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ABSTRACT

The localized unsteady two-dimensional wall injection of fluid
into the Blasius boundary layer was mathematically modeled as a mixed
initial-value boundaryfvalue problem. Here the magnitude of the initial
disturbance was sufficiently small so that the problem was linear. For
the case of parallel mean flow, detailed formulation was discussed, and
then, as an illustration, the problem of instantaneous blowing through a
narrow slit in the wall was specifically analyzed and computed at a
Reynolds number based on displacement thickness of 750 with the result
showing a wave packet traveling at .44 times the speed of the freestream,

.0047x
amplifying like -~———— | spreading like 0.1x, where x 1is the distance

v8.4%
from the slit, and eventually containing only frequencies whose
imaginary parts lie between 0.009 and -0.010. To account for the effect

of the boundary layer growth on the evolution of the disturbance, a

perturbation method based on the idea of multiple scales was presented.
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I. INTRODUCTION

Classical studies of hydrodynamics stability dealt mainly with the
steady-state problem of determining whether a given Tollmien-Schlichting
wave will amplify or decay. How such a wave comes into existence in the
first place, i.e., the process of creation, was largely unexplored until
fairly recently. Among the pioneers was Gaster who analyzed the vibrating-
ribbon problem in 1965 (Ref. 1) and computed the disturbance in the laminar
boundary layer of a flat plate due to an acoustic pulse at a point on the
wall in 1975 (Ref. 2a). The purpose of Gaster's second work was to provide
a theoretical model for comparison with the result from an experiment
which he had carried out earlier (Ref. 2b) where a wave packet was arti-
ficially genefated by a short duration acoustic pulse injected into the
boundary layer flow through a small ﬁole in the plate. 1In his latest
work (Ref. 3), Gaster numerically evaluated the evolution of a linear
wave packet in the Blasius boundary layer produced by a two-dimensional
localized impulse.

Because of its relevance to the present investigation, Gaster's
third work will now be reviewed in some detail. In the case of a
parallel two-dimeénsional mean flow, the linearized perturbation equa-
tions admit elementary solutions of the form

i(ox-wt)
P(ysa,w) e

where the wavenumber o and the frequency w satisfy a dispersion

relation

S(osw) =0

The disturbance resulting from an impulsive excitation can be



represented by a sum of these elementary solutions as follows:

i(ox-wt)
flP(y;oc,w) e da (%)

if the algebraic weighting function associated with the x~-distribution

of the excitation is neglected. Further, the function defining the
vertical structure of the eigensolutions is also ignored so far as evaluat-
ing the wave packet goes. The approximations seem reasonable for the
integral ( #) since this will be dominated by exponentially large elements.

The subject of Gaster's computation is then:

i(ox-wt)
I = ./Qe do

This was first evaluated by direct summation. The result was con-
sidered "exact" and thus would serve as a standard against which other
solutions would be judged. Since the summation process typically involves
an excessive amount of computing, it is desirable to have alternative
methods of estimating I. Indeed, for large values of x and t, we
can obtain an asymptotic representation for this integral via the method
of steepest descent. Gaster computed the first term of the expansion and
showed that the result agreed well with the summation solution (over the
appropriate ranges of x and t). He also discussed further simplifica-
tions to the asymptotic formula; however, these are not of any interest
here.

In our work, we consider the instantaneous blowing of fluid into
the Blasius boundary layer through a narrow slit in the wall as a
special case of the general problem of arbitrary localized unsteady two-
dimensional wall injection. We use an eigenfunction expansion procedure

to arrive at a completely theoretical prediction, i.e., one which directly



relates the amplitude of the disturbance to that of the excitation.

The method of steepest descent is used to study the asymptotic behavior

of the wave packet. We shall discuss a number of characteristics of the
packet not mentioned in Gaster's paper. Finally, regarding the effect of
the boundary layer growth on the development of the disturbance, Gaster

in his second work argued on the basis of the local balance of kinetic
energy of the disturbance that the amplitude given by the parallel-flow
model should be weighted by an algebraic term like x-l/4. In the present

work, we propose a rigorous scheme based on the idea of multiple scales as

a solution to this difficulty.



IT. THE PARALLEL-FLOW PROBLEM

(1) . Formulation

In this section we present the solution of the linearized pertur-~
bation equations.

For a low-Mach-number, isothermal, zero-body force, two~dimensional

flow, the governing equations are:

-Continuity:
<+ =
Ux Vy 0 (1)
-Momentum:
U+UU+VU=-——1-P + w(U _ + U ) (2a)
t X v p X XX vy
1
vV, + + VW =-—=P + v + Vv
t UVX y Py v( XX YY) (2b)
ol

.

where the subscripts denote differentiations, e.g. Ux -

We assume that the above flow can be written as the sum of a steady

mean part and a small perturbation, namely,

U=U+u lu| << U]

V=V+v lv| << |V]

P="P+p lp| << |P]

(ﬁ;ﬁ;ﬁ) satisfies

UX+Vy=O (3)
VO 4+V0 =-+7 +v@_ +T_) (4a)
X y o x XX Yy
W o+ =-17F + VvV +7V ) (4b)
X y oy XX vy

then it can be readily shown that (u,v,p) satisfies the following set

of equations:

u +v. =20 (5a)



— — Ta 4 T
u, + qu + uUX + Vuy va p_ + v(uXX +u ) (5b)

v +.ﬁﬁ +uvV o+ VV + VV
t X b4 v y

[}
[}
O =
o
+
<
=
<
+
<
4

(5¢)

when all terms nonlinear in perturbations have been neglected.

Equations (5a-c) are the linearized Navier-Stokes equations. 1In the
present general form, these partial differential equations are inseparable
in x and vy.

When thevmean flow is parallel, i.e.

V=0

U(y)

al
"

equations (5a~c) become, respectively,

u + vy =0 . (6a)
— — 1
u, + qu + VUy = - 5 P, + \)(uxx + uyy) (6b)
v, + Ov_ = -l sv +v) (6c)
t X Py XX yy

It is convenient to work with dimensionless quantities. To this end,

we introduce the following reference values:

U, (freestream velocity) -

S, (displacement thickness) =_I~ (1 - ﬁ]Uw) dy

0
The dimensionless counterpart of (6) is

u + Vy =0 (7a)
+Tu +v0 = - + LW T+u) (7b)
Ye X v Py TR “xx vy
v +0v = - P +~l (v +v ) (7¢)
t X y R XX vy
U, 6,
where R =




For the problem under consideration, the appropriate boundary

conditions are

u=0 at y =0 (no slip) (8a)
v = f(x,t) at v =0 (injection) (8b)
u,vo,p * 0 as y -» © (no freestream turbulence) (8¢c)

Equations (7) are completely separable. In particular, they admit

i(ox-wt
( ). Therefore, we can use

elementary solutions of the form Y(y)e
the Fourier transform method to solve the inhomogeneous problem described

by equations (7) and (8).

Introduce the transform pair

V0L, = -zl—ﬂff F(ysow) et (D) gqqy (9a)
V(7,0,w) = ?lw-ff v(xX,y,t) e-—i(cxx—wt) dxdf (9b)

and similar pairs for u, p.

In terms of 4,V,p the problem is restated as:

ica + Dv =0 (10a)

~iud + Tiod + (DO = - iap +-1}{- (- 02 + D2d) (10b)

~i¥ + Uio¥ = - DP +% (- a%% + D2F) (10¢)

u(0,a,w) =0 (11a)

‘7(090345‘1)) = E(Oﬂ,().)) (11b)

U,v,p 0 as y » o (11c)
where

D = d/dy (12)



flo,w) = El;n-fff(x,t) e 1(O®=08) 4 ar (13)

-0
Eliminating 0 and p from equations (10a-c), we obtain
{(d2 - 0®)2 - iR[oU - w)(D? - a®) - D]} v =0 (14)

which is the Orr-Somerfeld equation, a fourth-order linear ordinary
differential equation with variable coefficients.

From (lla-c), the boundary conditions accompanying (14) are

F(0,0,0) = £ (0w (15a)
DV(0,q,w) = O (15b)
F(®a,w) = 0 (15¢)
DV (%, qp ) = O (15d)

The solution of problem [(14), (15)] can be expressed in terms of

the eigenfunctions of the Orr-Sommerfeld equation as followsl:

_ - c, (o,w) ¢ (y,w)
V(Ysa,(l)) = Z o - an(w) (16)

n=1
where an(w) is the nth eigenvalue and ¢n(y,w) the corresponding eigen-
function. ¢n is a solution of equation (14), with boundary conditions
¢n(0) = Dd%(O) = ¢n(m) = D¢h(w) = 0. The coefficient c is given by

£(0,),(0,0)
q, (@)

Cn(asw) ==

wte
where Xn(y’w) is used to denote a linear combination of the adjoint
K3 » * 3 . »
eigenfunction ¢n(y,w) and its y-derivatives:

X = {(0-0) [~(D%a?) + iR(cT~0) 130,

and qn(w) is a normalization factor.

Details are given in Appendix A.



Substituting (16) into the inversion formula (9a) yields

Y e (G0 (v.w) L.
V(X,¥,t) =2—1ﬂ2ff L - o1 (0x=08) 4w (17)

a - anﬁu)

n=] -*
Equation (17) represents a formal solution of the original problem in
the physical space.

Qur next task is to interpret the physical consequences of this

expression.

First, we carry out the integration in the q-plane:

d-an(w)

© . I e (0w .
v(x,y,t) = E]:TF Z f Cbn (ysw) e wt f 2 elOt,X dodw (18)

n=1 -0
For x > 0, we close the integration contour in the upper half-plane and

apply the residue theorem to obtain

o i[an(w)x~wt]
V(xsy’t) = iz f ¢n(y,w) Cn(w) e ‘ dw (19)

n -0

where only those an(w) that are in the upper half of the a-plane are

taken.
Defining
Hn (y,w) = Cn(w) ¢n(y’w) (20)
and -
ifa_(w)x-wt]
n
I (x,y,t) = f H (y,w) e dw (21)
-0
one rewrites (19) as
,V,t) = 1 I 22
v(X,y,t) 1:E: 0 (22)
n

It remains to study integrals of the form

(o2}

I(x,y,t) =./~H(y,w) eHolx-wt] 4

=00



The argument that follows was inspired by an example given on pp. 277-
282 in the book by Carrier, Krook, and Pearson (Ref. 4).

Suppose the forcing is turned on at time zero. At x = 0,

=

I= f H(y,w) e %% 4y

-0

Since v =0 for t < 0, it follows that 5, the integration path,

must lie above all singularities.

The asymptotic behavior of I(x,y,t) for large values of x and
t can be examined by the method of steepest descents. To illustrate
the procedure, we assume for now that the path of steepest descent E
is a closed curve, e.g, an ellipse, and that the singularities of

H(y,w) consist of two poles on the real axis and a branch cut.

wi

V]

\ T~ t~ '
Vadl s\ .
‘ /g() Y -/a)
! r
\ {‘ I,‘.‘."::_'-...—.‘: ===z ;
\ w | /
\ TE /
\\ //
\\ )
~ y 4
~ - <
~ -
~ L P
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By the residue theorem,

r
I =~P + contributions from the poles if they are located
outside E

In Appendix B, we prove that

i[u(ws)x - wst]

. 2V E ) & (23)
J 1 S /Ol,"(ws)x

for large values of x and t. Here s denotes the '"'saddle point"

which is defined by

a'(w) = =
3] X

where the prime indicates é% . In the asymptotic limit, most contri-

butions to .P come from the vicinity of this point.
For the case of fluid injection through a slit of zero width where

; . . \ ; . 1
the blowing process is an impulse in time, it can be shown that

. Xo(0,w0_(v,0)

Hn(y,w) = qn(w) (24)

where a dis the amplitude of the excitation.

Since H, does not have any singularities, except a number of
branch points associated with the eigenfunction ¢n and its adjoint

* btai
e obtain
¢, @ [
1™ (n)

where qn(w) has been assumed to be positive definite.

Moreover, far downstream of the disturbance source, contributionsy

from other modes are diminishingly small compared to that from the first

mode, and hence

Details are provided in Appendix A.



11

* ifo (w )x-w t]
V(x y t) s a XI(O’wS)¢1(y’wS) e 1 ] S (25)
vami ql(ws) VUY(wS)x

for large values of x and t. Henceforth, for convenience, the
subscript indicating the mode number will be omitted.
In the next section, we present an algorithm for computing the

expression on the right-hand side of equation (25).
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(2) Computing Algorithm

Our objective is to compute the quantity appearing on the right-
hand side of equation (25). It involves three separate computations; it
is necessary to

(a) Locate the saddle point ws and calculate the values of

o(w) and o'"(w) at that point,

(b) Compute the eigenfunctions z éf the Orr-Sommerfeld

equation and its adjoint X for w = we s and

(¢) Evaluate the normalization factor q(ws).

(a) The Saddle-Point Computation

Recall that the saddle point is defined by the condition:

t
i e
a aus) -

If we let a = mr + ia;, then in the region where a(w) 1is analytic,

a0, o0,
S S B
o o 3w
T
o0, aa,
i .
3 1 3w
Hence,
dop %y e
oW ow x
a0, ou,
—r-_t-9
oW . ow
i r

at w = Ww_.
S

Let S denote the saddle-point locus. The following scheme is

used to trace out §S:
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Wr

: oo i
Starting at A, we use Newton's method to solve 56%'(wr) =0

to arrive at B on §S. There is no difficulty in selecting the point
A so that it is sufficiently close to S, because details of the
stability diagram for spatial amplification are well known. Next, we
follow the tangent to S at B to reach C, and them D agaiﬁ by
Newton's method. By repeating the process, the locus S can be traced out.
To carry out the above scheme, we need to know & as a function
of "W, For this purpose, direct solution of the Orr=Sommerfeld equation
(to be presented in part (b)) is very time-consuming and. therefore,
avoided. 1Instead, we use a series representation of the dispersion re~-
lation for the Blasius boundary layer developed by Gaster (Ref. 5).
Here the frequency W 1is expressed as a double series in terms of the
Reynolds number R and the wavenumber 0. When summing the series. a
nonlinear transformation due to Shanks is applied to the sequences of
partial sums to speed up the convergence. The inversion from w@) to
a(w) is accomplished by Newton's method. All derivatives required in

the computation are approximated by finite differences.
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(b) Numerical Solutions of the Orr-Sommerfeld Equation and its.Adjoint

Consider equation (14) with homogeneous boundary conditionms.
Suppose R and w are given.

The eigenvalue~eigenfunction problem is to determine the
particular values of o for which nontrivial solutions exist. Those
values of o are called eigenvalues and the corresponding solutions
eigenfunctions.

Here we adopt the following solution procedure. By regarding o
as another dependent variable, i.e. by adding Do = 0 to the Orr-
Sommerfeld equation, we obtain a system of nonlinear differential
equations. The new problem is solved using PASVA3, an adaptive finite-
difference FORTRAN code for nonlinear ordinary boundary-value problems
developed by Pereyra and Lentini (Ref. 9), with additional boundary
condition that fixes the magnitude éf the eigenfunction. ©PASVA3 is
also used to solve for the eigenfunction of tﬁe adjoint equation. The
problem is linear because we have determined «.

For more details of the computation of eigenvalues and eigenfunctions,
the reader is referred to Appendix C.

(¢) Evaluating the Normalization Factor

From Appendix A,

[o o]

g(w) = f x(y,w)A(y) z(y,w)dy
0

where 2z 1is a 4~column-vector whose components are linear combinations

of the eigenfunction and its y-derivatives, x a 4-row-vector whose

components are linear combinations of the adjoint eigenfunction and its

2

y-derivatives, and A a 4x4 matrix containing U, D°U.

The above integral is broken down into two parts:
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j.xAzdy = xAzdy + xAg@y
0 N 0 J Lye ./
Vv Y
(1) (ID)

where Vo = 4.931 (the reference length being the displacement thick-

ness). At this value of v,U = 0.999999 and D?U = - 0.000029.

Part (I) is computed by the trapezoidal rule using numerically
integrated z and Xx.

Part (II) is computed using the following asymptotic solutions.

)\y ;\y
@, DY a1

~

= cye

!N
1 o]

Ay
x = dge + dye f(a)

~ ~ ~

(32)

(the notation used here is explained in Appendix C) where the constants
Cczs Cy, dp, dy are determined by matching equations (31), (32) with
the computed values at y = Var The matrix A also takes on a par-

ticularly simple form, namely

1 0
A = o -1
0 0 1 0
0 iR -1

and so the integral of xAz over y from Ve to infinity can be

analytically evaluated.
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(3) Results and Discussion

Figure 1 shows the saddle-point locus computed for R=750. The

directions of the paths of steepest descent are indicated by the line

da 32 92%a,
segments. Values of w , W.s O s Q. :—£ ’ ———% , and —~—% at the
r i T i w_ Swr awr

saddle points are given in Table 1. A few remarks about the accuracy
of these values are in order. First, in applying Newton's method to

solve the equation

aai
T, @2 70

we set the tolerance & at a value of 10"2 i.e., when

|

]
L@ @D
r T
@D
T
decreases monotonically to 10-'4 the iteration will stop and wr(n)
J0L,
will then be taken as the desired root. The values of Sai at these
_ raar
roots are of the order 10 °. The corresponding values of 55 are of
T

the order unity, and hence the above convergence criterion is considered
satisfactory. Second, the step size for finite-difference approxima-
tions of the derivatives (of the Gaster function w(o) with respect to
o) was chosen by trial and error to be .002. It has to be small enough
to bring the truncation error down to an acceptable level and at the
same time sufficiently large to avoid incurring damaging loss of sig-
nificant digits. As a check for the above choice of step size, we com-
puted the derivatives in two directions: horizontally, i.e., Aa = .002,

and vertically, i.e., Ao = .002i. 1In the region where the function is
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analytic, the results must be identical. For all values of o involved,
there was excellent agreement (within one part in 10" ¢ of each other)

between the approximations of the first derivative. Slight disagree-

ments, up to 7%, occurred at a number of points in the case of the

second derivative. Therefore, the computed values thereat are subject to
possible errors of the same magnitude. These errors directly affect the
values of u"(ws) and manifest themselves through kinks in the graphs which we
shall soon discuss. To smooth out these sharp corners, we need to adjust the

size of Ao locally, i.e., to build in some step-size control mechanism.

If we define

X (0,8 )0y,
P(x,y,t) =
q(ws)
and 1w )k t]
Qx,t) = =

1"
va (wdx
equation (25) becomes

a

v(X,y,t) v *

PQ

V2ri

The physical velocity perturbation is given by the real part of w.

Let
iarg P
P=1pP| e
and
i arg Q
Q=qf e
Then
Re{v} v % -2 |P| |Q| cos(arg P + arg Q - %)

kil
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Since the rate of change associated with Q 1is exponential
whereas that due to P is only algebraic, the shape of the asymptotic
wave packet depends largely on Q. The computed data will give an
additional reason to support this conclusion. Thus to evaluate V

k]

we can approximate P by its value at, say, the middle of the packet.

Figures 2-6 are graphs of ]Q] cos(arg Q) versus time for
different values of =x. For convenience, the coordinates have been

scaled by the factors:

Horizontal coordinate

Vertical coordinate

max

First, we observe that as the magnitude of o'  remains relatively
constant for the values of W considered, the shape of the envelope
-0, x+w. t

is determined primarily by the factor e T 1 (where for convenience

the subscript s has been dropped). Differentiating (- aix+mit) with

respect to -t --yields

4
d

|

- (- f%-ai)x + (— f% wi)t where denotes

ot |%

which vanishes when

HE‘ Q
s e -
1
X et
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At this value of -i , the envelope reaches a maximum. This maximum
separates the initial temporal amplification from the subsequent decay
in time as seen in the figures. We also notice from Table I that ui
and w, change sign at almost the same values of é-. This explains

the fact that the maximum occurs in the vicinity of wi = 0.

Specifically, |Q]max occurs at ~% = 2,27 , for which wi = 0,
ai = -~ ,0047, and |a"| = 8.4. Therefore,
l [ e.0047x
ol .. =55—
max V8 X

i.e., the envelope of the wave packets grows practically exponentially:

Time

Second, the horizontal coordinate can be directly associated with

the frequency wg because wg depends on % (specifically, zero
corresponds to (.1109, .024) and unity to (.1030.-.026)), and hence
Figs. 2 - 6 clearly show that .the frequency domain involved becomes
smaller as the wave packet moves downstream. This gives further

justification to the claim made earlier that the factor P does not

significantly alter the shape of the packet.
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If we define the leading and trailing edges by the condition

+%+—~— = 1%, then the packet spreads linearly as it propagates
max

downstream (Fig. 7):

é% width (5t at trailing edge - t at leading edge) = 0.1
The crest travels at a constant speed equal to 0.44 that of the free-
stream while the leading edge gradually decelerates to a final speed

of .46 U_ and the trailing edge gradually accelerates to a final
speed of .42 U .

The following sketch dramatizes the above two observations that
the asymptotic wave packet contains progressively fewer frequencies

and spreads linearly:

t x=.42t

x=.44t
Xx=.461

0

Note that the packet will eventually contain only those frequencies
whose imaginary parts lie between -.010 and .009.

The computation was repeated for R = 1000. We observe the same
behavior as described above for R = 750. However, here the distur-

bance travels at a speed somewhat lower than in the previous case.
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ITI. A THEORY FOR SLIGHTLY NONPARALLEL FLOW

In this section, we present an idea to account for the effect
of the boundary layer growth on the solution of the mixed initial-value
boundary-value problem under investigation. Here the author benefited
from the works by Nayfeh et al (Refs. 6 and 7 ) on the eigenvalue
problem. Carrier's discussion of gravity waves on water of variable
depth (Ref. 8) is also of some relevance.

The linear partial differential equations and boundary conditions
governing the flow perturbation can be written symbolically as follows:

.'-e'q)(xsy’t) = £(x,y,t) (33)

-iwt
£y = 0 admits solutions of the form ¢ (x,y,w)e

To cope with the inhomogeneity presented by f, we superpose these

elementary solutions to obtain the following general solution:

iy -iwt
P(x,y,t) =f P(x,y,w) e dw (34a)

Inverting equation (34a) gives

iy iwt
PR,V =2_1Trf P(x,y,t) e dt (34b)

Applying the Laplace transform defined by equations (34) to (33)
yields

2 Px,y,0) = £(x,y,0) (35)

Equation (35) is inseparable.
However, as the x-dependence of the coefficients is rather weak,
it is possible to introduce a perturbation scheme to break equation (35)

down into a sequence of separable equationmns.
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Specifically, the streamfunction ¥ of the Blasius boundary layer

flow depends on y and ex where ¢ 1is a small parameter. Let

Xl=EX
and
x, = g(x)
g' (x) = G(ex)

(Throughout this section, all primes indicate differentiations with
respect to the variables shown in brackets.)

If we assume that

P, 750) = Yo (Xg5T50%,) + €hy (X,,750s%,) + ... (36)
Then
Vig = i, t ()
iLiXX = Gz{ﬁiXOXO + E( ) + 82( )
mixxx = G° iXgXoXg +el) + e () + ()
@ixxxx = Gu$ixoxoxOxO +e() +e2() +e3() +e*()

£ contains Y s ¥ 4, and VY which are of the orders ¢, €2,
x* 'xx XXX
and €3, respectively. But they appear in a way that makes the highest-
iy

order terms in =Zwi proportional to g .

Since the forcing depends strongly on x, we can write
%(x,y,w) = g'(xo sY )

where higher-order terms have been neglected. (For details the reader
is referred to Appendix D.)

The sequence of equations corresponding to equation (35) is

e’ 2y, =F (37a)
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el Y1 = - Rl ' (37b)
e2: % P2 = = Ry - Raly (37¢)
€3 ZY; = - RiP2 - Rl - Raig (37d)
et Z Py == RPs - RaP2 = RsPy - Ruo (37¢)
€5: 2 Ys = - Ry - Rals - RePz - RyY, (37£)

etc.

In solving equatiomns (37), the variébles Xy and X; Trepresenting
the fast and slow variables respectively are treated as though they were
completely independent of each other. Their interdependence will be
restored as soon as solutions are obtained.

Bx,

%_@ = 0 admits solutions of the form &i(B,y,w,xl) et , where

i
B is in general a function of x;.

To solve the inhomogeneous equations (37, we invoke the superposition

principle to write down the general solution as a Fourier transform:

~ y ~ iBxg .
b (osyw,x) = f b Bsywsx) e dg (38a)
-0
Equation (38a) inverted:
[ o] .
2 1 ~ =18%
kl)i(B s Y W 9x1) =-2—7_T f wl(xo ,Y,waxl) e dxo (38b)
- o
Equations (37) transform to:
0. S
£': LYo =F (39a)
g Lyy = - Riyo (39b)

etc. where Lwi = (0 1is the Orr-Sommerfeld equatiom with o = BG.
Let o denote the nth root of the dispersion relation
*
Do, wsx1) . ¢n and ¢n respectively stand for the corresponding

eigenfunction of the Orr-Sommerfeld equation and its adjoint.



As shown in Appendix A, the solution of equation (39a) can be

expressed in terms of the ¢n's as follows:

8

o =-aq, (40)

~ 2 c_ ¢ iBxy
n 'n
b= [ 2P e a
n=1l -«
© o . Xg
1 c, cbn io =&
e Cow 1)
n=1] -« n

For all practical purposes, the disturbance far downstream of the
source can be adequately represented by contribution from the first

mode, i.e.

. Xq
~ 1, . 1 g
bo(xosyswsxy) =7 21 c1¢y e (42)

Henceforth, for convenience, <¢,, ¢,, and 0, will -be written as ¢,
¢, and a.
To avoid secularity, we require that %; be a comnstant. Without

loss of generality, we take G = g . Then

p.4

x0=g=foc(s§)d§
an if o dx
Yo = 2mi —?—ca e ° (43)

Now, if the expansion (36) is to have an extended domain of validity,
- ixg
Y1, Y2, etc., must also be of the form (function of x;) e . We are

left with no freedom to ensure that.



25

To remedy this situation, we propose a new expansion:

V(x,y,w) = ho(w,x1) Yo(x0,¥,wsx1) + €X; (X9,¥,woX1) + ... (44)
where @o is given by (42) and hy provides the desired freedom

Since

(o § ), = hoo Yo, + ()

(ho Vo) = hoaPo, +e() +e3()
(Mo Do)y = Boa®ho, o+ () +e2() +e3()
(ho ‘TJ")xxxx = h"aui)"xoxoxoxo Fe() + () + 20 + et ()

(35) is broken down into:

€% hoZ Yy =F (45a)

el: 2 Y1 = - RKiholy (45b)

etc. where ghho&o has the form
iXQ

2 (y,wsx1)hg + 2(y,w,x1)h{] e

(Explicit expressions for @ and 2 are given in Appendix D.)
We seek a solution of the form:

~ x ix,

P1(X0,¥>wsx1) = Y1 (¥,wsxy) e
From (45b),

W = - [Pho +2h}] (46)
Equation (46) has a unique solution if and only if

[oe]

fd)*[é’ho +2h}] dy = 0 (47)

0

ho(wsx1) = ho(w,0) e 0 (48)
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where

o “9)

Having determined 1y, we replace (44) by a revised expansion:

P(x,7,w) = hoPo + Ehl(w,X_l){Ll + Py + .on (50)

and choose h; to guarantee the existence and uniqueness of

~ -~ iXo
Y2 = Pa(yswsxy) e .

The final expansion obtained by repeated applications of this

"term-wise improvement" scheme is

- ~ ~ ixo
‘P(X’st) = [ho(U),Xl) lPo(st,Xl) + Ehld)l + ...] e
Approximating @ by the leading term only:
X1
- w,X, )dx .
. {Y( 1)dx; b ix,
Y(x,¥,w) = hy(w,0) e 2mi(=-=) e (51)

To determine hy(w,0), we observe that

X1 _ _ X _ _
"f y(wsxy) dx; - Ef y(w,ex) dx
e O = e 0
and hence, if we are sufficiently near the source so that Xy can be
approximated by o x and yet far enough from it so that the first mode
really dominates the solution, then
i (w,0)x

Jeuy,0 = holw,0)[2m1 (S5 e ] (52)

X1=
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The expression in the square brackets in (52) is just what we would
get if we solved the local parallel-flow problem around the slit.
Therefore, hy(w,0) = 1. Substituting (51) into (34a) yields

o -c [ yix i(f o de-ot)

V(X y,t) = Zﬂife 0 cb o dw . (53)

-0

o



IV. CONCLUSION

This work dealt with the problem of following the evolution of a
disturbance in the laminar boundary layer on a flat plate created by
localized unsteady two-dimensional blowing at the wall. For the parallel-
flow model, a formulation was presented which directly relates the
amplitude of the disturbance to that of the excitation. The asymptotic
behavior of the disturbance far downstream of the source was studied
using the method of steepest descent. As an illustration, the problem
of impulsive injection through a narrow slit in the wall was specifically

analyzed and computed at a Reynolds number based on displacement thick-

ness of 750 with the result showing a wave packet traveling at .44 times
e.0047x

the speed of the freestream, amplifying like ———— | spreading like

v8.4%

0.1x, where x 1is the distance from the slit, and eventually containing

only frequencies whose imaginary parts lie between 0.009 and -0.010.

To account for the effect of the boundary layer growth on the develop-

ment of the wave packet, we propose a solution based on the method of

multiple scales.

The result of our effort in this investigation is a solution pro-
cedure which makes it possible to put forth a completely theoretical
prediction of the disturbance due to a given excitation of the type
mentioned earlier. Once verified by comparison with experimental
results, the procedure can be useful in designing a feedback control

system to cancel natural disturbances occurring randomly in the laminar

boundary layer, and thereby to delay the transition to turbulence.
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APPENDIX A

Eigenfunction Expansion

We seek to solve the following inhomogeneous problem:

{(D%2-0?)? - iR[(aU-w) (D3-¢2) - aD?U]} ¥ = 0 (A.0)
F(0,0,w) = E(a,w) (A.1.a)
DV (0,qsw) = 0 (A.1.b)
V(o,asw) = 0 (A.1.c)
DV (o,a,w) = 0 (A.1.d)

where D = d/dy.

(For origin, the reader is referred to page 7 of the main text.)

Define:
zZ3 = v
z, = (D-a) z,
z, = (D+a)zs
= (D%-a®)¥
z, = (D-a)z,

= (D+a)z, = (D2-0?)? ¥

Then, equation (A.0) can be written as:

-

Dzy = azy + 2z, (A.2.a)
Dz, = - qz, + 23 (A.2.b)

) Dzy = qgzg + z, (A.2.¢c)
_ Dzy = - iRa(DZV)z, + iR(aU-w)zs - 0z, (A.2.4d)

In wmatrix notation, equation (A.2) becomes

Dz = [cA(y) + B(w)lz (A.3)

where
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T
z = (z15 22, 23> Zy)

1 0 0 0
0 -1 0 0
A= (A.4.a)
0 0 1 0
-iRDZY 0 iRU -1
0 1 0 0
0 0 1 0
B = (A.4.D)
0 0 0 1
0 0 -iRw 0

The boundary conditions (A.l.a-d) now appear as follows:

z1(0,0,w0) = £(a,w) : (A.5.a)
z,(0,q,0) =0 (A.5.D)
E(w,a,w) =0 (A.5.¢)

At this point, we must assume that for the values of w being investi-
gated the eigenvalues of the Orr=Sommerfeld equation form a denumerably
infinite spectrum, and hence enable us to express the solution 2z of

problem [(A.3), (A.5)] in the following manner: '

o]

z = Z a %(n) (A.6)

n=1

where g(n) (y,w) is the eigenfunction corresponding to the eigenvalue

o, i.e.
n

(n)

pz{™ - (0 A+ B)z (A.7)

2™ (0,00 =0 (A.8.a)
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2™ (0,0,0) = 0 (A.8.b)

2™ (@,0.0) = 0 (A.8.c)
To determine the coefficients a consider the adjoint equation

px(™ = x@® (o A + B) (A.9)

(m)

is a four-row-vector.

(m)

where Xx

(n)

Pre-multiplying (A.7) by x , aft-multiplying (A.9) by z , and

adding the resultant equations, we obtain

Dg(m) z(n) = (an - OLm) }f(m) A%(n) . (A10)

Integrating equation (A.10) with respect to y from zero to infinity

vields

oc

(o0

[x(m) z(n)] = (o -~ 0_) .]. g(m) Ag(n) dy (A.11)

Z < 0 n m
0

The left-hand side of (A.11) vanishes if

™ (0,0,0) = 0 (A.12.2)
™ (0,0,0) = 0 (A.12.b)
x ™ (0,0,0) = 0 (A.12.¢)
Then,
]j ™ az™ gy =0 if m#n (A.13)

Equation (A.13) is called the orthogonality condition.

Now, from =z

[}
[\S)
jo]
14
—~
=1
~

(m)
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Hence,

fl
[
[
=]
0\8
3
-~
=
~
g
N
~
o}
Nt
[N
<«

o
f >~{(m) Az dy
0

(A.14)

[}
w
=]
~~
E]
A
b4
N
~~
]
A
o.
<

Next, we pre-multiply (A.3) by §(m)

, aft-multiply (A.9) by =z, and add
the results to arrive at

px™ 2 = (o - o) ™ ag (A.15)

~

Integrating equation (A.15) with respect to y from zero to infinity

gives
00
[§(m) z], = (a- am) ~/‘ g(m) Az dy (A.16)
0

Applying the boundary conditions on _g(m) and z , and using (A.14) we

obtain
o]

~xf® 0,0 Fww = @-ap s, [ =™ a™ o

0

Therefore,

(™ (0,0 Eee)

(o o )f ® 2™ gy

a (A.17)

m

Finally, we substitute (A.17) into (A.6) to get the desired solution:

<« ~
(n)
z=-3 LRV R ACHD 2™ (A.18)
n=1 OL—OL)f nAz)dy
Since z(n) and x(n) appear in both the numerator and the denominator

~ -~

of the right-hand side of (A.18), z 1is unique. (A.18)is rewritten as:
(n)

Z (A.19)

n=1

¢ N
!N
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where

- £(a,w) =™ 0,0 (A.20)

o} o
fx(n) Az(n) dy
0
For the case of impulse injection of fluid through a slit of zero

width located at x = 0 we have

f(x,t) = a 8§(x) §(t) (A.21)

where a 1is a positive constant. The Fourier transform is

Fla.w) = %f[a §(x) §(r) e TlOX-LL) 4o 4y

(A.22)
= 2
27
Consequently,
(n)
__.a _x1’ (0,w)
Cn - 2 «© (A.23)
f LM, () dy
0
Substituting (A.23) into equation (20) yields
(n) (n)
- _ ax1’ (0w z7  (y,w)
H n(y,w) 77 = (A.24)
MY RRCY dy
0
Note: In the main text, xl(n) and zl(n) are respectively
* o.o]
denoted by Xn and ¢n. j.x(n)Az(n)dy is referred to only as a

0
normalization factor.
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APPENDIX B

The Steepest-Descent Argument

We seek to determine the asymptotic behavior of the following integral:

r ila(w)x-pt]
-1; H(y,w) e dw

for large values of x and t.
Define
. w
R(w) = ifaw) - ]

where ¢ =

S

Then

r ila(w)x-wt] s xK(w)
.} H(y,w) e - dw =-F H(y,w) e di

¢ 1is kept fixed.
Introduce the saddle point Wy via

K'(ws) =0

The contour E is chosen to have the following properties:

() Ki’ the -imaginary part-of K, is constant on E
(2) E passes through ws.

Consequently,

d
ix(K.) xK
L i’s r dw
5{.— e fH(y,R) e T dg

-c
where £ 1is the distance from the saddle point measured along E,

and ¢ 2 0, d > 0.

Expanding Kr(Q) in a Taylor series about LUS. we obtain

1 "
Kr(ﬁlv) = (Kr)S + QZ(Kr)S + ...
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Hence, assuming (K;)s # 0, near Wgs

l " 2
xKr x_(Kr)s X(Kr)s 2

2
e noe e

The two properties listed earlier do not uniquely determine E. In this
case [(K;)S # 0], there are two curves both satisfying those properties
and intersecting orthogonally at the saddle point. (K;)s is positive on
one of these curves and negative on the other.

(The proof is as follows:

Let o - ws = rei6 and (K")S = Reie. Near W s

Ry @+ (0w )2RM

1
. n 12
A G (Ki)S + 5 Rr 51n(264—Q)

To satisfy the constant-phase requirement (1) we must choose 8 to be

either - %
0 L
or - 2 + -2-

The first direction corresponds to (K;)s being positive and the
second (K;)S negative.)
Consider the function
xK_(2)
f() = e r
= f(2) > O

xK

' = ' r
£1(0) xKr e

= f£'(0) =0
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xK
£'(R) = x(K" + xK'?) e r
T T

" " X(Kr)s
= f"(0) = X(Kr)s e

If (K'r')S is negative, then so is £"(0), and hence f(2) must look

o xKr(f)

like this:

9] 2

(We are assuming that there is one and only one saddle point in the

interval - c¢ £ £ < d.) .
xKr
Thus, for large values of x, the graphs of e and
x(K) . L x®?D 22
r’'s 2 r’s
e e
will almost coincide. Cohsequently,
: € 1 " 2
( lx(Ki)s X(Kr)s dw - Eix](Kr)sIQ
E v e (B) e (——-) e dg
J S dg <
-£
X(K)s dw ( - % XI(K;)SIRZ
" (H)S e (H) f e dg
5 -CO
Define

v =y gl |

Then



@ _2v2
./. e dag!

37
ro- _-XI(K;)S|22 1
./. e e =
1 1"
= V7 x &

_ / 2m
IAEICEN]

And so

dw
XK () (EE )

= V-,

r
j; " Vo H(y,w) =

Now,
K = K(2(w))
4 _ dg dK
dw dw d&
d%K _ (dr\* 4%k
dw? dw dg?
or
d%K _ (dw\® 4%
de< dg dw?

But, on E, Ki = constant.

Hence,
2
d?K - d Kr
de= dg?
Therefore,
: dw\?
1] = (2w "
Kr,s (dQ s K (ws)
Thus,
xK(wS)
r e

f nvox iV H(y,w )

‘V K"(ms)x
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where, as usual, the square root of a complex number is chosen to have
positive real part.

In terms of alw),

i[a(ws)x - ugt]

\/on" (ws)x

J{m + iV—%lT- H(y,ws) =

i
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APPENDIX C

Numerical Solutions of the Orr-Sommerfeld Equation and Tts Adjoint

In Appendix A, we wrote the Orr-Sommerfeld equation as a system

of four first-order equations, namely, equations (A.2.a-d):

(

Dz = 0z1 + 2> (C.1.a)
Dzy = - 0z2 + 23 (C.1.b)
1 Dz3 = Q23 + 2y (C.1.¢)
(Dzy = - 1R Dzy + 1R(T-w)zs ~ oz (C.1.d)

The boundary conditions are

z1(0) = 0 (C.2.a)

z2(0) = 0 (C.2.1b)

z (*) =0 (C.2.¢)
By adding

Do = 0 (c.3)

to equations (C.l.a-d), we obtain a system of five nonlinear first-order
equations. The additional boundary condition is arbitrary, e.g.
z3(0) = 1 (C.4)

and amounts to a normalization of the eigenfunction. Thus, the eigenvalue-
eigenfunction problem is reduced to solving the inhomogeneous system
defined by equations (C.l.a-d) and (C.3) with boundary conditions
(C.2.a-c) and (C.4), henceforth to be known as System I.

Similarly, the adjoint equation and associated boundary conditions
were represented as follows:
(Dx; = -ox) + iR(D*V)ax, (C.5.a)
Dx, = =-X; + 0OX2 (C.5.b)
Dx3 = =X —(X3 - iR(ﬁa—w)xu (C.5¢)

Dxy = =x3 + axy (C.5.4d)

\
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x3(0) =0 (C.6.a)
x4(0) =0 (C.6.b)
x (®) =0 (C.6.c)

Since the eigenvalue O has been determined above, the problem is
linear. To normalize the adjoint eigenfunction, we replace one of the
boundary conditions (C.6.a-c) by some arbitrary condition, e.g. impose

x1(0) = 1 (c.7
instead of (C.6.b).

The inhomogeneous problem defined by equations (C.5.a-d) with
boundary conditions (C.6.a), (C.7), (C.6.¢) will be referred to as
System II.

Before using PASVA3 to solve Systems I and II, we must approximate

the boundary conditions at infinity. namely, (C.2.c) and (C.6.c)

As y approaches infinity,'ﬁ and DU approach 1. and 0.,
respectively. Hence, the ésymptotic limit of the Orr-Sommerfeld

equation is

Dz =@z (c.8)
where
o 1 0 0
0 -0 1 0
d =
0 0 o 1
0 0 g -0l
0 = iR(a - w)
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The eigenvalues of g can easily be shown to be

AL = O

Az = - Q

As = (@® + 0)1/2
Ay = - (a2 + 0)1/2

/2

a and (a2 + 0)1 are taken to have positive real parts.

The corresponding eigenvectors are respectively

e = (1,0,0,007

e® = (- 1,2,0,0"

e® = (- 1, - Aa)- G la - 2)0)T
e = - L, - - 0@ - AT

The general solution of (C.1) is

4 ALY
A SIS N €Y 9
z= 2 51 © ¢ (.9
i=1
or 4
= INEY .
- T o 10
i=1
. AY .
(Each ¢(1) ze " e(l) is called a fundamental solution and the matrix

which has ¢(i)'s as columns the fundamental matrix.)

~

If we write

zy =1 + Yo +Ys + Yy (C.11.a)
where wl = cleklyefl) R wz = czexzyefzj, ws = cseksyefa), wu = cueA“yefF)
Then ‘

Dzy; = APy + Aa¥z + Asls + Ayl (C.11.b)
D2z; = A1 + A3z + A3us + AU (c.11.c)
D21 = ARy + A3z + ABys + AR (c.11.d)
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Solving (C.11) for ;,Yzs¥3,yP,s we obtain

Y1 = D+ x3) (D2 - 0?) 2z,

V2

D2 - 23HD® + ) 2z,

But 2z, -0 as y - o, Thus, ) and 5 must vanish, i.e.

I
o

D + A3) (D2 - a?) z1(y) = (C.12.a)

02 - 23D + o) z1(y) = 0 (C.12.b)

are the correct approximation of (C.2.c). Here Vg is chosen to be

4.931 where U = 0.999999 and D?U = - 0.000029.

Similarly, the asymptotic limit of the adjoint equation is

Dx = gx (€.13)
where
-0 0 0 0
-1 o 0 0
a=
0 -1 -0 -0
0 0 -1 a

which naturally shares the same eigenvalues with the matrix defined earlier
in conmection with equation (C.8).

Here the eigenvectors are

f(l) = (0, ,0,- 1)T

T
5(2) = (2 :19" gc%:— %)
£3) = (0,0,a-25,1)T

(0,0,0-Ay,1)T

f(4)
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The general solution of (C.13) is

4
ALy .
=2 a e’ f(l) (c.7)
i=1
oY 4
= :E: d X(i) (C.8)

i=1
It can be shown that the correct approximation of (C.6.c) is

(C.9.a)

]
o

@ + @) (02 - 2D x(y,)

L]
o

D + A3) (D% - a?) xu(ye) (C.9.b)

Note: Listings of FORTRAN programs which implement the above

algorithm are given at the end of the thesis.
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APPENDIX D

Some Detailed Expressions

(1) Definition of F(xXy,y,w) (introduced on page 22 of the main text.)

Expanding x, = g(x) in a Taylor series about x = 0, we obtain
xo = g(0) + % G(0) +3 ¢ x2 G'(0) + ... ®.1)

We must require that g(0) = 0 so that, for small ¢, x;, behaves

like x. For the same reason, we assume
X = a1xg + €a,x% + ... (D.2)

Substituting (D.2) into (D.1l) yields

X = G(0)[a1xg + € a,x% + ...]
+‘§‘ G'(O) E[aIXO + Eazx% + ...]2 + ...
= [G(0)a,] xo + £[G(0)ay +-§— G'(0)a2] x3 + ...
Hence,

a - -—]-'__-—

17 G(0)

ap==L180) L2 1 C(O0)

2 2 G(0) i 2 [G(0)]

etc.
Expanding E(x,y,w) about (aixy,y,w) yields
£(x,¥,0) = E(a1x0,y,w) + (eazx? + ...) £'(a1%0,¥w) + ...

Define

F(XgsY,w) = g(a&xo’y’(ﬂ) .

(2) Explicit expressions for P and Q (introduced on page 25 of the

main text.)



45

It can be shown that the linearized Navier-Stokes equation for

the case of a nonparallel steady mean flow is

Ly = 0
where
s = 0 g2 9 g2 2¢y 9 _y _08 gz _ (2 9 _ 1oy
i_atv +\¥yaxv +(V‘P)Xay ‘anyV (V‘}')yax RV
32 32
2 = 9
v ‘8x2+8y§
v - 84 9 a'+ 8‘-}
Vi EnT eyt e

p and V¥ stand for the perturbation and mean-flow streamfunctions,

respectively.
Now,
(hoo) = hoGlho,  + e(hio + holly ) (D.4.a)
0 X1
~ _ .
(hodo) = hoG onoXo
' 1N v 2
+ eL2B56 + hoG" g, + hoGloy T+ €[] (.4.b)
-~ = 3~
(ho¥o) . = hoG woxoxoxo
' "o 27
+ e[ 3(h G + hG )Gq)OXOXO + 3h,G w"XoXoxl]
+e?[ 1 +€3 ] (D.4.¢)
N _ Y
(MoY0) ey = 110G 1poxoxoxoxo

27 3y
+ e[(ahg)c + 6hyG")G WOXOXO + 4h 4G woxox

]
Xg 0¥ oX1

+e?[ 1+ 3 1+ e*[ 1 (D.4.4)



46

But,
G =q N
G' =q' |,

v

0

]
<
o.
~
<
€
b
—
~
[¢]

Therefore,

Ribghy = {~iw[ (20 h} + a'hy) i, + 20 iy hy
1

+ ¥ I3@BE +a'he) a 1% o + 302 12 §o_ hy

+ (%) hp + (Dzzoxl)ho]

+

Yy D: h
yyxl( Yo) hy

wxl[a212<nio>ho + (D3Uo)ho]

- ¥ (Uoh} + U, h
yyy(WO 0 woxl 0)

2 [(4a b + 6a'ho)a’1® 3, + 4031, g
1

= X iXo
2((20 h} + a'hg)iD%), + 20 i(Dzwo)tho)]} e (D.5)

+

i4 o3 =® ibo_\ o7
= 20 w- 3¥ 0% - ¥ 4= + - D2y
{I( y vyy R )Woxl (Wy z )D%Wo

X3

+ (¥ + a?¥_ )DJ, - ¥ D3
- ( yyx, T O Xl) Do le Do

i6g? = 2 _Ln
Wo = 1x D?%Yp) a'lh,y +

+ - 3y +
o v

1403 . ~ ix
20 w-3Y_a?-y o+ 29 4 T
Iy TTRT, 4y - H2p2gmite  0.6)

Define
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a; = 20w - 3¥ a2 - V¥ + i ho? . (D.7.a)
y yyy R
. ho
as = q’y - i —R—‘ . (0.7.b)
ag = V¢ + a?y .7.
3 ¥yyxa * X1 (D.7.¢)
- ; 602
a, = w 349} + i R . (D.7.4)
Then
. 2 ~
@ = [(az - wxlnz)n + (ay - 1 3 D3)a' 1P,
e
+ [a; + a,D ]moxl s (D.8.a)
2 = [a1 + aD?]P, . | (D:8.b)
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Table 1

Saddle-point data for R = 750
1o}
—= w w, a
Bwr T i T
2.0640 0.1109 0.0240 0.2948
2.,0725 0.1106 0.0230 0.2943
2,0811 0.1104 0.0220 0.2937
2,0897 0.1101 0.0210 0.2932
2.0982 0.1098 0.0200 0.2926
2.,1070 0.1096 0.0190 0.2921
2,1156 0.1093 0.0180 0.2915°
2.1243 0.1091 0.0170 0.2910
2.1330 0.1088 0.0160 0.2905
2.1417 0.1086 0.0150 0.2899
2.1504 0.1083 0.0140 0.2894
2.1590 0.1081 0.0130 0.2889
2.1677 0.1079 0.0120 0.2884
2.1765 0.1076 0.0110 0.2879
2.1852 0.107 4 0.0100 0.2874
2.1940 0.1072 0.0090 0.2869
2.2027 0.1070 0.0080 0.2864
2.,2115 0.1067 0.0070 0.2859
2,2201 0.1065 0.0060 0.2855
2.2288 0.1063 0.0050 0.2851
2,2376 0.1061 0.0040 0.2846
2.2463 0.1059 0.0030 0.2842
2.2551 0.1057 0.0020 0.2837
2.2638 0.1056 0.0010 0.2833
2,2726 0.1054 0.0000 0.2829
2,2813 0.1052 -0.0010 0.2825
2.2900 0.1050 -0.0020 0.2821
2.2987 0.1049 -0.0030 0.2817
2.3074 0.1047 -0.0040 0.2814
2.3162 0.1046 -0.0050 0.2810
2.3249 0.1044 -0.0060 0.2807
2.3337 0.1043 -0.0070 0.2804
2.3424 0.1041 ~-0.0080 0.2800
2.3511 0.1040 -0.0090 0.2797
2.3599 0.1039 -0.0100 0.2795
2,3686 0.1038 -0.0110 0.2792
2.377 4 0.1037 -0.0120 0.2790
2.3861 0.1036 -0.0130 0.2787
2.,3950 0.1035 -0.0140 0.2785
2.4038 0.1034 -0.0150 0.2783
2,4126 0.1033 -0.0160 0.2781
2,421 4 0.1033 -0.0170 0.2780
2.4302 0.1032 -0.0180 0.2778
2.4391 0.1031 -0.0190 0.2777
2.4479 0.1031 -0.0200 0.2775
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0.0326
0.0305
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0.0219
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0.0109
0.0087
0.0065
0.0043
0.0020
~-0.0002
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-0.0047
-0.0070
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-0.0161
-0.0185
-0.0208
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-0.0278
-0.0302
~0.0326
~0.0349
-0.0374
-0,.,0398
-0.0422
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-0.0470
~0.0494
-0.0519

"1‘9
-1.9

-1.8
-1.7

-1.7
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-1.2
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-1.1
-1.0
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~0.94
~0.88
-0.82
~0.76
-0.70
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~-0.58
-0.63
-0.55
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2,47 48
2.4837
2.4927
2.5017
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0.1030
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-0.0210
-0.0220
-0.0240
-0.0250
-0.0260
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0.2772
0.2772
0.2772
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Listings of FORTRAN Programs
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C TESTE: This program tests subroutine EIGEN. The reference length is t
c displacement thickness,
C

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION Y(101),2(10,101),IWORK(2200),WORK(37000)
COMMON /MNFLO/TU(1001),TUPP(1001),B

C
c
01 = 0.
B = 6.*DSQRT(2.D0)/1.7208
NMAX = 101
TO0L = .0001
C
C Read mean flow
c

READ (20) (TU(J),TUPP(J),J=1,1001)
1310 READ(20,END=1320)

60 TO 1310
C .
C Initial guess
c

1320 READ (20) N,R,OR,0I,(Y(J),(2(1,J),1=1,10),J=1,98)
1330 READ(20,END=1340) '
GO TO 1330
1340 R = 1000.
OR = ,10
DO 33 J=1,98
33 Y(J) = DSQRT(2.D0)/1.7208%*Y(J)

c
c
CALL EIGEN(R,OR,0I,IWORK,WORK,N,NMAX,TOL,Y,Z)
WRITE (20) N,R,OR,0I,(Y(J),(2(1,J),I=1,10),J=1,N)
c
c
STOP
END

SUBROUTINE EIGEN(RR,00R,00I,IWORK,WORK,N,NMAX,TOL,Y,Z)

This subroutine computes the eigenvalues and eigenfunctions of
the Orr-Sommerfeld equation,
PASVA3 is used to solve nonlinear boundary-value problem.

Required input:

_Reynolds number R,

_Frequency (OR,0I). v
_Initial guess.

Output:
_Eigenwavenumber (2(9,1),2(10,I)).
-Eigenfunction (2(1,1),2(2,1),...,2(8,1)).

QAOOOOOO0O0O0OO00A0N
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IMPLICIT REAL*8 (A-H,0-Z)

INTEGER P,Q,IWORK(1)

DIMENSION Y(1),2(10,1),ABT(10),PAR(5),WORK(1)
COMMON /MNFLO/TU(1001),TUPP(1001),B

COMMON/RO/R,0R,01
EXTERNAL FF,JACOB
R = RR
OR = OOR
01 = 00I

c

C Write job heading

c

WRITE(6,1100) R,OR,OI
1100 FORMAT(1H1,” EIGENVALUE AND EIGENFUNCTION OF THE ORR~

2 SOMMERFELD EQUATION//
3 ‘ R =% F7.0/
4 ‘ OR =7 F7.4/
5 ‘ o1 =7 ,F1.4//)
C
C Set PASVA3 parameters
c
c Number of equations
M =10
c Maximum number of equations
MMAX = 10
c Number of points in the initial mesh
C N IS INPUT
c Maximum number of mesh points allowed
C NMAX IS INPUT
C Maximum value of the product M*NMAX
MTNMAX = M*NMAX ’
c Number of initial conditionms
P =6
c Number of coupled conditions
Q=20
c End points of integration
A =0,
c B is input

c No default option
PAR(1) = 1.

c No continuation
PAR(2) = 0,
C Print intermediary results
PAR(3) = 1.
c Initial Y and Z are provided by user

PAR(4) =1,
Nonlinear problem
PAR(5) = 0.

(2]

Call PASVA3

s HeEesNoNe]
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CALL PASVA3(MMAX,M,MTNMAX,NMAX,N,P,Q,A,B,TOL,Y,Z,ABT,FF,JACOB,PAR,
2 WORK, IWORK, JERROR)
IF(JERROR.GT.0) GO TO 101

c

C Print output

c
WRITE(6,2000)

2000 FORMAT(1H1l, RESULTS /)

WRITE(6,2100)
2100 FORMAT(1HO,” J°,T10,°Y(J)”",T21,°2(1,J)°,T32,72(2,J3)°,T43,72(3,J)°

2 ,154,72(4,3)°,T65,72(5,3)°,T76,°2(6,J)°,T87,72(7,J)
3 -,T798,°2(8,J3)°,1T109,°2(9,J)°,T120,72(10,3)°/)
WRITE(6,2200) (J,Y(J),2(1,J),2(2,J),2(3,3),2(4,3),2(5,J3),2(6,J),
2 2(7,3),2(8,3),2(9,J),2(10,J),J=1,N)
2200 FORMAT(I4,1P11D11.3)
C
C
C
101 RETURN
END
FUNCTION U(Y)
C
C This function computes the mean velocity at required y-location
C by linear interpolation from the data supplied (1001 values at equal
C intervals)
C
IMPLICIT REAL*8 (A-H,0-2)
COMMON/MNFLO/TU(1001),TUPP(1001),B
Ll = 1000.*Y/B
Ll = L1l+1
L2 = L1+1
IF((L1.EQ.1).0R.(L1.EQ.1001)) L2=L}
U = (To(L1)+TU(L2))/2.
RETURN
END
FUNCTION UPP(Y)
c
C This function computes the second derivative of the mean velocity
C At required y-location by linear interpolation from the data supplied
C (1001 values at equal intervals)
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IMPLICIT REAL*8 (A-H,0-2)
COMMON/MNFLO/TU(1001),TUPP(1001),B
L1 = 1000.*Y/B

Ll = L1+l

L2 = L1+l
IF((L1.EQ.1).0R,(L1.,EQ.1001)) L2=L1
UPP = (TUPP(L1)+TUPP(L2))/2.

RETURN

END

SUBROUTINE FF(Y,Z,N,F,ALPHA)

This subroutine supplies F, the right-i:nd side of the equation,
ALPHA, the leit—-hand side of the boundary conditio.:-.
1 z/DY = F(Y,Z)
Boundary conditions:
ALPHA = 0.

IMPLICIT REAL*8 (A-H,0-2)

DIMENSION Y(1),2(10,1),F(10,1),ALPHA(10)
COMMON/RO/R,OR,0I

COMMON/GEN/NEF,NEJ

NEF = NEF+N

Convenient parameters

GR = 2(9,N)**2-Z(10,N)**2~R*(Z(10,N)-0I)

GI = 2,%¥Z(9,N)*Z(10,N)+R*(Z(9,N)=-0R)

El = R*(2(10,N)=-01) -

E2 = R*(OR-2(9,N))

E3 = Z(3,N)+2,*(Z(9,N)*Z(1,N)=-Z(10,N)*Z(2,N))

E4 = Z(4,N)+2.*%(Z(9,N)*Z(2,N)+Z2(10,N)*Z(1,N))

BR = DSQRT(0.5* (GR+DSQRT (GR**2+4GI**2)))

BI = GI/(2.*BR)

E5 = 2(9,N)+BR

E6 = 2(10,N)+BI

E7 = 2.*%(Z(9,N)*2(5,N)-2(10,N)*Z(6,N))

E8 = 2.%(2(9,N)*2(6,N)+Z(10,K)*2(5,N)) J
E9 = (2.%*Z(9,N)*BR+(2.*Z(10,N)+R)*BI)/(2.,*(BR**2+BI*%2))

El10 = (~2,%2(9,N)*BI+(2.*Z(10,N)+R)*BR)/(2.*(BR**2+BI*%2))

ALPHA(1) = 2(1,1)
ALPHA(2) = 2(2,1)
ALPHA(3) = 2(3,1)

ALPHA(4) = 2(4,1)

ALPHA(5) = Z(5,1)-1.

ALPHA(6) = Z(6,1)

ALPHA(7) = Z(7,N)+E7+E1*E3-E2%E4
ALPHA(8) = Z(8,N)+E8+E1*E4+E2*E3
ALPHA(Y) = Z(7,N)+ES5*Z(5,N)~-E6*Z(6,N)

ALPHA(10) = Z(8,N)+ES5*Z(6,N)+E6*Z(5,N)

and
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C

C
PO 10 I = 1,N

C Convenient parameters
CFl = R*(2(9,1)*2(2,1)+2(10,1)*2(1,1))
CF2 = R*(2(9,1)*2(6,1)+2(10,I1)*2(5,1))

CF3 = R*(OR*2(6,1)+0I*Z(5,1I))

CF4 = 2(9,1)*%2(7,1)-2(10,1)*2(8,1)

CF5 = R*(2(9,1)*2(1,1)-2(10,1)*2(2,1))
CF6 = R*(Z2(9,1)*2(5,1)-2(10,1)*Z(6,1))
CF7 = R¥(OR*Z(5,1)-0I*Z2(6,1))

CF8 = 2(9,1)*2(8,1)+2(10,1)*2(7,1)

cU = Uu(Y(1))
CUPP = UPP(Y(I))

o

F(1,I1) = 2(9,1)*%2(1,1)-2(10,1)*2(2,1)+2(3,1)

F(2,I) = 2(9,1)*Z(2,1)+2(10,1)*Z(1,1)+Z(4,1)

F(3,1) = =(2(9,1)*Z(3,1)-2(10,I)*2(4,1))+2(5,1)

F(4,I) = =(2(9,1)*Z(4,1)+2(10,1)*2(3,1))+Z2(6,1)

F(5,I1) = 2(9,1)*2(5,1)~2(10,I)*2(6,1)+2(7,1)

F(6,I) = Z(9,I)*Z2(6,1)+2(10,1)*2(5,1)+Z(8,1)

F(7,I) = CFl*CUPP-CF2*CU+CF3~CF4

F(8,1) = =CFS5*CUPP+CF6*CU-CF7~-CF8

F(9,1) = 0.

F(10,I) = 0.

10 CONTINUE

RETURN

END

SUBROUTINE JACOB(Y,Z,1,C,N,Al,Bl)
C
€C This subroutine supplies C, the Jacobian of F with respect to the
C dependent variables Z; Al, the Jacobian of ALPHA with respect to
¢ z(Y=0.); and Bl, the Jacobian of ALPHA with respect to Z(Y=6.)
c

IMPLICIT REAL*8 (A~H,0-2)

DIMENSION Y(1),z(10,1),c(10,10),41(10,10),B1(10,10)

COMMON/RO/R,0R, 01

COMMON/GEN/NEF ,NEJ

NEJ = NEJ+1

IF(I.NE.1) GO TO 50
C -

C Convenient parameters
GR = Z(9,N)**2~Z(10,N)**2-R*(2(10,N)-01)
GI = 2,*2(9,N)*Z(10,N)+R*(2(9,N)-0OR)

El = R*(2(10,N)~-01)

E2 = R*¥(OR-Z(9,N))

E3 = Z2(3,N)+2.*(Z(9,N)*Z(1,N)~Z(10,N)*Z2(2,N))
E4 = Z(4,N)+2,*(Z(9,N)*Z(2,N)+Z(10,N)*Z(1,N))
BR = DSQRT(0.5%(GR+DSQRT (GR**2+GI**2)))

BI = GI/(2,.%*BR)

E5 = Z(9,N)+BR

E6 = Z(10,N)+BI

E7 = 2.*(Z(9,N)*Z(5,N)=-Z(10,N)*Z(6,N))
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E8 = 2.*(2(9,N)*2(6,N)+2(10,N)*Z(5,N))
E9 = (2.*2(9,N)*BR+(2.*Z(10,N)+R)*BI1)/(2.*(BR**2+BI*%2))
El10 = (=2.%Z(9,N)*BI+(2,%¥Z(10,N)+R)*BR)/(2.*(BR**2+BI%**2))

C
c
c
DO 10 I10 = 1,10
DO 10 J = 1,10
Al1(I10,J) =0.
IF((I10.LE.6).,AND,(J.EQ.I10)) Al(1I10,J) = 1.
B1(110,J) = 0.
10 ¢(110,J) = 0.
c
B1(7,1) = 2,*(E1*Z(9,N)-E2%Z(10,N))
B1(7,2) = =~2,%(E1*Z2(10,N)+E2*Z(9,N))
B1(7,3) = El
B1(7,4) = -E2
B1(7,5) = 2.%*Z(9,N)
B1(7,6) = -2,%*Z(10,N)
B1(7,7) = 1.
B1(7,9) = 2.*Z(5,N)+2 . %E1*Z(1,N)+R*E4=2,%*E2*%Z(2,N)
B1(7,10) = -2.*Z(6,N)+R*E3-2,*E1*Z(2,N)-2,%E2*Z(1,N)
B1(8,1) = 2.*(E1*Z(10,N)+E2*Z(9,N))
B1(8,2) = 2,*(E1*Z2(9,N)-E2*%Z(10,N))
B1(8,3) = E2
B1(8,4) = El
B1(8,5) = 2.*%Z(10,N)
B1(8,6) = 2.%Z(9,N)
B1(8,8) =1,
B1(8,9) = 2.%(2(6,N)+E1*Z2(2,N)+E2*Z(1,N))~R*E3
B1(8,10) = 2,%*(Z(5,N)+E1*Z(1,N)-E2%Z(2,N))+R*E4
B1(9,5) = ES5
B1(9,6) = -E6
B1(9,7) = 1.
B1(9,9) = Z(5,N)*(1.+E9)-2(6,N)*E]10
B1(9,10) = -2(5,N)*E10-2(6,N)*(1.+E9)
B1(10,5) = Eé6
B1(10,6) = E5
B1(10,8) = 1.
B1(10,9) = Z(6,N)*(1.+E9)+Z(5,N)*E10
B1(10,10) = -2(6,N)*E10+Z(5,N)*(1.+E9)
c

50 CONTINUE
C Convenient parameters
cu = U(Y(I))
CUPP = UPP(Y(I))

C
c(1,1) = 2(9,1)
c(1,2) = -2(10,1)
c(1,3) =1,
c(1,9) = z(l1l,1)
c(1,10) = -2(2,1)
c(2,1) = z(10,1)
C(2,2) = 2(9,1)



c(2,4)
c(2,9)
c(2,10)
c(3,3)
Cc(3,4)
c(3,5)
c(3,9)
c(3,10)
c(4,3)
c(4,4)
C(4,6)
c(4,9)

c(4,10)
c(5,5)
c(5,6)
c(5,7)
c(5,9)
c(5,10)
c(6,5)
C(6,6)
c(6,8)
c(6,9)
c(6,10)
c(7,1)
c(7,2)
c(7,5)
c(7,6)
c(7,7)
c(7,8)
c(7,9)
c(7,10)
c(8,1)
c(8,2)
c(8,5)
c(8,6)
c(8,7)
c(8,8)
c(8,9)
c(8,10)
RETURN
END

B nnonRNs W RR W uR RN RN NN RN N RN
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1.
z(2,1)
z(1,1)
"Z(gaI)
z(10,1)
1.
-2(3,I)
2(4,1)
-2(10,1)
-Z2(9,1)
ll
'Z(lst)

-2(3,1)

z2(9,1)

-2(10,1)

1.

2(5,1)

-2(6,1)

z(10,1)

z(9,1)

1.

z2(6,1)

Z(5,1)
R*¥2(10,I)*CUPP
R*Z(9,I)*CUPP
R*(0I-CU*Z(10,1))
R*¥(-CU*Z(9,I)+0R)
"Z(g’I)

z(10,1)

R*(CUPP*2(2,I)-CU%*Z(6,1))~2(7,1)
R*(CUPP*Z(1,1)-CU*Z(5,1))+2(8,1)

-R*2(9,1)*CUPP
R*¥2(10,I)*CUPP
-C(7,6)

c(7,5)
-2(10,1)
-2(9,1)

R*(-CUPP*Z(1,I)+CU*Z(5,1))-2(8,1I)
R*(CUPP*Z(2,1)-CU*2(6,1))-2(7,1)



C TESTA: This program tests subroutine ADJOIN,
0.822 times the displacement thickness.

a0
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IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION Y(101),X(8,101),IWORK(2000),WORK(25000)
COMMON/MNFLO/TU(1001),TUPP(1001)

R = 1000.
OR =
0I =

AR =

Al = -0.0007
B =

N = 51
NMAX= 101 -
TO0L = .0001

READ (20) (Tu(J),TUPP(J),J=1,1001)

CALL ADJOIN(R,OR,0I,AR,AI,IWORK,WORK,B,N,NMAX,TOL,Y,X)

STOP
END

SUBROUTINE ADJOIN(RR,O00R,00I ,AAR,AAI ,IWORK,WORK,B,N,NMAX,TOL,Y,X)

Required input:
-Reynolds number R.
-Frequency (OR,0I).
~Eigenvalue (AR,AI).

Output:

OO0 O0O0O0

This subroutine computes the eigenfunctions of the adjoint system.
PASVA3 is used to solve limear boundary-value problem.

-Eigenfunction of the adjoint system (X(1,J),X(2,J),...,X(8,J)).

IMPLICIT REAL*8 (A-H,0-2)

INTEGER P,Q,IWORK(1)

DIMENSION Y(1),X(8,1),ABT(8),PAR(5),WORK (1)
COMMON/MNFLO/TU(1001),TUPP(1001)
COMMON/ROA/R,OR,0I ,AR,AI

EXTERNAL FF1,JACOBI
R = RR
OR OOR
01 001
AR AAR
Al AAL

C
C Write job heading

WRITE(6,1000) R,OR,0I ,AR,AI
1000 FORMAT(1H1,” EIGENFUNCTION OF THE ADJOLNT SYSTEM//

2 ‘ B

3 ‘ OR
4 ‘ oI
5 ‘ AR
6 ‘ Al

c
C Set PASVA3 parameters

=" F7.0/
*,F1.4/
*,F1.4/
‘,F71.4/
“yF7.4/1)

nnoun

The reference length is
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C
c Number of equations
M =8
c Maximum number of equations
MMAX = 8
C Number of points in the initial mesh
C N is input
C Maximum number of mesh points allowed
c NMAX is input
c Maximum value of the product M*NMAX
MTNMAX = M*NMAX
c Number of imitial conditions
P = 4 )
c Number of coupled comditionms
Q=0
C End points of integration
A = 0,
c B is input

c No default option
PAR(1) =1,

c No continuation
PAR(2) = 0.
c Print intermediary results

PAR(3) =1,

c Initial guess is provided by PASVA3
PAR(4) = 0.

C Linear problem
PAR(S5) = 1.

Oan

CALL PASVA3(MMAX,M,MTNMAX,NMAX,N,P,Q,A,B,TOL,Y,X,ABT,FF1,JACOBI,
2 PAR,WORK, IWORK, JERROR)
IF(JERROR.GT.0) GO TO 800

C
c
C Primt output
c
WRITE(6,1500)
1500 FORMAT(1H1, RESULTS"/)
WRITE(6,1600) ,
1600 FORMAT(1lHO,” J°,T10,°Y(J)°,T21,°%(1,J)°,T32,7X(2,J)°,T43,7X(3,J3)"
2 ,154,7%(4,3)°,T65,”X(5,J3)°,T76,°%x(6,J3)",T87,7X(7,J)
3 °,T798,7°X(8,J)°/)
WRITE(6,1700) (J,Y(J),X(1,J),X(2,J),X(3,J),X(4,J3),X(5,J3),
2 X(6,J3),X(7,J3),X(8,J),J=1,N)
1700 FORMAT(I4,1P9D11.3)
c
C
c
800 RETURN
END

SUBROUTINE FF1(Y,X,N,F,ALPHA)



Xz XX X2 Kz K2E2)

C

C
C
C
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This subroutine supplies F, the right-hand side of the equation, and
ALPHA, the left-hand side of the boundary conditions,
Equation:
DX/DY = F(Y,X)
Boundary conditions:
ALPHA = 0,

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION Y(1),X(8,1),F(8,1),ALPHA(8)
COMMON/ROA/R,OR,O0I ,AR,AI
COMMON/GEN/NEF,NEJ
NEF = NEF+N
DO 10 I = I, ,N
cU = U(Y(1))
CUPP = UPP(Y(I))
F(1,I) = -(AR*X(1,I)-AI*X(2,1))-R*CUPP*(X(7,I)*AI+X(8,1)%*AR)
F(2,I) = ~(AR*X(2,1)+AI*X(1,I))+R*CUPP*(X(7,I)*AR~X(8,1)*AI)
F(3,I1) = =X(1,I)+(AR*X(3,I)-AI*X(4,I))
F(4,I) = -X(2,I)+(AR*X(4,1)+AI*X(3,1))
F(5,1) = =-X(3,I)-(AR*X(5,I)~-AI*X(6,I))+R*CU*(AR*X(8,I)+AI*X(7,1))
2 -R*(OR*X(8,I)+01I*X(7,1))
F(6,I) = -X(4,I1)-(AR*X(6,I)+AI*X(5,1I))-R*CU*(AR*X(7,1)-AI*X(8,1))
2 +R*(OR*X(7,1)-01I*X(8,1))
F(7,I) = -X(5,I)+(AR*X(7,1)-AI*X(8,1))
F(8,I) = -X(6,I)+(AR*X(8,I)+AI*X(7,1))
10 CONTINUE
Convenient parameters
El = BR*(0I-AI)
E2 = R*(AR-OR)
GR = AR**2-AI*%2+El
GI = 2,%*AR*AI+E2
BR = DSQRT((GR+DSQRT(GR**2+GI*%*2))/2.)
BI = GI/(2.*BR)
E5 = AR+BR
E6 = AI+BI
E9 = El*ES5-E2%Eé6
E10 = E1*E6+E2*E5
ALPHA(1) = X(5,1)

ALPHA(2) = X(6,1)
ALPHA(3) = X(1,1)-1.
ALPHA(4) = X(2,1) .

ALPHA(5) = X(1,N)-2 ,*(AR*X(3,N)~AI*X(4,N))
ALPHA(6) = X(2,N)-2.*(AR*X(4,N)+AI*X(3,N))
ALPHA(7) = X(1,N)-(E5*X(3,N)-E6*X(4,N))+(EL*X(5,N)-E2*%X(6,N))

2 -(E9*X(7,N)-E10*X(8,N))

ALPHA(8) = X(2,N)~(E5*X(4,N)+E6*X(3,N))+(E1*X(6,N)+E2*X(5,N))
2 -(E9*X(8,N)+E10*X(7,N))

RETURN

END

SUBROUTINE JACOB1(Y,X,I,C,N,Al,Bl)

This subroutine supplies C, the Jacobian of F with respect to the
dependent variables X; Al, the Jacobian of ALPHA with respect to
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€ X(Y=0.); and Bl, the Jacobian of ALPHA with respect to X(Y=6.).
C

IMPLICIT REAL*8 (A-H,0-Z)

DIMENSION Y(1),X(8,1),c(8,8),A1(8,8),B1(8,8)

COMMON/ROA/R,OR,0I,AR,AI

COMMON/GEN/NEF,NEJ

NEJ = NEJ+1

IF(I.NE.1) GO TO 50

DO 10 L1=1,8

DO 10 L2=1,8

Al(L1,L2) = 0.

Bi1(L1,L2) = 0O,

10 ¢(L1,L2) = O.

C Convenient parameters

El = BR*(0I-AI)

E2 = BR*(AR~OR)

GR = AR**2-ATI*%2+El

GI = 2.,%*AR*AI+E2

BR = DSQRT((GR+DSQRT(GR**2+GI*%2))/2.)
BI = GI/(2.*BR)

E5 = AR+BR

E6 = AI+BI

E9 = E1*ES5-E2*Eé6

E10 = El*E6+E2*ES

Al(1,5) =1,
A1(2,6) = 1.
A1(3,1) 1.
Al1(4,2) 1.
B1(5,1) 1.

50

B1(5,3)
B1(5,4)
B1(6,2)
B1(6,3)
B1(6,4)
B1(7,1)
B1(7,3)
B1(7,4)
B1(7,5)
B1(7,6)
B1(7,7)
B1(7,8)
B1(8,2)
B1(8,3)
B1(8,4)
B1(8,5)
B1(8,6)
B1(8,7)
B1(8,8)
CONTINUE
cu = u(Yy

CUPP = UPP(Y(I))

c(1,1)
c(1,2)
c(1,7)

==2.%AR
= 2.%A1
= 1.
=e2 ,*AT
==2.%AR
= 1.
=~E5

= Eb

= El
=-E2
=~E9

= E10

= 1.
=~E6
==E5

= E2

= El
=~E10
=-E9

(1))

-AR
Al

~R*CUPP*AL



OO0O0O0N
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c(1,8) = ~R*CUPP*AR
C(Zol) = «AT

c(2,2) = =AR

c(2,7) = R*CUPP*AR
c(2,8) = ~R*CUPP*AI
c(3,1) = -],

C(3;3) = AR

C(3,4) = =AL

C(4,2) = -1,

c(4,3) = Al

C(494) = AR

C(S,B) = -lo

C(SsS) = =AR

c(5,6) = Al

c(5,7) = R*(CU*AI-O0I)
c(5,8) = R*(CU*AR~-OR)
C(6,4) = -],

c(6,5) = «AI

c(6,6) = ~AR

c(6,7) = -C(5,8)
c(sss) = C(5,7)
c(7,5) = -1,

c(7,7) = AR

c(7,8) = «Al

c(8,6) = -],

c(8,7) = Al

c(8,8) = AR

RETURN

END

FUNCTION U(Y)

This function computes the meam velocity at required y-location by

linear interpolation from the data supplied (1001 values at equal
intervals).

IMPLICIT REAL*8 (A-H,0-Z)
COMMON/MNFLO/TU(1001),TUPP(1001)

Ll = 1000.%Y/6

Ll = L1+l

L2 = Ll+1
IF((L1,EQ.1).0R.(L1.EQ.1001)) L2=L1
U = (TUu(L1)+TU(L2))/2.

RETURN

END

FUNCTION UPP(Y)

This function computes the second derivative of the mean velocity
at required y-location by linear interpolation from the data
supplied (1001 values at equal intervals).

IMPLICIT REAL*8 (A-H,0-2Z)
COMMON/MNFLO/TU(1001),TUPP(1001)
L1 = 1000.*Y/6

Ll = L1+1
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L2 = L1l+]

IF((L1.EQ.1).0R,(L1.EQ.1001)) L2=L1

UPP = (TUPP(L1)+TUPP(L2))/2.
RETURN

END



