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ABSTRACT 

By employing the two- sided Maxwellian in Maxwell's moment 

method a kinetic theory description is obtained of the flow generated 

by a step-function increase in  the temperature of a n  infinite flat plate. 

Four rnements a r e  employed in order to satisfy the three conservation 

equations, plus one additional equation involving the heat flux in the 

direction normal to the plate. For  a small temperature rise the 

equations a r e  linearized, and closed-form solutions a r e  obtained for 

small and large time in terms of the average collision time. 

Initially the disturbances propagate along two distinct character 

istics, but the discontinuities across these waves damp out a s  time 

increases. At large time the main disturbance propagates with the 

isentropic sound speed. Solutions for mean normal velocity and 

temperature show the transition from the nearly collision-free regime 

to the Navier-Stokes-Fourier regime, which is characterized by a 

boundary layer near the plate surface merging into a diffuse "wave", 

The classical continuum equations, plus a temperature jump boundary 

condition, seem to be perfectly adequate to describe the flow beyond 

a few collision times, provided one accounts properly for the intes- 

action between the inner thermal layer and the outer diffuse wave. 
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I. INTRODUCTION 

Since i t  is impossible to solve the full Maxwell-B'oltarnann 

equation exactly a t  the present time, various approximations have 

1 
been suggested, such as the Chapman-Enskog procedure , Grad's 

2 3 4 
thirteen moment method , Krook's model , Lees' moment method , 

etc. The last  method was employed in  this work, All moment methods 

satisfy the differential equation in an  average sense rather than point- 

by-point. Gasdynamicists axe interested in  some lower moments of 

the distribution function, such as stresses,  heat flux, and so on, but 

rare ly  in the distribution function itself. Therefore, the gross features 

of the problem that are obtained by the moment method a r e  satisfactory 

for many purposes. 

Maxwell converted the Maxwell-Boltzmann equation into an 

integral equation of transfer, or  moment equation, fox any quantity 

Q that is a function only of the particle velocity. The distribution 

function used there should be considered as a suitable weighting 

f a c t i o n  which is not the exact solution of the Maxwell-Boltzmann 

4 
equation in general. Lees found that the distribution function employ- 

ed in Maxwell's moment equation must satisfy the following basic 

requirements: 

(1) It must have the "two- sided" character that is an  essential 

feature of highly rarefied gas flows. 

( 2 )  It must be capable of providing a smooth transition from 

free  molecule flows to the "continuumtf regime. 

(3)  It should lead to the simplest possible set of differential 

equations and boundary conditions consistent with (1) and (2). 



There a r e  a large number of distribution~functions which satisfy 

requirements j 1) and (2). One of the simplest functions is the "two- 

4 
stream" or  two- sided Maxwellian . One important advantage of this 

choice is that the surface boundary conditions are easily satisfied. The 

distribution functions f l  and f2 in  the two-sided Maxwellian involve ten 
4 4 

arbi t rary  functions, ul, u2, T I ,  TZ, nl, a n d n  whichare  2 '  

determined by taking ten moments (ten equations). In some cases, one 

can even take l e s s  than ten functions; however, the minimum number of 

functions is the number of conservation equations, plus one, in order to 

insure that a t  least one of the lower moment equations(corresponding to 

4 s t ress  or  heat flux) is satisfied in  addition to the conservation laws 

After the distribution function is chosen, the collision integral 

in the moment equation can be evaluated for any arbi t rary  inter-particle 

forces. For simplicity we use Maxwell's inverse fifth-power force law; 

however, this assumption is not essential. 

The moment method has been successfully used to solve steady 

4 flow problems, such as linearized plane Couette flow , compressible 

5 6 plane Couette flow , and heat transfer between f x o  concentric cylinders . 
4 For  unsteady flow problems, only Rayleigh's problem is worked out 

2 
for the case of ( ~ T / T )  < < 1 and M < < 1. The present work is to 

demonstrate the application of the moment method in salving unsteady 

problems. This work deals with an infinite flat plate resting in a rnona- 

tornic, dilute gas with a uniform temperature distribution T initially, 
0 

4- At time 0 , the plate is suddenly heated to a constant temperature T 
W* 

The flow field will be disturbed by the temperature jump, and wave 

motions a r e  generated. At the beginning of the motion, (t/Zf) < 1 , 

there are only a few collisions per molecule; i t  is always a rarefied 



gas problem regardless of the gas density. As time goes on, (t/%) > 1 

each molecule will experience a large number of collisions, and the 

flow will reach the Navier-Stokes-Fourier regime. Kinetic theory has 

to be used in order to treat the problem over the whole range from 

free molecule to the continuum regime. 



XI. FORMULATION OF THE PROBLEM 

II. I. Basic Equations and Distribution Functions 

The Maxwell Integral equation of transfer can be written in the 

4. * following form . 

where d Q is the total effect of changes in Q due to collisions, and is 

4 
given as follows : 

In this problem, there is only one independent spatial variable, 

external forces are ignored, and there is no curvature; hence, the 

centrifugal force te rm drops out and Eq. (1) reduces to 

(s/at) f a d ' $ +  ( B / B ~ )  f~ = A Q  S S (3)  

The distribution function i s  split in such a way that particles 

with positive normal velocity are governed by f while those directed 1 '  

toward the plates a r e  described by f2 . Actually, a t  any point in space 

a t  a given instant (y, t), all particles which reach that point from the 

plate must have normal velocities equal to ox larger than (y/t). Con- 

sequently, the realistic splitting of the distribution functions should be 

f = f for a l l  particles having normal velocities larger than (y/t), and 1 

f = f for all particles having normal velocities algebraically smaller 2 

tkan (y/t). The realistic splitting of the distribution function wil l  

introduce many complications because of the variable coefficients in 



the differential equations. The present choice of the distribution 

function will give discontinuities in the solution near the start  of the 

motion because of the finite number of characteristics with finite wave 

speeds. It will not affect theqarge-time" solution, since the bulk of 

the wave-like portion of the disturbance will propagate along the 

isentropic sound waves regardless of the splitting. 

The distribution functions are chosen as follows: 

f = f fop al l  particles having an upward velocity component (fy > O), 
1 

where 

for al l  particles having 3 < 0 , 
Y 

f = f , =  ; exp ( -  
9 

) 

where n (y, t), n (y, t), T (y, t), and T2(y, t )  a r e  four arbi t rary  functions 1 2 1 

to be  determined by solving four differential equations obtained by 

taking moments. Three of the moments will give the conservation 

equations, and the fourth one is arbitrary. In this problem, the motion 

is generated by heating, so it  seems appropriate to choose the fourth 

one to correspond to the heat flux in the direction normal to the plate 

surface. 

The four equations a r e  obtained as follows: 

For  any Q which ia a function of the particle velocity only, the 

average of Q is evaluated as follows: 



As examples, let Q be m and m$ respectively. W e  find 
Y' 

Knowing haw to evaluate the integrals, we can derive the equations 

as follows: 



(I) Equation of Continuity 

W i t h  Q = m, AQ = 0; then Eq. (3) gives 

With  Q = m$ , D Q  = 0; then Eq. (3) gives 
Y 

We obtain 

(3) Energy Equation 

2 
W i t h  Q = rn3 / 2 ,  AQ = 0, and 

(4) Heat Flux Equation 



8 

In this  case, Q is not a collisional invariant and dQ # Q. Fo r  Max- 

well particles, one has 
4 

h a =  ( p , p  [ -  (2/3) q y +  p y y v ]  9 

4 
where p is proportional to temperature for Maxwell particles , 

i* e . ,  / = / , and 

p = n k T  . 

Therefore, ( p b )  = n k ( ~ / / r )  = n k (T. /poi = ( p ~ ~ , ) / p ~  

W e  then obtain the heat flux equation 

J 5  ( a / w n p 1  
2 

3/2 - nZT23/2) + (5/4) R ( B / B ~ ) ( ~ ~ T ~ ~  t %TZ 1 

All the mean flow quantities a r e  defined by kinetic theory as 

follows: 

wkiere I is the identity tensox. 



2 
c c -  1/3 c I ) f d :  

P,. = Pi j if i # j  
13 

For our distribution function [E~s. (4a) and (4b)] one can determine 

all the mean quantities uniquely in terms of the four unknown functions; 

and 



11.2. Boundary Conditions 

The interaction of impinging particles with a solid surface is a 

very complicated process, and detailed knowledge of this phenomenon 

7 is not available at the present time. Hurlbut suggested that most 

"engineering ~ u r f a c e s ' ~  a r e  rough on the microscopic scale, and hence 

will provide diffusive reflection as far as tangential momentum i s  

concerned. However, the energy accommodation coefficient a and 

normal momentum. reflection coefficient C1 depend on the details of the 

pTocess. For  most cases  they are  close to one (provided that the 

incident: particles do not have extremely high energy). W e  take the 

simplest case a = C = = 1. One should bear in mind that the two 

sided distribution function was chosen so that any surface interaction 

can easily be incorporated into our analysis. 

Fo r  camp'letely diffusive reemission cr = 0-1 = a = 1, the boundary 

conditions a r e  

(1) At the plate (y = 0) (1 6 4  

and v = 0 or n 
1 

(2) Far from the plate (y --+ oo ) (1W 

all flow quantities such as temperature, density, etc, approach the 

ambient state. 



11.3. Non-Dimensional Equations and Boundary Conditions 

By introducing the following non-dimensional variables, 

- - 
T = T / T ~  and n = n/no , 

where is the mean free time or (l/vf) is then the collision f 

frequency defined as 
4 

where A2 and K are constants. Eqs. ( 6 ) ,  (?), (8), and (10) lead to 

and 

There is no f ree  parameter involved since the only parameter 

is a constant. The problem depends mainly on the gas properties 

through 'LYf . 



The boundary conditions are 

(1) At the plate (y=  0) 

- 
v = 0 implies "1 

(2) Far from the plate (y --+ rn ) (alb) 

- 
all flow quantities go to the ambient value, e. g . ,  TI  = T ~ / T ~  = 1 . 



111. LINEARIZATION 

PTI. 1 .  Linearized Equations 

F o r  a small  initial temperature jwnp a t  the plate, i. e. , 

(Tw - T  )/T < < I ,  
0 0 

- 
1 

= ( n / n )  = l + N 1 +  ... 
1 0  

- 
n2 

= ( n / n )  = l t N 2 +  ... 2 0  

where N1 , N2 , ' and t a r e  non-dimensional perturbations of 2 

number density and temperature appearing in the distribution functions. 

Substituting Eqs. (22a-d) into Eqs. (17), (18), (19), and (20) and 

The l inearized boundary conditions are 



(2) All perturbations vanish as y-  a, . (27b) 

The relations between the flow quantities and the unknown functions 

are linearized as follows: 

III. 2. Charactexistics 8 

Characteristics can be defined a s  the loci of discontinuities in 

the dependent variables. Suppose the propagation speed i s  c for 

characteristics C; thus 

(dy/dt) = c on C * (33) 

W e  can write the general form of a first order quasi-linear system for 



15 

two independent variables as follows: 

where Li is a linear operator, u. is the ith dependent variable, Ai , Bi, 
1 

and D. a r e  the coefficients in the i th equation. 
1 

Along characteristic 6, one can replace  at) by - c(a/ay). 

Then Eq. (34) can be written in characteristic form 

where c is the characteristic speed which is defined by the vanishing 

of the determinant 

From Eqs. (23), (24), (251, and (261, we find the characteristics 

Therefore, c4 - (10/3) z2 t (5/3) = 0 

and  

There are four characteristics because there a r e  four equations 

for the unknowns N1 , N2 , t l  , and tZ . The equations are linear with 



L 

constant coefficients; hence the characteristics a r e  9 

straight lines. The characteristics define the 

domain of dependence and the proper number of 

boundary conditions. This problem can be * 
Y 

solved by the characteristic method. The "jumptr 

relations among the four variables can be obtained by integrating the 

differential equations across  the characteristics. Across the fast  wave 

- - 
(djF,/d€) = c1 = \1(5/3) + ( 1 3 )  and we can write a l l  the discontinuities 

in t e rms  of one of them, i. e . ,  

where ( A  Qi)C, i s  the finite jump of quantity Q. crossing the fast wave c 
1 1' 

Across the slow wave, conditions a r e  not that simple since the flow field 

ahead of the wave i s  not known a priori  there. However, a t  t = 0, one can 

write the jump conditions across the slow wave (d'j;/d) = cz = d ( 5 / 3 ) - (  @/3) 

= g. 1 ( d  Q1)& i = 2 ,  3, 4 a 

So all quantities behind the slow wave are completely determined 

in terms of the two jumps in  Q1 at t = 0. But we have two boundary con- 

ditions a t  the plate and hence the two jumps can be obtained. In principle 

all the quantities can be calculated point by point for t > 0 by using the 

characteristic relations along the waves, W e  shall not solve this 

problem by this numerical method, However, more detailed discussion 

of the characteristics wil l  be given in Section V. 



III. 3. Single Equation for  Disturbance 

One can combine the four f i r s t  order  partial  differential 

equations, Eqs. (23) - (26) , into one single fourth order partial 

differential equation by eliminating three dependent variables. 

All the dependent variables satisfy the same single equation since the 

problem is linear. 

The basic Eq. (37) can a l so  be written in  a different form 

2 a - d a - +-Re 3 (dT+ al T ) ( ~  a2 - ) ( z + a 3 q ) @  ay a a - a  = 0 

where 

and 

Fo r  the wave motion defined by Eq. (38) , the presence of 

additional lower order  derivatives (waves propagating with speed a.) 
1 

will produce a n  exponential damping, along the higher order  waves 

while the presence of higher order  waves will produce a diffusion of the 

lower order  wave motion when7 > > 1. The lowest order terms 



describe the main disturbances for > > 1; in other words the main 

disturbance moves with speed a a t  large time. The highest derivatives 

define the characteristics; from the equations we see that the high 

order waves are indeed the characteristics with speed c's (Section 111.2). 

The characteristics play a fundamental role in defining the domain of 

dependence and the proper number of boundary conditions. An extensive 

9 discussion on general wave motion was given by G. B. Whitharn . 
More detailed discussion on this problem will be given in Section V. 



IV. SOLUTION B Y  METHOD OF LAPLACE TRANSFORMS 

IV. 1. General Solution in Terms  of Transforms 

Since one is interested in the problem only after the plate is 

suddenly heated, i. e. , t > 0 i s  the region of interest, the Laplace 

transformation is an  adequate technique to eliminate the independent 

variable t so that the set of partial differential equations becomes a set 

of ordinary differential equations. The Laplac e transform with zero 

initial conditions i s  defined as 10 

Q2 

and the inverse transformation i s  given a s  

< + l o o  

where is the largest  rea l  part of all singularities, 

By applying the Laplace transformation to Eq. (37) ,  we have 

The solution of Eq. (43) is 

where 



and 

2 
a = (18/5) s2 + (12/5) Re s + Re for simplicity. (46) 

The boundary conditions far f rom the plate require that K = K ~ E  0. 

Since all the dependent variables satisfy the same equation, we may put 

The coefficients, however, a r e  not linearly independent, and the 

relation between them is obtained by satisfying the system of equations 

( 2 3 )  - (26). By applying the Laplace transformation to Eqs. ( 2 3 )  - (26), 

and substituting the expressions (47) into the transformed equations, we 

have 

with an identical se t  of equations for  a2 , bZ , c2  , K2 , . 
By solving this set  of algebraic equations for a 1 ,  a2, - -  C 

1 '  

c weobta in  2 ' 



and finally 

c, = (1/6) dm 8 s + (1 1/3) Re 4- (5/3) fi 
9 I & K, ( 5 l b )  

s ( ~  s + z  R e )  

Now K1 and Kz can be determined from the boundary conditions 

at the surface (y  = 0): 

4J 

tl = f [(f +z,) - (5 -Q] = (1/s)(Tw -1) = (tw/s) (52a) 

N 4 4 ,U N 

v = 0 = (Nl-BIZ) t 4 (t,-tz) = 0 (52b) 

B y  utilizing the relations in Eqs. (52a) and (52b) one obtains 



where 

With these relations we can write the complete solution in the 

following form: 

5 1 5 
3 

-a s ] + (s-Re+ 5 6 )(-  s + - Ref 6 fi ) e 



5 9 I 9- ( s - R e t  ~ f i  )( g s+ Re) e 

IV. 2. Approximate Solutions 

'U rV 4 

The exact inversions of the transformed variables Nl , N2 , tl , 
4 

and t a r e  impossible. One has to look for approximate solutions. 
2 

For small time (t/rt) < < 1 and large time ( t / ~ f )  > > 1 , approximate 

solutions can be obtained: 

XV. 2 .  1, Small Time Solution 
10 

The regime 1: small corresponds to s large; therefore, one can 

expand the transformed variables into power ser ies  in (l/s), as follows: 

by retaining the f i r  st two leading terms,  where 

( l /c l )  = d l  +dm) = (d%/dy) on characteristic C1 ; therefore 

the f i r s t  t e rm of J will-give a time shift, i. e., all the solutions 

associated with 6A1q will be functions of - (?/el)]; therefore, the 



disturbance propagates along the characteristic F = (dT/d?), 1 

Similarly we obtain 

whex e 

(l/ZZ) = (d?/djQ = J1 - d= on characteristic C 
2 

The disturbances propagate along the two characteristics fox 

small time. Figures 1 and 2 show the exact values of s; X 
z F2 

and their approximations for small and large time. The agreement i s  

satisfactory. 

All the other quantities [ E ~ s .  (56) - (59) ]  can be expanded as 

follows for only retaining the f ix  st two leading terms: 

2 
12.5 s [(s + . 3 9  Re) - (. 39 ] 



where A1 , A2 , . . . Dl , DZ are defined in Eqs. (56), (57), (58), and 

(59) .  Hence far the small time regime, the transform solutions are of 

the form 

where a, ,,u . 
and 7 are constants. The inversion for this transform 

can be easily found to be 11 

where 

Therefore, we have fur small time: 

- 
+ . 67 sinh (. 3 9 ~ e ) ( t -  -&- Cz ) ]  



From these relations, one can easily deduce all the flow 

quantities such as density, velocity, etc. by using Eqs. (28)-(32). The 

results are 



and 

At the plate, y = 0, Eq. ( 6 3 )  gives v = 0 for all time. The heat flux on 

the surface i s  then 

The normal stress on the plate is 

At the plate, the normal stress  has a finite value at t = 0'. As time goes 

0% (pyy~y=O increases fir st fox a very short time and then decreases. 

This increase in the normal stress i s  sirn$ly an indication of the 

acceleration of the gas away from the plate which can be seen from the 

momentum equation, 

The equations show that all the disturbances propagate along the 

two characteristics (dy/dt) = and (dy/dt) = cZ , and the magnitudes =1 

of the "jumpst{ damp out exponentially, 



Let u s  examine the normal velocity. The particles have zero 

normal velocity a t  the plate, and they are accelerated ta a finite value 

by crossing the f i rs t  wave (characteristics), and then decelerated to 

zero by crossing the other wave. The f i rs t  wave can be considered as 

a compression wave which accelerates the gas, and the other wave 

corresponds to a n  expansion wave which decelerates the gas. It i s  

clear that the two waves are necessary in order to satisfy the boundary 

conditions both a t  the plate and a t  infinity. In other words, the four 

moments we took a r e  the minimum number of moments so that 

meaningful results  can be obtained. 

The discontinuous behavior of the solutions for small times is 

caused by the finite number of characteristics on which the disturbances 

propagate. Smooth solutions are expected either by taking infinite 

numbers of moments or by a more  realistic splitting of the distribution 

functions. 

Some of the quantities a r e  plotted in Figures 3, 4, 5, and 6 for 

different values of time. 

XV, 2.2.  Large Time: Solution 
10 

The largest rea l  part of the singularities in the expressions far 

the Laplace transforms is a t  the origin. For  fixed y, large time 

corresponds to s small, and hence one can expand the transformed 

variables in  a power ser ies  in  s. We have by retaining only the highest 

order term 



Since e e 
- h i  6 7  

this transform leads to a 

solution that is diffusive in nature. On the other hand, 

-a2 7 
Y 

e = e 
- s Y 

gives a shift of the form 

where a = {m = isentropic speed of sound. Therefore, for 

large values of time, the solution has  a diffusive part and a wave part; 

and the main disturbance will propagate along the isentropic sound waves. 

Similarly neglecting higher order t e rms  in  s, we can obtain the 

expansions for SF and the other quantities appearing in the transforms. 

where J , J X 2 ,  SF,  A1 . A2 . . . Dl , D2 a r e  defined in  Eqs. 

(56) - (59) ,  145)s and (55) .  

11 
The inverse transformations required are as follows: 



where 
43 

Then for large values of time and fixed y we have 

-7% 
~ , / 5 2 ~ f  

TW -To - . 32~T e0 
t - t  = 
1 2  LI.. 2 e 

r, 
40 . /52@'t - $1 

+0.3 e erfc (. 3 9 p  ,/= 
P o  a 1 



All the physical quantities are obtained ab follows: 

v = J- (N, -NZ + i t, - $ t2 



From the above equations we see that the large time solutions 

are composed of two parts  -- a diffusive part and a wave part. These 

two effects give a net zero normal velocity a t  the plate. The diffusive 

part vanishes rapidly away from the plate, and the solution becomes 

purely inviscid. The viscous effect 02 the wave part can be obtained 

by retaining more terms in the expansion procedure. One can think 

of this problem as if  there were a boundary layer near the wall, and the 

flow field becomes inviscid away from the plate. Eq. (69) shows that 

the pressure is a pure wave type (inviscid in this case). This result is 

expected because the pressure is constant across  the boundary layer in  

the f i r s t  order approximation; in other words, viscasity will not 

effect the pressure directly but through the "induced velocity" (Section 

Va ). Eq. (7  1) gives the heat f l u x  a purely diffusive solution. 

The large time solutions obtained here axe valid only when y is 

held fixed. Solutions near the wave front can be deduced by the 

method of steepest descent keeping (y/t) fixed, However, the compli- 

cated expressions in this problem make it difficult to do. In the next 

section we deduce the solutions near the wave front by a more direct 

method. At the same time the solutions in the whole field far  large 

time a r e  improved by taking into account the interaction between the 

thermal boundary layer and the "outerH wave motion. Figures 7, 8, 

and 10 a r e  the pressure and heat flux on the plate for both small and 

large values of time. 



V. INTERACTION BETWEEN 

THERMAL BOUNDARY LAYER AND WAVE MOTION 

V. I .  Existence of a Boundary Laver 

According to Section III. 3, the basic equation for the motion 

i s  [ E ~ .  (38) ] 

or  in dimensional form 

where the c ' s  a r e  the high order wave speeds which define the character- 

istics, and the a ' s  a r e  the low order wave speeds at which the main 

disturbances propagate when (t/rf) > 3 1. 

The behavior of the various wave motions can be found using the 

principle that along a wave front moving with speed v, the derivatives 

(a/&) and -v(8/ay) of any quantity a r e  approximately equal, The wave 

motions corresponding to cl and c a r e  then found as follows: 2 

For wave c 
1 



Therefore, 

Similarly for wave c2 , 

where g and gZ  are determined by the initial and boundary conditions. 
1 

The wave speeds ;dg and E are negative, and these waves do not propagate 4 

into the region of interest. 

The stability condition requires the exponential functions to be  

negative. Since Re  > 0 , we require that 
t 

- - (a, - c ,  )(aL- c, )(a,- c, a 
> 0 

(5- C,)(Gy- q)(q- c, 1 

For convenience we repeat the z ' s  and E's here. 



Evidently they do indeed s a t i s f y  the stability condition, 

It i s  clear from Eqs. (72) and (73) that the presence of the low 

order waves gives an exponential damping to the high order waves. 

If (2/3) Re (?/E,  ) > > 1 , or (2/3) R e  i > > 1 (Re 7 = 2% t ) , 
P o  

the exponential decay of the high order waves is accentuated, and the 

high order waves can be neglected; in other words, for large values of 

time, the wave m o t i o n  is dominated by the low order waves. 

The equation corresponding to the wave motion at speed a, is 

obtained by replacing (a/at) by -a, (8/ay) in Eq. (38). W e  have 

where 

This equation represents diffusion of the wave with the diffusion 

coefficient 



When (t/rf) > 1, but not too large, diffusion is unimportant except a t  

the initial wave front y = a t , but for ( t / ~ ; )  > > 1 diffusion spreads out 1 

f rom the wave front and is responsible for the ultimate decay of the 

di s tur bane e. t 

Only al is positive; therefore, al 

is the only low order  wave propagating 

into the fluid. Consequently we have 

only one equation for large values of 

time. But we have two boundary 

conditions (the number of boundary Y 

conditions equal to the number of characteris t ics  pointing into the fluid, 

i. e . ,  with positive speed); therefore, a boundary layer a t  the plate 

surface is required, and this boundary layer grows with time. The 

growing thermal boundary layer a t  the plate surface produces a n  

expansion of the gas  "outside" the layer, and this boundary layer- 

induced velocity must be matched to the external wave motion, i. e . ,  

lim v ( 7 ,  t) = l im v inner outer ( ~ , t )  , 
9'00 Y-0 

where q~(~/m) is the "proper" distance from the plate surface 

in the inner (boundary layer)  solution. In other words, the induced 

velocity se rves  as a n  effective piston motion a t  y = 0 for the outer 

solution. However, the interaction i s  not unidirectional; the wave 

generated by the thermal layer preheats the gas, and the thermal layer- 

induced velocity depends on the difference between the plate temperature 

and the temperature behind the outgoing wave. The c i rc le  is closed by 

recognizing that the amount of pre-heating itself depends on the in- 

duced velocity; this dependence is contained in  Eq. (75) and the relation 



between temperature and velocity in the outer wave-like solution. 

V. 2. Boundary Layer Solution (Inner Solution) 

Inside the boundary layer (a/a?) > > (a/Ek), and one is tempted 

to drop all the derivatives with respect to time in Eq, (38). In that 

case  Eq, (38) becomes 

corresponding to diffusion with the ordinary thermal diffusivity 

n, = ( 3 / 2 )  J, where Pr = 2/3. Now the question a r i s e s  a s  to the 

nature of the boundary layer approximations in Eqs. (23) - (26) that 

lead to a n  equation of the form of Eq. (76). Evidently in the continuity 

equation [E~. (23)] one cannot simply drop the f -  derivative because 

the quantity [(N, - N2) + f ( t i  - t2)] is of a smaller order of magnitude 

than (N, + N2) ; in fact the terms involving (a/ay) and (~ /a?)  a r e  of the 

same order, as expected. However, in  the y-momentum equation 

[ ~ q .  (24YJ 

N (a/a'j) (N, + N 2 t  t ,  + t,) = o 

From Eq. (30)  we see that (N, f N, 9 t l  + tz) is the pressure per- 

turbation. Therefore, the physical meaning of Eq. (79) is clear; the 



static pressure is independent of y inside the boundary layer. 

Similarly, the heat flux equation [ E ~ .  ( ~ b ) ]  leads to  the relation 

Substituting Eq. (78) in Eq. (80), we have 

or i n  dimensional form 

But we have from Eqs. (31) and (32) that 

T = T o + $ T o ( t , + t , )  

and 

Therefore, qv = - ko(8~ /ay )  , 

where 

corresponding to Pr = 2 / 3  for a monatomic gas. Thus Four ie r ' s  law 

holds inside the boundary layer. 

By carefully examining the continuity and energy equations 

[ Eqs. (23) and (25)] it becomes clear that so far as the boundary layer 

solutions a r e  concerned the variation of static pressure  with t ime i s  of 

higher order compared with the t ime variations of density and tern- 



perature. To be specific, suppose that 

where the subscripts and tlou" denote the inner (boundary layer) 

and outer (wave-like) solutions, respectively. Then the boundary layer 

approximation amounts to stating that 

In other words the time history of the static pressure i s  entirely 

contained in the outer solution. Of course Fourier 's  Law [E+ (82)] 

also applies only to the inner solutions. 

By recognizing that the quantity [N, - N, + (3/2)(t, - tz)Iin 

appearing in the energy equation* can be rewri t ten a s  

( 5 / 4 1 [ ( ~ ~  - N,) + i (tl - t, )Iin - (1/4)[(~, - N ~ )  - ( 7 / 2 ) ( t ,  - tz)Iin . 
eliminating the f i rs t  fracket ( +v) between the energy and continuity 

equations, and making use of Eqs. (81) and ( 8 3 ) ,  we obtain 

corresponding exactly to Eq. ( 7 6 ) .  By applying the Laplace transform 

to Eq. (84) and requiring that Bin be finite as y ---r m , we get the 

solution 

* This quantity corresponds to the te rm (q + 5/2 po v). 
Y 



?%.J 'V 

Qin (7, 8 )  = gin ( 0, S )  exp - J(2/3)Re & 7 . 1 
-0 

The boundary conditions on 8 ( y, s) a r e  derived a s  follows: in 

At the plate surface v = 0, or [(N, - Y )  + $ ( t ,  - b)] = 0, and the 

heat flux equation becomes 

1 
( 5 / 4 ) ( a / ~ ~ )  (t, + t2) = (l/b)J(2/.rr) R ~ [ ( N ,  -N3+ i t ,  - t2) - 4(t ,- t2)]  

= - 3 2 Re ( t ,  - t z  ) . 
Therefore, 

But f rom the other boundary condition T = T a t  the plate surface, 
1 W 

we have 

T, = To ( 1  + t , )  = Tw a t  y = O  

Therefore, 

t ,  = I(T,- TJ/T,]= tw = f ( t ,  + t,) + i ( t ,  - t , )  ; 

60 

By combining Eqs. (86)  and (87) one obtains 

1 
a ( t ,  f t 2 )  - (15 /8~e ) J ( , 72 j  ( a / W [ i ( t ,  + t l ) ]  = tw , (88) 

a t  y = 0,  corresponding to the usual "temperature jumpt1 condition. 

Writing this relation in terms of inner and outer temperatures, 

we have 



By applying the Laplace transform to Eq, (90) one obtains 

N ^e' in ( 0, s) - (1  5 / 8 ~ e )  )/o (d;. in /dy) y=O = ( tw/s) - eOu ( 0, S) . 
( 9 1 )  

4 

Substituting Bin (y, s) from E q  (85)  we obtain 

Y .v ry 
1 0 ,  s = f (t, +tz )in = - E (N, + )in 

By utilizing Eq. ( 9 2 ) ,  integrating the continuity equation, and im- 

posing the condition that 

-L1 d N 

lim v. in = 0 = lirn [ (  - Nz) + i(?, - lin I 

Y-- Y* 

we get 

Also, from Eq. ( 811, 



Hence we have 

Evidently the downwash on the plate surface ( y = 0) given by Eq. ( 93)  

must  be counterbalanced by an equal and opposite upwash furnished 

by the outer solution. 

V. 3. Outer Solution and Matching of Boundary Layer and Wave-Like 

Solutions 

Applying the Laplace transformation to Eq. ( 74) we have 

6 = 1 -  
- Y 

Let Z (t, 4- t A o u  = 8 , then we have ou 

All the other variables can be determined from the 

differential equations 1 Eqs. ( 2 3 )  - (26) ] . 
From Eqs. ( 24) and ( 2 6 ) ,  we have 



Combining Eqs. (23) and (25), we have 

Therefore, 

From Eq. (24) we have 

-3 d I /  " " " a  I 7 - " -  ( t ,  -tZ)OU = - - - L - 
4 g 5 4 7  (%+N=+tl*%),, - $,N, -Gzj;) - (t, -t,)] ,, 

and finally 

Since the resultant normal velocity must vanish on the plate 



Therefore, 

( me Js +zRe gRe) - (/xe { x i  -kRe) 
s QO,(O, s )  

sZ ( S  -&f Re) 

The inverse transformation of Eq. (1 02) is hopeless; however, 

some limiting results can be obtained for large time far from the 

wave front and near the wave front, by means of the approximation 

method. 

V. 4. Nature of Solutions Far from Wave Front and Near Wave Front 

V. 4.1. Far from Wave Front 

Large time far from the wave front corresponds to s small; 

hence, we can expand all the functions in  power ser ies  in s. 

The exponential function which appears in the outer solutions 

becomes 



corresponding to a wave with propagation speed dm , which is 

the non-dimensional speed of sound. 

The inner solution becomes 

Ad ry U ,L. - *@z- 
5" 377- (N, +NZ)in = -(t, +t& 2 - 

/ +  g&$ 

and 

The outer solutions become 

and 



The appropriate transformations for these equations are 

and 

( 8 / 5 )  J(Re/Sn) In our case 1 = = - 3 9  Re , 
l+(8/25) I/- 

a = J(2/3)Re , and b = y/J(573) ; hence w e  have 

.32 raw q t . r x  
( t , - t ~ ) ~ ~  = 1. 2 t,e erfc ( /i)ev 

GS- 
t . 3 9 m  ) 

The outer solutions are 



Y 
1 5 2  % (F- - ) 

(t,+tZ)OU = - 5  t w e  fi3 erfc (.39$& m 

where one must  keep in mind that these solutions are valid only when 

Y (t - - ) > > Zf , and not near the wave front. 
a/ 

The mean values can be deduced from the above relations 

according to Eqs. (28) - (32 ) .  We then have (adding inner and outer 

solutions) 

7% lRF0'at 
) t e  

, 3 2 7 7  - erfc ( erfc ( - +. 39 /= t ) m P o  



and 

m *.t 
(107) 

7 f . .  /5X/LC0 
erfc ( 

- 
Y When both 5 and (i - 7 ) are ve ry  large, the outer solutions behave 
31 

like 

This is the inviscid solution of the wave. The viscous effect 

appears near the wave front. 



V. 4. 2. Behaviar Near the Wave Front 

Near the wave front, the solution can be obtained by using the 

16 
method of steepest descent. The detailed evaluation is given in 

the Appendix. The results  are 

Y provided (t - - ) is bounded as t 7 o o  . 
Q I  

Near the wave front, i, e., 

the Bessel functions can be expanded in power series. The solution then 

becomes 

"Far" from the wave front, 

the solution becomes 

Thus i t  merges into the inviscid wave solution. However, Eq. (108) 

is not valid too far from the wave front; i t  bridges the gap between 



the wave front Eq. (109) and the inviscid solution obtained in 

Section V. 4. 1. 

The flow quantities are thus 

where 

The heat flux behaves slightly differently. The result i s  

(See Appendix) : 

4-7' is the hypergeometric 



51 

function. 
17 

Near the wave front, more precisely 

the above relations become 

On the wave front, G = 0, the solutions decrease with time like t - 1/4 

However, the disturbance is not symmetric about the wave front. 

Ahead of the wave front the amplitudes all decrease much faster than 

behind the wave front. 



VI. DISCUSSION AND CONCLUSION 

The solutions obtained here show that the motion i s  of the wave 

type initially [(t/yf) < 11 , and later [(t/rf) > > 1 1  is the result of the 

interaction between heat diffusion near the plate and the wave motion. 

The disturbances propagate along the characteristics for small values 

of time. The presence of low order waves provides diffusion of the 

"discontinuities1' ac ross  the high order waves (characteristics). The 

"jumps" eventually damp out to zero as time increases. At large values 

of time, the main disturbance propagates on the low order wave, which 

is the isentropic sound wave in the linear case. The wave is practically 

inviscid everywhere, except near the wave front, where diffusion 

dominates. Near the plate there is a boundary layer that makes i t  

possible to satisfy the boundary conditions, and also provides an interaction 

between the viscous and inviscid flows, 

The viscous parts  of the solutions inside the boundary layer 

damp out very fast and leave the motion inviscid. Far large values of 

time and far  from the wave front, the inviscid solution goes like 

1/ y t - (Y/al)' . However, near the wave front, diffusion is im- 

portant. On the wave front, the amplitudes decrease like t- l j4.  The 

damping is not symmetric about the wave front; the disturbance damps 

out faster ahead of the wave and slower behind the wave. 

As mentioned before, the kinetic theory i s  capable of describing 

the flow field fox all densities, from the f ree  molecule flow a t  very low 

density to the Navier-Stokes continuum regime. Rayleigh's problem 

13 for (t/rf) C < 1 has been worked out by Yang and Lees by using the 

collisionless Boltzmann equation. The f ree  molecule solutions obtained 



there can be used a s  a basis for comparison for our solutions at the 

beginning of the motion. 

As t- 0 , Eqs. (60), (61), ( 6 2 ) ,  and (64) give the following 

results  on the plate: 

and 

Eqs. (3. 5), (3.  16), (3. 27), and (3. 35) from Reference 13 give 

the results for diffusive reemission: 

i. e., a = 0 , and for [ ( T ~ - T ~ ) / T ~  < < 1 



The present results  agree fairly well with those obtained by 

Yang and Lees, the numerical differences occur because of the crudeness 

of the four moment method and the presence of finite "jump" ac ros s  

4 characteristics . 
The classical continuum limit gives 

( T - T ~ ) / T ~ - T ~ )  = erfc ( y/ )'v } . 

Eq. (70) (as well a s  Eq. (88) ) gives 

P Y 9 T-T (. 3 2 2  - t. 152At) 
0 Y ) - e  = erfc ( - P o  '" erfc ( - 

Tw-To m 0 

P Y . 1522(t- 
i- ,25 e erfc [ /. 1 5 2 2  (t - 5 ) ] 

For  t and also [t - (y/q) )l ver large, o r  , in other words, 

for large values of time and far f rom the wave front, we obtain the 

classical result, since the complementary e r r o r  function can be ex- 

12 panded into a power series . 
2 - 

-X e Z !  F! - . . .  J . 
+ erfc x = 1 - erf x = 

f i x  



A s  we have shown in Section V, Four ier ' s  law holds inside the 

boundary layer. Also, when t becomes very large and y is finite, in 

other words, for very large time and far  from the wave front, the heat 

flux reduces to 

where 

k = (15/4) R/UO 0 

0 

Figure 9 shows the comparison of the actual heat flux with the 

c lassical Fourier ' s  law, and Figure 11 shows the temperature profiles 

and the classical and f ree  molecule limit on the plate. 

The isothermal, low-speed Rayleigh problem was worked out by 

4 L. Lees as a demonstration example for the moment method. There 

is a close similarity between that problem and the present one. At 

fir st, the solutions have a wave-like behavior. Collisions between 

particles are relatively infrequent when[(tlcf) < 11 ; thus the diffusive effects 

a r e  secondary. The over- simplified version of the two- stream Max- 

wellian employed here introduces a certain averaging process over the 

particle velocities, and the choice of four moments results in two 

characteristics propagating into the fluid with speed c -{ (5/3)+(flUj/3] d m  1 - 0 

and c Z  = Jo-(Jia/3) , respectively. The characteristic 



speeds have no physical meaning at all; they depend entirely on the 

unknown functions that we choose and an the moment equations we use 

(since we can take any moment of the distribution function in order to 

gat a se t  of differential equations). If more moments are taken, more 

characteristics appear, and in the limit the physical quantities a r e  

smoothu even for ( t /~y)  < < 1. 

The discontinuous behavior in  the solutions associated with the 

finite number of characteristics with finite speeds can also be removed 

by replacing the distribution function employed here by a more realistic 

one (discussed in  Section II. 1); that is, f = f l  for 5 > (y/t), f = f Z  
Y 

for f < (y/t). Hence, one may expect two characteristics with speed 
Y 

varying with (y/t), and approaching infinite speed fax from the plate 

(see also Reference 4). 

It is remarkable that even the rather crude splitting of the 

distribution function employed here leads to solutions for mean normal 

velocity and temperature that show very clearly the transition from the 

nearly collision-free regime to the Navier-Stokes regime, which is 

characterized by a boundary layer merging into a diffuse llwavelf (Fig- 

use 151, This simple example shaws that the classical picture of a 

thin thermal boundary layer a t  the plate surface plus a sharp acoustic 

(inviscid) wave front "far'l from the plate surface is never really 

14 
correct. In fact the older iteration schemes (Van Dyke ) in  powers of 

1 f i  that s tar t  with the Rayleigh-type thermal layer always lead to 
1 

an artificial singularity of the type ( t  - )-' a t  the wave front. They a 

can never be linked up properly with the correct  behavior for 

( l (  - ) < < 1 which determines the solution near the wave front. 



However, the Navier -Stokes-Fourier equations, plus a temperature 

jump boundary condition, seem to be perfectly adequate to describe the 

flow when (t/vf) 2 2- 3, provided one properly accounts for  the inter- 

action between the diffuse wave and the inner thermal layer. 

For  a large temperature jump on the plate, the problem i s  

non-linear, and the mean normal velocity is no longer small compared to 

the ambient sound speed. In that case the distribution functions employed 

here have to be modified; a t  least the normal velcotiy component has 

to be taken into account. The simplest formulation is 

n - 1 Sx +(fy-V) + S y  
f l  - 3/ 2 eXP \ - ZRTl ] in region I 

(ZnRT+ 

where n , n2 , TI , T and v a re  five unknown functions. Five 2 

moments must now be taken, corresponding to the three conservation 

equations, plus ane moment equation for q and one for p . When 
Y YY 

(t/r ) < < 1 i t  should be possible to find solutions in the form of power f 

ser ies  in (t/ff). On the other hand, when (t/Tf) > > 1 the problem 

reduces to a viscous interaction problem with a shock wave in the 

"external" flow, and the finite viscous s t ress  and heat flux just behind 

the shock must be taken into account. 

In the present problem, the s t ress  p vanishes identically 
YY 

because of the choice of four moments and the linearization. Therefore 

we have only four mean quantities (density, temperature, velocity, and 



heat flux) which are uniquely determined by the four unknown functions 

n1 , n2 , TI , and T2 . All the diffusion is accomplished by heat 

conduction when (t/rf) > 1, and not by viscosity. In a linear problem 

this idealization is adequate, but in a nan-linear problem at least one 

additional moment is required t o  give an independent status to p and 
Y Y 

provide for viscosity. 
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APPENDIX 

EVALUATION AND ASYMPTOTIC EXPANSIONS 

O F  SOLUTIONS NEAR THE WAVE FRONT 

The outer solution fox the temperature perturbation is, in the 

transform plane, 

4 

I 
where F(s) ;&= when only the highest order term in s is retained 

a s  s -0 . The inverse transform is 

W e  remove the branch point a t  s = - (5/6) Re by the conformal trans- 

farnat ion 15 

Then we obtain 

where 



Let 

f(5j=y2- 2 + 2 o - / 

Then the saddle points occur a t  the zeros of fl( 1. 

f '(5)=zy--c?d = 0 

5- - C" 
At the saddle point 

2. fg*,,r C.,)=er3 -/=-( c J - / J  

Then the integral contains the term e%pL- fi / d- fJxd '1 
2 

(w-1) is minimum (zero) at w = I ( 5, = I) .  This result indicates 

that for large t', the disturbance is concentrated near w = 1, i. e., 

y= Jm) t , the sonic wave front. 

function as 

Now write the exponential 

(P- &Kr- 

and assume/(tl - y')/is bounded as t' - m . Then the path of the 

steepest descent16 passes through the saddle po in t3  = 1 with 

Hence the steepest descent path 

p =  / + A ' ?  

Along this path the exponential function i s  



Near  9 = 1 , the functionp 6 (r) becomes 

Hence the oute r  solution becomes 

where ,]e 'Q=I - / . The integrals may be evaluated in terms of 

Bes sel functionsi ', giving 



Hence 

Near the wave front 

Hence 

The main part  i s  symmetric with respect  to the wave front and decays 

as 2 -A . The second part is anti- synulletric with respect  to the 

wave frant, negative ahead of the wave, and thus i t  gives skewness 

to the wave shape, but i t  decays faster  than the f i r s t  part  ( as t -3/41e 

Asymptotically the Bessel  functions behave as follows 



+ (exponentially small terms) . 

These two differ only in the exponentially small terms. Thus far 

away from the wave front; 

(1 )  &,&i& exponentidly small, for t t  - y' < 0, or ahead 

of the wave 

for t' - yf > 0 , and thus it merges into the inviscid wave 

field. 
F'J - 

All the transformed variables behave like Qod(y, s) except 

the heat flux which is evaluated as follows 

N 

Following the steps as evaluating of & , we have as 1 9 1 

Then the integral becomes 
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FIG.3- NORMAL VELOCITY PROFILES FOR SMALL VALUES OF TIME 

( R e  a 3 t = 0.01 AND 0.1.) 
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FIG. 4 - NORMAL VELOCITY PROFILES FOR SMALL VALUES OF TIME 
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FIG.  5 - TEMPERATURE PROFILES FOR SMALL VALUES OF TIME 



FIG. 6 - NORMAL STRESS PROF1 LES FOR SMALL VALUES OF TIME 



















FIG. 15 TEMPERATURE PROFILES IN y t  - PLANE 


