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ABSTRACT

Various properties of the nonlinear Schrodinger equation and special
solutions thereof are investigated, with emnhasis on applications to water
waves.

The spreading of modal energy for initial conditions corresponding to
unstable perturbations of a uniform wave is investigated numerically and
analyticaily. For'a one-dimensional surface, the upper Timit of the
Benjamin-Feir instability interval appears to provide a good estimate of
the maximum spread of the modal energy. The analytical estimate of
Thyagaraja is shown to be insufficiently sharp to account for this effec-
tive maximum. In the case of a two-dimensional surface, the instability
region obtained with the nonlinear Schrodinger equation is infinite in
extent, and the numerical results suggest that energy may leak to arbi-
trarily high unstable harmonics in a quasi-recurring fashion.

Stability results for plane-wave envelopes on a two-dimensional sur-
face are calculated and verified numerically with the nonlinear Schrddinger
equation. For standing-wave disturbances, instability is found for both
odd and even modes; as the period of the unperturbed solution increases,
the instability associated with the odd modes remains, but that associated
with the even modes disappears. This is consistent with previous results
on the stability of solitons. In addition, traveling-wave instabilities
are identified for even mode perturbations which are absent in the long-

wave limit. Extrapolation to the case of an unperturbed solution with



infinite period suggests that these instabilities may also be present for
the envelope solitons. Thus the soliton is unstable to odd, standing-wave
perturbations, and very likely also to even, traveling-wave perturbations.

Bifurcation techniques are used to obtain a new class of small-ampli-
tude water waves of permanent form. Stokes waves are used as a starting
point, and the critical value of steepness at which bifurcation can occur
is computed for various choices of modulation wavelength and angular orienta-
tion. It is found that, for a two-dimensional surface, bifurcation can
occur at small values of wave steepness. Second order corrections to the
wave amplitude, modulation, frequency, and speed, which apply when one moves
off the bifurcation point onto a new branch of solutions, are also computed.
Two types of new solutions are found, one symmetric with respect to the
carrier wave propagation direction, and one asymmetric.

Finally, the nonlinear Schrodinger equation is used to study the
interaction of deep-water gravity waves with currents. The case of a
uniform wave encountering 'a steady current is treated numerically and
analytically, and the results are shown to correspond to known results in
the linear 1imit. As an example of modulated waves encountering a current,
the development of an instability of Benjamin-Feir type is calculated in
both the presence and absence of current. Finally, the case of an envelope
soliton encountering a current is treated numerically, and the results are

compared to those obtained by applying a perturbation scheme.
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INTRODUCTION

It is now well established that many weakly-nonlinear dispersive wave
systems can be described by the nonlinear Schrodinger equation. One case
of interest is that of irrotational, nearly monochromatic gravity waves on
water of infinite depth and constant density. In this case, the nonlinear
Schrddinger equation governs the development of the "complex envelope" of
the free surface displacement, where the complex envelope reflects slow
modulations of both amplitude and phase.

The uniform (i.e., space-independent) éo]ution of the nonlinear
Schrodinger equation corresponds to the nonlinear water wave of permanent
form discovered by Stokes [15] in 1849 (including only the lowest order
nbnlinear term of the frequency). The Stokes wavetrain is subject to a
modulational instability first noted by Lighthill [8] and analyzed in
detail by Benjamin and Feir [2]. This instability and its long-term
results can be studied via the nonlinear Schrddinger equation. One finds
that, in the absence of viscosity, one sees a sequence of modulations and
subsequent demodulations corresnonding to what is known as Fermi-Pasta-
Ulam recurrence [4]. Various explanations of the recurrence phenomenon
have been proposed for the case of a one-dimensional surface. In the
first chapter, two such explanations, both of which rely on limiting the
spreading of energy in the solution spectrum, are compared and tested

numerically.
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The second chapter deals with the extension of ideas on recurrence
developed for the case of a one-dimensional surface to the case of a two-
dimensional surface. Yuen and Ferguson [19] identified a relationship
between the initial perturbation and the long-time evolution of an
unstable, uniform solution of the nonlinear Schrédinger equation in one
dimension. In particular, they demonstrated numerically that the long-
time evolution of the unstable solution is composed of the growth and
decay of all the harmonics of the initial perturbation that lie within
the unstable region, each one taking its turn at dominating the solution
profile. They reasoned that this relationship, in combination with the
fact that the instability region is of finite extent (being confined to
Tow modes), precludes the irreversible spread of energy among all modes
often expected of nonlinear systems undergoing instability. In the
second chapter, it is demonstrated numerically that the relationship
found for the one-dimensional case can be extended to the two-dimensional
case. However, the instability region in the two-dimensional case is
unbounded, and thué the argument used in the one-dimensional case to
predict that energy is confined to low modes no longer applies. In fact,
the results suggest that in this situation, the energy may leak to arbi-
trarily high unstable harmonics in a quasi-recurring fashion.

Another solution of the nonlinear Schrodinger equation of particu-
lar interest is the "envelope soliton," which is a wave packet with
various special properties. It maintains its form while propagating,
and can survive interactions with other wave packets. Zakharov and
Shabat [25] showed that an arbitrary initial wave packet on a one-

dimensional surface will ultimately evolve into a state dominated by a
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number of envelope solitons. For the case of long-wave disturbances on

a one-dimensional surface, the envelope soliton is stable (Rowlands [13]).
On a two-dimensional surface, however, even the soliton is unstable
(Zakharov and Rubenchik [24]; Saffman and Yuen [14]). The third chapter
treats the problem of dnoidal (periodic) solutions on a two-dimensional
surface. Dnoidal solutions bridge the gap between uniform waves and soli-
tons, and the instabilities to which they are subject suggest the exis-
tence of a soliton instability independent of those noted by Zakharov and
Rubenchik and Saffman and Yuen.

Three form-preserving solutions of the nonlinear Schrodinger equa-
tion have been noted thus far: the uniform solution, dnoidal solution,
and soliton. Of these, only the uniform solution represents a wave (as
opposed to just an envelope) of permanent form. However, there are a
number of results suggesting that other such solutions exist. Longuet-
Higgins [9], working with the full water wave equations rather than the
nonlinear Schrédinger equation, found that long-wave, one-dimensional
perturbations which are uﬁstab1e for carrier waves of moderate amplitude
(fn accordance with Benjamin and Feir) are restabilized for wavetrains
of large amp]itude. For given perturbation wavelength, there exists in
the Targe-amplitude stable regime a wave for which the disturbance is
stationary relative to the undisturbed flow. (We cé]] this a point of
neutral stability. Note that it is not necessarily a point of exchange
of stability). The existence of bifurcation is thereby suggested; that
is, at a value of koao yielding neutral stability, Stokes-type uniform
wavetrain solutions may intersect another branch or branches of solutions

corresponding to waves of permanent form. Chen and Saffman [3] have
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indeed demonstrated that solutions do bifurcate from the Stokes wave at
points which appear to be those of neutral stability. These results are
one-dimensional and occur at high values of koao. Thus, they cannot be
treated with a simple water wave model Tike the nonlinear Schrodinger
equation. It will be seen in the fourth chapter, in fact, that no bifur-
cation occurs for one-dimensional solutions of the nonlinear Schrddinger
equation.

In a two-dimensional context, however, Peregrine and Thomas [12]
have found that, for the 1imit of infinitely long perturbations, restabi-
lization occurs for smaller and smaller values of koa0 as the perturbation
becomes more and more oblique. It can be inferred from their calculation
that neutral stability also occurs at smaller amplitude as the disturbance
becomes more oblique, and that two-dimensional bifurcation may occur at
small amplitudes, and hence be describable by the nonlinear Schrodinger
equation when the waves are sufficiently oblique. This approach is pur-
sued in the fourth chapter, and bifurcation from the uniform solution of
the nonlinear Schrﬁdinger.equation at low values of koa0 is found. The
bifurcated solutions correspond to two-dimensional modulated wavetrains
of permanent form. The family of bifurcations is degenerate. There are
subfamilies corresponding to modulations symmetric or asymmetric with
respect to the direction of propagation of the carrier wave, and for
every [N| = }ko/kxl >> 1 there is a range of 8 = arctan (ky/kx) yielding
bifurcation (where k0 represents carrier wavenumber, kx represents the
longitudinal modulation wavenumber, and ky represents the transverse

modulation wavenumber). The importance of these solutions is subject to

analysis of stability and energetics.
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Longuet-Higgins and Stewart [10,11] were among the first to study the
interaction of water waves with currents. They worked with linear waves,
and pointed out that the use of a naive energy transport equation leads
one into trouble. In particular, they identified a quantity which they
called "radiation stress" which must appear in such an equation.

Whitham [17] demonstrated that the results of Longuet-Higgins and
Stewart can be obtained from conservation laws. Subsequently [18], he
showed that they can be derived easily via the averaged Lagrangian tech-
nique.

In the fifth chapter, a forced version of the nonlinear Schrddinger
equation. is derived to model the effect of a current on waves. This equa-
tion allows for weak nonlinearity, and also includes dispersive terms,
thus avoiding singularities which can arise from the intersection of
characteristics. Solutions are obtained in various special cases, and
compared to the results of other models.

Notational conventions used throughout this work are as follows:

A complex wave amplitude governed by the nonlinear
Schrodinger equation
w
c group velocity vector |[= —% k
-9 2 -0
2k
0
. “o
Cq magnitude of S |* EF;
g gravitational acceleration
ko carrier wavenumber vector
Ky magnitude of k

t time coordinate
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horizontal coordinates = (x,y)

horizontal coordinate in direction of carrier wave
propagation

horizontal coordinate normal to x

vertical coordinate

surface displacement

velocity potential

linear carrier wave frequency (= /gko)
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CHAPTER 1
SPREADING OF ENERGY IN SOLUTIOMS OF THE
NMONLINEAR SCHRODINGER EQUATION ON A
ONE-DIMENSIONAL SURFACE

For the case of one space dimension, Yuen and Ferguson [19] noted
a relationship between recurrence phenomena associated with, and stabil-
ity properties of, the nonlinear Schrddinger equation. In particular,
they showed, by numerical examples, that for initial conditions corre-
sponding to a perturbed uniform solution, each unstable harmonic of the
perturbation takes its turn at dominating the solution profile, and this
process continues, cyclically.

Thyagaraja [16] has shown analytically that periodic solutions of the
one-space-dimensional nonlinear Schrodinger eguation must necessarily
confine most of their energy to low wavenumbers. More specifically, he

proves that for a solution

[e 2]

v(x,t) = ch(t)exp(Zm’nx), (1.1)

n=-c
where x is the spatial variable and t represents time, there will be
a time-independent bound N on the quantity

o ® _1/2

N = Zn2|cn(t>|2 Z;cn(mz (1.2)

which is a measure of the extent of energy spread. In particular, Nrms

represents the root-mean-square component number with weighting function



-8-

> -1

e, I? Do) (1.3)

= =00

The bound N depends only on the values of constants of motion, as

determined by the initial condition. Thyagéraja also shows that if

> NK, (1.4)

where K is an arbitrary positive number, then for all time

Z e, (£)]% < Z|cn(t>|2 K2, (1.5)

In|>No n=-o

Thus, Thyagaraja has provided an a priori bound on the spreading of
energy for general initial conditions. He argues that this bound is
responsible for the recurrence observed by Yuen and Ferguson.

In the following, we shall make several comparisons of Thyagaraja's
boﬁnd to the upper 1imit of the instability interval (which was proposed
by Yuen and Ferguson as a measure of effective energy spread), and to
actual values obtained from numerical solutions of the following version

of the one-space-dimensional nonlinear Schrodinger equation:

2
i§%=3—%+u|w12w (u > 0). (1.6)
X

As a first test case we consider the initial condition

v = ¥, (1-0.1 cos 2mx) (1.7}

on the interval [0,1]. Note that the harmonics of wavenumber N are

unstable if, and only if,
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0 < 4mN2 < 2uw§, (1.8)

as established by Benjamin and Feir [2]. Application of the formulae

provided by Thyagaraja yields

>

N <8 = W, (1.9)
where
1 2.2 172

M= g ;ulo + [u 12+ a3, /1 + uxo/z)] f, (1.10)
I =1.005 02, (1.11)

o] 0

2 2
3, = 0.021%2 - 0.51502,1 (1.12)

It is easily verified from (1.11) and (1.12) that

2
JO/I0 + uIO/Z > —0.0]u¢b > -O.O1uIO. (1.13)

Use ofv(1.10) gives

M > (u10/2)31 ¥ [1 - 0.04/(u10)]1/2€. (1.14)

If we assume that the initial modulation wavenumber lies in the instability
interval, i.e., that

2

4n® < zuwg, (1.15)

then it follows from (1.11) that

Wl > 2.017°, ' (1.16)

and hence, from (1.14), that

M > 0.999ul . (1.17)
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Let ZnNu represent the cutoff wavenumber for instability, Eaquation (1.8)
gives

202 _ 2
4t Nu = Zuwo, (1.18)

and thus

Wl = 2.O1ﬂ2N§. (1.19)

Substitution of (1.9) and (1.19) into (1.17) yields

N> 3.15N§. (1.20)

The assumption that the initial modulation lies in the unstable region

implies that

N > 1, (1.21)

and thus fi is significantly larger than N .

In order to compare Thyagaraja's bounds to numerical results, the
five cases considered in Yuen and Ferguson were reexamined, and a sixth
case involving a mu]ticohponent unstable initial disturbance was also
investigated. In this last case, 14 components lay in the instability
interval, and the amplitude of each component was initially one hundredth
of the carrier wave amplitude. Choice of phase did not seem to affect
the relevant characteristics of the solution. The component amplitudes
(including that of the carrier wave) do oscillate, but simple recurrence
of the sort observed by Yuen and Ferguson is not apparent.

The values of the bounds N and Nu for each of the six cases are

presented in Table 1.1. In accordance with the analysis, the relationship



ﬁ=3.15Nﬁ (1.22)

holds in all cases. (Note, however, that the analysis assumed a single-
component initial disturbance).
Figure 1.1 depicts the energy in the N lowest components as a function
of N at times of near maximal energy .-spreading for cases 2, 5, and 6.
The bounds N and Nu are indicated (although N is off scale in cases 5 and 6).
For cases 1, 2, 5, and 6, Table 1.2 compares the maximum over time of
N and Ngg, defined as the smallest value of No such that

rms

[o 2]

N
o .
Z e (t)]% = 0.9 Z1cn(t);2 (1.23)

n:- n:-w
NO

for the duration of the run, to the corresponding bounds, & and ﬁgg given

by Thyagaraja. Note that max (N ___) is well approximated by the values of

rms
Nu also included in Table 1.2. On the other hand, N is much larger than

max (N__ ) and N99 is much larger than ”99-

rms
The accuracy of the code used to solve the one-dimensional nonlinear
Schrodinger equation was tested by computing Io and JO, which are constants
of the motion, at various times during the runs. For cases 1, 2, and 5,
they were found to vary by at most one part in a thousand. In case 6, the
calculated value of I0 was found to vary by 0.8 parts in a thousand until
t = 940, at which point a large variation was initiated, culminating in a
total shift of 3.2 parts per thousand. The calculated value of Jo was
found to vary by 2 parts in a thousand until t = 940, at which point a

shift of 16 parts per thousand took place. Computation was stopped at

that point for lack of numerical accuracy.
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In surmary, we have found that the results of direct numerical compu-
tation support the analytical upper bounds on the spread of modal energy
established by Thyagaraja. However, the bounds are not sufficiently sharp
to account for the relationship between initial instability and spreading
observed by Yuen and Ferguson. In fact, for all the cases examined, the
upper 1limit of the unstable region appears to provide a better estimate
of the maximum spread of the modal energy, favoring the empirical relation-
ship proposed by Yuen and Ferguson. [Compare Nu and the computed max (Nrms)

in Table 1.2.]
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CHAPTER 2
THE RELATIONSHIP BETWEEN BENJAMIN-FEIR INSTABILITY AND
RECURRENCE FOR THE MONLIMEAR SCHRODIMGER EQUATION IN
TWO SPACE DIMENSIONS

To describe weakly-nonlinear, deep-water gravity waves, the following

version of the nonlinear Schrddinger equation is appropriate (Zakharov

[23]):

2k ax 2 4k2 8y2 2

w 2 w 2

1 aA + Y aA 0 3 2 + 288 1 20% =0, (2.1)
00

8k0 X o

where surface displacement is given by

i(k x-w t) i(2k x-2w t)
= Pe [Ae 0" oy l—kOAZe R S (2.2)

For a one-dimensional surface, equation (2.1) reduces to

2

2R, Yo 3A) _ Yo 3% 1 \

1 ( %k ax) Tl 7Y K2[A1%A = 0. (2.3)
8k~ x

Two properties of particular significance which are associated with

equation (2.3) are:

1) Benjamin-Feir Instability - The uniform solution

- qu kg g (2.4)

is unstable under infinitesimal perturbations of the form
. . w
b+e1k€ + b_e=1k£ (where £ = x - §fl-t is the coordinate
0
moving with the group velocity) provided that k satisfies
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2
0 < (§§;> < 2(ka,)°. (2.5)

Maximum instability occurs when < = k a_.
2kO 00

2) Fermi-Pasta-Ulam Recurrence - For many solutions of (2.3), the
initial condition undergoes strong modulation, but eventually
returns to a close approximation of its orginal state. The
cycle repeats periodically in time, though the recurrence is
not in general perfect. This recurrence phenomenon was first
reported by Fermi et al. [4] in a study of nonlinear lattice
vibration. Its occurrence in the nonlinear Schrddinger egua-
tion in connection with deep-water waves has been reported by
Lake et al. [7] and Yuen et al. [22].

Yuen and Ferguson [19] demonstrated that, for solutions of (2.3)
corresponding to unstable perturbations of a uniform wavetrain, the
complexity of recurrence is related to the number of harmonics of the
perturbation which fall within the Benjamin-Feir instability interval.
In particular, they show that the evolution of such solutions is a com-
posite of the evolution of all unstable harmonics of a prescribed per-
turbing mode, with each and every harmonic taking its turn at dominating
the solution profile.

Equation (2.1) exhibits the Benjamin-Feir instability for perturba-

tions of the form b+e1(k€+Ky) + b_e'1(k£+Ky) where k and « satisfy

0 < (—5—)2 - 2(—5—)2 < 2(k.a )2 (2.6)
2k 2k 080) :
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2 2
Maximum instability occurs when [=i—] - 2] = (k.a )2, Figure 2.1
2k0 2k0 00

represents this instability region in k,< space. Moreover, some solutions
of (2.1) exhibit recurrence (Yuen and Ferguson [20]).

In order to investigate the possibility of generalizing to two space
dimensions the relationship between Benjamin-Feir instability and recur-
rence observed in the case of one space dimension, we have carried out

numerical calculations for a carrier wave with

w. = 100
° t (2.6)
koa0 = .1
modulated initially by the complex amplitude
“o
A = a, + a cos k {x - ?E;'t COS ky (2.7)
where
|a] = .05 a (2.8)

(¢

and the phase of o is chosen to give growing solutions. The wavenumbers k

and « were chosen to satisfy

2 2
k/2k )2 = 2(k
( 0) ( 0ao) (2.9)
2(K/2k0)2 - (koao)2
Thus
2 2 2
(k/2k0) - 2(K/2k0) = (koao) (2.10)

and therefore the Benjamin-Feir instability is maximized.
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Figure 2.2 depicts the amplitude and power spectrum of the solu-
tions arising from the initial condition described above at times repre-
sentative of the various stages through which the solution progresses.

The axis variables are given by

2k 0

_ .2 Yo .2 _ 2.2
X—koaoé— Ot), Vo= kpay » T = wkiact, (2.11)

and A is normalized (i.e., A/a0 is plotted).

Figure 2.3 exhibits contour plots of the amplitude functions pre-
sented in Figure 2.2.

Two recurrence cycles appear in the sequence depicted — inspection
of the power spectra shows that only the (0,0) mode (corresponding to the
carrier wave), the (k,k) mode (corresponding to the initial perturbation),
and the (5k,7«) mode participate. Each mode dominates the solution some
of the time, and sometimes they participate in combination.

The fact that the (5k,7«) mode was singled out to participate allows
us to test the hypothesis that the Benjamin-Feir instability determines

significant modes; and indeed, it is easily verified from (7.8) that

2 2 _ 2
(5k/2k0) - 2(7K/2k0) = (koao) (2.12)

and thus the (5k,7«x) mode, like the (k,x) mode maximizes the Benjamin-
Feir instability. There are other unstable harmonics of the prescribed
(k,x) mode, but they are at frequencies beyond the resolution of our
computation. Specifically, sixteenth harmonics were the upper 1limit for
the calculation, and the next few unstable harmonics are (29k,41x),

(169k,239«), and (985k,1393«).
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The (5k,7k) component was initially zero. Thus it appears that
energy had to be passed through a'chain of stable modes to trigger the
(5k,7«) mode, but due to their stability they remained small. Thus, as
in the case of one space dimension, the number of modes particinating is
small, and consequently the recurrence of situations characterized by the
dominance of those modes is not surprising. In the case of two space
dimensions, however, there is no maximum wavenumber cutoff. Thus, given
enough time, a solution could march out to higher wavenumbers, and in so

doing depart from the realm of validity of the underlying equation.
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CHAPTER 3
STABILITY OF PLANE WAVE SOLUTIONS OF THE
MONLINEAR SCHRODINGER EQUATION ON A
TWO-DIMENSIONAL SURFACE

In the case of one space dimension, it is known that there are stable
soliton solutions of the nonlinear Schrddinger equation (Zakharov and
Shabat [25], Yuen and Lake [21]) and also that the uniform solution exhib-
its the Benjamin-Feir instability (Benjamin and Feir [2], Lake et al. [7]).
In two space dimensions, even the soliton solutions have been shown to ber
unstable (Zakharov and Rubenchik [24], Saffman and Yuen [14]). In the
following, we will work in two space dimensions and treat dnoidal (periodic)
solutions which bridge the gap between solitons and uniform waves.

lle proceed by obtaining equations governing the stability of plane
periodic solutions, and devising numerical techniques to solve these eaua-
tions. Ue apply these techniques to dnoidal waves, and check the results
in the uniform wave, soliton, and long-wave perturbation limits. e con-
clude with a presentation. of some numerical solutions of initial value

problems which verify our stability curves.

3.1 Steady Solutions on a Two-Dimensional Surface

The appropriate form of the nonlinear Schrodinger equation for deep-

water gravity waves on a two-dimensional surface is

2

w w 2 w
(o) B BB umeo )
0 8ko ax- 4k0 ay

To simplify the subsequent discussion, it is convenient to transform

(3.1) into the dimensionless form
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19B/3T + 1 o78/5x% + % a 3%8/5Y° + [B]%8 = 0, (3.2)

where

T= -wOT, X = 2ko(x - wot/Zko), Y = ZkOy, B = kOA//Z (3.3)

For o = -2, (3.2) reduces to (3.1).
Let

Z=Xcos 8§+ Y sin&. (3.4)

Then a solution of (3.2) of the form B(z) must satisfy

138/3T + 3 (cos? § + a sin’ §)s°8/52% + [B|%8 = 0. (3.5)

Thus this equation describes plane modulations at an angle & from the
direction of propagation of carrier wave energy. The nature of (3.5)
varies according to the sign of the coefficient 328/822. Thus the criti-
cal point for the case o = -2 is sin § = 1/3 —i.e., § = 35.26°. For
§ < 35.26°, (3.5) possesses steady localized (soliton) solutions, and a
fami]yﬁéf perisdic (dno%da])wso]utions connecting ihose solitons to the
‘uniform wavetrain. As & increases past 35.26°, the relative sign between
the nonlinear and the dispersive tefms changes from positive to negative.
The equation now possesses stationary solutions corresponding to depres-
sions *in an otherwise uniform wavetrain ("dark pulses"), but no steady
localized solutions exist in the form of solitons.

Without loss of generality, attention can be restricted to the
case of plane waves propagating in the X direction. The reason for

this is that, given a propagation direction corresponding to a coordi-

nate X, a coordinate ¥ can be found such that the form of (3.2) is
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unchanged by a transformation from the coordinates X,Y to the coordinates
i,? with appropriate scaling of X and Y. Thus a plane solution can be

assumed to take the form

. 2
- iy T
Bo ¢0(X)e R (3.6)
where ¢, satisfies the equation
2 1.2 2 3

There is a family of periodic solutions of (3.7) of the form

9,(X) = 8 dn[s(x - Xb),m], (3.8)
where
0<m«< 1 (3.9)
and
8 = y[2/(2 - n?)]"/2, (3.10)

The dn function is of period 2F, where

m/2
F = F(Jz'w,m> ) f (1 - m® sin? 8)"/ 2. (3.11)
0

Thus ¢o is of period 2F/B. At m = 0, ¢Q is constant; atm=1, ¢0

assumes the infinite wavelength soliton form

¢O(X) = /2y sech (V/2vyX). (3.12)

Note that the dnoidal waves constitute a two-parameter family of solu-

tions, the two parameters being m and y. For a fixed m, amplitude
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increases and period decreases as y increases. For a fixed y, the period

increases as m increases.

3.2 The Stability of Plane Periodic Envelopes Subjected to Infinitesimal
Cross-Have Perturbations

We now perturb the solutions B0 described in the preceding section.
. 2
Consider a disturbance of the form B](X,Y,T)e1Y T, where By| << )Bol for
. 2
iy T

all X, Y, and T. Substituting B = B, * B]e into (3.4) and linearizing

about Bo yields .

. 2yp . 1.2 2,1 .2 2 2 2p* .
(i9/5T - v )B] + 53 B]/ax +t 5l B1/aY + 2%81 + ¢051 = 0. (3.13)

N .
The appearance of B1 in this equation implies that no single-mode
solutions exist. That is, any mode present must appear in combination

with its conjugate mode. Therefore we take

) iKYe(Q+iA)T

B, = o, (X)e je~ kY (21T (3.14)

+ 3, (X)e

where k represents the transverse perturbation wavenumber, ¢] and @1 are
complex, and |¢]|,|$]| << ¢y

Substituting (3.14) into (3.13), equating coefficients of ei(KY+AT)’
and simplifying, we find that the stability problem is reduced to deter-

mining the eigenvalues c2 of

(Ly + 3o <O (L, + 3o P = cu (3.15)
subject to periodic boundary conditions, for given values of k, where

12,02, 2 2
Ly 5 d°/dX + y° - g, (3.16)
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2

S 12,02 2
L] -3 d=/dX"™ + vy~ - 3¢d’ (3.17)

c = A+ iQ. (3.18)
In the immediately following discussion, we will restrict ourselves to
consideration of real cz. We note, however, that complex values are also
relevant to a discussion of stabi]fty, and we will consider the complex
case in a subsequent section.
Solution of (3.15) is complicated by the fact that, although L0 and

L, are self-adjoint, the compound operator (L0 + %—a Kz)(L] + % o K2)

is
not. Thus standard theory is not applicable, and unusual solutions can
result.

Note that the problem can be simplified by narrowing our focus to
search only for even or odd eigenfunctions. If an arbitrary function
satisfies (3.15), then both its even and odd components satisfy (3.15) for
the same eigenvalue c2, due to the linearity and even parity of L0 and L].
Note also that the even and odd components of a periodic function share
its periodicity.

It is easily demonstrated that eQen eigenfunctions of (3.15) of

period 2F/8 (the period of ¢o) are equivalent to eigenfunctions u_ on

[-F/B,F/B] satisfying

uy(F/B) =0 = uy(-F/8), (3.19)

uy"(F/8) = 0 = u (-F/B), (3.20)

Likewise, odd eigenfunctions of (3.15) of period 2F/g are equivalent to

eigenfunctions u_ on [-F/B,F/g] satisfying
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0

u_(-F/8), (3.21)
u"(-F/8). (3.22)

u_(F/8)
u"(F/B)

0

Thus to obtain real eigenvalues, cz, corresponding to even eigen-

functions, we solve the following boundary value problem on [0,F/R] for

fixed « and a range of values of c2:
(LO + %-a Kz)(L1 + %-a Kz)u+ = cTu,, u+(0) =1,
uy(F/8) = 0 = uy (F/8), g (0) = 0. (3.23)

We seek a value of c2

which causes u}' (0) to vanish.
Likewise, for odd eigenfunctions, we require that u_(0) = 0, u'(0) = 1,
u_(F/B) = 0, and u"(F/8) = 0. We then fix < and vary cZ until u"(0) = 0.

Alternatively, we can add the equation
3(c?)/3X = 0 (3.24)

and specify the additional boundary condition

ul (0) =0 (3.25)

+

or

u" (0) = 0. (3.26)

We have employed both techniques, using one as a check on the other.
The results of these numerical investigations are presented in Figures 3.1
(even modes) and 3.2 (odd modes). The parameter associated with the curves
is the modulus m of the dnoidal function associated with ¢ The param-

eter vy is scaled out —-cz/y4 is given as a function of «/vy.
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There are several pertinent observations:

(1) Regions of instability (c2 < 0) exist for both even and odd
modes. As m increases, the maximum growth rate lc’max decreases for both
even and odd modes (approaching 0 as m approaches 1 in the even case).

The wavenumber, Kmax® of the most unstable mode increases with m for even
modes, and decreases as m increases for odd modes. For both even and odd
modes, the cutoff wavenumber, Khigh, beyond which there is no instability,

decreases as m increases. For even modes, there is a low cutoff, «

Tow
which increases with m.

(2) Only the lowest few eigenvalues are shown in Figures 3.1 and 3.2.
For 0 < m < 1, there are infinitely many larger eigenvalues.

(3) The given curves relate the dimensionless quantities cz/y4 and

k/y. To convert to the corresponding physical quantities, c2 and €, the

following formulae are appropriate:

~2 22 ~ 1 : 2
€™ = wyc”, |</k0 =2, Y = §~k a (2 -m%) . (3.27)

3.3 The Limitm=0

When m = 0, ¢O is a constant. Thus we are looking at the effect of
perturbing the uniform wave. This case is less constrained than the case
0 <m <1, because the period of ¢0 is indefinite. The operators L, and

L] reduce to

d2/dx, L, = - 3 d2ax - 2l (3.28)
Thus the eigenvalue problem reduces to the solution of an ODE with con-
stant coefficients. Solving it yields

2 = r(r - 29, (3.29)
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where

r=%—K +-]2—ou< (3.30)

and K represents the (dimensionless) component of the perturbation wave-
number in the direction of propagation of the carrier wave. Thus we have

instability for
2
0<r«<2y (3.31)

with maximum stability at
r= 2. | (3.32)

It is easy to verify that this analysis is in agreement with the numerical
results of the preceding section. MNote that the results are independent
of parity when m = 0,

Translating (3.31) and (3.32) into the physical variables K and ¥

via the formulae

~

K= 2k0K (3.33)

and (3.27), and specializing to water waves by taking a = -2, we find

that we have instability when

2

> 2 ~ 2.2
0 < (K/2k0) - 2(K/2k0) < ZkOa0 (3.34)
with maximum instability at
~ 2 ~ 2 _ 2.2
(K/Zko) - 2(K/2k0) = koao‘ (3.35)

This is the two-dimensional version of the Benjamin-Feir [2] instability
criterion. The form of the one-dimensional Benjamin-Feir criterion is

preserved, but the parameter of interest is now
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= 2 ~ 2
(K/2k0) - 2(K/2k0)
rather than
~ 2
(K/2k0) .
An obvious corollary of this result is that for any E, K can be chosen to

achieve instability. Moreover, if R/Zk0 3,k0a0, then & can be chosen to

achieve maximum instability.

3.4 The Limit m = 1

As noted previously, ¢, assumes the soliton form given in (3.12) when
m= 1. Saffman and Yuen [14] have studied the $tability of a plane soliton
to infinitesimal two-dimensional perturbations with arbitrary K. Tﬁey
employed numerical techniques analogous to those described above, but
involving decaying rather than periodic boundary conditions.

To summarize their results for the soliton, the value for the maximum

growth rate ]clmax is found to be

2 22 . |
|l pay = 0-63v° = 0.16k22 = [E] _ /u.. (3.36)

The most unstable mode is achieved at a wavenumber K max given by

2

: 2
Kmax ~ 0-69Y (3.37)

which, when applied to wave waves, becomes

Kmax/ko = 0.806k0a0, (3.38)

where Emax-is the most unstable wavenumber measured in the physical

coordinate y. The cutoff wavenumber, beyond which there is no insta-

bility, is found to be
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2 : 2
Keutoff — 1.18y (3.39)

corresponding to a cutoff for water waves given by

zcutoff/ko = 1.09%,a,. (3.40)

The traces Tabelled m = 1 in Figures 3.1 and 3.2 represent the data
of Saffman and Yuen [14]. It is clear from these graphs that in the case
of odd modes, the periodic results approach the soliton results as m
approaches 1. In the case of even modes, the stable portions of the
periodic curves passing through the origin approach the soliton curve as
m approaches 1. The unstable portions of the periodic curves.grédua1]y
disappear as m approaches 1, in accordance with the lack of even standing-
wave instabilities in the soliton case. (In a subsequent section, we
shall see that even traveling-wave instabilities may survive in the soli-
ton case.) The fate as m approaches 1 of the stable portions of the
periodic curves containing unstable arcs is uncertain. They appear to
1ie in the soliton's continuous spectrum region (see Saffman and Yuen [14]),
in which no eigenfunctions satisfying decaying boundary conditions can
exist. There does not appear to be an analogous region in the periodic

case.

3.5 The Limit « = 0, c2 =~ 0

In the soliton case, Zakharov and Rubenchik [24] have obtained
results concerning the nature of the spectrum near c2 = K2 = 0. Ablowitz
and Segur [1] extended these results to allow for finite depth and sur-

face tension effects.
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The technique devised by Zakharov and Rubenchik can be adapted to the
periodic case, but certain formulae must be altered in order to preserve
periodicity. In particular, we must find four functions, wi and xt (where
the superscripts + and - denote even and odd functions, respectively),
satisfying

t_
LOL]w =0, (3.41)

t_
L]Lox = 0. (3.42)

We can obtain the solutions y~ and X+ in the same fashion as Zakharov and

Rubenchik:

n

Y= 36,/0X, (3.43)

X' = o, (3.44)

but their solutions for w+ and ¥ must be modified.

In the following, we shall use the notation
f' = df/dX

for arbitrary f. le must set

v(x) = ;T¢§(X) + cZwZ(X). (3.45)
where
nx) = -8¢O(X)/3Y2, (3.46)
X
¢é(X) s ‘T%§3§' for X ¢[0,F/g],
; P&
b (0) = i ° (3.47)
o0 | —fE— for X ef-F/g,0],
Xo 9o(€)
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)=y (F/8), ¢y = -y (F/8) (3.48)

and Xo on (0,F/B) must be chosen so that

. (3.49)

vy (07) = wy (0
Numerics were employed for the actual computations. The untidy form of
w; is due to the fact that ¢6 vanishes at 0 and #F/B. It is, however,
easily verified that w; is €%, provided that XO is properly chosen. The

choice of c; and c; guarantees that

+0

Vv (#F/B) = 0 (3.50)
and it follows from
+ _ + _
L]w] = ¢0, L1w2 =0 (3.51)
that
+lll
v (*F/B) = 0. (3.52)

Thusuﬁ'is an acceptable even eigenfunction for the eigenvalue c2 =0
when Kz = 0.

Likewise we must set

X (X) = ey (X) + cyx5(X) (3.53)
where |
X (X) = X9, (X) (3.54)
X
X (X) = <1>0(><)f0 %‘:;2 (3.55)
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c; = X(F/B)s ¢y = -x;(F/8). (3.56)

The definition of Xé is simplified by the fact that ¢O never vanishes.

The choice of c; and cé guarantees that

x (£F/B) = 0, | (3.57)
Lox; = 99,/9X, LX, = 0 (3.58)

that
x'"(tF/B) = 0, (3.59)

and that x is periodic as required.
With these definitions of wi and xi, the analysis of Zakharov and

Rubenchik [24] goes through, and the form of their result is unchanged:

. S S (L+ L)y
(c)? =2 Qoo + Lv) + 0(<Y). (3.60)

GEwD

where the inner product is defined by
(Faa) = f*g dx. (3.61)

For very small K2, this result was found to agree with the numerical

results presented earlier.

3.6 Traveling Instabilities

The stability results for even modes, as depicted in Figure 3.1,
are rather striking. For 0 < m < 1, the stability curves consist of

two disjoint segments. For each such m, there is an interval of the «/y
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axis on which no real eigenvalues can be found. These intervals are clearly
promising places to look for complex eigenvalues, corresponding to traveling
instabilities. The numerical technique involving the additional equation
(3.24) and an additional boundary condition, (3.25) or (3.26), was used to
search for such eigenvalues, and the results are plotted in Figures 3.3 and
3.4, figure 3.3 shows Re c/Y2 vs. k/v, and Figure 3.4 shows Im c/y2 VSs.
k/vy. The correspondence of Figures 3.3 and 3.4 to Figure 3.1 is easily
established by inspection, and the gaps in Figure 3.1 are clearly filled by
the complex eigenvalues.

Extrapolation from the curves plotted in Figure 3.4 to the case m = 1
suggests that traveling instabilities may also exist in the soliton case.
This conclusion cannot be reached with certainty on the basis of the data
shown, for the maximum instability at m = 0.98 is slightly less than the
maximum instability at m = 0.9. However, the conjecture is not unreasonable.
In the case of the soliton, as in the periodic case, a point is reached as
Kk increases from 0 at which no real solutions exist. Complex solutions
spring from this point in the periodic case, and the soliton case is pre-
sumably analogous. This raises the interesting question (not yet answered)
of how the complex solution plot can merge into the continuous spectrum
associated with the soliton case.

Mote that the long-wave analysis of Zakharov and Rubenchik [24] and
Ablowitz and Segur [1], which would permit traveling instabilities,
revealed none because none exist for small k. On the other hand, the
numerical results of Saffman and Yuen [14] are limited to standing-wave

instabilities (as the authors themselves point out).
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3.7 MNumerical Verification

In order to test the predictions of the stability curves of
Figures 3.1-3.4, various runs were made with a code which solves the two-
space-dimensional nonlinear Schrodinger equation. The results are pre-
sented in terms of the original physical variables which are related to
our dimensionless variables by (3.5).

It follows from (3.14) that for unstable cases we expect the perturba-
tion

B

1" koA]//f (3.62)

(where B] is dimensionless and A] js dimensional) to grow like eIQTi

= el 1n stable cases (2 = 0), note that |B,| depends upon X and
kY + AT, and thus IA]I depends upon x and 2Kkoy - moAt. Thus we expect

|A]| to move parallel to the y-axis with speed

Uy = wOA/(ZKko). (3.63)

When both Q@ and A are non-zero, we expect both growth and movement. Some

representative cases are described in the following.

Case 1: W, = 100, kOa0 = 0.1, m=0.9, k/y = 0.7, perturbation initially

even in x
g

amplitude of A (= /?Bo/ko). According to Figure 3.1, A should be stable

X - wot/Zko, initial amplitude of A] is 5% of the initial

to this perturbation. The eigenvalue is given by

2yt = 00166,y = T ka2 - nf = 5.450 x 1072, (3.64)

Thus the predicted speed is 0.001304. In Figure 3.5, IA]I/a0 is plotted

in the group velocity frame at t = 0,2,4,---,10. It is easily verified
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that the profile has moved about five grid divisions in the positive
y-direction between t = 0 and t = 10 (the position of the trench between
the two humps can be identified with fair precision). There are 32 grid

divisions in the y interval [0, 0.07903], and thus the predicted shift is

(8f%%§g§). 32 £ 5.3 grid divisions. (3.65)

Case 2: Same conditions as Case 1, except that the perturbation is ini-
tially odd in xg. According to Figure 3.2, one should see an instability

with
IQIZ/Y4 = 0.6405 (3.66)

and thus

|w,@| = 0.2381. (3.67)

Observed amplitudes (computed by taking the square root of the mean of
the squares of the amplitudes at each point) were plotted on semilog
paper, and growth was found to be exponential through t = 9 with the
predicted growth rate. By t = 10, the growth rate had decreased slightly
(indicating departure from the realm of linear analysis).

Figure 3.6 depicts IA]l/ao for this case in the group velocity
frame at t = 0,2,4,---,10.

Case 3:

5 \2 ~\2

K K 2
—_— - 2= = (k ) . (3.68)
(Zko) (ék0> 0%
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initially the amplitude of A] is 5% of the amplitude of Ao' It follows
from (3.34) and (3.35) that the x-component of the perturbation, taken

alone, would yield neutral stability, but the inclusion of the y-compo-
nent leads to maximum instability. Thus, from our analysis of the case
m= 0,

2

la] = v~ = %-(koa ) (3.69)

0

t/2. A semilog plot of

and |A]| should therefore grow initially like e
the root-mean-square amplitude of A] for the time interval t = 0-10 indi-
cates that growth is exponential at least ‘through t = 6 before it begins

to Tevel off. (The leveling is due to the fact that the instability has

attained a significant magnitude, and thus removed itself from the realm

in which our Tinear analysis is applicable.) Thus at t = 5, we expect

an increase by a factor of

e?:% - 12.18 (3.70)

over the value at t = 0. - This is in agreement with the observed growth
factor.

Case 4: wy = 100, koa0 = 0.1, m=0.98, «/y = 0.5, perturbation ini-
tially even in xg =X - wot/ZkO, initial amplitude of A] is 5% of the
initial amplitude of Ao' According to Figures 3.3 and 3.4, we should

see a traveling instability with

a/v% = 0.350,  A/¥2 = 0.826. (3.71)

0.09085t

These values yield a predicted growth rate of e and a predicted

speed of about 1.1 grid units/time units. Both these predictions are
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in agreement with observed values. A semilog plot of the average perturba-
tion amplitude indicates that growth is exponential through t = 20, and

Figure 3.7 illustrates the development in time of the perturbation ampli-

tude.
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CHAPTER 4
BIFURCATIONS OF STOKES WAVES ON
A TWO-DIMENSIONAL SURFACE
Yeakly-nonlinear, deep-water gravity waves can be described by

the nonlinear Schrddinger equation:

2 w 2
. 1oa . Y A Yo %A o 5°A _ 1 2,12
T d=—— 4+ =—=— —\§ - + :...wklAl A, (4.])
{at 2k ax} 8k§ 252 4k(2) 3y2 2 “5"o

where A varies slowly in x, y, and t, and the surface displacement is

given by
i(k x-w_t) i(2k x-2w t)
n = Re[ée 0y l-kOAZe ° ° + 0(A3). (4.2)

Equation (4.1) is known to have solutions of permanent form. One

such is the uniform solution

-iw_t
A= aoe 0
= constant (4.3)
_1 2. 2
" T2 wokolaol

which represents a Stokes wave (including only the lowest order non-
linear term of the frequency correction). Another example is the
dnoidal solution

_ 2 u)o -1'w0t
A= aodn[/? koao(x - 3 t), m]e

0
0<m«<]

a constant

0

2
{2 -m 2
o = (D)t
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As m - 0, solution (4.4) approaches solution (4.3). As m - 1, solu-

tion (4.4) approaches the soliton solution

_ 2 —E)_Q— —1‘th
A= a, sech [/5 koao(x - 2ko t)] e
§
a, = constant (4.5)
-1 2 2
Wo = 7 woklagl J

The solutions (4.3, (4.4), and (4.5) all represent envelopes of
permanent form, but only (4.3) yields an n of permanent form [where n is
given by (4.2)]. For (4.4) and (4.5), the wave envelope travels at the
group speed wO/Zko while the individual waves travel at the phase speed

(w. +w )/ko' It is easily verified that these two speeds cannot be

0 0
equal, and hence the waves of (4.4) and (4.5) modulate rather than main-

tain their form.

A generalization of the uniform solution of the form

A= a e-iwt
(4.6)
a=a(x-ct,y)
and be sought, where a is complex, and
w, tw
c= = (4.7)
0

The form of n will be preserved under these assumptions — to arbitrary

order, Tor the O(An) term of n is proportional to

ink (x-ct)
Re\:ane ° ] (4.8)
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where a, is a polynomial in a and a*. Hence the O{A") term depends on
time only through x - ct, and will be steady in a frame of reference
moving with velocity (c,0).

One may expand a about the uniform solution as follows:

[o o]

a = E a ELE" (4.9)

m,n=-co

where
Ei i eikx(x-ct)eiikyy (4.10)
and kx’ ky, and the a ., are independent of space and time. In order to

ensure that A varies slowly with x and y, it is required that
lkxl, [ky| << ko. (4.11)
This expansion allows one to consider a general perturbation involving

waves of a given wavelength at a given angle to the carrier wave vector.

Next, the 3ns Ws and c are expanded in powers of ¢ << 1:

o

. ()3

&mn Zamn €
j=0

W= Z wjeJ g (4.12)
j=0

c = cjeJ ]
j=0

To ensure that the solution at order O corresponds to the uniform solu-

tion, the following values are prescribed:
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(0) .
ao0 real constant
2
21 .2.(0) .
Wy =3 woko|aOO | (4.13)
aég) =0 for |m| + |n| >0 J

Note that aég) can be assumed to be real without loss of generality due

to the form of (4.1).

-1

The uniform solution is perturbed with the £, E_", E_, and E:]

terms at 0(e). That is,

all) = 0 for |n] + |n| >1. (4.14)

Substituting into (4.1) and retaining terms of order e yijelds

(0) _ [(1) (1)*]
Wiagp" = Woelaggt *agg (4.15)
for the constant terms, and
aly)
M1 =0 (4.16)
(1)
-10
A
M =0 (4.17)
"L
0,-1

for the E,, -] ]terms, where

4 E5'4 E_, and EC
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KeCo _ j&g +y - l_kZa(0)2 _ l.kZa(O)2
W, 2ko 2 000 2 000
Ml = (4.18)
2 k. c k 2
_1.,2.(0) X0, X 1.,2.(0)
7 ko200 Rrai P Bl LT
) 0
and
: kx 2 Ky 2
U == - . (4.19)
2 2ko 2k0
Thus it is required that det M] = 0, where
2 2
2 k c k 4
=y, - 12.(00°Y _[IxTo o “x 1.4.(0) \
det M] (u 5 koaOO ) ( o ” ) -7 koaOO (4.20)
0 0
Therefore,
2
k ¢ k 2
xo __x| - .2 _,2.(0)°
( oy 2k0> u koaOO u. (4.21)

If (4.21) is satisfied and koaég) # 0, then (4.16) and (4.17) can be satis-

fied by setting

(1)*  (1)*
LT o . 1,208 /(1,202
a—.l(g)) ) a(}) =r-= ( :)00 - ﬁ)-(;— + u - ‘2- koaoo 2— koaéo) (4.22)

where a%é) and aé}) are free parameters (at this order — at higher order
it will be found that they must have the same magnitude). It was assumed
that koaé%) # 0, for the expansion employed is not really appropriate
when koaég) = 0. Bifurcations from Stokes waves are sought, not bifur-

cations from a surface at rest.
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Equation (4.16) is clearly satisfied if

(1) 2o A(1)
219" = 0= a4, (4.23)
and likewise, equation (4.17) is. satisfied if
a1 =g =, (4.24)

01 0,-1°

Equations (4.9) and (4.10), which specify the form of the solution being
sought, show that if the first of these conditions holds, then the wave
will appear to propagate in the (kx,-ky) direction. Likewise, if the

second condition halds, the wave will appear to propagate in the (kx,ky)

direction.

On the other hand, the condition

a%é) = aé}), af}g = a1 (4.25)

yields a symmetric, "standing wave" pattern — the eye would perceive
motion in the (kX,O) direction.

It follows from the‘steady surface condition (4.7) that

c =2 0 (4.26)

Equations (4.13), (4.21), and (4.26) can be combined to eliminate Wy and

Co yielding

2 2 2
K 4 k K 2
0 5 y 0
(ka) (koaéo)) ' §<2kx) - (Zk) (koa(()o)>

0
P 'S R Y 'S I - 0. (4.27)
k0 2 2k0 2kO
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For given ko’ kx/ko, and ky/ko’ this condition gives us the values of
agg) at which bifurcation may occur — i.e., the amplitude at which Stokes-
type solutions may intersect another branch of solutions corresponding to
waves of permanent form, with modulations characterized by kx and ky. A
solution of (4.27) will be denoted by a..

It is easily demonstrated that (4.27) admits no positive solutions for
(koac)2 unless kx #0 # ky (or kx =0 = ky, which is clearly a degenerate
case). Thus bifurcations from the uniform solution of the nonlinear
Schrodinger equation must be two-dimensional and oblique. Specifically,

one can show that there are no positive roots of (4.27) unless

2
tan2 8 z,%—+ ;N (4.28)
N® + 1
where
tan 6 = ky/kx’ N = ko/kx° (4.29)
When
1 2 1, a4l
§+2|N|>tan 625+ R (4.30)
NT o+
there are two positive roots of (4.27), while for
tan 8 > 1+ 2 [N (4.31)

2

there is only one positive root. It is easy to show that the root found

when (4.31) holds will satisfy

2
[koa(o)] s 2(|N] - 1). (4.32)
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Physical consistency requires |N|>>1 [see (4.11)], and (4.32) will there-
fore violate the requirement of weak nonlinearity imposed by our use of
the nonlinear Schrodinger equation. Thus (4.30) describes the real region
of interest.

Figure 4.1 depicts k,a. vs. 6 for various values of |N]|. Having
obtained a value of koac’ one can substitute directly into (4.13) and
(4.26) to obtain W, and Coo

To verify a candidate bifurcation point (and to move off it), the
perturbation solution of (4.1) must be continued. At order 52 one needs
to allow for non-zero éég) only for |m| + |n| < 2 in order to balance the

forcing terms generated by the a;g) and aél). Thus,

al?) = 0 for |m| + |n| > 2. (4.33)

Collecting the constant terms [and exercising (4.15)] then yields

2 2 2
vp = wpkdfeteplf)] + 0 e e AL+ L]+ 1 [
4.34)

where
] B} 2,,2.2  1(1 . 2 2,2.2
r = r(N,8) = [ﬁ + (N -N )koaC t 5 (2 tan 6)]/QN koac) (4.35)

[see equation (4.22) for the original definition of r]. The quantity
kgag is, of course, a function of N and 6 due to (4.27) — the variables
M and 6 are clearly interchangeable with kx/k0 and ky/ko' Collecting

-, E , and E:] terms yields

the coefficients of the E+, E+



" aféj* i -5af§:*- ZaEE%: 'jf%i | w]/wo \
70 52y - %3y 3210 61780 |
| > (4.36)
() () [
39,1 -5ag 1y - 23p 20,-1/ \&17%/

It follows from the steady surface condition (4.7) that
W,
¢ T (4.37)

Equation (4.37), the fact that det M1 vanishes, and application of the

Fredholm alternative to equation (4.36) imply that

Cy =Wy = 0. (4.38)
It follows from (4.15) that
Re[aég))] =0 (4.39)

(1)

and one can assume that the imaginary part of a0 also vanishes — it is
not specified by the equations, and hence can be absorbed without loss
of generality by agg). Returning to (4.36), which is now known to be

homogeneous, note that we can take

(2) .- aéf (4.40)

_ )
47,0 T +1°

for any non-zero solutions could be absorbed into the solutions of (4.16)

and (4.17), the equations for aﬁ})o and aé]i1.
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m-n
E

Collecting the coefficients of the E

terms for |m| + |n| = 2

yields

(4.47)

(4.42)

(4.43)

(1)

01

10

) 4 (),

(M*_ (0
T a1 020

where

(4.45)

N O

(4.46)
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M = (4.47)

It follows from (4.45) and (4.21) (the requirement that det M] vanish)

that

= 12u°, (4.48)

det M,, = det M

20 02

Equation (4.27) has no positive solutions when u = 0 (except in the degen-
erate case kX =0 = ky). Thus u # 0, M20 and M02 are nonsingular, and the
equations (4.41) and (4.42) can be solved.

Inspection of (4.43) reveals that it is satisfied by

a§$) - a£$3-1 (4.49)
if

a%é) -0 = af}g (4.50)
or

aé}) -0 = aézz], (4.51)

If neither of these conditions is satisfied, a solution still exists, for
it follows from (4.21) (the vanishing of det M]) and (4.28) (the condi-
tion ensuring that the bifurcation equation has positive roots) that

det M]] does not vanish.

Inspection of (4.44) reveals that it is satisfied by

(2) _ - af$21 (4.52)
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if
a§é) =0 = aé]z] (4.53)

or
1) _ A 1 4.54
IRERPN o

If neither of these conditions is satisfied, there is still solution, for
det M] -1 vanishes if and only if ky/k0 = 0. However, equation (4.27)
has no positive solutions when ky/k0 = 0 (except in the degenerate case
kx =0 = ky). Thus M],_] is nonsingular.

At order 52, the steady surface condition (4.7) yields

Yo
C, = — . (4.55)
2 kO

Equations (4.34) and (4.55) will yield values for W, and Cy given a value

for aég). In order to determine aég) in terms of the parameters afé) and

aé}z one must consider (4.1) at third order in the E_, E;], E_, and E:]
terms. This yields
N 4(3) £(3)
M 10 M 10 - 10
2o e e
2-10 2210 910 |
o (4.56)
(1) (3) (3)
a1 ) an _ fo]
M2 + M] =
(1)* (3)* (3)
%0,-1 %0,-1 901

where
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k. c
2 2. (2 2. (2
30 koacaéo) - koacaéo)
M, = . (4.57a)
2. (2) 2 2 (2
- ko800 - ~§;—" koacaOO)
2
k . 2
Al - [ 0w e e s a2 ]
+ [kg(r2 -r)+ kgac((r2 + r)S%fz] + (r + 1)3§$)
. 2
+ rﬁff)] + r3352)_])}'aé}) (4.57b)
(3%, ()% _[.2 (1.3 2\, .2 (2:(2) . 3:(2) . ~(2)*\1]_(1)|2
910" /399 [ko (' 2" 0T ) ¥ koac<r afzg tr afzg ¥ azo) )]1310)‘
+ [kg(- r 4 r) + kgac((r3 + rz)ﬁfiz_] £ (4 r)ﬁf%?l
* * 2
A ) .50

and fé?) and géf) are given by analogous expressions with the subscripts

transposed. The notation 3mn is defined by

(2) _ a(Z)a(U'ml a(1)Inl (4.58)

4mn mn ~sgn m,0 0,sign n

the legitimacy of which follows from (4.41)-(4.47), which determine the

aéi), and (4.22), which relates af}% to a%é) and aélz] to aé}). It also

follows from (4.41)-(4.47) that

Séﬁ) - 352). (4.59)
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The matrix M1 is singular, and application of the Fredholm alternative

yields
k]
- (4.60)
M [ . .2y K& 22 @] . .3) . _(3)
ag _(1 - r9) ~UO—- (1+r) koacaoo] = £330 4 pg{s |
If
ajp) = 0 or af) = 0 (4.61)

then the corresponding equation in (4.60) is automatically satisfied.

However, if

afg) 40 # aé}), (4.62)

then in order to make the two equations in (4.60) consistent, it will in

general be necessary to take
1 1
a{d)] = 1al1)). (4.63)

Any phase difference can be absorbed by shifting the origin along the

y-axis. Thus one can say

o
O~
—_—

=0, », or 1 (4.64)

7]
—
O —

and when (4.60) is satisfied, (4.56) can be solved for
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a(3) al3)

“10 and “o1 . (4.65)
a(3)* al3)*

-10 0 -1

There is a one-parameter family of solutions for each of these vectors,

but the additional conditions

,(3) ()
*10 orthogonal to 10
,(3)* L)
810 -10
- (4.66)
(3) (1)
401 201
(3) orthogonal to )
3 1)*
20,-1 8,-1/ |

give uniqueness. This is legitimate, for any components proportional to
the order ¢ vectors should be absorbed into the solutions of (4.16) and
(4.17), the equations determining those vectors.

Equations (4.60), (4.55), (4.39), (4.34), and (4.22) can be combined

to eliminate W, and Cos yielding

2 2
(13 + rofR)ald)] - 0y 1or (o) 18001

(2)] .
R =
e[;oo J (1 - r2)kxkoaC - (1 + r)2 2

(3) 4 o (3)) /(1) (#-67)
)] el - i)
I = -
" oo (1 + r)zkgaC
where it was assumed that

(1) 4 0. (4.68)
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In the computations we have performed, aég) has been found to be real.

There is clearly some danger that the denominator of the expression for

Re[aég)] will vanish. Employing (4.27) (the bifurcation equation), it is

found that this will occur when

(4.69)

2
c

also vanishes at this point, there are solutions only for

— that is, when a7 is a double root of (4.27). Thus, unless the numerator

2 1. a4

tan® 8 > 5 + (4.70)
Z N2y

[by virtue of (4.28)].
Having obtained a value for aég), one can substitute into (4.34) and
(4.55) to obtain Wo and Coe Figures 4.2, 4.3, and 4.4 depict c/cHn

= (c_ + c2)/(mo/k0) VS. koa00 for Stokes wave solutions, and bifurcations

0
therefrom corresponding to various values of IN| = ]ko/kxl and

6 = arctan (ky/kx)' In these figures, the minimum and maximum values
represented on an axis are indicated near the corresponding axis label.

Figure 4.5 depicts the surface displacement for a Stokes wave with

(0)
ko200
from this wave with N = 5, 8 = 70°, and a%é) = .25 = agy’s and a similar

bifurcation with a§é) = .5, aé}) = 0.

= ,319 and a wavelength of 10 m; the surface for a bifurcation

(1)

In summary, a new class of fully two-dimensional, steady solutions for
waves on deep water has been found; the free surface is of permanent form
with a constant propagation speed. These solutions are found as bifurca-

tions from the uniform Stokes wave train.
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Unlike the bifurcation found by Chen and Saffman [3] for one-
dimensional waves, these two-dimensional bifurcations occur at small
values of wave steepness koao' This permits the use of the two-
dimensional nonlinear Schridinger equation, instead of the exact Euler
equations, which greatly simplifies our calculations. The critical value
of koa0 at which bifurcation can occur, koac’ has been computed for
various choices of modulation wavelength and angular orientation. Also,
second-order corrections to the wave amplitude, modulation, frequency,
and speed have been computed, which apply when one moves off the bifurca-
tion point onto the new branch of solutions. The significance of these
new-found steady solutions is yet to be determined by analyses of stabil-

ity and energetics.
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CHAPTER 5
THE NONLINEAR SCHRODINGER EQUATION
AND WAVE/CURRENT INTERACTIONS
In order to account for the effect of a non-uniform current on a
wave train, one must obtain correction terms for the nonlinear Schrédinger
equation. One approach is to employ the theory of Whitham [17] for the
time development of the wavenumber vector k and amplitude a in the pres-

ence of a surface current U(x,t):

3k 2
5Tt 52-(w +U-k) = 0 (5.1)
2 2 3U
2l , 2 [aw, ).2], 22 Y.
3t T 3x [(ag”t-’)a]J'z ox -0 (5.2)

where w is the frequency, w, k, and a all being slowly-varying functions
of the horizontal spatial vector x and of the time t. The first equa-
tion conserves the wavenumber and the second conserves the wave action
to the order considered. . These equations must be complemented by the

dispersion relation relating w to k and a:

w(k,a) = /GK (1 - k2a2) (5.3)

for weak nonlinearity.
We now consider a wave train with a dominant wave which has carrier

wave vector 50 = (kO,O) and write

k = ko + ok

Ko (kys0) + (8K, 5k ) (5.4)

Y

w, * Sw (5.5)

w
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where W, = m(EO,O). The functions 8k and Sw vary slowly with x and t,

and are small compared to Eo and Wy > respectively. Substituting (5.4)
and (5.5) into (5.3) and performing a Taylor series expansion about Ky

yields

w w w

= =0 0 2, 0 2.1 22, 2 2

w = wy oy (8K ) - —5 (8K )T+ —5 (8k))" + 5 wkga® * o(]6k|%sa
0 8k0 4k0

(5.6)
The system of equations (5.1), (5.2) and (5.6) governs the time evolu-
tion of the wave train.

In order to obtain the nonlinear Schrédinger equation from this

%o g-Z-E-and - %o QEQ.
8k§a ax2 4k2a 8y2
to the right-hand side of equation (5.6) (see Yuen and Lake [21]?. One

formulation, one must add the dispersive terms

then defines the complex wave envelope

A= ae'® (5.7)
where the perturbed phase function 8 is defined by

3B g 0
o= ok, < 8w (5.8)

and the system reduces to a single equation for A:

2 w 2
(oA . Y aA) Wo 528 . Yo %A 1 2,42
i [3A 4 o 3A) . + - 5w KS|A|A +
(at 2kO X 8k2 3x2 4k2 3y2 2 00
) )
L 3.3 13), =
+ il 5 + 1[(1|_<0-L_J) + (4 3’ D By) Q]A 0. (5.9)

In Appendix A, equation (5.9) is derived using a perturbation
technique. The perturbation approach is considerably more tedious, but

does yield some additional information. In particular, it is found that
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the surface displacement and velocity potential are given by

i(k +X-w t) i(2k +x-24 t)
n(x.y,t) = n + Re[Ae s = N0y -‘2- kOAze 0= 0 4 o(A3) (5.10)
. i(k ex-w t) k_z
6(x,¥,2,t) = ¢, + Re[ge 0=0" 40 ] + 0(A%) (5.11)

where o represents mean displacement, ¢0 represents mean flow, and the

following relations hold:

8¢0
U= Tig-z=o (5.12)
3
=110 1y,
N = 7 g [ - * 5 u g] (5.13)
3 on an w 2 higher
0 2% 0 d 0 LIRS =
R T ( .g)n R + order  (5.14)
9z |,.9 9t = X oX o 2k, -0 93X terms
jw w
8,00 " - T2A Sk %é‘* fun A+ 0(A%) . (5.15)
0 2k -
0
B _ _ i, .8 __1 i.ag-lk.azg + 0(A%) (516)‘
9z ko =0 09X ek, [\ax ~ 3x k0 -0 93X T

Equations (5.12)-(5.14) can be solved with perturbation techniques.

2
One might suspect that the term in equation (5.14) involving §%§}-wou1d

affect ¢0, and therefore U via equation (5.12), and hence equation (5.9).
However, as indicated in Appendix A, equation (5.9) is accurate only to

2
0(A4), and the effect of the g%%}— term is negligible at this order.
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5.1 Effect of Current on Uniform and Nearly-Uniform Waves

In this subsection, equation (5.9) will be used to study the effect
of prescribed currents on waves on a one-dimensional surface. For this

case, equation (5.9) reduces to

2
oA, (Y oA, . 3 U % 3°A 1 2,.2,
1{3t + (Zko + U) = T (1kOU * 3 §;>A} - 2 02 - 5wk [AI"A = 0. (5.17)
0

A pseudo-spectral method (see Fornberg and Whitham [5]) is used to solve
equation (5.17). A1l figures are scaled against a carrier wavelength of
10 m.

The time development (in the group velocity frame, £ = x - cgt) of
the envelope of an initially uniform wave subjected to a sinusoidal cur-
rent pattern is depicted in Figure 5.1. Figure 5.2 depicts the time
development (in the group velocity frame) of the associated wavenumber
shift profile (i.e., the spatial derivative of the phase of A). The slope

of the carrier is koa0 = 0.1, and the group velocity is cg = 1.975 m/sec.

The current is given by

U= 0.025 Cq sin (kox/200). (5.18)

That is, the current pattern is steady in the bottom-fixed frame.
Clearly, both the amplitude and wavenumber shift profiles assume
the sinusoidal form of the current pattern. However, they do not remain
stationary with respect to the current pattern. Moreover, their magni-
tudes grow throughout the time interval of the solution.
The fact that they are not stationary with respect to the current is

not really a surprise. For a sufficiently small disturbance, one can
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think of the solution as a perturbation of the uniform wave consisting of
two components — a forced term at rest with respect to the current pattern,
and a homogeneous term traveling at the group velocity. Thus it should be
possible to simplify the picture by specifying an initial condition corre-
sponding to the sum of the uniform solution and the forced portion of the
perturbation, thereby eliminating the need for a homogeneous term. The
following analysis provides the necessary formulae for the forced solution.

Assume that

ey
]

eu(ex) (5.19)

where € << 1. Set

A= ael® | (5.20)

where a and 6 are real. Substituting (5.20) into (5.17) yields

w
0 2 ] 2.3 _
-6.a - (cg + U)exa - kOUa - g;?'(axx - exa) - E'wokoa =0. (5.21)
0
and
a, + (c_ +U)a +§Ua-—(f°—(29a +6._.a)=0 (5.22)
t g Xx 4 °x 8k2 X X XX ’ ’
0
Let
a = a +a_l+...

(5.23)

D
"
D
o
+
D
—
+
°
°
°

where
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a_ ~ 0(1), 6y v 0(1)

0

a_ =¢e"a (e.) » 0(e") forn>0 (5.
n n" X

o, = en']§n(ex) " 0(5"’1) for n > 0 J .

Substituting (5.23) into (5.21) and (5.22) and retaining terms of
0(1) yields

24)

6 a -c0 a --2 (2 -g%)-Lteild=o (5.25)
0,0 go,o 8k§ Oyx 0,0 2 000 ,
and
o )
a +ca -—x(20.a. +8 a)=0 (5.26)
°t 9 Ox 8k§ 0x 0 xx 0
The uniform wave
a, = constant (5.27)
- _ 1 2.2
6, = 5 wokoaot (5.28)

satisfies these equations as, of course, it must.

With this choice for a, and 60, equation (5.21) at 0(e) yields

3 2.2 _
-eo ay - e] a_ - cge]xa0 - kOaOU - E'wokoaoa1 = 0. (5

t t©

Equation (5.22) has no O(e). terms, but at 0(52) yields

3 Yo -
a; t+tcay +ral - ——E-aoe]X = 0. (5.

t g ]x 4 o'x 8kO X

Equations (5.29) and (5.30) can be solved using the fact that, by assum

tion, a; and o depend only on x [see equation (5.24)]. One finds that

.29)

30)

p-
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U1
a; = -a ¢ (5.31)

) ° 2.2
g 1+ koao/z

2
-(kOU + wokoaoa])/cg (5.32)

D
—
1]

assuming a, # 0.

Clearly the ratio U/cg must satisfy

U/cg << 1 (5.33)

in order for the perturbation scheme to be consistent. It follows from
equatioh (5.18) that this condition is satisfied for the calculation
represented by Figures 5.1 and 5.2.

In Appendix B, it is demonstrated that an analogous perturbation
solution for the case a, = 0 is consistent with the results of Longuet-
Higgins and Stewart [10, 11] to O[(U/cg)3]. It is also demonstrated that
the perturbation results for a, = 0 correspond to the results of equa-
tions (5.31) and (5.32) in the limit a, > 0. Thus equations (5.31) and
(5.32) correspond to known results in the proper limit.

A final analytical exercise of some interest is to relax the assump-
tions of (5.24) and (5.19) which require slow variation_of U, a and @.

One can assume instead that

U = eu(x)
a ~0(1) e

° ° . L (5.34)
a, = ¢ 3n(x)’m 0(e") forn >0
6. =¢"8 (x) ~ O(En) forn>0]{.

n n ]

The somewhat surprising result is that (5.29) and (5.30), and hence (5.31)

and (5.32) are once again obtained.
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Figure 5.3 depicts the result of a computation identical to that
of Figure 5.1 except that the initial condition consists of the uniform
wave with the forced perturbation specified by (5.31) and (5.32).

Figure 5.4 is the analog of Figure 5.2 for this initial condition. As
expected, the forced solution remains stationary with respect to the
current pattern. Moreover, the forced amplitude and wavenumber shift
profiles maintain essentially constant magnitudes. Thus the homogeneous
term is responsible for the arowth observed in Figures 5.1 and 5.2.

The solutions presented thus far involve the modulation of a uniform
wave due to interaction with a current. Consider now the case of an
already modulated wave interacting with a current. Figure 5.5 represents
the time development, in the absence of current, of the envelope of a
wave which consists initially of a uniform component and a (much smaller)
sinusoidaT component with wavenumber kp = k0/10. Figure 5.6 represents
the time development of the associated wavenumber shift profile. The |
slope of the carrier wave is koa0 = 0.1. It is easily verified that the

modulation wavenumber lies in the Benjamin-Feir instability interval:

0 < (kp/2k0) < /2 koao (5.35)

and the growth of the modulation is clearly discernible in Figure 5.5.
Figure 5.7 represents the time development of the envelope of a
wave initially the same as that of Figure 5.5, but interacting with the
current pattern specified by equation (5.18). Figure 5.8 represents the
time development of the associated wavenumber shift profile. The effect
of the disturbance is quite evident, and jibes with the effect seen in
Figures 5.1 and 5.2 (the time steps are different due to the fact that

resolution problems arise sooner in the computation associated with
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Figures 5.7 and 5.8). That is, the development of Figures 5.7 and 5.8
appears to be a linear combination of the development of the uniform
component due to the current interaction and the development of the modu-
lation due to the Benjamin-Feir instability. One could, presumably, sim-
plify the picture by including in the initial condition yet another modu-
lation corresponding to the perturbation. forced on the uniform component
by the current.

The preceding remarks apply to a case in which the envelope is close
to uniform. When initial modulations are not small, a generalization of
the uniform wave analysis cannot be expeéted to apply. However, it is

possible to proceed in another direction.

5.2 A Perturbation Scheme for Families of Non-Uniform Solutions

Given a parameterized family of solutions of an unforced nonlinear
equation [e.g., (5.17) without terms involving the current], one is
inclined to feel that when small forcing terms are added, there should be
solutions approximated by‘unforced solutions with slow]y—varyiné parameters.
This notion is formalized in_the following. The resulting formulae are
then applied to the case of soliton solutions of the nonlinear Schrédinger
equation interacting with currents.

Suppose the family of functions A (x,t,p) satisfies

3A

<2+ 0(A) = 0 (5.35)

for every set of parameters p within some range, where O is an operator

which does not involve é%u Now consider the problem

32+ 0(A) <A, x.t) (5.36)
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where <% is an operator which does not involve g%, and

IF] = 0(e), e << 1 (5.37)

It seems natural to assume that there will be a solution of (5.36)

approximated by
A= Ao<>_(,t,p(t)> + A (5.38)
where

. (5.39)

IA]I = 0(¢g) = é
That is, the forcing term will cause changes in the parameters, and an
additional term, A1, will be needed to allow for changes unrelated to the
parameters.

Substituting (5,38) into (5.36) yields (5.35) at 0(1), as intended.
At 0(e), one obtains

oA

1 -
5t TLO0(R A + ngo p =F(A,s%>t). (5.40)
Define
9A
= 0
Bj apj (5.41)
and it follows from (5.35) that
dB.
Tlﬁu‘ﬁo(Ao)Bj = 0. (5.42)

A~

Thus if K] is a solution of (5.40), then so is A] + 2 : Cij for any choice
J
of the constants Cj'

Let

A] = ; hj(t)BJ. + A‘]

o _ e
(VA \AO,)_(,t) = ; fJ(t)BJ + f J

(5.43)
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where

(BJ ’A]) -

|
o

for all j and t (5.44)

(8;,%) = 0

where the notation (f,g) represents the inner product of f and g. Then

(5.40) reduces to

- (5.45)
o, o
5t tDOA A, = f

Using h. to balance accounts could clearly lead to substantial increases

J
in IA]I - secular growth. Thus it is best to take
Py = fj, hj = 0. (5.46)
In fact, one can take
hj =0, A] = A] (5.47)

all of which sustains the notion that A] should represent change unrelated
to parameter changes.
To compute the fj, one has the formula

(BfﬁAo,g,t)) . Z(BQ,Bj)fj (5.48)

J
which follows from (5.43) and (5.44). This is identical to the result

obtained by Keener and MclLaughlin [6] with a Green's function approach.
Keener and McLaughlin apply this formula to the case of soliton solu-
tions of the nonlinear Schrddinger equation. In the case of a single

soliton, in particular, they show that the solution

i
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r(x,t) = -2in sech {2n[(x - xo) + 4£t]§ exp {i[?gx + 4(£2 - n2)t + 6]

(5.

of
ar azr

L R T (5.

ot 3x2

where n, £, x_ and ¢ are constants, can be generalized to provide an

0
approximate solution of

2
. 9r . 3°r 2
-ist =+ 2|r|r=f (5.
ot axz
where the perturbation f satisifies
|f] << 1. (5.
The generalized result is
t
r(x,t) = -2in(t) sech {2n(t)|x - xo(t) + 4;/.g(t')dt' x
0
t
x exp {1 26(t)x + 4/ [E2(t") - n?(t')1dt" + o(t) (5.
0
where n, &, X0 and ¢ now vary slowly in time.
The time variation of these quantities is governed by
e = - Z e Ot (1) (5.
d =.1 L dz
gt T = - 5 [0t ()] + 5 (2 - o) 3 (5.
where
z=£+in |
r = |P[e1¢ > (5
2nx
IT| = 2ne °‘

49)

50)

51)

52)

53)

54)

55)

.56)
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rT = (g - g0)Yr (5.57)
t t t
- 2.0 _ 2 2y et o '
e-f4; dt —f4(g - pf)dt! + 1[ 8&ndt (5.58)
(0] 0 0
(usv) f uT(x) oy (x)dz (5.59)
f
f = ( ) (5.60)
f*
1 (z - 92 2i(c-*)x|” r (5.61)
r_l = - ___. ] - —2 e ‘: C x ] 2 D
Y Yy (2 - %) 21(z-2%)x»
Yy

r, = 2[1 - (€____C_;;f_ eZi(C-C*)x '] .

Yy
(5.62)

v~ =170 (5.63)

To convert solutions of (5.17) to solutions of (5.51) or vice versa,

one must use the transformation

A~ qr

. (5.64)
0
B(x - 5= t| « x
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where
[ 4 1/2
a_
Luk2
00
. (5.65)
" -1/2
B ={-Z
0 J
It follows that
— iU+ 342U . .
f = igU 5t 1B r - kU (5.66)

5.3 Soliton/Current Interaction

We now compare numerical computation with the results of the perturba-
tion analysis of the preceding section. A1l figures are scaled against
a carrier wavelength of 10 m.

Figure 5.9 represents the time development, computed via the non-
linear Schrodinger equation, of the amplitude profile of an envelope
soliton interacting with the current pattern specified by equation (5.18).
Figure '5.10 represents the time development .of the associated wavenumber
shift profile. The envelope clearly holds its shape very well, with only
slight magnitude variations. The development of the wavenumber shift
profile, on the other hand, is virtually identical to that of Figure 5.2,
save for the introduction of Gibbs phenomenon.

Figure 5.11 is a plot of the soliton maximum versus time for the
solution depicted in Figure 5.9. The curve appears to correspond
closely to the curve that would be obtained by plotting the amplitude

of the center point versus time in Figure 5.1.
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Figure 5.12 depicts the time development of the soliton maximum and
its location, and the wavenumber shift according to the perturbation
approach. The plots of the soliton maximum versus time in Figure; 5.11
and 5.12 are similar, but there are clearly significant differences. The
first local maximum encountered in Figure 5.11 is larger than that of
Figure 5.12. This maximum also appears to occur sooner in Figure 5.11,
and the function of Figure 5.11 decreases faster thereafter. These dis-
crepancies may be due to the fact that the perturbation approach has been
pursued only far enough to determine the soliton parameters as a function
of time. The term A] in equation (5.38) has not been computed.

The time development of the Tocation of the soliton maximum presented
in Figure 5.12 is in good agreement with the results of Figure 5.9. The
spatial resolution of Figure 5.9 is 7.8125 m. At 0 sec and 101 sec, the
maximum occurs at 1000 m in Figure 5.9. At 202 sec, it occurs at
992.1875 m. At 303 sec, it occurs at 984.375 m. At 404 sec and 505 sec,

.it occurs at 976.5625 m.

The time development of the soliton wavenumber shift presented in
Figure 5.12 appears to correspond closely to the curve that would be
obtained by plotting the wavenumber shift at the location of the soliton

maximum, as given by Figure 5.10, versus time.
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APPENDIX A
A DERIVATION OF THE FORCED NONLINEAR SCHRODINGER
EQUATION FOR THE CASE OF WAVE/CURRENT INTERACTIONS
OMN A TWO-DIMENSIONAL SURFACE

For the case of irrotational gravity waves on water of infinite depth

and constant density, the governing equations are

2 2 2y _
(3x1 + axz 4 95) = 5(xz,t) on z < n(x,t) (A.1)
ny + ¢, n ¢, n, = on z = n(x,t) (A.2)
t X1y Xo Xo z
1 2 2 2 _ -
o: t 3 (<bx] "okt ¢;) +gn =0  onz=n(xt) (A.3)
¢ =
2, 0 (A.4)
where
X1 5Xs = horizontal coordinates ]
X = (X15%5)
z = vertical coordinate
t = time coordinate - (A.5)
n(x,t) = surface displacement
¢(x,z,t) = velocity potential
g = acceleration of gravity J

and S is a function representing underwater disturbances.

We now consider the case of a weakly nonlinear slowly modulating,
nearly monochromatic wave. Harmonics higher than the second are assumed
to be of negligible magnitude, but modulations are taken into account

(which is important due to the modulational instability of Stokes waves).
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To quantify these notions, we assume that

2 2
n= Dom + o), o= g, + 0(d) (A.6)
==2 n=-2
where
e << 15 ngamy v 0(£)3 mp v 0(eX)s o~ O(e") (A.7)
and
Moy = s &, = ¢F. (A.8)

The terms o and ¢0 are intended to represent long waves (mean Tevel and
mean flow fluctuations), while ot n? and ¢ * ¢f represent short waves
and g + n; and ¢2 + ¢§ represent second harmonics.
We restrict ourselves to consideration of a low-frequency S so that
v2¢0 =S, v2¢] = 0, v2¢2 = 0. (A.9) .
It is therefore reasonable to separate the n, and o, into carrier wave
and modulation factors as follows:

no=a(x,t)e °°° (A.10)

in(k_ex-w t) |n|k z
0= 07 0, (A.17)

where the a and bn are slowly varying functions of their arguments,
k0 = lkoi, (A.12)
and it follows from (A.8) that
- = *
a_, = ax b b (A.13)

The use of |n| in the factor e}nlkoz is necessary for the satisfaction

of (A.4).
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We quantify our scaling as follows:

a_ = a(])'+ a(z) + a£3) + 0(84) for n = 0, 4; a,, = aiz) + a(3) + 0(€4)

n n n 2 +2

(A.14)
01D, o oD o
b,y = b{2) + b(3) 4 o(eh) (A.15)

where
aﬁj), bﬁj) ~oo(ed) (A.16)

ald) = a(53,8), 03) = (D (5,5,8) forn gt 100571 (A.17)

a-f-::) = at(1)(g’£’%)’ bi::) = bi"ll)(,)_\(sﬁ’fa%> (A]B)
X = ex, 2 = ez, t=et, §=clt. (A.19)

The extra argument for ai}) and bi}) is needed to suppress secularity;
this will become clear in subsequent calculations.

Expanding ¢ and derivatives of ¢ evaluated at z = n into expressions
involving ¢ and derivatives of ¢ evaluated at z = 0 allows us to write

the governing equations (A.2) and (A.3) as follows:

2 v
. -
e * Z [”x.' %, 7 nqb'x.‘fz] S0, tnd,, 3 n2¢zzz +0(e*) on 2 = 0 (a.20)
2
1.2 1 :E:: 1,2
¢t * n¢tz 2 " ¢tzz * 2 _ (¢XJ 2n¢x3¢x z) * 2 (¢z * 2n¢z¢zz) *

+gn=0(c") on z = 0. | (A.21)
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Substituting n and ¢, as given by (A.6), into equations (A.20) and
1n(ko-x-m0t)
(A.21), and equating coefficients of the e [see (A.10) and

(A.11)] to 0 yields

2
(34ng) + ;g; [kaxj¢_1)(axjn]) + (axj¢0)(axjno) ¥ (axj¢1)(ngn_1) ¥

# e Bazaxj¢-1>(axj”1’ . (Bzaxj¢])(axjn_1)]] -

_ .2 2 2
- (BZ¢O) + n] (32¢_]) + noo(32¢0) + n_]‘(az¢]) +

MRUSUE (8§¢_]) + non_]-(83¢]) + 0(54) onz =0 (A.22)

(30 *+ my=(3,0:0.1) + nge(3,3400) + nq-(3,8,8¢) + nomy+(s%a,6.,) +

2
1 2
* eyt a at‘b] '2_2 ;[ CH d’] (3 J.‘b]) * (ij%) *
j=1

* 2”-1(axj¢o)(azaxj¢1) * 2”0'(axj¢-1)(azaxj¢1) * 2r'1'(aqu’o)(Szaxj‘bJ) *

* 2n0-(axj¢])(828xj¢-])] ¥ %'[2(82¢-1)(32¢1) * (32¢o)2
‘o 2 2 2 .
n_]'(32¢0)(32¢]) + Zno'(az¢_])(32¢]) + Zn]-(82¢0)(82¢_])

2n0-(az¢])(a§¢_1)] *gn, = 0(c*) on z = 0 (A.23)



2 2
1 3
Ly [Z(ax ", Bz 8n ) 7 7 Mo (038,
nes(-1,1,1)Lj=1 J J
- %'ng'(8§¢]) = 0(54) onz=0

(A.24)
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2
(3ny) = (3,9,) Z (3, n] (3, ¢]) - n]-(aﬁqﬁ +Z 3y n2 d> ) +
j=1
2
ny (205) = - (326,) + D [(ax_n]mO(azax,qb]) :
j=1 J J
+(8, mInq (3,3, d> )]
%
- nn (83¢ ) = 0(84) onz=20 (A.26)
o'l *7z"1 B
2
1 1 2
(o) = m020m) + 3 0 () (2g0)  rgeoy) +
j=1
2
* +Z 3y ¢0 3y d0) * (9,0,)(8,0,) + ”0”1‘(aiat¢1) +
3=1 E

2
+Z[O 3 ¢1 (3, <b]) 1‘(9xj¢o)(3z3xj¢1)]+%'(324’1)(35%)'*

j=1
+ 2 = 4 = A
ny(8,8,)(3,¢,) = 0(e’) onz =0 (A.27)
2
where the notation :E: indicates summation over all distinct

nes(-1,1,1)
permutations of the triplet (-1,1,1). That is,

2
f(n},nz,n3) = f(-1,1,1) + f(1,-1,1) + f(1,1,-1). (A.28)

nes(-1,1,1)
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At 0(e), equation (A.24) reduces to

walM) - . i
fwgay - kob] =0 onz=0 (A.
while equation (A.25) reduces to
. n (1) (1) -
-1w0b] *ga; o= 0 on z = 0. (A.

If (A.29) and (A.30) are to have a nontrivial solution, it must be the

case that
2 _
wy = gk0 (A
and it will then follow that
iw
b{]) = - TFQ a%W) on z = 0. (A
0

At 0(e), equation (A.22) reduces to

W (0)y -
(agb0 ) =0 onz =20 (A
while (A.23) reduces to
(M . _ (0) -
a, ' = (eafbo )/g on z = 0. (A.
It follows from (A.4), (A.9), and (A.33) that
Vzbéo) =Sonz< 0 ]
(0) _ - .
3,b, Oonz=0 (A
(0) . - o
azbo Oonz = IE

This determines béo) which then determines aé]) via (A.34).

29)

30)

.31)

.32)

.33)

34)

.35)
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Equations (A.26) and (A.27) vanish at 0(e). At O(ez), equation

(A.24) reduces to

]
-de
(>
[e}]
~~
N
~~
]
ey
o
N
~
+
—
m
QU
>
=}
~~
~~
~
]
—
™
Q
N>
o
— e~
—
~
~~
+
o
=
o
[o}]
— e~
—
~
°
—
m
Q
<>
o
O ~
o
~
~
o+

2.(1),.(1) _ -
o2 b] =0 onz=20 (A.36)
while (A.25) reduces to

- ,iwob](Z) + ga.fz) + (€3£b1(])) _ iwokoaé])b‘f.l) + ﬂfob-p)'(eagbéo)) .

59y =0  onz-=o. (A.37)

+ kobfl)-(sa é

2
The last term of (A.37) will vanish due to (A.33). Multiplying (A.36)
by iwo and (A.37) by ko’ and subtracting the latter result from the

former, yields

(3,b{1)) +

i, (3gall)) - ko(afbf‘)) -y (35

1 o

- (gl + ikob§‘))go.(agb£°)) =0 onz=o. (A.38)

Substituting ¢, as given by (A.11) into (A.9) yields

ik
(a§b§])) - - -ﬁil- (agbg])) | (A.39)

at 0(e?). With this and (A.32), we can substitute for b%‘) in (A.38).

The result is

(a%a§])) + :ﬁ%-ko°(3§a§1)) + igo-(aibéo))ag]) =0 onz=0 (A.40)
2k = -
0

which is an intuitively sound equation governing the time development of

agl), for the group velocity is given by



and the 0(¢)

Equations (A.

between b%z)

is:

(2
b! )

=2k (A.41)

TR (3xbéo)) (A.42)
- z=0.

32) and (A.39) can also be used to simplify the relationship

and a%z) implicit in equations (A.36) and (A.37). The result

])) = (aAa(])) onz=20 (A.44)

aa b }/g | onz=20 (A.45)

Equations (A.4), (A.9), (A.35), and (A.44) yield

which determines bé1? Equation (A.45) then determines ag

Vzbé]) =0onz<0 )
(azbé])) = (Btaé])) onz=0 ¢ (A.4€)
(szé])) =0onz= - J

(2).
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At 0(5?), equation (A.26) reduces to

. 2 2 1
-21woa§2) - zkobé ) . 2koa§’)b§ ) - on z = 0 (A.47)

while (A.27) reduces to

-21w0b§2) + ga(z) iwokoa$1)b§]) =0 on z = 0. (A.48)
These equations can be solved for aéz) and b§2)’ yielding
al2) o a(1)2
as oa] (A.49)
béz) =0 onz-=0. (A.50)
It follows from (A.9) that b( ) will in fact vanish everywhere.

At 0(e3), equation (A.24) yields,

- iugay®) + (eaa(?)) ¢ (Pagall)y < i p{®) - (cap(?)) 4

+ (-ika' T« (2ik p{2)) + (eagaé‘))-(igob§‘)) +

D)+ [likgad?) + (eagal D)oo

(1k a(]))-(ea bé

+
1<

(2ik,252)) - (-ik p 1)) - (D). (4k2b(2))

+

=02
-2l [kBo{2) 2k (eagp{1)] - a{B).(i2o{1)) +
all) (202 (0)) - a2). (k2] )) + (-ikaNalM ik p{1)) +

+ (ikgadal D ik b8y o (igalall (i 600

SUNGNENII

onz=20 (A.51)

while (A.25) yields
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w83+ (et + (o)) 4 gal3) + all)(aiy k bSP) +

+ al2(tugk btV + all) (=g b8y + (wtugeasp{M) + (kpeagpl! )] +

+ a§]),(€2323€béo)) + a§2)°(1wokob£})) * (-iEObS})).(ZiKObéZ)) !

+ (ed béo))-[(igob§2)) + (eagb§]))] + (eagbé]))-(igob§])) +

X
¥ (kobf}))‘(Zkobéz)) + (€32b50))'[kk0b§2)) + (632b§1))] N

* (eaghg - (br ™)+ alPal Dol + 7 a2 tiugkBo L)) +

+ af}).(igob§1)).(ikogob§7)) +va§1).(-igobfl)).(ikogob§])) +

+afM (i bty ik b)) + kB D{12 4 23 (1T (1) 4

21 ] -1 71
+ g a0 2 a2ty + 2l (eagp () (ai k1) 4
+ a(])-(aagbéo))-(k§b§J)) -0 on z = (A.52)

substituting for b1}, b{?), and a{?) simp1ifies (A.51) to

-iwoa§3) = kob§3) + (eaga] )) + (823%a§])) - (eafbgz)) +

+ (eaaa(1))-(89-goa§])) + (ik0a§]))-(ea§bé])) +

v [k150a§2)) + (eaaag]))] (c3gbs?)) + 3 tugkl agl),2a$]) '
a{1).[k2b{2) 4 2 (ca5b1 )] + igkgalPlafl) - af1). (256l
N %-iwokgaé])za§]) =0 onz=0 (A.535
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and simplifies (A.52) to

ol ol « a1y - O

+ aé])-[(-iwokobl(z)) + (eiwoeagb]“)) + (-iwosa,za](”)] +

2 . iw
rz koo o+ cengp{® engp(®)) - 2 eagalM] «
W
+ (eagbé])).(ii-goaf])) - iwo(eaibél))a§]) - %-wgkoaé])2a§]) +
+ gl ke (23 {0l =g on 2 = g (A.54)

Multiplying (A.53) by iwo and (A.54) by ko’ and subtracting the latter

result from the former yields

[1'(» (EBEa](Z)) -k (sa%bfz))] + [iwo(ezaéa.l(])) - k0(€23§b§]))] +

o 0
-y (e350{2)) + %g?—go-(eagaé]))a§]) - zmogo-(eagbg]))a§1) .

+ (sagbgo))-ﬁ-ubgoafz).- ik k bi2)) + (21w0eaga§1))] - 42k la(l) a0y
oD Pl + s l] - e ORI

+ dugk, (eagplM)all) ubkoaé])go.(ssgbéo))agl) =0 onz=0. (A.55)

We must now whittle away at (A.55), eliminating references to the

b§j). To begin, we apply (A.43) to deduce that

k0(€8€b§2)) = -1wo(€8fa§2)) + é%%'Eo’(E 8@8A3§])) + 1w0k0(gafa£1))a§])
)
+ 1wok a(])-(eafagl)) onz =20 (A.56)



-80-

It follows from (A.40) that

(ezafaigf])) + i%% (€8§(50-€823§]))) + i(eaggo-g(1))a§]) +
X s\ X X
+ ik, 0 ) (eagalMy = 0. (A.57)

Substituting (A.40) and (A.57) into (A.56) yields

k t4 -0‘(€3>?(|-<0'€3>?al(”)) ¥

O(eagbfz)) = -1w0(€3ﬂa(2)) - i%%-k
0

%o (1),.(1) i (1) (1)
) £;§- (Eagk U ay - Ei% “1(kyeU )(kyeedgar’) +
0 0
w2
¢ tegeage el - 1D (D)
* wokoaé])(Eo‘Q(]))agl) on z = 0. (A.58)

It follows from (A.32) that

b$])) = -iug (e dfa (])) on z = 0. (A.59)

k (e ) 1

£
Substituting ¢ as given by (A.11) into (A.9) yields

(2e008)) (1K) + (26050(2)) ok + (2 s o)+ %%y =0 (a.60)

at 0(33). From (A.39) (the 0(52) version of the same equation) we can

infer that

2
(eza§b§])) = - (ﬁi-k aA) b{1) (A.61)
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Thus,

2
eagb\?) = (-ik /k )+ (eagh{?)) - L [(ezay-aﬁbp)) - (ki l_<0~ay() b§”].
= (o < 2 0 <

(A.62)
Substituting for bfz) and bgl) in (A.62) yields
(2) - (s _uy (2)y . “o (1)
eBaby = (koK) o[- - (edgay ™) + — 5 -(edgkyreaga; 1) +
0 X 2k X X
. . 1
+ 1w0(sagaé]))a§]) + 1woa£])(eaga§ ))] +
iw
o [r20 0 (1) _ (e, . 2(1)]_
+ — [}e 3y axa] ) (k K, aﬁ) 3 =
2k = = 0 -
0
w iw 2 w
e O (eaal2)y _ o qe . (1), 2o, . (1)y.(1)
= -7 Ko (ea™) - — (k Ko 3&) 3t Koo (edgag ag 4
k = 2k o) < 0 -
0 0
+ 2o a( )-k «( aAa( )) + ifg ( aA-aAa(])) = k -BA'Za ])] =
k R 2 [ & o% %N k_ =0"°%) %
0 = 2k0 S
w w - W -
] a2, S0 (1), (1) L 20 (1), /(1)
- K2 Eo'(eaxal )+ K (ea§a0 Jap e ok (gaxal ) +
o - 0 = 0 =
¢ o (2800902l 1)) - 2(& Kk -an M7 a0 (A.63)
2 |\& °%7 % TSk, 0 %) ] ’ :
2k - = ) -
0
Substituting in (A.55) for (safbgz)) as given by (A.58), (eza§b§‘))
as given by (A.59), (eaibgz))as given by (A.63), (Eaibén))|z=o by g(n+]),
b%z) as given by (A.43), (ea%bfl)) as given by (A.39),(58€a§])) as given

(1)

by (A.40), (szagbéo)) according to (A.9) and (A.11), and (eaibo

according to (A.46) yields



. 2) W /e (1) , "% (1)y.(1)
2w (eapal?)y + ——( -« -aA) ar e =%k (eaqk -u(1))a (1)
o\ €982 2 {ky 0TR) F1 T G2 Som ket
1

=5 (ko U ) (kg eeaalM) - i (eagalhall)

My -« a(])(ko-y(]))a(1) + 21wo(€28§a§1)) +

no
N
[AS)

iw .
3 ) o-(eagaé]))ag]) - jif-aé1)ko~(eaga§])) +

— e~
—
N
N
4]
—
—
~
+

+ w k (k -U(]))aé])a§]) + g(l)-(21w0582a§])) - 4w§kg‘a

0°0'-0 -
1 1(.02 1 10)2 )
+ aé ). 7;9‘k o(eaia§ )) - —Eg-ko-(ea§a§])) + woko(k .U(]))a§1' +
0 = 0 -
- i Sagl) + jw (eag~g(]))a§]) + i ko(eagaé]))ag]) +
- wokoa(])-(goog(]))a§]) =0 onz =20 (A.64)

Dividing through by Ziwo and collecting terms yields



(eaga?)) + (Pogal)) + 28 k - (eagal?)) +

iw 2 2
of1 2, . (1), 3 /e M L0 L21.1)5.01)
- k2 [4 (e 88 Bga] ) - ) (E;-go-ag) 3 4-21w0k0 a, a; o+
0

+ kg0 Bhal) e GiguMa®) v g eagal) o« 3 (eapuMa(D

53(1) + «(e3.k -U(1))a(]) =0 on z = 0. (A.65)
1 4k2 -0 -0 - 1
0

STE

At this stage, the need for the second slow-time variable t becomes clear.
In the case g(]) = 0, dropping (gza?a§])) from (A.65) would lead to secular
terms in the solution for a§2).

Combining equations (A.40) and (A.65), setting

3b
A=2a,U=—> (A.66)

X 1z=0
ignoring terms of order O(€4) and higher, and locating the x1-axis along

Eo and the x2-axis perpendicular to it yields

2

(oA, %o A\ % %A, % 9% %Ko 2. . .. oA

W ) gl 2 T pZ a2 7 AR g

° o "1 o "2
. 38 1.3 ) .yla- '

+ 9 (1l_<o u) + (43)(] > 3 sz) UJA=0 (A.67)

assuming that
= 0. (A.68)
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Equation (A.67) is the two-space-dimensional nonlinear Schrddinger equation
with current terms.

Given the form of the disturbance term S, one can compute béo) from
(A.35). The quantity aél) then follows from (A.34). With aé]) in hand,
one can compute bél) via (A.46). Substituting bo = béo) + bé]) + 0(52)
into (A.66) yields U to 0(93). This value of U can then be used to compute
A to 0(83) via (A.67). Now A is the complex amplitude of the fundamental
component of the carrier wave. To compute the actual surface displacement,
n, one uses the definition of A, (A.66), the original decomposition of n,

(A.6), and (A.10) to write

(2K ex-2u t
k A2e1( Fo"2" %o )] + 0(ed) (A.69)

i(k ')_(-wot) 1
20

n = a(]) + aéz) + Re [Ae +

0

where aé]) is given by (A.34), aéz) is given by (A.45), and the term in

A2 follows from (A.49). The frequency Wy, is specified in terms of k0 by
(A.31).
In order to obtain a similar expression for the velocity potential

¢, a bit more work must be done. It follows from (A.32) and (A.43) that

iw w Ja
= - —.ﬂ —-.—O_ ° —.i 3 (]) 3
T N T3 et T T % 2yt 0LET)
0
1wo 0 aa] . (-]) 3
= - TO— a.I + 5?5;'(—]—*' 1w0a0 a] + 0(€ ) on z = 0. (A-70)
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Equations (A.70) and (A.71) are in principle sufficient to determine b1
for all x and t and z < 0.

In order to obtain b0 to 0(e3) all that remains to be done is to
determine béz). As noted earlier, béo) and bé]) follow from (A.34), (A.35),
and (A.46). The value of béz) follows from equation (A.22), which reduces

at 0(33) to

(eagat?)) + (-1 p (1)) (eaalD) + (eagp D) ik ) +

+ Gikgpf ) teagal])) + (eagptD) (-ikgall)y + (i b)) (aia{)) +

+ ('150b51))'(1503§2)) + (150b§2)).(150a£})) + (ikobgl)).(-ikoaff)) +

N (EBAb(O))-(eBQGé])) + aé])-[( ik k_ b(})).(jkoa§])) +

. (1) (1) ]
+ 1kogob] Yo (- 1k0a 1
)

(2k €35 b( ))

= (e338)) + 2l (22000 4 a{1). 2k cagp (1)) + al]

+ a(z)-(kgb( )) +al2

] ) (k b§1)) + agl)’(kgbf¥)) + af})'(k§b§2)) +

-1

51) (1) (k b( )) + a(])a(]) (k b(])) on z = 0. (A.72)

Applying (A.18), substituting for b§]) from (A.32), and simplifying

yields
(eagas?) + (eagp{®)-(eagall)y = (a4 5 (1) (220

v alle (2 eand1)y + a0 ok capl1))

on z = 0. (A.73)
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Substituting for (s 3 (0)) according to (A.35) and (A.68), and substitu-
ting for (eaAb ( )) according to (A.39), (A.8), and (A.11) reduces (A.73)

to
2 2
aba(()z) : aaa((,t) + . f‘aé(L)Jf (53? ] g“)) (1, ‘2% . a_%l_z_Jr o(eh)
on z = 0. (A.74)

It follows from (A.9) and (A.11) that

22 =0 onzco (A.75)
and from (A.4) and (A.11) that,

2b(2)
I 0 on z = -, (A.76)

Equations (A.74), (A.75), and (A.76) are in principle sufficient to deter-
mine b(z)
(2)

As noted earlier, b2 vanishes. Thus, we have

i(k ex-w t) k
6 = bc()o) ¥ bé]) + b(()z) +2 Rel}1e1('° X" )e 02] + 0(e) (A.77)

where ¢’z=0 can be evaluated explicitly from the preceding formulae, and
¢ is implicitly determined on the domain z < 0.

It would be possible to deduce further information from equations
(A.24)-(A.27) at O(e 3). In particufar, (A.24) and (A.25) allow one to
write b §3) in terms of a(3), while (A.26) and (A.27) reduce to formulae
for a( ) and bé ). However, no further detail will be given here, as
this additional information would not make it possible to improve the

expressions for n and ¢ to 0(54).
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APPENDIX B
COMPARISON OF PERTURBED NONLINEAR SCHRODINGER
RESULTS FOR UNIFORM WAVES ON A CURRENT WITH
THE RESULTS OF LONGUET-HIGGINS AND STEWART
In Chapter 5, the formulae (5.31) and (5.32) were shown to give the
perturbation of a uniform wavé generated by a current of small magnitude
relative to the group velocity. In order to compare this result with
those obtained by Longuet-Higgins and Stewart [10,11] for linear waves,
one must consider the 1imiting case in which the amplitude of the unper-
turbed wave approaches zero.

In the terminology of Chapter 5, one must consider the case a, = 0.

When this holds, equation (5.21) yields nothing at 0(g). At O(ez), it

gives
-e]ta] - Cge]xa1 - koa]U =0 (B.1)
which reduces to
B = -k, gt-. (B.2)
At 0(%), (5.22) yields
cga; = 0 (B.3)

At 0(e), (5.21) yields
=018 " 8142y - cg(8y,a, *+ 8,087) - U8 ay - koasl

w

o 2 1
—7 91531 T 7 W,
8k

2.3 _
+ koa] = 0. (B.4)
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which reduces to

S\ 2
Co5, (U120
92 3 k0 (cg) -3 mokoa]/cg. (B.5)
Equation (5.22) at 0(83) yields

a,, +ca, + §-U a, - :3l-e a,; =0 (B.6)
2t g2x 4 “x71 8k2 Txx™1 )
0

which reduces to

- -a él._ | (B.7)
g

Tim . . . .
Note that a -0 a]/a0 as given by (5.31) is equal to az/a] as given

by (B.7). Similarly, ™™ 6. as given by (5.32) is equal to 6, as given
0
by (B.2). Note also that, whether or not a, vanishes, one must have

U/Cg << 1 (B.8)

in order for the perturbation scheme to be valid.
The results of Longuet-Higgins and Stewart reduce to
1 1
(k)% + k= (gk )2 (B.9)
and

Ec(? + l-c) =Ec_. %—c (6.10)

where k represents a slowly-varying wavenumber with value ko where U = 03
E represents wave energy (proportional to amplitude squared) with value

Eo where U = 0; ¢ = (g/k)”2 and o = (9/k0)]/2-
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In the Schrodinger model, the k of equation (B.9) is approximated

by
k = k0+6.lx+92x+ eee | (B.11)
Thus ' /2
(gk)'/% = (gk0>”2.(1 r L i_z)
o ol -
oA R R R | BT
and substituting in (B.9) the values of e{ and eé given by (B.2) and (B.5)
yields
(gk) /2 + kv = (gko)”2 - %-wokgaf. (B.13)

The only difference between (B.9) and (B.13) is the nonlinear term

- %-wokoaf which is, of course, invisible in the 1inear model used by

Longuet-Higgins and Stewart.

2 and Eo by a? in (B.10) and solving for a yields

1/4 -1/2

k U C

a=a, |— —_—+ = . (B.14)
1 (ko) (Cg 2cg) |

Replacing E by a

It follows from (B.11) and the definition of ¢ that

S

c -7 .11
2 k0

S + 0(2). (B.15)
g

Substituting (B.11), (B.15), and (B.2) in (B.14) yields



[ & N T
a=a.|l+—+0() 1 -5—+—+0()
1 2 k0 cg

- a, /1 - —”—) +0(e3). (B.16)

Comparison of (B.16) with (B.3) and (B.7) demonstrates consistency to

0(83).
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Figure 1.1. Energy in components -N,s--,N as a function of N at times of
near-maximal energy spreading. (a) Case 2 at t = 1000; components #]
and 2 are unstable. (b) Case 5 at t = 750; components +1,...,+5 are
unstable. (c) Case 6 at t = 350; components +1,-.+,+14 are unstable.
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Figure 2.2. Evolution of an unstable perturbation of a uniform wavetrain
on a two-dimensional surface.
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Figure 2.3. Contour plots of the envelope amplitude of Figure 2.2.
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Figure 3.1. Stability results for even perturbations of periodic wave
train solutions of the nonlinear Schrddinger equation in two space dimen-
sions (where "even" signifies symmetry about the crests of the unperturbed
solution). The abscissa is a dimensionless representation of the trans-
verse wavenumber of the perturbation. The ordinate, c2/Y4, is a dimen-
sionless representation of the time constant of the perturbat1on, t?at is,

the perturbation will have terms proportional to e and e , Or

e -iwpet and ewoC *t » Where w, = V@ko, g is gravitational acceleration,
and k0 is the carrier wavenumber. The numeral (m) labeling each curve
characterizes the unperturbed solution; m = 0 corresponds to a uniform
wave, and m = 1 corresponds to a soliton. The parameter Y is given by
Y = %—koao(Z - m2) /2, where a, is the carrier wave amplitude.



-100-
1.2[-
Lo
0.8
0.6

0.4

2 02 04 a6 a8 L0, Y2 L4

1r
(=}
<|=

Figure 3.2. Stability results for odd perturbations of periodic wave-
train solutions of the nonlinear Schrddinger equation in two space dimen-
sions (where "odd" signifies asymmetry about the crests of the unperturbed
solution). The abscissa, ordinate, curve parameter, and y are as discussed

in the description of Figure 3.1.
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Figure 3.3. Traveling instability results for even perturbations of
periodic wavetrain solutions of the nonlinear Schrodinger equation in two
space dimensions (see also Figure 3.4). The ordinate is the real part of
the dimensionless perturbation time constant, which is proportional to the
speed of the perturbation in the transverse direction. The abscissa, curve
parameter, and y are as discussed in the description of Figure 3.1.
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Figure 3.4. Traveling instability results for even perturbations of
periodic wavetrain solutions of the nonlinear Schrodinger equation in two
space dimensions (see also Figure 3.3). The ordinate is the imaginary
part of the dimensionless perturbation time constant, which is propor-
tional to the growth rate of the perturbation.  The abscissa, curve param-
eter, and y are as discussed in the description of Figure 3.1.
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Figure 4.2. Ratio of nonlinear to linear wave speed for Stokes waves and

bifurcations with [N| = [k /k | =5, and the indicated values of 6. The
notation "a" indicates an asymmetric bifurcation [gé})/agé) =0
= aé]z]/a§é)] , and "s" indicates a symmetric bifurcation [aé})/agé) = 1].
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Figure 4.3. Ratio of nonlinear to linear wave speed for Stokes waves and

bifurcations with |N| = lko/kxl = 10, and the indicated values of 6. The
notation "a" indicates an asymmetric bifurcation [é(])/a(]) =0
= aélz]/afé)], and "s" indicates a symmetric bifurcation 1%5})/a§8) = 1] .
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Figure 4.4. Ratio of nonlinear to linear wave speed for Stokes waves and

bifurcations with |N| = [ko/kx| = 100, and the indicated values of g. The
notation "a" indicates an asymmetric bifurcation [aé})/a§]) =0
= aélz]/afé)], and "s" indicates a symmetric bifurcation j%é})/afg) = ].

Note that the symmetric and asymmetric bifurcations coincide for large 6.
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Scale is established by assuming a Carrier wavelength of 10 m.
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Figure 5.2. Time development (in the group velocity frame) of the wave-
number shift profile of an initially uniform surface wave of slaope

ka = 0.1 subjected to the steady (with respect to the bottom) current
pattern U = 0.025c sin(kox/ZOO). Scale is established by assuming a
carrier wavelength of 10 m.
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at the initial time. The initial Condition is the sum of a uniform wave
of slope ka = 0.1 and the forced perturbation associated with the current
pattern. Scale is established by assuming a carrier wavelength of 10 m.
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Figure 5.5. Time development (in the group velocity frame) of the
amplitude of a surface wave of slope ka = 0.1 in a region free of cur-
rent. Initially the envelope consists of a uniform component and a
sinusoidal component of much smaller magnitude and wavelength ten times
that of the carrier. This initial condition grows due to the Benjamin-
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Figure 5.6. Time development (in the group velocity frame) of the wave-
number shift profile of a surface wave of slope ka = 0.1 in a region free
of current. Initially the envelope consists of a uniform component and

a sinusoidal component of much smaller magnitude and wavelength ten times
that of the carrier. This initial condition grows due to the Benjamin-
Feir instability. Scale is established by assuming a carrier wavelength
of 10 m. i
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Figure 5.7. Time development (in the group velocity frame) of the
amplitude of a surface wave of slope ka = 0.1 subjected to the steady
(with respect to the bottom) current pattern U = 0.025cqsin(kyx/200)
which appears instantly at the initial time. Initially the envelope
consists of a uniform component and a sinusoidal component of much
smaller magnitude and wavelength ten times that of the carrier. This
initial condition is Benjamin-Feir unstable. Scale is established by
assuming a carrier wavelength of 10 m.
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Figure 5.9. Time development (in the group velocity frame), computed
via the nonlinear Schrddinger equation, of the amplitude profile of an
envelope soliton subjected to the steady (with respect to the bottom)
current pattern U = 0.025cgsin(k x/200) which appears instantly at the
initial time. The carrier wave Ras slope ka = 0.01. Scale is estab-
lished by assuming a carrier wavelength of 10 m.
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Figure 5.10. Time development (in the group velocity frame), computed
via the nonlinear Schrddinger equation, of the wavenumber shift profile
of an envelope soliton subjected to the steady (with respect to the
bottom) current pattern U = 0.025c,sin(kyx/200) which appears instantly

at the initial time. The carrier Wwave has slope ka = 0.01. Scale is
established by assuming a carrier wavelength of 10 m.
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Figure 5.11. Amplitude maximum as a function of time, computed via the
nonlinear Schrddinger equation, for an envelope soliton subjected to the
steady (with respect to the bottom) current pattern U = 0.025c,sin(k _x/200)
which appears instantly at the initial time. The slope of the’carri8r wave
is ka = 0.01. Scale is established by assuming a carrier wavelength of

10 m.
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Time development of (a) the maximum of an envelope soliton,

b) the location in the group velocity frame of the soliton maximum, and
(c) the associated wavenumber shift 28t [see equations (5.49) and (5.64)]
according to the perturbation approach. The soliton is subjected to the
steady (with respect to the bottom) current pattern U = 0.025cqsin(kox/200)
which appears instantly at the initial time. The carrier wave’has slope

Scale is established by assuming a carrier wavelength of 10 m.
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Table 1.1. A compar1son of the cutoff wavenumber for instability, N
with Thyagaraja's [16] bound, N, on the mean component computed with
energy content as a weighting funct1on

Case Nu N
1 1.4 6.3
2 2.8 25.3
3 3.5 39.0
4 4.7 69.3
5 5.7 101.0
6 14.1 628.8

Table 1.2. A comparison of (1) max(Nupe), the maximum over time of the
mean component computed with energy content as a weighting function, to
Ny» the cutoff number for instability, and N Thyagaraja's [16] bound
on Nppss and (2) Ngg, the least component such that 99% of the energy
is contained in wavenumbers of equal or lesser magnitude, to N99,
Thyagaraja's [16] bound on N99

Case max(N__ ) N N N99 N

rms u 99
1 1.2 1.4 6.3 3 63
2 2.4 2.8 25.3 7 253
5 5.0 5.7 101.0 15 1010

6 9.4 14.1 628.8 28 6288
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