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Abstract

Experimental studies were conducted on the creeping motion of
immiscible drops of a Newtonian liquid through a circular tube. The
mobility of the drop, the additional pressure gradient owing to the
presence of the suspended drop, and the deformation and breakup of
the drop were determined as a function of the drop size, flow rate and
viscosity ratio, for both Newtonian and viscoelastic suspending fluids.
Two tube geometries were employed to generate kinematically distinct
flows. First, the effects of density differences between the fluids
were studied in a tube of constant diameter for comparison with avail-
able results for neutrally buoyant drops. Surprisingly small density
differences produced highly eccentric drop positions, and the data,
including the steady shape of the drop, were correlated with the gap
width between the drop and the tube wall using simple lubrication
approximations., The results suggest the presence of both viscometric
and time-dependent non-Newtonian effects for the viscoelastic suspending
fluid. Experiments were then conducted for the case where the diameter
of the tube varies perijodically with axial position. The conformation
of the drop depends strongly on the value of the inverse capillary number.
For small values of this parameter, the shape of the drop, and hence, the
measured quantities were periodic and in-phase with the drop's passage
through the oscillatory tube. When the inverse capillary number was

large, a drop suspended in a Newtonian fluid became highly elongated
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and eventually broke into several fragments. Under the same conditions,

a drop suspended in a viscoelastic fluid did not elongate, but instead,
developed tails which issued satellite drops. The effect of increasing
the polymer concentration in the suspending fluid was to stabilize the
tails. The different conformations of the drop produced qualitatively
different behavior for the additional pressure gradient and drop mobility.
The observed dispersion processes appeared as onset phenomena at critical

values of the material parameters.

The dynamics of fluid systems which are comprised of a suspended
material in a Newtonian continuous phase were investigated theoretically.
Important dynamical phenomena for such fluids are often a consequence of
significant flow-induced deformation and/or orientation of the suspended
elements. Hence, conditions under which large-scale distortion of the
microstructure occurs were predicted via criteria for the flow strength,
which is a measure of the form and magnitude of the velocity gradient
tensor. The form of the criteria depends on the model chosen to describe
the microstructure, but the properties which describe the specific fluid
system enter only as parameters. Thus, the theoretical framework en-
compasses a wide class of fluids including macromolecular solutions and
particulate suspension, Two examples illustrate the approach: the
macromolecular stretching induced by a turbulent flow and the breakup

of immiscible 1iquid drops in a shear field.
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Abstract

Results of experiments on the low Reynolds number flow of non-
neutrally buoyant drops through a straight circular tube are reported.
The undeformed radii of the drops are comparable to the size of the tube,
and the drops adopt an eccentric lateral position owing to a density dif-
ference between the drop and the suspending fluid. VMeasured values for
the extra pressure drop caused by the presence of the drop, the relative
velocity of the drop, and the shape‘of the drop are correlated with the
minimum gap width between the eccentrically located drop and the tube
wall using simple lubrication approximations. The viscosity ratio,
density difference, volumetric flow rate, and drop size are varied in the
experiment. Comparisons with previous results for concentric, neutrally-
buoyant drops show that the effects of eccentric position can be substan-
tial for surprisingly small values of the density difference. Both
Newtonian and viscoelastic suspending fluids are considered, and the
results suggest that both viscometric and time-dependent non-Newtonian
effects are present. For the Newtonian case, the data are compared with
the predictions of available theories which account explicitly for the

eccentric drop position.



1. Introduction

The creeping motion of drops suspended in a tube flow is important
as a prototype problem in many industrial and biological processes.
Immiscible additives, in the form of small particles or drops, are often
used in polymer melt processing to alter the bulk properties of the final
product; it is crucial that the kinematics and dynamics of the resulting
two-phase flow be understood if the desired structure is to be achieved.
The well known analogy between the motion of large droplets through tubes
and the creeping motion of erythrocytes through capillaries has also
served as a motivation for many earlier studies of this problem. Although
there are recent studies, e.g. Tozeren and Skalak (1978), that present
experimental and theoretical models for capillary blood flow which are
far more realistic than the simple system considered here, the sensitivity
of the results to density differences between the two phases has not been
examined; and for this reason, the present study may still be of quali-
tative interest in tﬁe blood flow problem. Our own motivation for the
general study, of which this present work is a part, is the development
of a realistic laboratory model for investigation of the microdynamics of
two-phase flows in porous media (i.e., the dynamics at the scale of the
pores). Tnis problem is of interest in tertiary o0il recovery methods
including polymeric and surfactant flooding. Here, 011 droplets are
displaced and carried by a so-called "pusher” fluid through the porous
matrix toward a collection well. Huch of the effort in making this
process feasible has concerned an understanding of the macroscale dy-

namics at the scale of the whole reseryoir. The present investigations



are aimed at an understanding of the detailed dynamics at the scale of
the individual flow channel. Specifically, we aim ultimately to achieve
a more fundamental grasp of the relationships between "dependent" param-
eters such as the flow resistance, drop mobility, or stable drop size
(i.e. drop breakup), and "independent" parameters of the system such as
fluid properties, channel geometry and interfacial tension.

A ]arge'number of previous experimental and theoretical studies have
been concerned with the flow of single-phase Newtonian and viscoelastic
fluids through tubes with axially varying cross-sectional area employed
as a model for the porous matrix. Neira and Payatakes (1979), Fedkiw and
Newman (1977), Payatakes and Neira (1977), and Deiber and Schowalter (1979)
have all calculated the flow fields for Newtonian liquids in periodically
constricted tubes. In addition, Deiber and Schowalter report experimental
data for the pressure drop as a function of flow rate for a Newtonian
fluid and a particular choice of tube geometry. Although the periodically
constricted tube is a gross oversimplification of the flow channel geom-
etry in a porous medium, it does allow some of the effects associated with
a rapidly varying cross-sectional area to be investigated. For a single
.phase flow, however, a crucial missing element is the lack of any
necessity for the flow to constantly split apart and merge as the fluid
passes along the "flow channel". Thus, unlike the motion in a porous
matrix, or a packed bed, the fluid can pass straight through the central
portion of the channel, effectively "ignoring" the streamwise variations
in cross-sectional area. Although this critical "defect" may also be
present in a two-phase flow, the presence of a suspended drop of comparable

size to the tube will force the fluid to follow the wall geoinetry to a



greater extent and the model consequently appears to us to be more
realistic for this case. In this case, the effect of the flow field
on the conformation of the suspénded elements must be considered and
the published results for single-phase flow givev1itt1e information
of direct relevance. This is the problem investigated in the present
studies.

In an earlier paper, Ho and Leal {1975) [hereafter referred to as
(I1)] considered the case of neutrally buoyant drops in a straight-ﬁa?]
tube fbr both Newtonian and viscoelastic suspending fluids. The straight-
wall tube problem is of some intrinsic intgrest in its own right, and is
a necessary preliminary to the investigation of the wavy-wall tube flow.
Here, we consider the effect of differences in density between the drops
and the suspendﬁng fluid, again for creeping motion through a straight,
circular, horizontal tube. In an accompanying paper (Olbricht and Leal,
1980), the effects of flow channel geometry will be investigated.

In the present experiments, we measure: the incremental pressure
drop, AP+, which ié'réquired to maintain a specified flow rate relative
to the pressure drop which would be required without any drops; the vel-
ocity of thé drops U relative to the average velocity of the two-phase
flow V; the shapes of the drops; and the minimum gap width, h, between
the lower surface of the drops and the tube wall. In the context of two-
phase flow through porous media, AP+ is related to the accessibility of
individual channels to flow compared to channels which contain no drops
(i.e., the microscale "sweep efficiency"), U is a measure of the drop
mobility, and the shape is important as a precursor to dispersion (breakup)

processes. The major focus of the present experiments is the effect of the



lateral position of the drop in the horizontal tube as a consequence of
the density -difference between the two fluids. A neutrally buoyant par-
ticle travels along the tube centerline. This problem has been studied
extensively in (I) for both Newtonian and viscoelastic suspending fluids.
The results obtained here for non-neutrally buoyant drops do, in some
cases, provide additional insight which helps to understand physical be-
havior observed for neutrally buoyant drops, but not fully explained in
(I). In addition, and more central to the present study, we attempt to
understand how the lateral position of the drops influences the relation-
ship between measured features of the flow (listed above) and the inde-
pendent parameters of the system. These parameters include the volume of
the drops, the viscosity of the drops, the velocity of the bulk flow, and
the suspending fluid rheology. The lateral position of the drops in these
experiments is varied through changes in the specific gravity of the drop
relative to that of the suspending fluid: Aﬁ important additional quali-
tative objective of our work is thus a determination of the sensitivity
of the results to small density differences between the two phases, and a
delineation of the domain where non-neutral buoyancy is a significant factor.
The relevant independent dimensionless parameters for the problem
include: M, the undeformed dfop rédius relative to the radius of the
tube RO; 0, the ratio of the drop fluid viscosity u; to that of the sus-
pending fluid Hys @ deformation parameter which is the inverse of the
so-called capillary number, I' = MOV/Y, where Y is the interfacial tension
between the drop and suspending fluid; and AQ/OO, where 4p is the dif-
ference between the specific gravity of the drop fluid F and that of the

suspending fluid P,- In the case of a viscoelastic suspending fluid, the
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results will also depend on the dimensionless parameters which character-
ize the rheological properties of the fluid. Foremost among these is the
Deborah number, De = g/t, where 6 is the intrinsic relaxation time for
the fluid (8 = 0 in a Newtonian fluid)and t is a convective timescale of
the flow. In the experimental data which are presented in section 3, the
additional pressure drop AP+ is scaled by the characteristic viscous
pressure uOV/Ro.

Existing theories for the motion of particles through tubes are
largely concerned with Newtonian suspending fluids. Two investigations
are of special relevance to the present study because they consider the
effect of an eccentric position of the drop. Hetsroni et al. (1970) used
the method of reflections to solve for the velocity fields associated
with the motion of a small, spherical (undeformed) drop which is not too
near a wall in a Poiseuille flow, The lateral position of the drop is
specified, in dimensionless terms, by B = b/R0 where b is the distance
between the centerline of the tube and the center of the undeformed drop.
The relative velocity of the drop for this case is predicted to be

= 2(1 - g%) - 355%—5 A2+ 0} . (1)

<=

Brenner (1973) used the reciprocal theorem for creeping flow to obtain

the additional pressure drop for this flow:

AP+Ro 167 (95 + 2)2-407 .5 . 32(50 + 2) 2.3 6'
= : ‘ +0(x") . (2)

- VR

a ¥V 2/(o + 1)(30 + 2) A 3

Later, Bungay and Brenner (1973a) also obtained results for a small rigid
sphere near the tube wall. It will be noted that equations (1) and (2)

contain the lateral position of the drop, explicity through B. Unfortunately,
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though B depends mainly on the density difference, Ap/p0 in the present
experiments, its value has not been predicted in any of the existing
theoretical developments. Thus, quantitative comparisons between the
data for U and AP+ and the predictions from (1) and (2), respectively,
can be madebon}y by estimating the value of B directly from photographs
of the drops in the flow.

Some theoretical work has also been done for particles which are of
a size similar to that of the tube, but only for neutrally buoyant, con-
centrically located particles. Hyman and Skalak (1972a,b) calculated
AP+ and U for deformable and nondeformablg liquid drops, while Bungay and
Brenner (1973b) considered the case of close-fitting rigid spheres.
Lighthill (1968) and Fitz-Gerald (1969) alsoc studied the motion of a large,
elastic particle, but evaluation of APT is difficult from their results
and the calculation was subsequently improved, for the axisymmetric case,
by Tozeren and Skalak (1978). As noted above, no theoretical work has so

far been done which considers large eccentrically positioned particles.

Finally, we briefly mention earlier experimental investigations
which are related to the present work. These include Hochmuth et al.
(1970), Sutera et al. (1970), Seshardi et al. (1970), and Hochmuth and
Sutera (1970) and involve the motions of erythrocytes, model cells, and
sphericéT caps in Newtonian fluids through capillary tubes. Prothero and
Burton (1961,1962) studied qualitatively the motion of gas bubbles in a
Newtonian Tiquid, once again as a model for blood flow. Goldsmith and
Mason (1963) reported U and h for very large drops (A >> 1) in creeping

flow. However, none of these experimental studies includes the effects of
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non-neutral buoyancy.

The case of a viscoelastic suspending fluid has received scant
attention in the literature, apart from the paper (I) cited earlier.
Indeed, thei only other work which is at all relevant to the present paper is
due to Sigli and Coutanceau (1977), who measured the drag on rigid spheres
falling through a cylindrical tube, when the particle and tube are of com-
parable diameter. The data show significant qualitative effects of fluid
viscoelasticity when the interaction between the particle and the tubewall

is important, even though the nominal Deborah number is small.

2. Experimental Apparatus and Materijals

The apparatus used in this experiment is similar to the one used in
(I) and is illustrated in Figure 1. The flow was driven by one of two
available pumps capable of maintaining a constant flow rate with less than
0.1% variation over the course of a single experimental run. For the
NeWtonian suspending fluid, a Harvard Apparatus infusion/withdrawal
syringe pump was used, while a Zenith Products Series BPB gear pump was
employed with the more "viscous" viscoelastic suspending fluid.

The suspending fluid was held in an overhead reservoir before entering
the pump. The fluid was then pumped into a large storage section which was
imnersed in a constant temperature bath maintained at 25 = 0.1°C. The
transit time through this storage section was always spfficient]y\]ong to
ensure that the temperature of the suspending fluid had equilibrated with
the bath before entering the test section. The test section consisted of
a horizontal precision-bore glass tube with a diameter of 1 cm and a
length of 120 cm. Pressure ports were positioned 50 cm apart, the first

port being 50 cm downstream of the entrance to the test section. After
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passing through the test section, the fluid exited the controlled tem-
perature region and was held in a storage container.

The drops were manually injected upstream of the test section using
a Hamilton precision micrometer syringe capable of producing drops of
known volume to within 0.001 ml, The micrometer syringe was connected
to a flexible tube fitted at its end with a 15 gauge hypodermic needle.
The needle was inserted directly into the flow through a fitting contain-
ing a rubber septum. The drops were injected with the pump operating at
a low speed so that they would detach from the needle shortly after in-
jection. Once all the drops for a particular run had been injected, the
pump was adjusted to the full desired flow rate. It was found that the
drops attained an equilibrium position in the tube well before entering
the region between the pressure ports, The equilibrium position was
found to depend on all the material and flow parameters, but most strongly
on the density difference between the drop and suspending fluid. Further-
more, the equilibrium position was compietely independent of the injtial
lateral position of injection.

The pressure poﬁts'were connected to a differential manometer/
transducer system capable of detecting changes in the pressure drop down
to approximately 1073 inches of water, This level of sensitivity is
important because the extra pressure drop due to the presence of a drop
in the flow can sometimes be exceedingly small. The manometer/transducer
system is shown schematically in Figure 2. Since the total pressure drop
between the pressure ports was much larger than the fullscale sensitivity
of the transducer (a Validyne Engineering Co. Model DP45 with a fullscale

range of only 0.5 inches of water), the manometer was used to balance the
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(major) portion of the pressure drop due to the flow of the suspending
fluid alone. The transducer then detected only the relatively small
changes in the pressure drop due to the presence of the drop (or drops)
in the test section. This can be accomplished, in principle, by first
allowing the manometer to equilibrate with the pressure drop for flow of
the suspending fluid alone. Then the two legs of the manometer can be
physically separated by closing the valve between them (indicated by the
letter "D" in Figure 2). The differential transducer is connected across
the valve. Thus, provided the flow rate remains constant and no drops
enter the test region, the pressure at the bottom of the two manometer
legs will be identical, and the pressure "drop" across the transducer
will be zero. Uhen a drop (or drops) enter the test region, however, any
changes in the pressure drop (i.e:, AP+) will be recorded directly by the
transducer. In practice, our procedure for measuring wpt differed
sTightly from this due to the fact that the transducer response was found
to be highly nonlinear for small deflections of the membrane, Conse-
quently, the manometer was never allowed to completely equilibrate before
the valve (D) was closed. Furthermore, in order to enhance the pressure
signal, a train of six to ten drops was generally used in the test section.
Although the drops were equally spaced, it was found, as in (I),that the
pressure drop per drop was independent of the spacing if the drops were

separated by at least one tube diameter,
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The velocity of a drop, which was also independent of spacing if the
drop were separated by at least one tube diameter, was measured by deter-
mining visually thetime for transit between known points in the tube.

The volumetric flow rate Q was measured by collecting a measured volume

of fluid from the outlet of the test section over a measured time inter-
val. Photographs were taken while the drops were in the test section,
between the pressure taps using a 35 mm Pentax camera fitted with a
closeup lens. The refractive index of the fluid in the constant temper-
ature circu]ating bath was matched with the refractive index of the sus-
pending fluid in the manner outlined in (i), and this minimized distortion
in the photographs due to the curved surface of the tube. The gap width,
h was determined from the photographs.

The Newtonian suspending fluid was 95.75 wt. % glycerin in water.

The density of the solution, measured with a hydrometer, was found to be
1.251 + 0.001 g/cm3 during the course of the experiment, The viscosity

was also monitored‘during the runs, but was always found to be 4.17 + 0.02 P.
The slight variation is due primarily to the 0,1°C variations in temperature
which existed in the circulating water bath.

The viscoelastic suspending fluid was a 0.5 wt. % aqueous solution
of Dow Separan AP30, a polydisperse polyacrylamide with rheological pro-
perties that have been extensively studied (Leal, Skoog, and Acrivos, 1971;
Huppler et al., 1967a,b). One difficulty in comparing experimental results
for the Newtonian and visccelastic suspending fluids is to determine an
appropriate viscosity for the Separan solutions since these show a strong
shear-thinning effect. However, we follow the precedent of (I) and simply

evaluate the viscosity at the wall shear rate for the undisturbed flow
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using a power-law model (n = 0.45) to estimate the shear-thinning behavior
of the fluid. The resulting values of the suspending fluid viscosity at |
the flow rétes for the present experiment can be determined from Table 1.
Unfortunately, the viscoelastic fluid viscosity was found to vary sig-
nificantly from batch to batch of the Separan solution. Aithough care was
taken to prepare each batch of suspending fluid in an identical manner,
variations in the fluid viscosity up to 10% appeared to be unavoidable.

In addition to a shear-thinning viscosity and normal stress differ-
ences in simple shear flow, dilute polymer solutions exhibit a finite
response time in unsteady (Lagrangian or Eﬁ1erian) flow. This character-
istic time is associated with the fluid's adjustment at the macromolecular
level to a change in the bulk deformation gradient. When the fluid time-
scale is comparable to the characteristic timescale of a flow, the response
of the system may be governed, at least in part, by‘there1atTVe‘magnitude
of these timescales. The ratio of the fluid response time, 8, to the
timescale of the flow, t{i.e. the timescale for variation in the deformation
rate as seen by a fluid element), is the Deborah number, defined as De = 8/7.

As far as the present experiment is concerned, if the suspended drop
were sufficiently small, it would move with the local fluid yelocity, and
hence the flow would be steady everywhere, Furthermore, the flow field
at any point would be nearly simple shear flow, and consequently the non-
Newtonian properties could be described compjete1y by vafiations in the
viscosity and the normal stresses in a viscometric flow. However, when
the drop is not asymptotically small, as is the case in the present ex-
periments (cf. (1)), the drop travels at a velocity which differs from

the Tocal suspending fluid velocity. As a result, fluid elements
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experience a local acceleration as they move around the drop. This un-
steadiness is a possible source of time-dependent non-Newtonian effects.
The importance of such effects can be measured by De. The appropriate
timescale fof the flow. 1is approximately 2DAR /(U - V), where the
difference in velocity between the drop and the surrounding suspending
fluid 1is estimated to be (U - V), and 2DAR, is the "length" of the
deformed drop (see section 3). The characteristic time for the fluid can
be estimated from steady shear flow data, employing a constitutive model
to relate 8 to normal stress measurements. We have used the contravariant
form of the convected Maxwell model for this purpose, and 6 has been
evaluated at the wall shear rate. Our estimates show that the maximum
value of De under the conditions of the present experiment is approximately
0.20. Most previous experimentalevidencesudgésts that time-dependent non-
Newtonian effects are only significant when De > 1 or 2. Thus, we expect
to be able to interpret the experimental results reported here largely in
terms of the .fluid behavior in a steady simple shear flow.

The drops consisted of solutions of Dow Corning silicone oil mixed
with carbon tetrachloride. The viscosity of the drops. 1 was determined
primarily by the amount of carbon tetrachloride added. The values of
g = ui/uo and T = uOV/Y for the systems used are listed in Table 1. The
density differences employed in this study were small, never exceeding
0.04 g/cm3. Nevertheless, the changes induced over this rangé of Ap will
soon be seen to be both qualitatively and quantitatively significant.
Indeed, this magnitude is apparently sufficient to expose the asymptotic
behavior for "large" values of 4p in such quantities as AP+RO/uOV or U/V.

These are important findings since density differences of this magnitude
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are likely to be common in many systems of interest, in spite of the
fact that no account has been taken of them in the majority of existing
theoretical studies.  The analysis of Hyman and Skalak (1972b), mentioned
in section 1, provides a good example. Calculations were made for ap*
and U for liquid drops taken as a model of erythrocytes in capillaries.
It was assumed that the drops were neutrally buoyant and concentrically
Tocated, even though the authors point out that the density of erythro-
cytes differs from that of the suspending plasma by 0.07 g/cmg. The
neglect of even relatively small density differences may turn out to be

a significant shortcoming of this and similar calculations.

The dimensionless parameter, T, characterizes the relative magni-
tude of viscous stresses as compared to interfacial tension forces at the
drop surface, and is the inverse of what is often called the capillary
number. This parameter was varied in the present experiments through
yvariations in the flow rate V. The interfacial tension, vy, was measured
using a Dunuoy ring tensiometer. The measured values are 22 dynes/cm and
26 dynes/cm for silicone oil drops with the Newtonian and viscoelastic
suspending fluids, respectively.

The flow parameters, namely the size of the drops and the flow rates

used in this experiment, are listed in Table 2.

3. Experimental Results

b + > i3 1
Measurements of 4P , U, shape, and distance from the wall, h, have

been made for the thirteen systems listed in Table 1. The material pro-
r)

1

perties of each system, namely the drop viscosity and density, were chosen
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so that comparisons between them would reveal the effects of the individ-
ual variab]es‘oﬁ the dependent quantities, such as AP+ or U. Furthermore;
comparisons between selected Newtonian and viscoelastic suspending fluid
systems reveal the qualitative effects of viscoelasticity on the measured
quantities. Finally, comparison between the data for the non-neutrally
buoyant (eccentric) drops studied here, and the corresponding results for
neutrally buoyant drops described in (1), provides a further jndication
of the effects of density differences between the two fluids. Measure-
ments were made for each system for three flow rates (0.3 <V < 0.8 cm/s)
and for six drop sizes (0.5 < X < 0.8). Thus, two material properties,
o and Ap, and two "flow parameters", V and A, have been independently
varied. The main results are presented in four parts, organized according
to the specific property which is being varied, rather than the quantity
being measured. This scheme of presentation facilitates discussion of
the results, since the variation of’a single experimental parameter often
affects more than one measured quantity simultaneously. Mechanistic ex-
planations for the results are proposed whenever possible, and the ranges
of their validity over the parameter space are estimated. In addition,
the data are compared in section 5 to the small-A theories of Brenner
(1973) for &P" and Hetsroni et al. (1970) for U, which account explicitly
for the eccentricity of the drop's position in the tube.

fhe data for AP+RO/UOV and U/Y for each size drop and each flow rate
are tabulated in Table 3. 1In an attempt to characterize the degree of
drop deformation, a parameter D was defined as the maximum linear dimen-
sion of the drop (as measured from photographs) rendered dimensionless by

the undeformed drop diameter ZARO. Clearly, the parameter D is insufficient
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to describe the detailed shapes assumed by the drops during flow. We may
note in this regard that the equilibrium drop shapes are actually non-
axisymmetric due to the eccentric lateral positions of the drops for

Ap # 0. Nevertheless, measurements of D will be useful for the purpose
of comparison between various systems. Representative data for D and h
will be presented later in this section. A complete accounting of
numerical values for D and h is given by Olbricht (1980). The drop
typically undergoes a larger deformation in the viscoelastic suspending
fluid than it does in the Newtonian fluid under comparable flow conditions..
Furthermore, the gap width, h, appears to be larger for the viscoelastic
fluid, a result which we shall discuss in more detail in section 4.

Let us now turn to a more detailed examination of the data. In this
section, we focus simply on the dependence of such variables as AP+, u/v
and D on the independent parameters I', o, A and Ap/po. These results are
then discussed in section 4 with the objective of obtaining a qualitative
understanding of the underlying physical mechanisms which are responsible

for the aobserved trends.

3.1 Average Velocity

Let us now consider effects of the bulk flow rate or equivalently,
the average velocity, V, for fixed values of A, 0, and AD/DO. Measure-
ments were made for three values of the average velocity, V = 0.32, 0.56,
0.80 cm/s, for each of the systems listed in Table 1 (including six drop
sizes). In each case, the Reynolds number, Re = OORDV/MO was very much

less than unity, and a dimensional analysis of the problem thus suggests
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that the primary effects of the bulk velocity in the case of a Newtonian
suspending fluid should be manifested through variations in the parameter
I = uOV/Y. As noted earlier, this parameter gives the relative magnitudes
of viscous and surface tension forces, and thus controls the degree of
drop deformation. In the case of a viscoelastic suspending fluid, the
rheological properties also depend upon the magnitude (and form) of the
velocity gradient tensor and this provides the potential for additional
dependence on V. The effects of V on AP'R /u V and on U/V for both New-
tonian and viscoelastic fluid systems are illustrated in Figure 3, where
AP+RO/MOV and U/V are plotted as a functiOﬁ of T for several systems

which have approximately the same values of ¢, A, and Ap/oo. Also shown
are results for AP+RO/uOV and U/V as a function of T for the ngutra]1y
buoyant case studied in (I). The differences between the two non-neutrally
buoyant Newtonian systems are primarily a consequence of the difference in
drop size (X = 0.62 and A = 0.72, respectively), and this is also true of
the two viscoelastic fluid cases from this study. The differences between
the present results for A = 0,72 and those obtained in (I) are a conse-
quence of the difference in Ap/po (0.037 and 0, respectively). We shall
indicate the dependence of AP+RO/ﬁOV and U/V on A and AD/DO in subsequent
sections of this paper. Here, let us concentrate on the effect of vari-

ations in T,

Newtonian Suspending Fluid

One consequence of an increase in the Tlow rate (i.e., an increase in
+

APR

PRy

ny
0

3

I'),is a Tower value for the dimensionless additional pressure drop
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for every Newtonian fluid system studied. Indeed, for system 4, if the
size of the drop is fixed and the flow rate increased, the decrease js-
sufficient to cause AP+R0/UOV to become negative at the highest flow rate.
In general, it appears that AP+RO/u0V approaches a constant asymptotic
value for the highest flow rates. This result is noteworthy because it
indicates that it is not possible to indefinitely lower the resistance to
flow associated with a drop by simply increasing the flow rate. The vel-:
ocity of the drop was always found to exceed the average velocity of the
fluid. Furthermore, an increase in the average velocity V resulted in an
increase in the relative velocity of the drop, U/V, in every case. It

may also be noted that the shape of the drop, as measured by D, shows a
greater deformation for increased flow rates. In addition, non-neutrally
buoyant drops attain an equilibrium position which is farther from the
wall as the average velocity increases, while the increased deformation
causes the gap between the drop surface and the wall to increase even for
neutrally buoyant drops. All of these effects of increased avérage veloc-
ity are $lightly more dramatic for larger drops. Furthermore, the identical
qualitative trends are observed for both neutrally buoyant and non-
neutrally buoyant drops, indicating that drop eccentricity is not an

important factor with regard to flow rate variations.

Viscoelastic Suspending fluid

The most significant result for the case of a viscoelastic suspending
fluid is that the effects of variations in the average velocity {or I'),

are qualitatively identical to those discussed above for a Newtonian
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suspending fluid. 1In particular, it is evident from Figure 3 that
+ . . . .
Ap Ro/uov decreases and U/V increases in response to an increase in the

flow rate at a rate which is very close to that for.the Newtonian case.

3.2 Drop Size

The effects of drop size were studied for each system by taking
measurements for six different sizes, 0.51 < A £ 0.87. The larger sizes
are directly comparable to those chosen in (I) for neutra]ly buoyant drops.
Although the dimensionless radius, A, varies by only about one-half, the
drop volume varies by over a factor 6f four in these experiments. Al-
though it is impossible to illustrate all of the data, Figure 4 provides
an indication of the dependence of 7 on A, The degree of deformation
as a function of A is shown for systems with Ap/pb = 0.04 in Figure 5.

Let us now consider these results in detail, beginning with the Newtonian

suspending fluid systems.

Newtonian Suspending Fluid

The dependence of the additional pressure drop, AP+, on the size of
the drop is not qualitatively changed by variations in Ap/po. Thus, although
the majority of systems studiéd here show a monotonic in;rease in AP+RO/uOV
with drop size, the preQious work on neutrally buoyant drops shows clearly
that this behavior must depend upon the value of g. In particular, for o
small enough and X large enough, the extra oressure drop will decrease
with increased drop size, _for the simple reason that fluid of higher

viscosity is being replaced by fluid of lower viscosity. The fact that

+ . N . . . s .
AP RO/uOV increases with drop size in all cases shown in Figure 4 is almost
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certainly a consequence of the fact that the minimum value of ¢ was only
0.3, and the maximuﬁ in A was 0.87. Indeed, the system 4 (see Table 3)
illustrates a partial transition to the small g, large A behavior noted
in (I). This system has the Towest viscosity ratio (o = 0.30) of those
studied here, and the additional pressure drop %irst increases with

aP* in this particular system, achieves a maximum around A ~ 0.6 (for

V = 0.80 cm/s), and then decreases as the size of the drop is made

larger.

In contrast to the effect on AP+, the qualitative dependence of the
relative velocity of the drop on drop size does depend on the eccen-
tricity of the drop. It was shown in (I) that the velocity ratio U/V for
a neutrally buoyant drop decreases monotonically with increasing A until
a constant 1imiting value is attained around A ~ 0.9, The least non-
neutrally buoyant drops studied here, system 4 (Ap/po = 0.011), also show
a monotonic decrease in U/V up to A = 0.87, which was the largest value
covered in this study. However, for the other non-neutrally buoyant
systems(Ap/pO = 0.02, 0.04), U/Y first increases with A, attains a maxi-
mum around A = 0.6 - 0.7, and then decreases monotonically with further
increase in A. The maximum aﬁpears to be more pronounced for the lowest
flow rate in each case.

Finally, let us consider the effect of drop size on the degree of
droplet deformation. Representative data for the Newtonian suspending
fluid are shown in Figure 5, where the deformation parameter D is plotted
as a function of the viscosity ratio for three different size drops.

Here, D is the ratio of the maximum linear dimension of the drop to its
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undeformed diameter. It can be seen from Figure 5, that the drop under-
goes larger shape deformations as its size (i.e., A) is increased. In
contrast to this, the relative degree of deformation in an unbounded
creeping flow would be independent of the drop size. However, in the
present case, the drop is deformed, in part, due to the presence of the
walls, and it is this effect which is presumably responsible for the ob-

served increase in deformation with Targer A.

Viscoelastic Suspending Fluid

The value of APT remains positive for all systems in the present
study with a viscoelastic suspending fluid. Not only is a monotonic
increase in AP+RO/uéV observed as the drop is made larger, but both the
rate of increase andthe actual nondimensicnalized values of AP+RO/uOV are
apparently independent of all the material parameters, including o (cf.
Figure 4). No maximum or asymptotic 1imit is observed for AP+RO/pOV
over the size range covered.

The value U/V as ‘a function of A (Table 3) shows no maximum for the
viscoelastic suspending fluid systems. Instead, U/V only decreases mon-
otonically with increasing drop size af a rate which again seems to be
independent of other materia]‘parameters, including o.

The quantitative influence of viscoelasticity on drop mobility
depends on drop size. A coﬁparison between various Newtonian and visco-
elastic systems shows that U/V is often larger (especially at the Towest
value of V) in the viscoelastic systems for small drops, but always smaller
for large drops in the size range covered here. Typical curves for the

difference between U/V for the Newtonian systems and U/Y for a
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corresponding viscoelastic system (same Ap/po, o) are snown in Figure 6

as a function of A.

3.3 Drop Viscosity

The effect of drop viscosity relative to the viscosity of the sus-
pending fluid was studied by taking measurements for various grades of
drop fluid at each value of Ap (0.1 < ¢ <~ 5). The results are shown

in Figures 4, 5 and 7, as well as Table 3.

Newtonian Suspending Fluid

It can be seen from Figure 4 that the magnitude of AP+RO/ﬁOV in
Newtonian fluid systéms is critically dependent on the value of o. If
0 is sufficiently large, the additional pressure d}op is always positive,
but if.G is small (not merely less than unity), the sign of AP+ can be
negative, depending on other material parameters and A.

FEquation (1) predicts that the drop yelocity shculd decrease with o
for undeformed drops in a Newtonian fluid. This trend is also shown by
the data in Figure 7, even though the drops deform. However, results
from Table 3 show that the effect of 0 is larger for more eccentric drops,
a feature that cannot be predicted by the small-A theory.

Finally, drop deformation, as measured by D, shows only a slight
increase with 0, as shown in Figure 5. Furthermore, the drop viscosity
does not affect the gap width between the drop and the tube wall over the

entire range of experimental conditions.
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Viscoelastic Fluid Systems

Let us now turn to the effects of drop viscosity when the suspending
fluid is viscoelastic. Figure 7 shows clearly that for eccentric drops,
the additional pressure drop is independent of the value of 0 over the
range of o studied, in marked contrast to the Newtonian result. Indeed,
no systematfc changes in the value of AP+ can be discerned (for a given
value of Ap/po) even though o varies by more than a factor of fifty. The
additional préssure drop is positive for all cases studied, even for
viscosity ratios as low as 0 = 0.09. Furthermore, AP+RO/UOV is larger
for viscous drops 1in a Newtonién suspending fluid than for the same drops
in a viscoelastic system, if all other parameters remain unchanged. The
opposite is found for inviscid drops.

No major effect of o wés found on either the drop velocity or the

gap width for a viscoelastic suspending fluid.

3.4 Density Difference

Finally, let us consider the effects of the eccentric position of
non-neutrally buoyant drops. The eccentricity of the drop is determined
by the difference between the specific gravity of the drop fluid and the
specific gravity of the suspending fluid if the other variables are fixed.
Specifically, the equilibrium position of the drbp is determined by the
balance between buoyancy forces and hydrodynamic 1ift generated in the
gap between the drop and the tuEe wall. The value of AO/QO ranges from

zero in (1) to 0.04 in the present study.
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Newtonian Suspending Fluid

The value of the additional pressure drop increases for a Newtonian

suspending fluid as a 'drop of fixed size is made more eccentric by
increasing the drop density. Also, the velocity of the drop decreases,

and the drop suffers a larger deformation as the eccentricity increases.

These trends for AP+RO/MOV and U/V are illustrated in Figure 8. It
can be seen that the sensitivity of AP+RO/UOV to variations in AD/DO
diminishes above AD/DO = .02 for the drops with A = 0.83. In contrast,
the smaller drops show an appreciable increase in AP+R0/UOV up to AD/OO =

0.04. Small drops also show a much stronger dependence of U/V on Ao/po

than the corresponding large drops.

Viscoelastic Suspending Fluid

The same qualitative trends noted above for Newtonian systems were
also observed for viscoelastic suspending fluids, though the effects are
less pronounced.

A key difference between the two cases is in the gap width, h. For
a given value of Ap/po, drops suspended in a viscoelastic fluid are farther
from the wall than those in a Newtonian fluid. For example, the values of
h for two corresponding viscoelastic and Kewtonian systems, with AO/DO =
0.019, are 0.32 (System 6V) and 0.12 (System 2) for A = 0.62, and 0.18

(System 6V) and 0.12 (System 2) for A = 0.83.
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Comparison between the results obtained here and those in (I) for
neutrally buoyant drops shows that the effects of a given magnitude of
Ap/po on ‘the drop eccentricity decreases as the size of the drop is made
larger. Consequently, a given value for Ap/p0 induces a relatively

smaller change in the measured quantities as the drop is made larger.

4. Discussion

It has already been pointed out that the eccentric lateral positions
of the drops in the horizontal tube in this experiment are a consequence
of the density differences between the drop fluid and the fluid in which
the drop is suspended. The initial lateral point of injection in no way
affects the equilibrium position of the drop during the course of the
experiment. Rather, this position depends on a balance between buoyancy
and hydrodynamic 1ift forces which keep the drop from contacting the wall.
Photographs of the drops in flow suggest the possibility that the fluid-
filled gap between the drop's lower surface and the tube wall is
actually a Tubrication layer capable of producing an upward thrust on
the drop which balances buoyancy. It is essential, then, that the drop
is able to deform in the flow, since a spherical drop can generate no
hydrodynamic 1ift. The lateral position of an undeformed neutrally
buoyant drop would be determined exclusively by its initial lateral
position in the tube, provided the Reynolds number and Deborah
number are sufficiently small that "lateral migration effects"” are
negligible (cf. Chan and Leal, 1979).

For non-neutrally buoyant deformable drops, previous lubrication

analyses of related flows may be useful. The most relevant study is by
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Lighthill (1968), who considered the motion of an elastic particle taken
as a model for the red blood cell moving through a capillary in a New-
tonian suspending fluid. The particle in Lighthill's theory is assumed
to be neutrally buoyant and close-fitting, but capable of deforming to
“squeeze through" the tube. Lighthill applied classical lubrication
theory to determine the flow field in the gap between the particle and
the wall. The results predict that both the thickness of the Tubrication
layer and the additional pressure drop should vary with U%.
The qualitative relevance of Lighthill's analysis for non-neutrally
buoyant viscous drops can be tested by p1otting measured values of h2 as
a function of U/Ap. The results for both Newtonian and viscoelastic sus-
pending fluids are shown in Figure 9. Each point for the Newtonian
systems actually represents an average value for h2 over all drop sizes
for each choice of drop fluid and V, since it was previously found for
Newtonian systems that there is nq measurable variation of h with A for
sufficiently large values of Ap/oo where the lubrication approximation is
likely to be most valid. In the vyiscoelastic systems, h varies with A
and in these cases only the values of h for the largest drops were used
in Figure 9. The linear relationship between h2 and U/Ap suggests that
indeed, the velocity of the particle and gap width are determined by
forces generated in a Tubrication layer, albeit one which acts on only
one "side" of the drop, since the particTeslin the present study are
neither concentric nor close-fitting. The analysis of Lighthill applies
to solid elastic particles, -and the data for the Newtonian caseS shown
in Figure 9 exhibit a slight dependence on the drop viscosity, esnecially

near the origin.
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Although no direct dependence of the drop velocity and gap width on the
value of o could be established, Figure 9 suggests the coefficient of
proportionality for the Jubrication correlation between h2 and U is Targer
for smaller values of o for the Newtonian suspending fluid. Indeed, when
the lubrication analysis is modified to account for the fact that the
particle is a liquid drop, the gap thickness h remains dependent on U%,
even as 0 - 0, but the constant of proportionality increases by a factor
of two as o0 decreases fron infinity to zero. Also, the lubrication esti-
mation of the dependence of the additional pressure drop on U% is strongly
affected by o, as will be seen shortly.

The pressure generated in the lubrication layer which balances the
non-neutral buoyancy of the drop is proportional to uOU/h2 for any value
of 0. Thus, we expect that the effect of an increase in the viscosity of
the suspending fluid will be a greater gap thickness for a fixed value of
Ap/pO and, strictly, for fixed o. However, since the variation of the
coefficient of proportionality withois relatively small for Newtonian
cases over the range of o covered here, and since no variation can be
discerned for the viscoelastic cases, we approximate each set of data by
a single curve. The values of h2 and hence the slopes of the two lines
which approximate the Newtonian and viscoelastic data shown in Figure 9
should therefore be related to the viscosities of the suspending fluids.

The viscosity of the.Newtonian solution, 95.75% aqueous glycerin, was
determined to be 4.17 P. The viscosity of the shear-thinning 0.5% Separan
solution depends strongly, of course, on the flow rate. However, for
sufficiently small values of V (and U), the viscosity is just the zero-
shear rate viscosity which we have estimated from viscometric data to be
~14.5 P, Thus, the ratio of slopes in Figure 9 for small values of U
(i.e., near the origin) is expected to be 14.5/4.17 = 3.5. This agrees
well with the actual ratio of 3.1.

It is surprising, however, that the linear relationship between U

2 . . .
and h™ holds for the viscoelastic case over a wide range of flow rates.
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The effective viscosity of the suspending fluid, which can be deduced
from Table 1, decreases by as much as 70% based on the wall shear rate
as the flow rate increases over the range covered in Figure 9. We would
expect, on the basis of the dependence of h2 on'u  alone, that h2 should
decrease by as much as 50% from its "zero-shear rate" value due to shear-
thinning. Instead, there appears to be no effect of the variations in.
the suspending fluid viscosity. We believe that the explanation for this
fact involves the normal stresses which are present in the viscoelastic
"suspending fluid. The primary normal stress difference gives rise to a
hoop stress by creating a tension in the curved streamlines around the
drop. This tension in the streamlines is greatest at the location of
greatest shear rate, which is clearly in the gap between the particle and
the tube wall. The net effect of normal stress induced hoop stresses is
thus to "push" the partic]é away from the tube wall, toward the center-
line. Now the magnitude of the primary normal stress difference for 0.5%
Separan AP-30 increases approximately as the square of the shear rate in
the‘range of interest (Leal, Skoog and Acrivos, 1971), but the yiscosity
of 0.5% Separan AP-30 decreases as the square of the shear rate. Thus,
as U is made larger, the "increasé'in h? from the increased hoop thrust
and the decrease in h2 which is caused by the decrease in suspending

fluid viscosity tend to balance one another. An apparent consequence of
this off-setting effect is that the qualitative vafiation of h? with U is
not changed in a viscoelastic fluid from the Newtonian lubrication result.
The Tubrication analysis for a solid particle predicts also that the
additional pressure drop AP+ should vary with U%. This result depends

crucially on the axial force on the lubrication surface which, in turn,
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depends on the shear stress at the particle surface. If the particle is
fluid, the appropriate boundary condition at the particle surface is con-
tinuity of stress and velocity rather than the no-slip condition which is
appropriate for a solid particle. Most notably, the shear stress approaches
zero on the drop surface as the viscosity of the drop tends toward zero.
Hence, the axjal force evaluated from lubrication considerations alone
must also approach zero in the same 1imit and the lubrication estimate for
the axial force clearly becomes inadequate as.the viscosity of the drop is
made smalier. . In this case, the drag on the particle, and therefore the
additional pressure drop, must be determined by other mechanisms. We
expect, then, that AP+ will scale with U!/2 only for "highly viscous" drops.
Data from Table 3 show that this is the case. For the more viscous drops,
System 2 and System 6 (g = 2.63 and 2.68, respectively), the measured
values for AP+ scale (to within 20%) with U%. Furthermore, when the

lubrication approximation is written for a shear-thinning fluid using a

power-law model, it can be shown that APT should vary with Un/n+1 wheré n

is the power-law index. Thus, for fluids with n < 1, aP¥ should be Tess
sensitive to U than for a Newtonian fluid (n = 1). Indeed, the data for
AP+ from Table 3 for viscous drops suspended in 0.5% Separan (Systems 2V
and 5V) scale with y0-31 (to within 20%), the exponent computed using
n = 0.45 (see section 2).

The lubrication-model also provides a useful qualitative explanation
of the fact, noted in section 3, that aP* becomes relatively independent
of Ap/p for large drops,"once Apfo exceeds ~v0.02. Frem the point of viewof
1ubricationtheony,asthegapbecomessma]]erittakesSma11erdecreasesinthe

gapwidth to yield a given incremental increase in the hydrodynamic 1ift.
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This reflects the fact that pressures in the lubrication layer scale with

l/hz. Thus, as Ap/p is made larger, the variation in h which is required
to balance drop buoyancy becomes smaller, and quantities such as AP+,
which depend on h itself, should become relatively insensitive to further
increases in A4p/p. [This reasoning assumes that &P" shows a dependence on
h which is weaker than l/hz. In fact, Tubrication analysis predicts that
APY varies as only 1/h.] Indeed, it would take an infinite value of Ap,
from the strict viewpoint of lubrication theory, to reduce the gap width,
h, to zero. Thus, dh/3(40) must obyiously decrease as Ap increases. For
example, if we consider the case of large drops (A < 0.83) in a highTy
viscous fluid (0 > 1), with reference to Figuré 8, the values for h are
approximately 0.30, 0.12 and 0.10 corresponding to AD/DO ranging from 0.0,
0.020 to 0.037, respectively. Further, since h will be smaller for a
larger drop (other factors such as Ap Being equal), Targer drops should

be expected to display asymptotic behavior for Tower values of 4p/p.

The small drops, too, will become Tless sensitive to Ap, but only at

larger values of AO/DO, apparently outside the range of this study,

We have already noted that drop deformation is essential to the gen-
eration of hydrodynamic 1ift. This would seem to suggest that the results
for AP+ and U/V should show a dependence on the degree of deformation
induced by the flow. Indeed, it was noted in the ﬁreceding section, for

both the Newtonian and viscoelastic suspending fluids, that the effects

of an increase in the value of the deformation parameter I' were an in-

creased mobility and a decreased additional pressure drop. The theoretical
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analyses of Hyman and Skalak (1972b) and Fitz-Gerald (1969) suggest that
any factor which causes increased drop deformation will result in a
simultaneous increase in the drop's relative velocity and a decrease in
the additional pressure drop. Together these factors indicate a decreased
resistance to flow as the flow rate increases, a behavior which is at
least superficially similar to a "shear-thinning" rheological response.
The data for both the Newtonian viscoelastic systems studied here tend to
confirm these implications of the available theories.

Although drop deformation is sensitive to the value of the flow rate
(through 1), especially for the Newtonian suspending fluid cases, it is
relatively insensitive to the drop viscosity. This is not altogether
surprising. Taylor (1932) showed that the degree of drop deformation in
a simple shear flow with negligible wall interaction is proportional to
(190 + 16) /(160 + 16). This coefficient yaries only from 1.00 to 1.19 as ©
varies from zero to infinity. Although the flow field in the present
study is not simple shear and wall effects cannot be neglected, D shows a
variation with ¢ which is comparable in magnitude to Taylor's yesult.

The present data and Taylor's theory both indicate that a more viscous
drop deforms to a greater degree than a less viscous gne in a Newtonian
fluid, but the measured effect is so small that it does not lower the
additional pressure drop appreciably.

The value of the drop viscosity makes a more substantial "direct"
contribution to the additional pressure drop for the Newtonian case
through the simple replacement of suspending fluid by drop fluid of a

. . . . . + s , . .
different viscosity. The contribution to AP from this mechanism is
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clearly negative for o < 1 and positive for o > 1, However, the fact that the
profile of data for AP” as a function of A for System 4 exhibits amaximumat an
intermediate value of X inaNewtonian suspending fluid for viscosity ratios
near unity suggests that there are other competing mechanisms involved in the
determination of apt . wehdvenoteda1readyonesuchnmchanism,namely,drop
deformation which increases with X and tends to cause a decrease in the additional
pressure drdﬁ-;_This effect is relatively insensitive to ¢ and other material
parameters as noted-above. Other mechanisms whicﬁ contribute to the
additional pressure drop have been shown by the experimental results of
(1) and the calculation of Brenner (1973) for Newtonian suspending fluids
to include a1teratioh of the flow field egternal to the drop and inter-
action between the drop and thé tube wall. Both of these effects increase
in magnitude with an increase of A and contribute an increment to ap*
which is positive for all choices of the material parameters. For o > 1,
these Jatter mechanisms and fluid replacement all contribute to an in-
crease in AP+ with A. For o < 1, on the other hand, the effects of flow
field alteration by the drop and the walls compete with fluid replacement
and the effect of variations in AP* with A depends upon which is dominant.
Apparently, for small A drops in the Newtonian suspending fluid, flow
field alterations are more important and AP+ increases with A, even for

o < 1. Eventually, however, the fluid replacement effect must become
dominant, and the value of Ap* then decreases as the drop size is increased
further. Thus; for system 4, which has a_re]ative]y Tow viscosity ratio,
o = 0.35, the positive coﬁtributions of flow field alteration and wall
interaction are eventually cancelled, as A is made larger, by the negative

contribution from simple fluid replacement. The important inference here
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is that simple fluid replacement must eventually establish the large A

behavior for ApF regardless of the additional mechanisms that are signif-
icant for smaller drop sizes, and the magnitude of AP+ will then depend
mainly on the value of 0. It is, of course, not clear how large A must
be for the fluid fep]acementinechanisn1to become dominant, and it must be ex-
pected that this will depénd significantly upon all the material parameters.
Support for this view is provided by our Newtonian suspending fluid data
for the largest values of A which show that AP+ increases with o at a
rate which appears to be independent of the drop eccentricity, as would
in fact be expected when the dominant mechanism is simple fluid replacement.
Equation (2) indicates that the other mechanisms, such as flow field
alteration, will also act to increase AP+ as o is made larger, but in a
manner which depends on the degree of eccentricity. A1l of the Newtonian
suspending fluid data do, in fact, display larger values of AP+ with in-
creased values of O.
A very different result was noted in Section 3 for the viscoelastic
suspending fluid. In this case, the effect of drop viscosity on the
extra pressure drop was found to be negligible. This result is apparently
a consequence'of the limited range of values for A covered by the experi-
ments. It was shown in (I) that AP+ for sufficiently large neutrally
buoyant drops in a viscoelastic éuspending fluid is dominated by the
simple fluid replacement mechanism, and the sign of AP+, which is positive
for small A, will depend, as in the Newtonian case,uponwhether o is greater
or less than unity. That is, for o < 1, AP+ eventually becomes negative

as A is made larger. In partial explanation of the independence of spt
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on 0 in the present experiment, even at the largest values of A, we can
suggest only that the vé1ues of A at which AP+-is dominated by simple
fluid rep1acement_[§éy, for example, the value at which Ap* changes sign
from positive to negative (for ¢ < 1)1, is larger for the viscoelastic

case than for the Newtonian suspending fluid. Apparently, the values of

A studied here were simply not large enough for the effect of fluid re-
placement to dominate contributions from the remaining mechanisms for non-
neutrally buoyant drops. For example, if the APt varsus A curves from (1)
for Newtonian System 3¢ (0 = 0.58) and viscoelastic System 7¢ (o = 0.44)
are compared, it can be seen that AP+ changes sign from positive to nega-
tive at a value of A = 0.95 for the Newtonfan case (3c¢c), but not until

A = 1.12 for the viscoelastic case (7c). From these observations, it may
be suggested that if A were made sufficiently large, APt for non-neutrally
buoyant drops would also begin to display a strong dependence on © owing'
-to fluid replacement.

This does not, of course, address the question as to why AP+RO/uOV
should be independent of @ for smaller values of A for drops suspended in
the viscoelastic fluid. One possibility is that the behavior of smaller
drops is dominated by elastic properties of the suspending fluid rather
than shear-thinning which is used to correlate the data for large drops.

The Deborah number from Section 2 is written as

(U -V)e

De = 1"
ZDARO

where ZDRRO is the "length" of the deformed drop, (U - V) is the difference
between the drop velocity and the suspending fluid average velocity, and

6 is the fluid relaxation time., Values Tor De in the present experiment
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are actually larger for the smaller values of A. The data for the visco-
elastic suspending fluid show that as A is made larger, D incfeases and U
tends toward V (i.e. U/V decreases monotonically). Both of the effects

of Tlarger A, in the range of A covered here, act to decrease the value of
De. This indicates that elastic effects should be more significant for

the smaller values of A studies here. This reasoning cannot hold, of
course, as A * 0 since in this 1limit, the particle velocity tends toward

the local velocity of the suspending fluid with AZ dependence, and hence,

De = 0. Thus, if e]astic effects are significant for any cases in this
experiment, we expect them to be observed for smaller but nonzero values of
A. It is possible that as A is increased from zero, De becomes sufficiently
large for the onset of elastic behavior in the suspending fluid which renders o
unimportant. = However, as the drop size is made larger, the gap width be-
'tween the drop and the wall decreases and so does De. The large A behavior
isthengévernedtn/the1ubricationcéhsiderations and eventually the simple fluid
replacement mechanismdescribed previogdty. It should be noted, however, that the
1argestva1ueof‘Deestimated'ﬁﬂ*thecohditions(yfthepresenteXperimentsis only
0.20,anditiSquallyhe1dthatstronge]astfceffectsarenotobservedunti1De'
is increased to a value of one or two. In point of fact, the "onset" value of

De at which elasticity is important for a given experiment can be verified
only by a systematic variation of the fluid response time which was not

done in the present study. The idea that domfnant fluid elasticity may

be responsible for the observed insensitivity to o for smaller values of

A must be regarded as speculative, We may, however, mention that results
from related experiments by Sigli and Coutanceau (1977) on a rigid sphere

(0.25 < A £ 0.75) sedimenting in a vertical cylindrical tube are at least
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qualitatively consistent with the suggestion of dominant elasticity for
relatively small values of De.. In that case, fluid elasticity was found
to have a strong effect on the drag on the sphere for values of the
Weissenberg number, We = GVO/R0 where Vo is the terminal velocity of the
sphere, as low as 0.05. It was obseryed that elasticity of the suspending
fluid was enhanced by the presence of the tub2 wall.

The data for the relative velocity of the drop shows a maximum at

intermediate A for some drops in a Newtonian suspending fluid. This
suggests that drop mobility, too, is determined by competitive effects.
Existing theoretical calculations for small X suggest that there are two
primary factors which determine the yelocity of eccentric drops in a
Newtonian fluid. Ffrst, there is the hydrodynamically induced slip vel-
ocity, which causes the drop to move at a velocity less than the undisturbed
velocity of the surroundihg fluid. Second, the drops move at a veTocitythat
. reflects the undisturbed fluid velocity at the radial position occupied

by their centérpoint, and the undisturbed velocity varies

relative to the mean, as a function of radfa] position (it may be
noted, for example, that the ratio of the local undisturbed fluid velocity
to the mean velocity, V, varies from zero at the tube wall to two at the
centerline in a simple Poiseuille flow). The drops in the present study
are not "small", but still, the velocities of the undisturbed pathlines
"occupied" by the drop apparently remain significant to the determination
of the drop velocity at intermediate values of A, and it is this fact

which we believe accounts for the qualitative changes in U/V as a function
of A as the density difference, Ao/po, is increased. Let us consider

these 1ideas in more detail.
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When Ap/po is small, the gap between the drop and the tube wall de-

creases as the drop is made larger and though the center of the drop remains
near the center of the tube, it gradually moves outward toward the wall,
thus occupying undisturbed streamlines with velocities lower, on average,
than those closer to the centerline. For example, Newtonian System 4 ex-
hibits a monotonic decrease in h from 0.40 for A = 0.51 to 0.16 for A = 0.87
for V = 0.56 cm/s (see Table 1), and U/V is expected, as a consequence, to
also decrease monotonically as it is, in fact, observed to do. On the

other hand, higher density drops show comparatively little effect of X on

h. For Newtonian System 6, for example, h varies only between 0.12 and 0.14
over the entire range of drop sizes. Since the data show that gap width
does not change with size, the center of the smallest drop must be situated
closer to the tube wall then the center of a larger drop in this case. Thus,
as the size of the drop increases in a Newtonian suspending fluid, the
center of the drop "moves" toward the tube centerline, and the drop occupies
more of the region of greater undisturbed velocities. As a result, the

drop at first moves with a greater relative velocity in the Newtonian sus-
pending fluid as A is increased.

However, the drop exhibits a maximum velocity around X = 0.7 for all
Newtonian systems except System 4. For ]argé drops with values of A > 0.7,
the drop nearly fills the tube and wall interactions, which tend to retard
the motion of the drop, apparént]y become more significant, as in the
neutrally buoyant case. Thus, U/V decreases with further increase in A unti]
A > 1. Then, U/V remains constant with increasing A since further increases
in volume lead to increases in drop length rather than changes in its
cross-section [cf. (I)].

In contrast to the Newtonian case, U/V is amonotonically decreasing function

of A forallof theviscoelastic suspending fluid systems which we studied. Once
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again, this result appears to be correlated with the relationship between A and
the gap width, h. We have already noted that h is significantly larger
for the viscoelastic suspending fluids than for the Newtonian fluids.

This difference is greater for émaller drops and Tower flow rates. In
addition, the viscoelastic systems show a monotonic decrease in the gap
width as the size of the drop increases for all flow rates. Thus, the
behavior for the viscoelastic systems is qualitatively similar to the
Newtonian System 4, the Jeast non-neutrally buoyant case in the present
study.

The suggestion that drop mobility depends, at least in part, on the
undisturbed pathlines sampled by the drop also helps to explain the
results of Figure 6 which show that U/V is often larger for small drops
in the viscoelastic systems compared to the Newtonian cases, but never
larger for Targe drops.  The cross-over in magnitude of U/V with A which
occurs in comparing results for Newtonian and viscoelastic suspending
fluids appear to be a consequence of differences in the undisturbed vel-
ocity profiles for Newtonian and viscoelastic fluids. We have already
noted that a Newtonian fluid flowing through a straight tube will exhibit
a parabolic velocity profile with a maximum local velocity at the tube
centerline which is twice the‘average veloctiy, 2Y. On the other hand,
if a power-law model with index n = 0.45 (see Section 2) is used to de-
scribe the suspending fluid, the undisturbed velocity profile is con-
siderably blunted neér the center of the tube. The maximum velocity on
the centerline is Tess than the Newtonian case, only 1.6 V. For a fixed
volume flow rate, the Newtonian fluid exhibits larger yelocities than the

viscoelastic fluid for dimensionless distances from the tube centerline,
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B, up toB=0.6. From B = 0.6 to B = 1.0 (the tube wall), on the other
hand, the power-law fluid exhibits the greater velocities. Since the
relative velocity of the drop depends in part on the velocity of the un-
disturbed streamlines occupied by the drop, it follows fhat small, highly
eccentric drops which occupy the region adjacent to the wall should move
more rapidly in a power-law fluid than in a Newtonian fluid (because the
shéar—thinning fluid itself ismoving faster). Thus, it is clear that the mobility
' of§g@llnon—néutra11y buoyant drops is favored for a shear-thinning fluid, at
least insofar as the undisturbed profiles are concerned. The data from
the present experiments show that increased values of Ap/p0 and decreased
values of V¥ (for Ap/p0 # 0), alone or together, cause the drop to assume
a more eccentric position in the tube. Figure 6 shows that U/V (Newt.) -
U/V (Visco.) is more negative for smaller values of ¥ and for larger
values of Ap/po. This is in accord with the SimD1e mechanism proposed
above. As asmall dropis made larger, however, more of the center of the tube
is occupied by the drop, i.e., B decreases, and the drop becomes less
~eccentric. The undisturbed velocity in this region is not only greater
than that near the tube wall, but is also re]athely greater for the New-
tonian suspending fluid than for the viscoelastic fluid. Thus, as A is
made larger, it may be expectéd that the mobility of drops will ultimately
be favored for the Newtonian suspending fluid.

We now turn to the relative magnitude of AP+ for the tWO suspending
fluids. It is noteworthy that AP+RO/pOV (and AP+ itself) in the visco-
elastic suspending fluid falls well below the Newtonian values, for-
approximatg]y equal values of o, A, and Ao/po. However, the complete

quantitative significance of this observation is difficult to assess,
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because the dimensionless values plotted in Figurd 3 for the viscoelastic fluids
usetheviscosityeva]uatedatthewa11shéar;rate. Since this is the highest shear
rate in the flow, the value of Hy used inEigure 3 is the minimumpossible value
for the particular undisturbed flow conditions and thus AP+RO/UOV

(as plotted) is the maximum value which could have been assigned to the
viscoelastic data for a given AP+, RO, and Y. Any other choice for g in
scaling AP+ will tend to drive thé Newtonian and viscoelastic data further
apart. Although AP+RO/MOV is obviously lower for the viscoelastic sus-
pending fluid, values for the dimensionless extra pressure drop in Figure
3 show simi]ér dependence on T for both su;pending fluids. It appears as
if the data correlate without need for explicit consideration of the
Deborah number, or any other viscoelastic parameter which depends, in
principle, on V. This seems to contradict our previous speculation that
ap* may be independent of o for smaller drops owing to elastic effects in
the suspending fluid. However, the data of Sigli and Coutanceau (1977)
suggest another possible explanation consistent with our results. Their
results show that the drag on a rigid sphere moving through a viscoelastic
fluid in a circular tube (0.25 < XA < 0.75) is considerably smaller than
the drag on the same sphere in a Newtonian fluid, even when shear-thinning
is taken into account. The décrease in the relative drag takes place as
WeA(= MOVO/RO) is increased from zero {Mewtonjan) to approximately 0.5 for
A = 0.5. For values of We » 0.5, the re]a{iVe drag is nearly inde-
pendent of We, and in this regime of We, the drag shows the same quali-
tative dependence on VO in both Newtonian and viscoelastic suspending
fluids, even though the magnitude of the drag is smaller in the visco-

elastic fluid. The implications of these results are that elastic effects
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are observed at values of We considerably smaller than usually expected,
and that these effects may become asymptotic in We at relatively small

values of Ue.

5. Comparison with Theory

Our discussion of the experimental results has focused until now on
a description of the qualitative effects of the various independent vari-
ables on the measured quantities. Now, a comparison between the data for
Newtonian fluid systems and the available theoretical calculations for
AP+ and U in a Newtonian fluid will hopefully provide additional insight
into the various physical phenomena involved and test the range of appli-
cability of the analyses. It should be rémembered, in making such a
comparison, that the analytical theories leading to équations (1) and (2)
are restricted to small dfops, A << 1, which have spherical shapes and
to a Newtonian suspending fluid. Furthermore, there is no consideration
of wall effects, except insofar as the bounding wall gives rise to the
undisturbed, Poiseuille flow.

Equation (1) for the relative drop velocity consists of two terms.
- The slip velocity, which arises due to the parabolic nature of the undis-
turbed velocity profile, is negative, indicating that the particle moves
more slowly than the adjacent fluid, and is independent of the lateral
position of the drop in the tube. The second term is more important here
and accounts fér the eccentric position of the drop due to its non-neutral
buoyancy. The small A expansion indicates, at leading order, that a drop
moves more with the velocity of a fluid element at the same radial position,
and it is the variation in this fluid velocity with radial position which

is responsible for the variation in drop velocity with 8.
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No theory presently exists for predicting the position of the drop
relative to the wall, i.e., B which appears in equations (1) and (2).
Although this position is presumably a consequence of a balance between
buoyancy forces and hydrodynamic 1ift forces, calculation of the latter
would require an accurate calculation of the deformed drop shape — an
exceedingly difficult problem. Consequently, (1) is not capable of
a priori predictions for some of the qualitative trends displayed by the.
data — thg variation of U/V with V, for example. However, 8 can be
measured from photographs and then used in (1) to evaluate U/V for quan-
titative comparison with the data.

Figure 11 shows U/V as a function of A for two systems selected to
illustrate the effect of o. Equation (1), using the appropriate measured
value for B for each case; is compared to the data. Qualitative agreement
between the two is good, inasmuch as a maximum value for U/V at intermediate
A*is predicted only for the systems which actually show one. Otherwise, (1)
predicts a monotonic decrease in U/Y as A is made larger. It may be noted
that the maxfﬁum in U/V actually results from a minimum in the experimen-
tally observed values of B as a function of A.

Quantitative comparison between the data and (1) shows that the effect
of 0 on U/V is not as significant as indicated by the slip velocity term.

The data exceed the predicted values for U/V for the high viscosity drop

systems, 2 and 6. However, the reverse is true for the low viscosity drop

systems, 3, 4, and 5. The coefficient in (1), 40/30 + 2),varies from 0.41
(6 = 0.30, System 5) to 1.07 (o = 2.68, System 2), while the term involying

B is independent of 0. The predicted variation in U/V with o for the
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range of values of o used in this experiment is then (1.07 -0.41) Xz.
However, the data display a much weaker dependence on o especially for
large values of A (see Figure 11).

The only means by which (1) predicts any variation in U/V with V is
through the measured value of B. Figure 11 shows that the variation in
U/V with V is not adequately predicted by (1). An effect not taken into
account in the derivation of (1) is the deformed shape of the drop. It
has already been suggested that deformation is partly responsible for the
observed increase in U/Y with V, but the theory which leads to (1) pre-
dicts that the deformation of the drop should ‘be unimportant if

_ MOVAS
Y

<< 1

The yalue of the Teft side of the inequality never exceeds 0.06 for the
range of material parameters used in the present study indicating that
drop deformation should be insignificant. Nevertheless, the photographé
show that the drop undergoes appreciable deformation, and the data show

a dependence on the degree of deformation, as already outlined in Section
3. A mechanism that could induce increased deformation which is not in-
cluded in the theoretical analysis is the hydrodynamic interaction between
the drop and the wall.

Equation (2) for the additional pressure drop also contains one term
for the concentric contribution and another for the effect of non-neutral
buoyancy. The neutrally buoyant term depends on AS while the non-neutrally

3

buoyant one contains BZA . Table 4 shows the magnitude of these terms,

relative to each other, at the values of ¢ used in the present experiment.
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The predicted contribution due to drop eccentricity is always posi-
tive and only weakly dependent on the viscosity of the drop. The concen-
tric term, which includes the contribution due to the replacment of fluid,
can be positive or negative, depending on the viscosity ratio but is
always considerably smaller in magnitude than the eccentric term. The
effect of drop eccentricity is always to increase AP+ over the neutrally
buoyant case. The value of o where AP = 0 s predicted to depend on
82/12, decreasing from o = 0.48 for 82/12 =0 too=0 for éz/kz = 0.5.

Once again, B must be evaluated from photographs of the drops for
quantitative comparison ofrthe theoretical equation (2) with the data,
The dependence of APf on A for selected Newtonian systems is shown in
Figure 10. For viscous drops, agreement between data and theory is good
with the values for AP* from the data exceeding the value given by (2)
by 50% at most. The deviation is smaller for small values of A which is
to be expected sihce the theory is strictly valid only in the small A
1imit. Somewhat surprisingly, though, quantitative agreement is also -
better ét large values of A for viscous drops. As A is made larger, the
degree of drop eccentricity decreases as indicated by the measured value
for B, 0.1 < B8 < 0.2 for A > 0.7. For such small values of the eccen-
tricity parameter, the contribution to AP+'due to non-neutral buoyancy in
equation (2) is small compared to the remaining term. Thus, it appears
that agreement is better when the neutrally buoyant term is the dominant
component of AP+. The small A theory lacks the effect of the wall which
apparently acts to increase the necessary additional pressure drop.

Agreement between data and theory is not as good for Jow viscosity

drops because the eccentricity term, which unrealistically neglects the
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effect of the walf, is relatively more jmportant for low values of o than
for highly viscous drops, as indicated in Table 4. As a result, the
value of AP calculated from (2) even has the incorrect sign over the
entire range of A for System 4 (o = 0,30). The deviation between theory
and experiment increases Qith'k, a consequence (presumably) of an increase
in the magnitude of the neglected wall interaction. On the other hand, in
the small X region, quantitative agreement is still satisfactory, even for
low viscosity drops.

Dependence of AP+RO/MOV on V enters only through the effect of V on
B, just as in equation (1) for U/V. A comparison shows the predicted
variation of 4P'R /u V with ¥ is much Tess than indicated by the data,
although (2) at least correctly predicts that the qualitative effect of
an increase in V is a lower value for AP+.

Bungay and Brenner (i973a) have shown that if wall effects are taken
into account, a higher value of AP+ is obtained for given values of X and
Ap, at least for rigid particles. They calculated AP+ for a small, rigid
sphere in the presence of the tube wall, using the method of reflections
combined with the reciprocal theorem. The result for AP+RO/ﬂOV shows the
coefficient of the 82A3 term to be 226. Now, as the authors point out,
if (2) is used in the 1imits 8 » 1, ¢ =+ =, the coefficient of the eccen-
tricity, O(A3) term is only 160/3, less than one-fourth the value 1f wall
interaction is included. The data for AP+ for drops in the present exper-
iment generally 1ie above the value from (2), but below the near-wall
prediction for rigid particles. No theoretical result for wall effects

on fluid drops is available at the present time.
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6. Conclusions

Data from a study of the creeping métion of non-neutrally buoyant
drops in a horizontal tube have been presented. The measured quantities
were the additional pressure drop, the velocity of the drop, the shape,
and the gap width between the drop and the wall. These were measured as
a function of the material and flow parameters, including drop viscosity,
drop density, the size of the drop, the flow rate, and the suspending
fluid rheology.

A major purpose of the study was to identify the effects of variations
in the lateral position of the drop and this was accomplished through var-
jations in the density of the drop fluid. Even small density differences
(Ap/pO = 0.020) produced quq]itative differences in the dependence of the
measured quantities on some variables. For example, eccentrically located
‘particles showed a maximum mobility for an intermediate drop size which is
not observed for concentric particles,

The effect of:the eccentric position of the drop was to raise the
pressure drop over the value for the concentric case. A simultaneous de-
crease in the relative velocity of the drop was also noted. The dependence
of AP and u/v on AO/OO fqr large drops decreased as AQ/DO was made larger.
Thus, it appears that although small density differences can make signif-
jcant changes in the measured values for the quantities studied here,
large density dfferences do not produce correspondingly large deviations
from the neutrally bucyant results. Indeed, asymptotfc behayior will be
attained at lower values of Ac/oo as the size of the drop is made larger.

The results of this study seem to indicate that small density differences
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should definitely be considered in the motion of particles in porous media
flow or other related problems, since most practical conditions will prob-
able involve non-neutrally buoyan{ suspensions. However, above minimal
values for Ap/pé, further non-neutral buoyancy can be safely neglected.

The viscoelasticity of the suspending fluid was an important factor
in the determinatfon of the shape of the drops as well as the equilibrium
lateral position assumed by the drops during flow. There were corre-
sponding changes in AP+ and U/V from the Newtonian case. Since the
combination of increased viscosity and normal stress effects 1in
the - viscoelastic fluid provides a mechanism that tends to .
"move" particles further away from the wall, the effects of increased
density differences were felt at larger values of Ap/po than for the
corresponding Newtonian case. Thus, the “asymptotic regime" mentioned
above will apparently occur at larger values of Ap/pO for viscoelastic
suspending fluids.

For the Newtonian systems, qualitative agreement was generally found
between the data and available small A theoretical expressions that take
into account the eccentric position of the drop. For large values of A,
the effect of drop fluid viscqsity is crucial to the value of AP+, and,
therefore, theoretical derivations for solid particles based on lubri-
cation theory are of use in estimating the additional pressure drop only
for viscous drops. However, the mobility of the drop is much less depend-
ent on the drop viscosity and it was shown that lubrication theory can be
used to correlate the mobility data. Furthermore, it was found that if a
power-law model was used to accouht for the shear-thinning of the visco-

elastic suspending fluid, data for AP+ for 1érge, viscous drops could be



50

correlated with results from lubrication theory.
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Coefficients of (2):

Viscosity Ratio -  Concentric (AS) Term Eccentric (82A3) Term
0.30 -2.82 28.72
0.35 -1.94 29.63
0.77 3.09 ‘ 35.25
2.63 10.22V : 44.52
2.68 - 10.30 44 .64

Table 4. Coefficients of Equation 2.
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Figure Captions

Figure 1. Schematic diagram of the apparatus (not to scale).
(1) Constant-temperature bath. (2) Micrometer syringe.
(3) Suspending fluid storage section. (4) Test section.
(5) Pressure port. (6) Pressure port. (7) Camera.
(8) Manometer by-pass valve. (9) Pressure transducer.
(10) Transducer indicator.. (11) Thermocouple. _(12) Pump:
syringe or gear fype. (13) Waste storage. (14) Suspending

fluid reservoir.

Figure 2. Schematic diagram of manometer-transducer system (not to scale).
(A) Test section. (B) Upstream manometer leg. (C) Downstream
manometer 1eg.A (D) By-pass valve. (E) Pressure transducer.

(F) Transducer indicator and recorder. (G) Suspending fluid.
(H) Carbon tetrachloride. (I) Pressure difference due to sus-

pending. fluid alone.

Figure 3. Dimensionless extra pressure drop as a function of T (= UOV/Y):

OSystem 6 (Newtonian), ¢ = 2.68, Ap/po = 0.037, A = 0.726.
®System 6 (Newtonian), o = 2.68, Ap/pO = 0.037, A = 0.576.
OSystem 2v (Viscoelastic), ¢ = 3.1-5.1, Ap/po = 0.039, A = 0.726.
ZSSystem 2v {Viscoelastic), 0 = 3.1-5.1, AD/DO = 0.039, A = 0.576.

1

% (Newtonian) 0 = 2.04, AG/DO 0, A = 0.726 [from (I)].

O (Viscoelastic) ¢ = 3,1-5.1, Ao/% =0, A =0.726 [from (I)].



Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.
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Dimensionless extra pressure drop as a function of A. Shown
are Newtonian systems 2, 3, 5, 6, and all viscoelastic systems

for V = 0.32 cm/s.

D (= largest linear dimension/undeformed diameter) as a
function of viscosity ratio for three dimensionless drop sizes.
The points connected by solid lines represent viscoelastic
Systems 2V-5V. The unconnected points correspond to Newtonian

Systems 2 and 6.

h2 vs. U/ . Each Newtonian point represents an average of all
drop sizes for the particular éystem and flow rate. The visco-

elastic points are taken for the largest drop sizes.

Difference between U/V for Newtonian and viscoe]astic suspending
fluids as a function of drop size. @, U/V (System 2) - U/V
(System 6V), ¥V = 0.56 cm/s; O, U/V (System 2) - U/V (System
6V), V = 0.32 cm/s; A, U/Y (System 6) - U/V (System 2V),

V = 0.56 cm/s; O, U/Y (System 6) - U/Y (System 2y), ¥ = 0.32

cm/s.

Dimensionless extra pressure drop and relative velocity of drop
as a function of viscosity ratio. Newtonian Systems 5 and 6:
AN, A =0.577; O, A = 0.726; Viscoelastic Systems 2V-5Y: A,

A= 0.577; ®, X = 0.726.



Figure 9.

Figure 10.

Figure 11.
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Dimensionless pressure drop and relative

function of Ap/po:

Newtonian systems: Systems
Systems

Viscoelastic
systems: Systems

Systems

A1l data for V = 0.32 cm/s.

Ap/oo = 0.

]

4 and 5: X, A

i)

2 and 6: ®, A

2V and 6Y: m, A
4y and 8Y: &, A

0
0

1]

I

yelocity as a

.660 and O, A
.660 and O,

0.660 and 0,
0.660 and A,

1

i

A

A

0.831.
0.831.

0.831.

0.831.

Also shown are results from (I) for

Data for dimensionless pressure drop as a function of drop size.

(@) for Systems 2 and 5 (Newtonian).

Also shown (O) are pre-

dicted values from (2). Note that predicted value does not vary

with flow rate.

Data for relative drop velocity as a function of dimensionless

drop size (@) for Systems 2 and 5 (Newtonian).

are predicted values from (I).

Also shown (O)
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Figure 3.
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Figure 10.
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“"The Creeping Motion of Immiscible Drops
Through a Converging/diverging Tube

W. L. Olbricht and L. G. Leal

Department of Chemical Engineering
California Institute of Technology
Pasadena, California 91125

*Present address: School of Chemical Engineering, Cornell
University, Ithaca, New York 14853



74

In this paper, we report on an experimental study of the motion of
an immiscible drop of a Newtonian Tiquid suspended in creeping flow
through a circular tube of periodically varying diameter. We consider
both Newtonian and viscoelastic suspending fluids, and are concerned with
the mobility of the drop, the additional pressure gradient associated with
its presence in the flow, and the deformation and breakup of the drop in -
the tube. It is shown that the conformation of the drop depends strongly
on the value of the inverse capillary number. When this parameter exceeds
unity and the suspending fluid is Newtonian, the drop becomes highly elong-
ated, and subsequently breaks into several fragments. In turn, the shape
of the drop has a profound effect on its relative velocity and on the |
additional pressure gradient owing to the presence of the drop in the flow.
When the suspending fluid is viscoelastic, elongation of the drop is in-
hibited under otherwise similar conditions; instead, the drop develops
long tails which issue satellite drops. The effect of increasing the»sus-
pending fluid polymer concentration is to stabilize these tails. The
variety of dispersion processes observed in this experiment appear as onset

phenomena at critical values of the relative drop size and the flow rate..
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1. Introduction

We report in this paper the results of experiments on the creeping
flow of immiscible drops through a horizontal circular tube with peri-
odically varying diameter. This is part of a general study aimed at
understanding the dynamics of two-phase flow through porous media at the
scale of the individual channels.

Interest in the kinematics and dynamics of multiphase flow through
porous media stems, in part, from its application to tertiary oil pro-
duction methods. It is well known that a large fraction of the oil
originally present in a typical reservoir remains unrecovered after con-
ventional production methods including water flooding Have been nerformed.
So-calied "chemical flooding" methods were proposed as early as 1950 and
have more recently been tested in the laboratory and in the field. These
methods involve the injection of a "pusher fluid" into the reservoir to
displace oil globules trapped in the narrow tortuous pores of the rock
matrix by lowering the interfacial tension between the dispersed oil and
the agueous continuous phase, thereby decreasing capillary pressure which
holds the o0iT1 globules in place. The pusher fluid is often a surfactant-
containing microemulsion or miscellar solution which is usually immiscible
with the oil-water mixture which initially saturates the porous medium.
Even when a more concentrated miscible surfactant solution is used, ad-
sorption of the surfactant on the pore walls usually causes a phase change
(Oh and Slattery, 1979). One aspect of the tertiary oil recovery process,
then, s multiphase flow through a tortuous channel of rapidly varying

cross-section. Miscellar solutions at the concentrations typically employed
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in flooding operations characteristically exhibit non-Newtonian rheologi-
cal properties, including a strongly shear-thinning viscosity in simple
shear flow (Dreher and Grogarty, 1979). Although the use of polymer
solutions as the pusher fluid has met with only limited success, an
attractive variation involves injection of a dilute polymer solution
behind a bank of concentrated surfactant for improved mobility control.
In either case, the complications of non-Newtonian rheology may prove to
be a significant consideration in the design of a successful flooding
operation.

The specific problem we study in the present experiment is the motion
of immiscible Newtonian drops through a horizontal circular tube with a
diameter which varies sinusoidally with axial position. We have con-
ducted experiments for both Newtonian and viscoelastic suspending fluids.
The "wayy -wall" configuration is chosen not because of its direct or
detailed physical resemblance to a typical channel of a porous medium.
Rather, our choice is motivated by a recognition that the geometry of the
wavy-wall tube produces two signficant features of the flow kinematics
that are expected to be essential to a model of flow in an individual pore,

especially for multiphase systems. First, the

undisturbed flow (i.e. no drops present) kinematics differ qualitatively
at any given point in the wavy-wall tube from the simple shear flow of the
straight-wall tube. Since the cross-sectional area of the wavy-wall tube
varies periodically, continuity requires that in the absence of flow
separation, a fluid element must experience an acceleration in each con-

vergent region and a corresponding deceleration in each divergent region.
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In this case, the velocity varies in the streamwise direction, in marked
contrast to steady Poiseuille flow. The class of flows in which the
velocity variation is only in the direction of flow is known as pure
elongational (or extensional) flows. The velocity field along the tube
centerline in the present experiment is irrotational and resembles a
succession of two of these elongational flows, namely uniaxial elongation
(in the convergent region) and biaxial elongation (in the divergent
region). The flow kinematics are, however, known only along the tube
centerline. Fluid elements not coincident with the tube centerline
experience an additional rotational component, although the magnitude of
the straining part of the velocity gradient tensor always exceeds the
vorticity, assuming no flow separation. The relative importance of the
elongational component of the flow at any given point in the tube in-
creases with the amplitude of the variation in the tube diameter. An
additional consideration in this regard is that the rheological behavior
of a viscoelastic fluid depends critically on the flow type (i.e. the
relative magnitude and form of the velocity gradient tensor). Polymer
solutions and polymer melts which show a viscosity that decreases with
shear rate in simple shear flow, usually show an increasing e]ongationé]
viscosity in extensional flows. Some experimental evidence suggests that
the increase in elongational viscosity can be so large that flow kinematics
change to reduce the magnitude of large extensional stresses, as in flow
of a viscoelastic fluid from a large reservoir through an orifice. The
dramatic response of the viscosity to the rate of elongation is usually

associated with large-scale stretching of the deformable macromolecules
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which gives rise to critical changes in the bulk fluid properties (see
Leal, Fuller and Olbricht, 1980). Second, flow in a straight tube, without
drops present, is steady if the volumetric flow rate is kept constant.

For the wavy-wall tube with constant volumetric flow rate, however, the
bulk flow is periodic in a Lagrangian sense, with a characteristic

period L/V where L is the "wavelength" of the wayy-wall tube and V is

the average velocity of the bulk flow. If the sugpending fluid is
yiscoelastic, the intrinsic timescale of the fluid relative to the time-
scale of the flow can play an important role in determining material
behavior.

These two kinematic features of flow through a wavy-wall tube can
influence the deformation of an immiscible drop suspended in the flow.

The shape assumed by a drop during deformation and hence the resistance
to flow depend on the type of flow, which is a consequence of the tube
geometry. For a viscoelastic suspending fluid, the response of the drop
may also depend critically on the response of the suspending fluid alone
to the particular type of flow. Furthermore, because the wavy-wall tube
introduces a Lagrangian unsteadiness in the bulk flow and, therefore, an
unsteadiness in the shape of the drop, there is an additional timescale
for the multiphase problem, namely the intrinsic timescale for drop
deformation.

The tube geometry chosen here has been suggested previously as an
improved model, relative to the straight-wall tube, for porous media flow
of single-phase Tiquids. As a consequence, numerous results are available
for the flow of single-phase, Newtonian fluids through circular tubes with

axial variations in cross-sectional area. Many different functional forms
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for the variation of the diameter with axial position haye been considered.
The emphasis in most of these studies has been on the calculation of
detailed velocity and pressure fields and the associated pressure drop-
flow rate characteristics. Payatakes, Tien and Turian (1973), Payatakes
and Neira (1977), Neira and Payatakes (1979), Fedkiw and Newman (1977),
“and Deiber and Schowalter (1979a) have calculated velocity fields for flow
in periodically varying tubes over a wide range of the geometric parameters.
These results show consistently that a log-log plot of an appropriately
defined friction factor versus Re yields a linear relationship with slope
of -1 up to the value of Re at which either flow separation or turbulence
occurs. The Tinear relationship between f and Re is identical to that
observed for laminar flow through a straight circular tube. Results for
non-Newtonian fluid flow through periodically constricted tubes have been
reported by Dodson, Townsend and Walters (1971), Michele (1977), Franzen
(1979), and Deiber and Schowalter (1979b). In particular, Franzen (1979)
was able to show that the non-Newtonian data for Re < 1 also give a linear
relationship (log-log) between f and Re with a slope of -1, provided the
shear-thinning viscosity of the non-Newtonian fluid is taken into account
by using a power-law model for the fluid.

Since an assessment of the applicability of wavy-wall tube flow as a
protoiype for porous media flow is one motivation for our study, it will
be useful to compare our results to available data for flow through actual
porous structures. Single-phase non-Newtonian flow through granular beds,
packed beds, and beds of capillary tubes has been studied extensively by
Marshall and Metzner (1967), Savins (1969), James and MclLaren (1975), and Elata

et. al., (1977) among others. A friction factor and Reynolds number which
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incorporate the shear-thinning behavior of the fluid (as well as the
physical structure of the "porous matrix") are used by those various
authors to correlate pressure-drop flow rate data. Experimental observa-
tions show that dramatic departures from the linear relationship between
f and Re occur under certain circumstances. We have already noted that
there is a characteristic relaxation time associated with a viscoelastic
fluid. If this time is comparable to the characteristic time for the
flow, departures from generalized Newtonian behavior can occur since the
dynamics of the flow will be governed, in part, by the elastic response
of the fluid. A convenient measure of the intrinsic timescale of the
fluid relative to the timescale for the Lagrangian unsteady flow is the
Deborah number. According to Marshall and Metzner (1967), if De
is larger than ~0.05, with the definitions used for the porous medium,
large deviations from generalized Newtonian behavior occur. A similar
observation was reported by James and MclLaren (1975) for dilute polymer
solutions where friction factors up to 40 times greater than the comparable
generalized Newtonian values were found. The "exact" value of De at
which large deviations from purely viscous behavior are observed can vary
significantly from problem to problem. Some studies suggest that purely
viscous behavior is observed in packed beds up to values of De considerably
higher than 0.05 (cf. Schowalter, 1978). For tubes with periodically varying
cross-section, Franzen (1979) and Michele (1977) reported deviations from
purely viscous behavior at values of De which were an order of magnitude
larger than 0.05 (see Section 3).

The creeping motion of immiscible drops in tube flow has been the

focus of two previous experimental investigations from this laboratory.
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In the first, Ho and Leal (1975) considered the motion of neutrally
buoyant drops suspended in Stokes flow through a straight-wall circular
horizontal tube. Recently, Olbricht and Leal (1980) examined the
effects of a density difference between the drop fluid and the suspending
fluid. These papers will be referred to here as (I) and (II), respectively.
In both sets of experiments, the size of the drop was comparable to the
size of the tube.

In the present experiment, we consider the effects of streamwise
yariations in the cross-sectional area of a horizontal tube, both
for neutrally buoyant and non-neutrally buoyant drops, and for Newtonian
and viscoelastic suspending fluids. The drops were Newtonian in all
cases. The following dimensionless quantities are determined in the
present experiment: f, the friction factor associated with the flow of
the suspending fluid alone (i.e. with no drops present); AP+R0/uOV, the
additional pressure drop, due only to the presence of the suspended drop,
which is scaled by the characteristic viscous pressure (here, RO is the
radius of the tube,~1iO the suspending fluid viscosity, and V the average
velocity of the flOW)B%'a the velocity of the drop relative to the average
velocity of-the two-phase bulk flow V; and the time dependent shape of the
drop which deforms due to the velocity gradient and due to interactions

with the tube wall. - The material and flow parameters which characterize

each experiment are: o, the viscosity of the drop relative to

the viscosity of the suspending fluid; Ap/DO, the difference in density
between the drop and suspending fluid relative to the density of the
suspending fluid; A, the undeformed drop radius divided by the tube radius

R 5T (= UOY/Y) the inverse capillary number, where Y is the interfacial
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tension between the drop and suspending fluid; and rheological properties .
of the suspending fluid. The experiments were all performed with the
volumetric flow rate Q held constant, while ap* varied with time due to
the presence of the suspended drop. This is distinct from an associated
problem where AP, the total pressure drop, is held constant and the flow
rate Q varies with time due to the presence of the drop in the fiow.

Each of the quantities measured in the present experiment has an
important interpretation in the context of the tertiary oil recovery
problem. Displacement of trapped residual oil is a necessary but not
sufficient condition for a successful chemical flood. Extreme care must
be taken to exercise mobility control so that a sweep-efficient ojl/water
front is formed. The relative yelocity of the drop %—in the convergent/
divergent tube is obviously intimately related to the relative mobility
of the 0i1 phase during immiscible flooding. By studying flow through
an indiyidual channel, we seek, in principle, to determine the conditions
(i.e. the optimal choice of the parameters already listed) under which
drop mobility is maximized. We are limited, however, by the fact that
the ranges of parameters which could be covered by actual chemical flooding
operations are enormous. Specifically, the effectiveness of the surfactant-
containing fluid in ;educing the interfacial tension to ultra-low values,
the flow velocity, and the size distribution of the pores can be expected
to vary widely. The values of the parameters in the present study suggest
that our results would be most applicable under flooding conditions where
viscous forces play a significant role, in regions near the injection well,
where the sweep velocity is largest, for‘examp1e. Although the values for

the parameters in the present study are realistic, we certainly have not
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covered the entire range of technological interest. The additional
pressure drop aP* is related to the accessibility of the individual
pores for two-phase flow relative to pores which contain no drops.
Payatakes, FTumerfe]t and Ng (1978) discussed the possibility that mobil-
jzed 01l droplets could become trapped withih a pore because the pressure
drop necessary to force the droplet through fhe upstream pore neck may
be too large. This could result in the blockage o% an entire pathway
to the collection well. It is therefore desirable to operate in a region
of the parameter space where the extra pressure drop due to the presence
of the drop is minimal. Factors which influence the value of the extra
pressure drop will be identified from the data. The shape of the drop
and its possible breakup during the flow is related to dispersion phenomena
known to be of fundamental importance in successful flooding operations.
0i1 segments undergo repeated partitioning and coalescence as they are
displaced through the pores. The relative importance of these effects
determines the globule size distribution and hence influences the efficiency
of 0il transport. Payatakes, Flumerfelt and Ng (1978) concluded from the
results of a stochastic simulation model that oil segment breakup results in
the formation of a dilute oil-in-water emulsion that decreases recovery
efficiency. It appears then, that oil drop breakup should be avoided in
the design of f]ooding operations. However, the detailed flow dynamics,
including factors which influence drop breakup cannot be deduced from thé
statistical model. Therefore, another important aspect of our study is
the relationship between the experimental system parameters and drop
deformation and breakup. Roof (1970) predicted the circumstances under

which drop breakup will occur ina porous medium by studying the stability
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of the drop shape for a sequence of static (equilibrium) configurations
taken to represent the motion of a drop through a pore. The results are
dominated by capillary forces which hold the drop in the individual pore.
Although "static" calculations of this type (including Oh and Slattery,
1979) account for capillary forces which must be overcome to mobilize the
drop, they give no information concerning the effects of viscous (and
viscoelastic) forces on the conformation of the suspended drops. These
forces are expected to be especially significant when surfactants have
been used to lower interfacial tensions. For example, the pressure associ-
ated with capillary effects is 0(y/R) where y is the interfacial tension
and R is the pore radius. The characteristic viscous pressure is UOV/R
where o is the pusher f1ujd viscosity and V is the velocity in pore.
The relative importance of viscous forces relative to interfacial forces
is thus O(ro/Y), the inverse capillary number. If the sweep velocity V
is taken to be 10 ft/day; with a pusher fluid of 10 cp viscosity, then
uOV/y is0(1) if v is Jowered to 10‘2 dynes/cm, a value which can be easily
obtained under many circumstances. An important consideration in the flow
problem is the position of the drop in the tube which may be eccentric
due to density differences between drop and suspending fluids. Relatively
small density differences may produce qualitative differences in AP+ and
U/V, as found in (II). Furthermore, of additional interest here is the
effect of viscoelasticity on dispersion phenomena. These considerations
cannot enter in any "equilibrium" calculations where the effect of flow
dynamics is ignored.

In applying the results of the present two-phase flow experiment to

immiscible oil displacement methods, it is significant to note that we
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consider only the case where the 0i1 droplet does not contact the tube
wall. However, this is just one of several possible configurations for
the motion of the dispersed (oil) phase through porous structures.
Other possible mobilizations take place with the oil remaining in the
form of a slug or bolus, moving through the pore while continuously
maintaining contact with the wall., O0Oh and Slattery (1979) compared
several modes of displacement and mobilization of o0il globules in
individual pores to determine the effects of interfacial tension and
pore wettability on drop mobility. It was predicted that the porous
surface should be water-wet to obtain maximum displacement efficiency.
Among a variety of displacement sequences, one predicted mechanism
involves the complete detachment of a residual oil globule from the pore
wall and its subsequent transport in the pusher fluid. If the pressure
gradient is sufficiently large, the droplet will deform to squeeze
through the neck of the pore without again contacting the pore wall.
This "detached" configuration is the mode of transport which we study
in the present experiment. Wasan, et. al. (1979) observed oil detach-
ment and mobilization in an actual sand-packed bed placed under a micro-
scope for in-situ visualization. Two types of detachment occurred,
depending on the volume of the residual oil film initially attached to
the pore wall. Small-volume films broke from the surface and formed
small droplets, but large-volume films were observed to detach and form
long, thin filaments or strands. One objective of our work is an under-
standing of how the mobility of the dispersed phase is influenced by the
conformation of the suspended elements in the flow.

The present experiment differs from (I) and (II) in that a system-

atic study of the effects of viscoelasticity is attempted. The suspending
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fluid elasticity was varied by using aqueous polymer solutions of two

different concentrations for the suspending fluid. Another difference
between this and the previous studies is that the interfacial tension was
also varied over a wide range, especially for the Newtonian suspending
fluid case where the inverse capillary number, T = uOV/y, is varied by a
factor of fifty. (This large variation is important for application of

the present results to the oil recovery problem since I typically varies
over several orders of magnitude depending on operating conditions.) It
will be seen that the dynamics of the drop motion through the periodic tube
depend strongly on the value of the inverse capillary number.

Although the results for drop deformation and breakup - in the present
study are mainly qualitative, they may be compared to previous results
obtained for kinematically well-characterized flows. Taylor (1934)
studied the deformation and breakup of drops suspended in two steady flow
fields, simple shear flow generated between parallel bands, and two-
dimensional elongation produced in the center of a four-roll mill. Sub-
sequent investigations have confirmed the result that breakup occurs in
steady simple shear flow only if the ratio of the drop fluid viscosity
to that of the suspending fluid is between 1073 and V4. Within that
range, there is a well-defined critical shear rate at which breakup occurs.
In steady two-dimensional e1ongafion, breakup can occur at much larger
values for the yiscosity ratio, and the critical rate of shear is rela-
tively independent of the drop yiscosity. Grace (1971) also observed a
transient mode of bréakup particularly interesting here since flow through
channels with varying gecmetry is inherently an unsteady problem. It was

observed that under some conditions, if a droplet was sufficiently deformed
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in a two-dimensional straining motion, breakup occurred after the flow

was "turned off", even though the drop continued to extend further without
breakage if the flow was maintained. More recently, Han and Funatsu (1978)
studied the creeping motion of drops suspended in flow through a single
abrupt contraction, while Chin and Han (1979) considered the related
problem of flow of drops through a tapered tube. Although the geometry

of the flow channels differed in those two studies, droplet breakup
occurred in both cases downstream of the contraction, i.e. in a region

of relaxation of the extensional deformation produced by the constrictions.
The rate of extension in these experiments, as in the present experiment,
is not known precisely and certainly varies with radial position in the
tube. Nevertheless, it can be presumed that the elongational component

of the flow resembles a three-dimensional (uniaxial) extension. Since

it has proved impossible thus far to generate a kinematically "perfect"
uniaxial extensional flow, studies of droplet deformation and breakup in
approximate "uniaxial” dr "biaxial" flows of the present type are useful,
at least in a qualitative sense. Acrivos and Lo (1978) have calculated
the conditions for breakup of a slender drop in uniaxial extensional

flow. Although the shear field is not as simple in the present experi-
ment, we still seek to make qualitative comparisons with results for drop
breakup in homogeneous shear fields. Whether such a comparison is pos-
sible is an important practical question since convergent/divergent tube
flow of this type may be closely related kinematically to flows encount-

ered in a variety of polymer processing operations.
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2. Experimental

2.1 Apparatus

The basic apparatus described in (I) and (II) was modifed for used in
the present study. The current configuration is illustrated in Fig. 1.

A large reservoir of the suspending fluid was placed above the apparatus.
The fluid was then pumped using a Zenith BPB Series metering gear pump.
It was necessary to pressurize the upstream side of the pump {(i.e. the
overhead reservoir) to 200 psi when the Newtonian suspending fluid was
used in order to prevent the formation of small bubbles in the pump which
would otherwise appear at the pump exit. No bubble formation occurred
when pumping the viscoelastic suspending fluids, even at atmospheric
pressure. The suspending fluid was pumped into a holding section which
was immersed in a constant temperature bath maintained at 25 = O.lOC.
Transit time through the holding section was always sufficiently long to
ensure thermal equilibration of the suspending fluid and the constant
temperature bath. The suspending fluid then entered a 70 cm long
straight circular entry section of internal diameter 0.90 cm.

The test section was comprised of eighteen individual periodic
"units" with the shape and dimensions illustrated in Fig. 2. Each unit
was bored from a Lucite cylinder using a specially machined tool. The
axial variation in radius specified in Fig. 2 (0.45 cm to 0.25 cm)
corresponds to a maximum variation in cross-sectional area of a factor
of 3.2. Special fittings were machined into the ends of tﬁe units so
that the pieces could be attached in su¢cession. A rubber gasket of 1 mm

thickness was placed between each unit before attachment, The assembled tube
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was held in place under compression by two brackets which were attached
at the two ends of the tube. Three of the units were fit with pressure
ports at the point of narrowest diameter. The pressure ports were
connected through the wall of the constant temperature bath to a differ-
ential manometer. The design allowed the length of the test section to
be varied, along with the position of the pressure taps. Another
straight circular section of radius 0.45 cm and length 40 cm followed
the test section. This provided a region to observe the relaxation of
the deformed drop shape back toward equilibrium. The drops travelled
through the relaxation section and were eventuaﬁ]y stored in a waste
fluid reservoir.

Pressure measurements were made using the identical method detailed
in (I1). The differential manometer was capable of measuring the pres-
sure difference due only to the presence of the suspended drop in the
flow. A variable reluctance transducer with a specially chosen membrane
gavye a full-scale differential pressure range of 0.3 cm of water. The
transducer indicator output was recorded on a strip-chart recorder.

Drops of known volume were injected manually using a Hamilton
micrometer syringe (#0.001 ml accuracy) connected to a 17 gauge needle.
A typical drop was injected with the pump operating at a very low rate
so that the injected drop detached gently from the needle. The pump
speed was then increased to the specified flow rate. The detached drop
attained an equilibrium lateral position in the straight-wall entry
section which was found to be independent of the injection position.

The equilibrium position was attained well before the drop entered the
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test section except in some special cases discussed later. A detailed
discussion of the motion of drops in a straight circular tube is contained
in (II). In (I) and (11), up to twenty-four drops were injected in a
train to enhance the pressure signal. Here, however, the sensitivity of
the transducer was increased and the metering pump improved so that ap*
could be determined for a single drop. This is essential here, because

if more than one drop were used, the relative positions of the drops with
respect to the period of the tube would constitute an additional parameter
for the experiment.

The drops were photographed as they passed through the test section
using an RCA TC-1000 video camera equipped with a Kowa 15-75 mm zoom lens
fitted with close-up attachments. The camera was mounted on a motorized
horizontal rail system so that the drop could be tracked continuously as
it passed through the test section. A second video camera photographed
the transducer indicator scale. The two images were combined in a split-
screen picture which was viewed on a Sanyo video monitor and recorded by
a Panasonic Omniyision Il videotape recorder. Thus, a record of the
shape and position of the drop along with the simultaneous reading of the
additional pressure drop was obtained. Since curved surfaces are present
in the test section, the refractive indices of the suspending fluid and

the constant temperature bath circulating fluid were matched to minimize

distortion.

2.2 Materials

Measurements were taken for nineteen fluid systems encompassing a
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wide range of material parameters. The specifications for all systems are
listed Table 1. The Newtonian suspending fluids were UCON LB-1715 and
95.45% aqueous glycerin solution with viscosities of 7.17P and 3.94P,
respectively.

The viscoelastic suspending fluids were aqueous solutions of Dow
Separan AP~30, a rheologically well-characterized polyacrylamide. The
shear-rate dependent viscosity and primary normal stress difference have
been reported by Leal, Skoog and Acrivos (1971). To study the effects of
suspending fluid viscoelasticity, two polymer concentrations were used,
0.5% and 1.0%, by weight.

Since the Separan solutions are strongly shear-thinning, there is
some arbitrariness in assigning a single value to the suspending
fluid viscosity M- In the preyious experiments, the viscosity was eval-
uated at the wall shear rate, but the oscillatory tube radius adds the
further complication that the wall shear rate varies with axial position.
To maintain some comparison with (1) and (II), the following method has
been employed. Pressure drop-flow rate measurements were made for a
Newtonian suspending fluid (UCON LB-1715) with no drops present (see
Section 3). The data follow the Hagen-Poiseuille law for a straight-
wall tube of some particular value of the radius, which is then defined
as an "effective" radius r,,. The wall shear rate was calculated

HP
assuming that the fluids exhibit power-law dependence of the yiscosity on

the shear rate v,
.n-1
po=my (1)

The appropriate parameters are n = 0.45, m = 12.0 for 0.5% Separan and
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n=0.40, m= 33.8 for 1.0% Separan. The effective viscosity 1s then

Tw/Bw where the wall shear stress Ty is calculated for any fluid from a force

balance as

T =

r,,pAP
o @

and the wall shear rate B is given by

g, = 2t (—"‘g’-) (3)
P

It was found that the value of the viscoe]asfic fluid viscosity depended
on the method of solution preparation; although care was taken to treat
each solution uniformly, the value obtained for M, varied by as much as 10%
for different preparations. Typical values of the suspending fluid pro-
perties are given in Table 2,

The (Newtonian) drop fluids consisted of various grades of Union
Carbide UCON LB-Series lubricant, Dow Corning DC200, and Dow Corning DC510
Series silicone oils. Since Ap/po is a parameter of the present experiments,
densities were adjusted using clove oil with UCON oils and carbon tetra-
chloride with the silicone oils. The yiscosity of the drop fluid was
measured with a Canon-Fenske capillary viscometer. The interfacial
tension was measured with a DuNuoy platinum ring tensiometer. Sipce this
method depends on a density difference between the fluids, the value of vy

for systems of equal density was determined by extrapolation to A - O.

2.3 Conditions of the Experiments

The experiments were conducted at two volumetric flow rates, Q = 4.6
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and 8.7 ml/min. Measurements of AP+, U/V, and drop shape were made for
five drop sizes listed in Table 3. To calculate the average velocity V,
the (known) volumetric flow rate Q was divided by the effective cross-
sectional area, ﬂrgp,'so that V = Q/wrgp. It may be noted, in this regard,
that tracer particles were used to determine that no visible flow separation
occurred during the cour§e-o? the experiments. The non-dimensional drop size
A is also based on the effective Hagen-Poiseuille radius "up > and this pro-
vides a direct comparison with the results of (I) and (II). The dimen-
sionless additional pressure drop is defined as AP+rHP/uOV.

Values of the - inverse capillary number I are given in Table 1.
This parameter varies by a factor of fifty since both the interfacial

tension and the flow rate are independently varied in the present experi-

ment.

3.  Pressure Drop-Flow Rate Characteristics for Single Phase Flow

The total pressure drop associated with the flow of the suspending
fluid alone, i.e. with no drops present, was measured as a function of
flow rate in the creeping flow regime. The three fluids used were
UCON-LB-1715, 0.5% Separan, and 1.0% Separan.

Newtonian fluid: Pressure drop-flow rate data for flow through

conduits are usually correlated in terms of a friction factor and Reynolds
number. For flow of a Newtonian fluid through a straight-wall circular
tube, the friction factor can be defined by f = rAP/ZpOVZ, where r is the
(constant) tube radius, 2 is the tube length, and V is the average velocity.

For laminar flow, the Hagan-Poiseuille law is then expressed as f = 16/Re.
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A generalization of this correlation for a tube with periodically vary-
ing cross~section is complicated by the axial dependence of the tube
radius, r(z). For comparison purposes, it is useful to incorporate the
tube geometry in definitions of f and Re in a way that data for any circu-
lar tube of varying radius can be correlated on the same curve with data
for a straight-wall tube. Thus, the varying wavy-wall tube radius is
replaced by an "average" or "effective" radius which is independent of ax-
ial position. Data correlation will depend on how the effective radius is
defined, and there is a degree of arbitrariness no matter how the choice is
made. Franzen (1979) proposed a variety of definitions, including one
which is based on the assumpotion that the Hagan-Poiseuille law applies over
an infinitesmal Tength dz everywhere along the tube axis. The same type of

correlating parameter was considered by Sheffield and Metzner (1976). The

effective radius r,p is then expressed as

2 L %
dz |2

=2 (4)
rHP T JO 82(2)

Here, e(z) is the function which describes the axial variation in tube

cross-sectional area, AO is the area at z = 0, and L is the period of

the tuhe wall oscillation.

We have evaluated Tup for the tube in the present experiments. The
tube radius R is given by R = R, *+a sin(2wz/L), where Ry = 0.35 cm,
a =0.1cm, and L = 1.52 cm. The integral was evaluated numerically to
yield the result.that Fup = 0.316 cm. The nominal velocity V is then
taken as Qfﬁrgp where Q is the (known) volumetric flow rate. Using these

"definitions" for r and V in f and Re, the data are presented in a log-log
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plot of f as a function of Re,which is shown in Fig. 3. The data for
the wavy-wall tube coincide precisely with the curve for a straight-wall tube

with radius rHP' An identical value for the "effective" radius was also

determined by calculating the value which gave the best least-squares fit
of the wavy-wall tube data to the Hagan-Poiseuille law in its integrated
form for a straight-wall tube. It should be pointed out that

an average value for the amplitude of the radius, 0.350 cm, and the radius
that gives the average cross-sectional area of the tube, 0.357 cm, as well
as the other "effective radii" defined by Franzen (1979), give values for
r which differ from "hp- Although use of any constant value for the
effective radius will give a linear relationship between f and Re, the
slope on a log-log plot is -1 only for "hp- For this reason, up will be
employed also in calculating f and Re for representations of the pressure
drop-flow rate data for the viscoelastic suspending fluid.

Neira and Payatakes (1979) have calculated numerically the pressure
drop associated with the flow of a Newtonian fluid through a tube of sin-
usoidally varying diameter. The results apply for all values of the
amplitude of the oscillation. The calculated values for f as a functibn
of Re are within 2% of our measured values over the range of Re covered
in the present experiment,

Non-Newtonian fluids: Sheffield and Metzner (1976) have shown that

the accuracy of the correlation of pressure drop-flow rate data for flow
of Newtonian fluids in the wavy-wall tube is not particularly sensitive
to the value of the effective radius which is used. Thus, when data for

flow of Newtonian fluids through actual porous media are correlated using
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a cylindrical capillary model of the pore structure, accurate results are
obtained, even though the convergent/divergent nature of the pores is
neglected. However, when data for porous media flow are correlated for
fluids which exhibit a shear-thinning viscosity, a more accurate
representation is obtained if the wavy-wall tube model is employed (cf.
Sheffield and Metzner, 1976). This result suggests use of the effective
radius (4) and a shear rate dependent viscosity based on the power-law
model (1) for correlation of the wavy-wall tube pressure drop data. The

Reynolds number is then given by

2-n
-n (2r, )"V
Re = 23—n 3n + 1 HP (5)
n n m

Unfortunately, it is exceedingly difficult to incorporate other rheological
features such as normal stress differences and characteristic relaxation
times associated with the elastic response of the fluid without solving
the equations of motion using a “complete" rheological model to obtain
exact velocity and pressure fields for the wavy-wall tube. The usual
approach is to temporarily ignore these rheological features. If the
only non-Newtonian behavior exhibited in the flow were a shear-thinning
Viscosity, data for AP+ for non-Newtonian fiuid flow "should" follow the
same functional relationship as the Newtonian data, f = 16/Ren, where Ren
is the power-law Reynolds number. Deviations from this behavior mugt
therefore be attributed to the neglected rheological features.

The data for the 0.5% and 1.0% aqueous solutions of Separan AP-30
are shown in Fig. 3. The power-law model parameters were evaluated from

simple shear flow data over a range of shear rates 0.3 < vy < 10 s_l. It
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can be seen from Table 2 that this range of y encompasses the values of the
wall shear rate By (based on rHP) appropriate to the experiment. It is clear
from Fig. 3 that the measured value of f for each of the viscoelastic cases

is larger than the value of f for either a power-law or Newtonian fluid at the
1d§ntica1 value of Re. The data exceed the "power law" prediction in

all cases and by as much as 35%. Similar deviations, both in direction

and magnitude, were observed by Michele (1977) for the flow of polymer

solutions through a circular tube with abrupt alternate expansions and

contractiohs in diameter. Franzen (1979) observed the same qualitative

behavior for a variety of periodic tube geometries. A shear-dependent

viscosity alone is apparently insufficient to explain the deviation of the

pressure drop/flow rate results (i.e. f vs. Re) from Newtonian behavior.
Under some conditions, the pressure drop may depend substantially

on the elastic response of the fluid to the Lagrangian unsteadiness of

the flow. In particular, the results may, in part, be governed by an inter-

action between the characteristic relaxation time of the fluid and the La-

grangian timescale of the flow imposed by the wavy-wall geometry. James and

McLaren (1975) have considered a similar problem, specifically the effect

of flow unsteadiness on the pressure drop for flow through a packed bed. They

suggest that one mechanism which can act to increase the pressure drop

involves the effect of the time-dependent flow.on the primary normal stress

difference. The normal stress acts as a hoop thrust on the curved surface of

the tube wall, and is. proportional to the square of the shear rate. If
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the fluid response time is comparable to the timescale for flow through

one period of the tube, the shear rates (and normal stfesses) may not be
equal at points equidistant upstream and downstream from the throat. In
this case, the unsteadiness of the flow coupied with the finite fluid response
time results in a net increase in the drag, or equivalently, an increase

in the pressure drop for a given flow rate. The contribution of the

normal stress effect to AP is estimated by James and Mclaren to be 0(1),
i.e. comparable to the Newtonian component. If fluid elasticity plays a
role in the deyiation of our results from generalized Newtonian behavior,
then the data for f should correlate with De which provides a measure of

the fluid timescale relative to the timescale of the flow. In estimating
the value of De for the present experiment, we have used the results of
Marshall and Metzner (1967) who also considered non-Newtonian flow through
packed beds. Flow through a convergent (divergent) section of an individual
porous channel was modeled by flow toward (away from) the apex of a circular
cone. Using this simple geometry for the flow channel, Marshall and Metzner

(1967) calculated a timescale over which the deformation rate varies and
hence, an expression for De:

/ L2\ %4
vz .1k |

where V¥ is the nominal velocity, © is the characteristic relaxation time
of the fluid, and L1 and L2 are the characteristic length and width of the
cone. To estimate © for the Separan solutions, we have used the contra-
yariant form of the convected Maxwell model which relates 6 to the normal
stress measured in steady simple shear flow. The value of © is then

given by
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Tya = Tl
2y ()
where T., - T,, is the primary normal stress difference, Hy is the yiscosity

11 22
and % is the shear rate. Unfortunately, the characteristic time of the

fluid estimated in this manner is a function of the shear rate y. We have
evaluated 6 at the shear rate contained in (6) to determine De. The

product of fRen for each point in Fig. 3 is plotted as a function of De in

Fig. 4. The data plotted in this fashion show the deviation from "power-
Taw" (or-purely viscous) fluid behavior increases with De as expected.It isnot
possible to determine an "onset" value for De from the present data since
even the smallest value of De covered in the present experiment(hghg)shows a
measurable deviation from generalized Newtonian behavior. The magnitude

of the deviation remains 0(1) even as the value of De is increased to
unity. Similar results were obtained by Michele (1977) and Franzen (1979)
for viscoelastic flow through a variety of oscillatory circular tubes at

. comparable values of De whenestimated in the above manner. However, Harshall
and Metzner (1967) and James and Mclaren (1975) observed considerably
larger deviations for viscoelastic flow through packed beds. Increases

in f by as much as a factor of forty were observed for values of De near
unity. These larger, i.e.0(10), deviations in the pressure drop appear

to occur at critical rates of elongation or stretching. Now, according

to the Maxwell model and others in the same rheological class, the stress
in a steady purely elongational flow is predicted to become infinitely

large as the dimensionless stretch rate 26E approaches unity. In practice,
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however, the stress does not become infinitely large, but dramatic in-
creases in the stress are observed when the rate of extension is increased
beyond some critical value. We have calculated the value of the dimen-
sjonless stretch rate, at least for fluid elements along the centerline

of the model conical geometry, under flow conditions of the present experi-
ment.+ The value of 2®é does, in fact, exceed unity for the higher flow
rates covered in Figs. 3 and 4. Nevertheless, 0(10) increases in AP are
not observed in the present experiment. We can suggest two possibilities
in 1ight of these remarks. First, perhaps the conical model for the
geometry of the wavy-wall tube is insufficient to accurately predict the
critical value of stretching necessary to induce "large" increases in AP.
Alternatively, the flow kinematics may adjust to avoid large-scale
stretching of the macromolecules and the accompanying increase in the
stress, Specifically, the flow may tend to "channel” through the central
portion of the tube and thereby partially ignore the convergent/divergent
character of the tube boundary. Sheffield and Metzner (1976) have, in fact,
suggested that the effect of channeling alone could account for a déviation
in correlations of the type illustrated in Figure 3, without any need to
account for viscoe1asti¢ flow contributions. Presuming that channeling
occurs, they calculated the pressure drop for flow of a purely- viscous
shear-thinning fluid through an "effective" wavy-wall tube which was in-

tended to mimic the boundary of the central channeling core. Since the

+Miche]e (1977) observed no "large" increases in AP for flow of 1% Separan
in a convergent/divergent tube even when the Reynold's number was increased
to sufficiently large values for the onset of turbulence.
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effective tube is assumed to have the same minimum diameter as the actual
tube, the pressure drop for a fixed volumetric flow rate is increased in
the effective tube. Calculations based on the Sheffield and Metzner model
show that a maximum diameter of 0.58 cm would be required in the effective
tube (compared with a minimum and maximum in the actual tube of 0.50 cm
and 0.9 cm, respectively) to account for the maximum deviations shown in
Figure 3. Although this value appears qualitatively reasonable, the flow
visualization studies that we carried out did not exhibit any corroborating
evidence of channeling of this magnitude. Furthermore, the existence of
some degree of channeling would not eliminate the potential importance of
elasticity effects in determining the pressure drop for a viscoelastic
liquid, as Sheffield and Metzner suggest. The flow remains Lagrangian
unsteady even if the "effective" tube were to reduce to a straight cylinder
of diameter equal to the minimum diameter of the wavy-wall tube since the
boundary conditions along this "effective" tube wall must vary periodically
with axial distance from slip to no-slip. Thus, when the fluid and convective
timescales are comparable, De would still be expected to play a role in
correlating pressure drop-flow rate data. It may be expected that the
degree of fluid channeling would be diminished in any case by the presence
‘of an immiscible drop which is larger than the minimum tube diameter. This
expectation is confirmed by photographs which show that the drop can extend
well into the widest regions of the tube, especially when the drop is non-

neutrally buoyant (cf. Sections 3 and 4).

Although it would be of considerable fundamental interest to conduct
‘two-phase flow experiments in a domain where suspending fluid visco-
elasticity induces large deviations from Newtonian behayior in the single-

phase flow prob]em, the regime characterized by 0(1) deviations appears to
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us to be more important from the standpoint of tertiary oil recovery

optimization. Since it appears that 0(1) values for De are necessary
before large deviations are important, it would require sweep velocities
much larger than those usually encountered in chemical flooding operations
before large elongational effects occur. Furthermore, the experiments .of
James and MclLaren (1975) suggest that the effect of pusher fluid visco-
elasticity in this domain would result in an order;of-magnitude increase

in the pressure drop necessary to maintain a constant sweep velocity. This
would imply that operation in a regime of large deviations from generalized
Newtonian behayior would be highly undesirable. Nevertheless, the experi-
ments reported here show that the effects of non-Newtonian rheology on

AP+, mobility and dispersion phenomena may be of considerable interest

even at "sub-critical" values of De.

4. Experimental Results for Two-Phase Flow

As the suspended drop moves through the wavy-wall -tub&, it causes

a periodic variation in the pressure drop. A typical output from the
transducer indicator is shown in Fig. 5. Each oscillation of the output
signal corresponds to the drop's passage through one period of the oscil-
latory test seétion. Thus, it is obvious from Fig. 5 that éight wavy-wall
units were positioned between the two pressure taps for the particular
run illustrated. There are two spurious transient disturbances present
in each recording OT the pressure signal. As the drop enters thé
measurement section, the additional pressure drop signal displays a

_ transient disturbance due to the fact that the drop passes directly o?er
the pressure tap. This transient decays before the drop enters the next
convergent section, and, hence, the signal associated with the passage

of the drop through each of the successive convergent/divergent units is
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periodic. The second spurijous transient occurs when the drop passes over
the second pressure tap as it leaves the measurement section. This
additional pressure drop signal decays rapidly to the value with no drops
present in the measurement section (zero).

Data for AP* and U/Y as a function of ) are presented in Figs. 6
through 14. The measured values for each suspending fluid are shown in
separate figures. The values for AP+ represent an arithmetic average of
the maximum and minimum amplitudes of the oscillatory transducer signal.
Because the transducer signal was very closely sinusoidal for all the
measurements made, this simple average is a good approximation to the
time average over several oscillations (indeed, sample comparisons for
"typical" systems show these two averages differ by less than 5%). The
magnitude of the oscillatory part of the signal, 6(AP+) = AP;aX - AP;in,
is also shown as a function of A. Furthermore, the values of U/Y re-
ported in the figures 3150 represent "average" velocities. Attributing
a single value to the velocity of the drop is meaningful only in the
sense of some average, since the axial velocity at any point varies with
axial position. As an average velocity, we take simply the inverse of
the time for transit between known points separated by an integral number
of wavelengths (16) divided by the distance between these points. 1In
practice, we have taken the leading edge of the drop as a reference for
determination of the transit time and the average velocity. The average
velocity determined in this manner is the same for any point in the drop
as long as the shape remains periodic during transit. In some cases,

however, the drop exhibits an elongation that increases monotonically
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with time while the drop is in the test section. A non-periodic vari-
ation in drop shape of this type will be reflected in the value of U/V
reported here, and therefore we will consider carefully the effect of
deformation on the reported values for U/V whenever appropriate. The
measured values of o, T and Ap/p0 for each system and for each flow rate
are indicated on the figures and also compiled in Table 1. As in (I) and
(11), comparisons between selected systems will help expose the effects
of a particular material or flow parameter.

Finally, we have photographed the shape of the drop as it travels
through the test section in the manner described in Section 2. We present,
in this section, detailed descriptions of deformation and breakup (when
applicable) for a wide range of the material parameters. These de-
scriptions are based on the recorded observations and are supplemented
with representative "stil1" photographs shown in Fig. 15. The pictures

in Fig. 15 are actual photographs of the video monjtor.

4.1 Newtonian Suspending Fluids

Table 1 indicates that the inverse capillary number T varies by more
than a factor of fifty for the Newtonian suspending fluid systems,
0.043< T < 2.54. For the purposes of our discussion, we group these
systems’according to relative magnitudes of I'. Systems 2a, 2b, 2c and
3 comprise a group of fluid systems which yield "small" values for T,
I' < 0.083; system 1 has values for I which are "intermediate",

0.5< T < 0.9; finally, systems 4, 5 and 6 form a group with "large"

values for I', T > 1.3. The designations "small" and "large" are labels
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and do not necessarily imply asymptotic behavior for AP+ or U/V. We
will consider the data for each group separately and then make comparisons
between the groups to illustrate the effects of the value of I'.

a. Small-T Systems

We consider first the results for the small-T systems, i.e. T < 0.083.
Since T describes the relative importance of the viscous stress which
tends to deform the drop compared to the interfacial tension which resists
deformation, the small-T group contains the "least deformable" drops.
Within the group, systems 2a, 2b and 2c vary in the (small) degree of non-
neutral buoyancy. System 3 has the same value for T and is neutrally
buoyant, but varies slightly from 2a-c¢ in viscosity ratio (o = 0.60).
The additional pressure drop for these small-I' systems is positive for small
drops, attains a maximum as the drop is made larger at a dimensionless
drop size which apparently depends on the material and flow parameters,
and then decreases, becoming negative as the drop is made sufficiently
large. - This behavior is reminiscent of a similar trend shown by drops
with comparable values of 0, 0 < 1, in the straight-wall tube flow.
Indeed, results for system 3aof (I) (0 = 0.58, ' ® 0.075) show the same
qualitative trend as illustrated in Fig. 6. It was shown in (I) and (II)
that the value of AP+ is determined by several competing mechanisms
including the disturbance of the flow caused by the drop, drop deformation,
interactions between the drop and the wall, and the simple replacement of
suspending fluid with drop fluid of a différent viscosity. It was also
shown (cf. (I)) that as the drop is made sufficiently large, the contri-

bution to AP+ from the simple replacement of fluid determines the sign of
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AP+. The identical asymptotic behavior is observed in the present results.
For values of o < 1, the additional pressure drop AP+ is negative in the
1imit of Targe ) because suspending fluid is replaced by the less-viscous
drop fluid. Similarly, we shall soon see that when o > 1, AP+ is positive
in the large-\ asymptote.

We have also studied the effect of an eccentric position of the drop
in the tube owing to a difference in density between the drop and suspen-
ding fluid for drops within the small-T group. It was shown in (II) that
relatively small values of AD/DO produced asymptotic behavior, as far as
the effects of density difference were concerned, for flow through the
straight tube. Therefore, we studied the effect of density differences
here for the smallest possible values of Ap/po that could be measured.

The values of Ap/pO for systems 2a, 2b and 2c are 0.003, 0.000 and 0.001,
respectively. Even though these values of Ap/pO may appear at first
glance to be "negligible", they induce an eccentricity in the lateral
position of the drop which is clearly visible as the drop travels through
the straight-wall tube entry section. The results displayed in Figs. 6
and 9 for systems 2b and 2c show that the value Ap/po = 0.003 is sufficient
to cause a measurable increase in the additional pressure drop and a
decrease in drop mobility. The qualitative influence of the eccentric
position of the drop is identical to that observed for the straight-wall
tube. - Furthermore, Fig. 6 shows that the effect of Ap/po on AP7 dimin-
ishes as the drop is made sufficiently large. A similar result is shown
for the drop mobility U/V in Fig. 9. 1Indeed, for A > 1.1, any effect of
Ao/pO on APt and U/V is no longer apparent. The identical trend was also

observed for the straight-wall tube flow.
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The effect of the remaining parameters, namely viscosity ratio o and dimen- -
sionless bulk velocity T, have also been studied for systems inthe small-T group.
System 3 differs from 2b only in viscosity ratio (o = 0.60, compared to
0.40). Figures 6 and 9 show that the effects of an increased drop vis-
cosity relative to the viscosity of the suspending fluid are an increased
value for ap* and a small decrease in drop mobility. The effects of bulk
velocity are shown also in Figs. 6 and 9 for system 2b. Since I is pro-
portional to the bulk velocity V, the two flow rates covered in this
experiment give a variation in T of nearly a factor of two for Newtonian
fluids. The effect of this variation in T on AP is a marked
increase in AP+, as can be seen in Fig. 6. Furthermore, the same vari-
ation in T results in a markedly lower drop mobility. The values of
U7V for system 2b with I' = 0.043 are:. 1.36, 1.20 and 1.12 for A = 0.62,
0.91 and 1.14, respectively. These can be compared with system 2b with
I' = 0.065 which gives corresponding values U/V of 1.50, 1.36 and 1.28.
The effects of T on AP+ and U/Y are qualitatively identical to the ob-
seryations noted in (I) for drops with comparable values of o in the
straight-wall tube.

The drop undergoes relatively small deformation for small values of
I' (T <0.083), as expected. A dimensionless measure of drop deformation
in the wavy-wall tube, albeit an arbitrary one, is the ratio of the

longitudinal drop length relative to the undeformed drop diameter. We

shall denote this ratio by D. The shape of the drop in the present case
varies periodically and, therefore, the length of the deformed drop at

any point depends on its axial position in the wavy-wall tube. We calculate
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D based on the maximum Tength attained during the oscillatory deformation.
For system 3, which is typical of the small-T cases, D increases as the
size of the drop is made larger from D = 1.03 at A = 0.77 to D = 1.24 at
A=1.15 for V = 0.24 cm/s. The drop undergoes a slightly larger deform-
ation as the average velocity is increased, with D ranging from 1.07 to
1.30 for ¥V = 0.46 cm/s for the same range of A. The maximum drop length
is attained as the drop is midway through the point of narrowest constric-
tion as shown in Fig. 15. This coincides with the point at which the
additional pressure drop achieves its maximum value. It is apparent from
Fig. 15 that the gap between the drop and the tube wall at this point is
very small for these small-T drops.

In conjunction with these obseryations concerning drop deformation,
we note that the magnftude of the oscillatory part of the apt signal in-
creéses monotonically with A for small-T drops. The sensitivity of
G(AP+) to A is relatively weak for small values of A, showing only a slight
increase until A exceeds 0.78. Then, 6(AP+) increases much more rapidly
-with further increases of A. The values of A at which this change in the
sensitivity of G(AP+) occurs correspond to a drop with undeformed radius
approximately equal to the smallest radius of the wavy-wall tube. Thus,
drops which are smaller (in their undeformed shape) than the tube even
at themost narrow constriction show 1ittle dependence of G(AP+) on A. How-
ever, when the drop is made larger than the Qavy~wa11 tube "throat", 6(AP+)
increases rapidly with 1. We note also the effects of other parameters on
s(aPT) for small-r drops. There is practically no effect of density
difference on 6(AP+) as is seen in Fig. 6. Also shown in the same figure

. . . + . . . . . .
is an increase in §{AP ) owing to an increase in the viscosity. Not shown in
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the figure are the values of 6(AP+) for System 2c. At the larger flow rate
(r = 0.083) the values of 6(AP+) coincide with those for System 2b with
r = 0.083. However, the values of 6(AP+) for System 2c withT'= 0.043, i.e.

the smaller flow rate, are substantially larger, and range from 0.42 to 8.4

over the range of A shown in Fig. 6. Thus, the effect of bulk velocity on
8(AP*) is substantial, at least for small-T drops.

b. Intermediate-I' Systems , '

We consider now the behavior of dropns with greater values of the

inyerse capillary number, specifically system 1 with T =0.50 and 0.94

These values are in the range we have labelled as the "intermediate" values
of I'. The viscosity ratio for system 1 drops, o = 0.0014, is the smallest
value employed in the present experiments. The most striking feature of
thissystem is that most of the drops exhibit breakup in the test section.
At the smaller flow rate, breakup occurs for drops with A > 0.8. The

total number of satellite drops formed during transit through the test
section increases with A. For the larger flow rate, breakup occurs at all
values of A, and the breakup process is periodic, with a maximum of one
~satellite drop formed for each oscillation of the tube boundary. The first
satellite drop, which is always formed in the first oscillation of the

test section, is the largest; the sizes of subsequent satellite drops
decrease monotonically as the parent drop continues through the test
section. The size of a representative satellite drop is larger if the
average flow velocity V and/or the size of the parent drop is made larger.
In the case of the largest flow rate and drop size, the first satellite
drop forms second generation satellites. Drop breakup occurs for System 1

without an extreme increase in the drop's deformed length, as measured by
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D. Indeed, the value of D does not vary appreciably with drop size and
flow rate (in contrast to the small-T cases).

Figure 9 indicates that the relative velocity of a system 1 drop
increases with A for small values of X at the smaller flow rate (T = (.50),
but becomes insensitive to further changes in X abruptly at A = 0.8. This
is precisely the value of A at which onset of drop breakup is observed.
Apparently, mobility becomes insensitive to drop size for system 1 drops
once the drop is made sufficiently large for breakup to occur. For the
larger flow rate (I' = 0.94), breakup occurs at all values of A, and there-
fore there is no abrupt transition in U/Y. The value of U/V for a given
drop size increases dramatically with the bulk velocity V, and this
effect may be connected with the observed shape of the drop in the tube.
If we consider the instantaneous value of the length of the drop along the
tube centerline, it is clear that the system 1 drops exhibit qualitatively
different deformation for the two flow rates. At the smaller bulk
velocity, the drop forms a shape that resembles a right circular cone as
the leading edge enters a convergent section. At this instant the axial
drop length is approximately 0.8 of its undeformed diameter, and the
pressure drop signal is a maximum, which indicates that this con-
figuration of the drop offers the largest resistance to motion. Photo-
graphs of the same drop for the larger bulk yelocity (I = 0.94) show
that the axial 1engthrof the drop is considerably larger and always
exceeds the undeformed drop diameter. The shape of the drop as
the leading edge enters the convergent section resembles a prolate spheroid

with major axis along the tube center. Although this point corresponds also
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to the maximum value for AP+ obtained during the oscillatory deformation,
the value of AP+ is considerably less than the value obtained at the lower
bulk velocity. This result is reflected in Fig. 8 which shows that ap*
and therefore the resistance to flow owing to the preSence of the drop

is smaller for the larger bulk velocity, with the effect of V becoming
larger with increasing A. Figure 8 indicates that the additional pressure
drop for system 1 drops is negative for all values of A, decreasing mono-
tonically as the drop size is made larger. It should be noted that the
satellite drops which are formed during the breakup procéss described

above are apparently not large enough to perturb the pressure drop signal
as they trail the parent drop through the test section.
c. Large-T. Systems ‘
We consider now the remaining Newtonian systems, that is, the group
with values of the inverse capillary number which are designated as "large",

r > 1. A qualitatively different type of deformation is observed for the
large-T Newtonian systems (4, 5 and 6), and this difference influences
the values obtained for AP+ and U/V. When a system 4 drop is made suf-
ficiently Tlarge, A > 0.8, the drop experiences a "permanent" elongation
during its passage through the test section. The length of the drop in-
creases steadily during the first five or six oscillations. The rate of
elongation suddenly increases when the drop becomes sufficient)y long
that the leading edge of the drop begins to invade the next constriction
before the trailing edge of the drop has completely eyacuated the preceding
one. This behayior is illustrated in Fig. 7 where D is plotted as a
function of the number of oscillations through which the drop has passed

for A = 1.04 and V¥ = 0.24 cm/s. Elongation continues until an equilibrium
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"Tength" is attained, D = 1.9 for this particular case. Photographs of
the drop are shown in Fig. 15. The drops formed from systems 5 and 6 are
mroe viscous, and they exhibit even larger deformation, attaining a Tength
qua1 to four tube wavelengths while still in the test section. The
degree of deformation for a given viscosity ratio increases when the size
of the drop and/or the average velocity are made larger. In the cases of
larger V¥ and X, the highly elongated drops are observed to break in the
straight tube following the test section. The drops which result from
breakup in the relaxation section are considerably larger than the satel-
lite drops which form in the test section for System 1. Qualitative
results for deformation and dispersion for sSystems 4, 5 and 6 are summar-
ized in Table 3.

When permanent elongation takes place, the value reported for the
average velocity of the drop must be considered carefully. In this case,
the velocity of the drop varies with axial position,not over a timescale
L/V, but instead over the time associated with the permanent elongation
of the large-T drop. Therefore, changes which take place over this time-
scale should be accounted for in the data. Specifically, the length of
the drop changes, but because we have taken the Teading edge of the drop
as a reference for determination of the average velocity, the values for
U/vV in Fig. 9 for systems 4, 5 and 6 reflect a component of the velocity
owing to increasing drop length. To identify this component and separate
it from the velocity of the center-of-mass of the drop, we have used the
videotape recordings to estimate the velocity of the center of the drop.

Within the Timits of an estimate, it was found that the velocity of the
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center of the drop did not vary systematically among the systems for a
fixed value of V and A. Therefore, a single set of the average values of
U/V with respect to the drop center is reported in Table 3.

In view of these remarks, the values of U/Y shown in Fig. 9 reflect
the effect of viscosity ratio and drop size on the average rate of extension
during transit through the test section. The data confirm the qualitative
observations already reported. System 4 drops (o = 0.070) show no perma-
nent elongation for the smallest value of A for both flow rates. In these
cases, the value of U/Y in the figure agrees closely with the value of the
center of the drop reported in Table 3. However, when the viscosity of
the drop is made larger, the value for U/V becomes Tlarger than the value
for the center of the drop.  The difference between the yalues for U/V in
Fig. 9 and Table 3 is proportional to the average rate of elongation of
the drop in the test section. It is clear from Fig. 9 that drop extension
increases with o, T and weakly with X in the ranges of these parameters
which was covered. It is obvious; however, that this result cannot be
extrapo]ated to g + .

The magnitude of the average rate of extension of the drop is im-

portant to the degree of dispersion, at least in a qualitative sense.
The number of drops which result from breakup in the relaxation section
is very roughly proportional to the degree of extension of the original
drop. Furthermore, the difference between U/V and the velocity of the
center of the drop is related to the degree of axial separation of the
fragment drops that result from breakup.

Several other features of the data for AP+ for large-T systems merit
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comment here. The pressure drop AP+ appears to be most closely related to
the viscosity ratio 0. Furthermore, the profiles of AP+ as a function of
A are relatively insensitive to changes in the values of T', as can be seen
easily by comparing AP+ for system 4 to similar data for the small-T systems.
Large deformation and elongation of the drop over multiple wavelengths of
the tube tends to diminish the magnitude of the oscillatory part of the
pressure drop signal. Indeed, the oscillation is completely absent in

some cases. Consequently, data for G(AP+)-f0r the large-T systems are not
reported. It is interesting to note, however, that the pressure drop
signal does not vary significantly over a timescale associated with the
elongation of the drop in the test section. That is, the extreme deform-
ation of the drop does not appear to affect ap* even though 6(AP+) is
reduced or eliminated.

The effect of an eccentric position of the drop owing to non-neutral
buoyancy was studied alsoc for the large-I' systems 7 and 8. The values of
AD/DO were relatively small (0.022 and 0.024, respectively) so that com-
parisons could be made with straight-wall tube data from (II). It was
shown in (II) that asymptotic behavior for "large" Ap/p0 occurs at values
which are comparable to the values of Ao/oo employed here. The effects of
density differences noted here and in (II) are likely to apply to many
industrial and bio]ogica1 processes, at least qualitatively, since values
of AD/D0 of at least this magnitude are 1ikely to be common. A non-
neutrally buoyant drop formed from .Systems 7 or 8 exhibits a greater degree
of deformation than that noted for the large-T neutrally buoyant cases.

The elongated drop deviates far from the tube centerline, well into the
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bowed sections of the tube, and extends over many wavelengths of the test
section. Furthermore, system 7 drops exhibit breakup into small drops
while still in the test section for A > 1.05 with V = 0.24 cm/sec, and for
all values of X with V = 0.46 cm/sec. The drops spend a large fraction of
time in the low mobility regions near the tube wall in the regions of large
cross-sectional area. Further breakup occurs in the relaxation section,
resulting in the formation of many droplets of various sizes. System 8
drops exhibit breakup within the test section for all values of V¥ and A.
It is interesting to note that the more viscous drops break up at smaller
values of A and V. It was impossible to determine appropriate values for
apt and U/Y in some cases. When breakup was substantial in the test
section, the signal for AP+ did not attain a steady-state value before the
leading edge of the drop reached the downstream pressure tap. Similarly,

a unique value for the velocity was also impossible to determine.

4.2 VYiscoelastic Suspending Fluid, 0.5% Separan

The data for the viscoelastic suspending fluids are now considered,
beginning with 0.5% Separan AP-30, the smaller of two polymer concentrations
employed in the present study. Data for AP+ for neutrally buoyant and
non-neutrally buoyant drops are presented in Figs. 10 and 11, respectively.
The relative velocities U/Y for this case are shown in Fig. 12.

The value of ap* appears to be strongly dependent on the value ofvthe
drop yiscosity for all values of I'. The additional pressure drop APT s
positive when o > 1 and negative when o < 1. The only exception to this

general rule is the non-neutrally buoyant system 12. In this case, AP+
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remains positive for all drop sizes although o < 1. However, it should be

pointed out that Ap/p0 is relatively large (0.037) in this case, and it is
known from the results of (II) that drop eccentricity owing to a density
difference between the drop fluid and suspending fluid can make a signifi-
cant positive contribution to AP+, especially for viscosity ratios near
unity. On the other hand, the effect of drop eccentricity appears secon-
dary to the effect of o when o is large, as can be seen from a comparison
of system 11 (Ap/pov= 0.0, o = 18.2, 12.6) and system 13 (Ap/po = 0.036,
o = 23.2, 16.1) which show nearly equal values for APT.  The additional
pressure drop increases with flow rate for most viscoelastic fluid systems
studied, the non-neutrally buoyant system 12 excepted.

Although the value of APt appears to be dominated by o for the range
‘covered here, the drop deformation and mobility depend on the yalue for
I' as well. As in the case of the Newtonian suspending fluids, the systems
can be diyided into groups based on the relative values for I'. Systems
11-13 are in the "small-r'" range, 0.05 < T < 0.096, while systems 9, 10 and
14 have values for T which are in the range we have labeled for this dis-

cussion as "intermediate-T", 0.24 < T < 0.43.

a. Small-T Systems

The dépendence of drop mobility on A for small-T drops in 0.5% Separan
shows behavior which is similar to that observed for the Newtonian suspen-
ding fluids. The relative velocity is. a monotonically decreasing function

of drop size. The actual values of U/V are roughly the same for "equiva-
lent" cases of Newtonian and yiscoelastic suspending fluids, i.e. for com-
parable yalues of T and . The effect of drop eccentricity is to decrease
the value of U/V, as can be seen by comparing systems 11 and 13, but the

sensitivity of U/V to eccentricity is diminished compared to the Newtonian

result.
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For I' <0.096, the drops show a deformation pattern which differs
qualitatively from the Newtonian suspending fluid shape. The small-T drop
in 0.5% Separan assumes the shape of a prolate spheroid as it passes
thfough the narrow constrictions. The maximuh pressure drop is attained
in this configuration when the drop is approximately half-way through the
throat of the constriction. However, unlike the case of the Newtonian
suspending fluid, small-I' drops in 0.5% Separan tend to maintain the shape
well after the leading edge of the drop has passed through the throat. We

shall return to this point in Section 5. The effect of non-neutral buoyancy
on the drop shape is barely visible especially in the narrow regions of the

tube, and the eccentric drops show little asymmetry in shape.
- b. Intermediate-I" Systems

The intermediate-I' group for 0.5% Separan,systems. 9, 10 and 14,
0.24 < T < 0.43, show trends for drop mobility as a function of A that are
qualitatively different than those exhibited by small - systems. The
importance of T is made apparent by a comparison of systems 9 and 12 which
are shown in figure 12. Although U/V is a strong function of )\ for system
12 (v = 0.06), it is nearly independent of A for system 9 (T = 0.40). We
find also that the value of U/V for these intermediate-I cases is dominated
by the value of the yiscosity ratio. The mobilities of systems 9, 10 and 14
drops increase as the viscosity ratio is made smaller. This effect of
the viscosity ratio is sufficiently-strong to dominate the effect of
eccentric position which usually retards drop mobility if all other param-
eters are unchanged. Thus, system 14 drops have a greater mobility than
the neutrally buoyant, but more viséous drops of systems 9 and 10. It

must be emphasized that the behavior of the drop mobility described above
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cannot be attributed to permanent elongation of the drops (as in the large-
I Newtonian cases), since no such change in length during drop transit was
observed for the intermediate - groups in 0.5% Separan.

However, drops in the intermediate-r group in 0.5% Separan do undergo
greater deformation than the small-r drops. Unfortunately, it was impossible
to generate values for T in the "large-r" class which were covered for the
Newtonian systems (there T was as large as 2.54), although this point will
be reconsidered for 1.0% Separan suspending fluid in Section 4.3. Conse-
quently, permanent elongation and drop breakup in the relaxation section,
which wereobseryed for Newtonian systems 4, 5 and 6 (I > 1),are not ob-
served for the 0.5% Separan suspending fluid systems studied. However,
another important dispersion process occurs for the 0.5% Separan suspending
fluid. System 9, 10 and 14 drops develop tails which are shown in Fig. 15.
The tail is observed to break up at its end, issuing a satellite drop which
trajls the parent drop. Tail breakup occurs at "critical" values of both
the average velocity and the drop size. The width of the tail, and there-
~fore, the size of the satellites,increases with V and A, but decreases
slightly as the parent drop continues through the test section. Further-
more, for smaller drops at the small flow rate, the tail forms as the drop
passes through each constriction and "recoils" completely before the drop
encounters the next convergent section. As the drop is made larger and/or
the flow rate is increased, the tail is unable to retract completely in the
divergent section before the leading edge of the drop enters the next con-
constriction. When this occurs, the drop develops a "permanent" tail which

grows in length as the drop passes through the test section. In every case,
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these "permanent” tails are shed in the relaxation section following
the test section. The satellite drops that are formed by these systems
are smaller than the drops formed 1in the Newtonian system 1. Not sur-
prisingly then, they are insufficient to affect the pressure drop during
the course of the experiment. Of course, this does not imply that AP+
would remain unchanged if the length of the wavy-wall tube was made
larger.

The drop viscosity influences tail fofmation and breakup; drops with
a lower viscosity evolve tails and shed satellite drops at Tower values
of the flow rate and drop size than their more viscous counterparts.
Non-neutral buoyancy, on the other hand, is not a factor, except to skew

the tail toward the tube wall.

4.3 Viscoelastic Suspending Fluid, 1.0% Separan

The effects of suspending medium viscoelasticity were studied further
by varying the concentration of the aqueous polymer solution. The data
for AP+ and U/V for neutrally buoyant drops suspended in a 1.0% Separan
AP-30 solution are shown in Fig. 12; corresponding data for non-neutrally
buoyant drops are illustrated in Fig. 13. The characteristic time of
the manometer-transducer system response was significantly longer in this
case than the time for drop transit through one oscillation of the test
section owing to the large zero-shear rate viscosity of the suspending
fluid which also fills the manometer Tegs. When a drop entered the test
section with 1.0% Separan as the suspending fluid, the pressure signal

responded to the presence of the drop slowly, and the drop passed through
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several wavelengths of the tube before a steady-state periodic signal was
obtained. The value of AP* shown is the "average" of that signal.

However, it 1s_impossib1e to compare the magnitude of the oscillatory part of
the signal for the 1.0% Separan cases with the other suspending fluids since

the response time appears comparable to the period of the oscillation.

The additional pressure drop appears to be slightly reduced as the
viscoelasticity of the suspending medium is increased. However, the
sign and relative magnitude of AP+ are dominated, as in previous cases,
by the magnitude of o, especially for large drops. The presence of
small drops in 1.0% Separan produces little change in the pressure drop,
as was also the case for the 0.5% Separan suspending fluid. In addition,
drop eccentricity makes 1ittle contribution to the additional pressure drop.

a. Intermediate-I" Systems

With 1.0% Separan as the suspending fluid, systems 17, 18, and 19
produced values for I which are in the "intermediate-r" range, according
to our designation, 0.19<r¢ 0.37. No systems gave values of I in the
small-T range owing to the larger nominal viscosity of the 1.0% Separan
suspending fluid. Data for neutrally-buoyant system 17 show only a
slight decrease in U/V as the drop is made larger. However, drop mobility
for non-neutrally buoyant drops, systems 18 and 19, shown in Figure 13,
exhibits a unique minimum as A is increased. A comparison between these
intermediate-T systems shows that U/V appears to be unaffected by ¢ or
T at small values of r. However, for large values of T', U/V increases
with decreasing viscosity ratio. The same qualitative dependence ong

was observed for 0.5% Separan suspending fluid for comparable values of T.
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Indeed, the values of U/V are comparable for the two cases.

Drop deformation for the intermediate-T drops in 1.0% Separan is
similar to the behavior noted for 0,5% Separan for intermediate values
of I'. The "magnitudes" of deformation, i.e. the values of D, are
nearly equal for comparable values of I and A. Furthermore, a tail
forms and breaks off in the relaxation section, but only for the largest
drop size and the highest flow rate. The drop location at the maximum
pressure reading is shifted downstream slightly from the 0.5% Separan

suspending fluid. A maximum pressure reading is attained when roughly
two-thirds of the drop has passed the point of minimum tube diameter.
In addition, an increase in the gap width between the drop surface and
the tube wall was also noted.

b. Large-I' Systems

System 15 and system 16 feature values for T (0.86 << 1.12)which
are considerably greater than the 1.0% Separan systems already described.
In terms of our previous designations, this range of values for r overlaps
the "intermediate" and "large" classes. The drop mobilities for these
two systems are large, with values for U/V in excess of 1.6 for system
15. In addition, the mobility increases with x, especially for system 15,
even though no "permanent elongation" of the drops is observed, The
data for these two systems indicate that drop mobility is a strong
function of viscosity ratio if all other parameters remain fixed, as was
also noted for the intermediate-r cases. However, a notable difference
between systems 15 and 16 and the intermediate-T cases is that the
drop mobility appears to be independent of V and hence r for the Targer

values of I'. A comparison of systems 14 and 9 with system 15 shows
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this effect.

There are significant qualitative differences in the dispersion
phenomena for drops suspended in the 1.0% viscoelastic medium. First,
the drops show increased deformation over the 0.5% solution, although
this is probably a consequence of the larger viscosity of the more
concentrated polymer. More importantly, the formation and breakup of
the tail for system 15 and system 16 drops exhibit different character-
istics than those previously noted for the 0.5% Separan solution. It
was noted that when a tail formed in the 0.5% Separan solution, a
saté111te drop broke from the end during passage through each of the
wavy-wall tube oscillations. Although a tail forms just as readily in
the 1.0% solution, breakup is drastically inhibited. The tail is cap-
able of surviving several (three to ten) oscillations intact before
issuing a satellite drop from its end. The thickness of the tail varies
over its length by more than a factor of three without breakup. This
observation holds for eccentrically positioned drops as well. They
show gross asymmétry in the shape of the tail, yet do not breakup. The
result of inhibited tail breakup is that a greatly reduced number of
satellite drops forms during passage through the test section, usually
four or five, compared to eighteen (one per oscillation) in 0.5% Separan.
The satellites which do form, though, are larger than those which form
in the 0.5% Separan and the Newtonian suspending fluids, suggesting that
the total volume of the satellite drops which are formed may be comparable
for the different suspending fluids. Furthermore, as in the earlier case,

the tail which remains attached as the drop exits the test section breaks
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from the drop in the straight tube relaxation section.

No gross elongation of drops is observed for the 1.0% viscoelastic
suspending fluid, even though values for the inverse capillary number are
nearly as large as those for Newtonian suspending fluid systems 4, 5, and
6 (1.12 presently, compared to 1.34 for the Newtonian systems). It should
be recalled that drops in thesevNewtonian systems were extremely extended
in the flow direction, occupying up to four periods of the test section
(see Section 3.1).

Finally, drops suspended in 1.0% Separan solution exhibit tip-
streaming in the straight tube entry section if the drop size and the
average velocity are sufficiently Targe. These concentric drops form
pointed ends from which drops, smaller than the usual satellite drops
which are formed in the test section, issue continuously until the
drop reaches the test section. The onset of tip-streaming occurs at
A = 0.64 for V = 0.46 cm/s for system 15 and at » = 0.80 for V = 0.24 cm/s,
and occurs at all sizes for V = 0.46 cm/s for system 16.

5. Discussion

5.1 Newtonian suspending fluid.

The most striking consequence of the wavy-wall tube geometry is that
the additional pressure drop is periodic in most cases. We have pre-
sented results in terms of the average value AP+ of the maximum qnd
minimum amplitudes of the oscillatory signal, along with the difference
6(AP+) between these two values, which gives the magnitude of the oscilla-
tory part. The data show thatG(AP+) can be considerably larger than AP+,
especially for viscosity ratios near unity. The instantaneous resistance

to flow owing only to the presence of the suspended drop increases
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steadily as the leading edge of the deformed drop passes through a
convergent section of the wavy-wall tube. The resistance then
decreases rapidly as the drop evacuates the "throat" and fills the
wide region of the tube. It is important to emphasize that the instan-
taneous value of AP' increases as the drop is forced through a conver-
gent section, even when the drop fluid is much less viscous than the
suspending fluid, i.e. o << 1,

The magnitudes of both the average additional pressure drop 4P" and the
oscillatory part 6(AP+) depend on the dimensionless bulk velocity T for the
Newtonian systems with small values for T. The values of ap* andws(AP+)
decrease as I' is increased for given values of xand c. The identical
trend was observed in (I) and (II) for ap* (a constént, since 6(AP+)=O),
and was attributed to increased deformation of the drop which lowers
resistance to flow. A similar explanation seems appropriate here. The
deformation of the drop, measured roughly by the drop's axial length at
any point in the tube, increases with I for small-T Newtonian systems.
This observation would suggest a decrease in the average additional
pressure drop AP+. However, the effect of I on deformation, i.e. axial
drop length, is greatest when the drop is in the narrow throat of the
wavy-wall tube. This observation suggests that the effect of V on
6(AP+) should also be significant, since the value of 6(AP+) is domi-
nated by the increase in resistance as the drop passes through tHe
narrow regions.

As the value of T is made larger, an important dispersion
process occurs. Although the intermediate-T drops do not elongate, drop

breakup is observed for system 1 (¢ = 0.0014, r = 0.50 and 0.94 ).
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It is of interest to estimate the rate of extension which induces breakup

in this case for comparison with the results of Grace (1971) for hyperbolic
flow, where breakup occurs at a critical value of the dimensionless extension
rate GU a/y (where a is the undeformed drop radius), which is a function of the

viscosity ratio. The dimensional extension rate G for wavy-wall tube flow is
2 2

estimated as G = %- fgéz;jﬁfmin. %- based updn the change in the average
"max "min

velocity between points of maximum and minimum cross-

section. The values of Guoa/y calculated 1in this fashion
are 0.3 < Gugya/y < 0.9 for V = 0.24 cm/s, and 0.5 < Guoa/y < 0.9 for

V = 0.46 cm/s. From observations reported in Section 4, we estimate
that breakup occurs when the dimensionless extension rate exceeds 0.4.
This value compares to a measured critical value of 0.5 in hyperbolic
.flow. Although it must be admitted that a strict comparison

between steady hyperbolic extension and flow through the wavy-wall tube
neglects both the rotational component of motion and the wall inter-
actions for the latter case, this result shows that the dimensionless
extension rate is at least approximately sufficient to cause breakup

of the drop, when interpreted in terms of Grace's criterion. However,
some features of the deformation and breakup process in the wavy-wall
tube suggest that this interpretation should not be taken too literally.
Drop breakup for system 1 drops tends to occur at values of the draw
ratio (dimensionless length D at breakup) which are approximately éne-
half those observed in the four-roller device for the identical viscosity
ratio. Also, breakup occurs in a time which is also one-half the time
for breakup in hyperbolic flow. A possible explanation for this is that

the drop is already appreciably deformed in the straight-wall tube entry
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section before entering the first constriction of the wavy-wall test
section. However, photographs of the drop shape during breakup suggest
a fundamental difference between the breakup processes for the two flows.
In the wavy-wall tube, the shape of the drop is cTear]y asymmetric in
the streamwise direction near the point of breakup, whereas a fore-aft
symmetry occurs at the point of breakup in the four-roll mill. The
width of the drop at a given axial distance downstream from the breakup
point is considerably greater than the width at the same distance up-
stream, and there is a concomitant decrease in the downstream length of
the drop compared to the length upstream of the breakup point. This
asymmetry of the shape may reflect the fact that the undisturbed flow
type varies between the convergent and divergent regions. Hence, the
breakup process may be determined in part by the variation of flow type
rather than simply the existence of a critical rate of extension.
Effects of unsteadiness in the velocity gradient are known to influence
breakup in simple shear flow, and it is possible that the Lagrangian
unsteadiness of the flow also plays an important role in determining the
conditions for breakup in the wavy-wall tube. Such a conclusion is
supported by the fact that system 1 drops exhibit breakup without the
extreme elongation which they would show in hyperbolic flow, especially
since the latter is a kinematically "stronger" flow than the rotational
wavy-wall tube flow. |

The situation changes for the larger values of I'. A direct compar-
ison of the present data for large-T with results for the straight-wall
tube is impossible because the maximum value for T employed in (I) and

(11) was 0.2. However, larger values are of interest in chemical flooding.
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Perhaps the most significant observation in the case of large-T

drops is the elongation of the whole drop to form long strands or
filaments under certain conditions. The elongated drop resembles
- the mobilized strip of o1l photographed by Wasan, et. al. (1979),
and cited there as one possible mode of 0il globule transport. It
is particularly important to note that strand formation occurs without
regard to the actual oil detachment process, since the drops never
contact the pore (tube wall) surface in this experiment. Instead,
the formation of strands seems to occur with the drop suspended
freely in the flow, and depends only on the material parameters,
specifically A, V, and o. These strands have particularly large values
for U/V and hence, represent an extremely attractive mode of 0il transport.
Once displacement is accomplished, formation of a concentrated o0il bank
is crucial to a successful flooding operation. Our results suggest
that strand formation enhances the formation of a front, because oil
that is displaced behind the front is carried at a velocity much greater
than the average pusher fluid velocity. Hence, strands migrate in the
flow toward the front where coalescence with the oil-water bank can take
place. It is also significant to note that Payatakes, et. al.(1978) have
suggested that the fastest traveling drops are those which are smaller
than the narrowest portion of the pore constriction. However, the data
indicate that extended strands have a larger velocity than the smallest
drops in the present study, which are smaller than the narrowest diameter
of the wavy-wall tube.

Although strand formation thus tends to enhance drop mobility in
the test section, the effect may be of dubious value since gross elonga-

tion of the drop is also a precursor to breakup. The neutrally buoyant
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strands, once extended over multiple periods, exhibit an axial variation
in radius which is in-phase with the oscillatory tube boundary, although
small compared to the amplitude of thewall oscillation. This shape is apparently
stable, insofar as the drops do not exhibit breakup while still in the test
section; however, when the drop enters the relaxation section, the
periodic disturbances grow, and breakup into several small drops follows
readily, This breakup process bears a closer resemblance to breakup in
the four-roll mill as described by Grace (1971) than to the break-up of
system 1 drops, at Teast in the sense that breakup occurs during stress
relaxation. - We can compare the critical draw ratio for breakup in
hyperbolic extension, which depends on the viscosity ratio, with the
estimated draw ratio at the point of breakup in the straight-wall
relaxation section of the present system. The values for hyperbolic
extension, taken from the data of Grace for viscosity ratios, o,
comparable to systems 4, 5, and 6, are 5, 9, and 20, respectively. For
wavy-wall tube flow, we have estimated the critical draw ratio by
determining the smallest value of the deformed dimensionless drop

length for which breakup occurs in the relaxation section. The minimum
draw ratios observed for systems 4, 5, and 6 were 3, 6, and 10,
respectively. It is evident that these are not "critical” draw ratios,
but rather just the lowest values which were observed for the
combinations of drop sizes and flow rates used in our study. Neverthe-
less, the values obtained show that breakup definitely occurs at smaller
values of the draw ratio in the wavy-wall tube flow than in a steady
hyperbolic flow, The difference between the draw ratiocs for the two

flows may be a consequence of the disturbances in drop shape induced by
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the wavy-wall geometry. The extended drop enters the relaxation section
with "finite-amplitude" wave-like disturbances in shape already present,
and these disturbances simply grow during stress relaxation. On the
other hand, deformed drops in hyperbolic extension show no capillary
waves until the flow ceases,

The mechanism by which drops are drawn into strands has been
identified in Section 4. Drops tend to elongate when the leading edge
of the drop begins to invade the next convergent region before the
trailing edge of the drop has "recoiled" from the preceding divergent
region. Equivalently, we may say that strand formation occurs for a
given suspending fluid when the time scale associated with deformation

is greater than the characteristic time of the flow, or

i

v U

where Hs is the drop viscosity. The data show that increased values of
the average velocity or drop viscosity, and decreased values of the
interfacial tension tend to enhance the formation of strands, in
qualitative accord with this inequality.

It was also noted in Section 4 that non-neutrally buoyant drops
exhibit a greater degree of elongation than concentric ones for fixed
values of the other parameters, Indeed, in many cases, drop breakup of
eccentrically positioned drops occurs in the test section, in marked
contrast to neutrally buoyant drops which breakup only in the straight-
wall relaxation tube, A definition of flow strength based on the

ability of the flow to deform a suspended drop (e.g, Olbricht, Rallison,
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& Leal, 1980) would imply that a purely extensional flow, which exists only
along the tube centerline, is most efficient at producing drop deformation. It
may thus appear surprising, at first, that eccentrically positioned drops ex-
hibit a greater degree of deformation than neutrally buoyant ones, all other
factors being equal. However, the flow field in the convergent-
divergent tube geometry is not homogeneous, and the magnitude of the

T)1/2

velocity gradient, defined as (vy:(vv) , increases monotonically with

distance from the tube centerline. Thus, it is possible that the flow
strength may be greatest away from the tube centerline despite the fact
that fluid elements off the centerline experience a rotational component
to the flow.

In order to test this possibility, we have examined the detailed
kinematics of the undisturbed flow (i.e. no drops present) of a Newtonian
- fluid through a wavy-wall tube using available numerical solutions of
the creeping flow equation at a cross-section (radius 0.35 cm) which is
midway between maximum and minimum tube diameters. The estimated flow
strength first decreases as the distance from the tube centerline
increases, but eventually attains a minimum and then monotonically
increases as the wall is approached. Indeed, for this particular
cross-section, the flow strength at distances from the centerline
greater than one-half the tube radius actually exceeds the flow strength
at the tube centerline. This result may qualitatively differ for a
tube with a substantially greater amplitude of wavy-wall oscillation.

However, the increasing flow strength which occurs near the tube wall in
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the present study is apparently responsible for the increased
deformation which is observed for eccentrically positioned drops,
relative to neutrally buoyant drops under otherwise similar conditions.
The periodicity of the pressure signal disappears, 1i,e, 6(AP+) =0
when strand formation occurs. This occurs apparently because the drop
is able to deform easily to lower its resistance to passage through the
narrowest throat of the tube. Also, the drop quickly extends to occupy
more than one period of the tube at any specified time. Consequently,
the simple oscillatory nature of the flow is not apparent. The value of
AP+ is still determined primarily by the viscosity ratio o. However,
the facile deformation of the drop diminishes the importance of V on

AP+ as compared to the small-r cases,

5.2 Viscoelastic Fluid Systems

The effect of suspending fluid viscoelasticity was studied by
employing two concentrations of aqueous Separan as the suspending fluid.
Unfortunately, in a viscoelastic fluid, quantitativeresults for the
dimensionless additional pressure drop'Aﬁﬁnﬂﬂmov are somewhat ambiguous
because they inevitably reflect the manner in which the nominal
suspending fluid viscosity is assigned in the non-Newtonian fluid. This
problem was also encountered for viscoelastic flow through the straight-
wall tube (cf. (I) and (II)), but the situation is even more complicated
in the present case because of the wavy-wall geometry, We have
evaluated the suspending fluid viscosity, somewhat arbitrarily, in a
fashion analogous to the method of (I) and (II) by using the shear-rate

at the wall of the "equivalent" circular tube with radius Tup
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We have already discussed (cf. Section 3) the role of visco-
elasticity in wavy-wall tube flow of the suspending fluid alone, i.e.
with no drop present. In that case, the effect of suspending fluid
elasticity is to increase the pressure drop over that which would be
expected based on shear-thinning considerations alone. It was found
that the difference in magnitude was correlated with the value of De
which is the ratio of the characteristic relaxation time of the fluid
relative to the time scale of the Lagrangran unsteady flow in the wavy
wall tube. The presence of a drop in the flow not only causes a
disturbance of the flow which may be large (in view of the fact that the
size of the drop is comparable to the size of the tube), but also
introduces an additional time scale, namely the intrinsic time for drop
deformation.

The significance of this latter observation is that the dependence
on the viscosity ratio, or other parameters which control the rate of
drop deformation in a Newtonian fluid, may be at least partially
suppressed in a viscoelastic suspending fluid if the characteristic time
scale for drop deformation in the wavy wall tube is much less than the
characteristic relaxation time for the fluid. One indication of this
can be seen in the magnitude of the oscillatory part of the additional
pressure drop 6(AP+) in the yiscoelastic fluids, We observed earlier
that the value of 6(AP+) is sensitive to the viscosity ratio for fixed
values of T and A for the case of a Newtonian suspending fluid {(cf,
system 2¢ and system 3 in Fig., 6), This observation is consistent with

the results of Rallison (1980) who showed, for Newtonian systems with
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small values of T, that the time scale for drop deformation scales with
o in any type of flow. However, data for small-T drops suspended in
0.5% Separan, which are shown in Figs. 10 and 11, suggest that 6(AP+) is
independent of o when the suspending fluid is viscoelastic. Indeed, the
data show that there is little difference in 6(AP+) for fixed A and small
values of T even though o varies by a factor of 100. There are also
qualitative changes in the drop shape in the viscoelastic fluid which
suggest the inhibiting effect which a finite fluid response time can
have on the drop dynamics. It was shown earlier that the shape of a
typical drop in a Newtonian suspending fluid follows the contours of

the wavy-wall tube for small and intermediate values of 1, Specifically,
the leading edge of the drop typically expands into the wider regions of
the tube aimost immediately after it has passed through the throat of
the convergent section. In the viscoelastic fluid, on the other hand,
the drop remains pointed during its passage through the throat, and the
leading edge expands into the wider regions of the tube only after the
drop front has passed well into the divergent region. Furthermore,

there is a visible gap between the tube wall and the drop surface at

the point of smallest diameter, even for small values of I, For the
Newtonian suspending fluid, there was no visible gap for the small-T

drop (though this obviously does not mean the drop contacts thewall in those
cases). Apart from the qualitative differences in shape for drops in a
viscoelastic suspending fluid, the other crucial consideration here is

the sensitivity of the shape to o for a given suspending fluid,
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Although there is a strong dependence of the shape on o for tﬁe
Newtonian cases, photographs of the drop in the two
viscoelastic fluids show only a weak <dependence on o.
This observation and the relative independence of'dAP+) to changes in o
are both apparently manifestations of the fact that the Langrangian
unsteady deformation of the drop is dominated by the characteristic
response time of the suspending fluid for small values of r, Indeed,
the ratio .of the characteristic relaxation time for the viscoelastic
fluid to the intrinsic time for drop deformation is approximately De/T.
For small values of I in the present experiment, this parameter is
0(10) which indicates that the dominant time scale is, indeed, the
response time for the suspending fluid.

The decreased sensitivity of drop deformation to the dimensionless velocity
I does help to explain the variation of apt with I' that was observed in
the present study. In the Newtonian case, APT decreased as the average
velocity was made larger. This was attributed to increased deformation
of the drop, as in the straight wall tube case., However, for visco-
elastic suspending fluids, the reverse trend is observed. We believe
that this is a consequence of the fact that the deformation of the drops
is not as sensitive to the average velocity as in the Newtonian case,
especially for large drops., As a result, the value of AP+ is probably
more strongly affected by the value of o, which is larger for the larger
flow rate, than it is hy drop deformation. As I' is increased, the
average velocity gradient is increased and the viscosity of the

suspending fluid thus decreases due to shear-thinning, causing APT to
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increase. It should be noted that it is only AP+ which i1s increased as
o increases; as the suspending fluid viscosity decreases, the overall
pressure drop in the tube will also decrease.

The situation changes when we consider the behavior of 6(AP+) for
intermediate values for . In these cases, the parameter De/r is 0(1),
indicating that the relaxation time of the suspending fluid and
intrinsic time for drop deformation are comparable, There appears to be
substantial deviation from the small-T curves for S(AP+) as a function
of A most notably for system 10 and system 9 shown in Fig, 10. The
videotape recordings show substantial differences in the degree of
deformation between the intermediate-r systems. Although the shape
resembles that observed for the small-T drops, including the gap between
the drop and tube wall, the length of the drop is larger in the
intermediate-r cases, and increases with o. Indeed, system 9 is
sufficiently deformed that the Teading edge invades the next throat
before the trailing edge of the drop has evacuated the preceding one.
When this occurs, it has a profound effect on 5(AP+), as already
discussed. This behavior is observed for all values of A for systems 9
and 10 (for the large value of r) and also for system 14, but only for
the largest drop size, which accounts for the curious sign change of the
slopes of the 5(AP+) versus A curves in Figure 11, The effect of G on
the deformation of intermediate-r drops in a viscoelastic suspending fluid is
also reflected in the mobility of the drops U/V which increases with
decreasing o. Thus, it appears that the time scale for deformation of

intermediate-T drops is at least comparable to the viscoelastic
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characteristic time, as suggested by the fact that De/T = 0(1). These
results suggest collectively that the relevant time scale for inter-
mediate-T drops is the intrinsic time for drop deformation and not the
viscoelastic time scale of the suspending fluid,

In addition to a dependence on o, the drop mobility U/V for non-
neutrally buoyant large-r drops in 1.0% Separan, system 18 and system 19,
shown in Figure 13 exhibits a minimum as A is increased. This behavior
is not a consequence of the viscoelasticity of the suspending fluid.
Small non-neutrally buoyant drops give values for U/V approximately equal
to that for concentric drops from system 17. As the drops are made
larger, neutrally buoyant drops in system 17 show a definite tendency to
“permanently" elongate as they flow through the test section, This
appears to enhance the mobility of the drop, but actually reflects the

increased velocity of the leading edge of the drop as it elongates., Non-

neutrally buoyant drops of intermediate size do not show any permanent
elongation because of their eccentric position in the tube. These drops
tend to migrate toward the wall in the regions of larger diameter, When
near the wall, they occupy slower pathlines of the undisturbed flow.

This allows time for the drop to "recoil" before the next constriction is
encountered, thus preventing permanent elongation, The net effect is to
decrease the apparent value of the mobility for intermediate sized
eccentric drops compared to the concentric case, However, like many
other features resulting from drop eccentricity, the effect is diminished
as the drop size exceeds 0.9 because the drop effectively occupies the

entire cross-section of the tube, Permanent elongation of large non-
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neutrally buoyant drops is possible and is, in fact, observed, There-
fore, the velocity of large drops is unaffected by density differences.
This results in the apparent minimum in the U/V-profile at intermediate
sizes.

The importance of dispersion phenomena to the efficiency of
chemical flooding operations has already been mentioned, and we now
review the various dispersion processes that were observed under the
range of conditions covered in the present experiment. No breakup was
observed for "small" values of T for either the Newtonian or visco~
elastic suspending fluids, although the shape of the drop differed for
~ the two types of suspending fluid. At intermediate values of T,
Newtonian system 1 exhibited breakup in the test section, although the
drop did not undergo elongation before breakup, Drops with inter-
mediate values of T in the 0,5% Separan solution formed tails which
under some condftions issued satellite drops in the test section and
broke away from the main part of the drop in the relaxation section, A
maximum of one drop per oscillation formed once the tail had grown
sufficiently long and disturbances to the shape in the form of waves
appeared on the tail surface. None of the intermediate-r drops
exhibited breakup in the test section without tail formation for the
0.5% suspending fluid. Breakup occurred for the drops with large values
of T in both Newtonian and viscoelastic suspending fluids, although the
actual breakup process differed for the two types of suspending fluid,
In the Newtonian fluid, large-T drops undergo a gross elongation and

breakup in the relaxation section into several (usually four to six)
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drops of various sizes. Breakup occurs as disturbances in the extended
drop shape grow, roughly resembling the breakup process in the four-roll
mill. For the large drops in 1.0% Separan, breakup occurs only in
conjunction with tail formation, even though the value of I is

comparable to that at which permanent elongation takes place for the
Newtonian suspending fluid. Furthermore, the effect of the visco-
elasticity of the suspending fluid is clearly to stabilize the tail

which permits large disturbances of the tail shape without breakup, As

a consequence, fewer and larger drops are formed as the elasticity of the
suspending fluid increases. This result is in agreement with the predic-
tion of Chin and Han (1980) for breakup of a Newtonian jet in a
viscoelastic continuous phase, For large wavelength disturbances

breakup of the jet is inhibited by fhe elasticity of the suspending
fluid, and when breakup occurs, the resulting fragment drops are larger
when compared to the Newtonian suspending fluid. Since the disturbances
of the shape of the deformed drop in the present experiment are roughly
comparable to the length of a wavy-wall tube wavelength, the large
wavelength prediction of Chin and Han (1980) should be at least

qualitatively relevant,

6. Conclusions

Experimental data have been reported for two-phase creeping flow
through a tube with periodic cross-section. The additional pressure
drop owing>on1y to the presence of an immiscible Newtonian drop is
periodic as the drop travels through the successive convergent/divergent

regions of the wavy-wall tube. Data for the additional pressure drop
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are reported in terms of the "average" value 5PT over typical period and
the magnitude 6(AP+) of the oscillatory part. The undeformed radius of
the suspended drop is comparable to the radius of the tube and exceeds
the smallest tube radjus in most cases. Consequently, we observe that
the drop must undergo substantial deformation in order to move through
the "throat" of each convergent section., Even when the drop viscosity
is small, the additional pressure drop accompanying flow in the
convergent region can be relatively large,

The conformation of the drop and therefore the additional pressure
drop and drop mobility U/V depend crucially on the value of the inverse
capillary number, T = pOV/Y. When the suspending fluid is Newtonian,
the drop shows relatively little deformation for small values of T, but
exhibits substantial deformation which leads to eventual drop breakup
for intermediate and large values of T, 'Perhaps the behavior of the
large-r systems is most significant, however, since our observations for
this case appear to resemble deformation behavior of oil globules in
actual porous media, We find that for large values of T, the drop
elongates in the flow and finally breaks into many fragment drops either
in the test section or in the straight-wall relaxation section depending
on whether or not the drop is concentrically located. Elongation, and
breakup occur as "onset" phenomena at critical values of I and A for
fixed o. The kinematics of the flow field in the wavy-wall tube are
significantly extensional in nature, which is particularly ef%icient for
drop deformation, Consequently, elongation of large-r drops in the

Newtonian suspending fluid, occurs in the wavy-wall tube for values of
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r, o, and x which would fail to produce elongation in a straight-wall
tube. The fact that breakup is observed after the extensional deforma-
tion is relaxed suggests an analogy between the wavy-wall tube flow and
the four-roll mill, as far as drop deformation and breakup are
concerned. Although the tube flow studied here is important as a
prototype for a number of industrial processes, our results suggest that
it would be useful to reconsider deformation and breakup in the simpler
(kinematically) flow of the four-roll mill, especially for time-
dependent straining motions of magnitudes greater than the critical
strain rate.

The effect of suspending fluid viscoelasticity has been system-
atically studied. As a preliminary to studying the two-phase problem,
total pressure drop--flow rate data were obtained for creeping flow of
Newtonian and viscoelastic fluids with no suspended drops present, The
data for the viscoelastic fluid show a deviation from generalized
Newtonian (i.e. purely viscous fluid) behavior which is correlated with
the value of De, The magnitude of the deviation is comparable to the
Newtonian contribution to the pressure drop, and this is consistent with
other resuits for flow through periodically varying tubes,

The role played by suspending fluid viscoelasticity with drops
present apparently depends on the value of r. For small values of T,
the deformation of the drop and hence the oscillatory part of the
additional pressure drop aPT §s influenced by o, which indicates that
AP+ probably depends most on the replacement of suspending fluid by drop

fluid in this case. For intermediate and large values of I, suspending
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fluid viscoelasticity appears to inhibit the elongation of drops

relative to that observed for the Newtonian suspending fiuid, However,
the formation of tails from the trailing edge of the drop are characteristic
of the viscoelastic suspending fluids for larger values of T, These
tails issue a number of satellite droplets, up to one per oscillation of
the wavy-wall tube, It was found by varying the concentration of the
polymer solution, that increasing suspending fluid elasticity tends to
stabilize the tail to disturbances associated with the periodicity of
the flow. This has the practical effect of increasing the size of the
satellite drops and decreasing the number that are issued. Unfortunately,
we are unable to specify the mechanism of viscoelastic action without a

more detailed analysis of the flow field with drops present,



References

Acrivos, A.

Chin, H. B.

Chin, H. B.

Deiber, J.

Deiber, J.

Dodson, A.

Dreher, K.

Elata, C.,

Fedkiw, P.

Franzen, P..

142

& Lo, T. S. 1978 Deformation and breakup of a single
drop in an extensional flow. J. Fluid Mech., 86, 641.

& Han, C. D. 1979 Studies on droplet deformation and
breakup. I. Droplet deformation in extensional flow.
J. Rheol., 23, 557.

& Han, C. D. 1980 Studies on droplet deformation and
breakup. II. Breakup of a droplet in non-uniform shear
flow. J. Rheol., 24, 39.

A. & Schowalter, W. R. 1979a Flow through tubes with
sinusoidal axial variations in diameter. A.I.Ch.E. J.,
25, 638.

A. & Schowalter, W. R. 1979 Flow of Newtonian and
viscoelastic fluids through tubes with sinusoidal axial
variations in diameter. Presented at A.I.Ch.E. Annual
Meeting, San Francisco, Ca., Nov., 1979.

G., Townsend, P. & Walters, K. 1971 On the flow of
Newtonian and non-Newtonian 1liquids through corrugated
pipes. Rheol. Acta., 10, 508.

D. & Grogarty, W. B. 1979 An overview of mobility con-
trol in micellar/polymer enhanced o0il recovery processes.
J. Rheol., 23, 209.

Burger, J., Michlin, J. & Takserman, U. 1977 Dilute
polymer solutions inelongational flow. Phys. Fluids,
20, S49,

& Newman, J. 1977 Mass transfer at high Peclet numbers
for creeping flow in a packed-bed reactor. A.I.Ch.E. J.,
23, 255.

1979 Zum Finflussder Porengeometrie auf den Druck-
verlast bei der Durchstromung von Porensystemen.

I. Versuche an Modellkanalen mit variablem Querschnitt.
Rheol. Acta., 18, 392.

Grace, H. P. 1971 Dispersion phenomena in high viscosity immiscible

fluid systems and application of static mixers as dis-
persion devices in such systems. Engng. Foundation 3rd
Res. Conf. on Mixing, Andover, New Hampshire.




143

Han, C. D. & Fupatsu, K. 1978 An experimental study of droplet
deformation and breakup in pressure-driven flow through
convergent and uniform channels. J. Rheol.,22, 113.

Ho, B. P. & Leal, L. G. 1975 The creeping motion of liquid drops
through a circular tube of comparable diameter.
J. Fluid Mech., 71, 361.

James, D. F. & Mclaren, D. R. 1975 The Taminar flow of dilute
polymer solutions through porous media. J. Fluid Mech.,
70, 733.

Leal, L. G., Skoog, J. & Acrivos, A. 1971 On the motion of gas
bubbles in a viscoelastic fluid. Can. J. Chem. Engng.,
29, 569,

Leal, L. G., Fuller, G. G. & Olbricht, W. L. 1980 Studies of the
flow-induced stretching of macromolecules in dilute
solution. Progress in Aeronautics, AIAA, to appear.

Marshall, R. J. & Metzner, A. B. 1967 Flow of viscoelastic fluids
through porous media. Ind. Engng. Chem. Fund., 8, 393.

Michele, H. 1977 ZurDurchflusscharakteristik von Schuttungen bei
der Durchstromung mit verdiinnten Losungen aus langkett-
igen Hochpolymeren. Rheol. Acta., 16, 413.

Neira, M. A. & Payatakes, A. C. 1979 Collocation solution of
creeping Newtonian flow through sinusoidal tubes.
A.I.Ch.E. J., 25, 725.

Oh, S. G. & Slattery, J. C. 1979 Interfacial tension required for
significant displacement of residual oil. Soc. Pet. Eng.
J. (Apr., 1979), 83.

Olbricht, W. L. & Leal, L. G. 1980 The creeping motion of immiscible
drops through a straight circular tube: the effects of
density differences between the fluids, in press.

Olbricht, W. L., Rallison, J. M. & Leal, L. G. 1980 A criterion for
strong flow based on microstructure deformation, in press.

Payatakes, A. C., Flumerfelt, R. W. & Ng, K. M. 1978 On the dynamics
of oil-ganglia populations during immiscible displacement.
Presented at A.I.Ch.E. 84th National Meeting, Atlanta, Ga.,
Feb., 1978.



144

Payatakes, A. C. & Neira, M. 1977 Model of the constricted unit cell
type for isotropic granular porous media. A.I.Ch.E. J., 23,
922.

Payatakes, A. C., Tien, C. & Turian, R. M. 1973 A new model for gran-
ular porous media. A.I.Ch.E. J., 18, 58.

Rallison, J. M. 1980 Appendix. The effects of shear and vorticity on
deformation of a drop, by Hakimi, F. S. & Schowalter, W. R.,
in press,

Roof, J. G. 1970 Snap-off of oil droplets in water-wet pores. Soc.
Pet. Eng. J. (Mar., 1970), 85.

Savins, J. G. 1969 Non-Newtonian flow through porous media. Indust.
Engng. Chem., 81, 18.

Schowalter, W. R. 1978 Mechanics of Non-Newtonian Fluids, Pergamon.
Press, Oxford, England.

Sheffield, R. E. & Metzner, A. B. 1976 Flows of non-linear fluids
through porous media. A.I.Ch.E. J., 22, 736.

Taylor, G. I. 1934 The formation of emulsions in definable fields
of flow. Proc. Roy. Soc., Al46, 501.

Wasan, D. T., McNamara, J. J., Shah, S. M., Sampath, K. & Aderansi, N.
1979 The role of coalescence phenomena and interfacial
rheological properties in enhanced oil recovery: an over-
view. J. Rheol., 23, 181.



145

€e'0 ARy

ve'0 gL'o

LE'0 9°G

AR LS°0

oT'1 L0

€€°0 vL0
160°0 <€
990°0 A0
960°0 '8l
eV o AN

£y'0 0E"0

e’ 6Ll
et 070

A 9'¥l
vS e AR

A4 0L°0
£g0°0 09°0
£80°0 0%°0
€80°0 0v'0
£80°0 00

?6°0  #100°0

1 o

S/u 94" 0 =A

9z2'0 L'y
6T°0 §80'0
6¢'0 £€9°¢
68'0 8€°0
980 180°'0
¥Z' 0 0L'0
690°0 L"9L
050'0 6¢°0
€L0°0 9°¢L
7€' 0 v6'0
ve' 0 02°0
0L'0 6° L1
0'0 0£0'0
Ve | 9'vl1
1230 25°L
ve'l 0L'0
£V0'0 09°0
£v0'0 0r°0
€v0'o 0’0
£v0'0 00
05°0 v100°0
IF)
v¢0 =A

0310NLS SW3LSAS 3HL 40 SIILYIM0¥d TVIYILWW

~— O —

MO OO
W O OO O WD m— O

—~ O —

N

-

NN

O OO OMMM LW
N ANNN r- = — O

(wo

~
- ™

SauAp)

0023a
0023d
01620
X=487 NOIN
X=87 NOON
g1 NOON
00230
00¢3d
01530
X=87 NOON

471 NOon
1URLUOIMBN

0023d

0Lsaa

7120+00220
Jdlem

TURLUOIMBN
Pini4 doug

:m;mmmm %6°0
1013Se[900S LA

SLLL 97-NOoon

C_Lmuxpm %SY° 56
SLZL-97 NOON

(UL LUOIMBN

pini4 buppuadsng

6l
8l
Ll
gt
Gl
vl
el
¢t
Ll

M=t OO

R4
qc
el

L

We7SAS



146

1€°¢l 62°8 Gg
S%6°v 99°L G¢
LT°L  18°§ 0
v6"€ 18°G 0
on "y ANEU\mmcxnvﬂz
S/W 9y°0 = A

SAINTd ONIAN3ASNS FHL 40 SIILYIdoud

S/wWd 270

9¢ "y uededas %01
€0 ¥ uededas %5°0
60°¢€ GTLTI-97 NOON

60°€ ULU9A 16 %G1 ° 66

Aﬂ-mv g pints butpuadsng

"¢ 378Vl



TABLE 3.

0.24cm/s)
.61
7
.04
.15

A

o= OO

.46 cm/s)
.61
77
.04
.15

- o= O O o

0.61
0.77
0.91
1.04
1.15
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System 4 (0=0.70)

System 5 (0=7.52)

SUMMARY OF DISPERSION PHENOMENA (NEWTONIAN LARGE-T SYSTEMS)

System 6 (c=14.6)

periodic shape
periodic shape
elongation
elongation

periodic shape
elongation
elongation
breakup

(Vv = 0.24 cm/s)

U/V {(drop center)

periodic shape
elongation
elongation
elongation

elongation
elongation
breakup
breakup

periodic shape
elongation
elongation
breakup

elongation
elongation
breakup
breakup

(V= 0.46 cm/s)

U/V (drop center)

1.62
1.61
1.60
1.60
1.58

1.62
1.64
1.65
1.64
1.62
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Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Schematic diagram of experimental set-up (not to scale).

(1) Constant temperature bath. (2) Micrometer syringe.

(3) Suspending fluid storage section. (4) Test section.

(5) Pressure port. (6) Auxiliary pressure port. (7) Video-
camera. (8) Videomonitor. (9) Videotape recorder.

(10) Manometer by-pass valve. (11) Pressure transducer.
(12) Transducer Indicator. (13) Gear pump. (14) Variable
speed motor. (15) Pressurized suspending fluid reservoir.

(16) Compressed nitrogen.
Scale drawing of a test section unit.

Friction factor f vs. Re for Newtonian and viscoelastic flow.
Ren is defined in terms of the power-law parameters. x-

Newtonian data.

Data for fRenas a function of Deborah number De for the

viscoelastic fluids.

Typical tracing for the additional pressure drop AP+. The
additional pressure drop is always negative for this particu-

lar case.

Dimensionless average additional pressure drop and dimension-
less magnitude of the oscillatory part as a function of dimen-
sionless drop size for small-T systems in a Newtonian sus-

pending fluid. System 2b values for (AP+) (not shown)

increase monotonically with » from 0.8 to 12.1



Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.
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Maximum dimensionless drop length D versus the number of
oscillations of the wavy-wall tube through which a drop

(System 4; » = 1.04, V = 0.24 cm/s) has passed.

Dimensionless average additional pressure drop as a function
of dimensionless drop size for intermediate-r and large-T
systems in a Newtonian suspending fluid. "1" indicates

System 1, etc.

Relative drop velocity as a function of dimensionless drop
size for all systems with a Newtonian suspending fluid.

System 2c for © = 0.043 1is not shown (see text).

Dimensionless average additional pressure drop and dimension-
less magnitude of the oscillatory part as a function of
dimensionless drop size for neutrally buoyant intermediate-r

systems with 0.5% Separan.

Dimensionless average additional pressure drop and dimension-
less magnitude of the oscillatory part as a function of dimen-
sionless drop size for non-neutrally buoyant intermediate-r

systems with 0.5% Separan.

Relative drop velocity as a function of dimensionless drop

size for all systems with 0.5% Separan.

Dimensionless average additional pressure drop and relative

drop velocity as a function of dimensionless drop size for

neutrally buoyant drops in 1.0% Separan.
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Figure 14. Dimensionless average additional pressure drop and relative
drop velocity as a function of dimensionless drop size for

non-neutrally buoyant drops in 1.0% Separan.

Figure 15. Photographs of the videomonitor: a) system 3,A= 0.912,
T = 0.065 (at maximum aP7); b) system 3, A= 1.15, T"= 0.065;
c) systemd4, n=1.04, T=1.05, after passing through two
periods; d) same as in (c), after twelve periods; e) sys-
tem 9, A= 0.912, T'= 0.34 (at minimumaP’); f) system 14,
A= 1.15, '= 0.26; g) system 16, = 0.912, T= 0.88.
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Abstract

" The dynamics of fluid systems which consist of a suspended
material in a Newtonian continuous phase is investigated theoret-
ically. Criteria are derived to predict conditions under which
the strength of a flow, i.e. a measure of the form and magnitude
of the velocity gradient tensor, is sufficient to induce signifi-
cant deformation and/or orientation of the fluid microstructure,
that is, the elements which collectively comprise the suspended
phase. The development relies upon the choice of a model to
describe the microstructure, and the form of the criteria re-
flects this choice. Once the choice is made, however, the de-
tailed material properties of a particular fluid system enter
only as parameters in the resulting equations, and thus, the
results encompass a large class of fluid systems, including
particulate suspensions and macromolecular solutions. Two
microstructure models are investigated here. When the micro-
structure is characterized by a vector, the flow strengths

of all linear flows are displayed in a single figure from which
the strength of a particular flow can be evaluated directly.

A comparison is then made for selected flows between these
results and those for the case where an irreducible second

order tensor is employed to describe the microstructure. A

significant difference between the two models derives from the
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fact that the "volume" of the microstructure must be con-
served in the second order tensor case. The criteria are
finally used to predict the degree of macromolecular stretch-
ing in a model turbulent flow and the breakup of immiscible
1iquid drops in simple shear flow. A comparison between the
flow strength predictions and experimental data yields good

qualitative agreement in the latter case.



170

I. Introduction

The dynamics of fluid systems consisting of a Newtonian continuous
phase and a second, suspended material, constitutes an important class
of problems which has been extensively studied, both experimentally and
theoretically. The present paper is an attempt to construct a theoreti-
cal framework which can be used to understand certain common features of
the relationship between motion of the system as a whole, and the con-
formation of the suspended phase.

We consider both particulate systems, in which the suspended material
may be a drop or a solid particle, and macromolecular solutions in which
the macromolecules are modelled as deformable particles insofar as mean
dynamic interactions with thé solvent are concerned. Thus, we use the
word "conformation" to denote the instantaneous shape and orientation of
the "particles", either individually, as would be relevant to single-
particle systems, or collectively, as would usually be appropriate for a
suspension or solution where a meaningful description of conformation
necessarily involves a statistically averaged statement of "shape" and/or
"orientation", cf. Hinch and Leal (1975, 1976). For convenience, we will
refer collectively to the suspended material as microelements, and the
appropriate conformational information as the microstructure.

In many problems, the conformation of the microelement (or elements)
is the most important parameter of the system for theoretical prediction.
Specifically, we are concerned with the predfction of flow-induced changes

in the conformation of microelements (either collectively or individually,
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as appropriate) since these can be dramatic, and are almost always re-
sponsible for macroscopically important dynamical phenomena. At the

level of an individual particle, for example, the flow-induced deforma-
tion and subsequent breakup of Tiquid drops are essential components of
emulsification processes, and have been studied extensively (Grace, 1971).
In suspensions or solutions, flow-induced changes "in microstructure are
directly related to the macroscopically observable properties of the
material as a whole (Barthés-Biesel & Acrivos, 1973a). The existence of
drag reduction in turbulent motions of extremely dilute polymer solutions
is thought by many investigators to be a.consequence of a high level of
flow-induced extension of the macromolecules (cf. Hinch, 1977). Finally,
the flow-induced deformation and breakup of aggregates of solid particles,
studied recently by Kao (1975), has a clear practical significance in
flocculation processes.

Obviously, the details of interaction between the continuous and
suspended phases will vary considerably from system to system (a point
which we shall discuss shortly). Thus, it would be‘unrea]istic to
expect to develop a theory, common to all systems, which would be capable
of predicting the detailed dynamics of flow-induced conformation changes
in any particular case. A characteristic feature of the examples cited
above, however, is the importance of the degree of flow-induced deformation
of the microstructure. Specifically, in each case, a critical question is
the possible existence of flow conditions in which the microstructure is
highly distorted relative to its rest configuration. Such large distortion

leads generally to "breakup" or "rupture" of deformable microelements, or
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to regimes in which the effect of the microelements on bulk properties
is maximized in the case of suspensions or solutions. The thesis of
our present paper is that a general criterion can be developed for the
existence of highly distorted microstructure states which is relevant
to a wide class of two-component fluid systems. In particular, we con-
sider the development of a classification scheme for steady, spatially
homogeneous flows based on their ability to "deform" the fluid micro-
structure (i.e. the conformation of either a suspension or solution).

A flow which is capable of producing a large deformation in finite time
will be called "strong", following the precedent of Tanner (1976);
otherwise, the flow will be called "weak". The meaning of this dis-
tinction will be made exact in the course of the development of a
specific criterion for strong (or weak) flows.

Most preyious approaches to the development of a flow-classification
scheme have been strictly kinematical in nature (cf. Tanner & Huilgol,
1975); that is, the properties of the "suspending" fluid and of the
microelements are not considered. Rather, the development of a strong
flow criterion has consisted of determining whether the eigenvalues of
the yelocity gradient tensor have positive real parts. If this is the
case, two adjacent fluid elements in the undisturbed flow will move apart
at an exponential rate, and so will points of a "particle" which deforms
exactly with the undisturbed flow. The kinematic criterion thus prescribes
a necessary condition for the existence of large microstructural deform-
ations, but is not a su?ficient condition for real systems of particles

or macromolecules. Neither the properties of the two phases, nor the
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instantaneous state of the microstructure enters the criterion, and
these play an important role as indicated above.

Any improvement, relative to a kinematic criterion for strong (or
weak) flow, must therefore result from the inclusion of further infor-
mation about the microstructure. However, the fundamental idea of a
general criterion for strong flows will be lost unless this information
can be included in a parametric fashion which encompasses all (or the
majority) of the class of systems of interest. In order to determine
whether such a formulation is possible, and, if so, what form it should
take, it is necessary to examine the specific two-component systems
which were mentioned before. Two types of considerations are relevant:
first, we must decide upon a convenient and efficient description of a
system for characterization of its microstructural state; and second,
we must determine the form for an equation which describes the time-
dependent evolution of this microstate. The variations in microstructure
with time consist both of changes in orientation and shape. For deformable
microelements, we are most directly interested in changes of the latter
type and these are reflected by changes in the length scale(s) of the
microelements. The magnitude(s) of the length scale(s) of the micro-
elements can be described by an appropriate invariant which will reflect
the properties of the particular system under consideration. It will be
seen that the strong flow criterion indicates, in effect, the conditions
under which unbounded gfowth of the inyariant, and thus unbounded growth
of the Tength scale(s), occurs. The rotational component of the flow

field influences indirectly the length scale growth rate, and it is
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possible to describe the dynamics of orientation from the analysis
which Teads to the strong flow criterion.

The resuiting flow classification is then applied to two illustrative
examples. First, we examine the degree of microstructure deformation (or
"stretching"), which is predicted in a random velocity field of known
(specified) statistics. Macromolecular stretching is generally regarded
as a prerequisite for drag reduction in turbulent flow. Early work on
this problem (e.g. Lumley, 1969) was restricted to two-dimensional flow
fields,'bﬁt there are important qualitative differences between two- and
three-dimensional flow fields for molecular extension. Second, we in-
vestigate the breakup of a Tiquid drop which is suspended in a second
l1iquid that is undergoing an arbitrary linear motion of the type
u = T-x. In this case, we examine the dynamics of a vector micro-
structure which provides a crude model of the deformation dynamics

(except in an axisymmetric straining flow where it is exact), but is

relatively simple to use.

II. Basic Equations

A. Variables for Characterization of Microstructure

We consider throughout systems which are spatially homogeneous,
thereby insuring that spatial position is not a significant microstructural
variable. Time variations are permitted, however, so this restriction
may be relaxed by considering Lagrangian time variations as seen by a

microelement.
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It seems at first sight that the description of the microstructure
of a suspension will depend strongly on the material under investigation.
In particular, there is a clear distinction between those systems of
identical non-Brownian particles when it suffices to consider the deformation
and orientation of a single element, and those (involving Brownian or
interaction effects) where a statistical average over different particles
is involved. Notwithstanding this complexity, Hinch and Leal (1975) have noted
that for both small and large departures from isotropy, the microstructure
of a wide class of suspension-type materials may be described to a good
approximation by means of irreducfb1e tensors of ranks zero, one and two.
Furthermore, the grossest and hence dynamically most significant feature
tends to be represented by the lowest harmonic present. We consider firﬁt
the class of materials where description of a single microelement is
sufficient.

The simplest case under this classification is exemplified by a
dilute suspension of rigid spheres in which case the volume of the spheres
is the only (scalar) variable. This case is trivial, however, in
that the structure is unaffected by the applied (linear) flow.
The next case of interest in order of complexity is that of a per-
manently axisymmetric particle, such as a "dumbbell" or a spheroid; the
structure may then be specified by a single vector R which incorporates
both overall deformation and orientation. (The special case of a rigid
axisymmetric particle involves only a unit orientational vector E), In
general, however, a description of the shape of a deformable microelement

requires second and/or higher order tensor(s) with components which yary
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in magnitude with time. For instance, for small deviations from sphericity
the surface distortion of a 1iquid drop may be written

R = a(l +R-A-R/R?)
where the undisturbed shape is R=a, and A(t) is an irreducible second
rank tensor. The formula is in fact reasonably accurate for 0(1)
values of A, but is formally valid only when ||A]| is small (further
corrections involve fourth harmonics).

We suppose following Hinch and Leal that the first departures from
isotropy can commonly (as above) be described by tensors of order no
higher than two, and Timit our subsequent considerations to systems
which allow either a vector or irreducible second order tensor description
of the microstructure. In view of the presumed "smallness" of |R| or

I|A|| » the dynamical equations for R and/or A can be linearized about
their equilibrium values. The flow classification scheme which we derive
in subsequent sections is then based effectively on a stability analysis
("stability" meaning that the appropriate invariant characterizing particle
length scales remains bounded for all values of t as t » «) using these
equations in which we search for combinations of [lvu|| and |E|| /|2
which lead to unbounded growth in |R| or in the principal values of A
with time. We regard such growth as indicative of the onset of finite
deformation of the microstructure, analogous to the exponential growth of
disturbances in conyentional Tinear stability theory. Such onset con-
ditions may coincide with the existence of large distortions or even

critical (breakup) phenomena. This is known to be the case, for example,
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for the linear dumbbell model of a macromolecule in solution where the
condition for unbounded growth of the end-to-end distanceihas been
shown by additional analysis to coincide with the condition for large
extensions of the corresponding nonlinear dhmbbe]1 models (Fuller, 1980).
However, the linearized dynamical equations relevant in the small
deformation 1imit R| or ||A]l << 1 cannot alone provide any information
about the final, "finite-amplitude" distortion which results from an
initial -unbounded . gkowth. Indeed, the connection implied between
unbounded  growth of small initial disturbances and the existence of
large deformations in the final state must be regarded as a hypothesis,
to be tested by comparison either with exact solutions of the corresponding
nonlinear dynamical equations, or preferably with experiments.

If we turn to suspensions or solutions, rather than single particle
systems, a meaningful description of the microstructure will generally
require the specification of statistical distributions of the conformation
variables appropriate to a single, microelement e.g. R or A. These
statistical distr{butions are directly related to the bulk properties. of
the suspension or solution, the prediction of which is the primary goal
of most theoretical analyses. In this regard, however, it should be
noted that the prediction of bulk rheological properties generally
requires second (and higher) order tensors even when the microelements
are axisymmetric and individually specified by the axial end-to-end
vector R. Specifically, the bulk constitutive equation in this case is
found to depend on' <RR>, d§?§3>, etc. Similarly, when the specification
of a single element requires a second (or higher) order tensor, the bulk

constitutive equations require statistical averages of these tensors,
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e.g. <A> <A-A>. Thus, in either case, a complete determination of the
bulk constitutive relationship for mechanical properties of the material
requires a statistical description of microstructure which involves at
least second rank tensors., We will consider solutions or suspensions
with microstructures that are statistically isotropic in the rest state,
and specifiable via a second order tensor when the structure is modified
by flow. This generally 1imits our analysis to "small" departures from
isotropy. The philosophy of basing a "flow classification scheme” on the
exponential growth of small "departures" from a statisticaT]y isotropic
state is identical to that described earlier for single microelements.
Thus, the unifying feature which underlies our present work is the
fact that all of the dynamical equations which describe the time evolution
of single particle conformation, as well as the time-dependent variation
in statistically averaged conformation variables for model suspensions or
solutions, can be expressed in one of two common forms depending upon
whether it is the vector or second order tensor description which is
required. Thus, a unified stability analysis and resulting "flow classi-
fication scheme" can be carried out, and the general features of this
analysis are independent of the nontrivial differences both of detail,
and of the physical meaning of the microstructural variables, which exist

from case to case.

B. Dynamica] Equations for Evolution of Microstructure

In the case of a microstructure which can be characterized by a

vector, say R, a general equation describing flow induced variations in R
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(for [R|<<1) can be proposed which encompasses all of the exact micro-
dynamical equations that have been derived either for axisymmetric single
particles, or for suspensions or solutions with axisymmetric microelements.

This equation is
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where r = R/R with R = |R|,and E and Q are the rate-of-strain and vorticity
tensors, respectively, of the local undisturbed bulk motion of the sus-
pending fluid. The coefficients G, o and F are parameters which depend
upon the properties of both the microelements and the suspending fluid.
Specific values which reduce (1) to the linearized version of the exact
dynamical equations for specific model systems will be discussed shortly.
First, however, it is useful to examine (1) from a qualitative point of
view. The first two terms on the right-hand side derive from the mean
hydrodynamic effect of the suspending fluid's motion on the microstructural
vector, R, and are thus regarded as the "driving force" for distortion of
the microstructure from its rest confjguratfon. The third term is then -
seen to represent a "restoring mechanism", tending to return the system
to the rest state, R = 0.

The equation’ (1) describes exactly the rotation of the axis of revolution
for an axisymmetric rigid particle ina homogeneous, 1inedr flow of the type
u = (g + g)-x, with G a shape factor of magnitude generally Tess than unity.
(Bretherton, 1962), F/(F + 1) = landa/(F +1) = 0. In addition, (1) is of the

same” form as the evolution equation for the end-to-end vector in the axisymmetric
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"elastic ellipsoid" model of a macromolecule in solution which was
recently discussed by Hinch (1977). The equation (1) is also identical
in form to that describing the rotation and extension/compression of the
linear elastic dumbbell model which originated with Kuhn and Kuhn (1945).
The Tatter had G = 1, F = 0 and o = H/6mua where H is the linear spring
constant and 6ﬂua is the Stoke's resistance factor for spherical beads.
The inclusion of bead-bead hydrodynamic interactions in the dumbbell
model modifies the restoring constant, «, but does not change the form
of the equation for the linear elastic dumbbell. Finally, if the con-
nector law in the dumbbell model is modified to include "internal vis-
cosity", as well as a linear spring, the resulting microdynamical
equation for the end-to-end vector is precisely (1), with G = 1 and

o = H/6mua as before, but with F“= K/6wpa where K is the coefficient of
internal viscosity (Bird et al., 1977).

A relevant question is whether one may apply (1) in some approximate
sense even if the microstructure is not axisymmetric. In this regard, it
is perhaps worth noting that the dumbbell particle, which is strictly
axisymmetric,is nevertheless intended to model the main features of
orientation and deformation of a "random-coil" macromolecule in solution
and the Tatter would not, in general, exhibit an axisymmetric structure.
In this sense, then, there is a strong precedent for suggesting that the
vector model may also provide a crude representation of the orientational
and deformational characteristics of other nonaxisymmetric microelements.
We shall, in effect, test this hypothesis for liquid drops in section VI

of this paper. The Tinear elastic dumbbell limit (i.e. G = 1, o = const.,
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F = 0) was used by Tanner (1976) to develop a strong flow criterion.
Although the Tinear dumbbell is restricted to small |R|, Tanner assumed,
as here, that the existence of unbounded growth of |R| is indicative

of the condition for "onset" of large values of [R|. However, by basing
his analysis on the linear elastic dumbbell 1limit, Tanner seriously
restricted the applicability of his results. Specifically, G = 1 is
indicative of a "particle" which would deform and rotate identically to

a line element of the fluid where o = 0. In addition, the fact that

F = 0 for the linear dumbbell means that it exhibits no "rigidity"
regardless of the rate at which its end-to-end separation changes. In
both of these features, the linear dumbbell is special and (we believe)
not necessarily representative of the behavior of real particles or
molecules, which inevitably have a finite aspect ratio and an internal
rigidity to deformation. These features of real.particles or molecules
yield an inefficiency in the ability of a steady straining motion to
rotate the particle relative to a line element with the same orientation,
and a 1imit on attainable rates of deformation or stretching in any given
flow field. 1In general, a real rigid particle spins with the full
vorticity, but only a part of the steady straining motion. In the con-
text of the model equation (1), this physical effect corresponds to
values of G different from unity. Almost all rigid axisymmetric particles
exhibit values of G < 1 (with the exception of particles of peculiar
shape — cf. Bretherton, 1962). The parameter G - 1 from below for particles

of infinite major to minor axis ratio, while a partic1e‘of spherical shape has

i

G = 0. Elastic particles and yiscous drops in axisymmetric straining
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flow (where (1) is relevant) both exhibit values of G # 1. Even the
elastic dumbbell shows a value of G < 1 if the "beads" are constrained
from rotating freely as they do in the usual formulation of the m‘ode].TL
The coefficient F can vary between 0 and «, corresponding to a particle
with an elastic (nondissipative) resistance to deformation and a rigid
particle, respectively. As indicated earlier, nonzero values of F in
the dumbbell model arise from the inclusion of "internal viscosity" in
the connector. A1l real particles will exhibit nonzero values of F.

It may also be noted that a comparison between the predicted
rheological {(and birefringent) behavior of a solution (or suspension) .
of linear dumbbells with G =1 and F = 0, and the obseryed behavior in
real solutions provide further indirect support for the relevance of
values of G # 1 and F # 0. Specifically, a solution of linear dumbbells
(6 =1, F=20) is predicted to exhibit a constant viscosity in steady
shear flow, as well as a first normal stress difference, Nl’ which in-
creases quadratically with shear rate (thus becoming unbounded for very
large shear rates) and a second normal stress difference, NZ’ which 1is
jdentically zero. In contrast, a modification of the model to values of

G < 1 and/or values of F which are nonzero leads to a shear thinning

TLWhen the spheres of the dumbbell are allowed to rotate freely, as is
usually assumed, the effective "particle shape" can only be a line ele-
ment (with the consequence that G = 1) regardless of any other features
which may be incorporated into the model, or of the assumed ratio of
sphere radius to separation distance. This is most easily seen by noting
that a dumbbell with freely rotating spheres will experience no torque
in a simple shearing flow when the axis of the dumbbell is aligned with
the undisturbed velocity — this is a distinguishing characteristic of
a particle with an effective axis ratio of infinity, for which G = 1.
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viscosity, a first normal stress difference with a high shear rate
plateau, and a second normal stress difference which has the same form

as Ny but which is pegative and of magnitude (1 -~ G)/2 relative to Ny
(cf. Gordon and Schowalter, 1972). In addition, in flows starting from
rest, the model with G < 1 and /or F > 0 yields a nonzero initial stress
and oscillatory overshoots. The fact that the latter predictions are in
close qualitative agreement with observation, coupled with an under-
standing of the fluid mechanics of real particle motions, proyides strong
motivation for considering the microdynamical equation (1) with G # 1 and
F >0 Indeed, Gordon and Schowalter (1972) suggest, on the basis of the
rheological predictions, that a model of the form (1) may also apply in
relatively concentrated polymer solutions where it is proposed that values
of G < 1 may arise from hydrodynamic or other interactions between the
macromolecules.

It should be reiterated that the equation (1) is to be regarded as
the Tinearized version, for small R, of the full dynamic equation for
evolution of a vector microstructure. In the context of the dumbbell,
for example, a more "complete" model of a real macromolecule has been
suggested by Hinch (1977) and Tanner (1975), among others, to properly
contain a nonlinear spring, and a nonlinear hydrodynamic resistance of
the beads — i.e. the magnitudes of both o and F should be dependent on
R — as well as values of G different from unity. In general, each of
the constant parameters in (1) is thus to be regarded as the asymptotic
1imiting value appropriate for small departures of the microstructure

from its rest configuration, R = 0. The important point is that the
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specific values, G = 1, F = 0, used by Tanner (1975) in his earlier
"flow classification" analysis are not consequences of the approximation
to microstructural distortions of small magnitude, as is true of the
linearity of the model equation, but rather correspond to particular
combinations of "shape" and "rigidity" of the microelements.

We haye noted, in the preyious section, that a more general de-
scription of microstructure is required for systems in which the micro-
configuration is not either individually or statistically axisymmetric.
We restrict our attention to microstructures which are describable via
an irreducible symmetric second order tensor, a form which is relevant
to the first departures of the structure from isotropy owing to the
action of a general undisturbed steady linear flow of the form

u=rx=(E+Q)x. The requirement of symmetry derives from the ob-

servation that the first departures from isotropy (of the shape of the
microelements, or of the statistical distribution of orientations, say)
are quadratically small (Hinch and Leal, 1975). A particular case which

is included within this framework has already been cited, namely

A = RR where R satisfies (1). In this case,
. (E:A)
- A . gL _2F ="=r _ 2o
B=Ag@-gat G(E A+ AE F+1trA Al -F+1 a (2)

and the conditions under which R = (tr 5)]/2 becomes unbounded will be deter-
mined in Section III.The interesting neQ—case .8 that in which the
physics of the microstructure requires tr A=0. In the case in which é
describes the first departure in the shape of a single particle from a

sphere, the volume of the microelements is proportional to
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1 +trp + 0(52) and the condition trA = 0 thus requires that the par-
ticle volume be conserved as it is deformed. If A describes the first
departure of some statistical distribution from isotropy for an assembly
of particles, the condition of conservation of total probability requires
trA ="0. The linearized version of the general dynamics equation for A

which guarantees trf = 0 is

(

[T}
[H =3

w{r

hepg-gaeolearpr- dem) - G)

An evolution equation of this general form has been investigated previously
in the context of microstructural constitutive equations of state by Haﬁd
(1962), Barthés-Biesel and Acrivos (1973a), and Hinch and Leal (1975, 1976).
Such an equation can also be rigorously derived for small deviations of
viscous drops (Frankel and Acrivos, 1970) or elastic particles (Goddard

and Miller, 1967) from sphericity. It may be noted, however, that the

first deviations of a slightly deformed vrigid ellipsoid

from rotation with the local vorticity of the fluid (as is true for a sphere)
occurs at 0(52). Indeed, an exact expression for rotation of a §1lightly

deformed ellipsoid was shown by Goddard and Miller (1967) to be given by

A= ) + (A-A)-E + E-(A-A) + 0(A7) . (4)

U
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Thus, unlike the vector equation (1), which describes exactly the rotation
in the linear flow (é + Q)-§, the linearized equation (3) can only yield
rotation ofa sphere in the limit of a rigid particle, where G > 0 (an
example is a viscous drop, which we will consider in sectionV, in the

Timit as the viscosity ratio approaches infinity). This does not, however,
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affect the utility of (3) for the investigation of acriterion for "strong
flow" based on an exponential increase in the anisotropy of the micro-
structure with time.

Indeed, apart from the condition that A remain traceless, the tensor
model (3) is similar to the vector model.. The parameter o measures the
strength of the restoring mechanism which causes the structure to return
to its rest state in the absence of motion. Further, G provides a measure
of the relative efficiency of the straining motion, compared to vorticity,
in changing = A. The material properties of the particular system under
consideration are incorporated in the model through the parameters a andr
G. In the case of a deformable drop, for example, these parameters are

functions of the interfacial tension, drop size and viscosity ratio (cf,

Barthés-Biesel and Acrivos;1973a).
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III. A Strong Flow Criterion for Microstructures Characterized by a Vector

We have seen that the equation (1) describes the time evolution of
microstructure for axisymmetric microelements. We now obtain a criterion
for strong flow from (1) by determining the conditions which yield ex-
ponential growth of the length scale, R.

Of course, any prediction of R as a function of time includes in-
formation both on the rotation of the particle axis and flow-induced
stretching along the axis of symmetry. It is thus instructive to
separate the stretching and rotation contributions in (1) by obtaining

evolution equations for R and r separately. It is straightforward to

show that
- 1 . : _
R F 1 {G(r-g r)R - aR} (5)
and
r=gor+6ET - (rEr)r] (6)

The latter equation is identical to that analyzed by Bretherton (1962)
and others (cf. Leal and Hinch, 1972) for rotation of a rigid, axisym-
metric particle in a Tinear flow u = (g + g)-z. The equations (5) and
(6) show that the vorticity directly affects the rate of particle rota-
tion but only indirectly influences the variation in length scale, R.
Furthermore, the rate of rotation is independent of the degree of
particle "rigidity" and "elasticity". The rate of microelement stretching
is determined at any instant by its orientation relative to the principal

axes of strain, as well as its present level of stretch relative to the

rest state. The presence of finite internal "rigidity" in the particle
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is seen from (5) to play the nonessential role, insofar as the criterion
for unbounded . stretch is concerned, of scaling the time for microelement
extension (or compression).

Now, Bretherton (1962) and Leal and Hinch (1972) have analyzed the
nature of the solutions for rotation of a rigid particle. Specifically,

Bretherton has shown that a vector P, satisfying the linear equation
p=Q0p+6GEp (7)

will rotate exactly as r, but also vary in magnitude. The solution of

(7) is of the form
p=Jae"p (8)
n

where ﬁqare the eigenvalues and P, are the corresponding eigenvectors of

the characteristic equation

det[2 + 6E - AI1 = 0. (9)

The three eigenvalues are either all real, or else there is one real
eigenvalue and a complex conjugate pair. Before.proceeding further, how-
ever, let us reconsider the dynamical equation (5) for evolution of the
lengthscale, R.

The unit vector, r, required in (5) is obtained from p by simply

dividing by the magnitude of lEI, i.e.

p/(p-p)% .
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But, it is evident from (7) that
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Thus, the dynamic equation (5) can be rewritten in the form

1o
o -

(F+1)R = — R - aR (10)

The geometric coefficient G, which appears explicitly in (6), is finally
seen in equation (10) to influence the rate of microelement stretching
only indirectly through its effect on the rate of rotation, i.e. p.

Finally, introducing (8), equation (10) becomes

L L m(pypm)
- m

(F+1)R = LI R - aR
) Pn’ Pm
mn
At
where p; = diﬁie 1. This can be written
(F+ 1)R = [f(t) - olR (11)

where f(t) is the appropriate function of time containing all the eigen-

values and corresponding eigenvectors. The solution of (11) can be written

formally

t
R = R exp [j ft) - o dt]

o F+1

We associate "strong flows™ with the existence of unbounded growth of R.
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This occurs for any F when f(t) > a. A strong flow criterion is now
determined by finding the maximum value attained by f(t) and comparing
it with a.

We consider first the case when all eigenvé]ues are real, say
Ay > &, > s, In this case it is easily shown that max[f(t)] = A; and

1 2 3

that f(t) = A, as t > =, The other possibility is that one eigenvalue

1
is real, say M, and the others form a complex conjugate pair, ¢ * i& .

In this case, too, the maximum value of f(t) is thé largest real part

of the eigenvalues, either U or C. In both cases, this is also the
asymptotic value for f(t) as t >~ . Thus, the gtrong flow criterion is
seen to reduce to the condition that the real part of (}) be larger than

a for at least one of the eigenvalues of (9). If this condition is not
satisfied, the flow is called weak. We note the possibility that f(0)

may be less than o, but max[f(t)] > a. In this case, the particle first
compresses, but as it rotates toward the principal extension axes, it
reverses this trend and grows exponentially in length. The reversal

occurs at the point when f(t) = @ . We .also note that the existence of

a complex eigenvalue, in the kotation problem, say A = ¢ + ig, will intro-
duce an oscillatory modulation of the magnitude of the end-to-end distance.

R. The condition for strong flow
Re(X) > a (13)

is, in fact, identical to that used earlier by Tanner (1976) but without
the insight which is afforded by the decomposition of (1) into separate
equations for particle rotation and extension. With this justification in

hand, we may now return to the eigenvalue problem defined by the equatidns
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(7) - (9) in order to determine the conditions on E and @ for existence
of a strong flow.

The eigenvalues of (GE + &), and hence the classification of a
specific flow as weak or strong, are affected by both the form and mag-
nitude of the velocity gradient tensor. In order to develop a flow
classification scheme which depends only on the flow type, it is nec-
essary to separate these two effects. This can be accomplished by
introducing the magnitude of the velocity gradient tensor, defined as

(VHSVET)% which is a positive scalar quantity that is invariant under
orthogonal transformations, as a scaling factor for (GE + Q). Thus,

we examine the eigenvalues of the normalized tensor

The strong flow criterion (13) then becomes

2" = max Re(Ai) >x(vE;VgT)—%

where the A; are the eigenvalues of L. The normalization clearly does not
change the fundamental nature of the strong flow criterion, but facili-
tates the comparison of different flow types for velocity gradients of
constant magnitude.

Since the fluid is {ncompressib1e, trL = 0, and hence L has seven
independent components. The magnitude of A+ depends only on the invari-
ants of L, however, corresponding to the fact that the strength of the

flow must be invariant to overall rotations of the axes. Furthermore,
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since | is normalized, the domain of all possible flow fields forms a
subset of the (trgz,det E) plane. The eigenvalues for any flow, which
will be represented by a single point in the accessible region of this

plane, are the roots of the characteristic equation

2P - (Ftrlf)) -detL = 0 . (15)

Accessible Domain

LZ,det;g plane, it is

To determine the accessible region of the (tr
permissible, in view of the rotational invariance ofvtrgz anddetg, to
choose the principle axes of E as coordinate axes so that the general

Tinear flow, u = (E + 9)-5, can be represented as

a 0 g-h
E = b ;2 = 1-g 0 (16)
-(a+b) h -j 0
. . . . . 2_ 2 2 .2
The magnitude of the yorticity vector w is given by w” = g~ + h™ + J7,
and
Ga g ~-h
S g Gb ] (17)

© @F N\ h oy -a(as)
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where the magnitude of the velocity gradient tensor is (ZM)I/2 with

M= (a2 + b2 + ab + wz). The invariants of L are
tr E = 0
tr gz = %—[Gz(a2 + b2 + ab) = wz] (18)
det L = -(2M)"321c3ab(a + b) + 6{g%(a + b) - 3§ - hZp)]

fl

Now, since trpgzis an even function of G, while det L is odd, we can
restrict our attention to positive values of G and use symmetry to deter-
mine the accessible domain when G < 0. It may be seen directly from (18)

that

-1 tr L2 < 6

with the minimum value attained for a purely rotational flow (a=b=0),

. . . . . . . 2
and the maximum value occurring in a pure straining motion with «~ =0 .

The simplicity of this result is due to the fact that only the magnitude

of the vorticity appears in trL?. This is not true fordetL, but then

the range of possible values may be found by noting that detg is deter-

mined, for a fixed value of trgz, by a and b with the only constraint

among all possible choices of g, h and j befng that 92 + h2 + j2 = w2,

i.e. the orientation of the vorticity vector remains arbitrary. The
extremal values of detl are plainly attained by choosing the orientation

to be parallel to one of the principal axes of E. Thus, at the extremum

2

of detL, one of az, b? or (a+b)2 is w~ and the other two vanish. For

instance, if a > 0, a > b, then the largest value of detL (for fixed tr 52)

2 2 2 2 0.

is obtained for ¢ = w , a~ = b™ = The extremum of detl is thus found
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by determination of

- 3 _ 2
Max {: > G ag(a +2b> GL%/Zj} subject to the condition
2(4° + a“ + b® + ab)
2,.2 2 2 :
tr gz - & (a2 ks bz ks ag) = = constant. This is a simple

w +a +b"+ab
maximization problem and yields a = -2b which corresponds, for each
value ofty-gz (i.e. for eachw?), to uniaxial extension for E. (There
are two other extrema for a/b; however, these do not correspond to
maxima, and have no physical significance in view of the nonanalytic
nature of the extrema in the full (a/b,g,h,j) space.) The boundary of

the accessible domain corresponding to a maximum in det!;for each value

oftrgz is given by
_ sgn(b)263(1 + 3k)
dget L] = f(tr 12) = 590 (19)
—lmax = 63/2(1 + KGZ)B/Z
where K = 5 . It can be demonstrated by a similar analysis
G 1 +trl
that the minimum value of det, for a given value of tr;z, is
- 2 ‘
dEt'L’min = -f(tr L) (20)

which occurs when the straining part of the flow is biaxial in form (i.e.
a = -b). The accessible domain is shown in Figure 1 as the region ABCD
for a typical case, G > 0. Provided G2 > 3, the boundaries BA (or BC)
will exhibit a maximum (or minimum) in detl as we have shown in Figure 1,

with the maximum given by G(6 - GZ)//?(9 - 263)3/2 and occurring at
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2 2

w-=2(3-G6

2). Otherwise, for G

< 3,det | increases (or decreases)
monotonically along BA (or BC) with increase in tr g?.

Various points on the diagram can be identified with particular
flow fields. First, consider the class of two-dimensional flows. For
these, det£;= 0 andtr'l=_2 varies from GZ, corresponding to hyperbolic
extension, to -1, corresponding to pure rotation. The segment DB contains
all two-dimensional flows. The special case of simple shear flow is
located on this segment at‘trg2==%-(62 - 1). Another important class of
flows are purely extensional flows, i.e. = 0 . The two invariants are

2 .62 anddet L = —L— 63ab(a + b). ATl

B (2M)3/2'

given in this case by trl

vorticity-free flows thus T1ie on the segment CA. It is a simple matter
to determine that the'point A corresponds to uniaxial extension with
det:£= G3/3/§. The curve AB has already been idehtified as the boundary
of the accessible domain. It corresponds to a uniaxial extension for E
with the vorticity aligned in the direction of the principal strain axis
and increases in magnitude as the point B is abproached. The opposite
curve CB corresponds to a biaxial extension with vorticity aligned in the
direction of a principal compression axis and again increasing in magni-
tude as B is approached. A1l pure rotations, i.e. E= 0, are represented

by the single point B. The situation is summarized in Figure 2.

Domain of Stability

Any flow of the type u = (E + £)-x can thus be represented by a point

o]
on the (det L,tr E‘)p?ane, and the eigenvalues which determine the rate of
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stretching of the microstructure, R, for that flow are given by the

solution of the characteristic equation (15). The three roots of (15)

are
MEs s,
_ 1 73,
by = =3 (sp+s,) + 5 ilsy - sp)
. 1 3 e
A3 = - 7(51 + 52) - 7?-1(51 52)
where
detL 1/3 ot L 13
51:[2 +‘/E] ;52=.[d"2"“‘ /0]
and

D Z(det g)z - g%(tr g2)3

The discriminant, D = 0, is shown in Figure 1 as two dotted lines OA and.
0C in the (det ggtr L?)p]ane, and marks the position at which the nature
of the roots changes from the real roots in the region AOC, to one real
and two complex conjugates in the region BOC and BOA. In BOA, D < 0 and
the maximum real part of these roots is, in fact, just given by Al’ i.e.

+

A= In AOC, where D > 0 and all roots are real, Al is again the

1"
largest. Thus k+ = Xl in the whole region ACOB, excluding the discrim-
inant 0C, and the characteristic equation (15) then provides a linear
relationship betweentr'lz_2 anddet L for each constant value of A" in this
region. Typical contours for arbitrarily chosen constant values of k+
are sketched in Figure i. The minimum value, x+ = 0, occurs on the 0B

axis. Along the discriminant OA, the value of A" increases monotonically

as a function of det L
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+_ ,2/3

\ (detL)”

with the maximum of A+ occurring at the single point A

+ - 4
Apax = 2G/V/6 .

In the region COB, on the other hand, D < 0 and the largest real part
occurs in the complex Eonjugate roots of (19) so that
+
)

X = Re(A,,A

1
2oh3) = -5 A

1

In this case, a second linear relationship holds between det L and tr E?

namely

2
)

-8(2")% +(tr O ~det L =0 . (20)

This relationship is also sketched in Figure 1. It will be noted, as
indicated by (15) and (20) that the slope of the constant \" contours in
this region are opposite in sign and %—the magnitude of the slope in COBA.
We shall discuss the physical significance of these observations shortly.
First, however, it is useful to summarize our argument to this point.

Specifically, we have seen that each flow type, from the general class

in this plane. Thus, the strength of any given flow is uniquely specified
as >\+EVH:VL_1T]1/2 and the criterion (7) can thus-be applied to determine if
the specified flow is weak or strong. For any given value of [vg:ngjg’
there is a single contour A" = a[vu:ng]-% = const. which divides the
domain of possible flows into strong flows and weak flows. A1l flows

2
that lie "above" the critical A contour in the(det L,tr L) plane are
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strong, and the microstructural length scale R will experience exponential
growth. This growth will be monotonic in time for flows which 1ie to the
right of the discriminant OC, and oscillatory for flows which Tie to the
Teft. A1l flows which fall "below" the critical A" contour are weak.
Several other consequences of Figure 1 should be noted. First, for
a given value oftrgz, the strongest possible flow occurs on the right
boundary of the accessible domain (G > 0). Given the strain rate E, trgf
depends only on the magnitude of the vorticity, whiledetl depends also on
its orientation relative to the principal axes of strain rate. Thus, it
may be seen that the strongest flow, for a specified magnitude of the
vorticity, occurs when E has the form of a uniaxial extension and the vor-
ticity vectoris aligned parallel to the principal éxis of extension. The
weakest flow, for a givencuz, is described by the point on the discriminant
0C where the vorticity vector is perpendicular to the compression axis.
Second, along the bounding curve A - B, the magnitude of the vorticity -
is increased and the flow becomes weaker as reflected by decreasing values
of k+, until finally, at B, we have a completely rotational flow for which
2= 0. Third, in the region between BOC and BC, the rate of strain tensor
has the form of a biaxial extension and the strongest flow of this class
again occurs at the boundary BC, where the vorticity is aligned parallel to
the principal axis of compression. However, A for this case is only equal

to %—its value at the same value oftr L2

for the case of uniaxial extension.
This suggests that (for G > 0) the maximum value of A" in the accessible
domain, and therefore the strongest flow, occurs at the point A, which is a

uniaxial extension with zero vorticity. This may indeed be demonstrated
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numerically by showing that the AF contour through A intersects the
accessible domain only at A.

Finally, a remark is needed concerning two-dimensional flows
which 1ie along thedet £:= 0 axis. These are special in that the
e 0 contour also lies along the segment OB and consists of those
flows for which the magnitude of the vorticity exceeds the magnitude of
the effective strain GE. When G = 1, simple shear flow lies at the point
0 and when G < 1, simple shear is always weak,since it falls between 0
and B along the contour AT o= 0. The unrepresentative feature of two-

dimensional flowswhich fall on the A+ = 0 contour is that they are
weak for any arbitrarily small value of the restoring parameter a.

IV. A Strong Flow Criterion for Microstructures Characterized by an
Irreducible Second Order Tensor

We turn now to the development of a criterion for strong flow for
systems in which the microstructure can be characterized by a second
order symmetric tensor A. As we have noted previously, the requirement
of symmetry derives from the observation that the first departures from
isotropy (of the shape of the microelements or of the statistical dis-

tribution of orientations, say) are quadratieally small (Hinch and Leal,

1975). The analysis of the preceding section determines the conditions
where (’crl:\)l/2 becomes unbounded, for the special case in which A = RR and
A is governed by equation (1). Here, we consider the case in which the
physics of the microstructure requirestr A= 0 (as, say, by volume con-
servation noted earlier), and the linearized version of the governing

equation for A is equation (3 ).
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The development of a criterion for strong flow for microstructures
characterized by a second order tensor follows the general principles
used in the preceding section, i.e. we determine the eigenvalues of
the Tinear equation (4). In view of the constraint thattr é==0, only
five of the six eigenvalues for (4) are independent; indeed, (4) is
represented more usefully for our purposes by writing five linearly
independent component equations for Aij in terms of a vector, say Q*,
which then allows representation of (2) as 5* = Qﬁ* where Q is a 5x5

matrix. The matrix D can be written in terms of the L =(GE + Q)/

L . . .
[vg;jijz and thus the condition for existence of a strong flow, i.e

unbounded growth of the microstructural length scales, is

-1
3

N max Re(A,) > ]al[Vg:(Vg)T]

where Ai(i =1,..,5) are the eigenvalues of the matrix D.

b

The characteristic equation for D is

2

latr(L™L) - 126223 + [2er(LT L) - 5deti]n®

>
+
=

+ & FerelZer(LTL) + (2132 - 6er(LTL)? + 6 (tr(L L)

[dete {2tr(LTL) - (£rt®)] = 0 . (26)

t
wiro

where the coefficients have been written in terms of the invariants of L.
The method for determination of flow strength for systems described

(approximately) by (4) is now evident. The characteristic equation (26)

is solved for five eigenvalues; the largest positive real part is propor-

tional to the flow strength. Since a graphical representation of the
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type used in Figurel 1is not possible in this case of a tensorial micro-
structure, we adoptAthe alternative of comparing the vector and tensor
models in several specific flows in order to expose the differences

between them.

Potential Flows

Consider first the potential flow, written without loss of generality

a 0 0
as [é] = 0 B 0 :
0 0 -(a*+B)

The effects on the strong flow

no
1]
no

criterion of the additional physical features of the tensor description
of the microstructure (compared to the vector description) are most ob-
vious for this class of flow types. For uniaxial extension ¢ = 2, B = -1,
and the eigenvalues obtained from (26) are A = yG/v6 with y = 2,-1,-1,-2,
-2, so that AT = 26//6. More surprisingly, however, inspection of (26)
indicates that (XA - 2G/V6) is a factor of the characteristic equation
for any arbitrary elongational flow. Hence, A = 2G6/Y6 is an eigenvalue
(in fact, the largest) for any choice of @ and B. We conclude that all
elongational flows are of equal strength for microsctructures described
by (a). This result is in marked contrast to the prediction for vectorial
microstructures, where the strengths of elongational flows (i.e. the
values of A+) are found to vary with the fTow type from the strongest
flow, uniaxial extension, to the weakest, biaxial extension (line segment

CA in Figure 1).
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The responses of the two models differ for elongational flows
because microelement volume conservation is incorporated into the tensor
model. A vectorial microelement in a purely elongational flow aligns in
the principal direction of greatest strain rate, and the length scale
grows at a rate which depends on the strain rate in only that direction.
Thus, in a uniaxial flow, the length scale growth rate is twice as large
for the vectorial model as it is in a biaxial extension. However, when
the microstructure is endowed with a tréce]ess tensorial description,
the rate of extension in any given direction is related to the rates of
extension and/or compression in the other principal directions through
the requirement of volume conservation (as for a viscous drop) or con-
servation of total probability in the case of a suspension {(or solution)
of Brownian particies. In biaxial elongation, for example, the
"tensorial" microelement is compressed along the principal axis of strain
rate (say, 1), and the resultant "squashing" contributes to the exten-
sional deformation in the 2-3 plane because of thetr A=0 condition.
Indeed, the coupling between different modes of deformation in the
traceless, tensorial model is responsible for the prediction that all
elongational flows have equal strength in their ability to deform the
microstructure. When a vector microelement is subjected to biaxial
extension, on the other hand, it rotates into the 2-3 plane and then
stretches at a rate which depends only on the rates of elongation of
the flow in the 2-3 plane. Thus, in contrast to the traceless tensorial
microstructural model, the strengths of different elongational flows, as

predicted by the vector model, all differ depending upon the rates of
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extension in the direction of stable "particle” orientation in each case.

Two-Dimensional Flows

The eigenvalues for the class of two-dimensional flows are

0, + [Fert?]% [Rerl?) - LerlTL)]E
The first three occur also for microstructures characterized by a vector,
but the additional pair can assume larger values under some circumstances
which indicates that the predicted value for A" can differ for the two
models. It has already been shown that the vector and tensor models do
indeed differ for two-dimensional elongational flow. On the other hand,
the two models predict identical flow strengths for pure rotation, which

is always weak, as well as simple shear flow, which can be strong only

if G2 > 1, and for all two-dimensional flows with sufficient rotation.

Effects of Vorticity on the Flow Sfrength

As a further example, let us consider the class of flows defined by

2 0 0 0. a
[E] =|10-1 0 . (g1 = {-a 0 b
0 0 -1 0 -b O

This particular class of flows is of interest because both the magnitude
of the vorticity relative to the pure straining part of the velocity
Qradient and the orientation of the vorticity relative to the principal
straining axes can be adjusted independently through the parameters a
and b. The pure straining part of the motion has the form of uniaxial

extension with largest principal rate of strain axis in the 1-direction.
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The vorticity vector is aligned parallel to this axis fora=0,b # 0
and is perpendicular to it for a # 0, b = 0. We can determine the
effect of the orientatioﬁ of vorticity by putting a = sing, b = cose
(so that wZ = a2 + b2 = 1) and finding x+(e), where 6 is the angle
between the vorticity vector and the extension axis. This calculation
has been performed for the case G = 1 for both the vector and tensor
models, and the results are shown in Figure 3. The real parts of the
entire set of eigenvalues are shown for completeness, but the strength
of the flow is proportional to the largest of these.

Figure 3 shows that the flow is strongest for both models when the
vorticity vector is parallel to the principal direction of extension and
is weakest when the vorticity vector is perpendicular to the direction.
When the orientation of the vorticity vector is nearly parallel to the
extension axis, the microstructure rotates mainly around the extension
axis, i.e. in the 2-3 plane. Thus, the straining motion experienced by
the microelements is nearly a constant uniaxial elongation. However,
when the vorticity vector is oriented perpendicular to the extension axis,
the rotation of the microstructure occurs in a plane containing the ex-
tension axis. Then the microelements are subject to alternate periods of
extension and compression as they rotate. As a consequence, the "average"
rate of strain and hence the flow strength are decreased. The vector
model exhibits less sensitivity to the orientation of the vorticity than
the tensor model. This is due to the fact that a vectorial microelement
spends a greater proportion of time aligned in the direction of principal

rate of strain compared to the tensorial microelement. On the other hand,
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the tensor microelement is deformed by compression as well as extension
via the conservation of volume féature present in the tensor model. As

a consequence, the flow strength is determined by different eigenvalues
for small and large values of 8. The eigenvalue which predicts the flow
strength for large values of 6 is complex, indicating that growth of the
microelement length scales occurs in an oscillatory fashion. The cross-
over of the eigenvalues for the tensor model occurs whenever wl > 0.1

for the given form of E and 2. The effect of making the magnitude of

the vorticity larger compared to the magnitude of E, i.e. w? = a2 + b2 > 1
is to decrease the'f1ow strength, especially for large values of 6. If
w2 is made sufficiently large, the vector model, too, will predict a com-.
plex eigenvalue with largest real part, much like the tensorial result in
Figure 3. The point of intersection of the two eigenvalues shown in

2

Figure 3 tends toward lower values of © as w” is increased.

We consider finaT]y the case in which the magnitude of the vorticity

L .
is permitted to vary. In that case,[vg;vEsz is not fixed and so compar-

Tz,

. + . .
isons must be made between values of Alvu:vu We again consider

o . 0 a 0
E = 8 and @ =|-a 0 b . The qualitative factors may
-(OL+6) 0 -b 0

be shown by asymptotic analysis of the flow in the limits 2= al +b% <1

and >> 1.
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(a) a=e, b=0,0>0,8<0, [a] > [8] with e << [E]}:
In this case, the magnitude of vorticity is 0(e) with the vorticity
vector aligned in the 3-direction. The flow strength for the vector

model is readily obtained as the largest of the following eigenvalues:

A [7u: () TT?

i

o+ ezcgégzg + 0(83)

ML (Tw) 112 = 82(_8._}_&.) +0(e”)
ALTu: ()12 = (o + 8) + 0(e?)

If the straining part of the motion has the form of a uniaxial extension,

1 2 3) .

a =2, B=-1, then K+EVE;(VQ)T]% =2 - FE * 0(e The tensor model

yields a similar result under the same conditions:
k+[Vg:(VR)T]% =2 - %?—ez
inhibits the flow strength in both cases (as expected) but this effect

+ 0(83). The addition of vorticity clearly
is much more pronounced in the case of a tensorial microstructure.

(b) a=0,b=¢g,a>0,8>0, |af] > |B] with e << |[E[]. This

choice of parameters gives a small degree of vorticity with the vorticity
vector aligned parallel to the largest principal axis of extension ong .
In this case, both the vector and tensor models predict that the flow
strength is unchanged by the addition of vorticity. The decrease in the
value of A+ owing to the addition of vorticity is exact]y balanced by

1
the increase in magnitude of the (total) velocity gradient [ vu:(vu T]Z.
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(c) a=w,b= O with [o] >> IIEfl . We now consider the opposite
Timit, that is, when the magnitude of the vorticity is much greater

than the straining part of the motion. First, consider the case in

which the vorticity vector is aligned in the 3-direction. The asymptotic

result for the vector model is

xIEVL_J:(Vg)TJI/Z = - (a+ B)
ALvu: (v) T2 = (o + B)/2
Aglvuz(vu) T2 = (a + g)/2

1
When E has the form of uniaxial elongation, A+[Vg:(vQ)T]2 a-%— for the
vector model, while the flow strength approaches unity for the tensor

model.

-5
(d) a=0,b=uw, with |u] > [|[E|]| . As Tong as the vorticity vector is
aligned exactly parallel to the largest prinéipa] rate of strain axis of

>
E, the flow strength remains unchanged even when |u| >> ||E]] .

Cases (a) and (b) indicate that the addition of vorticity to a flow
which is nearly irrotational inhibits the strehgth-of the flow. The
effectiveness of the inhibition decreases to zero as the vorticity vector
approaches the principal rate of strain axis. The fact that the tensor
‘model is more sensitive fo the addition of vorticity is similar to the
results discussed above for the effect of the orientation of the vorticity
on the flow strength. As the vorticity increases in magnitude, the
effective strain rate is precisely the average as seen by a particle

rotating rapidly in the plane perpendicular tolg.
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V. Prediction of Macromolecular Extension in Turbulent Flow

Although the exact mechanism is not known by which polymer additives
in extremely Tow concentrations reduce drag in turbulent flow, substantial
evidence suggests that the phenomenon is intimately connected to the
degree of flow-induced extension of the polymer molecules (Berman, 1978;
Hinch, 1977; Lum]ey,'1969). It seems of interest then to use available
models of the type discussed here to pfedict the degree of macromolecular
extension induced by a turbulent flow. We follow the approach of Moore
(1980) who calculated an average stretched length for nonlinear dumbbells
in a similar "model" turbulent flow. Here we are interested in the
comparison between the responses 6f microelements described by a vector and
by a tensa. Our basic postulate is that significant macromolecular extension
occurs when the flow is strong and persists for a time long compared with
the moiecu]ar relaxation time l/d. Whether or not strong flow occurs
locally within a turbulent flow depends on the local forms and magnitudes
of the rate of strain and vorticity tensors as well as on the orientation
of the vorticity with respect to the principal rate of strain axes.

We assume that the kinematics of theturbuent flow are known 3 priori
from other sources, perhaps a model or alternatively experimental data for
velocity distributions. However, once the kinematics of the flow are
specified, most likely in some statistical sense, then the strong flow

criterion can be directly applied to determine the macromolecular extension

induced by the specified flow.
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For the purpose of predicting macromolecular extension, we model the
local turbulent flow at a fixed point in space by a sequence of discrete
homogeneous flows, each of which persists for a specified time interval.
The form of the velocity gradient tensor during each interval is speci-
fied by é "known" (or assumed) statistical description of the kinematics.

A simple statistical representation will be employed here for illustrative.
purposes. The rate of strain tensor E is assumed to have the form
A

LET = -AS where A and S are uniformly distributed random
-A(1-5) “

variables on the.CIOSéd intervals [-2,2] and [0,1], respectively. The
magnitude of the vorticity vector || is taken to be an independent
random variable uniform1y distributed on a closed interval [O,w*] where
the maximum vorticity w* (w* > 0) is a parameter. The orientation of the
vorticity vector is a random vector uniformly distributed on the unit
sphere, and is taken to be independent of the particular form and relative
magnitude of the pure straining part of the motion. This particular
representation of a turbulent flow is statistically isotropic, but not
homogeneous. More complicated descriptions of turbulence are, of course,
possible (e.g. Phan-Thien and Tanner, 1978), and these may present a
physically more realistic representation of the detailed kinematics, but
our simpler model is sufficient to f11ustrate the calculation of molecular
extension induced by a flow with known (albeit oversimplified) kinematic
statistics. Thus, this simple model of turbulent flow consists of a

sequence of sets of values fo S, A, @ (both orientation and magnitude),
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and we determine the strength of the flow for each set. Of course, the
existence of strong flow for a particular randomly chosen set of values
indicates exponential growth of the microelement length scale(s) only
over the time interval for which the particular set of values persists.
Significant macromolecular extension in a strong flow will occur only
when the flow persists for a sufficiently large period of time. We
assume here that every realization of the velocity gradient W, subject
to the above statistical description, persists for a fixed time interval
T. The velocity gradient is constant during the time interval, but the
values of VU for subsequent intervals are independent of all previous
intervals. Furthermore, we consider only the 1limit where the interval
timescale T is much Targer than the re]axation'time of the molecule 1l/a.
In this 1imit, we assume that each realization of the turbulent flow
persists for a sufficiently large time to fully extend a macromolecule
if the form of Vu for that realization produces a strong flow. A more
realistic description of the flow would include some statement on the
statistics of the timescale T which could possibly be correlated with
the instantaneous form and magnitude of Vu. In this case, macromolecular
extensional growth rate could be estimated from the strong flow criterion
applied over an assumed distribution of timescales, and a statistical
measure of extension could then be predicted. Here, though, only the
asymptotic 1imit of large T is considered.

The problem is reduced to determination of strong flow for a large
number of velocity gradient realizations specified by A, S, }ZI, and

the orientation of , . The strength of the flow for a given value of vu
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is calculated by solving the appropriate characteristic equation, (15)

or (26) depending on the microstructure model used. This could be done
analytically, in principle, by findfng the distribution function for

the coefficients of the characteristic equation, since the distribution
functions of A, S, I;} , and orientation are quite simple. Nevertheless,
determination of the distribution function which depends on five randomly
distributed variables (orientation requires specification of two inde-
pendent angles) involves algebraic complexity unwarranted in this case.
Therefore, a numerical scheme is employed. The five variables which
together specify Vy are chosen for each realization on the stated closed
intervals by a random number generator. The coefficients of the appro-
priate characteristic equation are calculated, and the equation is solved
by a Newton-Raphson routine. The flow strength X+[Vﬁ + (V‘Q)T:II/2 is then
computed easily for each realization. A histogram of the flow strengths
is formed for a large number of realizations. The results of the calcu-
lation are shown in Figure 4 1in terms of the cumulative distribution of
flow strengths non-dimensionalized by the max imum possible flow strength
(uniaxial elongation). Several values for the parameter w*/G are shown.
The ordinate represents the fraction of realizations for which the flow
strength exceeds the dimensionless flow strength on the abscissa. Since a
flow is strong if A+[qi:(Q1)T] > |a|, Figure 4 gives equivalently the
fraction of polymer molecules exhibiting exponential growth of the length
scale(s) for a system with dimensionless relaxation constant
a[A+EVEE(%1)TJ%]maX, subject to the assumptions mentioned previously.

The dimensionless relaxation depends implicitly on the value of the
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material constant G. The curves were computed based on 2500 realizations;
increasing the number to 25000 resulted in numerical differences of less
than one percent.

The fraction of molecules experiencing full extension is reduced as
the relaxation constant increases. This is an obvious consequence of the
restoring forée preventing the flow from distorting the polymer molecule.
Indeed, if the relaxation constant is larger than the maximum flow strength
possible under the particular statistical description chosen, no macro-
molecules extend due to the flow.

The inhibiting effect of vorticity is easily seen in Figure 4. For a
given value of a, the fraction of molecules which are extended decreases
as the vorticity increases. The curve for w*/G = ( represents the degree
of extension experienced in statistical assortment of pure extensional
flows. At the other extreme, as the internisity is increased, the curves
tend toward definite 1imits. Although it is not shown in the figure,

6 differ from those for w*/G =

the numerical values for the case w*/G = 10
200 by Tless than one percent. Asymptofic behavior for the case of large
vorticity is expected based on the results from the calculations for flow
strength in a homogeneous flow with large vorticity in the previous
section. The fact that the flow strength, and hence the fraction of
macromolecules which are extended, tends toward a nonzero Timit as
vorticity is increased without bound is a distinguishing characteristic

of the three-dimensional nature of the flow. The flow strength in a two-

dimensional flow necessarily tends toward zero as the magnitude of the
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vorticity is made infinitely large. In terms of the present example,
the curves for large values of m*/G would approach zero degree of ex-
tension if the flow were confined to two-dimensions. The reason for
this difference between the two cases is the fact that in two-dimen-
sional flows vorticity induces rotation of the plane containing the
principal rate of deformation axes, i.e. the vorticity vector is per-
pendicular to‘this plane. An alternative statement is that for two-
dimensional flows, the eigenvalues of E must 1ie in the plane of rotation
owing to @. In three-dimensional flows, this is never the case, and hence,
there is always a component of the principal axes of deformation which 1is
effective in stretching the macrbmo]ecu1es even if the rate of rotation
increases without bound.

The vector and tensor models show similar qualitative behavior
though the tensor model predicts uniformly greater extension for a given
value Ofvw*/G. The difference appears greater at larger values
of the relaxation constant except for the large vorticity cases. The
asymptotic 1imits for large vorticity also differ for the two models as
can be seen from the two curves for m*/G = 200.

A simplified description of the statistics of the turbulent flow
has been chosen to illustrate the calculation. Equipped with a more
realistic specification of the turbulent flow, the extension in real
flows could be predicted. We may speculate further that the structure
of the turbulence requires correlations between the pure straining motion
and vorticity which have been taken as independent variables here.
Additionally, an attempt could be made to investigate extension in
structural regimes of turbulence thought to play a role in drag reduction

such as the viscous sublayer.
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VI. Droplet Breakup

As a second example of the application of the strong flow criterion,
we consider the deformation and breakup of immiscible Newtonian drops
suspended in a Newtonian fluid which undergoes a prescribed deformation
at zero Reynolds number. On dimensional grounds, drop deformation is
then a function only of the dimensionless shear rate € = uya/oc , where
vy is the strain rate, a is the undeformed drop radius, and o is the
interfacial tension between the drop and the continuous phase. Further-
more, breakub must occur when this shear rate exceeds a critical value
which depends on the rationof the drop viscosity u to the viscosity of
the suspending fluid and the tensorial character of the applied flow. -

Experimental confirmation of a critical rate of deformation is
provided by Rumscheidt and Mason {1961), Karam and Bellinger (1968),
Grace (1971), Torza, Cox and Mason (1972), and Lee (1972). 1In all of
these experiments, however, drop breakup was studied in either two-
dimensional Simp]e shear flow or hyperbolic elongation. The value of the
dimensionless deformation parametér at breakup, €opit> Was found to
depend on which of the two flows was considered, as well as ratio n.
Unfortunately, however, the data from the various studies show con-

siderable scatter and the measured values for ¢ vary by as much as

crit
a factor of three in some instances.

BarthesBiesel and Acrivos have suggested that breakup is a mani-
festation of nonexistence of solutions to its steady state deformation

problem. We adopt the more fundamental point of view {which also seems
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more appropriate when hysteresis is known to occur) that breakup occurs
as a result of unbounded growth of some length scale for the drop. This
suggests that we may regard breakup as a consequence of strong flow
conditions.

In order to use the strong flow criterion, we must estimate the
two material parameters o« and G, eachas a function of n. The simplest
available choice is to use the coefficients derived by Frankel and
Acrivos in analyzing small deformations (from sphericity) of a viscous
drop. It is not clear that these are the best choice, however, since
we are interested in breakup which occurs frequently for drop shapes
that are significantly nonspherical. Indeed, only very high viscosity
drops (n >> 1) break up when only slightly déforméd and in that case
a, G are reasonably approximated by its near-sphere analysis.

Now, o represents the elasticity (Hookian spring constant) of the
surface tension membrane, and since the material does not strain-soften
the value obtained from a small deformation analysis can be
reasonably expected to apply for large deformations. In regard to G
on the other hand, we noted earlier that G = 0 for a rigid sphere, and
hence a small change from sphericity is liable to produce a relatively
large proportionate change in G. In fact, we find that the predictions
for breakup using the near-sphere value for G are poor, and in consequence,
adopt a semi-empirical procedure for estimation of the efficiency factor

G in which data for ¢ in one homogeneous flow are used to evaluate G

crit
for a particUlar value of the viscosity ratio. This value of G is then

assumed to be appropriate for all flows, which assumes tacitly that the
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shape of the deformed drop at incipient breakup does not depend on the
particular flow which induces the overall deformation process. It
should be clear, though, that G and hence the drop shape at breakup
remain a function of the viscosity ratio. This approximation is Tikely
to be a crude one, but is consistent with the strong flow notion that
breakup occurs by a simple "tearing apart” of the drop. Of course, this
simplified view of dispersion cannot predict any of the details of the
breakup process such as the development of -pressure instabilities, or
any phenomena that are a consequence of a time dependent velocity gradient.
In order to illustrate the procedure, we evaluate the parameter G from
~in hyperbolic elongation and then use the same value 1in

crit
the vector and :‘tensor models to predict EcFTt for simple shear flow

data for ¢
where a comparison with 6ther available data is possible.
The coefficient @ can be obtained from the small deformation

analysis of Frankel and Acrivos (1970)

o =

-40(n + 1) Y
(n+ 3)(19n + 16) ¢

The strong flow criterion is then written as

fro 1o Tes 4o(ﬁ+1) X '
A LVyu:(Va) ' 12 > (2n + 3)(19n + 16) = (27)

where A" is the Targest real part of the eigenvalues calculated from

equation (15) or (26). Hyperbolic elongation can be defined as

1 0
Yy =y [O _1] . The values for K+[Vg!(Vg)T]% for this flow are Gy and

v4/3 Gy for the vector model and tensor model, respectively. Thus, at
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incipient breakup, the following expressions for G can be deduced from
(27) — note, at incipient breakup,that the inequality becomes an

equality and

40(n + 1) 1

(2n + 3)(19n + 16) (vector)

G =
€crit

V3/4 40(n + 1) 1

(Zn + 3)(19n + 16) € (tensor)

crit

Thus, given data for € in hyperbolic flow, G can be evaluated for

crit
each model as a function of the viscosity ratio n . The data for €crit

for hyperbolic elongation from Lee (1972) will be used since it is the
most extensive in the range of values for n where breakup occurs in both

shear and hyperbolic flows. The values of ¢ and the calculated

crit
value of G are given in Table 1 for several values of n.

The calculated values of G are now used to predict ¢ for simple

crit

01
shear flow specified by Vv = vy {O O] . The values of the flow strength

for simple shear flow are %—(sz— 1)%y for the vector model and %—-(G2 - 1)%Y

for 1 <6< 3and 1//3 (6% - 3)% for G > 3 for the tensor model. The

corresponding expressions from the strong flow criterion for Ecrit in

simple shear are then

e . 80(n + 1)
crit (2n +:3)(19n + 16)

= o , G <1

for the vector model, and
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- 80(n + 1) 2 ~3
Scrit = (Zn ¥ 3)(1on + 167 (© - 1) 3> 6>1

40/3 (? + 1

- ) 2 -3
Ton +3)(10, v 167 (& - 3) G>3

= G<1

These predicted values for € in simple shear flow are shown in

crit
Figure 5. We shall discuss these results below in more detail. It is
noteworthy, however, that the qualitative shape of the relationship

between € and n is not only similar to that observed experimentally

crit
for simple shear flow, but. is also much different from that for hyper-
bolic extension which was the source of our expressions for G. Let us
now consider these results in more detail.

The semi-empirical approach gives a prediction for €opit 85 2 func-
tion of n that is inqualitative agreement with the experimental data for
simple shear flow as we have just nbted. Breakup in this particular
flow occurs only for values of the viscosity ratio n in the range
“110'2 <n <4, The strong flow criterion predicts accurately the upper
1imit on N where breakup is still possible. The models also give good

agreement with the minimum value of € (x0.4) although the model

crit
predictions of this minimum occur at values which differ somewhat from
the experimental result, N = 1. Quantitative agreement with the data .
must be regarded as fortuitous to a certain extent, since the data for

breakup in simple shear yary . considerably between studies. Also,
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uncertainty in the data for breakup in hyperbolic flow will be reflected
in the results shown in Figure 5 since these data were used to evaluate
the model parameter G. However, the data of Lee (1972) and Grace (1971)
for hyperbolic elongation, the only available data for this flow, show
relatively good agreement compared to the scatter among available results
for simple shear flow. »

The most important conclusion from the present results is that the

models seem capable of correlating ¢ for drop breakup in different

crit

flow types. The value for ¢ in hyperbolic flow is approximately 0.2

crit
and is relatively independent of n between 1 and 100. But when these

dataare used to evaluate G as a function of n and then predict ¢ for

crit
simple shear flow, the model successfully indicates where breakup is no
longer possible. Although this result by no means validates all the
assumptions -of our appraoch, it supports the basic premise that the

effects of flow type on dynamic phenomena such as drop breakup can be

correlated with a measure of the flow strength.

Conclusions

The common feature of the class of systems of interest is that the
microstructures are capable of large distortions if the flow is suf-
ficiently strong. It has been shown that a useful criterion for strong
flow depends upon the type of model which is used to describe the micro-
structure. The nature of this choice depends apparently on whether or
not some property of the microstructure is conserved during deformation.

Hence, for volume or probability density conserving systems, one might
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advocate use of a traceless tensor model; for "compressible" micro-
structures, a vector model seems appropriate.

Even when this decision is made, however, it appears that different
choices for the description of the microstructure can themselves gener-
ate different results for the strong flow criterion, insofar as they
appear to have different values for the strain efficiency parameter G.
This paradox is resolved, in principle, by retention of the nonlinear
higher order terms of the constitutive model. From the point of view
of model building, however, if G is determined from experimental data
then a choice of the description of the microstructure is effectively
made. It is hoped that this choice is the relevant one with respect
to the particular strong flow phenomenon under study, e.g. droplet
breakup, but this can only be tested by further comparison with experi-
mental data.

The strong flow criteria examined here are simple with known
~physics and explicit constitutive assumptions. They satisfy the
essential requirement of easy application to arb{frany three-dimensional
flows and seem to produce qualitatiye]y correct results, at least for
the drop breakup problem. However, the full benefit of this simple
approach can be realized only with the aid of detailed numerical models
that describe the kinematics of a complicated flow system. Equipped
‘with a suitable description (even a complicated one) of the kinematics
in a mixing deyice or agitator, for example, thé strong flow criterion
could be used to predict emulsion properties such as minimum droplet
" size. Examples of additional applications include prediction of melt
fracture, breakup of particle aggregates and calculation of macro-

molecular extension in laminar flows with complicated boundaries.



221

References

Barthés-Biesel, D. 1972 Ph. D. Thesis, Stanford University.
Barthés-Biesel, D. and Acrivos, A. 1973a The rheology of suspensions
and its relation to phenomenological theories for non-Newtonian

fluids. Int. J. Multiphase Flow, 1, 1.

Barthes-Biesel, D. and Acrivos, A. 1973b Deformation and burst of a
1iquid droplet freely suspended in a Tinear shear field.
Jd. Fluid Mech., 61, 1.

Berman, N. S. 1978 Drag reduction by polymers. Ann. Rev. Fluid Mech.

10, 47.
Bird, R. B., Hassager, 0., Armstrong, R. C., and Curtiss, C. F.

Dynamics of Polymeric Liquids, Vol. 2, Kinetic Theory. John

Wiley and Sons, New York, 1977.

Bretherton, F. P. 1962 The motion of rigid particles in a shear flow
at low Reynolds number. J. Fluid Mech., 14, 284.

Cerf, R. 1957 La macromolecule en chaine dans un champ hydrodynamique

theorie générale. Propertiés dynamo-optiques. J. Polymer Sci.,

23, 125.
Frankel, N. A. and Acrivos, A. 1970 The constitutive equation for a
dilute emulsion. J. Fluid Mech., 44, 65.
Fuller, G. G. 1980 Ph. D. Thesis, California Institute of Technology.
Goddard, J. D. and Mi11er, C. 1967 Non-linear effects in the

rheology of dilute suspensions. J, Fluid Mech., 28, 657.



222
Gordon, R. J. and Schowalter, W. R. 1972 Anisotropic fluid theory: a
different approach to the dumbbell theory of dilute polymer solu-.

tions. Trans. Soc. Rheol., 16, 79.

Grace, H. P. 1971 Dispersion phenomena in high viscosity immiscible
fluid systems and application of static mixers as dispersion

devices in such systems. Engng; Foundation 3rd Res. Conf. on

Mixing, Andover, New Hampshire.

Hand, G. L. 1962 A theory of anisotropic fluids. J. Fluid Mech., 13,

33.
Hinch, E. J. 1977 Mechanical models of dilute polymer sclutio

strong flows. Physics Fluids, 20, 522.

Hinch, E. J. and Leal, L. G. 1975 Constitutive equations in suspension
mechanics. Part 1. General Formulation. J. Fluid Mech., 71, 481.

Hinch, E. J. and Leal, L. G. 1976 Constitutive equations in suspension
mechanics. Part II. Approximate forms for a suspension of rigid
particles affected by Brownian rotations. J. Fluid Mech., 76, 187.

Kao, S. V. and Mason, S. G. 1975 Dispersion of particles by shear.
Nature, 253, 619.

Karam, H. J. and Bellinger, J. C. 1968 Deformation and breakup of

liquid droplets in a simple shear field. Ind. Eng. Chem.

Fundam., 7, 576.

Kuhn, W. and Kuhn, H. 1945 Bedeutung Beschraiinkt Ferier Drehbarkeit
fur die Viskositat und Stromungsdoppelbrechung von Fadenmole-

kellosungen I. Helv. Chim. Acta.,28, 1533.

Leal, L. G. and Hinch, E. J. 1972 The rheology of a suspension of

nearly spherical particles subject to Brownian rotation.

Jd. Fluid Mech., 55, 745.



223

Lee, R. 1972 Ph. D. Thesis, University of Houston.
Lumley, J. 1969 Drag reduction by additives. Ann. Rev. Fluid Mech.,

1, 367.
Moore, K. 1980 Ph. D. Thesis, Cambridge University.

PHan-Thien, N. and Tanner, R. I. 1978 Response of a nonlinear
dumbbell with varying frictional coefficient in a pseudo-

turbulent flow field. Physics Fluids, 21, 311.

Rallison, J. M. 1980 The effects of shear and vorticity on deformation
of a drop. Appendix., in press.

Rumscheidt, F. D. and Mason, S. G. 1962 Particle motions in sheared
suspensions. XII. Deformation and burst of fluid drops in shear

hyperbolic flow. J. Colloid Sci., 16, 238.

Tanner, R. I. 1976 A test particle approach to flow classification for
viscoelastic fluids. A.I.Ch.E. d., 22, 910.
Tanner, R. I. and Huilgol, R. R. 1975 On a classification scheme for

flow fields. Rheol. Acta., 14, 959.

Taylor, G. I. 1932 The intrinsic viscosity of a fluid containing

small drops of another fluid. Proc. Roy. Soc.,A138, 41.

Taylor, G. I. 1934 The formation of emulsions in definable fields

of flow. Proc. Roy. Soc., A146, 501.

Torza, S., Cox, R. G., and Mason, S. G. 1972 Particle motions in

sheared suspensions. XXVII. Transient and steady deformation

and burst of Tiquid drops. J. Colloid Sci., 38, 395.



224

Table 1. Values for Eepit from hyperbolic data and predicted

values for parameter G for various viscosity ratios.

G G
o Eerit (Vector model) (Tensor model)
0.1 0.21 1.1 0.9
1 0.21 2.1 1.8

10 0.30 0.3 0.3
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Figure Captions

Figure T.

Figure 2.

Figure 3.

Figure 4.

'Figure 5.

Domain of all possible flows and representative eigen-
value contours for G = 1. The dotted Tine corresponds
to the left discriminant of the characteristic equation
(see text).

Schematic diagram identifying particular flows with
certain points of the accessible domain.

Dimensionless eigenvalues for a flow with arbitrary
orientation of the vorticity vector (see text).

Degree of macromolecular extension as a function of
dimensionless reléxation constant in a statistically
specified three-dimensional turbulent flow.

Predicted values of the dimensionless deformation
parameter for breakup as a function of viscosity ratio
in simple shear flow. Also shown are data from Torza,

Cox, and Mason (1972).



226

A=0.2

Figure 1.



227

=
~

biaxial extension C: no vorticity [) no vorticity ﬁ\ unisxiazl ewtension
tiaxial uniaxizl extension with
extension with increaszing vortex lines parallel
vortex lines verticity to extension axis

parallsl %o
compression

axis increasing

extansion

b3

simple shea

oure rotation

Figure 2.



228

1.OA

0.9-
0.8+ //////

VECTOR MODEL REAL EIGENVALUE
S VECTOR MODEL COMPLEX EIGENVALUE
0.2+ — —— TENSOR MODEL REAL EIGENVALUE
— ——- TENSOR MODEL COMPLEX EIGENVALUE

0.2+
0.1

Amax. 10 20 30 40 50 60 70 80 SO
-0.H 8(degrees)
-0.2-
-0.3-
-0.4- —
s T T e
-06-
-071
-0.8-

-0,91 S~a

_— -
———

-1.0-

Figure 3.



229

| T ¥ { T T 1 T
1 _
T
w &)
- 29 Q
x o
- O O o,
)] 10
D
- o)
V.ﬂ o]
™~
_ o]
w
O
0
o
H <,
O
L A
O
o N
o
o
i ! | 1 1 i 1 1
ol 0 @ = © 0 <, M o = o
- e e} ] o e} O o o &

GION3LX3 S3ITMNIITONOHOVA 40 NOILOVYS HO MOT4 ONOYLS
OL ONIONOJS3HYO0D SNOIYZITY3Y 40 NOILOVY 4

Figure 4.



230

—
o

.5
|
/
/
/
/
1.0
erit /~TENSOR MODEL
VECTOR MODEL
/
0.5- DATA OF TORZA, COX, MASON
0 ; ,

Figure 5.



231

Appendix



System:

b

-

3

4

(V = 0.32 cm/s)

0.512 0.05 0.06 0.23
' 1.18 1.18 1.00
0.577 0.06 0.09 0.19
1.08 1.08 1.00
0.660 0.08 0.07 0.15
1.07 1.10 1.04
0.726 0.07 0.05 0.17
1.10 1.09 1.06
0.782 0.06 0.05 0.11
1.07 1.10 1.06
0.831 0.06 0.06 0.10
1.08 1.12 1.06
(V = 0.56 cm/s)
0.512 0.09 0.09 0.20
1.15 1.10 1.04
0.577 0.09 0.12 0.19
1.14 1.08 1.04
0.660 0.08 0.12 0.15
1.12 1.05 1.07
0.726 0.09 0.11 0.12
1.11 1.10 11.08
0.782 0.08 0.09 0.12
1.14 1.12 1.12
0.831 0.08 0.08 0.08
1.16 1.13 1l.14
(V = 0.80 cm/s)
0.512 0.11 0.11 0.1%
1.16 1.13 1.06
0.577 0.1% 0.13 0.18
1.16 1.09 1.08
0.660 0.13 0.12 0.16
1.15 1.08 1.10
0.726 0.12 0.10 0.13
1.13 1.11 1.10
0.782 0.09 0.10 0.13
1.18 1.13 1.13
0.831 0.09 0.09 0.10
1.18 1.18 1.1%6
TABLE Al. Data for h and D.

pair of values.
measured value of D

0.04
1.11
0.04
1.09
0.04
1.10
0.04
1.10
0.04
1.10
0.04
1.10

0.06
1.14
0.06
1.15
0.08
1.15
0.06
1.15
0.07
1.16
0.07
1.18

0.10
1.16
0.09
1.15
0.10
1.13
0.08
1.18
0.08
1.19
0.08
1.23

For each system, drop size, and flow rate there are a

0.04
1.09
0.04
1.13
0.05
1.13
0.05
1.15
0.05
1.16
0.05
1.16

G.07
1.15
0.06
1.15
0.07
1.18
0.07
1.21
0.07
1.20
0.07
1.21

0.09
1.21
0.09
1.21
0.08
1.23
0.07
1.23
0.07
1.23
0.06

1.27

232

v

0.11
1.25
0.14
1.36
0.10
1.30
0.13
1.35
0.13
1.35
0.09
1.38

0.17
1.24
0.15
1.29

1.31

1.46

1.41

0.18
1.23
0.15
1.30
0.14
1.21
0.13
1.24
0.12
1.29
0.10
1.35

v

0.11
1.25
0.10
1.26
0.10
1.24

1.27
0.10
1.34
0.10
1.37

0.17
1.20
0.16
1.23
0.15
1.23

1.23
0.12
1.26
g.11
1.31

0.20
1.17
0.18
1.21
0.16
1.23
0.14
1.26
0.13
1.30
0.14
1.33

4v

0.14
1.15
0.11
1.13
0.10
1.18
0.10
1.18
0.09
1.21
0.08
1.23

.

. v

RO R R b b b b b

.

HOMOMHOFOFHOKO
L o N Lo

5V

0.13
1.13
0.08
1.23
0.09
1.23
0.08
1.21
0.08
1.29

1.28

0.15
1.15
0.12
1.19
0.11
1.22
0.11
1.25
0.09
1.25
Q.09
1.29

1.31

6V

0.19
1.065
0.16
1.07
0.13
1.09
0.12
1.11
0.09
1.14
0.09
1.17

0.21
1.07
0.18
1.10
0.14
1.14
0.13
1.15
0.12
1.18
0.10
1.22

0.22
1.10
0.18
1.08
0.16
1.14
0.14
1.17
0.12
1.20
0.11
1.21

v

0.19
1.10
0.17
1.09
0.13
1.17

0.11

v

0.19%
1.09
0.16
1.11
0.14

0.11
1.17
0.11
1.17
0.10
1.20

0.24
1.09
g.19
1.12
0.17
1.16
0.16
1.18
0.14
1.25
0.14
1.33

9V

0.20
1.08
0.17
1.11
0.14

0.12
1.14
0.11
1.17
0.10
1.20

0.21
1.10
0.20
1.10
Q.16
1.14
0.14
1.17

1.20

0.11
1.2

1.22

ra
~E b

The upper is the measured value for h and the lower is the



