perturbation pressure is

D= -70 W {2033
where A is the fluid density in the free stream.
A simplification of the analytical work may be made by the welle

mown similarity transformation as given by Hayes (Ref. 2)

(2.4a)

(£ 7, /-1 7) (2.4b)

4

(xs ¥, 2)

i
A
l\ -~

it
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which cheanges equation (2.1) into the equation

Gzt Yy~ %z =0 (2.52)
with the velocity given by

= (&, 7., 7
(u) Vs W) (ﬁ_/zrsmﬁ (ME1) ) (2633

where the angle of attack {(or incidence) of the corresponding bodies is

taken %o be

Py
K = °
= {(2.4¢c)

for the type of problems considered in this work (another transformstion
scheme is given in Ref, 22)*. Equation {2.5) corresponds to considering
a supersonic flow at M =V2. There is no loss of generality here and
supersonic flow at any other Mach number past a gilven body may be
translated in terme of the transformed sysbtem, For future work, then,
the bar notation will be dropped and equation (2.5a) will be written in

the uvsusl notation

A§V~ %25 %x+¢5f/’%}:0 , M=z (2.5b)

where A ( ) is the two-dimensional Laplacien operator. GCenerslly for
planayr problems, Cartesian coordinates will be used; for the non-planseyr
problems of the present study, cylindrical poler coordinates fit natur-

ally.

*This ig for plener systems.
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2.2 Remsrks on Boundarvy Conditiong

The physical boundary conditions imposed on all problems studied
here are the usuasl conditions for invisecid flow theory:

1) The normsl flow at & solid boundary is zero,

2) Uniform flow exists far upstream snd away from the body. Since
linearized supersonic fiow is governed by the wave equation (2.5), the
condition 2) is ansalogous to initial conditions for az problem where z
is replaced by t. Specifically, condition 1) will be stated in terms of
the normal perturbstion velocity.

1) fThe normel velocity is given everywhere outside of the
body in the plane of the wing (nominslly, the x-z plane),
and on the body surfece.

¥o mixzed type conditions such as those which enter in the planar tip
problem are considered. Condition 2) will be replaced, after a suitable
choice of the persurbation potential snd the coordinate system relative

to the wing-body configuration, by initial conditions in the plane, z = O,
Thus, the problem with the proper initlisel and boundary conditions is
formulated in & manner sulitable for Laplace transform methods, operating
on the sxial varisble z. This ig carried out in detail for the leading

edge problem, Case Ila with zerc sweepback, 8= 0 (Pigure 1.2).
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2.3 Boundery Conditions for the Lesding Edge Problem, Case Ils

Consider the total velocity potentisl, éf . Written as
b= W 2z + V\/;rsme+¢'+?7 (2.7}

where W,= Weosat = W, W, = Wsha = We

The first and second terms on the right hand side of equation (2.7}
represent the potential of a uvniform flow of magnitude W at an angle «
in the y-z plane. (¢ ¢) is the usual perturbation potential, Note that

equation (2.2a) should now read
(a, v, w) = grad (¢' +¢) (2.2b)

for the perturbation veloeity. Now let ¢ be the solution which satisfies
the boundary conditicns for z £ O where z = 0 passes through the wing
leading edge. Then, determine ¢ to satisfy the boundary conditions for
z>0, Note, ¢=0 for z £ 0. This is expressed as the "initial® con-

ditions
¢=@. =0 *forz=0 (2.8)

Three cases are considered. The body redius is normalized with no loss
of generality.

1) ickness (or symmetric) Provlem (Figure 2.1:

Body at zero incldence with respect to W; Wing at o« with respect to ¥.

Choose q?'zo; then the boundery conditions on gJ for 2z < 0 are
— (rmplies)

1) 7 @gnoz) =0 = W, + + Pslro,2) =0 (2.98)
(Camber, f{r,z) say, may be considered by introducing it on the
righthand side in place of zero)

*Thig is not precisely true, Cf. remarks following equation (2.11b)




ii) Dr(1,6,2)= W, 56 === @.(1,6,2)=0 (2692)
yA y)

o
{
Cw

— ==

Figure 2.1 The Thizkness Problem Figure 2.2 The Body Incidence

Problem

2) Body Incidence (or 1ifting) Problem (Fige 22):

Body st o weret.W ; Wing 2t 2ero WereiteWe

Choose ¢’== :“résizz 8, which is the perturbation potential of flow
past an infinitely long circular cylinder (Refe 7); then the bound=
ary conditions on ¢ for z >0 are

, <
i3 7§e(no,z)=wl) rzy) = \ig—f+“‘,',%(r,o,z)=0)rzl
{;2@{%3}

i) $.(,e,2)=0 =2 @(,6,2)=0

It is remarked that the Figures 2.1 and 22 are given only to emphasize

the orientation of the body and wing with respsct to the free siream

velocity, W; actually, within the linearized theory, all boundary con-

ditions are prescribed on the body and wing as oriented in Fige 2¢3e

3) The Incidence Problem (Fige 263}

Body 2t o wereteW.
Wing a8t K WereteWs

’ W Py =
Choose (p = .’}fﬁsiﬁ &; then the boundary sonditions on 77 for
z > 0 are, for zero sweepback angle, 4= 0

i) -’L—ée(y;a,z)zo, rzf ——>> Tf\/;(l-f-"?:';)'l' ;L%(r;o,z):o
(2:9e)
ii)  P.(,8,2)=0 == (1,6 2)= 0
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Figure 23 The Incidence Problem

in addition, if the wing is taken at s sweepback &ﬁgﬁ&g/3¢(77 the bounde-

aery conditions (2e¢9¢) become

1}

: W
1) wdh(noz) =~ o: , 0< Z< (r0) tanf3

"

-W(i+w) , =z (r-1)tan/3 (2e94d)

i1)  @a(r,6,2)= 0

Two essential simplifications have been made in this section:

1) The anti-symmetric (with respect to the x=z plane) part of the
solution, ¢V@ has been separated oute This means that the
problem need only be considered in the upper half space, ¥y = 0Oe

2)

Then, by seppropriate cholce of coordinetes reletive to the cone
figuration, problems mmenable to Laplace transform methods with
zere initial conditions have resulieds

By the principle of superposition, the general problem of a body end

cambered wing at incidence, may be given. Usually, an additiocnal

condition of symmetry of the flow with respect to the y-z plane is

alsoc made

. / i by ,
i) I =0,rz1 == LtgrI,z)o (2.10)
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2.4 The Laplace Transformstion and Green's Function Method

The previous section 2,3 has shown that the fundsmental wing-body
problem, Case Ila, mey be formulated as an initisl and boundasry value
problenm for the wave eguation (2.5b). This is a natural problem for
the elegant and powerful methods of the Laplace transformation (one of
many in the field of linear integrsl operzitors) which has been so widely
studied by both theoretical physicists and mathemsticians (Refs. 8 to 11).
Several British workers, including Lighthill, Guan and Ward (Ref. 12 to
14) have applied these methods recently to planar and sxislly-symmetric

systems. Briefly, the method masy be described as follows:

Originsl Preblem Laplace 2 Irangformed Problem
Wave equation plus Transgformation Modified Heluholtz
initial and boundary on z equation plus boundary
conditions condition

Selution of Inverse Leplace  Solution of transformed
original problem Trensformstion problen

The solubion of the transformed problem is most conveniently obtained by
the Green's function method (Refs. 13, 15 and 18),

The method is presented for a preblem with arbitrary boundary condi-
‘tions. The original problem is then stated for the wave equation (2.5)
with the conditions

Initiel conditions: @y, 0)= @,(re 0¢)= O (2.11a)

Boundary condition: ¢, , the normel perturbation velocity, is

given on the body and on the X-z vplane (2.11b)
off the body
Actually, ¢,(50,04)#0 or (alx004)#0; that is to say g#0 if z = 0 is ap-

proached in the x-z plane, This causes no difficulty here*,

*Stewart has pointed out a necessary condition for uniqueness: the con-
dition of oculgoing waves. ’
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Assuming that the solution is twice differentiable and the second
derivatives have Laplace transforms, the original problem with the condi-

tions (2.11) becomes the $rensformed problem.

Yor + 5 tp g = S = ~SPrE0H) = #(r.6,0+) (2.12a)
or by the initial conditions (2.lla)
Ay - sy =0 (2.121)

with the boundary condition: ¢ is given (in the x-y plane) on the }
(2.13
body and on the x=zxis off the body

wheres
Yire;s) = fe’ﬁWna,z) dz {2.14a)
o

the laplsce $transform of ¢ on the axisl variable, z. The inverse La-

place trensform is given by

P(r6,2) = Z"Ii_‘;_ ei‘s Jlr,8,5)ds {(2.18a)

/7
where the contour /[’ runs from -iw %o i in the right-half of the complex

gs=plane, The required Leplace transform operations are given in Table I.

For brevity, (2.14a) is sometimes written

v = L{¢; s} (2.14D)

and (2.15a) is sometimes written

P - Of"{% 5} (2.15%)
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The differential equation (2.12b) is the two-dimensional modified Helm-
holtz equation with the paresmeter, s (®f s > 0) and the transformed prob-
lem is an elliptic boundary value problem in the x-y plane. This exteri-
or problem (the boundary msy include infinity) was first formulsted by
Sommerfeld (Refs. 16 and 17). For strong conditions ony within and on
the boundary of the region, i.e.,§ is twice continuously differentisble
in (x,y) or (r,8), the solution within the region is expressible as an
integral in terms sf 70 and the normal derivative, ¢, , on the boundary

by epplication of Green's theorems; but ¢ andy, are related on the bound-

ary and the solution takes the form

A 26 59
Yire;s) = zﬁ./(%am 65,%’)4/ (2.16)
c
where ‘377‘, is the outwerd normal derivative on the boundary C (Fig. 2.4)

snd G is the sum of a singulaer and a reguler function in the region

(Cf. equation (2.20e)).
P(r,6) or(x,4)

Q(P;O') or (f) 'l)

Figore 2.4 The Exterior Problem for ay-s¢=o0
If G is chosen such that G= 0 on &,

Go
Y’(V‘,G,‘S) = - z—l;,.;'\/‘% ‘gji—dj (303‘?}
c
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where Gy is called the first Green's function. If G is chosen such

thet 22= 0 on o,

¥(re;s) = 5—;—,6/6' g—;‘f dl (2.18)
c
where G is called the second Green's function. The problems of the

present study are of this second kind. For the solution (2.18) the
Green's function is charscterized then by

1) Glre;rie) = G(P;@) satisfies the equation Ay-s¢=o0

for P(re) # Q(r;e')
2) G(re; r;¢’) bas the gpraper singularity at P(re)= Q(ro’)
(Cf. section 2.5) (219

3y z==0 on¢
A consequence of conditions 1) and 2) is that G(rné,r.6)= G(r,6;nd),
gymmetric in {F;Q}e Weaker conditions, say, %hifé%f may be discon-
tinuous but integrable* on the boundary, are permissidle for equation

(2.,18) as in potential theory (Ref. 18).

*This statement is not precise, but will not be elsborated upon here,
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2¢5 Determination of Green's Functions for Various Boundaries

The fundamental solution of the modified Helmholtz eguation (2.12b)
that is, the solution independent of © and singular at the origin, is
K,(sr), which has a logarithmic-type singularity at r = O. K,(sr) is
the modified Bessel function of the second kind of zero order (Refs.

19 and 20). For a fixed point, P(r,8), with the variable point Q(r',8'),

the fundamental solution mey be written immediately as X,(sP), since the

differentiel equation is invariant under translation; f=r&ri zer'cse-6Y)
is the distance between P and @ This solution may be interpreted as
the Green's function for the entire x-y plane since it satisfies the re-
quired properties (2.19). The determination of Green's functions for
other boundaries, in general, is not a simple task although there is no
difficulty in obtaining them for the boundaries of the present study.
Howeveyr, a few remarks which will Dbe helpful later are mads.

In determining the Green's function for a region with a givén bound-~

ary, the funciion sought will alwsys have the form
G(P;a) = K, (5P) + A(F:@) (2.202)

where h(P;Q) is regular in the region. Since K,(spP) is symmetric in
(P;Q) then h(P;R) must be also. The invariance properbties of the differ-
ential equation will be helpful in determining h(P;Q) and give some
intuitive meaning to it., It is easily verified that the Helmholtz sgua-
tion (2,12b) is invariant under the following transformations:

1) Translation, (%, 7) = (x + 2, y + b) vhere a, b are constants

2) Reflection on the axes, e.g. on the y-axls, (X, 7) = (=x, y)
(or reflection on any straight line) (2.21)

3) Rotation, (T¥,8) = (r, & + ¢) where ¢ is = constant



There appears to be no simple invariant transformstion with respect to
inversion on the unit circle ag there is for Laplace's potentisl equa-
tion. Such g transformation would be helpful in obtaining an intuitive
notion on constructing Green's functions for the circle,

The Green's functions for the half-plans, the circie, and the bound-
ary of Case Ilz are determined for later use.

1. EHalf-vlene, y =0 (Fig. 2.5)

The first Green's function is

G (P; Q) = Kol(sP)— Kol(SP) ‘ (2.22)

where, o= vc:#r’tzrnﬁmsnsq90 » the Zuclidean distance from
P to @
= Vix-€)%+ (g—»()‘ :
and P = Vrun=zrrosgre) , the distance from P to the

reflection of ¢ on the z-axis
= Y(x- )+ (g+7)7

The second Green's function is

G(P;qQ)= K.(5P) + Ko (54) (2.23)

The Green's functions for a quadrant or a sector {included angle, 6= % H

n, positive integer) may be obtained as simply.

P(r,6)
4 P(x,y)
P Qr.eY)
f)
QU
C
//"/""/"/’/’X P
@.(§,-n) \;
[t
Figure 2.8, Half Plaue, y = O Figure 2.,6. Extericr to the

Unit Circle
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2. Exterior to the Unit Circle (Fig. 2.6)

No invariance properties of the Helmholtz equation (2.12b)
with respect to the unit circie has been found so other means are
used t0 determine the Green's function. Here the addition theorem

(Ref. 19) for K,(sP) is used

i

a
L(sr) i{s(sr) + 22 Lo (sr) K, (sr)cos n(o-6’) , rer’

hz

Ko (sP)

it

@O
L(sr) Kotsr)+ 22 I, (s5r) Kn(sr)cos n(e-6") , por' (2.24)
n=y

where In and K, are modified Bessel functions of the first and second
kinds, respsctively, of n*® srder, For r < r', consider h(P;Q) (Cf.

equation (2.26&)) of the form

o

A(P; Q)= Ao Ko(5r)+ Z. An Ky(sr) cos n(6-6") (2.200)

Nz,

where A, end A, are deternined to satisfy the boundary condition

G(PiQ) = KetsP)| + A(Pi@)| = 0 (2.25)
p=1 r=4 r=y
Hence
’L)o = - gi.{f—?- Ka(sr') Ah. = -2 :1_’5_(.5_)/{”(5’-') (2926)

Ko (3) ’ Kn(s)

and the first Greents funetion is

L (s)
Ga(P;@) = Kotsr) [Ltsm) = 7252 Kutsm | +

(2.27)

_—g -
+ 2 Z Kan(sr) {ln(sr)- Infe) K,‘(Sf')}(os n@-6) , rev
LEY] K"(s,

with ¢ and r' interchanged for r>rt,

Similarly, the second Green's function G(P;Q) mist satisfy the
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bBoundary condition

DECP;Q)

= / = 0 (2.18Y)
"

"
-~

Therefore

G(P; Q) = l{e,(sr"){l',(sr)~ ‘I;‘(s) Ha(sr')} +

O

(2.28)
+ ZZ_ Ky (57 ){1,,(,,)_ ’I<..(s>

L]

K. (sr)}cusn(e -8') , r<r

with r and r' interchanged for r>r', and where the primes on the Bessel
functions mean differentistion with respect to rlor rt).
3. QCase IIa (Fig. 2.7)

The Green's funciions are obitained simply by using the reflection

property on the x=axis with the results for the circle

G(P;@) = ZKa(sr){I(srj o) Ko (o )y o+
(2.29)
+ 4Z Ka (sr){I G- "("z 7 Ko (sr)}cos ne wsne' | rep'
6(P;Q)= 2 Kolor) [Lian~ ED Koim} +
@©
= i 2.’3@
t 4 ,\2:—‘ KnGsr?) {In(srh ;—,’:—:‘—%))Hn(sv‘)}casne Casnei) r<r' ( a}
with v and r' interchanged for r >pf,
Sometimes it is convenient to write
G(P;@) = Ko(sP) + Ko(5P) -
(2.300)
Z{; ;)) K, (Sr)Ka(SrHZZ Ko (5) ans")Ku(S")cosnacos ha}
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Figure 2,7 Boundary for Case Ila

With the determination of Green's functions for appropriate bound-
aries the transformed problem is formally solved. There follows, for
each solution of specific problems, the interpretation by the inverse
Laplace transformetion into the solution of the original physical Probe-
lem, Sometimes, this is = formidable task,

It is remarked hers that some intuitive meaning may be given %o
the Green's functions for the trausformed problen. Yor example, the
inverse Laplace transform of the fundsmental solution Koisp) is given
by Table II or by equztion (3.6): L"l{ KO{QP)} represents & supersonic

source singularity in the physical space.
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III. PLANAR PROELEMS

3.1 Preliminary Remarks
Some of the implications of possible difficulties arising in non-

plenar problems are seen in section 2.5 by comparing the Green's func-
tions for a planar system and & non-plenar one, e.g. equation (2.23) and
(2.30b), respectively., This is verified in Part IV. Thus, the study of
planar systems, related to non-planar systems especially in planform,

is not only =dvisable but, as will be shown, important. By s propitious
choice of planar systems, some qualitative resulis appliceble to non-
planar systems are obtained, e.g. general regions of pressure concentra-
tion and relative distribution of pressure over the configuration. 4lso
some important physical insight helpful in handling the mors complex
non-planar problems is obtasined.

The mein problem which will be considered here will be the super-
sonic leading edge problem, Case Ia. Case Ib may be formulated but the
boundary conditions are complicabted; the incidence problem may be handled
more easily by conicsl methods. Also, the trailing edge problem will be

discugsed.
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3.2 [The Leading Bise Problem, Case Ia

The incidence problem, corresponding to Case lla which resulted
in boundary conditions (2.9¢c) or (2.94), is considered where the ®body"
is now a narrow flat plate. The wide wing is taken at a sweepback
engle, #< T , i.e., less than the complement of the Mach angle, as

shown in Figure 3.1.

-,
W
1
/z- 2 (le-i)tanﬁ
Z
Figure 3.1 Case las Figure 3.2 Case Iag Distribotion
Incidence Problem in z-direction,

Ixtz1
Choose ¢§r“§4Ld?{4)& » the perturbation potential for flow past an
infinitely long flat plate, where §=x+iy andd~ means Yimaginary
part of*, Then, the boundary conditions in Cartesian coordinates for
z >0 are

1x1

=Wz o), ocac(m-)bnd, mz1i

il

i} ¢_y(x)o)z')

1x!
= - W, = 2 > (1xi-1)tan 38 , Izl 21

Vas-y ’

The distribution in the z-direction is shown in Figz. 3.2,
3.1)
ii) %(x}o)g): o , o< lxl< |

i11) %(0)5, z)= 0O
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The gingularity a% x = 1 corresponds %o & subsonic leading edge singu-

larity. The symmetry condition iii) implies that the transformed problen

A

may be confined to the first gquadrant. If A is near %3 the assumpiions
of Class A problems are satisfied.
The boundary conditions for the transformed problem, operating

on both sides of conditions (3.1) are

- ~1)tan/3
) W 11 s(ixi=1)
i) Yy (x,0;s)= — ‘{ - 1)+ € } , Ixiz 1
y (%0 > s Y .
i) Yylx,0;s5) = O , 0% ixl < 1 (3.2)

1ii) Fx(0,y;5)= O

For zero sweepback, condition i) becomes simply

it) ¥y (x,055) = = jgi a%ggfr , Ixi1z 1 (3.2%)

For simplicity, pressure distribution cslculations are carried ocut only
for thig latter case. By equation (2.18) in Cartesian coordinates the

transformed solution may be written lmmedistely in the form

V(x,4;5) = Z—r;:/%(f,o) Glry;€,0)d§ (3.3a)
¢

where
¥n = - ‘»"7 (3.3b)

the contour €, running from-o t¢ @ on the x-axis; and for the half-

plane, from equation (2.23), the Green's function is

G(x,y; §,0)= 2 Ho(sVtx-€)*+ 4*) (3.3¢)
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The integral along the negative x-axis can be expressed with positive

limi%s and

4‘@

Vix,q;55)= ; {/V'__ Ko(six-£)% 4~ )‘ff*/\/ Hols V-7 )dg} (3.34)

@
T lxys) = £ / ),;:—5—,— {Kolsimmrmy ) + Ko(sle+f)fry“)}4§

This is the trznsformed solution for the potential of the incidence
problem for Case Is. The second part of the solution may be regarded
as the reflected part off of a solid boundary (corresponding to the
condition (2.10)) in the y-z plene. If the pressure is desired, the
trensformed solution is written in terms of s-y(x,y;s) since, for zero

initiel conditions (Table I}

@ = I—Igsgb; z-} (3.4)

In supersonic leading edge problems, this is usually the componsnt of
interest. The pressure is given immediately by equation (2.23), Hence,

the solution for the pressure component may be wrltten

Glxy,2)= = [l“ﬁ 45 F‘{KD(SJx-f)#y‘HKo(sngﬁ“)}Jf} (2.5)

The most convenient way %o carry out this integration ig to formally
interchangze the order of integration and carry out the inverse Laplace
transformation, The integral over § is essentislly & finite integral
since the integrand is zeroc over part of the range. By appropriately
restricting the variables (%, ¥, 2} convergence requirsments are satis-

fied. By Teble II,



& kot imrmg) 2} = 0 , §< (- VETEE), Geor vETg)< €

s

= ~YZZ (aH{7T3)
Very= x-g)> ° (x-VE=7)< E< (XtlETy

L kols iy i#f = © £ (VR - x)

A (3.7)

= e <(Y7Eqr - X%
m)o<f(iy )

Thus, two regions of integration are defined. These are most easily
seen for points in the x-z plane as shown by the cross-hatched areas
in Figure 2.3,

x, € /] §‘=(i'-x) x, €

N ~ N

AN

SONON SNN NN

L]
L]

a) First integrsl b) Second integral

Figure 3.3, Regions of Integration for Equation (3.5)

Since the lower 1imi$ of the integral over § is one, actually three
regions are defined and have a physicsl interpretation (Figure 3.4).
Note that the condition of flow symmetry with respect to the y-z plane

has Tbeen replaced by a solid boundary.
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Region I (x=2)>1, Region of influence of the Mach cones
from the wing leading edge

Region II: <1< (z-2)<1, |BRegion of influence of the Mach cone
from the wing leasding edge-body
Junetion plus Region I

Region III: (xz-z) < =1, Region of influence of the Mach cone
from the opposite wing leading edge-
body Junction plus Heglon I and Reglon 11,

7 M= VZ
i
|
!
] 1,0,0) X
________ . N - ,\\ >
. N N
Y 4 N N Region L
0 N
7’ \ \ ANy
/ N\ N h
. Region IL “
’ AN AN N
N AN N
N N . N
/ Region L\ N h
AN N Yt}
\ \f‘+ /\\
~ \\‘*J \/
N3 o AN
\f/\\ N AN
Z ( v

Figure 3.4, Regions of Influence in the x=-z plane,

Since the solution for the pressure component, equation (3.5) becomes
unwieldy, results are presented only in regiouns of greatest interest,

i.s. on the surface of the configuration,

In Region I, (x-z)>1



e

* (x+ %)
¢2,(X,0, Z) _ __|_ § al§ g
W, ow VE= | Vatix-£)* / ,/”2 "('; )"
(E-2)
(x-27) 4T (8.82)

"I\-—

)/[(x-z‘r)'“ 3(r-77)
This is an elliptic typse integral which msy be expressed in terms of the
standard complete elliptic integrals of the first and third kinds by

known methods of reduction (Ref. 21). For z = 1, for example,

P2(x,0,1) } é—{(@" ")K(k) 4+ 3= ')]——(k A, 1)} (3.80)

We
whers
£ - x— Vx:4 X+ Vx4
- z Y 2
$ .
k> = ‘3’; s A= F

do
Kcr) = f , complete elliptic integral of
(—o)(1-k*c*) the first kind

, complete elliptic integral of

T[( ) /’ do
h,k,j = 2, z
) (=3 )Yi-o)0-k") * the third kind
[
The integral (3.8a) for z = 1 may also be obtained by superposition of
conical flow solutions (Ref. 22)
In Region II, <1 < (x-z)<1

(z+x)
Gz (x,0,2) _ £ (3.9a)

W, Ea V_/v‘z*(fx)
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For x = .1, o)
¢£(’,O)2) — L f dg
e < T )V Ve
!

i IE(%"“)"‘T’J ar
N iy VICE+)+ 7]+ (1-7%) (3.9p)

which is the most convenlent form for reduction.

For z =1,
(X+1 )

Palx,0, 1) 4€
W, = VEE1 Vi-(x-£)*

(3.9¢)

/‘ [(-§+l)+‘f‘] dT
) \[ z--f-l)-l-*l‘][[zﬁ)*l](""r)
In Region IXI, (x-z)< =1

(2+x) (2-X)

%{x,a,z)_‘.{ £ _d4¢ [
= T ET v VR Ve (801080

The first integral is the same form as in Region II; the second integral
is the fHreflected® solution.

For = = 0, +/F g

#i(o,y,2) _ 2 £ 4§
W, T ) Ve~ Vztg®)—€*

(8.100)

fﬁrf:)“
hence,

Pz(0,4,2) 1 (2-4)Z 1

= P
W
= (o] N (}tjl) < 1

Thisg shows an interesting and unexpected result; the flow from the two

sides of the body combines to zive the same pressure asg that of a two-
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dimensional flat plate a% incidence.

For x = 1, (eﬂ) (e:)
Pa(1,0,2) _ A€ A5
W, " Vf‘l Frcer | V"f‘ NSRE
= ‘l [(§+U+T] 47
= < .
| 2 VI(§+0)+T)(3¢7)(1-7%) (3.10¢)

) + 7 a7 }
/ 2+-2) ][ 32+2)+7‘](/__ :.)

Caleulstions show that the sum of these twe integrals alsc has the value
one, a result which certainly is not obviocusly obtained by simple trans-
formation in an attempt tc combine the two integrals.*®
The spesawise (parsellel %o the x-axis) and chordwise (parallel to the
z=axis) pressure distributions on the top surface (y = O+) along signif-
icant lines are shown in Figureg 3.6 and 3.7** respectively. TFor the
incidence problem, the pressure on the bottom surface (y = O-) takes the
negative value. The significant festures of these cslculations ave
1) The reciprocal square root type pressure discontinuity arising
at the wing leading edge body Jjunction ig propagated downstream
along the Mach cone on the wing bui falls off rapldly as a
finite discontinuity salomg the Mach cone on the body.
2) The pressure reaches iis asymptotic value, i.e, its value as
{xg “+ 22} vecomes large, very repidly in the downstreanm direc-
tion on the body and in the vieinity of the body on the wing.
In fact, the pressure is the asymptotic value throughout region

Iil.

*411 czleulstions are referred ¢ a report te be published by the Jet
Propulsion Laboratory, Califeornia Institute of Technology.
**These figures follow Table II at the end of the work,
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3.3 A Treiline Edse Problem
In the study of the afterbody problem in the vieinity of the

trailing edge, it is instructive and simple to consider the limiting
incidence case where the pressure ls constant on the wing and body
upstream of the trailing edge, taking initially the case of the un-
swept trailing edge, as shown in Figure 3.fa. This problem results

by cutting off the wing in Case IIa (section 3.2) far downstream of
the leading edge, However, as the pressure distribution has shown for
that case, the asymptotic value is already reached in Region III

(Figure 3.4)., The boundery conditions for this problem are shown in

Figure 3.5a.

x x)
7 // /
7 /
/ // // s
0 - /
‘Z? // 9;:0// 7
/ / 4
e 7 Ve /s
Ve /7 Ve
/ e 7 /
~N /-%:_[4/{ M:‘fz N / %="M‘
s/ \\ z / \\ Z
h AN AN I
AN N N \\
\\ AN \ AN
AN N AN
\\ AN N AN
N\ N
&) Trailing Edee Problem™ b) Analogous Preblem for z> 0.

Figure 3,5, Treiling Edge Problem Analogy.

*Note that the boundary conditions on the wing are precisely those of
a two-dimensional flat plate at incidence,
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Clearly the analogous problem is given by the problem of supersonic

flow past a low agpect ratio rectangulsr wing (Figure 3.5b), This
problem has been studied by Lagerstrom (Ref. 23) and Colemsn (Ref. 24).
The pressure distribution is given in the latter paper. Yow if the
trailing edge is swept back, an additional side flow is introduced over
the body; this flow will tend to imcreasse the 1ift, i.e. ¢ is increased

on the top surface of the body.
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IV. NON-PLANAR PROBLEMS

4.1 Preliminary Remsrks
The principal difficulty encountered in non-plenar problems is

mathematical complexity. Needless to say, most physical problems
are often fraught with such difficulties, but in many cases, guided
by physical intuition snd experimental work, researchers have made
rezsonable assumptions yilelding satisfactory sclutions and, in the
exceptional case, opening up new fields of research. In the present
study, the mathemstical complexity has been overcome only partially.
Two references are made to other works along these lines. The flow
field of an axisl sinuscoidal distribubtion of source or 1Lift elements
near a circular cylinder has been set up by Hayes (Cf. Ref. 2)e Ap-
plication to problems in this section would lead to the closely re-
lated Fourier trensform methods, An spproach to these problems using
similar methods has been initiated independently by Lagerstrom and
Van Dyke (Cf. Ref, 6). »

The mein problem considered in this part is the leading edge prob-
lem, Case IIa. Due to the analytical complications of the problsm,
the presentztion is made in several sections. Most of the analysis is
given for zerc sweepback and the sweepback case is discussed qualitat-
ively. The trailing edge problem corresponding to the planar problem

in seciion 3.3. is discussed.
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4.2 The Lesdins Rize Problem, Case Ilat The Tranmsformed Problem.

The boundary conditions for this problem are given in section ZeBe
For convenience, since all the essentisl features are included, the in-
cidence problem with zero sweepback, given by conditions (2.9¢) for
z > 0, will be studied. Repeating the conditions,
Initial Conditions: @Y= @z=0 in the plane z = O,
Boundary Conditions: 1) L ds(roz)= - W, (i+ +) (2.%¢)
ii)  @.(ne,2)= 0

The boundary conditions for the transformed problem sre then

1) L gu(ro;s) = - U+ 4)

{4.1a)

i) “(1,8;S) = O

With sweepback, 8< 4_-7" , the conditions (corresponding to conditions (2.94))

are
1) Fdelros)= - & e‘S("_')ta"/i )
(4.10)
ii) ¥(1,6;5) = O
By equation (2.)8), the transformed solution may be written
¥(re;s) = ;;;f%z('”;’e') Gere;re) dl (2.18)
-

whers G‘(r;ajr','e') is given by equation (2.%0). Since, on the circle,

Yh=~Yp=0 » then by conditions (4.la),
. [--4
¥ire;s) = 2% f{/-f —,:'rz){é'(nﬁ;r,’ ﬁ‘)+é'(h’9;r’,’o)}dr' (4.2a})
i
/

Using the form of the Green's function given by equation (2.308a)
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Ia(S)

Glro;rym) = 2 Kolsr) [1,6r) = 252 m(sm]

+ 42 K’l(sr iI (57') K,,(.sr)}( ')(05 ne R r<y' {é.&a}

K()

with r and r!' interchanged for r > r', and

- Ihs Ls(s)
re;rio) = ZKe(sr) {1,(5»‘) Ko (sr)} +
G( ir D) Ko (5) (4.31;}

2 (s)

+ 47 HKa(sr) {I..(sr% E'—E)K"(S")}("S ng , r<r
with r and r! interchanged for r > r'.
Hence, the sum {G(HBI'P:W)fG(r;Q;r,'O)} will yield the even terms only under

the summation; and

¥(n8;s) = 2:—?/61‘,,.‘)[&(5") I (519~ L (S;Ra(sr’)}
1

+2 Z HZH(SP){L.‘(SV") {j )Kz,.(sv' )}coszne dr' +
=i in

(4.2b)

z W - L) }
+ /(/"' rll— Ko(s" )[Ia(jr) ‘[)Ko(Sr)

T 2 Z Ku(sr') {Iz.n(-"")‘ .‘Zi,l..(s);(z”(;r)} cos zna]dr'
ne Kinls)

Using the second form of the Green's function, egquation (2.30b) the so-

lution may be written in simpler form

@~

\,U(r) 8; 5) = :'PZS;.'/‘(/—P ;’T‘)fl\’o (S/r’:f ;--’:.,zr-r'rosa)*Ko(Sy/r’:l-r'-’i-zrr’cosa)} dr'—
[

1

® (4.2e)
- 2W,
= (/+ ){K (S)K{sr)Ko(er

7
+ZZ‘ (5) zu(-‘"‘)K,_.,Isr')Casz,,g Adr'
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This trensformed solution for Case IIa is again (as in Case la) confined
to the first quadrant; and the solutions in the other quadrants ars ob-
tained by symmetry arguments.

The solution (4.2¢) is written as two integrals which may be given
an important physical interpretation; the first integrel solution will
be called ¥ %re;s) and the second,¥“Mess). Comparing v with the planer
solution, (3.3d), it is clear that v’ may be regarded as the transformed
solution of the problenm in which the flei plate for z < O in Case la is

replaced by a circular cylinder in a certsin sense (Figure 4.1)., Thus

@
. W; [
')”(/'}9)' s) = ?:'_3—/{’7“ ;{“){ko(st)":‘"-'zfrtﬂse)*' K;(S/"ifr"‘i»zrr'tosa)}dr' (4.4a)

is called the ¥Flaot Plate" solution for Case Ils. This solution will be

discussed in detall in Section 4.&.

Figure 4.1, Configurstion* for "Flat Plate® Solutiom, ¥ .

(z)

The second solubtion, ¥ ', may be interpreted then as the solution nesded

to satisfy the boundary condition of zerc flow through the circular

*fotually, & true configuration with a cylindrical body for the solution,
w®, is not possible. The cireular cylinder here is to be interpreted
&s producing the correct upwash distribution only.
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cylinder, i.e. the cirecular cylind.ar is a stream tube. Thus,

W(z)(’:ﬁ)'S) = - gl___h/z/ r" {__:—(;S_;Ko(sr)h)alsr') +
I <2 Ion(s) (4.52)
+2 o Kan (3) Kzn(Sf)f\’zn(Sr')(oszne}dy-'

is called the "Body" solution for Case IIa. The principal mathematical

difficulties arise in attempting to perform the inverse Laplace transform
of 51/(2). This will be discussed in greater detall in Section 4.4.

The important feature of this splistting of the solution is that the
relatively simpler planar part of the solution has been separated out.
This implies that the second solution, q’m, is effective only within the
Mach cones from the wing lesding edge-body jJunctions and is at most a

constant outside of this region.
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1)
4.3 Comse Ila: fThe"Flat Plate" Solution P,

The "Flat Plate® solution, gﬂmg or the corresponding pressure cobs
ponent, <sz , is obtained in the same menner as in the planar lesding
edge problem, Case Ia; and the results are relatively simpler, being
expressible in closed form. In order to obtain the pressure distribu-
tion on the surface, s ¢’ may conveniently be handled in Cartesien

¢oordinates.

sy ay;s) = ——/(/+ gz) Ko(s‘/(X-fuy*)‘*Kc(Sm)}df {4.4b)

Regions of ;nflzzence similar $o those shown in Figure 3.4 in Pars III

are defined by the inverse Laplece transform of the CGreen's function with-
in the curly bracket of Equation (4.4b)*., The pressure distribution on
the surface of the "Flat Plate" configuration follows.

In Region I, (x - 2z)>1

(x+32)
(”(x 0,2) __|_ (/+_,) ﬁ/+-—— -—————-———-__,_}
w, = 77' Vzi(x~§)* Vi (x- €)°
(-2 (4‘063)

e =
= T (x-87T)* (x+zr)*
T Ve

vhich is an elementary integral,

For v = 1,

2 x
% ;Zo,l) - 1 + 0] (4.6b)

which mey also be obtained by conical methods.

In Region II, =1<(x = z)<1

¢ 7

*The solution, @“ or ¢ may also be obtained using the addition form-
ula and the inverse Laplace transforms given in Table II; the detzils
aere believed to have more than academic interest but will not be pre-
gented here.
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(x¢2)
¢E(‘;XI o, 2) i /
AL 4,72}
W, )Vz (x-£)* (

!

Por example, if this integral is evaluated,

)
Y2 (x02) 1 [ w, Yeroen® . 5,'”“(3;'_'.) +
W, N 2 (22 x>)
x 23- x(x-1) =\ (2% x) [3 (x-1)*]
+ a4 ( : we
i

h

A i (X"-i-l) a Y SI‘n-' 5;’} =
L{3 e s (5], -

(4,70)

it

Lix _ Veroen> | ot
] Z (x— 2%) Z

+ x [TL o EBrxex-0) } x> 2
Gia,elz ~ " (==9)|1

In Region III, (zx=2) < =l
(x+2) (2-x)

o)
¢Z (X/D)t)

Wz —L[/‘(/+f‘)y’———_-—— /‘+§1\/_Z_T#‘——:;-)——} i‘iage}

The first integral on the right-hzand side is evalusted above in eguation
(4.,7b} for x< z; the second elementary integral is the "reflected' solu-
tion. In regions II and III, the solution is desired on the “Dbody®, i.e.
on & cireular cylinder of radius r = 1. The ranges of integration are
easily found from the inverse Laplace transforms (3.6) and (3.7), obtained
from Taeble II and most conveniently written in cylindrical polar coordi-

natses.
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In Hegion 11,

pcosg + VEEr>sinte
(1)
(pg (”,9, Z)_ i (,_’__J__) dr'
W, B " VL (rierzrrioss) (4.7¢)

!

In Region 11I,

rose +VEZrisin'e

(l} )

@z (ro, 2 dr

-3 /_ J i (/+ .;‘L';_) 1'
W, 11 ‘/z’;—(r':,.r'fzr-r o5 6)

i

—rase+yJFE rsine (4.8b)
+/(I+ +3) dr }

VZ LpErr2rricos 8)

!

For example, at r =1,

VE'=|
MO FE2 NN PR SR | —
I Vizsi)~m*
/

W,
(4.8¢)

~ 2 V2= _ Y] {
= l + Tf{m(zz_p) Sin (V’Z—‘:—I-)} , ZzzVz

The pressure distribution given by the above relations are shown in
Figures 4.7 and 4.8%*., Significantly, the pressure distribution obtained
from this "Flat Plate® part of the complete solution spproaches the
asymptotic value raspidly in the downstream direction on the “body" and
in the viecinity of the "body" on the wing (Cf. Discussion for Case Ia
and corresponding Figure (3.7))*.

An sdditional solution, which msy be obtained immediately, will be
important for later discussions. The #Flat Plate" configuration (Figure
4,1) is modified now by inserting a semi-infinite plane barrier at x= 1,
parallel %o the y-z plane downstream of the leading edge-body Junetion

(Figure 4.2).

*These figures are at the end of this work following Table II.



— s ot .t e

Figure 4.2, Modified "Flat Plate® Configuration:
Solution 99* forx =1,

This does not affect the solution, <?0), outgide of the Mach cone from
the leading edge-body junction; but inside of this region of influence
for x = 1, the inserted plane simulates the limiting case of a body
with infinite radius. Thus, in this region, the solution (which will
be called 99*) obtained, say in terms of tne pressure, may be inter-
preted as an upperbound (at least in Region II) to the complete solution
of Case IIa, The pressure is given by twice the integral of equation
(4.72) or twice the first form (x< z) of equation (4.7b). The pressure

distribution is shown in Figures 4.7 and 4.8.
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(2)
4,4 Case IIa; Discussion of the YBody"Solution, @°

The "body" solution may be written formally by operating on equa~

tion (4,5a) with the inverse Laplace transform (2.15),
@
)
(z) Wi N oy I, () .
¢(",9)2)=‘ {7_“”/_‘/‘(’_'_ r.'n-)dr [2‘7"7' {KJ(S) Kao(srKo(sr) +
; r

2 Lin(5)
+ £ Z Rz (S) '<1h(sr)KA"(5|”')(052ne} —%2]

(4.9)

and the solution ig obteined by quadratures, The integrations, however,
appear formidable. Yet, in order to indicate & method of solution the

procedure will be outlined for the complete solution on the body, which
solution will be ¥simpler" but still retains the difficulties. Consider

the transformed solution in the form of equation (4.,2b) for r= 1,

. _ Lats)
¥(1,8;s) = ZW/(H g8 [Ko(fr){l ()~ 5 (S)}

: (4.24)
+ 2 hZ Kin (Sr‘){lzh(S)— }J:" (s Kz,‘(s)}cos zne]d
Since the Wronskian (Ref. 19)
0 ' - -

@

2W. Ko (5r) 2 K5
Y(ne;s) =~ L% 42> Kantr) . 4.2
(1,6;5) 77'5'-/(/+ P )[K '(s) 2L Ha(S) coszne [ dr (2.2¢)

/

Then, assuming the uniform convergence of the series, the inverse

Leplace transform required for the pressure is

-1 [ Kap(sr) i 5'2 Kynl(syr)
£ {SKAQ(S) Bi} - 2—'7‘ [ sm,,(s)} 5, rz1 (4.11)

i

A possidble method (Ref., 11) of determining this is to rewrite the inte-
gral over ["in the complex s-plane (with a cut on the negative real

axis to obtain single-valuedness) as an integral on the negative resl
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axis plus additional terms by Cauchy's Theorem of Residues., Then,
£" Kan(sr") ® _se [ Kan(er) Ln @)= Kin (@) I, (o) dg
{SHI;(s) ; 2} == /e {[Kz'..(rﬂz + W [ L] } T ¥
o

S Kan(sr)
+ 2 R’es{sk‘h(s) }

(4.12)

There are two complications here: 1) the integral probably can be eval-
uated only by numerical methods, and 2) the residues of the function (al-
though the singularities, which are in the left half plane, are simple
poles) can be evaluated only after determining the location and number,
which are of the order of 2n, of poles, This is a formidable calcula-
tion procedure. A similar procedure must be carried out to determine
explicitly the "body" solution, (4.9). Thus, the necessity for approx-

imate methods of solution is clear.
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4.5 Case Ila: Approximate "Body" Solution

The difficulties in obtaining an exact "body" solution are now
apparent, Also, the study of the "Flat Plate" solution, qf”, implies
that the main contribution to the pressure of the Ybody" solution will
be found near the leading edge-body junction. Keeping these ideas in
mind an approximation to the second Green's function (2.28) for the
region exterior to the unit circle is constructed., Consider a Greents

function of the fom

G(re;rie)= KO(S\/r‘+r"'—2rr'cas(e—9'))+ A Ko(syr4 ;f-,:‘%ﬁcos(a-e’)) (4.132)

where A is to be determined., It is clear from sectionéz.ﬁ that the

exact Green's function (2.28) cennot be put in this form since the sec-
ond function on the right hand side of equation (4.13a) is the fundamental
solution (with respect to P(r,0)) placed at the inverse point of Q(r!,0!)
with respect tc the unit circle. But, by the addition formula (Cf.

equation (2.24))

Ko(sVrs yin - Zrcose-69) = Kolsr) I(E) +
= (4.14)
+2 "Z_ H,‘(Sr)In(-,s.-.)cosn{e-e') , r> L
=1

ri

Replacing this form in equation (4.13a) and comparing with the exact

Green's function (2.28) such that the first term is exactly matched,

the arbitrary function A becomes

Ko(srt) I.'(s)
T.(Z) Ko(s)

(4.15)

" Then, the approximste Green's function for the reglion exterior to the

unit circle is



=45~

G(r',e,- r8') = Ko (S r+r*zrricos(s-o") ) and

Kotsr) T.)(s)

(%) Ko KolsYr*+ - 2Leoso-6m)  (4.16)
o r L4

This approximate Green's function satisfies the differential equation
(2.12b) with respect to the point P(r,0) but is not symmetric in
(r,0; r!',0!') and does not satisfy the boundary conditions. However,
comparing term by term, the difference in the Green's funection occurs
only under the summation sign where

I.(5
K (5)

Kn(5r) Kn(sr*) cos n(6-6') (4.17)

for the exact Green's function has been replaced

_5-—. L]
In(%) L' (s) Kn(sr) Ko(5r') cos n(e-6") (4.18)
I.(2) Ks(s)

for the approximate Green's function. Then, for fixed r' and large s
(for Res>), terms (4.18) approach terms (4.17), and the approximation
is best there*, This may be shown by using the asymptotic expansions
for the modified Bessel functions (Ref., 19). More will be said about
this approximation in section 4.6,

The epproximate Green's function for the region and boundary of

Case IIa (Fig. 2.7) may be written immediately

G(V) 8; r,‘a') = {Ko (s \/*“+r"-zrr'<as(a-0'))+ K,(S\/r‘+r"1zrr'(as(e+9’))} -
(4.13b)

— Kc(S"'} I‘,'(S) {Ka(‘s ’r"%»-;';,l«.f‘rcos(a~9'))+Ko(5yl"¥F',r3',;!:'“5(9*9'})}

*Other approximate Green's functions may be set up in a similar manner,
e.g. a distribution of singularities along 2 line or in a region with-
in the circle in the neighborhood of the inverse point to Q(rr,01),
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The approximate Green's function (4.13b) is, thus, a good representa-
tion for large s (and r' bounded); this implies by a known theorem in
Laplace transform theory (Ref. 11) that the solution obtained using
this Green's function is a good approximation near the leading edge-
body junction, This solution Qill now be obtained,

The transformed approximate "body®™ solution corresponding to

equation (4.5a) is
o©

2 Ko(sr) 1,65
\P (r‘¢9 5) = - -—'—— I+FA I( ) K(S) Ho(SVr‘+,,,; :‘Cﬂse) +

1 (4.19)

+ Ko(sy r+L, + s )} dr

The second term in the curly bracket of equation (4.19) corres-
ponds to the "reflected" solution., Now, the solution for the pressure
component, (&(Z), nay be obtained in Region II (Cf. Figure 3.4, Part III)
where the approximatioﬁ is best (the "reflected" solution does not enter

here)*, Then, by the asymptotic expansions for the modified Bessel

functions
_s (r=n”
Ko (sr') IM(s) 0 G ‘
L(%) K'(s) ~ e i 1+ O } (4.20)

Neglecting the higher order terms,

5{r-l}

_ Kelsr) I Ko(j\/;—:;?:;;;)fv_;_'e T Kels/FF E- Zcass) (4.21)

1, Ke(

0

X

\

~~
pily
S’

The solution will be carried out for & = O (on the x-z plane), Apply-

ing the inverse Laplace transform to the right side of equation (4.21),

*Cf. discussion in paragraph following equation (4.23b)
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~-s(r)®

“tr —
£ {F.e - K,(SIY‘",:’-),'Z'}= % s> P> (2-rez)

1 (4.22)
147 (2-ryz)

2 3

- \/[zr‘- (re |)1J"~(rr.'.|)

Then, in Region II (in the plene of the wing)

(Z2-r+2) v
%o 1 (1+ &, 2z (4.23a)
W, -ow \/[ér’—(ru)‘]*—(rru)"

!

As to be expected the integral vsnishes for (r-z) =1, 2z # 0. This is
an elliptic type integral which may be expressed in terms of the stend-
ard complete and incomplete elliptic integrels of the first and third
kinds by known methods of reduction (Cf. Ref. following equation (3.8a)).

For r = 1, equation (4.,23a) reduces to (See Appendix)
(z+1)

2(2?/,0,2) _ -—L/‘(li"r'_ ) dnr'
" 80 "
w, ! ’ \/[

e orin®]T (reg)*

!

’ (4.23b)
7_7'-/.(/ t Ofzr) )
3 \/[ 1+01+2)7-Z 7""](/+Z'T)(l-r)

The distribution is shown in Figure 4.8* for 0<£ z <2, The solution
approaches zero as z->wo (as it should) but gquantitatively the result

is meaningless for large z. Remesrkably enough, the asymptotic value
%

A
[{}]

(Figure 4.5)%; @.= @2 + ")

= 1) is essentislly reached by the complete solution at z = 2

*This figure follows Table II at the end of this work, Also Fig, 4,7
gives the spanwise distribution.
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Due to the amount of labor involved, further calculations on the
body have not been made.® However, it is clear that the complete solu=-
tion, @ = 4" g™, appfoaches the asymptotic value (Cf. discussion
following equation (3.10¢), Part III) very rapidly in the downstream
direction on the body and in the vieinity of the body on the wing,
Some remarks should be made here concerning the "reflected" solution
which has not been obtained quantitatively. It can be indicated in at
least two ways (also from the exact solution, eguation (4.2c) if the
solution were known)that the region of influence (on the body) of &
disturbance initiating at the leading edge-body Junction, say at
P(r,0,z) = P;(1,7,0), 1lies downstream of a helix of lead =2r, i.e.
the disturbance is first felt on the diametrically opposite element
of the circular cylinder at Q(r,9,2z) = Q(1,0,T ), a distance ¥ in the

z-direction from the initial point** (Fig., 4.3a). This implies that

r4
// y
/
s

/
Bt4oo) fC?’ Q,(10,%)

/
S r—

Pl(';“no) LC

Can

"
/
1 Ac
QoM X
/

c1: helix \\\\

c. ¢ intersection of Mach cone from

2 (1,7 ,0) and eircular cylinder
a) Propagation of a disturbance b) Two-dimensional analogy:
on a circular cylinder Pxt Pyy~Pp=0

Figure 4.3 Region of Influence of "Reflected" Solution

*Cf, footnote following equation (3.10c¢)
**This was pointed out by Stewart.
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the solution ¢7on the body is zerc upstream of the two helices init-
lating from F(1,0,0) and PR(1w,0)  This region of influence on the

cylinder may be argued by considering initially the local region of

influence of a disturbance at a point P on the circular cylinder and
Proceeding step by step around the cylinder. The argument may be initi-
ated: Consider a disturbance, say a point source, at ’(x,y,2)= P(0,y,z)
on an infinite plane barrier (say, the y-z plane). The plane may be
replaced by an image source and the region of influence is the same as
that of a point source (twice the strength) in an infinite region, i.e.
it is a cone of the same included angle.g . Then for a point source at
R(,7,0) on a circular cylinder (Fig. 4.3a) the region of influence on
the circular cylinder in the neighborhood of P; is identical to that of
an infinite plane barrier. Then consider a point Py (Fiz. 3.4c) in the
neighborhood of and on the cone from Py and hence consider the region
of influence of a disturbance at P5, Continuing this process around
the cylinder yields the helical region of influence of a disturbance at
Py on the circular cylinder barrier. Another example is shown in Fig.
4,34 for a finite width flat plate barrier of zero thickness and width
= 2. The region of influence of the point P on both sides of the plate
is indicated by the cross~hatching. The above reasoning, however, does
not yield the strength at Q of the disturbance at P. These results also
follow by direct analogy with the two-dimensional diffraction problem
(Fig. 4,2b) with a circular barrier. Then, a consequence of Fermat's
Variational Principle of Least Time (Ref. 15) is that the time required

for a light signal to travel from a point P to another point Q is a
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JE— / Lrir —
i Plo-,60) Q(0+,0,2) Z
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+ ¢) Local region of influence d) Example: finite width
of Py on circular cylinder plane barrier

Figure 4.3 Region of Influence of "Reflected" Solution

minimum, e.g. between P, and Q,, the time is zL(c = velocity of light =
1 C

1 in this analogy), and between Py and @, 42C

(<]

An estimate of the complete solution on the body (r = 1) for large z
is readily made, referring to the transformed solution for the pressure
component, s-¥, from equation (4.2d) and considering the behavior of the
Green's function for gmall s (Ref. 11). Then

Ki(s) = =% + O(s:hus)

-1y! i
Kun (sr)s Goian + O( Fova) (4.24)
' (2".).' ¢
Ky (8) = ~ Sinet -+ O( 5‘“"")
and (v ' o ( )
Ko(sr: S Ky (57) . = ¢052RE 4,25
P i In R . Bthbai .
{ Ko (s) Z; Ko (5) cos ij = -5 {Ka(sr) -+ Z%l n (r')’“‘}

Since K,(sr') is the dominant term for small s (R/s >0), equation (4.22)

becomes
@

s-f(he;s) 5 (1+75) Ko (sr) dp (4.2e)
v,  TJ !

/

Teking the inverse Laplace transform of K,(sr'), the pressure component

is
g - VT (4.26)
N ———3 2 Z*- 1 4,26
gpé(;:ff;z): %f(/f—r,..)m; = 1+-ﬁ~ ~=
and
I #0,8,2) ] (4.27)

e W



4.6 A Trailins Edge Probiem

Following, again, the suggestions obtained in the study of planar
systems, in Part III, the trailing edge problem considered here correg-
ponds to the problem discussed in Section 3.3, The configuration and

boundary conditions are shown in Figure 4.4. (Cf. Figure 3.5).

x 7
v ) 7
e ’
Fp=t W, 5027 6 yd
(p] =~ W, / /
/
( _ ¢r5’M-5"i‘9 B _ / 4/',-=—V\7,Slh._6
4 —— T g%
N = N
N w N
AN
AN \
\ N
AN h
a) Boundary Conditions b) An Approximate Analogy

Figure 4.4, A Trailing Edge Problem

In this case, however, an exactly analogous problem, for the body alone,
such as the one found in the planar case, cannot be formulated. However,
an approximate analogy for low supersonic Mach numbers is given by an
infinite circular cylinder with a discontinuity in slope at one section
(Figure 4.4b)., This is the same problem as that of the external flow
past an open-ended tube at incidence, which problem has been solved by

G N. Ward (Cf. Ref. 14). More complicated problems such as the wing
tip effect on the body and wing — body —afterfin problems will require
additional study of the flow variables, i.e. u(sidewash) and v(upwash),

followed by proper, ingenious approximations,
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Although the analogy problem given here is not exact indicating
only an order of magnitude for the pressure distribution, it is in-
structive in another sense -- that of giving an estimate of the error
for the solution using the approximete Green's function (4.13b), The
problem is formulated for the wave equation (2,5b):

Initial conditions: P= @G = 0 in the plane g = 0
Boundary conditions: 4{) Prli,0,2)= - W, sine

i1)  L@w I 2)-0

Then, the transformed conditions are
i) ¥rl1,0;8)= - ﬂsfisme
XiM

i1) Lye(r, T;5)= 0

Z)

and the solution by the Green's function method is given by equation
(2.18) where the contour C is the unit circle and the Green's function

by equation (2.,28) for the point Q (1,0') on the circle is

a
) | | Ko(sr) <= Kn(sn e
G(r,0;1,0') =~ _5-{ e T 2Es wars) @sneey (4.28)

and by equation (2,18) the solution may be writien
2%

- W. [ Gre;1,0') simg'de’
2TS

1

¥(r8;s)

(4.29)
_ Wz Ki(sr)

S*K/(3)
which is the same transformed solution as given by Ward* (Cf. Ref. 14)

= sin 6
In precisely the same manner, if thespproximate Green's function
(4.13b) (expanded by the addition formula) is used the approximate trans-

formed solution corresponding to equation (4.29) becomes

*There is a difference in defining .
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V(irne;s)= — VGKJH)LG)S'
- RGO Le) (4.30)

An exact comparison of the two solutions would necessitate carrying out
the approximate solution, completely, in terms of the pressure, say.
Actually, a comparison of the first few terms of the asymptotic forms

of the two solutions should be sufficient, Then, simply comparing the
denominator, K;(s), with the corresponding denominator of the approximate
solution (4.30),

For the exact solution,

. %2 _s 1 _ _1 .
Kits) ~ (E) e {1+ sl z@sy * ]} (4.31)

For the approximate solution,

Ke(s) Lo(s) r\% -8 V1 3
;(5) ~ (5s5) e {”2[45 f@a T ]} (4.32)

The difference occurs beginning with the third term of the expansion.



4.7 Discussion

Clearly, the Laplace transform method of solution is most suitable
for configurations whose boundary conditions may be expressed independent
of the variable operated upon, i.e. the method is essentlally a form of
the well known method of separation of variables., Thus, configurations
such as those which come up in the consideration of the body nose, €ele
Case IIb, are not natursl problems for this method, For Case IIb, even
conical coordinates do not make the problem susceptible to transform
methods; the source or doublet distribution method probably should be
epplied here.

An example of a configuration which may readily be handled by trans-
form methods is shown in Figure 4.5. The body is a cylindrical tube
(Cf., Ward, Ref. 14).

A A

Figure 4,5 A Leading Edge Problem

Another example of a configuration which possibly may be handled
by transform methods is shown in Figure 4.6 (Cf. Figure 1,3). Hers,
the probable necessity for expressing the boundary conditions by care-
ful approximetions, due to the nature of the body, will lead to some

labor.



Figure 4,6 A Body Nose Problem
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V. GENERAL CONSIDERATIONS

.1 Remarks onAépplicafién

In the applicstion of some of the results of the present study
integrated values such as total 1ift, drag, moment, etc, for a partic-
ular configuration are of interest. Generally, in this respect further
numerical work is necessary. However, some useful observations may
be made,

In his work on the 1ift of a wide deltz wing (supersonic leading
edges) in supersonic flow, Puckett (Ref., 25) obtains an interesting re-
sult that the total 1ift coefficient, Cp (totzl 1lift divided by the
free stream dynamic pressure), is the same value as that for the two
dimensional flat plate at the same incidence,cx, For M= V2, this

states that
CL = 4 A (5.1)

This result has been generalized by Lagerstrom (Ref. 6 ) for any wing
having an arbitrery incidence distribution with supersonic edges whose

leading edge is perpendicular to the flow direction and states that

CL= 4otm = £ [[acs 6 dbds (5.2)
wing

where o,y is the aversge incidence distribution, S is the area of the
wing and the integral is taken over the wing nominally in the x-z plane.
Clearly, this result applies to the planar problem, Case Ia, discussed

in Part III -~ either for the semi-infinite flat plale or the flat plate
cut-off at a finite distance from the leading edge such that the trailing

edge is normal to the flow direction. This may be checked for = chord



length of one (1), say, with the incidence distribution (constant in

the flow direction) shown in Figure 5.1.

-@¢ ' *%A
W, ‘
2
1 1 I |
1 X 1 X
Figure 5.1 Incidence Distri- Figure 5,2 Incidence Dig~
bution for Case Ia tribution for

Case Ila: the
HFlat Flate!

solution
Now, the integral of the cross-hatched area,
® £
S -nas = g - €1 = (5.5)

which implies that oy, = 1 for the incidence problem., Similarly, consid-
ering the *Flat Plate" part of Case Ila whose incidence distribution

is given by Figure 5.2,

J(&)de = 1 (5.4)

which implies that o, = 1 for the incidence problem.
Hence, the following observation which has been apvlied loosely to
non-planar systems, is made:
1) For planar gsystems which satisfy Lagerstrom's conditions, the
tetal 1ift on the wing-body combination is equal to the sum of

the 1ift on the body alone plus the 1ift on the "wing" alone



(the portion covered by the body is assumed to be at the
incidence of the body).

2) TFor non-plansr systems with cylindrical bodies downstream of
the wing leading edge-body junction, satisfying Lagerstrom's
conditions for the wing, the total 1ift is given by 1) for

the "Flat Plate" portion (Cf. Figure 4.1) of the system.

Since the "Body" portion of the solution (Cf. Figure 4.7) for Case Ila
yields positive 1ift, the totzl 1ift on the wing-body combination is
greater than*the sum of the 1ift on body alone plus the 1ift on the
"wing" alone. Additional calculations and numerical integration are
necessary to obtain a quantitative estimate,

Generally, it is somewhat dangerous to speak in terms of the 1ift
on the body slone and 1lift on the "wing® alone since the "wing® is de-
fined rather arbitrarily for the leading edge problem (Cf. definition
in parenthesis in 1), above). The actual interaction between wing and
body is more complex than these statements slone indicste, particuiarly
within the Mach cones from the leading edge-body junction, e.g. one
night speak of the 1ift on the body (z>0) due to the influence of the

body (z<0) on the wing.

*Cf, Spreiter (Ref, 4) who has shown that this reads "less than" for
lifting cases of Class A problems.



6.2 Further Studies

Due to the seemingly unavoidable mathematical complexities en-
countered in the study of non-planar systems, "local" experimentel
studies (in contrast to integrated informstion, such as total 1ift and
drag) are sorely needed before a full scaled computational attack of
many of these problems are made. Undoubtedly, viscous effects will
necessitate a modification of the boundary conditions., For example,
the boundary leyer growth (or even separation) on a long axislly-
symmetric, nearly—cylindricai body, where the results of the present
study might be applied, will modify the upwash field upstream of the
attached wing or fin.

Certainly, the analytical work has just begun on non-plenar

problems.
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APPENDIX

The integral solution (4,23b) in Part IV takes the formidable form
¢z (’,0 2)

B -
where

T de o ae
f(/—f‘)(!-k‘d") o‘/(,_,,-z)(/-k’-r")
= F(r, f) — K(r)

(Cf. equation (3.8b) in Part III)

dao
M. ](l—/\L Wo-a2)(1-Ro> J("AL”L)J(1-¢‘){I—k*¢‘)

Tl‘u,x,,c) - W(k,z, 1)

3(£-1

T e 4§
M; = '[(Q,”—az‘f‘)y/f;+m§’)(l+n§’)
-f

an elementary integral,

and, s -
- ' R §
B= g‘T s frg=Ent! L fg=- 3
T s = (1+2+VieersT ) =l (1+2-VEHer+T)
1< 72 2+ > 3 ZF

é'z:: (f*+ p}-f tb)(:"z-'-":c"'s)

p=(%-7 i-h_;_'_ , p=-(I1+7) , s= 7

= (§*+Pg+9%) no (3+rgts)
($+ps+9) ($%rf+5s)

K'= —h , A= ;f;

a,= f+ 3 , a,=9+%

d=~ 1+ %, dz'—(‘+§+'2£2~)
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TABLE I

Laplace Transforms

If @(xy2),2>0 has a Laplace transforn with respect to the var

iable z, then define

az

-52
Ll/lx,g,-s):/e P(x,y,z) 2

o

Given Function of 2z Laplace Transform
z>0
| b
1. b (constant) i
2' (PXX "/’xx
8 Pyy ¥y
4' ¢g. S - C}’(x;fj;o-r)
S. Pzz2 S*y P, 4,04) = Palx,9,0+)




TABLE II

Inverse Laplace Transforms

If y(x,y;s) is a Leplace transform (variable s), then the in-
verse lLaplace transform is

S
P(x,4,2) = EI?,"Ljei #(xy;s) ds
rl

where [’ is the contour described in Part II, Section 2.4,

Laplace transform on 2z Inverse Laplece trensform

(o] , 0 Z2<
1. Ke(sp) , pro —y
(2*-P2%) 7 ) z2>p
2. Ko(sp) . pro {0 , O< <P
S -t
cosh (_/%) , 2P

shb
3. € Ks(s5P), b0 o , 0<2<PTh
-%
F>0 [(z-0)>=2*] % 2550

[0

, 2<lr—r|
L rrert s et
¢ 5’( rrt
' A cosh W) dw
N Int(srYKn(sr) , r>r ﬁ w \}Z""‘T S lr=r | Z<(rer)
L] 0
Iasmy Kalsr), r<r'

L Cos (nw) dw
T — 3 ZO(r+r')
"2

2 rEar=2rr'cosW

7




Laplace transform on z Inverse Laplace transform

rO Z<Ir-r'

b]

2
o (FE)

< - Z
T | cos(nw) Cosh (F)d“) , lrri< 2 (rem)
[«

~/riapt gt
vos™ (e
- or ?.L”[ Sm(nu.))SinquuJ)
ElCall nw Ry e
S I
5. {

I.(sr) Kn(sr), r<r’
S

%‘rfcos(nw)c«ash"(%) dw |, 2>(rtr')

o

T

(or ;._l_r;_r_-_'j Sip(hw) Sinw dw )
k ny 2 152\/?_/3-:.
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