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Abstract

By a triangular Shimura curve, we mean the canonical model Xp of '\, the quotient
of the upper half plane H by a cocompact arithmetic subgroup I' of Sl(R) with a tri-
angular fundamental domain. To be concise, let F' be a totally real algebraic number
field of degree d, and B a quaternion algebra over F, with B@q R = My(R) @ H* !,
where H is the Hamilton quaternion algebra. Let O be an order of B, and I'(O) =
{7 €0 :40 = O, Np/r(v) is totally positive} . A Fuchsian group I' of the first kind
is called arithmetic if it is commensurable with I'(O) for some B and O. Here we
are only interested in the arithmetic triangular groups, i.e., those generated by three
elliptic elements. If the three generators 7y, v2, 3 are of order ey, e;, e3, then we call

(e1, €2, €3) its signature.

Our main results are the follows:
We first exhibit, for each arithmetic triangle group I', positive integers k£ such that
the space Si(T') of modular forms for I' of weight & is 1-dimensional (cf. Theorem A,
Chapter 2). Then we establish a class of modular functions on a family of coverings
of triangular Shimura curve Xr, satisfying some arithmetic properties analogous to
those of the classical functions A(Nz)/A(z) (cf. Theorem B, Chapter 4). Finally, we

provide two explicit examples and illustrate the properties proved.
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Chapter 1 Introduction

Discrete subgroups I' of SLy(R) operate on H = {z € C|(Im)(z) > 0} by fractional

a
linear transformations (v, z) — ﬁ%, if v = . The class of I' admitting
c d

triangular fundamental domains (of finite area) has a long history, and was first
studied by H. A. Schwarz.

A well-known example is given by I'(2) := {y € SL2(Z)|y=1 (mod 2)}, whose
fundamental domain ® has all of its vertices at infinity (“cusp”), namely at 0, 1, oco.
Even the modular group SLy(Z) belongs to this class, as its fundamental domain
has vertices 7, p = €2™/3 and co. The function fields of T'(2)\H and SLo(Z)\H
are generated by the classical elliptic modular functions A(z) and j(z), respectively.
Moreover, there is a distinguished modular form A(z) = ¢[T,>:(1 — ¢*)*, ¢ = e
for SLy(Z), which spans the space of cusp forms of weight 12 for SLy(Z). By a well-
known theorem, one knows that, for any N > 1, the modular function A(Nz)/A(z)
is, when suitably normalized, integral over Q[7] (see [K-L]). This fact leads to many
interesting results in Number Theory and Geometry.

The goal of this thesis is to find analogs of A(z) and prove such an integrality
result for “triangular 7 groups I'; which are cocompact and arithmetic.

Being arithmetic means I' is commensurable with the group of units of norm 1
of a maximal order O in a quaternion algebra B over a totally real number field
F such that BQqR = My(R)@HIQA-! where H is the algebra of Hamilton’s
quaternions over R. I' is cocompact unless /' = Q and B = My(F'), in which case I’
is commensurable with SLy(Z).

A complete (finite) list of cocompact arithmetic triangle groups I', given by congru-
ence conditions, is available ( [Ta], [Sh 1]). Furthermore, one knows by Shimura that
the algebraic curve I'\'H and the three vertices are defined over an explicit extension

M of F. For each such I', we first find weights k such that Si(I') is one-dimensional,
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generated by an M — rational modular function with a unique zero at one of the
vertices of ®@; we call this function Agr ( or Ap for short). There is also an analog
jg of 7, given by Shimura’s theory, which we normalize to have a simple zero at P,
simple pole at P, and to be integral at P3. For o € B, we also has an automorphy

factor (e, z) (see [Chapter 5]). Our main result is the following:

Main Theorem Let (T, B, k) be as above. Then Yae€B*, ((a, 2)*Ap(az)/Ag(2)

is integral over M|[jg].

By Shimura’s theory of canonical model, we know that any arithmetically defined
modular function relative to a congruence subgroup I' takes values at any C'M point
z, in a class field of a totally imaginary quadratic extension K, of F. This in par-
ticular applies to our functions (o, 2)*Ap(az)/Ap(z). One may view our result as
a refinement in a very special case. Since for F' = Q, it gives abelian extensions of
complex quadratic fields, we are only interested in those F' # Q.

In the last two chapters, I give two explicit examples I'*, I of arithmetic triangular
groups. It turns out that I' is a subgroup of I'* of index 2, and they are associated to
the same B. Analogous to the classical result j(\) = 28%;, we also express jp

explicitly in terms of Ag, where jg and Ap are the 7 analog of I'* and I respectively.



Chapter 2 Analogs of A(z)

In this chapter, we find those I and k such that the space of modular forms for I' of

weight & is 1-dimensional.

Notations
F: totally real number field with [F': Q] =d
B: quaternion algebra over I with B@®q R = My(R) @ H*!

¢: the composite map

aeBHBRRMRPHD -PHD My(R) 3 £(a)
Q

Bt ={b€ B: Np/p(b) is totally positive}

O: a maximal order of B

7: a two-sided integral O ideal of B
r=r0,7r)={y€B":vyisaunitof Oand y—1 € 7}

We also use I' to denote the image of I' under &.

Fr is the ray class field of F' corresponding to (71N Op)wo where wy is the product
of all archimedean primes of F. |

Fix an arithmetic triangular group [' with (Xr, ¢) the Shimura canonical model
defined over Fr. Let M(I') (resp. M(I')o) be the space of meromorphic modular func-
tions for I' (resp. rational over Fr) and Si(I') (resp. Sk(I')o) the space of holomorphic

cusp forms of weight k for I' (resp. rational over FT).
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Theorem A For the following I' and &, Sk(I') is one-dimensional, generated by an
Fr-rational modular form Ag = Ap([', k), which is an eigenform of Hecke operators.

Moreover Ap is non-zero everywhere except at a unique elliptic point.

signature of I' | k order of the elliptic point
where Ag =0
(2, 3,8) 12, 16, 32 8,3,3
(2, 4, 5) 8, 16, 24, 32 5,55 5
(2, 3, 10) 12, 20 10, 3
(2,5, 6) 12 5
(2,3, 7) 12, 24, 28, 36, 42, 48, 56, 60, 72 | 7,7,3,7,2, 7,3, 7, 7
(2,3, 9) 18 y
(2,3, 11) 12, 24 11, 11
Proof.

€3 __

Let I' =< 1, 72,773 > with 7' = 732 = 45® = 1 as an automorphism of H.
Assume Py, P, P5 are fixed points of vy, vs,vs respectively. For any P € H, denote
by P the image of P under the projection H—T\H. Let Gp be the isotropy group
of P and e(P) the order of Gp; then e(P;) = ¢; for 1 = 1,2,3 and e(P) = 1 for other
P. Choose a local parameter zp such that Gp operates on zﬁ by multiplication by
e-th roots of unity; then ¢ = (2p)® is a local parameter of P in I'\'A.

Let Op(f) be the order of f at P and Op(w) the order of w at P in I'\H. First,
we will use the Riemann-Roch theorem to prove the following formula:

If the signature of I' is (e, €3, €3), then
dim&,(T) = 0; (2.1)

for even k > 2, we have

dimS(I) = [(el _ 1)’1 + [(62 _ Ukl + [(63 — Uk] —k+1, (22




and for any f € M(D),

and Z Op(f) + Or(7) + Or.(f) + Or.(J) = (1 _Lor —1—> g (2.3)

P#P; ,P,,Ps €1 €2 €3

Let f € Si(T), then w = f(dz)¥/? is invariant under T', hence represents a

holomorphic differential form of I'\H. We have

w o= f(t)(dt)?
— ut(OF(w))(dt)kﬂ
— u(ZP)e(OF(w))(e(Zp)e—lep)k/2

_ uek/?( )e(O——-(w))+k(e l)/2(d2 )k/2

where u is locally holomorphic and nonzero around P.
Thus Op(f) = eOp(w) + k(e — 1)/2.
As we know, on an algebraic curve of genus ¢, the sum of the orders of a

differential form of degree 1 is equal to 2g — 2. Here g = 0. Hence:

ST Op(w) + Onle) + Og(w) + Oxlw) = (~2)% = —k,

P¢P17P27P3

1.e.

5 0p(pe 2l (1- 1)k, 080 LYEO() [ L)k_

P#P,,Py,Ps er/ 2 ez 2 €3

> Op(f)+0P1(f)+0Pz(f)+0P3(f):( 11 1)

P#£P, PP €1 €2 €3

which is (2.3).
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The map f > f(dz)*/? gives an isomorphism between Si(I') and (), the space
of differential forms w on I'\'H of degree k/2 such that

Or,(f) = e:0p(w) + k(e = 1)/2 2 0.

As the Op,(f) are always integers, for k = 1, this map is an the isomorphism
between Si(I') and the space of all holomorphic differential forms on I'\H. Hence
dimS,(T) = g = 0, and (2.1) is proved.

If K denotes the canonical class of I'\'H, and

Dy = (k/2)K + 3. [k(e; — 1)/2¢]]P,

then € is isomorphic to
L(Dy) = {f € meromorphic functions on I'\'H : f =0 or div(f) > —D,}. Hence
dimS, (T") = I(Dy).

By the Riemann-Roch Theorem,

l(Dk) = deg(Dk) —g+1+ l(dlv(w) - Dk)

where w is a non-zero differential form on I'\H.

Here

and

deg(D) = (/220 -2)+ |He=1)

3
k
= —key [He D)
i=1

i —
€;

Now, we need the following
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Lemma 2.1 For any pair of positive integers m, n,

6-2)4]> (2o

Proof of the Lemma.
If mn, then [(1 - Ln]=(1~L)n>(1—-L)(n-1).
If m does not divide n, then [2] < 2=1

Hence

6= 2 n- 212025012 (- B

Applying the Lemma with m = e; and n = %, we have

He= o[- )8 = (- D) (5-1)

for 1 =1,2,3. Since ® is a hyperbolic triangle, by Theorem 11 [Ford, page 247], we

also know that 33, el_, < 1. Hence for k > 2,

deg(Dy) > —k + (3—2261) (g—l) >—k+2<§—1) = -2,

So deg(Dy) > —1, and deg(div(w) — Dy) = deg(K) — deg(Dy) < 0.
Therefore [(div(w) — Di) = 0.
Moreover, the Riemann-Roch Theorem

[(Dy) = deg(Dy) — g+ 1 + I(div(w) — Dy) gives (Dy)=-k+1+ E?:1[k el ], i.e.

2e;

dimSy(I') = [(61 — 1)’“} + [(262 - l)k} + [(263—‘1)—@} —k+1

261 €9 €3

for k> 2.
Hence (2.2) is proved.
For the proof of (2.1) & (2.2), one can also use [Sh 2, Section 2.6] which is

valid for a general Fuchsian group of the first kind.



8

Next we will use the formula (2.1) to (2.3) to find those arithmetic triangular
groups I' and integers k such that dimS,(I') = 1. We will use the table in [Sh 1,
page 82]. For those groups in the table, we calculate dimS,(T) and the possible
divisors for even k£ > 2 such that (1 — i — EI; — ;};) g < 1. See the last Chapter for
a list of the tables.

The table in the Proposition is a complete list of I'’s in Shimura’s table and k’s
for which one knows explicitly from the above formular that Ag(L', k) takes zero at
only one elliptic point .

Since Xr is defined over Fr, and Sp(I') & H°(Xr/c,w;) where wy is the sheaf of
modular forms of weight k& which is also rational over Fr, this cohomology group

evidently admits an FT structure Si(I')o. We choose Ap to come from Sp(T)o. It is

obviously a Hecke eigenform as dimSx(T') = 1.



Chapter 3 Anologs of j(z)

Without loss of generality, we may assume the Ap in the previous chapter has
zeroes only at P,. In this chapter, we modify the Shimura Canonical model to get a
new parametrization jp with a simple zero at P, and a simple pole at P, and such

that it is integral at Ps.

For any C M point z, let K, be the associated totally imaginary quadratic
extension of F' which can be F linearly embedded into B. By Shimura’s Main
Theorem 1 [Sh 1, page 73|, Fr(¢(z)) = M, is a finite abelian unramified extension
of K,. If the class number of K, is 1, then M, = K. Since P; (for ¢t = 1 to 3) is the
fixed point of 74;, P; is a C M point (see [Sh 1, page 66]). Let Mr = Mp Mp, Mp,.

Proposition 3.1 There exists a modular function jg = jg(I', k) rational over Mr,
such that M(I")o . Mr = Mr(jB), div(jg) = (P1) — (P2), and jg(Ps) is integral
(in Mr).

Proof. As (Xr, ) is the Shimura canonical model, ¢ gives a birational isomorphism
of I'\'H to Xr(C). Therefore ¢ has a simple zero X and a simple pole Y which are
both Fr— rational. From the above argument, our jp can be obtained, up to a
non-zero scalar in Mr, from ¢ via an automorphism of P! over Mt which sends X,
Y to Py, P; respectively. Consequently, jp is rational over Mr. For any CM point
z, jB(z) will take values in M, Mr. In particular, jg(Ps) € Mr. Now, we normalize
JB such that jp(Ps) is integral.

Q. E. D.
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Remarks:
1. This property of jp is an anolog of the classical property of the j—function,
namely: j(oo) = 00, j(¢) = 0 and j(p) = 1728 € Z.
2. Some explicit examples have been developed in Chapters 5 & 6, where the class
number of the relevant C'M fields are always 1, so Mr = Kp, Kp, Kp,, the
compositum of the fields attached to Py, P;, Ps. |
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Chapter 4 Main Theorem

Theorem B Fixing any I and k in the table of Theorem A, for o € B, set

((det(€(@))\* Ag(az)
Pale) = (j<§<a>,z>2> An(e)

Then ¢, is a modular function for I', = I' N o 'T'a. Moreover, ¢, is integral over

MrljB].

Now we will first give an immediate Corollary and a remark, leaving the proofs

of the Theorem and the Corollary to the end of the Chapter.

Corollary For each o as above, there exists a non-zero 8, € Opy. such that for any
CM point z, Ba¢a(2) is an algebraic integer whenever jg(z) is. In particular,

Bada(P3) is integral in Mp K (Ps)®.

Remark: The theorem above is the analog of the classical result that A(Nz)/A(z)
is integral over QJj], VN > 1. But in that case, one can further conclude, by using
g— expansions, that A(Nz)/A(z) is in fact integral over Z[7]. We are not able to
obtain this refinement, owing to the lack of cusps (and Fourier expansions) in our
case. For us, the role of 0o is played by the elliptic C M point P,. Since P, is
associated to an (anisotropic) form 7', one may however expand modular functions
at P, using the characters of T(A)/T(F). Such things have been investigated by A.
Mori ( [Mo]) at arbitary C'M points. One of our future goals is to use this to give a

finer version of Theorem B.
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Now we begin the proof of Theorem B. We first need the following

k
Lemma 4.1 Ag|, = (]—déj(c%%)g) Apg(az) is a modular form for o 'T'a. Hence

by = %BBE is @ modular function for 'y =T Na 'Ta. Moreover, for any v € T, we

have
Pra(2) = ¢a(2) (4.1)
and
ban(2) = Ba(12) = Bal(2). (4.2)
Proof.

det(é(atya))*Agla(a ™ yaz)
J(¢(a"tva), z)?*

det(¢(a” ya)) det(§())* Ap(yaz)
i(€(atya), 2)*5({(e), ot yaz)?

det(£(ye))*Ap(ryaz)
3(€(va), 2)%*

det(§(v))*det(§())* Ap(az)j(€(v), az)*
3(€(7), @2)**5(§(@), 2)*det (€(y))*

= Agla(2).

(ABIa)|a—lwa(z) =

Hence ¢(«) is invariant under T',.
det({(v))* Ap(yaz)
3(€(ya), 2)** Ap(2)

det(£(v))Fdet(€(a))*Ap(az)j(E(y), az)*
3(E(Y), az)?5(E(), 2)2kdet(E(7) )P Ap(2)

= ¢alz).

Pyalz) =

Palr(2) = $a(y2)
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det(é‘(a))’“AB(aVZ)
),72)* An(72)
t(f(a)>kAB<avz>det<§(v>>k
J3(E(r), 2P+ An(2)
JeAp(ay2)
3(E(ar), 2)* A5(2)

A
Q
Y

Hence the lemma is proved.

Proof of Theorem B (contd.)

Now, let I'al' = U]_, I'a;; be disjoint union of right cosets, 1 be any elementary
symmetric function of {¢,,,i = 1---r}. Then from the above lemma, ¢,, depends
only on the right coset where o; lies and {¢4,|y,¢ = 1---r} is just a permutation of
{¢a,t =1---r} for any v € I. So ¥|, = . Consequently, ¥ € C(jp).

Assume ¢ = J—l where f, g are relatively prime polynomials, then ¢ has a
pole at any pomt z Such that jp(z) is a root of g. Since ¢, (hence 1) has poles only
at points I-equivalent to P, and jg(F,) = oo, g must be a constant, i.e. ¢ € C[jg].

Since Ap is Fr rational, the map & : Sg(T)o—Sk(a ' T'a)o with Ap +— Apl, is
defined over Fr from the theory of canonical models. Therefore ¢ € Mr[jg]. Hence
¢4 is a root of the monic polynomial [Ti_,(z — ¢,) € Mr[jB][z]-

Q. E. D.

Proof of the Corollary.

Assume ¢, is a root of the polynomial
Bot™ + an_1(jB)z" " + - + ai(jB)z' + - + ao(jB)

with 0 75 ﬁa € OMF,ai(jB) S OMP[]B] fort=0---n— 1,
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then one can check that B,¢, is a root of the polynomial
2"+ ano1(jB)2" 4o+ B T ai(ip)e + -+ + B2 ao(B).

Evaluate the polynomial at C M point z. If jg(z) is an algebraic integer, then it is a
mononic polynomial with integral coefficients. Therefore 3,¢4(z) is an algebraic
integer.

Q. E. D.
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Chapter 5 Two explicit examples

In this chapter, we will give two examples of arithmetic triangular groups.

Proposition 5.1 Let F = Q(v2), B=F + Fi+ Fj+ Fk where i2 = —3, j2 =+/2
and k=1ij = —ji. ¢ = y="21 L (2 ik gLk
O = Z[V?)[1,z,y,2]. Then O is a mazimal order of B.

Proof
Step 1 Let’s check that z,y, z are integers in B.

z Y z
reduced trace T'rg/p | 1 V2 -1 0
reduced norm Ng/r |1 |1— V2 | =2

Step2 We prove that every element in O is an integer.

Let B/F be any quaternion algebra. For uy,ug,- - u,y1 € B, define

D(uy,ug, - Uny1) = Npp(uiug+-- “AUny1)— Npyp(ur+ug+-- “+n) = Np/p(tnt1).

Lemma 5.1

D(suy,tuy) = stD(uq,usy),

for any s,t € F'. And

Proof
Assume B = F[1,1, j,k] where i* = a, j2> = b and k = ij = —ji.
Let u, = a, + b.e + ¢,j + d.k with a,,b,,¢c,,d, € F for r = I,---n+1, then

D(ug,uz) = Npyp(us+ uz) — Npjp(u) — Npyp(us)
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= (a1 + a2)2 —a(by + b2)2 —b(er + 62)2 + ab(dy + d2)2

2 2 2 2
1

(al ab; — be; + abdl)

- (a% — abg — bcg + abdg)

= 2(a1a2 - a6162 — b6162 + abd1d2).

Hence

D(suy,tuz) = stD(u1, uz).

D(ui,uz,+ tUnt1) = DO tryUnysr)

= 2((2 af‘)an+1 - a(z r n+1 —-b Zcr Cn+1 + ab Zdr)dn+1)
r=1 r=1

(2(aran+1 - a'brbn+1 - bcrcn+1 + afbdrdn—-}-l))

Il
NE

= ZD(uraun+1)'

r=1

Therefore we have the following

Lemma 5.2 Let O be the integer ring of F'. If for all 1 < p,q <n, D(up,u,) € Op

and u, are integers of B, then }37_, a,u, are integers of B for any a, € OF.

And also, we have the following
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D—table:
1 z y z
1 2 1 V2 -1 0
T 1 2 V2 -1 0
y | vV2—1]vV2-1|20-v2)| —v2
z 0 0 V2 | =22

From the above Lemma and the D—table, it is easy to see that every element
in O is an integer of B.
Step 3 We show that O ia a ring.

Obviously, O is closed under addition. So we only need to check its

multiplication table.

Multiplication table:

1 z Y z
111 T y z
x|z z—1 (V2-1z—y+= (V2-1)4+ (V2 - 1)z — 3y + 22
yly| —(V2-1)+2y—z (V2-1)y+(V2-1) 1- (VE- o - (VE- 1Ly + (V2 1)z
ZNZ|-(V2-1)-(V2-1z+3y-z | (VZ-1)+(V2- o+ (V2- 1)y 2

Hence, we showed that O is an order of B.

Step 4 Let u; = 1,uy = z,u3 = y,uy = 2, then

2 1 vV2-1 0
1 -1 0 0
(Trp/r(uiu;)) =
’ Vi—1 0 1 3
0 0 V2 2

Hence the reduced discriminant of O

disc(0) = |[det((Trp/r(wiu))|"? = V2.
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Since the only finite prime of F' which ramifies in B is v/2, O is a maximal
order of B by Corollary 5.3 [Vi, Page 94].
Q. E. D.

Let " ={y€ Bt :7y0 =07} and T'={y € B : Ng,;r(y) = 1}.
Let K = Q(~/2), a real quadratic extension of F. Fix an embedding

with
, 0 1
7 —
-3 0
V20
]
0 —-v2
0 —v2
k—
-3v2 0
Then

&
TN
I om
[ [eY]
RO D=
N———

V2-1+V2 2-1-¥2

y — 2 6
_V2-1+92  2-1-Y2

2 2

vz 32
2 2
Z =
_3V2 _ V2
2 2
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Identifying B with its image in My(K), let

|

24342 24/2-%2
2 6
_2+V2+92  2+2-3

2 2

P
-
Il
8
Il
N
[T
[
ST I

nz=1+x+y=(

0 24v/2- 2
3
N3 = s =
—(24+V2+v2) 0

|

V2+V2  24v2-2
_ 1 2 2 6
M= Al T 2242 2-Y2

2 2

-2
)
I
=3
-

Il
TN
I o

[Ny
N—= N

1 2v/2+1-23
T =YY = grman: = ’ ¢
3= NY2 = 57 5NN = .
2T 2 _22/24142%2 1
2 2

Then as an element of the group Aut# of all analytic automorphisms on H,
m®>=n=mn? =1and 4® = y* =43 = 1. It is easy to check that I'* = (M1,m2,m3)
I'={71,7%,7s), and [I*: T] =2 with [* = ' UT'p, = T U I'n.

Y

Let @1, @2, @3; P1, Py, P3 be the fixed point of 01,72, 73,71,72, 73 respectively.
Now we look for the fields K1+ and K.

The characteristic polynomials for 7;,7,, 75 are:
Poz)=z2*—z+1

Pp(z) = 2" = 2+ V2)z + (2 + V2)

Pp(z) = 2® + (24 V2).
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Hence the CM fields corresponding to @)y, @2, Q3 respectively are:
Kq, = F(V3i) = Q(v2,/3i)

Kq, = F(\/i@) = Q(\/il)

Kg, = F(\/2 4+ V25).

Using the software tool “Pari”, one knows the class numbers of Kg,, Kg,, Kg,
are all 1. Hence My, = Kg, for : = 1,2,3. We have

Mps = Ko, Kg,Kq, = Q(V/2 + v2,/3,1).

The characteristic polynomials for ~v1,7,, 73 are:
P (z)=2*—z+1

P,(z)= 22 —\V2z +1
P, (z) = 2=z +1.

So
Kp, = F(v/3i) = Q(V/2,V/3i)

Kp, = F(\/ﬁl) = Q(\/ZZ)
Kp, = K.

Note that here P, and Ps; come from the same C M field. But they correspond
to different embedding, hence representing different branches (see [Sh 1, page 72]).
Again ¢(P,) € Mp,. Hence

MF = R’P1 Kle{Ps - F(\/?:’Z) = Q(\/§a \/?_’al)
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Chapter 6 An explicit relation

In classical case, for the canonical level 2 modular function
A:T2\H* D PYO),

the map from the A-line to the j-line is given by

oy ag (AT A4 1)8
=

We also have this kind of result for certain triangular groups.

Theorem C Let ['*,T" be as in the previous chapter. Let jp be the modular
function of I'* such that div(jp) = (Q1) — (Q2) and jg(Qs) = 1, and Ag be the
modular function of I' with div(Ag) = (P1) — (Ps) and Ag(P,) = 1. Then

. 4

Proof. (See the end of the Chapter for fundamental domains of I'* and T')
It is easy to see
V3

Q1=P1=773P3=Ti

o V242
QZ_P2_2+\/§+<V§

0 — V2 +2i
T2 VR R

V3i
Py = ng P, = .
2Tk 12+ 14292

Denote by [A]* ([A]) the T'*-equivalent (I-equivalent) class represented by A.
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Let P, be the natural projection:

N\H 5 r\#.

One sees PTH{[Q1]"} = {[P1], [Bs]}, PH{[Q:]"} = {[Q]}, PHIQs"} = {[1@s]}-
Noticing that Agl,, € M(T') and

AB[ns(Pl) = )‘B(TIBPI) = )\B(PS) =0
ABlns(Ps) = Ap(nsPs) = Ag(P1) =0
ABlns(P2) = ABly(P2) = Ap(n2P2) = A(P2) = 1,

L
A’

Now look at t— € M(I'). We have

1-\p

we have Ag|,, =

(P = 2 (1) = A (Py) = 0
) = (ﬁﬂnz(g) = ﬁ(nﬂ%) — ﬁ(Pz) = oo.

Hence as a modular function of T

div (15 () = (B + (B - 2(174)

View it as a modular function of I'*,

v (=5t e) = Q1) — (Q:17) = div(ia),

so they are the same modular function of I'* up to a scalar multiplication.

As
1 1 1 AB

(1—>\B)|”3:1—/\B|%:1—ﬁ:)\3—1’




we have

for some nonzero constant C.

Observe that

A5%(Q3) = AB(Q3)A(m13Q3) = AB(Q3) Bl (@s) =1,

so A\g(Q3) = 1.
Since Ag(P2) =1, P, and @3 are not -equivalent, Ag(Qs)= -1. Combining this
with the fact that jp(Q3) =1, we conclude C = 1. So

s jB

(1-Xg)?2 4

i.e.



Q2
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Q1

Q3

Figure 6.1: Fundamental Domain of I'™



P2
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P1

P3

Figure 6.2: Fundamental Domain of T
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Chapter 7 List of the Tables

In the following tables, we use P, P,, P53 to denote the elliptic points of order ey, e,
e3 respectively if the signature of I is (e, €3, e3). And let D(B/F) be the product of

all prime ideals of F' which are ramified in B
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The signature of T is (2,3, 8)

F = Q(v2) and Ng/q(D(B/F)) =2

dimSy(T) = [5]+ (5] + (%)~ b +1

k| dimSy(T) | possible divisor

2 0

4 0

6 0

8 0

10 0

12 1 |

14 0

16 1 (Py)

18 0

20 0

22 0

2| 1 |4P)

26 0

28 1 (Py) + 2(Ps)

30 1 (P1) + (Ps) or 5(Ps)
2| 1 |2Am)

34 0

6| 1 |6(R)

38 0

40 1 (P2) + 4(Ps)

42 1 (P1) + 3(Ps) or 7(Ps)
44 1 2(Py) + 2(Ps)

46 1 (P1) + (P2) + (Ps) or (P2) + 5(Ps)
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The signature of T" is (2,3,12)

F = Q(v3) and Npjq(D(B/F)) =

dimSk(T) = (4] + [§] + [5F] -k +1

O o O
ZP#PI Py.Ps OP(f) _I_ P12(f) + P%(f) + Pf,2(.f) — 214k

k| dimSy(T) | possible divisor
2 0

4 0

6 0

8 0

10 0

12 1 (P,) or 6(Ps) or (Py) + 2(Ps)

14 0

16 1 2(P,) or 8(Ps) or (Py) + 2(Ps) or (Py) + 4(Ps)

18 1 (Py) + 3(Ps) or 9(Ps) or 2(Py) + (Ps) or (P3) + 5(Ps)

20 1 (Py) + (Py) or (Py) + 6(Ps) or (Py) +4(Ps) or 10(Ps) or 2(P,) + 2(Ps)
22 1 (Py) + (Po) + (Ps) or (Py) + 7(Ps) or (Py) + 5(Ps) or 11(Ps)
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The signature of T' is (2,4, 12)

F = Q(v3) and Nrj(D(B/F)) =3

dimSy(I) = [ + (] + (5] — £ +1

O O 0]
Y p2p, PP OP(f) + Plz(f) + Pi(f) + sz(f) = 15k

k| dimS,(I") | possible divisor
2 0
4 0
6 0
8 1 (Py) + 2(Ps) or 2(Ps) + 2(Ps) or (P2) + 5(Ps) or 8(Ps)
10 0
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The signature of I is (2,4, 5)

F = Q(v3) and Nijq(D(B/F)) =14

dims;(I) = [£] + [2] + [2] — k + 1

Sesr pr, Or(f) + 252 + OelD | 28l = 1
k | dimSk(I') | possible divisor

2 0

4 0

6 0

8 1 (Ps)

10 0

12 0

14 0

16 1 2(P3)

18 0

20 1 (Py) or 2(P5)

22 0

24 1 3(Ps)

26 0

28 1 (P1) + (Ps) or 2(P,) + (Ps)
30 1 (P1) + (P2) or 3(F%)

32 1 A(Ps)

34 0

36 1 (P1) + 2(Ps) or 2(P;) + 2(Ps)
38 1 (P1) 4 (P2) + (P5) or 3(P,) + (Ps)
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The signature of T is (2,3, 10)

F = Q(v5) and Ng/q(D(B/F)) =5

dimSk(I) = [5] + [§] + [Z] -k +1

O o] O
2p#p,py,p, OP(f) + Pé(f) + Pé(f) + —Luff) = 3k

k | dimSk(T) | possible divisor
2 0

4 0

6 0

8 0

10 0

12 1 4(Ps)

14 0

16 1 (P2) + 2(Ps)

18 1 6(Ps) or (P1) + (Ps)
20 1 2(P)

22 0

24 1 8(Ps)

26 0

28 1 (Py) + 6(Ps)
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The signature of ' is (2,5, 6)

F = Q(v/5) and Ng/q(D(B/F)) =9

dimSi(T) = [4] + [%] + [35] - b+ 1

S pup e Op(f) + 2510 + 220 4 OnU) _ 1},
k | dimSk(T') | possible divisor

2 0

4 0

6 0

8 1| () +2ap)

10| 1 | (P)+(Ps) or 4(Ps)

| 1 |am)

14 0

16 1 2Py + 4(Ps)
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The signature of T is (2,3,7)

F = Q(e*™/" 4+ ¢?"/7) and Np;q(D(B/F)) =

dimSi(T) = (B + ]+ [Z] -k +1

=k

k| dimSy(I) poss1ble divisor
12 1 (Ps)

24 1 2(Ps)

28 1 (Py)

36 1 3(Ps)

40 1 (P;) + (P3)
42 1 (Py)

48 1 A(Ps)

52 1 (Py) + 2(Ps)
sl 1 (P) + (Ps)
56 1 2P,

60 1 5(Ps)

64 1 (Py) + 3(Ps)
66 1 (P1) + 2(P3)
68 1 2(P2) + (Ps)
70 1 (P1) + (P2)
72 1 6(P3)

76 1 (P) + 4(Ps)
78 1 (1) +3(5s)
30 1 2(Py) + 2(P3)
82 1 (P1) + (P2) + (Ps)
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The signature of I is (2,3,9)

F = Q(e*™/° 4 ¢=¥/%) and Np,q(D(B/F)) =1

dim,(T) = [5] 4 [£] + [4] — k + 1

S PP PP Op(f) + 0P12(.f) 4 OP%(f) 4 0P39(f) _ glgk
k | dimS,(I") | possible divisor
2 0
4 0
6 0
8 0
10 0
12 1 (P,) or 3(Ps)
14 0
16 1 (P,) + (Ps) or 4(Ps)
18 1 (P)
20 0
22 0
24 1 9(Py) or 6(Ps)
26 0
28 1 2(P,) + (P3) or (P,) +4(P3) or 7(Ps)
30 1 |(P)+(P)or (P)+3(P)
32 1 2(Py) + 2(P;) or (P;) + 5(Ps) or 8(Ps)




35

The signature of I is (2,3, 11)

F = Qe 4 e=2mi/11) and Np,q(D(B/F)) =1

dimSy(T) = [E] + [E] + 2] -k +1

O o] (0]
Y psp,,py,ps OP(f) + ) sl Plal(f):%fk

E | dimSk(T) | possible divisor
2 0

4 0

6 0

8 0

10 0

12 1 5(Ps)

14 0

16 1 (P2) + 3(Ps)

18 1 (P1) +2(Ps)

20 1 2(P,) + (Ps)
22 1 (P) + (P)

24 1 10(Ps)

26 0

28 1 (P2)+8(Fs)

30 1 (P1)+ 7(Ps)

3220 1| 2R) +6(B)
34 1 (P) + (P2) + 5(Ps)
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The signature of I is (2,3, 16)

F = Q(e*/16 4 ¢2"/16) and Np,q(D(B/F)) =2

dimS(T) = (5] + (&) + [B] -k + 1

O O o

k | dimSg(T') | possible divisor

2 0

4 0

6 0

8 0

10 0

12 1 (P,) + 2(Ps) or 10(Ps)

14 0

16 1 (P) + (P,) or (P2) + 8(Ps)
20 1 2(P;) +6(Ps)

22 1 (P1) + (P2) + 5(Ps3) or (P2) + 13(Fs)
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The signature of I is (2,3,24)

F = Q(e?m/? 4 ¢2"i/24) and Np,q(D(B/F)) =2

dimSi(T) = [4] + [5] + (5] -k + 1

O O O
Ypzp, 5P, OpP(f) + Plz(f)+ P'f%,(f)+ Piff)zf_ek

k | dimSk(T) | possible divisor

2 0

4 0

6 0

8 0

10 0

12 1 (P1) 4+ 6(Ps) or (P,) + 10(Ps) or 2(P,) + 2(Ps) or 18(Fs)
14 0
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The signature of T is (2,3, 30)

I = Q(e?m/*° 4 ¢2i/3%) and Np/q(D(B/F)) =5

dimSi(T) = (5] + [§] + 5] -k + 1

O 1 o 2 j % f I
ZP?ﬁPl»Pz,Ps OP(f) + P2(f) + P3( ) + P::;O( ) — 11_5k

k | dimSi(T) | possible divisor

2 0

4 0

6 0

8 0

10 0

12 1 (P1) + 9(Ps) or (P2) + 14(P3) or 2(P,) + 4(Ps) or 24(Ps)
14 0
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