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ABSTRACT

By employing the two-sided Maxwellian in Maxwell's moment
method a kinetic theory description is obtained of the flow generated
by a step-function increase in the temperature of an infinite flat plate.
Four mm.rnents' are employed in order to satisfy the three conservation
equations, plus one additional equation involving the heat flux in the
direction normal to the plate. For a small temperature rise the
equations are linearized, and closed-form solutions are obtained for
small and large time in terms of the average collision time.

Initially the disturbances propagate along two distinct character-
istics, but the discontinuities across these waves damp out as time
increases., At large time the main disturbance propagates with the
isentropic sound speed. Solutions for mean normal velocity and
temperature show the transition from the nearly collision-free regime
to the Navier-Stokes-Fourier regime, which is characterized by a
boundary layer near the plate surface merging into a diffuse "‘wave''.
The classical continuum equations, plus a temperature jump boundary
condition, seem to be perfectly adequate to describe the flow beyond
a few collision times, provided one accounts properly for the inter-

action between the inner thermal layer and the outer diffuse wave.
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LIST OF SYMBOLS

ay isentropic speed of sound = Ym‘:_
a,a, defined by Eq. (46)

Al’ A2 defined by Eq. (56)

aj.a,,a, propagation speed of low order waves

bl’ bZ. defined in Eq. (47)

Bl’ BZ defined in Eq. (57)

P relative particle velocity = ;‘? -a

5 €, defined in Eq. (48)

Cl’ CZ defined in Eq. (58)

c characteristic speeds

1° €20 €32 ¢4

Cl’ CZ’ C3, C4 characteristics

s specific heat at constant pressure = (YR/7-1)

Dl’ D2 defined in Eq. (59)

fl, fz velocity distribution function of a particle in region I
and II, respectively

F short hand notation defined as Eq. (55)

G ‘defined in Eq. (111)

k Boltzmann constant

ko heat conduction coefficient = (cp/»LO/Pr) = (15/4) R,l-l'0

Kl’ KZ"KS’ K, integration constant, defined in Eq. (43)

n,,n, number densities of particles having velocity distribution

function fl’ f2 , respectively
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<

non~dimensional n, and n, , n= (n/no)

non-dimensional perturbation of number density,
n=1+N

Laplace transformed N1 and N2

static pressure

Py =P tP

2

-5
normal stress = mj f <5 ds

heat flux vector = m J e (02/2) fd3

y- component of heat flux

arbitrary function of particle velocity;
also as defined in Eqs. (40), (41), and (42)

change in Q produced by collisions

space vector

gas constant = k/n

Reynolds number = [(poRTo‘l‘f)//uo ]= (w/4)

Laplace variable

time

non-dimensional time = (t/’(,“f)

absolute temperature, (3/2) nk T = mj f (CZ/Z) dg

temperature functions appearing in the two-stream
Maxwellian

non-dimensional T1 and T, , T = (T/To)

and T

non~dimensional perturbation of Tl 2

normal mean velocity

coordinate normal to surface

non-dimensional y, ¥ = [y/( \/RTo T )

vii



2
short hand notation of (1/5)(18 s~ % 12 Re s + 5 Re%)
ratio of specific heat, (5/3) for manatomic gas
defined as %(tl‘i-tz)

| ,\/)\2 short hand notation defined in Eq. (44)

kinematic viscosity coefficient ¥ = (/.L/po)
particle velocity vector

density

mean free timme between successive collisions

a
y
0
/2
o | viscosity coefficient
Vo
§
P
¥
¢

dependent variable

Subscripts '""1" and ''2'" denote the two components associated with the
two-stream Maxwellian in general, '"o'! the ambient condition, "w'
the conditions on the wall, "in' for inner region, and "ou'" for outer

region; tilde "' denotes the Laplace transformed functions.
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I. INTRODUCTION

Since it is impossible to solve the full Maxwell-Boltzmann
equation exactly at the present time, various approximations have
been suggested, such as the Chapman-Enskog procédurel, Grad's
thirteen moment methodz, Krook's mode13, Lees' moment method4,
etc. The last method was employed in this work. All moment methods
satisfy the differential equation in an avérage sense rather than point-
by-point. Gasdynamicists are interested in some lower moments of
the distribution function, such as stresses, heat flux, and so on, but
rarely in the distribution function itself. Therefore, the gross features
of the problem that are obtained by the moment method are satisfactory
for many purposes.

Maxwell converted the Maxwell-Boltzmann equation into an
integral equation of transfer, or moment equation, for any guantity
Q that is a function only of the particle velocity., The distribution
function used there should be considered as a suitable weighting
function which is not the exact solution of the Maxwell-Boltzmann
equation in general. Lee s4 found that the distribution function employ-
ed in Maxwell's moment eqtia.tion must satisfy the following basic
requirements:

(1) It must have the '"two-sided" character that is an essential
feature of highly rarefied gas flows.

(2) It must be capable of providing a smooth transition from
free molecule flows to the ""continuum'' regime.

(3) It should lead to the simplest possible set of differential

equations and boundary conditions consistent with (1) and (2).



There are a large number of distribution functions which satisfy
requirements (1) and (2). One of the simplest functions iAs the "two-
stream!" or two-gided Maxwellian4. One important advantage of this
choice is that the surface boundary conditions are easily satisfied. The
distribution functions f1 and fZ. in the two-sided Maxwellian involve ten

arbitrary functions, Tll ’ 32 s Tl s '1‘2 s Iy, and n which are

2
determined by taking ten moments (ten equations). In some cases, one
can even take less than ten functions; however, the minimum number of
functions is the number of conservation equations, plus one, in order to
insure that at least one of the lower moment equations(corresponding to
stresg or heat flux) is satisfied in addition to the conservation la.ws4.

After the distribution function is chosen, the collision integral
in the moment equation can be evaluated for any arbitrary inter-particle
forces. For simplicity we use Maxwell's inverse fifth~power force law;
however, this assumption is not essential,

The moment method has been successfully used to solve steady
flow problems, such as linearized plane Couette ﬂ0w4, compressible
plane Couette flo’ws, and heat transfer between two concentric cylinder 36.
For unsteady flow problems, only Rayleigh's problem4 is worked out
for the case of (AT/T) << 1 and MZ < < 1. The present workis to
demonstrate the application of the mornént method in solving unsteady
problems. This work deals with an infinite flat plate resting in a mona-
tomic, dilute gas with a uniform temperature distribution T0 initially.
At time 0+, the plate is suddenly heated to a constant temperature Tw.
The flow field will be disturbed by the temperature jump, and wave
motions are generated. At the beginning of the motion, (t/Z“f) <1,

there are only a few collisions per molecule; it is always a rarefied



gas problem regardless of the gas density. As time goes on, (t/’t’f) >1
each molecule will experience a large number of collisiops, and the
flow will reach the Navier~Stokes-Fourier regime. Kinetic theory has |
to be used in order to treat the problem over the whole range from

free molecule to the continuum regime.



II. FORMULATION OF THE PROBLEM

1I.1. Basic Equations and Distribution Functions

The Maxwell Integral equation of transfer can be written in the

following forrn4: *
(o/00) @ a¥ + ¥ {18 @ &8 =jf[(i*’/m)-cffx'§)].$§ Qdi+aq, ()

where 4 Q is the total effect of changes in Q due to collisions, and is

given as follows4:

AQ ;IM(Q'-Q)ffIVd'gdglbdbds . (2)

In this problem, there is only one independent spatial variable,
external forces are ignored, and there is no curvature; hence, the

centrifugal force term drops out and Eq. (1) reduces to
vt -
(a/at)f £QdS + (a/ay)j f§, Q45 = Ao . (3)

The distribution function is split in such a way that particles
with positive normal velocity are governed by fl , while those directed
toward the plates are described by f2 . Actually, at any point in space
at a given instant (y, t), all particles which reach that point from the
plate must have normal velocities equal to or larger than (y/t). Con-
sequently, the realistic splitting of the distribution functions should be
I= fl for all particles having normal velocities larger than (y/t), and
f= fz for all particles having normal velocities algebraically smaller
than (y/t). The realistic splitting of the distribution function will
introduce many complications because of the variable coefficients in

*j d_§ :fjj‘-"“ de dSY d§.'7..
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the differential equations. The present choice of the distribution
function will give discontinuities in the solution near the start of the
motion because of the finite number of characteristics with finite wave
speeds. It will not affect the'large-time' solution, since the bulk of
the wave-like portion of the disturbance will propagate along the
isentropic sound waves regardless of the splitting.

The distribution functions are chosen as follows:

f= fl for all particles having an upward velocity component (gy > 0),

where
c n, (y,t) ( g° ) (4a)
= exp ( - H a
1 [ZwRTl (v, t)]3/ 2 ZRT, (y,1)
for all particles having §y <0,
2
n, (y,t) S
f= fz = 3/2 exp ( - ) ’ (4b)
[2#RT, (v, 1)] 2RT, (v, 1)

where n, (v, t), nz(y, t), Tl(y, t), and Tz(y, t) are four arbitrary functions
to be determined by solving four differential equations obtained by
taking moments. Three of the moments will give the conservation
equations, and the fourth one is arbitrary. In this problem, the motion
is generated by heating, so it seems appropriate to choose the fourth
one to correspond to the heat flux in the direction normal to the plate
surface.

The four equations are obtained Va.s follows:

'For any Q which is a function of the particle velocity only, the

average of Q is evaluated as follows:



<nQ>=fod§
0 0 0 QO o :
. 5 S j fIngxdgyd§z+§ Sg f,Qds dy ds, .
-0 O =00 ~00 =00 =00

(5}

As examples, let Q be m and mgy, regpectively, We find

S W” mny (y,8)  -(§SH)/2RT (v, 8  a
p= nim > = € §
e _M[ZWRTI(Y, t‘)]3/2' X Y Z,
FeE mn, (y,t) ~(85 #5457 )/2RT,(y, 1)
s J j M ds, ds, ds,
A eerT (o

= (m/2) [n;(y,t) + n, (v, 1))

and
) X TE mny (v, 1) - (54845 /2R T (y, 1) .
= nimn =
pVv §Y - {[ZnRTl(y, t)]3/2 y € 5x §Y §Z
Tl mn, (y, t) -(§;+§;+§;)/ZRT2(§Y, t) &~ d
+J I:Z‘H’RTz(Y’t 3/2 sy e dgx §Y Sz

m ny f(R/2m) VT, - mn, |(R/27)

it

J(®/2m) m (T, -n, T, )

Knowing how to evaluate the integrals, we can derive the equations

as follows:



(1) Equation of Continuity
With Q = m, AQ = 0; then Eg. (3) gives

(a/at)Sf m d"g’ + (8/8y)§ fm gy d¥ =0, which leads to
(8/8t) (n) + n,) + V(zR/x) (8/8y) (n, VT - n VT )y =0 . (6)

(2) Momentum Equation

With Q = mgy , AQ = 0; then Eq. (3) gives
(a/at)‘f ms§, a¥ + (6/8y)§ £ mgy 8, at = o

We obtain

V(2R /7) (8/0t)n; \F_r—l -n, (T, )+ R(8/8y)n; T +n,T,)

It
<

(7)

(3) Energy Equation
. 2
WithQ =m¢ /2, 4Q =0, and

(a/at)gfm (§2/2) dg + (a/ay)gf §Y m (§2/2) dg = 0 ,

or

(8/8t)(n T{ + n,T,) + (4/3)J(ZR/m) . (8/9y) (anl?»/?. ) n2T23/2) _
| (8)

(4) Heat Flux Equation

Q=mg,(5%/2)



In this case, Q is not a collisional invariant and AQ # 0. For Max-~

well particles, one has

AQ= () [- (/3 a +p v] (9)

where u is proportional to temperature for Maxwell pa.rticles4,

e, (u/p )= T/T, , and
p=nkT
Therefore, (p/u)=nk (T/e) =nk (T, /u,) = (PRTO)/}J“O

We then obtain the heat flux equation

V(2R /7) (8/6t)(n1T13/2 - n2T23/2) +(5/4) R (8/8y)(n, T, + n,T,%)

= -(1/3N(2R/m) mR(T, /pt) [(n1T13/2 - n2T23/2)(n1+n2) (10)
~(5/4)n, T, + 0, T,)(n T, - 0, (T, )] :

Eqgs. (6), (7), (8), and (10) are the four basic equations for the

four unknowns nl(y, t), nz(y, t), ’I‘l(y, t}, and Tz(y, t)

All the mean flow quantities are defined by kinetic theory as

follows:
—
=[mfd§
p Uy =I mf§ dg
=-mj fd = -pI+7 ,

where I is the identity tensor.



Pij

P, .
1j

e 3
q

For

it

n

—m'S(Ege 1/3 czl)fd;S

-mj fcicjdg

i

Pij if i 94 J

it

"p+P11

nkT = (2/3)§m(c2/2)fd'§' = - Z (pii/3)=pRT

i

ms S (c%/2)£4d%

our distribution function [Eqs. (4a) and (4b)] one can determine

all the mean quantities uniquely in terms of the four unknown functions:

ply, t)

v(y, t)

1]

<nm >=K fmdg = (m/2) [nl(y,t) + nz(y,t)] (11)
<nmngy> -
<nm > Z(I/P)Sfm §Y d§
(12)
n \]d'l-’— -n \I_'IT-
\/(Z—R/:r—) 1 1+ 2 2 .

o, v 0,

(nl J_T_l = Ilz m)z

By, ) = & mR(n Ty + 0,Ty)-(1/3)mR /) — Lot (13)
%
(T -n,{T, )>
P, (v, t) = ~(mR/2)(n; T} + n,T,)+mR/m) — ,jl . nz z (14)
and
q(y, t) = J(ZR/Tr) mR (n1T13/2‘ - n2T23/2)
\r? ~n T
~(5/4){(2R/x) mR (n,T| + n,T,) VT -2 T (15)

+ \/(za/n) (mR/7)

(nl \]?1 - n‘z J-T_Z: )3

2
(1’11 + 1’12)
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II. 2. Boundary Conditions

The interaction of impinging particles with a solid surface is a
very complicated process, and detailed knowledge of this phenomenon
is not available at the present time. I-Iurlbui:7 suggested that most
"engineering surfaces' are rough on the microscopic scale, and hence
will provide diffusive reflection as far as tangential momentum is
concerned. However, the energy accommodation coeificient a and
normal momentum reflection coefficient 0 depend on the details of the
process. For most cases they are close to one (provided that the
incident particles do not have extremely high energy). We take the
simplest case a =¢ = ¢ '= 1, One should bear in mind that the two
sided distribution function was chosen so that any surface interaction
can easily be incorporated into our analysis.

For completely diffusive reemission o = ¢! = a = 1, the boundary

conditions are

(1) At the plate {y = 0) {léa)
T1 - Tw ?
and v=0 or n JT -n \’T =0 ;
1 1 2 2
(2) Far from the plate (y —> w0 ) (16b)

all flow quantities such as temperature, density, etc. approach the

ambient state.
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Il. 3. Non-Dimensional Equations and Boundary Conditions

By introducing the following non-dimensional variables,

(v/7g) VRT_

n/n_

it

t = t/T s y

i

T = T/T, and 7.
where Tf is the mean free time or (I/Z"f) is then the collision

frequency defined as

kT/(3 A, (ZmK )
= (v/2)/p) = (x/4) Z = (m/4) —— ,

ZAZ ZmK n

where A, and K are constants. Eqgs. (6), (7), (8), and (10) lead to

8/, + 1) + (2/m) (8/07) (3 [T, - 5,y[T,) = 0 a7
,/(z/n) (a/a?)(ﬁlﬁ _ 2\[ ) + (8/8y)(n T + n ): 0 (18)

(8/80)@, T+, T +a/3NEm (0/09) &, T % - 5T, 5 =0 (19)

and
2 2

{2/ (o/a0a, T, %% - 5,7, % (s /a0/om (5, T 2 + 5,17
(20)

- (1/3) J(2/w) Re[(ﬁl“ 3/2-521* 3/2 )(n 1+n2)- (77 7,7 X nd—)]

1k

There is no free parameter involved since the only parameter

Po "RTO (ZJf “RTO) - Pyl

Re = - = 4
= o (w/4)

is a constant. The problem depends mainly on the gas properties

through ?"f .
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The boundary conditions are

(1) At the plate (y = 0) ‘ (21a)
T, = Tl/TO = TW/To =T
v = 0 implies Elﬁ —I-IZJ-—T: =0

(2) Far from the plate (y —> o ) (alb)

all flow quantities go to the ambient value, e.g., 1
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III. LINEARIZATION

ITI.1. Linearized Equations

For a small initial temperature jump at the plate, i.e.

>

(T, - T)/T_<<1,

.El = (nl/no) = 1+ Ny +... (22a)
m, = (nz/no) = 1+ N, +... (22b)
"'fl = ’I‘I/To = 1+t +... (22¢)
"1““2 = '1*_2/To = 14ty +... , (224)

where N1 , N2 s tl s, and I:2 are non-dimensional perturbations of
number density and temperature appearing in the distribution functions.
Substituting Eqgs. (22a-d) into Egs. (17), (18), (19), and (20) and

retaining only the first order terms, one obtains the linearized equations,
(8/8E)(N, + N,) +(2/7) (8/87)(N)-N, + 3 t, - }t,) =0 (23)

't 1. L - 1 =
V(2/x) (a/at)(N1’Nz+2t1 atz)ﬂa(ay)(NllrI\IZ-rt1+tz) =0 (24)

(8/8E) (N +N,+t +t,)+(4/3) [2/7) (8/07) [(Nl-N2+(3/2)t1-(3/2)tz]= 0 (25)

[/ (8/87:)[NI—N2+(3/2.)t1—(3/2)t2-l +(5/4)(8/87) (N #N,+2t 42t )

(26)
= (1/6)\(2/m) Re[(N}-Ny) - (7/2) (t] - t,) |

The linearized boundary conditions are
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(1) Aty=0
t, = (T,/T)-1=T -1=t¢t,
{(27a)
v=0 , or NI_NZ'+%t1'%’:t2=O ;
(2) All perturbations vanish as y —» w . (27b)
P

The relations between the flow quantities and the unknown functions

are linearized as follows:

- L -
p o= p the, (N +N)=p [1+(N/2)+ (N,/2)] (28)
v = \/(RTo/zTr) (N, - N, + 3 t) - 3 t, ) (29)
1 lei',NZ-i-tli-tZ
PYY = - P, -z P, (NN #t #t,) = - p (1 + = ) (30)
= -p
1 t1+t2
T = T0+§'To(t1+t2)=To(l+——-——2———-) (31)

Na]
il

, = /o (@7 ey (RT)Y? [(7/2) 1) - (1/2) 1) - N + N)]
(32)

H

V(RT_/87) p_ [(7/2) £, - (7/2) t, - N + NZ] X

111, 2. Characteri stic58

Characteristics can be defined as the loci of discontinuities in
the dependent variables. Suppose the propagation speed is c for

characteristics C; thus
(dy/dt) = ¢ on C . (33)

We can write the general form of a first order quasi-linear system for
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two independent variables as follows:-

L [w] = 4&w, + By, =D (34)

where Li is a linear operator, u, is the ith dependent variable, Ai , Bi’
and Di are the coefficients in the ith equation.
Along characteristic C, one can replace (8/8t) by - c(8/9y).

Then Eq. (34) can be written in characteristic form

Li [u] = (Ai-cBi) uiy = Di B

where c¢ is the characteristic speed which is defined by the vanishing

of the determinant
lA -¢c¢B l = 0 . (35)

From Eqs. (23), (24), (25), and (26), we find the characteristics

-c (2/w) O 0

0 -c \/(3/3) 0

0 0 _F ;f- (2/x) = 0
l«%\[(u/z) 0 /2y o -T .

Therefore, & - (10/3) €4 (5/3) = 0

and

-

(ay/at) = ¥ \(s/3F (Vio /3 )
or (36)
(dy/dt) T \/RTO = ¥ J(5/3) ¥ (\10 /3 ) \/RTO

0l
1l

[¢]
i

There are four characteristics because there are four equations

N

for the unknowns N 2 t1 , and t2 . The equations are linear with

1 ]
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constant coefficients; hence the characteristics are
straight lines. The characteristics define the
domain of dependence and the proper number of

boundary conditions. This problem can be

solved by the characteristic method. The '"jump"
relations among the four variables can be obtained by integrating the

differential equations across the characteristics. Across the fast wave

(d¥/dE) = T, = \/(5/3) + (Y10 /3) , and we can write all the discontinuities
in terms of one of them, i.e.,

AQi = fi(AQI)@' , i=2, 3, 4,
1

where (A Qi)(', is the finite jump of quantity Qi crossing the fast wave ¢
d

Across the slow wave, conditions are not that simple since the flow field

ahead of the wave is not known a priori there. However, att = 0, one can

write the jump conditions across the slow wave (dy/dt) = EZ =\/(5/3)-( \/13/3)
aQ. = g (4 QI)C; , i=2,3, 4

So all quantities behind the slow wave are completely determined
in terms of the two jumps in Ql at t = 0. But we have two boundary con-
ditions at the plate and hence the two jumps can be obtained. In principle
all the quantities can be calculated point by point for t > 0 by using the
characteristic relations along the waves. We shall not solve this
problem by this numerical method. However, more detailed discussion

of the characteristics will be given in Section V.
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III. 3. Single Equation for Disturbance

One can combine the four first order partial differential
equations, Egs. (23) - (26) , into one single fourth order partial

differential equation by eliminating three dependent variables.

(ﬂ-f_ 944} +£‘94¢

2 % 5
+ = & - =
9?4 3 ézzawz, 3 a'fl,l ) 3 Re ( 9t3 3

: (37)

All the dependent variables satisfy the same single equation since the

problem is linear.

The basic Egq. (37) can also be written in a different form

2 s 2y s 2y 2 55 2
(o SNt N F e N T+ 8, 5) 9

(38)
2 =4 7. 2 3 S =2 +3. S -
+§-Re(5?_-+al~a—q-)(az azaq)(at_-fa?’aq)(ém 0
where
- _ |5, 0 — _ |5 0 = _ |8 Vie. = _ |5 ,/ic
©13YFT - 2T y5 3 - 83T 7FT 3 ST o3t T
and

i = [5/3), 5,=0, 5;=- (/3 . (39)

For the wave motion defined by Eq. (38), the presence of
additional lower order derivatives (waves propagating with speed ai)
will produce an exponential damping, along the higher order waves
while the presence of higher order waves will produce a diffusion of the

lower order wave motion whent > > 1. The lowest order terms
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describe the main disturbances for t > > 1; in other words the main

disturbance moves with speed a at large time. The highegt derivatives

define the characteristics; from the equations we see that the high

order waves are indeed the characteristics with speed ¢'s (Section IIL 2).

The characteristics play a fundamental role in defining the domain of

dependence and the proper number of boundary conditions. An extensive
9

discussion on general wave motion was given by G. B, Whitham’,

More detailed discussion on this problem will be given in Section V.
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IV. SOLUTION BY METHOD OF LAPLACE TRANSFORMS

IvV.1l. General Solution in Terms of Transforms _

Since one is interested in the problem only after the plate is
suddenly heated, i.e., t> 0 is the region of interest, the Laplace
transformation is an adequate technique to eliminate the independent
variable t so that the set of partial differential equations becomes a set

of ordinary differential equations. The Laplace transform with zero

initial conditions is defined aslo
o
L{Q}l=q = S e Q(y,nat (40)
L {(o"0/e™)} = Mg, (41)

and the inverse transformation is given as

y*+{oo

Q = (1/2mi) oSt 6 (y, 8) ds s (42)
Y-t

where ¥ is the largest real part of all singularities,

By applying the Laplace transformation to Eq. (37), we have
4%, _4 2y, -2 3 ~
(d°Q/dy )-(2/3)s(3stRe}d"Q/dy )+(s”/5){3s+2Re)d = 0 . (43)
The solution of Eq. (43) is

~ " o _ — - A, U '
¢=Kl e{X"‘I-!-K o™ 4k e#X’%+K4e+J—zl1 ’ (44)

where

=

\/;\—.,; = [(1/3)s(3s+Re)‘: 3 s/é.— (1asz+1zRes’+5Re‘)]

1 (45)
= [szﬂb (Re/3) s t (s/3) va }"1*
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and

a = (18/5) s2 + (12/5) Re s + Rez for simplicity. (46)

The boundary conditions far from the plate require that K3 = K4‘:E 0.

Since all the dependent variables satisfy the same equation, we may put

~ -, g D 7
N1+N2=ale +aze
v s _ﬁ* _J:\— o

- - v 1Y
Nl NZ b, e +bze

- . - (47)

’{1{’?2 = € e"\"‘f +c, é"\‘l1
s v _ _J,—\” _)/-qu
tl—tz-Kle'1+K2e

The coefficients, however, are not linearly independent, and the
relation between them is obtained by satisfying the system of equations
(23) - (26). By applying the Laplace transformation to Eqgs. (23) - (26),
and substituting the expressions (47) into the transformed equations, we

have
sa,+m(-ﬁ.b,)+%ﬁ7'1r)(-/i,x,) = 0
(- a)+ (A )+ Y2/m)sb +3f2/m sk, = 0
sa, +sc, +(4/3)(2/m) (AAb) + 2 V(z/m (\K) = 0

(48)

(5/4) (P a) + (5/2) () +{(2/7) s by + (3/2) {(2/7) s K,
(1/6) {z/x) Re (b) - 7K, )

1

with an identical set of equations for a,, b,, <, Kz s A 2
By solving this set of algebraic equations for a1, 85, «ee €,

c,, we obtain
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a, = 3fe/m 2tRe-BVE X g (49a)
s ( g— s + :.17 Re ) )
oy =} e/ SRRt BALE [k, (490)
_ s{ss+ 7 Re )
_ -{17/16) s + {1/3) Re - {5/6) \/a‘
by = (9/)8;3 5T (/1/13) Re™ K, (50a)
_ ={(17/16) s + (1/3) Re + (5/6)va
by = (9/88) 5 ¥ (1/3) Re =~ K, » (50b)
¢, = (1/6) r—*(z/“) 8s + (11/3) Re - (5/3)va Rl K, , (51a)

s(4s++Re)

and finally

. = (1/6) {Z/=) 8 s+ (11/3) Re + (5/3)va >~ K . (51b)
2 s(‘—;- s-!-é— Re ) 2 2

Now Kl and KZ can be determined from the boundary conditions

at the surface (y = 0):

t o= s - ®-T)) = (1/sNT,, -1) = (t,/5) (52a)
V=o0= (R-N)+3@ET =0 . (52b)

By utilizing the relations in Eqgs. (52a) and (52b) one obtains

K. = - - s+ Re - (5/3)vd
- s+ Ret (5/3)va

« = T, T, 2(-‘gis+-éRe)(-s+Re+§\/E) o
1 T s F (53)
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9 ! 5
K = Y 2(;s+§-Re)(s-Re+3— ya ) (54)
2 - T S & s
where

- 1O . ! ! ;
sF =42 s (Zs+5Relatz fz/=)

, 1(55)
x{[s s+ 4 Re - 2 ﬁ][—s+3e+ Zfa /\,+[8 s+ L Ret gﬁ][s.-ReJrg—.fd]ﬂz}

With these relations we can write the complete solution in the

following form:

- Ty =T, = N T
NN, = h;; = ﬁ SiF [(~S+Re+ %{ﬁ)(-s-%Re - -32‘/3)(/\', e 2 1

+ (s -Ret gfa )-stRe + £ v& WA, oM ]

(56)
= T,%—z; —s—l;__—-:A'e'r’q +Azre'][’\-z q]
/I:I/I—/ﬁz = 7;’7; ~ Si‘ :(-s+Re+ —BE-VE )= ;—Z— s+ -_,;']- Re - gﬁi ) é/:\—f- 7
+(s~Re+§¢E)(—~i~g-s+;— Re'ig—;\/ﬁ)é/gq] (57)
= Tw= ' 4 [Be'/x‘q+B e-ﬁ‘;q}
7 SF
”{1+"t’2 = I’%—E— EL@ S—jF[(-s+Re+§,/a) (8s+ L Re- 2 & )J,\‘,e"/;' 1
+ (s~Ret ‘g-fd )(8s+ —_’:’,—I— Re + :-g'fd )\/-Xze—‘/x"L ‘?] (58)

A ey Vg
= L e e 4o VP2
7, sF 1 2
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- o~ T T VT T
1-'1;2 = 3 Sf‘: [(-s+Re+3,5-/E ) g s+ _—;— Re) e A 7
+ (s-Re+ S va ) g- s+ :;} Re) e-@ 7 J (59)

/"’.“7‘—’ ! [D,e_\lxﬂ-l- D, e—ﬁzv ]
7s sk

IV. 2. Approximate Solutions

- -4
The exact inversions of the transformed variables Kll , ﬁz » s
andrtl;Jz are impossible. One has to look for approximate solutions.

For small time (t/Z‘t) <<1 andlarge time (t/?jf) >> 1, approximate

solutions can be obtained:

Iv.2.1. Small Time Solu.tic:m10

The regime t small corresponds to s large; therefore, one can

expand the transformed variables into power series in (1/s), as follows:

’ L
WA = s<[1+(Re/3)(1/s)]+ J(z/s)[1+(2/3)Re<1/s)+(5/1a)Re2<1/52)]%}"

N +2/5) s [1+ (Re/6)(1/5) +...]

(1/&)) [s+(Re/6)+...] = 1.28s+ ,213Re + ...

[H]

by retaining the first two leading terms, where

(I/El) = 1 +\}(2/5) = (dt/dy) on characteristic Cl ; therefore

the first term of V>\1 will give a time shift, i.e., all the solutions

associated with é’l"\-’q will be functions of [E - (}"/El)]; therefore, the
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disturbance propagates along the characteristic T, = (ay/dt).
Similarly we obtain

1

1y3
\frz = s<[1+(Re/3)(1/s)] a\/ 2/5) [1+(2/3)Re(1/s)+(5/18)Rez(l/sz)}a}
2 1 -fz75) s (14 (Re/O)(1/8) + ... ]

= (1/8,)[s+ (Re/6) +... ] = .607 s+ .10l Re+...

where

(I/EZ) = (dt/dy) = V1 - {(2/5) on characteristic C2

‘ The disturbances propagate along the two characteristics for
small time. Figures 1 and 2 show the exact values of \[)Tl , \[X—.z
and their approximations for small and large time. The agreement is
satisfactory.

All the other quantities [Eqs. (56)-(59)] can be expanded as

follows for only retaining the first two leading terms:

sF % 12.5s(sz+ . T8 Re s+ ...)

e

12.5 s [(s + .39 Re)” - (.39 Re)* ]

A ¥ -5[9.22s+10.4Re+...]
A, ¥ 5[4.378+4.92 Ret... |
B, ¥ s[ll.4s+ll.b73 Re + ... |
B, ¥ 5[432s+7.24 Ret... ]
C, ¥ s[3.5654592Ret... ]
, £ s[7.53s+4.55Ret ... ]
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12

D

L ¥ s[475545.9TRet ... ]

1

D

> ¥ s[9.16s+2.91 Ret... ],

where Al s Ay, e D1 , D, are defined in Egs. (56), (57), (58), and

2
(59). Hence for the small tisne regime, the transform solutions are of

the form

A (s +7n ) +pt -0s
(s+7)2 - B°

g(s,y) =

where a, A ,4 , and are constants. The inversgion for this transform
/- {

can be easily found to I:)e:11

git,y) = e"?(ﬂ“){)\cosh [ﬁ'(t-u.)] + (/J./ﬁ)Siﬂh[ﬁ(t-G.)]} H(t-a)

where
1, t>a
H(t-a) = 0 {t <aq

Therefore, we have for small time:

i &7 - 39Re(f- L) o
N +N, = 1“’;—T—-<e <8 o Z [_. 74 cosh(. 39Re)(t- £)-1. 4sinh
I- &
- (- 39Re)(- £ )]
#Z  -.39Re(t-%) o
+E6 % ¢ | [ 35cosh(. 39Re)(i- L)

+.67 sinh (. 39Re)(i- 2~ )] }
<z

TW“T _Eei - et;':.; - — o
NI"NZ - x o lgeT ¢ 37 fef -;1;, 91cosh(. 39Re)(t-%—)—l. 5sinh(. 39Re)(t ~ ;1—/)-‘
R A -,3‘7/{7&(?-% -z -
tefu g 35cosh(. 39Re)(E- L)+1. 14sinh(. 39Re)(i- L) |
< ()
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£ )+. 94sinh(. 39Re)(i- £ )]

- kg _ t-
7;/ 7(;—{*6 5 a 37R€{ E[ EZB Osh( 39Re)(t‘

'37”"("? [scosh(. 39Re)(t- -)+ 34sinh(. 39Re)(t- i)]}

SR
ﬁ\l\t 1

By s
{e ¢ % e C38cosh( 39Re)(t- —)+ 86sinh(. 39Re)(t- ]

- v 7a
tl-tz = 7 2
RF
+ 66 egcme( ft74 cosh(. 39Re)(t- = )- l14sinh(. 39Re)(t- i )]} .

From these relations, one can easily deduce all the flow
. (28)-(32). The

quantities such as density, velocity, etc. by using Eqs
results are

)(t-C }+. 67sinh(. 39/1 22 (t~ .._)]
(60)

_ L39E D)
Twlo o o T.35cosh(. 39

~3C‘/J“(t—h)
[. 74cosh(. 39/.1 It —-)+1 4ginh(. 39—— Ht- -g—- )]}

£ )+. 34sinh(. 39 2 Z-)(t- --—)]
(61)

y o
T = e G -3He (
% 7 %e [: 6cosh(. 39%)&«

T=T +

-3z,

St R £Erge ¥ : 7
ML [ 28cosh(. 39 Z2)(t- L)+ 94sink(. 395)(t- )]}

ﬁ(t_l 2
. q
r )+ s1nh(. 39;%—) (t_c_z.)]

‘3::_ 7;7,:7; {'/‘a 2 [95cosh( 39 )t~ =
(62)

S ENEY YLD
e [46cosh( 39 % )(t —-—-)+. 46sinh(. 39 ""—)(t- - )]}
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> ¢

‘E‘ ('
JTTF" T - { 2 tE T2cosh(. 3970)(t-£)+1. 07sinh(. 3972)(t- =]

7
(63)
«2—7—11 ?—(t z;-)
e [. T2cosh(. 39/u ) (t- = 7 )+1 07sinh(. 39—)(1:- —)]}
and
2 ¥ >’é’
. 7" _7; -2l -3;( )
qy=‘/—%- P, -";:;—{e@“ %o . 24c0sn(. 392)(1- D)-1. 63sinh(. 395 (t-1)]
64
_ﬁ_cl =~ /{:(t— Z) o
+ e7e 7 [z.z4cosh( 3972 ")(t———-)+4 51sinh(. 3377)““ Z )]}

At the plate, y = 0, Eq. (63) gives v = 0 for all time. The heat flux on

the surface is then

7

7
i

397t
R T[‘L—Hscosh( 39—-——t)+2 88sinh(. 39—- t)]e . (65)

3ir

(a.) =0

y'y= R

7w~
-]
A

The normal stress on the plate is

2 =75
2

39/-(-0 t - . < .
PVY y= = (e [ 49cosh(.39;; t)H. 54smh(-39.z t)} .

(66)

At the plate, the normal stress has a finite value at t = 0+. As time goes
on, (Pyy)yzo increases first for a very short time and then decreases.
This increase in the normal stress is simply an indication of the
acceleration of the gas away from the plate which can be seen from the
momentum equation.

The equations show that all the disturbances propagate along the
two characteristics (dy/dt) = ey and (dy/dt) = Cy s and the magnitudes

of the "jumps'' damp out exponentially.
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Let us examine the normal velocity. The particles have zero
normal velocity at the plate, and they are accelerated to a finite value
by crossing the first wave (characteristics), and then decelerated to
zero by crossing the other wave. The first wave can be considered as
a compression wave which accelerates the gas, and the other wave
'corresponds to an expansion wave which decelerates the gas. It is
clear that the two waves are necessary in order to satisfy the boundary
conditions both at the plate and at infinity. In other words, the four
moments we took are the minimum number of moments so that
meaningful results can be obtained.

The discontinuous behavior of the solutions for small times is
caused by the finite number of characteristics on which the disturbances
propagate. Smooth solutions are expected either by taking infinite
numbers of moments or by a more realistic splitting of the distribution
functiouns, |

Some of the quantities are plotted in Figures 3, 4, 5, and 6 for

different values of time.

Iv.2.2. Large Time Solutionlo

The largest real part of the singularities in the expressions for
the Laplace transforms is at the origiﬁ. For fixed y, large time
corresponds to s small, and hence one can expand the transformed
variables in a power series in s. We have by retaining only the highest

order term

N = Vz/3) Re Vs + ...
I, 2 e/ s+ ... .,
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-y -fz/3)Re {57
— O

solution that is diffusive in nature. On the other hand,

i 375 s ¥

e = e gives a shift of the form

Since e this transform leads to a

[i- 5 /W73 ) = (1/Z’f)[t-(vcj_-—————£?—-)}= (/79 L,

where a = \j (5/3) RTo = igentropic speed of sound. Therefore, for

large values of time, the solution has a diffusive part and a wave part;
and the main disturbance will pi-opaga.te along the isentropic sound waves.
Similaﬂy neglecting higher order terms in s, we can obtain the

expansions for sF and the other quantities appearing in the transforms.

SF % 1.48 ReZ V8 (/5 +.39/Re ) +...
AT - L16 R 2 (1/vE )+ ...
. 2
A2 = =2.66TRe %+ ...
. 2
B, ¥ L111Re+...
. 2
B, ¥ 1.556 Re’+ ...
” , 5/2
C, ¥ lL.16Re (1/¥s)+...
14 2
C2 = l.8 Re +...
. 2
D, ¥ 0.738 Re®+ ...

o 2

D 0.442 Re™ + ...

I

2
where \/ A \f A,, sF, A, A,... D, D, are defined in Eqgs.
(56)-(59), {45), and (55).

. . 11 ,
The inverse transformations’ required are as follows:
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...afs- lzt
/ Lo+ 1o
m e —_— EA [erfc (a‘/__ }-e erfc (5 Ft—+i»l'E )]
-5 fatlt
{ 1 A
————— —_—> f ”—+£E
s D e e erc(?,{? )
; -bs ¥ (t-b)
— e —> e erfc ( 4 /t<b)
v (Vs +L)
where

(==}
2
erfcx:l«erfxz(Z/\/—f)je_Y dy .
X

Then for large values of time and fixed y we have

Y st

“le2] i e gL 2

N1+Nz- = ~ 2 erfc (m)-fZe erfc(ﬁ%t + .39 /‘L_at)
/5275 (f-i.) —
e 7
+.75 e erfc(.39 /c—“o— t_—éT:)
< Y e
32'1’:‘—'—*’/2/.1 t

7 - g #o Vi, ¥ 7 3
to+t, = [Zerfc - 2e erfc ({ —fe—— + .39 [ =t
12T T ) ere Z=t)

/5.2—(t--
7
+ .5 e erfc(391//u_ yt—gl- )J
= g % 4
L3255 i 52t

_ 7o I o VAT, e g S

Nl-NZ-.—?;——[I.B e erfc(m +.39/ -t )
/52,.7,—(t-~—)
[7% [ 7
+ 1.05 ¢ erfc (.39 T t-"g'l—)J
,ﬂ
— 3255 = /97t
. Tw-/o T /““rf"—’; y ‘700

bty = [1 Ze erfc ( e +.39/2t)

0.3 /Sz,u.,(‘f ED) erfc (.39 /*”o /i a/ )_)
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All the physical quantities are obtained as follows:

, VI A
p, P, ( —5—)
7;_‘/_7_ y BZ/EZG-V.;_.?:‘- /52/,,_0 z
2.1- erfc + ¢ erfc +.3
Poteo 2| eric (L) (=t 392

o wEL
_7 o Yor
J(RT_/2n) It-;-_—i—[- .2e % erfe (—

a9

152 (t a,) = 7
+ l.2e erfc(.39,//ua 1/‘:—-5-; )]

N, +N, +t,+¢t
/ pa 1 2
-PYY—p0+P0( 2 )

— /52—~(zf—m

P, t P, /;;~7°h [. 625 e e ‘erfc (.39 y ~ Yyt - )

t,+t,
To + To { — )
z Y
= 7«-./52,4 t
7T 74 /“OVFI—: v
To+ TO—-O——[erfc { e ) - e erfc ( ; +
/5Z/ao(t—

+.25 e erfc(39/7" /t-gim ]

t)
(67)

7 [7a 68
@?+.39 Tt ) (68)

(69)
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Nal
it

;- JRT /8m) p [N, - N;) - (7/2) (t, - £,)]

(71)
1——:’--/52.}?; (=

% | ‘ '
(RT_/8m) b, 22 [6 ST e (=L + .39 ,/;Z—t )] -

° )/Z})Oi

i

From the above equations we see that the large time solutions
are composed of two parts -- a diffusive part and a wave part. These
two effects give a net zero normal velocity at the plate. The diffusive
part vanishes rapidly away from the plate, and the solution becomes
purely invigcid. The viscous effect of the wave part can be obtained
by retaining more terms in the expansion procedure. One can think
of this problem as if there were a boundary layer near the wall, and the
flow field becomes inviscid away from the plate, Eq. (69) shows that
the pressure is a pure wave type (inviscid in this case). This resultis
expected because the pressure is constant across the boundary layer in
the first order approximation; in other wdrds, viscosity will not
effect the pressure directly but through the "induced velocity' (Section
V.). Egq. (71) gives the heat flux a purely diffusive solution.

The large time solutions obtained here are valid only when y is
held fixed. Solutions near the wave front can be deduced by the
method of steepest descent keeping (y/t) fixed. However, the compli-
cated expressions in this problem make it difficult to do. In the next
section wé deduce the solutions near the wave front by a more direct
method. At the same time the solutions in the whole field for large
time are improved by taking into account the interaction between the
thermal boundary layer and the "outer' wave motion. Figures 7, 8,
and 10 are the pressure and heat flux on the plate for both small and

large values of time.
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V. INTERACTION BETWEEN

THERMAL BOUNDARY LAYER AND WAVE MOTION

V.I. ZExistence of a Boundary Layer

According to Section IIL 3, the basic equation for the motion

is [Eq. (38)]

(4 FNUF+ & FG + & S 45%7-)¢
- - 2
+<2/3>Re(§5+a1§/_-)<§ 5, 55 W 5F 33519 =0

or in dimensional form

(Srre S NSt i) Gres ) (St 30 ¢

+(2/3)~v;< 2-ta 5;)( =+a 2&/ >(—-+a3517) ¢p=0 |,
where the c¢'s are the high order wave speeds which define the character-
istics, and the a's are the low order wave speeds at which the main
disturbances propagate when (t/Z"f) >> 1.

The behavior of the various wave motions can be found using the
principle that along a wave front moving with speed v, the derivatives
(8/0t) and -v(8/9y) of any quantity are approximately equal. The wave
motions corresponding to ¢, and c, are then found as follows: |

For wave ¢ 1
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.

(248, 2 )&, - ))&, - §)(E, - T,) (2°¢/85")
+(2/3) Re @, - )@, - 51)(53 - ¢) (83(2)/6?3) = 0

Therefore,

(a, -t )(a.-T ) as-¢))
(8Q/at) + T, (30/87) + (2/3) Re =0

(€, NE3-€ )(Sy )

and N
(z'zl- EI)(aZ- ¢ )az- T))

¢ = g(f-L)exp|-(2/3)Re 1 . (72)
1 <l [ (cm ¢ Nes- c)ey- ¢) | ]
Similarly for wave C,
_ @ - S,NE,- &)@ &) o
=gy (- L) exp[- (2/3Re —————— L\, (1
2 (8- ©)(Es- T)(E- &) G2

where gy and g, are determined by the initial and boundary conditions.
The wave speeds _63 and :":"4 are negative, and these waves do not propagate
into the region of interest.

The stability condition requires the exponential functions to be

negative. Since Re > 0 , we require that

(- €,)(8,- §)(@s- )
>0

(E,z" E[)(ES" Ej)(ELF' E[)

or

c‘,f,_<a3< cj<a2< c2<a.l< c,

For convenience we repeat the 2's and C's here.
b
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g =\{(5/3) + (/10 /3) , Ez=\ﬁ5/3)-(ﬁ6/3), '63:-'52,—54 =-C

S =\{5/3) , 3, =0, ay =-a .

Evidently they do indeed satisfy the stability condition.
It is clear from Eqgs. (72) and (73) that the presence of the low
order waves gives an exponential damping to the high order waves.

If (2/3) Re (§/§, )>>1 , or(2/3) Ret>>1 (Ret=2Z2-1t) ,

o

the exponential decay of the high order waves is accentuated, and the
high order waves can be neglected; in other words, for large values of
time, the wave motion is dominated by the low order waves.

The equation corresponding to the wave motion at speed 3, is

obtained by replacing (8/8t) by -a,(B/ay) in Eq. (38). We have

(€, - 3 e - BNE, - 3,)(E, - 5,) (8°d/a7h

+(2/3) Re (3, - )@ - 7)) f‘f‘* 5, “;%‘) (a.zq)/ayz) o |

(2¢[=t) + a, (94:/@?) = (leﬁe)(azcb/aqz)

or in dimensional form,

(74)

_ / % VY, 3%
(a(p/at) ¥ a' (a¢/EY) - (RTO/Z) (7%//.10) 9112 - Z 8‘12

where

Vo = (f/p,) amd 2, =(5/3) RT

This equation represents diffusion of the wave with the diffusion

coefficient
RT

0 —
Ty T
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When (t/z“f) > 1, but not tqo large, diffusion is unimportant except at
the initial wave front y = alt , but for (t/Z‘f) >>1 diffu»siqn spreads out
from the wave front and is responsible for the ultimate decay of the
disturbance.

Only a, is positive; therefore, a,
is the only low order wave propagating
into the fluid. Consequently we have
only one equation for large values of

time. But we have two boundary

conditions (the number of boundary

conditions equal to the number of characteristics pointing into the fluid,
i. e., with positive speed); thérefore, a boundary layer at the plate
surface is required, and this boundary layer grows with time. The
growing thermal boundary layer at the plate surface produces an
expansion of the gas "outside'' the layer, and this boundary layer-
induced velocity must be matched to the external wave motion, i.e.,
qlif:o Vinner ( K t) = ;_i)%l Vouter (y, t) ? (75)
where r]fu(y/fg‘t) is the “"proper' distance from the plate surface
in the inner (boundary layer) solution. In other words, the induced
velocity serves as an effective piston rhotion at y = 0 for the outer
solution. However, the interaction is not unidirectional; the wave
generated by the thermal layer preheats the gas, and the thermal layer-
induced velocity depends on the difference between the plate temperature
and the temperature behind the outgoing wave. The circle is closed by
recognizing that the amount of pre-heating itself depends on the in-

duced velocity; this dependence is contained in Eq. (75) and the relation
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between temperature and velocity in the outer wave-like solution.

V. 2. Boundary Layer Solution (Inner Solution)

Inside the boundary layer (8/8y) > > (8/8t), and one is tempted
to drop all the derivatives with respect to time in Eq. (38). In that

case Eq. (38) becomes
g, €, T, T, (8" §/0744(2/3) Re 7, 5, (8°P/8t87°) = 0

(9¢/at) = [3/(2Re)] (8" G/07) (76)

or

(ad/at) = (3/2)Vs (3°/oyd) (77)

corresponding to diffusion with the ordinary thermal diffusivity

N, = (3/2) \>° where Pr = 2/3. Now the question arises as to the
nature of the boundary layer approximations in Eqs. (23) - (26) that
lead to an equation of the form of Eq. (76). Evidently in the continuity
equation [E.q. (23)] one cannot simply drop the - derivative because
the quantity [ (N, - N} + 7 (t, - tz)] is of a smaller order of magnitude
than (N, + Ny) ; in fact the terms involving (8/9y) and (8/0t) are of the

same order, as expected. However, in the y-momentum equation

[Eq. (24)]

(9/8y) (N, + N+ t, +t,) = 0 . (78)
or

N+ N+t +t, = £(t) . (79)

From Eq. (30) we see that (N; + Ny + t; + t,) is the pressure per-

turbation. Therefore, the physical meaning of Eq. (79) is clear; the
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static pressure is independent of y ingide the boundary layer.

Similarly, the heat flux equation|Eq. (26)] leads to the relation

(5/4)(3/637)(Nl+N2+2tl+2t2) = (1/6) (2/w) Re [(Nl—Nl)—('?/Z)(t,-tz)]. (80)
Substituting Eg. (78) in Eq. (80), we have

(5/4)(8/8F)(t,+t,) = (1/6) (2/7) Re [(N"Nz)‘(7/z)(t|"tz)] ; (81)

or in dimensional form

7

/U‘OVRTO

But we have from Eqs. (31) and (32) that

(5/4)(8/ay)t +t;) = (1/6) (2/7) [ (N-N)-(7/2)(e, -tz)l.

-
T = To+aTo(tl+tZ)

and

q, = - B, (RT/8w) [ (N, - N)-(7/2)(t, - t;)] .

1

Therefore, 4y = - k,(8T/dy) » (82)

where
k, = (15/4) p R = (3/2) e p

corresponding to Pr = 2/3 for a monatomic gas. Thus Fourier's law

holds inside the boundary layer.

By carefully examining the continuity and energy equations

[ Egs. (23) and (25)] it becomes clear that so far as the boundary layer

solutions are concerned the variation of static pressure with time is of

higher order compared with the time variations of density and tem-
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perature. To be specific, suppose that

- 1 - - :
_(T/TO) = 1+g(t, +t) = 1+8 = 1+6m+9ou .

where the subscripts "in'" and '"ou' denote the inner (boundary layer)
and outer (wave-like) solutions, respectively. Then the boundary layer

approximation amounts to stating that

(8/8%) [N, + No+ t, + t, ]in o0 |
or [Eq. (79)],
(N + N,), S -ttty dig = - 28, - (83)

In other words the time history of the static pressure is entirely
contained in the outer solution. Of course Fourier's law [Eq. (8 2)]
also applies only to the inner solutions.

By recognizing that the quantity [N, - N, + (3/2)(t, - tz)]in

appearing in the energy equation* can be rewritten as

3

/[N, - N) + (5 - )] - (/9| - N)-(7/20(, - t,)]

in
eliminating the first fracket (~v) between the energy and continuity

equations, and making use of Eqs. (8l) and (83), we obtain

(90, /ot) = (3/zRe)d 6, /8F%) (84)

corresponding exactly to Eq. (76). By applying the Laplace transform
to Eq. (84) and requiring that 0. be finite as y —» » , we get the

solution

* This quantity corresponds to the term (qy + 5/2 p, v).
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~d

8, (3.8 =8, (0, s) exp {-\/ 2/ Re V5 } : (85)

The boundary conditions on gin (y, s) are derived as follows:
At the plate surface v = 0, or [(Nl - N,)+ -;‘— (t, - tz)] = 0, and the

heat flux equation becomes

(5/4)(8/8y) (t, + t,)

i

(1/6){2/7) Re[(N| N+ } 1, - % t,) - 4(t;-t,)]

-(2/3) J(2/7) Re (t; -t3 )

Therefore,

(86)

(a/ay) (t, + tz)y=0 = - (8/15)/(2/7) Re (t, - tz)y___0
But from the other boundary condition T1 = Tw at the plate surface,
we have

T, =T, (1L+¢t) = T at ¥y=20

Therefore,

t, = [Tw-T)/T]=t, =3t +t)+d(t, -tz) ;
80

(t, - t2)7=0 = 2 tW - (t, + tz)?=0 . (87)

By combining Eqgs. (86) and (87) one obtains

(8/89)t, + to) = - (8/15) y(2/m) Re [2 t - (t, + t;)]
or
3 (t, +1t) - (15/8Re)V(w/2) (8/89) |3 (1) +t)] = t_ ., (88)

aty = 0, corresponding to the usual "temperature jump' condition.

Writing this relation in terms of inner and outer temperatures,

we have
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(e, + @ )?=0 - (15/8Re) V(wn/2) (8/8y) (ein +0, ) o=t

in ou

But (aeou/ay) y=0 < < (8ein/3y)y=0 , so that

6, (0, ) - (15/8Re) Y(w/2) (39111/3?);7:0 =t -0_ (0, . (90)

w

By applying the Laplace transform to Eq, (90) one obtains

8. (0, 8) - (15/8Re) V{n/2) (b /ay) o = (¢./5) - ®_, (0,9).

(91)
Substituting gin (v, s) from Eq. (85) we obtain
- — 1 ) as _ 1 ~ o
ein(y: S) = 7 (t/ +t2 )1n - T 2 (N/ + Nz)in
(92)

- 5 eou (0, s)

t
(8/5) y(Re/3w) —% xp{- [£ Re 9‘}.
s(/s + £ V{Re/3m ) ) 3 Re /s

By utilizing Eq. (92), integrating the continuity equation, and im-

posing the condition that

. - . ) ' 1 ~J ~
lim Vin = 0 = lim [(N, - z) t 2 (tx - tz) ]in .
y=o0 Yo
we get
t -s8 (0, s)

(N, -N, )+ -t)l = -£& ¥ ou expl- [Z Re y§ ¥,
[ | AR A 2 ]11’1 5 J5 (\/_S-"’ %m 3

(93)
Also, from Eq. (81),

tw-s eou (0, s)

¢ JRe
Vs (J§+g‘/3? |

(N -N)- 1G], =-8

exp [— ¥(2/3) Re JE;'?].
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Hence we have

t -8 eou( 0, s)

(t,-t,) = & % exp (-/{2/3)Re 5 7) (94)
o L tes 85,00, _
(N;-N,). = - exp (-/{2/3)Re ys ¥ ) . (95)

5
s (vs+ £ [E)

Evidently the downwash on the plate surface (y = 0) given by Eq. (93)
must be counterbalanced by an equal and opposite upwash furnished

by the outer solution.

V.3, Outer Solution and Matching of Boundary Layer and Wave-Like

Solutions

Applying the Laplace transformation to Eq. (74) we have

& + V(5/3) (ab/dy) = (1/2Re)d’d/ay®) . (96)
Let $ = —é— (fi‘:), + 41:12)011 = Eou , then we have
. L ~(VZRe /s+(5/6)Re - /(5/3)Re)y
601_1_ (Y: S) = ..,3; ( / + tZ) ou_:gau. O'S) € (97).

All the other variables can be determined from the
differential equations | Egs. (23) - (26)] .

From Eqgs. (24) and {26), we have

N - 7 07 3 _ 5 1 -
B Mdow 72 ko " (2/7) s+ (2/3) Re (4/d7) (& +12) o
.10 § o« YZRe/FB/6IRe -Y(5/3] Re VPR 38k 3 17
i/ °* s + (2/3) Re
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Combining Egs. (23) and (25), we have

(N + Ny = (3/2)(E +E) | -32/m) (1/s)a/aq) (8 -R)-36 %0 T
Therefore,

-~ ~(V2Re Vs +Z Re -gFFE)q
]eou(o’ s) e (98)

_ [3 5(\[2?9 [5+ 2R 2 Re)z

N, +N
( ] 2')011 5(5+3€‘Re)

From Eq. (24) we have

(t[ "tz)ou = b ‘Jz— é 2:7 (NI+N2+tl+tz)ou - Z/'[(N/"Nz) ) (ti‘tz)] ou
m

5 / [3 (s+$2~ﬁe)lzf?e /s+%ﬁe-/—§ﬁ?e) (99)
4 /%;_ s(s + g Re) -

(VZFe forZhe /5 Y l'u ~Vze 5+ ZRe -2 Re)Y

0 (0, 85) e
s3(s _,_3@_ Re) ou

and finally

8y £ 1 [s CENTETER T
| %ou” Tz S(5+ % Re)
- (100)
—— 3 5 p\o
T - /3 N -0 /> +Z Re {5 Re)q
_q (1R Vot ~V3 e ]6 (0,8) e
s* (s +% Re) ou
Since the resultant normal velocity must vanish on the plate
v(0, s) = v (0, s)in+ v (0, S)ou = 0
or
At 1 -~ 1 - o 1 v 3 v
(N, -Nz+ 5t - 3 tz)in t (N~ Ng+ 3 4- 3 Z)ou = 0 . (101)
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Therefore,

. = o
5 (\/ZRe\/s +gRe -/;Re) ) (Jm I/S +€Re— —gRef 6 ©. 5)
7;72—‘ S s* (s +§ Re) ou

- 5 tW -8 eou. (0, 5)
T Vs (rs+ =)
5 (0, s) ¢, (5 *+ 5 Z Re)
» S =

ou 5/2(s+3Re)+%’-f(‘§+5J;7)[£=(5 +3Re)({ Z2Re/ s+52Re) /-Re) (f—“‘/s+65ﬁ'e /_Re)’_]

(102)

The inverse transformation of Eq. (102) is hopeless; however,
some limniting results can be obtained for large time far from the
wave front and near the wave front, by means of the approximation

method.

VY.4. Nature of Solutions Far from Wave Front and Near Wave Front

V.4.1l., Far from Wave Front

t~(y/a,)>>3;:9r'(7:-—g-\—)>>1

Large time far from the wave front corresponds to s small;

hence, we can expand all the functions in power series in s.

The exponential function which appears in the outer solutions

becomes

fﬁgm [Re f—Re(l-t— )2 - /—Re

s}

e

s
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corresponding to a wave with propagation speed ‘\/(5/3) , which is
the non-dimensional speed of sound.

The inner solution becomes

(N,+N,) (t+t), = e i S ls
-2 P e P R " g [Be
/"25\/3’*-,?- 5(»134.2.@_)
1+ 3552
o E f ‘__Z-Re\rg—q
(t’_‘t‘?‘)ing 85 Wg CR& e ”
It as %T’ VS(VE £ 93?/0 )
1+%5 5%
and
(N, -1,) & i ke
- = - c
| Z 8
A (s 2I5
The outer solutions become
“ 4&  [fio ¢ -(af{z7)s
(t+iy) = ZZLZ e e |
zsY¥anr ‘/5(\[5-’—- .—_7_;’_3_7L__.)
/*25V5%
v . 24 j= 4 -(GN573)5
(Nl 2 22050 w & (717
ou P - &[5
25Y 3w ¥s (\}g + ZXYIr )
1 #5% [
37
v a % éy\(— '(‘7/“5/3)5
(t-tg} = e
ou /;__SL 5 % fge
z5 V577 Vs (VS =253 )
1725150
and
7
v ~ e Z —_
~t S5 n- -—
(N, -N2)0u= = e (7/7575) s
e
I+ 5 /1o ¥5 (V3 + .2 i )
25 V3 g [io
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The appropriate transformations for these equations are

1 -o/E 1h

—_— e —> Llerfc (3 3) - e erfc(} +AVE)
s(/5+) . e : ]

. ) o
1 g9 ——a-ejo” erfc (%%i-lv/f )
/5 (V5 ) ‘
and

Z -
-1 e-bs —>e£ (£-h) erfc (fvt-b ) .
Vs (V5 +.1)
In our case { = (8/5) V(Re/3m) = .39 Re

14+(8/25)/(10/3m) ’

=V(2/3)Re v , and b= yWV5E/3) ; hence we have

(t+tz), = - (N+ Ny,
Re 'y . 32Rey+. 152Ret Re
= 2t Jlerfc ( - e erfc(——~i—
[ VéRet ) (V GRel
7 32 b y+ /52/5;
= 2t lerfc ( L7y -e Ve erfc(
ey ¢ é)fa
.32 Re i +. 152 Ret Fe
ti=tz), = 1l.2t, £ 4 VR
(ti-ta), e erc(m-l— .39/Ret )
32.J7___1{f 152 =t
= l.2t e erfc( + .39 t)
a
,32Reli+',l5ZRe.E B _
(N-N,)., = -1.8¢t, e erfc (W—P—i—«- + .39/Ret )
n V6Ret
J___
T +. 152 F,
=-1.8te ! ‘ F fc(/ + . 39/
The outer solutions are

+.3%Re T )]
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. 152 Re (f‘F?;) F_’T}'_d
(e, = -5 t,e erfc (.39/Re / t - = )
7
ljz/wo - a,) .
5 twe erfc (.39 I/To

-3 Y
' 132 77 (¢~ 37 = 7
(NFN)_ = .7T5t,e erfe (.39 /2 /t‘_—’a/’
/52——((‘— = 7
(t'_tl)ou = .3 t,e erfc (.39 /—/:j A/t—_f:-
v, 7
15225 (3,) JE T
(NlﬁNZ)Ou = 1.05 twe erfc (. 39 7(.‘_;-_ t - "?I—

where one must keep in mind that these solutions are valid only when

H]

£ and not near the wave front.

The mean values can be deduced from the above relations
according to Eqs. (28) - (32). We then have (adding inner and outer

solutions)

»
p=p, tp, (—5——

%
_ vo il [ams 152 72 (- ) Y Y A (103)
= P, Po = [ e eric (.39 v /t - ___5/ )

o 32%_-_"'1* /52/-"0 =
- erfc ( + erfc ( ———— +., 39 g t
Yo t ) VeVt s )
Rl  Tw-75
= )G T (NNt gy aty)

_ Rl TwTo [ 152550t 50) /7/”7”
=120 2 [ o erfe (.39 /52~ ft- 1= ) (104)

3
a2ty a5z on

¢
———— - /JD
e T erfc ( —Z— +.39 /72 )
V6t Mo
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Toy - 75
p=p, +3p, (N, + N+t +t,)
| 52 ol 1) = e, 0%
_ T ~To [ 152 B, (87 3; 2 Ty
= p, +.625 p, 2= [e erfc (.39 /22 Jt - 2 ]
e
T=T +3T (t, +t,)
lfzf‘l(f- )
=T + T %% [ 5 e Mo M erfc (W32 Ze— [t - (106)
© I o C"/
VAT 7.
o R A AR ¥ 72
+ erfc ——— - ¢ erfc ( + .39 yz t)
Yoyt G VLt
and
a, = - V(RT /Bm N, - Nz (7/2) (8 - ;)]
B (o7
ATa  TaTy [ E AT 7 %
P {e erfc ( —=——— + .39 t ).
377‘ o 7: l)é))gﬁ /L‘ﬂ

When both t and (t - TZ— ) are very large, the outer solutions behave
]
like
/

J Re (t - =L— )

il

S

This is the inviscid solution of the wave. The viscous effect

appears near the wave front,
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V.4. 2. Behavior Near the Wave Front

Near the wave front, the solution can be obtained by using the
method of steepest descent. 16 The detailed evaluation is given in

the Appendix. The results are

:_22_,' 2 ,.j’ 2. 2(T By -
8 BN ) [GRvA)
(Bt Ledou = 78 (7””1‘)4 (7))t [ (J‘)(’%)t

()(})(z“,,,, it T (:’-T( (£ )T (108)
T S LB d }

provided (t - g_ ) is bounded as t —> w0 .
!

Near the wave front, i.e.

7

z

-4
;@E (sza) << [

the Bessel functions can be expanded in power series. The solution then

becomes

fad (w (IJ") /D.P yop) éj (’-{ &
&2 ;.) r(l‘-) G;_t)qb 4) (%f)%-] F[ y(\r)( 4 (109)

"Far' from the wa.ve front,

( :t >>/)

the solution becomes

/

~ 2z 1
it Ea)y, = 3/0*71//_%&-2&,)

Thus it merges into the inviscid wave solution. However, Eq. (108)

is not valid too far from the wave front; it bridges the gap between
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the wave front Eq. (109) and the inviscid solution obtained in
Section V. 4. 1.

The flow quantities are thus

F={, +(%ﬂ"7__17§_ _(‘_g‘%gzlef&[f_i (GItsignlk-2)T,Ce)]  (110)
° Mo :

(fl[ﬁ/lf__gf

3) L / g)

s (/11)
F(Z) (%)

where

R 7 T - »
V= E@S /;(ﬁ;— []_ (G)*5.7 @- )_Z&L(@(HZ)

p= ‘f;+7%, (7// f) [_/‘_é(wrsgyn/f-é%)zé'afﬂ (113)

T= T4 (T 7)(34)_&”4@ 1a(@ e 2L F ] e
i

The heat flux behaves slightly differently. The resgult is

(See Appendix):

: _2G
%,; (4,; zG) sjn(f SSWAES ZG)J (115)

a—l,
where , ,L [ /"L‘/"L/ V"L/ ?2- ) is the hypergeometric
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function. 1

Near the wave front, more precisely

A -£)*
>

<= [

the above relations become

=fotfo —-T“-(h“) (lej( /x‘)‘* ;,@j —if;i;)g;‘{‘}eﬁq (116)
P= [+ 7% ) (/J/‘JF +@%~?§%‘% (118)
1=+ Bl %(ﬁ4 + gg ﬁ;;%i/i]e "7 (119)

On the wave front, G = 0, the solutions decrease with time like t-1/4.
However, the disturbance is not symmetric about the wave front.
Ahead of the wave front the amplitudes all decrease much faster than

behind the wave front.
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VI. DISCUSSION AND CONCIL.USION

» The solutions obtained here show that the motion is of the wave
type initially [(t/rf) <1], and later[(t/r‘f) >>1] is the result of the
interaction between heat diffusion near the plate and the wave motion.
The disturbances propagate along the characteristics for small values
of time. The presence of low order waves provides diffusion of the
""discontinuities' across the high order waves (characteristics). The
Hjumps'' eventually damp out to zero as time increases. At large values
of time, the main disturbance propagates on the low order wave, which
is the isentropic sound wave in the linear case. The wave is practically
inviscid everywhere, except near the wave front, where diffusion
dominates. Near the plate there is a boundary layer that makes it
possible to satisfy the boundary conditions, and also provides an interaction
between the viscous and inviscid flows.

The viscous parts of the solutions inside the boundary layer
damp out very fast and leave the motion inviscid., For large values of
time and far from the wave front, the inviscid solution goes like
1/ )/m . However, near the wave front, diffusion is im-
portaﬁt. On the wave front, the amplitudes decrease like t_l/4, The
damping is not symmetric about the wave front; the disturbance damps
out faster ahead of the wave and slower behind the wave.

As mentioned before, the kinetic theory is capable of describing
the flow field for all densities, from the free molecule flow at very low
density to the Navier-Stokes continuum regime. Rayleigh's problem
for (t/Z‘f) << 1 has been worked out by Yang and Lees13 by using the

collisionless Boltzmann equation. The free molecule solutions obtained
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there can be used as a basis for comparison for our solutions at the
beginning of the motion.

Ast—> 0, Eqs. (60), (61), (62), and (64) give the following

results on the plate:

lim p (0, t) = p, - 0.2 [(TW_TO)/TO] p
t->0

(o]

Hm T (0, t) = T +.44(T_-T )
- [¢] w [}

t=>0

Lmp (0, ) = - P (0, B=py+ (1/4) p, [(T T )/T, |
and

lim g (0,t) = L1p, JRT)/x [(T_-T)/T_]

Eqgs. (3.5), (3.186), (3.27), and (3. 35) from Reference 13 give

the results for diffusive reemission:

i.e., a=0, andfor [(TW~TO)/TOJ <<l

lim p (0, 1) = p_ [1+ 3 (/T /T -1)]

>0

= Pp T 25 P, [(TW-TO)/TOJ

) 1+/T /T
m T (0, £) = T —
t=0 1+/T /T

_ 1 .
= T0+ 5 (TW TD)
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lim p (0, E)
t->0

p, [1+% (VT_/T, -1

H

Py + (/4 p, [(Ty-T)/T, ]

Lmgq (0, ) = p, V@KT)/x [(T-T)/T, ] -

t->0

The present results agree fairly well with those obtained by
Yang and Lees, the numerical differences occur because of the crudeness
of the four moment method and the presence of finite '"jump'' across

... 4
characteristics ™,

The classical continuum limit gives

(T-To)/TW-TO) = erfc (y/ YE—_\)ot

Eq. (70) (as well as Eq. (88) ) gives

2 Y =
T-T (. 322 —— +. 152-2-1) —
T erfc { Y ) - e “o YE7 #e erfc ( 7 __ 4, 39 //" t) o
w Q V6 ))ot ‘/él)ot Mo

70
- 15222t~ L)

7 S 1522 (1 - 22)
+.25 e erfc | /15272 (t - L) |

For t and also [t - (y/a.,)] ver large, or , in other words,
for large values of time and far from the wave front, we obtain the
classical result, since the complementary error function can be ex-

panded into a power series

2

erfc:c:l—erfx:—f-——-—[l- < #

+ -
T ox 1 (2x)  2f(zx)¥ ]
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As we have shown in Section V, Fourier's law holds inside the
boundary layer. Also, when t becomes very large and y is finite, in
other words, for very large time and far from the wave front, the heat

flux reduces to

- 2
7 2 -2

BT, Ty~ 7o 'ﬂg.@%"‘ 152 7ag T o 4 35’//:7)
g a W~ /o o @
= P [6 e

27 (o)

y 7 A /;7:-(”_“__ .. 37/")
' VeiE \

v g.7 /% / ~ u®6i)t

) s o] 7 é

i)

- k_ (9T/8y)

where

k= (15/4) Rt :

Figure 9 showé the comparison of the actual heat flux with the
c lassical Fourier's law, and Figure 11 shows the temperature profiles
and the classical and free molecule limit on the plate.

The isothermal, low-speed Rayleigh problem was worked out by
L. Lees4 as a demonstration example for the moment method. There
is a close similarity between that problem and the present one, At
first, the. solutions have a wave=-like behavior. Collisions between
particles are relatively infrequent when [(t/a‘f) < 1} ; thus the diffusive effects
are secondary. The over-simplified version of the two-stream Max-
wellian employed here introduces a certain averaging process over the
particle velocities, and the choice of four moments results in two
characteristics propagating into the fluid with speed ¢, =W§W/§T;

and c, =,/(5/3)-(f173/3) v RT_~ , respectively. The characteristic
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speeds have no physical meaning at all; they depend entirely on the
unknown functions that we choose and on the moment equations we use
(since we can take any moment of the distribution function in order to
get a set of differential equations). If more moments are taken, more
characteristics appear, and in the limit the physical quantities are
"smooth! even for (t/Z“f) <<,

The discontinuous behavior in the solutions as sbc‘iated with the
finite number of characteristics with finite speeds can also be removed
by replacing the distribution function employed here by a more realistic
one (discﬁssed in Section Il. 1); that is, = fl for §y > (y/t), = fz
for §‘y < (y/t). Hence, one may expect two characteristics with speed
varying with (y/t), and approaching infinite speed far from the plate
(see also Reference 4).

It is remarkable that even the rather crude splitting of the
distribution function employed here leads to solutions for mean normal
velocity and temperature that show very clearly the transition from the
nearly collision-free regime to the Navier-Stokes regime, which is
characterized by a boundary layer merging into a diffuse ""wave' (Fig-
ure 15). This simple example shows that the classical picture of a
thin thermal boundary layer at the plate surface plus a sharp acoustic
(inviscid) wave front 'far! from the plate surface is never really
correct. In fact the older iteration schemes (Van Dyke14) in powers of
1/ YT that start with the Rayleigh~-type thermal layer always lead to
an artificial singularity of the type (t - % )-% at the wave front. They
can never be linked up properly with the correct behavior for

(l/f‘f)(y - g ) < <1, which determines the solution near the wave front.
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However, the Navier-Stokes-Fourier equations, plus a temperature
jump boundary condition, seem to bé perfectly adequate to describe the
flow when (t/?"f) 2 2-3, provided one properly accounts for the inter-
action between the diffuse wave and the inner thermal layer.

For a large temperature jump on the plate, the problem is
non-linear, and the mean normal velocity is no longer small compared to
the ambient sound speed. In that case the distribution functions employed
here have to be modified; at least the normal velcotiy component has

to be taken into account, The simplest formulation is

= exp
1 (2nRT, ); Tl

in region I

in region II

2 2. 2
y _ 112 o [ i §X +(§y'—V) +§Y
2 - 3 P ZRT,

(Z-u'RTZ) /4
where 0y, n,, T1 s TZ. and v are five unknown functiong. Five
moments must now be taken, corresponding to the three conservation
equations, plus one moment equation for qy and one for p - When
(t/Z“f) < < 1 it should be possible to find solutions in the form of power
series in (t/z’f). On the other hand, when (t/z”f) > > 1 the problem
reduces to a viscous interaction problem with a shock wave in the‘
"external" flow, and the finite viscous stress and heat flux just behind
the shock must be taken into account.

In the present problem, the stress p___ vanishes identically

because of the choice of four moments and the linearization. Therefore

we have only four mean quantities (density, temperature, velocity, and
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heat flux) which are uniquely determined by the four unknown functions
n; o, 0, Tl , and T2 . All the diffusion is accomplished by heat
conduction when (t/Z‘f) > 1, and not by viscosity. In a linear problem
this idealization is adequate, but in a non-linear problem at least one

additional moment is required to give an independent status to pyy and

provide for viscosity.
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APPENDIX

EVALUATION AND ASYMPTOTIC EXPANSIONS

OF SOLUTIONS NEAR THE WAVE FRONT

The outer solution for the temperature perturbation is, in the

transform plane,
ﬂ/ e e~ —
}—/“‘, Q. (o) = Fexp[- (/2Fe /ﬂ/“{'ﬁe ~/E )T ]

where F(s) = gf—ﬁé;i ~when only the highest order term in s is retained

as s—>0 . The inverse transform is

7 G5, f Fle)exp [- (27 g ~/5 Re ] expat de

We remove the branch point at s = ~ (5/6) Re by the conformal trans-
fc:)rrnation15
26 & <~ = 5 2 /)
s = =T [ or e ¢ (s

Then we obtain

_ e ] )
j“@«%‘w:g;/ S_F,(f]@f/a[g{z‘ (L pwg +2w V] ac
w z :

where
£ SI=F(RE1))
s 7 y /L?Caj:
I = )L?e,t P VLL = /3?;
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Let
71”(5):5'2;2@5 + 2w —/

Then the saddle points occur at the zeros of f'( ).

F5) =25 —2 =0

5‘:.'_':_0\/

At the saddle point

a -3
FEC, )= =20 %20 =~ &=/
2 4.
Then the integral contains the term 1‘3J<'/°/_’~ S-é. [w—~1) X _7

(w~1)2' is minimum (zero) atw=1( 5, = 1). This result indicates

that for large t', the disturbance is concentrated near w = 1, i.e.

E)

Y= /(5/3) t , the sonic wave front. Now write the exponential

function as

exp [Se(s-1)]epls £-¢08-12]

and assu.rne/(t' - y')/is bounded as t' — w . Then the path of the

steepest descent]'6 passes through the saddle point = 1 with

L, (_S'-——/jlz:o

Hence the steepest descent path is
&= [+a 7

Along this path the exponential function is

exp [~ £ L ta 5 A=3079]
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Near $ = 1, the function§” £ ($ ) becomes

~ VE /
(s)& Ve 1,
5% S-J S He (5 ~1)=

Hence the outer solution becomes

[‘I"AlDO
o /

/ | ~ ~ / P 2 ;
};’ (QM[ é(/ /i.)~ ﬂ/‘, ‘[j'm (_g —{Jt EX/D[Z[Z‘ G-—IJ i -Sf[i _;L/) -(S-_/)\]Q’S-

—_ 2 e *{-Z'//\l .
- [[C “ ces[{[fw"/)\];éé

PPt N
-+f€ ?t/\-ff'n[s":[f'—i’//\]/—a—/f_

where Ae e = ¢ —/ . The integrals may be evaluated in terms of

Bessel functions 1 7, giving

oo J"Lt/z.

—

[ e e [£ (rf—f,w,x]:;\;\

6

 TE e BV 5 E)ve-g0°
= 2/&/5;&/9[ Pt ]/J/f‘v"/-[—j IR ]

since \/—:3"_ (Xx) = /%—h Cas X
- 2

= ﬁ?’z“/\ , IS4 4 A

ST 77 (E%sa)*) [~ A E)”

' - Dz
since 5{,"7"72"]_2;(/\’):\/-7,—/\/ s (A~ —&}Z/J:[/vér“j/ﬂ;r
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Hence

[ 6 oz~ G)(1 =4 )*
};;@go((//f_)—- 2@- /D[ P (V)f/ J/d //(-/_07/

) ea ) CINEAD
{-\[ 2050 f]+5jn/z‘~oﬁjf[09(é)é ]j
Near the wave front

() (# qf) ~ I g(/)z
,j] ‘..

P ()2 —“/i— /3)//2";

TGO~ A &) -a)° 3
lsz M/)z )[ é’(d%uf’]

Hence

a T Ty (/ (1’ ?J
%—w(gau_(t/f\)"“ Z@} [ f[%_)j’ J

| nZ S
[p T g Fke ]

z (= )4 /':t—’L (/aad__‘ﬁ /] Grlff ce)*

F(z) X (z) ¢7 <P// vE

The main part is symmetric with respect to the wave front and decays
as ,é "z . The second part is anti-symmetric with respect to the
wave front, negative ahead of the wave, and thus it gives skewness

to the wave shape, but it decays faster than the first part ( as t-—3/4)u

Asymptotically the Bessel functions behave as follows
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TG0, 1469~ Gz e Fre-o0i]

+ (exponentially small terms)

These two differ only in the exponentially small terms. Thus far

away from the wave front;

(1) ([ *}v exponentially small, for t' - y' <0, or ahead
(24 /} Y

of the wave

@ 4 8, £ 5) A s

for t' - y' > 0, and thus it merges into the inviscid wave
field.
S -
All the transformed variables behave like (90 LY, s) except

the heat flux which is evaluated as follows

= R -~ (e ~—(/J e
T (=58 P (-/::=;"~)<9aw(0 ) ﬁ T A A,

o 6 F //ea, % p Tt Ta-To e/(/{ [‘/—71;4,_ Frliz]

Following the steps as evaluating of ‘%«4 we have as § — 1

g/_![j-‘j————éﬁ;ﬁ?/h’r//\e‘&/g

(Te
S‘? [ = /\6"

Then the integral becomes
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g it'o
% (5F) <~ J;;‘lij &k 2 @7;25 f n (c-1)%exp [SH1s-1%5 H§(s=1)]Jdc
e t/\ — Y
:_f/%‘/;_?_g? 7!;(/~ {[ )\e [COS}(* (7))\}0/)\
L7 mE AL s S0 A
l I A ]‘”\}
. r(3) (=) ) (J*J) 3/</- L,)(J‘ ~4)3

() SEre-y’ Loy [ el
/'7(4) /F/ Z.) 2,' Oa,(._f/)[ ) 70t ‘7//7 ;(4’ AT ))}

a* . .
where (F. (g_“/"/aﬂ'”j g+l Zp> is the hypergeometric

. 1
function.
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