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ABSTRACT

Let ETnZ be a sequence of continuous linear trahs—
formations on LP(X) for finite measure space X and l<p< 2.
Assume further that lim T, f(x) exists a.e. for all f(x) in
P(x). Then, under the added assuuptions that X is a
compact group or homogeneous space and that each operator
T, commutes with translations on X, E.}.Steiln was able to

prove the existence of a constant <1 such that

(1) m[f*‘ Loneo |ThFm0] ZA_?J < JI/APJ;I:FMIPJX

for all f(x) in LP(X) and A>0. The first result of this
paper i1s to prove (1) from convergence under the weaker
assumption that the sequence ETn} commutes with each
nember of a family of measure-preserving transformations
on X, a family which is large enough to have only trivial
fixed sets, This result contains Stein's theoren,
concludes maximal ergodic theorems from individual ergodic
theorems, and applies in situations arising in probability
theory.

The conditions above are then weakened so that the
domain of {Tng becomes an F-space of functions satisfying
a certain concordance condition on its topology, and the
operators ETHS become continuous in measure with range

in the space of measurable functions on X. Then, under



(iv)
the assumption that §T,§ comnutes with enough measure-
preserving transformations as above, a slightly weaker
version of (1) is concluded.

How, assume that ZTn% is a seguence of continuous—
in-measure linear transformations of an abstract F-space
% into measurable functions on finite measure space X,
and that I f(x) = SgplTnf(xH<cD a.e. for every £ in a
dense subset of E. A decomposition of the measure space
X is then obtained, such that T"f(x)<oco0 a.e. on one of
the sets for all £ in &, and such that for all £ in the
complement of a set of the first category inm E, T f(x)=m
a.e. on the other set of the decomposition. A theorem of
Banach thén applies on the first set to give a result
which can be viewed as similar to (1). The decomposition
is then applied to the preceeding results to prove new

theorens,
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1. Introduction: The purpose of this exposition will be

to examine the relationship between almost everywhere
convergence and inequallties of a certain sort, called
"of weak type'". To be nore precise, assuile we have a
sequence §T,3 of continuous linear transformations of

a space LP(X) into itself, where X is some finite measure
space, and that we have been able to prove the almost

everyvhere existence of

(1) Lim p£(x)

Nn—reo0

for all £(x) in LP(X). 7uestions of convergences or
sureability a.e. of orthogonal series fall 1lnto this
class, but in general the limit function need not belong

to LP(X). For example, assume
EZakcos kx + bgsin kx
is the Fourier series of f£(x) in 10,27, and define
<
(2) Tf(x) = Zirk(aksin kx - bycos kx)

for r =1 - 1/n. Then, the limit (1) always exists a.e.
by a theorem of Privaloff [13,p252,I], but the limit
function, called the gonjugate function (?Kx{) of £(x),
is in general not integrable. Hovever, by a result of
Kolmogorov [7], there does exist a universal constant K

such that for all f(x) in IXO,2%) and positive numbers A,
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Since this would be a corollary of

T A7
S [Foldy < K L. 15obdy
if it were true, inequality (3) is called an inequality
of weak type. In general, 1f § 1s any mapping of LP(X)
into measurable functions on X, it is said to be of weak
type (p,p) if there exists a constant J, depending only

on 5, such that
(%) VV}[ 57’ | SFip] ZA_%] = J,%p ,; Iffy)chLg/ O <A < oo,

for any £(x) in LP(X). This inequality would also be a
corollary of a related integral inequality; hence the name
tyeak type®. For example, the Riesz lnequalitles

[13913253 aI:I

17 27T
(5) L Golldy < AL 1swidy, 12p<e
would imply that the operator Sf = T is of weak type (pyp)
for all p in the range l<p<oo.,

YWhile an inequality of weak type nay be strictly weaker

than the corresponding integral inequality, one can still
draw important implications. For exanple, if g(x) = Sf(x)
satisfies (&), then g(x) belongs to LT(X) for every r<p.

In particular, Kolmogorov was able to conclude from (3)
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the inequality

b) o -

.ﬁl?r ~r {—% 7w + K jZﬁf.;(S)/J
FoplPdy = 27+ 5 ). 2

for all £(x) in LY(0,27) and ¢ in the range 0<£ <1, and

furthermore that

Lim

A ~—peo

o, )
‘jo ];(9)"—3:[#’:)/12052 = G

vhere s¥(x,f) = ji(aksinkx - bycos kx). Alternately, one
can often convert weak type inequalities into integral
inequalities by the use of interpolation theorems. For
example, assume the operator S is of wsalt types (a,a) and

(b,b) for 1€a<b, and satisfies the inequality
}S(f+g)(x)}-$l}Sf(x)(*]Sg(x)f a.e.

for all f,g in L®(X). Then, the inequalities

(6) aé[.g:r(x)/‘oc/x é/(_,,oj—;:/f(x)/”d/*; a<p<b,

follow from the Marcinkiewicz Interpolation Theorem
[13,p111,II]. If a=1, we can also get an inequality for
p=l=a;

[ [SFmldx 2 2, J;_ I Log® 5] dx + Ay

In particular, the Riesz inequalities (5) are a conse-

quence of (3) plus the trivial inequality [Tf, < /£

*

Inequalities of weak type often arise as in the Tfollowing
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example. Let w(x) be an ergodic transformation on finite

measure space X, and define for all f(x) in LX)

(8) T F(x) = flx) + f(w(x))4h v+ el

Almost everywhere convergence then follows frou the
Birkhoff IErgodic Theorem 58,94101, and the laximal Ergodic

Theorem predicts the existence of a constant YU such that
(9) m[g,:,;;’im |TWFwl zA3] = J?/A d/; [Feorldx

for all f(x) in LX) and 4>0. Alternately, the proof of
(3) by Kolmogorov actually yields (9) as well, where gﬂ%}%
is as before. In many instances, thils inequality is more
basic than convergence, and is actually used to prove
convergence. Indeed, the step from (9) to convergence, or
from convergence to a much-ivieakened form of (9), can be
carried out in a very general context. For example, if
T“f(x) = Sgp/Tnf(x)[, then either convergence or (9)
implies that T"f(x)< o a.e.; and each operator Tp is
continuous in measure--i.e. a converglng sequence is
mapped by it into a sequence converging in nmeasure. Then,

we have by a theorem of Banach [1; 5,p332]:
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Theoreu 1 (Banach)1?® Let §T,} be a sequence of linear
transformations of an abstract F-space i into measurable
functions on X. Assume that each operator Ty is continuous
in measure, and that T*f(x) <o a.e. for each f in E.

Then, there exists a continuous function $(a), decreasing

to zero as a-20, such that
X § )
(10) m[ §x: T Foo zA}] = ( 14F1)
for all T in E and A>0, vhere [f| is the norm of E.

The condition that T"f(x) <o a.e. for every f in I can be
weakened somewhat; see Theorem 5. In any event, from

ineQUality {(10) one can conclude

Corollarv: Assume in addition in Theorem 1 that
lim Tnf(x) exists a.e. for every f in a dense subset of E.

Then, the limit exists a.e. for all f in E.

Convergence on a dense subset is usually easy to come by.
In the first example (2), the dense subset could be the

trigonometric polynomials; in the second example (8) it

l--Any Banach space is an F-space; 1ln general an F-space
[Z,Chapter III] is a complete metric linear topological
space. Gee Zection 4 for further discussion.

o--Hote that the existence of such a function $(a) is
equivalent to T* itself being continuous in measure.
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follows from Hilbert space methods applied to Lz(x)3.
Going from convergence to (9), however, is another
guestion; inequality (10) is a long way from an inequality
of weak type. Iilathematics, however, abounds with
slituations in which convergence 1s accompanied with a
weak~-type inequality on ©". Fourler analysis, in
particular, is a haven of such examples; for instance
the Lebesgue theorem in combination with the Hardy-
Littlewood inequalities EiB,p29,I]. Yiany of these
examples have in common that they involve translation-
invariant operators on the unit circle or unit torus,
and are thus covered by a recent theorem of E.H.Stein[ioj.
In the following, G is a compact group with its natural
Haar measure, although a homogeneous space of a compact
groun (such as the unit sphere in I, under rotation)

would also be allowed.

Theorem 2 (Steln) Assume ETng is a sequence of trans-
lation-~invariant and continuous linear transformations of

LP(G) into LP(G), where 1<p<2. Then, if

A
n-—-vna’o Tnf(x)

exists a.e. for every £(x) in LP(G), there exists a

3-=This procedure has recently been used to prove an
interesting generalization of the_Birkhoff theoreu,
involving weighted means., See [6] and [3], and Example
1l in Section 6.
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constant /1 such that

1) m[Eyi St (BFl2A3] = T [ el
for all f£(x) in LP(G) and A>0.

Since all that Stein reguires in his proof is that T7"f(x)
be finite a.e. for all f£(x) in LP(G), this theorenm is

actually a companion to Theorem 1.

Convergence, however, is often paired with inequality (11)
in situations far removed from group theoretical considera-
tions. The Birkhoff theoren is one exanple; others are
found in probability. For example, let fxnj be a
sequence of identically distributed independent randon
variables on a probability space (X, L,P). Assume for
convenience they have been normalized to have mean zero
and varlance one, and are also bounded in absolute value

by one. Then, by an old theorem of Kolnogorov, the series

2 én¥y

converges a.e. 1ff the sequence Ean3 is sguare-sunmable,

If we define
n
(12) T(f) = 2w E(fx),

we then have convergence a.e., for all f in L2(K); inequal-

ity (11) for p=2 1is also due to Xolmogorov [8,p236].



]

It is instructive to look at this example in greater
detail. By the Consistency Principle [3,p93], ve can
assume that X is the infinite product'fh}l,l], Lis the
Borel field of X, and that jx,} are the coordinate
functions of X. Let wv(a) be the unilateral shift on X.

Then, for any f(a) in L(X) and g(a) = f(w(a)), we have

H

T, f (w(al) xe(vw(a)) B(fx)

T

n

2
PEIRCY 4f(w(a)>xk(w(a>)dp
Tnflg(a),

since i(gxy) = Z{g)E(xy) = 0. Thus, both this example and
the example (8) have the property that the sequences
involved commute, or nearly commute, with certain ergodic
transfornations on X. Translation-invariant operators on
the unit circle also fall into this category, since trans-
lation by an irrational forms an ergodic transfornation.
But many compact groups, for example any non-Abelian one,
admit no ergodic transformations of this form. However,

a certain homogeneousness condition is involved in both
the theorem of Stein and the last two exanmples. In hoth
cases we have operators comnuting with enough measure-
preserving transforumations to '"provide communication
inside the underlying measure space, in a sense shortly

to be made precise.
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To formalize the above, let (X, £,n) be a fixed unit
measure space, and let §T,3 be a sequence of continuous
linear transformations of LP(X) into LP(X). Set T*f(x) =
Sgp,Tnf(x)l= ™ (x,f) as before, and let w(x) be a measure-
preserving transformation on X. Then, the sequence ng}
shall here be sald to commute with w(x) if for every f(x)
in LP{X) and g(x) = £(w(x)), we have T*(w(x),f)< T (x,g)
a.e. (liotice that this is actually a condition on T°.
Indeed, in (12) none of the operators themselves comuute
with the unilateral shift.) IHow, let JF be a collection of
measure-preserving transformations on X. Then, F will be
called an ergodic family on X if for any two sets A,B in
L with m(.)>0, m(B)>0, there exists w(xz) in F such that
m(Anw'(B)) >0. If J is closed under composition, an
equivalent formulation (by Lemma 1, Section 2) is that if
any set F in [ is fixed (i.e. w™(¥) = F essentially) by
every w in F , then either w(F¥)=0 or m(¥)=1. Finally, if
the sequence ngg commutes with every member of some

ergodic family on X, it will be said to bhe distributive

(on X or on LP(X)).

nxanples of distributive sequences would bhe any sequence
of operators commuting with a given ergodic transformation,

or a translation-invariant sequence on a coupact group

L

or homogeneous space. Thus, tiae next theorem includes

L--See the second remark after Lemma 2, Section 2,



the theorem of Stein, as well as the last two examples (3I)

and (12).

Theoren 3 Assume fT,} is a distributive sequence of
linear operators on LP(X), where 1€ p=2, and that
T*f(x) <o a.e. for all f(x) in LP(X). Then, the operator

T" is of weas type (p,p); i.e. inequality (11) holds.

The proof of Theorem 3 will be deferred until Section 3.
The same techniques can also be used to obtain an
interesting extension of Theorem 1. If ¥ is an F-space§
of measurable functions on ¥, it will be called a basic
space (on X) if every sequence of functions in E, conver-
ging in the topology of E to a given function, contains a
subsequence which converges a.e. to that function. 1In
particular, if convergence in E to a function aiways
implies convergence in measure to the same function, then
it wonld be a basic space. Indeed, 1t turns out in general
that convergence in the topology of a basic space lmplies
convergence in measure. Yow, if w(x) is a measure-
preserving transformation on X, The basic space & will be
called invariant under w(x) if f(x) in B implies g(x) =
f(w(x)) also belongs to E, and has a smaller or equal norm.

Assume anB is a sequence of linear transformations of

S~~-3ee footnote 1.
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basic space I into neasurable functions on i, where the
transformations are continuous in measure. Then, if F is
an ergodic family on X, under all of whose members E is
invariant, we can define commutativity of §T,3 with
elements of F as before. If the sequence $T 3 conmutes
with every membzr of some ergodic famlly on X, all of whose

members leave L invariant, it will be called distributive,

again as before. We can now state the following theoren,

which will be proved in Section i,

Theorem 4 Let $T,3 be as in Theorem 1, except that we
assume E to be a basic space on ¥ and ‘ngB to be distri-
butive. Then, we can assume that the function $(a) is

linear; i.e. that there exists a constant Jl such that
(13) m[ §x: T*Fm=zA3] € 0 (4f|
for all f in E and A >0, where |f{ is the norm of X.

For exanple, Theorern 4 contains Theorem 3 for p=l, and
gives a weaker version for 1<p=<2, with the right-hand
side of (11) being replaced by its pth root. In the range
O<p<1l (see the remark in Section 3) the two theorems
agree. Stein [iO,pl59J also has a theorem along these

lines, which applies to Banach spaces contained in Ll.

5o far we have assumed that the sequence ng3 is reason-

ably well-behaved; i.e. that T*F(x)< o a.e. for all f.
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<emarkably enough, a certain regularity remains if this
condition is removed, at least under some supplementary
conditionss enocugh so that we can vrove theorens to the
effect that if §T ¢ is not reasonably well-behaved, then
it must be uniformly pathological. The appropriate setting
for such a theorem seems to »e as & generalization of

Theorem 1, and the theorem itself is proven in Section 5.

Theorem 5 Let §T,3 be as in Theorem 1, except that we
only require that T°f(x) <o a.e. on a dense subset of E.

Then, there exists a measurable subset X,<i such that

(a) For any £ in E, "f(x)< o a.e. on the complement
of Xgs and thus Theorem 1 applies on the complement of X,

(b) T"£(x) = @ a.e. on X, for every £ in E, with the
ezception of a set of the first category in &,

(¢) If B is a basic space on X, invariant under a
rieasure-preserving transfornation w(x), and ffgﬁ? comuutes
with w(x), then w(x) fixes X,. Thus, if $T,3 1is

distributive, m(iy) = O or 1,

Corollary (the "Alternative®) Let 'ngg be as in Theoreun
3, except that we only require that TUf(x) <00 a.e. On a
dense subset of LP(X). Then, either © 1s of weak type
(p,p), or I"F(x) = c© a.e. for every f(x) in LP(X), with

the exception of a set of the first category in LP(X).
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“he last theorem is of a slightly different character, and
in most examples gives an extension of Theorem 3. (3ee

Section 5 for the proof.)

fheorem 6 Let «ngB be a seguence of linear transforma-
tions of LP(X) into LP(X), wvhere

(1) T is of weak type (p,p),
6

(1i) For all f(x) in a demse subset of LP(X),
(14) m[ §x: Tw2A3] = =(40) s A= e
Then, (14%) holds for all f(x) in i(X).

For example, we could apply Theorem 6 to our first example

(2), and obtain tke result of Titchmarsh [12] that
m[m,meAi]=f0%
for all f£(x) in L(0,27).

Further examples of the theoreus presented here will be
found in Section 6. Section 2 is devoted to a discussion
of ergodic families which is drawn upon in later sections,

and oroofs of Theorems 3-6 tzke up dectlons 3-5.

Remarks D.L.Burkholder'ZHJ has extended Stein's results

6--In varticular, if §T,} is dlstrLbutive and p <2,
and if each operator Ip when restrlcteu to L2(X) fOPﬁS a
continuous linear transformatlon of L2(X) into L2(X), then
by Theorem 3 we could take L2(X) as the dense subset
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in another direction, to prove weak-type inequalities
from convergence for certain classes of sequences of
functions. His approach 1s probabilistic in nature, and
is strong enough to apply to the martingale theoren and

certain of the operator ergodic theorenms.
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2. Brgodic Families In the following, let 3 be a

collection of measure-preserving transformations of az unit
measure space (X, .L,n), which we assume 1s closed under
composition. low, set A" = wl(4) = §x: w(x)ei3 for any A
in L and v in F. We recall that 3 is ergodic iff A,B
in L of vositive measure implies there exists w in F such

that m(BaaY) > 0.

Lemma 1 F is an ergodic family iff 4 in ./, 4 = AY

essentially for all w in F ilmplies m(4)=0 or m(A)=1.

= Clear, since for such an 4, m(4'a¥)=0 for all w,
where A'=X-A.

&= It is sufficient to prove that for 4 in £ , m(4)>0,
there exists a sequence <£Wn2 €3 such that m(Uam) = 1.

Given some 4 in L of positive measure, set
g = sup n( UAwn), Ewni < 7

Since a countable union of countable unions is still a
countable union, the suprenum must be attained. Ilow, if

a set (/A" whose measure is g is fixed by all w in 3 ,
then g=1 by hypothesisj; but if L/Awn is not fixed by some
w(x) in ¥, then m( (/A" Rv Ua"m" >q. Hence F is an

ergodic family.

Lemma 2 Assume F is an ergodic family. Then, for any
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two sets 4,38 in L and real number #>1, one can choose

w(x) in F such that
(15) n(BAAY) £ Fn(d)n(s).

Given 4,B and §, assutte no such w(x) exists; in particular
4 and B have positive measure. If f(x) = X, (w(x)) for
sonte w(x) in F, where X p(x) is the characteristic

function of the set A, we then have

(a) Jroax = ma)
(»)  Jf(wax 2 dau@).

Mow, define { as the closed convex hull in L2(X) of the set
of all functions of the foru ;YA(w(x)) for w(x) in F.
Zvery function f(x) is § also satisfies (a) and (b), and if
g(x) = f(w(x)) for w in F, then g(x) also belongs to i,
since F is closed under composition. Hdow, 7 is a closed
convex subset of Hilbert space LQ(X); it thus contains a
unigie element g(x) of smallest norn [ll,p2h3]. Baut if
r{x) = q(w(x)) for some w in F, r(x) also falls into Q,
and has the same norm as g(x). Thus, g(x) = r{x) a.e.,

and for any real number y and w(x) in F we conclude
Sy T gx: q(x)>y 3 = $x: qu(x))>y3 = Eg

essentlially. Hence m(Ey) =0 or 1 far all v, and g(x) is
essentially constant. 3By (a), q(x) is essentially the

constant m(a), and (b) provides a contradiction.
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Remarks: (1) If F is the set of iterates of a single
ergodic transformation w(x), the above can be sinplified.

Indeed, given any function f(x) in LQ(X), the sequence

f{x) + £Cu(x))+ -+ -+-fgwn'l(x))
n

converges a.e. and in 12(X) to the constant function
ggf(x)dx; Lemma 2 then follows from the lMean Ergodic
Theorem. In fact, Lenma 2 can be viewed as an extension

of the !ean Ergodic Theorem, for we have shown

Corollary LZet F be an ergodic fanily on X, and f(xz) an
arbitrary function in LZ(X). Then, the closed convex hull
in L2(X) of Ef(w(x)): v in Eﬁ} contains a unique constant

funetion.

(2) In general, the condition #>1 cannot be
weakened to #=1. However, if F is the set of right trans-
lations on a compact group or its homogeneous space, we
can push ¢ to 1 by cotipactness. The resulting theorem is
due to Calderon [l3,p165,11], and is usually proven by
integrating (15) over the group concerned and applying
Fubini's Theorem. (Actually, Calderon's result seems the
simplest way of vproving that a family of this kind is
ergodic. Alternately, it follows from the theory of repre-
sentations of a compact group that any measurable set Ag:
which is fixed by all right translations nust have measure

elther zero or one. Thus, semma 1 and Lemuwa 2 brovide an
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alternate proof of the result of Calderon.)

Lemma 3 Assunie F is an ergodic family. Then, if <{Ang
is a sequence of measurable sets such that Jm(a)) = o,
there exists a sequence of transformations ¢§Wn§ = F

such that
~ W
(16) m(%{Ann) =1, all .

That is, such that w,(x) £ Ay infinitely often for almost

every x in .

Consider any sequence of sets glgng S-Jf. Then, by Leuna
2 and induction, we can choose transformations §w,3 s F

such that for I = 1,2,3, ... ,

N
Vi L,UWo W L ,
m(AllnAQ‘?nn_%jn o A;.;‘}) < 86, %qu"l«:) ’

vhere E&;} is any sequence of real numbers with &,>1. In
particular, if TTm(ﬁk) = 0 and [T4, converges, then /7Agn
must be a null set. By complementation, given any sequence
gAn? vith ¢Zm(Ak) z w, we can choose £Wn2 such that
(/A R has full measure. But now we are through; for by
induction we can choose gwng < F and integers fﬂkg

such that
n(U A > 1 - 1%, 1= 1,2,3, ...

from which (16) follows,
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3+« The purpose of this section is to prove Theorem 3.
First, we remark that the first step in Stein's proof of
Theorem 2 is to prove Lemma 3 for this situation [10,9146],
and that no other use is made of the group theoretical
structure involved., In other words, once we have Lemma 3,
the proof of Steln is also sufficient for Theorem 3. Thus,
at this point we could refer the reader to Stein's paper,
and be done. However, for conpleteness we will give the

proof of Stein here.

We will need sone information about the Rademacher
functions, which are defined as follows. Let the binary

expansion of a number in the unit interval be

ﬁ = 'Z‘zzf} K

and set r,(8) = 2&,-1. These functions are then defined
a.e, on the unit interval for n21, and fortn an orthonor-
mal system. The following two facts are standard results
about Rademacher functions fl3,p212,213,1] which we will

have occasion to use.

1. 1If Ean3 is a sequence of real numbers, zfanrn(a)
converges a.e. Lff Zar‘i‘<-oo. (This is sometimes stated as
Zian converges for almost every choice of signs iff farg
is square-summable.)

2. Let A be a subset of the unit interval of positive
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measure. Then, there exists an integer I, devending only

on the set A4, such that the inequality
v
4 ess, Sup |
(175 (Zq:) = J2 s:4 (2 va’?v/‘”/ + 32 [anl
holds for every sgquare-sunmable sequence ‘gans.

The proof of 5tein depends on the following leama, stated

in a form due essentially to Burkholder f%].

Lemma 4 Let gamng be a double sequence of real numbers

such that

(1) For any n, ap = 5{Pla, 1<,

(ii) For any m, Za,fk<oo,
(111) Sép}ziamnrn(&)[<:oo almost everywhere.

Then, g?ﬁ |agn | <.

By (iii) and inequality (17), we can find a set 4< [0,1],

a constant Jl, and an integer !N such that for all m,
o Ve sup <
(Zamk> - J—é fc i Zamkrk(a)} + 3 Z‘aﬂ’[kl
1
N
< %
- ﬁ ./L + 3'23.1{
sup N o«
and thus m,n [ayn| € JA + 3223 <™.
{
The following simple lemma will also be needed.

Lemma 5 Let gang be a sequence of real numbers, and

choose integers €M. Then for all p, 1l€pe<2,



s
| p M P
ag) [ ]Zanrn(m! a4 £ 5 |ay
{ "A',\ I/VM a 'fb/l
|2 a 4o = ([, (22,0001 J¢)

Proof: a/:
m p/ M
(Z=r)™ 2 2 (2r
W v

i

Proof of Theorem 3 Assume T° is not of weak type (p,p);
i.e. that inequality (1l1) holds for no choice of constant
Jl. Then, we can choose a sequence of functions ‘gfng in

LP(X) and positive constants gAng such that for all n,
3
N
(19) m[fx: TEwr2A.3] 2 257 4 )% s
]

Since fp,A, enter in (19) as the combination Zv,,fm one
can redefine the functions ‘gfng so that (19) holds with,
say, Ap = n’?. Then, Ap—w, '%: — ®, and since m(X)< 0,
,g;lfn(x)/PdX'—"O. After a process of eliminating somne
nembers of fi‘n? and repeating others, we arrive at a new

sequence Efn} which satisfies
Z m[ex: T w2R,3] = o, 2 ,/; 1%, colPdy < 0

where R, —®. By hypothesis, {Tng conmutes with the
members of some ergodic family F on X. Thus, by Lemua 3,
there exists a sequence of measure-preserving transforma-
tions §wn3 € F such that Ty (wn(x)) 2 R, infinitely
often for a.e. x in X. $&ince each wy(x) was from I,

T“gn(:c')z’I';;fn(wn(X)) a.e. for gplx) = fplup(x), and
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;:p T* wi¥) = a ae, ,/;,. 2 Agncl’ dy < oo,

-

(20)
lle have assumed p< 23 thus the series
7(x,8) = Q1 (#)g (x), Fo(x,6) = D (8T8, (x)

converge almost everywhere in the square X»[0,1]. Ilow, for

an arbitrary increasing sequence of integers gl‘ifkg define
Alires /
’p
Ip(F) = (J;_ IZ !:,/ﬂ{;”(r)/fo/x),
- f/h,-l-l

By Holder's inequality anda (19),

J: Y (6)d8 < (J;J;‘ }2*:17,/&);,100/?0/&4* )/P
) Aert "
< ,/;

(gnaol? de )T
At
In particular, it follows from (20) that the § :‘rkg could
be chosen so that } qi.(¢#) 1s integrable, and thus conver-
gent almost everywhere. 1In other words, some sequence of
partial sums of F(x,#) converges in LP(X) for a.s. #. ¥For

these §, then, F and F, belong to LP(X) and satisfy F,=T 73

n Mt
thus IP |7 (x,0)[ < o a.e. in Xx[C,1]. Putting all of
this together, we see that for almost every x4 in X,

T"gn(x%g) <00 for all m, STye,(%,)°< o for all m, and

sup
m ) Zrn(")ngn(XQ)/< © for a.e. d.

low we can apply Lemma 4% with Ay T ngn(xo), and conclude

Sgp T;':gn(x)< 0 a.e. Inequality (29 now provides a
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contradiction, and T must have originally bezn of weak

tyve (p,yp).

Remark: The condition p<2 in the above is essential; in
fact Stein [lO,plSZ] gives a counterexanple for p>2.
However, the condition p>1 1s not essential, and was never
used. Thus, Theorem 3 also holds in the LP(X{) spaces for

O<p<l, Indeed, this is a speclal case of Theorem .
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4, A linear topological space [5,p49] is a vector space 3
enjoying a topology with respect to which addition and

scalar multiplication are bicontinuous operations. IFf the
tovology is a complete nmetric topology, given by a metric

JP which satisfies
(21) P(x,y) =P (x=y,0)

for all x,y in 3, then 4 is called an F-sSpace [2,p35; 9,
p5i17. IF'or example, any Banach space is an F-space. ‘“he
norm of ® is the function [x| =_D0(x,0); as in the case of
3anach spaces, this function completely determines the

topology and nmetric structure of H.

For example, let LY(X), for O<&« <1, be the space of all

measurable functions on X for which the integral

JZ [f(x)r(dx
is finite. With this integral as the norm, L¥(X) forms
an F-space, and even a basic space as defined in the
introduction. Another exarple would be the space of all
finite a.e. measurable functions on X, with the norm

S _IFeml g,
x { + (Fao! i

7-~Since a Hausdorff first countable linear topological
space 1s always netrizable with a metric satisfylng (21),
this is not as exacting a condition as it might apopear.
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This last space we will call LO(K); 1t has the interesting
property that convergence in its topology is equivalent to
convergence in measure. It is also a basic space, as, of

course, are all the spaces LP(X) for 1<p<ow.

et = be a basic space on X, and f an element of E. Then,
af—0 in the topology of & as a—0, since % 1s a linear
topological space, and thus f(x) must be finite a.e. by
the basic property of basic spaces. In particular, K is
contained in L°O(X). oreover, since both spaces are basic
spaces, the embedding operation 1s a closed operation, in
the sense of the Closed Graph Theorem [é,phl; 5,?5?18.
Thus, it is a continuous operation as well., In other words,
convergence in E ilmplies convergence in LO(K), and conver-
gence in any basic space implies convergence in measure of
the functions involved. Conversely, if ¥ is any F-space
of measurable funetions on X, with the property that
convergence in the topology of E implies convergence in
neasure, then of course E must be a basic space. Thus, wve

have an alternate characterization of basic spaces.

The proof of Theorem 4 depends on the following lemma, due

8-=-i linear operator U with domain %, and range 5, is
. . _ 1 2
sald to be closed 1f xXp—a in &3, Uxp,~Db in Ep always
implies Ua=b. The Closed Graph Theorem is the assertion
that any closed linear mapping of one F-space into
another is necessarily continuous.
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to Orlicz [9].

Lemma 6 Let §fp{ be a sequence of finite a.e. measurable
functions on X, and suppose that an, together with every

subseries, converges in neasure. Then, fon(x)aé.aa a.€.

Let {rn(&)i be the Rademacher functions, as in Section 3.
Then, the series jirn(&)fn(x) converges 1ln measure on X

for every irrational value of #. By bounded convergence,
then, it must converge in measure in the square M = Xx[0,1].
Thus, some sequence of partial sums of this series
converges a.e. in M or, by Fubini's theoret, almost
everyvhere in [O,l] for almost every value of x. It then

follows from inequality (17) that for these values of x,
2
an(x) <00,

Proof of Theorem 4 Assume inequality (13) holds for no

choice of constant Jl. Then, we can choose a sequence of
functions §fp3 € I and positive constants gﬁng such
that for n = 1,2,3y vae

(22) m§x: T 2A4,3] 2 0° 1,5 .

since elements of E enter (22) only in the form égfn, ve
]
can assumne Ap=n. By the triangle inequality /fn) < n.L%fn)

and thus for all n,

ML§x: T5mzn3] 2 n* 1l
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In particular, J [f,[<co; at the possible cost of

repeating some of the sequence Efng Wwe can assume

as vell. Thus by distributiveness and Lemma 3 there
exists a sequence of measure-preserving transformations
fwp3 such that gn(x) = fp(wy(x)) falls into E and
satisfies T7g,(x)2 T fy(wy(x)) a.e. for all n, and

sup &
(23 n Tgnw=o e, Z iz < oo
In particular, ZEgn, together with every subseries,
converges in E and thus by continuity Zngn, with a1l of
its subseries, converges in measure for each m. Hence by

uemta 6
Zgn(x)zéco a.e., Zngn(x)2<oo 8.6,
for all m, and thus
F(x,8) = Zrﬂ(ﬂ)gn(x), Fo(x,8) = Zrn(ﬂ)'l‘mgn(x)

converge almost everywhere in the square M = X*[b,l}.

—~

Since F(x,#) converges in & and in measure for all &,

sup

Fp = TyF for a.e. § and m, and " [Fu(x,8)(< @ a.e. in

n
i, Putting ail of this together, we see that for alriost
every x, in X, T'gp(xs) < o for all n, Zngn(xD)2<oo for

all m, and
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Sgp ]an(é’)%gn(xo)/ < oo for a.e. 4.

llow we can apply Lemma 4 with 8. = ngn(xo) , and conclude
Sgp T:’;gn(x)<oa a.e. Inequality (23) now provides a
contradiction, and * nust have originally satisfied

inequality (13) for some constant 2.
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5. Proof of Theorem 5 Let l? be the set of all measurable

sets 4 in L such that for some f in B, T*f(x) = ® z.e.

on A, and define

—

(2k) g = sup m(d), Ain L.

The key assertion in this proof is that if a set A belongs
to L, then T*f(x) = co a.e. on 4 for all f in &, except
for a set of the first category in L. Given a set of
positive measure A in Z?, define a sequence of subsets of

E by

£5: LIy = (- miA) 3,

where ve interpret;;%% = 1. IHow, I claim that each set Ky
i1s closed in E. TFor, assume we had a secuence {fng < Xy
such that fn~+f in ®, and choose an integer ... Then, we
can select of subsequence of an3 s which we shall also
call {an y such that NnDp(x) =Ty f(x) a.e. for L<k<i,

If we define

y . max ) X
TME(X) = ]_éks;,IlTkg(i)’w € 10 &,

we then have Tifn(x)—iT;f(x) a.e. in X. Hence by Fatou's

lemma,
L4
T Fe)dy f ) d¥
M 2 B ind < -/ m .
J Ty < A, ,f TR S (I=2 I mA).

But this holds for arbitrary ..; thus f must fall into Ky
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and K;; is closed. :low, the union of the sets thﬂg is
precisely the set of all f such that T*f(x) is finite on
a set of positive measure in 4. Thus, it only renains to
show that each set Ky is actually nowhere dense.

—

since A fell in [ by assumption, there exists at least
one element of E, call it fo, such that T'f,(x) = o a.e.
on A. Also, for all g in a dense subset of E we have
T"g(x) <00 a.e. on X and thus T"(fg4+g)(x) = o0 a.e. on A.
But a translation in I of a dense subset of E is still
dense in Z3; thus no set KH could possibly contain an open

set. Hence L/KN is of the first category in E.

——

llow, I claim that £ is closed under countable unionss
this follows from the fact that a countable intersection
of sets with complements of the first category in E is
necessarily nonempty. The supremum in (24) can then be
attained, and there exists some set X; in L such that
m(Xy)=q. But now, for any f in B we must have I"f(x)< oo
a.e. on the coamplement of X,, and thus parts (a) and (b)
of Theorem 5 follow. To prove part (c), let ¥, = Xg and
choose £(x) in E such that T'f(x) = oo a.e. on X,. Then,
g(x) = f(w(x)) belongs to E by hypothesis, and T g(x) =
T*£(w(x)) a.e. in X. Hence, there exist null sets My,
such that T'g(x) = oo as soon as x £ X~ and w(x) & Xo-Hy,

and T7g(x) = 0 a.e., on w'(io) = Ig. By part (a), Yp= %o
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essentially, and since w(x) is measure-preserving, ve have
o = ¥y = Xg essentially. Finally, if this takes place
for all w(x) in an ergodic fauily on X, by Lemua 1 a(Xy)

equals zero or one,

Proof of Theorem 6 Let f(x) be an arbitrary element of

LP(X), and choose g(x) in the dense subset referred to in
condition (ii). Then, I'f(x)< T*(f-g)(x) + T g(x) for all

x, and

m[§x:T%w2243] = M Se:T5-2)012 4]+ m [$o:Tm4])

(AAF M s THm2243) = A2 /L Ifca-genlfde + o 2)

where J/{ is a constant independent of g(x). 3But now

ﬂf-gm, can be made arbitrarily small, and (14) follows.
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6, Further Examples (1) Let w(x) be an ergodic transfor-

mation” on X, and $u, 3 some infinite matrix. Define
Tpf(x) = u, O(x) + u F(u(x))+ 0+ ug P(w™(x)

for all f£(x) in L(X). The sequence §T,3 is then distri-
butive on X, and if we are given that lim sup [T, f(x) <o
a.e. for all f(x) in a set of the second category in L{(X),
we conclude that T® is of weak type (p,p) for all o,
1<p<2, Inequalities (6) and (7) for S=T° would then be
corollaries. In particular, if lim T,f(x) exists a.e. for
all f(x) in ka), the limit function wvould also satisfy
these inequalities, and define a bounded linear transfor-
mation of LP(X) into LP?(X) for 1€p<2. Also, it follous
from Theorem 610 that

nn[Sxf,iﬁa,fﬁfwﬂ?Aij = o (/4¢)

for any individual f£(x) in LP(X), 1<p<2. Indeed, this
could imply that an inequality of maximal ergodic type is

involved in all theorems of this sort.

(2) Using Theorem 5, we can prove the existence of a

9--Actually, it 1s sufficient to assume that w(x)
commutes under cotiposition with every member of some
ergodie family on X, as for example a power of an ergodic
transformation.

10--8ee footnote 6.
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function continuous on the unit interval but nondifferen-
tiable on a set of full measure. llore precisely, we can
prove that the class of continuous functions which are
differentiable on a set of positive measure form a set of
the first category in the space of all (periodie)

continuous funections on the unit interwval.

Following an example of S. Banach, we define

(25) T or(x) = Lixxap) - £(x)
n an

s apn—0,

for all f(x) in the Banach space E of continuous functions
on the unit interval satisfying £(0)=f(l), where addition
is modulo one. e will now apply Theorem 5 to the sequence
ET&}. Since 1t commutes with translations, it is distri-
butive; thus the set X, of Theorem 5 has measure zero or
one. If m(X,)=0, then by Theorem 1 the operator ™ is
continuous in measure on E; but hp(x) = fsin7nx satisfies
h,—0 in E although T*hn(x)E?l on a set of measure bigger
than 4 for all n. Thus, T” is not continuous in measure,

and m(X,)=1, which implles what was to be proven.

(3) It is known [13,p310,I] that there exist
integrable functions whose trigonometric Fourier series
fail to converge at a single point. Thus, if s”(x,f) =
SUP fs (x,f)f, where sp(x,f) is the nth partial sum of the
Fourier series of f£(x), by the corollary to Theorem 1

%

s” is not of weak type (1,1). It then follows from the
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"alternative'' that the Fourier series of every integrable

function diverges unboundedly a.e., vith the exception of

a set of the first category in LkO,2n0.

(4) A still unsettled conjecture of i. Luzin is that
the Fourier series of any function in L2(0,27) converges
alrost everywhere. 3y a result of A, C. Calderon
[l3,p165,II], Luzin's conjecture is equivalent to the
assertion that s* is of weak type (2,2), where s® is as in
Example 3. From Theoren 6, we have that Luzin's conjecture

holds if and only if

m[ §x: s*as)2A}] = «(52)

for all £{x) in L2(0,27). alternately, from the
halternative it follows that the set of L2 functions
vhose Fourier series converges z.e, is either the entire

space or of the first category in LQ(O,EPO.
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