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ABSTRACT

A study is made of the dynamic response of one and two degree of freedom
systems having a bilinear hysteretic restoring force. In the case of the one degree
of freedom system exact steady state solutions are obtained for both square wave
and trigonometric excitation, It is thereby shown that the system exhibits a soft
type resonance and that there exists a critical level of excitation above which the
system displays unbounded resonance. An approximate steady state theory for the
one degree of freedom system is investigated and on the basis of this theory it is
found that the system is stable and possesses a single locus of vertical tangency.
The results of the exact and approximate steady state theories are supplemented
by\electric analog studies of both the ‘harmonic and ultraharmonic response,

The response of the one degree of freedom system to transient excitation of
finite duration is also examined and it is noted that certain rather general
conclusions may be made about the final state of the system without reference to
the specific time history of the excitation,

A first order approximate theory for the steady state response of the two
degree of freedom system is formulated and it is shown that there are two critical
levels of excitation for unbounded resonance. The existence of loci of vertical
tangency is demonstrated and the stability problem is treated in limiting cases.
Direct numerical integration of the equations of motion is carried out for a number

of specific cases as a check of the approximate theory.
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I. INTRODUCTION

The present investigation deals with the dynamic behavior of systems
having a hysteretic restoring force (or moment) which may be represented as a
piece-wise linear function of the type shown schematically in Fig. 1. Because
of the twofold slope character of this function, a system Which possesses a
restoring force of this type is referred to as a bilinear hysteretic system. It will
be noted that for the limiting case in which the slope of the extreme upper and
lower portions of the restoring force approaches zero, the system reduces to the
well known elasto-plastic system.

Examples of physical systems which exhibit some form of hysteresis are
nuﬁerous and in many cases the hysteretic behavior may be adequately described
by the general bilinear characteristic. This is particularly true of systems
which possess Coulomb damping and systems which contain one or more elasto-
plastic elements. Systems of the first type include most built-up structures of
riveted, bolted, or clamped construction in which the combined effect of friction
and elastic forces may easily result in a bilinear hysteretic restoring force. On
the other hand, systems of the second type occur whenever use is made of
structural materials for which the elasto-plastic engineering approximation to
ryielding" is satisfactory; i.e. some steels, masonry in shear, ete. Therefore,
the results of any study of bilinear hysteresis will be applicable to a rather wide
range of engineering problems.

Within the past few years there has been considerable interest in the
dynafnic response of both the general bilinear hysteresic system and the limiting

elasto-plastic system. Among the earliest treatments of the subject is that due
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(1,2,3) who investigated the transient response of the general

to L.S.Jacobsen
system by means of graphical techniques and also did work in developing a
mechanical analog capable of representing hysteretic behavior. More recently,
/ L. E. Goodman and J, H. Klumpp (4.5) have done both analytic and experimental
work on the dynamic properties of a laminated beam with a slip interface which
is an example of a syStem having the general bilinear hysteretic character. The
response of the limiting elasto-plastic system was considered graphically for
transient pulses and square wave excitation by R. Tanabashi(6) and later, the
same author(7) studied the transient response of the general system using
graphical techniques and an electric analog, A similar investigation was also
made by W. T, Thompson(s) who employed electric analog methods to solve for
the response of the general system to a unidirectional force excitation.
J. E.Ruzicka ®) has used both an approximate analytic theory and electric analog
techniques to study the dynamic properties of a vibration absorber which has the
general bilinear hysteresis characteristic, and the transient response of struc-
tures which contain one or more elasto-plastic elements has been considered by
G.V. Berg(lo) and by T.Kobori and R. Minai(ll).

The stability of the steady state motion of the general system has only

(12). Also, this same author

recently been demonstrated analytically by N. Ando
has formulated an exact analytic solution for the steady state response of the
limiting elasto-plastic system and has made extensive analytic studies of the
transient response of both the one and two degi‘ee of freedom systems of the
general type.

The behavior of the general bilinear hysteretic systeirn has been studied

quite thoroughly using approximate analytic techniques in a series of three papers



by T.K. Caughey 13 1% 1),

In these papers the author successfully investigates
the response of the one degree of freedom system to both trigonometric and
random excitation and further treats the problem of the forced oscillation of a
semi-infinite rod exhibiting weak bilinear hysteresis. For the case of the one
degree of freedom system which is subjected to trigonometric excitation, electric
analog studies were also made.

The objective of the present investigation is to both complement and extend
the efforts of earlier Woi‘kers. To this end, the response of the one and two
degree of freedom bilinear hysteretic systems will be studied using graphical
constructions, exact and approximate analytic techniques, and electric analog
methods. It is hoped that this work will result in a more complete understanding

of the dynamic behavior of such systems and that it will at the same time

stimulate further study of the subject.



II. ONE DEGREE OF FREEDOM SYSTEM

A. General Considerations

Before beginning a detailed investigation into the behavior of the bilinear
hysteretic system, it is important to formulate the problem as clearly as possible.
For this reason, the next three subsections will be devoted to development of a
simple and concise representation of the system equation of motion along with a

discussion of the general nature of the steady state problem.

Explicit Statement of the Differential Equation of Motion

As a result of the assumed piece-wise linear character of the restoring
force, the differential equation of motion may be expressed in terms of a set of
linear differential equations each having a certain restricted region of validity.
Let the parameters of the hysteresis loop be defined as shown in Fig. 1 with
equivalent spring constants kl and k2 (k2 <k1), and a nominal "yield" force Fn'
Then, in the regions of restoring force constant kl, the differential equation of

motion becomes,

2
m 3;%+k1y + (sgn dz’) (k |y Fn)(k1 - kz)/k1 = P(7) (2.1a)

and in the regions of restoring force constant k2’ the corresponding equation will

be

m —-—+k2y+(sgn ) ¥ Ly ~k,)/ky = P(7) 2. 1b)

a7

wheré P(t) is an exciting force which is applied to the mass.



The hysteresis loop of Fig. 1 has been drawn symmetrically with respect to
the coordinate axes as would be the case for certain classes of steady state oscilla-
tion with k2 finite. It may, however, be desired to investigate cases in which this
symmetry does not exist as, for example, in the solution of transient motion. In
such cases, equations (2.1a) and (2. 1b) may still be employed provided only that
the most recent maxima of the displacement is used for Y- More will be said

regarding this in a later section.

Introduction of Dimensionless Variables

The two equations (2.1a) and (2. 1b) are sufficient for analyzing any motion
of the generalized bilinear hysteretic system but their use is complicated by the
necessity of separately specifying each individual system parameter for every
solution. Thus, one seeks to express these equations in terms of certain dimen-
sionless variables which contain only ratios of the various system parameters.
This not only leads to considerable simplification in the statement of the equations
themselves, but also enables investigation of an entire family of systems by means
of a single quantitative solution.

* Define a pair of dimensionless displacement and time variables by means

of the relations,

o

o
_F y

n 2.2)
t = Vkl/m 7.

Then, these new variables may be introduced into equations (2.1a) and (2. 1b) to
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obtain the dimensionless equations of motion,

X+ X + (sgn k)(lxml - 1)1-a) = pt); (lxml - 2)<- (sgn x) x < |xm| (2.3a)
X + ax + (sgn X)(1- a) = p(t) ; ~(egn x) x <(Ix | - 2). (2.3b)

In these equations, the dot implies differentiation with respect to t, « is the ratio
of k2 to k1 (0 < x < 1), X is the dimensionless maxima of displacement, and
p(t) is the ratio of the actual exciting force P(z) to the nominal yield force Fn.

For much of the later work it will be convenient to express the two equations
of motion (2.3a) and (2.3b) as a single differential equation

X + f(x,X) = p(t) (2.4)
where it is apparent that

X + (sgn }’()(Ixml - 1)(I-a) ;5 (Ixyl -2)<- (sgn X) X < 1%

f(x,x) = )
ax + (sgn x)(1- a) ; —(sgn x) x < (Ix | - 2). (2.5)

Then, f(x,x) may be thought of as a normalized restoring force having the config-
uration shown in Fig. 2. Looked at in this way, the initial slope of the restoring
force diagram and the force level at which a change in slope first occurs have

both been normalized to unity and the slope of the second linear portion has become
oa. This concept of a normalized hysteresis loop will lead to considerable simpli-

fication in the application of both graphical and analytic methods of solution.

Orientation of the Steady State Hysteresis Loop

For the remainder of the present study, any analysis of steady state response
will be restricted to cases where the periodic excitation has zero average value

and can be expressed as a Fourier series which involves only odd functions of the
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time. Thus, if T is the period of the excitation, p(t) must satisfy the conditions

p(t) = - pt + T/2) = p(t + T)

t+T
f p(t) dt = 0.
t

Now, if one considers only those cases in which the displacement x is also

(2.6)

a periodic function containing only odd order harmonics but having a possible

average value different from zero, then this displacement may be written as

where X is a constant and

E(t)=-E(t+T/2) = E(t+T). - @.8)
The inclusion of a constant term in the expression for x implies that the hystere-
sis loop for such oscillations is displaced from the origin as shown in Fig. 3.
Thus, from (2.5) the restoring force may be written as a function of the new

variable giving

£+ (sgng)(E | - D(I- @)+ ax,

f(x, x) )
af+ (sgn¥) (1- o) + ax,

i

f(E,EHtxXO 2.9)

where due to the assumed nature of &,

t+T )
f f(E,E)dt = 0. (2.10)
t

But now the differential equation of motion may be expressed as

.e

‘€+f(€,§)+ax0:p(t), 2.11)

where for periodic solutions E = X must have a zero average value. Thus,

averaging (2.11) term by term over one complete cycle and using relations (2.6)



and (2.10), one is forced to conclude that

ax, = 0. (2.12)

For the general case of finite o this result requires that X be zero or
equivalently that the hysteresis loop be symmetrical with respect to the force and
displacement axes. However, if o is zero as in the limiting case of elasto-plastic

behavior, equation (2.12) is satisfied for any arbitrary offset x , and the hystere-

0’
sis loop need not be centered about the origin.

The above analysis although generally applicable to any excitation satisiying
conditions (2.6) has been somewhat severely restricted by conditions (2.7) and
(2. 8) on the nature of the solution. To be sure, solutions satisfying these condi-
tions do in fact exist and may be shown to be stable but this does not necessarily
preclude the possibility of the existence of unsymmetrical solutions containing
Odd order harmonics. Whether or not such odd harmonic solutions actually exist
in a particular instance depends on the detailed character of both the system and
the excitation. Thus, formulation of any completely general criterion for the
existence of these solutions becomes quite involved, However, for certain special
cases of symmetric square wave excitation, it may be shown rather easily that
for finite « all steady state oscillations regardless of their specific composition
must correspond to a symmetric hysteresis loop configuration. These cases will
now be discussed,

Let the hysteresis loop be displaced from the origin by an amount X and
consider the special case where the excitation changes sign from positive to

negative while the system is in a state represented by some point on the upper

linear segment of the restoring force diagram. This case is shown schematically



FIGURE 3. TYPICAL UNSYMMETRIC
HYSTERESIS LOOP
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in Fig. 3 where h and c denote the points at which the excitation changes from
positive to negative and negative to positive respectively. The point h may be
chosen arbitrarily but the point ¢ will then be fixed by the periodicity requirement
on the solution. In general, these two points will not be oriented symmetrically
with respect to the hysteresis loop even though the time difference {rom point to
point in each direction is exactly one half of the period of excitation. The reason
for this will soon become apparent,

Also specified in Fig. 3 are the points d and g defined such that the distance
b-c equals f-g and the distance d-e equals f-a. These points will be referred to
later in the discussion.

For square wave excitation, the differential equation of motion (2.4) may
be integrated directly over regions where the function p(t) has a constant value
+F., Thus, referring to the figure, the velocity at any point on the linear segment

a-b, a distance { from the point of maximum displacement, will be given by

9
gz -]; I:f(x,fi)-—p(t)]dx

Xp+X, - § Xo+ X, =T
_/ 07 "A [x—(x0+xA—1)(1—a)]dX—/ 0" A “pax
X+ X, Xy + Xy

DO bt
<

(x0+xA— C)Z— (x0+ XA)2
= - +‘§(XO+XA~1)(1-oc)+F§ (2.13)
2

Similarly, the velocity at a point on the segment e-f, a distance 7] from the point
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of minimum displacement, will be given by

Ry =X, + 7 X -X,+7
1.2 0~ *aA 0~ %A
> ¥y —/X . [x+(xA—XO—1)(1—cx)]dx+/X’_X F dx
0~ *aA 0~ *a

- f?;(xA—XO-—l)(l-— a) + F7.
(2.14)

Therefore, for equal distances along the respective segments it is seen that

(vt - vy) coy = 28500 (2.15)

or, stated more simply, if «a is finite,

|v§| > | vyl (2.16)

for all § =7 on the segments a-b and e-f.

If the equations of motion are further integrated along the segments b-e and
f-a, it can likewise be shown that for finite o the velocity at every point on the
lower segment is greater than the corresponding velocity on the upper segment
so long as the excitation retains the same polarity. However, for periodic
oscillations, the system must come to rest in the same absolute distance on both
the upper and lower segments. Thus, since the energy absorbed internally is
less and the velocity is greater on the lower segment, it is necessary that more
energy be withdrawn externally on this segment than on the upper one. This may
be accomplished only if the external force changes polarity from positive to
negative at a point ¢ on the lower segment such that the distance b-c is less than
the distance f~h, (See Fig. 3)

Finally, if the equations of motion are integrated along the two segments

h-a and d-e, it may readily be shown that for finite o the velocity at each point
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on the former segment is greater than the velocity at the corresponding point on
the latter segment.

Thus, in summary, it will be seen that the velocity at every point in the
composite range h-c must be greater than that at each corresponding point in the
composite range d-g. But for both ranges the absolute distance spanned is the
same, Therefore, if th, c denotes the time required for the system to move from
the state represented by point h to that represented by point ¢ and ¢t dg denotes a

similar time related to p‘oints d and g, the above analysis implies that for periodic

solutions with finite o and X

e <td g 2.17)

Furthermore, since

tc,h>td,g’

it is apparent from (2.17) that

t (2.18)

hc<tch'

’ ?

Now the times and t are determined solely by the external forcing
,C c,h

function and if, as stated earlier, the discussion is restricted to excitations
satisfying (2.6), these two times must be equal. Thus, (2.18) is a contradictory
result and the assumptions upon which it is based must he either inconsistent or
invalid, Since periodic solutions may be shown to exist throughout the entire
range of consideration, this means that the assumption of a finite offset X must
in fact represent a physically unrealizable condition when o is greater than zero,

Therefore, within the limits of the above analysis it may be concluded that all

steady state hysteresis loops will be symmetric if o is finite. On the other hand,
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if a equals zero, the arguments leading to (2.18) automatically become invalid
as seen from the velocity difference expression (2.15). Indeed, in this limiting
case it can be demonstrated that tc,h equals th, o for all periodic solutions
regardless of any finite offset X4

A sebond special case which can be treated by the same type of analysis is
that in which the excitation changes from positive to negative at some point on the
segment e-f and from negative to positive on the segment a-b of Fig. 3. Assuming

both an initial offset x . and a finite o for this case, one is again led to an

0
expression of the form of (2.18) and again it is concluded that for periodic solu-

tions either x, or o must vanish. Thus, by means of a relatively simple analysis

0
of two special cases it has been possible to demonstrate the symmetry of steady
state hysteresis loops over the range of phase angles from 90° to almost 1800.

If one attempts to apply the above analysis to cases in which the phase angle
is between 0° and 90° or very close to 1800, it will be found that a straight forward
expression like (2.18) can no longer be obtained. Instead, it becomes necessary
to make a more detailed study which depends, among other things, on the actual
value of the amplitude of the excitation, In particular, for phase angles only
slightly less than 90° it will be seen that the arguments on velocity difference
seemingly breakdown most violently for large values of excitation. This,
however, is also just the condition for which one would expect ultraharmonic
response to be a factor. Thus, the analysis can become quite involved.

Throughout the remainder of the present work, the problem of unsymmetric
hysteresis loops will be avoided by considering only those solutions which

satisfy conditions (2.7) and (2.8). Under this restriction, it has then been shown
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that all steady state solutions will correspond to symmetric hysteresis configura-

tions so long as o is finite.
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B. Steady State Phase Plane Solution

Graphical techniques are often employed as a starting point in the study of
non-linear systems where the complexity of numerical or other techniques tends
to obscure the general character of the solution. Used in this way, a graphical
solution may many times point the way toward considerable simplification in the
subsequent application of both exact and approximate analytic techniques. It is
therefore quite reasonable that investigation of the bilinear hysteretic system

should begin with a consideration of graphical solutions.

Description of the Method

In general, graphical methods are applied only when the system differential
equation is autonomous. This, howeyer, is usually the case only as a matter of
convenience and not because of any inherent mathematical limitations. Thus, it
is not surprising that 1..S. Jacobsen(l’ 2) has drawn together the ideas of numerous
earlier workers in order to formulate a general graphical approach which is
applicable to both autonomous and non-autonomous systems. Although this so
called Phase-Plane Delta Method is of greatest value in obtaining the transient
response of non-autonomous systems, it may with some additional effort be
applied to the solution of the steady state response of systems subjected to periodic
excitation. It is this latter application which will be considered below.

The dimensionless differential equations describing the behavior of the
bilinear hysteretic system are equations (2.3a) and (2. 3b) of the previous section,
For purposes of clarity these equations are restated as follows:

X+ x +(sgn X)(Ix | - 1)(1-a) =pt); (x| - 2)<- (sgn X) X <Ix | (2.19a)

X + ax+(sgn x)(1- a) = p(t) ; —-(sgn x) x< (x| - 2). (2.19b)
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Here, as before, the slope of the initial linear portion of the restoring force
diagram has been normalized to unity, the slope of the second linear portion is &,
and X is the maximum displacement.

For the present analysis, it is desirable to write equations (2.19a) and
(2.19b) in the equivalent form,

X + X + (Sgn }'i)(ixml - 1)(1- a) = p(t) (2.20a)

X+ax - (sgn x)(Ix| - 1)1~ a) = p(t). (2.20b)
Then, if the second time derivative of the displacement with respect to time is
expressed as the product of the velocity and the first derivative of the velocity
with respect to displacement, both of these equations may be written as
X438 5

- ; @.21)
v

2

where v is the velocity and

+(sgn )’()(|xm| - 1)(1- a) - p(t), in the restoring force regime of slope 1

8
Lz2™ (sgn x)(|x| - 1)(1~a) - p(t), in the restoring force regime of slope «.

Equation (2.21) is now in a form which has a straight forward graphical and
geometrical interpretation. Let P(xl, Vi tl) be that point in phase space which

Then, from (2.21) the phase plane

represents the state of the system at time tl.

contour passing through P will have a slope

dv _“X1+ 81,2(X1= tl),
dx p vy

Viewed geometrically, this is just the slope of a perpendicular to the line segment
connecting P with the point v= 0, x = ~ 8(x1, tl); [See Fig, 4} . Therefore, the

state of the system at some time only slightly greater than t, may be obtained

1
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graphically by moving an incremental distance away from P in the direction of this
perpendicular to a new point P (xl + Axy, vyt Avl, tl + Atl). At this point a
new slope may be constructed enabling advance to a new system point, and so on.
By taking successive incremental steps in this manner the entire phase plane
contour may be plotted.

It should be noted that the method of construction described above is quite
similar to the well known Liénard construction. In the present case however, &
is a function of the diSplécement and time rather than of the velocity. This means
that § can not be obtained by a simple graphical procedure like that used in the
Liénard method, but instead must be evaluated explicitly for each successive step
along the phase contour. Thus, it now becomes necessary to know both the displace-
ment and time corresponding to each new point of the construction. The displace-
ment may be found directly from the coordinates of the system point but a slightly

less direct procedure is required in order to evaluate the time.

Evaluation of the Time-Variable

Consider an infinitesimal variation along the phase contour as shown in
Fig. 4. Then, if o is the length of the line segment connecting the system point
P with the point v = 0, x = - 8§ and ds is the magnitude of the vafiation along the
phase plane contour, the infinitesimal angle d @ through which o moves is given
by

d6 = ds/p . | 2.22)

Introducing the geometrical relations

ds = /(@)” + @n?

P :\/V2+ (x +8)21 R




FIGURE 4. METHOD OF PHASE-PLANE
CONSTRUCTION
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expression (2.22) becomes;

~

dx 4|1+ (dv/dx)?

dé = - - (x+8)2/v2 (2.23)
But from (2.21) the two radicals appearing in (2.23) are identical. Thus
de - dx = dt,
\
or, in incremental form
At = A8, ‘ (2.24)

Using equation (2.24), one may now calculate the incremental time difference
corresponding to each successive step along the phase contour and thereby keep

a cumulative tally of the total time t which may then be used in the evaluation of

5.

Application to Solution of Steady State Motion

When a damped system such as the bilinear hysteresis system is driven by
a periodic force excitation, there exists in general one or more periodic solutions
each of which is characterized by a closed contour in phase space. In the case of
a stable steady state solution, this contour actually represents a limiting curve
which will be approached arbitrarily closely by all contours having their origin
within some definite region of convergence for the particular solution. An unstable
solution, on the other hand, will have no such region of convergence and its
corresponding closed contour may be obtained only by exact prescription of initial
conditions and precise determination of the succeeding motion,

‘In practice, graphical techniques will usually be employed in the construc-
tion of the phase contour and the approximations introduced by this mechanism will
make it impossible to obtain unstable steady state solutions, Therefore, if a

graphically constructed phase contour approaches some limiting configuration for
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large time, it may reasonably be assumed that this limiting contour represents

one of the stable steady state solutions which exist for the system in question.

Results and Conclusions

Because of the nature of the method for determining t, the simplest form
of periodic excitation which may be handled by the above technique is square wave
excitation. In this case, p(t) will be constant except at discrete multiples of the
half period of excitation and explicit evaluation of this function need not be made
at every step along the phase contour.

The result of a typical graphical construction of the phase contour for a
bilinear hysteretic system excited from rest by a square wave forcing function
is Shown in Fig. 5. At least three significant observations may be made from
this phase plane diagram and these are discussed below,

First, it should be noted that a limiting phase contour most certainly exists
in this case thereby implying the existence of at least one stable steady state
solution for the particular frequency and magnitude of excitation considered here,
Whether this steady state solution is the only one which exists cannot however be
inferred from the figure and would have to be investigated by other means.

Secondly, convergence on the steady state solution is seen to be quite
regular and also rather rapid. This same characteristic was observed in other
constructions not shown here and is used later in the development of a method of
exact solution for the steady state motion,

Finally it will be noted that except for a slight bulging along the displace-
ment éxis, the limiting phase contour has a general shape which is very nearly

circular. Hence, it would appear that the solution wave forms for the displace-
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ment and velocity may be almost harmonic in nature, This fact will be used later
in establishing the validity of a set of assumptions which enable development of an

approximate method of solution.
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_+|

7

FIGURE 5. STEADY STATE PHASE-PLANE CONSTRUCTION
SQUARE WAVE EXCITATION - a=050,r=0l0
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C. Exact Steady State Solution — Square Wave Excitation

The form of excitation which is most easily analyzed mathematically is the
square wave excitation embloyed in the previous section. Use of such a piece-wise
constant forcing function leads to substantial simplification in the analytic form
of the solution and thereby permits more detailed study of certain phenomena
arising strictly from the non-linear or quasi-linear nature of the system.
Furthermore, it will be seen later that the essential features of the steady state
response are the same for both square wave and trigonometric excitation. Thus,
the results of the square wave analysis may be used as guide posts in the treat-

ment of the more complicated trigonometric case.

Equations Governing the Steady State Motion

For the purpose of formulating the equations governing the steady state
motion, it will be necessary to divide the analysis into two separate parts; one
pertaining to solutions in which the excitation changes sign while the system is at
a point on a restoring force segment of slope o, and the other pertaining to
solutions in which the excitation changes sign while the system is at a point on

one of the segments of unity slope.

Case 1)- Excitation sign change on a segment of slope o.

Fig. 6 is a schematic representation of the hysteresis loop and displace-
ment wave form for the case in which the external forcing function changes sign
on one of the restoring force segments having a slope a«. In the particular
exami)le shown, the sign change has been taken as positive to negative on the upper

segment thereby corresponding to phase angles somewhat greater than 90°, This,



. t2 r — i:;) N 14 -——

FIGURE 6. HYSTERESIS DIAGRAM AND
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however, does not restrict the generality of the following arguments since p(t) may
be replaced by -p(t) at any stage in the analysis without changing the mathematics
of the problem.

If the amplitude of excitation is denoted by r, then from (2.3b) the equation
of motion along the upper most segment of the hysteresis loop will be

X+aX = +7 - (1- Q). (2.25)
and velocity x

Taking as initial conditions the displacement x at which the sign

1 1

of r becomes negative, the general solution of (2.25) may be written as

b'q

X:—&—i“;ﬂ(l—cosﬁt)+v_ozl—sinva't+xlcosva‘t. (2.26)
Now, after some time t2, the system displacement will pass through a maximum
X, and the velocity will become zero. Thus,

X
o _fr+1-a) 1.

X, = " (1 - cos Wtz) + 750 Sin \/a‘tz + X, cos va t, (2.27)
and

. . 1 .

XzzO:xlcosva'tz—;/—_,&-—[(r+l—a)+axl]sm'\/a't2. (2.28)

But, from (2.28)

)'cl‘\/a'
tan Vﬁ't2=(r+1_ X)+ 2.29)
Therefore, if \/&‘t2 is less than T,
1/2
o r+l-) l[ - : ]
Xy = o a r+1 a’.+x1a) +X10L (2.30)

. For subsequent motion the velocity will be negative and from (2. 3a) the
governing equation becomes

X+X=-T+ (x5-1)(1- o). (2.31)
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Specifying Xy and 5(2 as initial conditions the general solution of this equation is

X = [(Xz—l)(l— Q&) -r ] (1-cos t) + X, €OS t. (2.32)

Thus, if t3 is the time required for the system to traverse the entire unity slope
segment of the hysteresis loop, the displacement and velocity at the point where
the slope again changes to a will be

X [(xz—l)(l— a) - r] (1-cos t3) + X, COS t3 (2.33)

2

1

3

and

)'<3 - (aX,+ 1-a + 1) sint (2.34)

2 3°
But, due to the normalization of the hysteresis loop,

X, = X, - 2. (2.35)

Therefore, from (2.33) it may be shown that

2

+1-a +71) (2.36)

cost, =1~
3 (ocx2

For r positive, this expression implies that 0 < t3 <7 for all Xg > 1. However,
in the case of r negative it will be seen that there is a possibility of obtaining
values for cos t, which are less than -1. Under these circumstances, the system

3

velocity actually becomes zero before the displacement Xq is reached and the

hysteresis loop doubles back on itself. This is recognized as corresponding to a
type of ultra-harmonic behavior which, in the case of square wave excitation,
would be present even in a purely linear system. Thus, if the analysis of the
present system is restricted to high enough frequencies (well above w = 1/3)

such behavior should not be a factor. In this case then (2.36) may be used to

eliminate t3 from (2.34) giving

%3

.

- -2 (axo- a +1)/2 2.37)

2
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As the system displacement continues to decrease beyond Xg5 the equation
of motion becomes
X+ax=-r+ (1- a), ' (2.38)

and taking Xq and 5{3 as initial conditions, the general solution to this equation

may be written as

1- X

X = (1 cos \/_"t)+ 3 sin V_‘t+x cos Yo' t. (2.39)

Hence, if x 4 is the system displacement when the excitation next changes sign

and t4 is the time required for the system to move from Xq to Xy

2(ax -c7(+r)1/2
_(1-x-r) g _A1-r _ 2 .
Xy = X + x2 1 = ] cos '\/a 1:4 \/ZF sin V& t4

(2.40)

and
’\/—"( 21— )sm\/—"’t - 2(ax, —-a+r) cos\/'—'t (2.41)
But from the assumed nature of the excitation,

i -
ty = o5 - tg -~ tg
where w is the frequency of the square wave forcing function. Thus, using
equations (2.29) and (2. 36),
x Vo'
%-itan—l{ 1 ] - cos™? [1— 2 ]

va© r+1—a+x1cx (r+1—a+xloc)

t, =
(2.42)

Since the analysis has been restricted to cases which give rise to symmetric

hysteresis configurations, the periodicity conditions on the solution may now be
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written as

Xy == Xy (2.43)
and

£c4_->'<1. (2.44)

Therefore, the problem of obtaining the steady state response has been reduced
to one of solving the six equations (2.30), and (2.40) through (2.44) for the six
1’ X1s Xgs t4,_x4 and Xy - However, due to the transcendental charac-

ter of these equations, direct solution is at best very difficult. Thus, it becomes

unknowns x

advantageous to adopt the rather special techniques of solution which will be

discussed shortly.

Case 2)- Excitation sign change on a segment of unity slope.

Fig. 7 is a schematic representation of the hysteresis loop and displacement
wave form for the case in which the external forcing function changes sign on one
of the unity slope segments of the restoring force diagram. For the particular
case shown in the figure, this change has been taken as positive to negative but
this again does not restrict the generality of the mathematical arguments which
will follow,

Let the maximum positive displacement of the system be Xy and denote the
displacement when the excitation changes sign by X, such that the time difference

between x, and x,, is t,. Then, the equation of motion in this range becomes

1 272
X+x=T+ (x-1)1-a) (2.45)

and it is easily shown that

X

1

9 [r + (xl—l)(l— a)] + (1-r- o+ qxl) COS t2 (2.46)

and

X. = - (1-r- a+ax,)sint (2.47)

9-
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For displacements less than X, the equation of motion will be identical to
equation (2.45) except that r will be replaced by -r. Thus, if Xq is the displace-
ment at which the slope of the restoring force becomes «, and t3 is the time
required for the system to move from Xy to Xg, it is apparent that

X, = [-r + (2 -1)(1- oc)] (1-cos t,) + X, c0S t, + Kk, sin t, 2.48)
and

Xy = [-r + (Xl_})(lﬂ.“) - Xz] sin tg + X, cos t. (2.49)

However, due to the normalization of the hysteresis loop,

X, = X, - 2. (2.50)

Therefore, from (2.48) it may be demonstrated that

t a0 [Fe - @)] o %,
= COSs - itan s
3 {[X2+ r-(x,-1)(1- 0()]2 + kg}l/z Xg + To(x-1)(A- &)

(2.51)
where any ambiguity regarding the proper quadrant for t3 must be resolved by a

detailed analysis of (2.48).

As the displacement further decreases past x_, the equation of motion

32
takes the form
X+ ax = -r + (1- a). (2.52)

Thus, if x, is the minimum system displacement and t 4 is the time it takes for the

4

system to come to rest from the displacement Xa,

X
o Q-a-r) 1 - 2
Xy = % +to (O(.X3+ r+®&-1) cos Y& t4 +V55' sin \/oc‘t4 (2.53)

and

. 1 . .
X4=0=’\/’T{'“(°‘X3"' r+oa-1) sin \[o_c't4+x2 cos \/?x“t4. (2.54)
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But then from (2.54)

Ve'x,

+r+oa-1)’

£, = = tan "t
4 "’ (xx

(2.55)
3

where in this case any ambiguity in the quadrant of t 4 requires detailed study of
both (2.53) and (2.54).

Assuming that fhe steady state hysteresis loop is symmetric,the conditions
for periodicity of the solution may now be stated as

X, ==X, | (2.56)

and

m/w -t (2.57)

t2= 3—t4.

Thué, the statement of the problem has once again been reduced to a set of highly
transcendental simultaneous algebraic equations. In this case there are nine such
equations [(2.46), (2.47), (2.48) through (2.51), (2.53), and (2.55) through (2.57)]
t

and nine unknowns [x and t 4]. An indirect approach

1! X22 X27 2’ X3’ XS’ t37 X4:’

for the solution of this set of equations will now be considered.

Method of Solution for Steady State Response

The method of solution outlined below is based in large measure on
experience gained in the graphical construction of steady state phase plane contours.
Indeed, it will be seen that the validity of the iterative approach formulated here
is directly contingent upon the convergence of the graphical solutions discussed

earlier.

Case i)— Excitation sign change on a segment of slope «,

The method of solution in this case begins by arbitrary selection of initial
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values for the two unknown variables Xy and 5;1 (possibly guided by previous

solutions in the neighborhood of the desired solution). Then, using equations

(2.30) and (2.42) values may be calculated for x, and t4 thereby enabling evalua-

2

tion of x, and >'<4 from equations (2.40) and (2.41). Having determined x, and 514

in this manner, one may then solve for a new x_ and f(l by means of relations

1

(2.43) and (2.44). If these new values denoted by X]1- and xi

the steady state solution has been found, If, on the other hand, the two sets of

are equal to Xy and X1

parameters are unequal, ‘the procedure is begun anew using xi and 5(1 in place

1

of Xy and )’(1. This iterative process is then continued until the new values calcu-
lated in any one cycle are identical or nearly identical to the initial values used
to begin that cycle,

Convergence of the above procedure is difficult to demonstrate mathema-
tically but ‘may be inferred from the physical nature of the method itself. It will be
noted that the present approach is essentially just a formalized mathematical way
of constructing the system phase plane contour cvorrespinding to periodic excita-
tion from some arbitrary point in phase space. The only real difference between
the method employed here and actual construction of the phase contour is that
here only the end points of the contour are evaluated and this without the explicit
determination of all intermediate points. Therefore, since the convergence of
phase plane solutions has already been demonstrated in connection with the work

on graphical techniques, it is entirely reasonable to conclude that the present

method will likewise converge upon a stable steady state solution.

Case 2)— Excitation sign change on a segment of unity slope.

The method of solution in this case is very similar to that just described
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except that now the analysis is begun by selection of the two unknown variables

X1 and tZ' This enables solution for x

turn defines Xg, Xg,
be used in (2.53) and (2.55) to calculate Xy and t4. But, having determined all

9 and )'(2 from (2.46) and (2.47) which in

and t3 from (2.49) through (2.51). Then, these values may

of the necessary parameters, one may use relations (2.56) and (2.57) to evaluate
new estimates for Xy and tz. If these new values are equal to the initially select-
ed values the problem is solved, if not the process of solution is begun again
using the new values as a ‘starting point. This procedure is continued until the

initial and final values of x, and tz are equal over one complete cycle of calcula-

1
tions. Convergence of this scheme upon a steady state solution may be inferred

from its similarity to a phase plane construction just as in the previous case.

Since solutions obtained by the above iterative procedures may theoretical-
ly be carried out to any desired degree of accuracy, it is therefore consistent to
refer to them as exact steady state solutions, This term will be used throughout

the remainder of the present work,

Discussion of Results

Figs. 8 and 9 show the results of typical digital computer solutions using
the iterative procedures outlined above. The significant features of these results
are discussed in the following paragraphs.

To begin with it will be noted that there is a definite tendency for the
response peaks of this system to lean toward lower frequencies as is typical of
soft systems (systems in which the effective restoring force constant decreases
with amplitude), This results in a rather gentle slope on the high frequency side

of the peak and a very steep slope on the low frequency side. Indeed, a careful
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examination of the plotted curves and the numerical data upon which they are
based reveals that the low frequency side of the curve may well be vertical. How-
ever, within the accuracy of the numerical computations it is also seen that the
slope on this low frequency side never becomes negative (i.e. the response

curves all remain single valued). Thus, the so called "jumps' which often charac-
terize soft systems do not appear to exist in the bilinear hysteresis system with
square wave excitation.

For the particular case in which o = tan 2O and r = 0.75, it is seen that
the response curve exhibits a somewhat peculiar second rise for low frequency.
This takes place at a frequency of about 0.3 and may be attributed partly to the
nature of the system nonlinearity and partly to the presence of a third harmonic
term in the excitation. The role of the nonlinearity in producing ultraharmonic
behavior will be considered in detail in a future section. Thus, it will be sufficient
here to say only that for the specific case in question, the nonlinear effect is

probably greatly overshadowed by that due to the nature of the excitation,

Unbounded Resonance Behavior

In order to understand more about the detailed behavior of the system, it is
instructive to investigate the case in which the phase difference between the dis-
placement and the excitation is 90°. In terms of the notation of Fig. 6, this
condition on the phase angle may be expressed as

X, =X, =0 (2.58)

and

X = X2 =X, (2.59)

where X denotes the maximum system displacement for the case in question.
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Using these relations along with the periodicity conditions (2.43) and (2.44),

equations (2.40) and (2.41) become

2(ox_- o +r)1/2
5 o {@-a-r) ( 1 - li) - m '
X = 5 +|x,,-1 - =g | cos Vect, v sin ya't,
(2.60)

and

o-—\/'”( —1-—~—)s1nv—‘t - 2(ax_ -~ o+ )2 cos VEt, 2.61)
But, from (2.61),

ZVH'(axm— a+ r)l/z
tanva‘t4:- (ax —a+1-D) (2.62)
m

Thus, the terms of (2.60) which contain y/a't 4 can be eliminated giving

ax —r—a+12—a +r—a-—12+4 r- 2.63

( m )= ( X ) a(cxxm+ r-a). (2.83)

Solving this equation for X0 then yields

. (1-a) (2.64)

m~ (I-a)-r
From equation (2.64) it will be seen that the response amplitude X becomes
infinite if r is equal fo some critical value r, defined by

r, = (- ). (2.65)

This then represents a type of amplitude and phase resonance which appears only
under certain conditions of excitation. The frequency at the initial point of infinite

response may be found from (2.42) and will be

w, =\’ (2.66)
In the above analysis, X has been defined as the response amplitude which

corresponds to a phase angle of 90° and as such it is not necessarily equal to the

peak amplitude of response in every case. However, for the limiting case of
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infinite response, it may be shown that this 90° phase angle amplitude is precisely
the true peak amplitude of‘the system response, Thus, so far as the existence of
a critical excitation level is concerned, equation (2.64) may be interpreted as

applying to the peak response of the system.

Stability

It will be recalled that the iterative method of solution was contingent upon
convergence to a steady state solution from some arbitrary initial point in phase
space. Thefefore, a, solution obtained in this way should automatically satisiy the
conditions for infinitesimal stability. Furthermore, the fact that the response
curves appear to be single-valued would indicate that these solutions are probably

the only stable solutions within the range of consideration.
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D. Exact Steady State Solution ~—— Trigonometric Excitation

Having demonstrated the feasibility of obtaining an exact steady state solu-
tion for the case of square wave excitation, attention is now directed toward

investigation of the system response under trigonometric excitation.

Equations Governing the Steady State Motion

Fig. 10 is a schematic representation of the hysteresis loop and displace-
ment wave form for trigohometric excitation, Those values of displacement and
time which are refered to explicitly in the following discussion have been noted
in this figure.

Let Xy be the maximum positive displacement of the hysteresis loop and
let ¢ be the phase angle by which the displacement lags the excitation. Then,
beginning at the point where the displacement is equal to X1 the equation

describing subsequent motion of the system will be

X+X= (x,-1)(1- @) +r cos (wt + ), (2.67)

where w and r are respectively the frequency and amplitude of the excitation,

and where
}_{(O) e (2.68)

Equation (2.67) will remain valid until the displacement has decreased to

some value X5 at which point, the slope of the restoring force diagram changes

to a., I tz is the time required for the system to move from displacement Xy to

Xy, then from (2.67) and (2.68) it will be seen that for w#1

r wr . .
X = [Xl - (x-1)(A-a) - cos ¢] cos ty + 5 sing sin ty

1—w2 1-w

+ (-1 @) + 5 cos (wWhy+ ) (2.69)

1-w
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and
. r wr .
X =—[x - (x,-1)(1-a) - cos ¢]s:‘mt + sin @ cos t
2 1~ % Lot 27 2 2
- E2 sin (wt, + @). 2.70)
1-w
But, due to the assumed normalization of the hysteresis loop,
Xg =Xy - 2
Thus, equation (2.69) may be rewritten as
06=z]x, - x,-1)Q-a) - L cos¢]cos £+ 2T sing sint
1 1 2 2 2 2
1-w 1-w
+(1+a—axl)+——r—2 cos (Wty+ B). 2.71)

1-w
Further motion of the system with negative velocity will take place along
the lowermost restoring force branch of slope a. Therefore, the equation
governing this motion may be expressed as

5(’+o¢x=(1—a)+rcos[<—u(t+t2)+¢] (2.72)

where the initial conditions are now taken to be

X(O):Xzle—-z
. . (2.73)
X(O) = XZ

If the frequency and amplitude of excitation are such that the effects of
‘ultraharmonics may be neglected, the hysteresis loop will have the configuration
shown in Fig. 10 with no zeros of the velocity at other than the points of maximum

and minimum displacement. In this case, if Xq is the value of the minimum

displacement and t, is the time required for the system to move from Xq to X,

3
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it will be seen from (2.72) and (2.73) that if w? £ a,

17 wr . . . T A
Xq = ﬁ[ Xg+ ;—u—;z—sm(wt2+ @ )] sin/a ty + a_w2 cos [w(13+ ty) +¢]
1-a) r 1-a) 2.74)
+ [xl—z La - 5708 (wt,+ o )} cos V&' to + o
a-w :
and
. . Wr oL , rw .
X ;O:[x + sin (wt+¢)]cosya't - sin [w(t +t )+¢]
3 2" 2 2 37 L2 37 "2
' , (1- a) iy .
-\ [xl-z -2 Tocos (wity+ ¢ )] sin V& t,. (2.75)

xX-w
Before proceeding, it should be noted that for certain conditions of ultra-
harmonic response the system may actually have a pair of zeros of the velocity

and x,,. In this case, the system doubles back for a

intermediate to the points X, 3

short distance on a segment of unity slope and then retraces its path to again
follow the segment of slope a. This additional side excursion of the hysteresis
loop makes it very difficult to include both harmonic and ultraharmonic behavior
in a single general analytic solution. Therefore, the present discussion will be
restricted to cases in which the response may be described by (2.74) and (2. 75),
and cases of predominantly ultraharmonic response will be considered separately
in a later section,

If it is once again assumed that the hysteresis loop is symmetric, the
periodicity conditions on the solution become

(2.76)

and

ty + tg = T/ w. (2.77)
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Thus, as in the case of square wave excitation, the problem has been reduced to
the solution of a set of simultaneous transcendental equations. In this case there
are six equations [equations (2.70), (2.71) and (2.74) through (2. 77)] and six
unknowns [Xl, &, X tz, Xg, and ts].

For reasons which will soon become apparent, it is convenient to introduce
a new variable ¢ defined by

@¢'= ¢+ (ty+ tg -1 /w). (2.78)
Then, in terms of this new variable the periodicity requirement (2.77) may be

written in the equivalent form

@= ¢ 2.79)

Method of Solution for Steady State Response

Because of the highly transcendental character of the simultaneous equations
governing the steady state behavior, direct solution by elimination of variables is
impractical, Thus, guided by the results of graphical constructions and analytic
solutions with square wave excitation, one again turns to an iterative method of
solution as a means of making the problem more tractable.

The analysis in this case is begun by arbitrary selection of initial values
for the two variables Xy and ¢ . Then, using straight-forward algebraic or
numerical techniques it is possible to progressively solve for t2 from (2.71),

k, from (2.70), t, from (2.75), and finally x, and @ from (2.74) and (2. 78).
Having thus determined all of the intermediate variables, equations (2.76) and

(2.79) may then be used to calculate new values for x, and ¢ . If these new values

1

are the same as the ones assumed initially, the problem is solved; if not, the
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entire process is begun again using the new values as initial conditions. This

procedure is continued until the initial and final values of x. and @ over a cycle

1
of calculation are equal within some desired limit of accuracy.

The convergence of iterative procedures such as that just described was
descussed in some detail with regard to the problem of square wave excitation.
At that time it was noted that the iterative solution is really just a mathematical
construction of the steady state phase contour and as such, the convergence of one
type of solution should imply the convergence of the other., For the specific case
of trigonometric excitation no actual constructions of the phase contour have been
made. However, for square wave excitation it has been shown that both the phase
plane and iterative solutions converge and, on the basis of this work there is no
reason to believe that trigonometric excitation should behave any differently.

Thus, it is reasonable to conclude that the iterative procedure outlined above

will indeed converge.

Discussion of Results —— Fundamental Response Range

Figs. 11, 12, and 13 show the results of tyﬁical digital computer solutions
in the range of parameters where ultraharmonic behavior is not a predominant
factor. The overall resemblance of these figures to Figs. 8 and 9 for square
wave excitation is immediately apparent and need not be elaborated upon. How-
ever, it is beneficial to once again point out the essential features associated
with this type of steady state frequency response,

To begin with it will be seen that all of the curves exhibit a characteristic
1eaniﬂg toward low frequency which is typical of so called "soft" systems. This

results in a somewhat gentle slope on the high frequency side of the response
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curve and a very steep slope on the low frequency side. Numerous determinations
of the response were made on the low frequency side of the curve and although
convergence was extremely slow, it was possible to obtain sufficiently accurate
results to indicate that ; 1) within the accuracy of the numerical computations the
slope on the low frequency side is never negative, and 2) this slope may approach
an infinite limit at its steepest point. Thus, on the basis of these observations it
is concluded that there can be no more than one vertical tangency to a given re~
sponse curve which in turn implies that the response curves are all single valued.
In those cases where a family of curves is plotted in the same figure, it will
also be noted that the peak response occurs at a progressively lower frequency as
the level of excitation is increased umtil, for a value of r = 4(1- a)/7r, the
response does not close at all within the limits of the figure. This behavior is
therefore very similar to the unbounded resonance behavior which was shown to
exist in the case of square wave excitation, More will be said concerning this in

the next subsection.

Unbounded Resonance Behavior

If r and w are specified, it has been noted previously that the steady state
response may be described by a set of six simultaneous equations in the six
unknowns Xy &, 5{2, tz, Xg, and ts. Now, guided by the results of the square
wave analysis performed earlier, one is led to consider the special case of the
system response when

w =y (2.80)
and

@ = 0. (2.81)

However, in specifying @ and w it is no longer possible to concurrently specify
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r, Thus,

in this special case r must be looked upon as one of the variables of the
problem and there are again six equations in six unknowns
Equations (2.74) and (2.75) for Xq and 5(3 were derived under the restriction

that w £ /& Thus, for the particular conditions specified by (2.80) and (2. 81)
these equations must be replaced by

X

2 r .
Xg = ﬁ«ﬁsm\/a t2

sin\/'b?ts-;- [ -2 - G—————] cosv—‘t

+ d-a), —— t, cos V& (t5+ t,). 2.82)
« 2\/5?
and
Xq = 0= f{z—z%sin\[@tz cosx/&—'tg—W[xl-z—(laa)]sinva‘tg
+ — cos V& (tg+ t,) - tsm\/"t+t) (2.83)
2Va’

These two equations along with equations (2.70), (2.71)

, (2.76) and (2,77) where
@#= 0 and w=\a are therefore the six equations which determine the system
behavior.

Eliminating x,, and t, by means of equations (2.76) and (2.77) the number of

unknowns is reduced to four and the remaining equations become

xm~2 = [Xm - (xm—l)(l—- a)] cos t, + Vacr

. r .
ot 1o Sin t2+ (xm—l)(l—a) - 7o sin \/E'tz
2. 84)
< _ _ _ Va'r V&'r
Xy = [Xm x,,~Da a)]sm L2+ Toa ©08 ty - o cos\[é?t2 (2.85)
X
I I - (1-o) 1- )
X = V& Za cos |/ t, |sin Va'tz - [xm—z - ——a—-—]cos V_OT'tZ +LT
T
- J 2. 86)
. 1-
0=-{x, - cos V@'t | cos /&'t —W[x 2 - Jsm\[“t

(2.87)
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where the particular value of X which corresponds to the conditions (2.80) and
(2. 81) has been denoted by X
Equations (2.84) through (2.87) may be further reduced by using (2. 85) to

eliminate x, from the remaining equations. Equation (2.84) will be unchanged by

2
this process and equations (2.86) and (2.87) will become
1 . Va'r r
X :V_.,—a—{— [xm—(xm—l)(l— a)] sin t2 1A (cos ty-cos Va'tz)— cos '\/E‘tz}
2ya’
sin V&t - [xm-z - @—;-(—“—l] cos vt + L) LT tz) (2. 88)
2Va’ { Y&

0= —{— [xm-—(xm—l)(l— a)] sin t, + \1/?2 (cos t, - cos Yy ty) - L cos V_a_'tz}

2|

cos V& t, - V& [x, -2 - L2 |sin v, - Z\I/’E . (2.89)

Then, solving equation (2. 84) for X yields

(1- a) cos t +—-r——(\[5(’sint - sin /&t,)) + (1 + o)
X = 2 _(-2) 2 2 2.90)

m a (1~cos t2)

and solving equation (2, 88) for r gives
(1- a.)], . . 2 (I- a)
xm(cos\/a't2~1) + [2 + 2= | (sin t, sinyat, + cos"YAt, + 5~ cos VAL,
cos ‘\/oc'tz

r =
1o

V& 2

le—q sin /e ty+ 2—\/1_&~
(2.91)
where equation (2.89) has been used to simplify the form of (2.91).
Formally equations (2.90) and (2.91) may now be used to solve for r and X
in terms of t2' These results in conjunction with (2. 89) would then give one

equation in the one unknown tz. However, it is readily seen that this would lead

to such a complicated expression that practically speaking the problem could not
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be solved. Thus, the procedure followed here will be to select a reasonable

value for t2 and then demonstrate that this value along with the values it predicts

for X and r are all consistent with the statements of equations (2. 89) through

2.91).

Assume that the desired solution is t, = 0; or, to be more correct both

2

physically and mathematically, assume that

ty= 0. (2.92)

Then, froni (2.90) it may be shown that

-(1- a) tg/z -r w/?x"tg/3! + 2 +0(t;)

lim (Xm) = lim (2.93)
ty=0 tg 0 atg/z +o(th)
2
Assuming for the moment that r is no less than zeroeth order in tz, (2.93)
becomes
. . 2 2
lim (x_)=lim [4/0(1: +0/3 + 0t )] . (2.94)
m 2 2
t,>0 t,>0
2 2
Therefore,
xm-—-oo as tz-’-O. (2.95)

and it is immediately recognized that this is just the type of solution which was

sought.

The assumption that r is no less than zeroeth order in t, may now be

2

verified from equation (2.91). In this way it may be shown, after considerable

manipulation, that

lim (r) = lim [4(1- a)/ +0(t2)] . 2. 96)

tz-'- 0 . t2~> 0
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Hence,

r-4(1- o)/ as t,—0. (2.97)

and r is indeed zeroeth order as assumed.
It now remains only to show that the values of tz, r, and X obtained above
satisfy the third equation (2.89). Taking the limit of both sides of this equation it

may be shown that the right hand side is of order t,. Thus, as t2 approaches zero,

9

the equation is satisfied and the assumed values for t,, r, and X must represent

93
the true limiting solution of the problem.
Summarizing, it has been shown that the exact equations of the steady state
motion predict an amplitude and phase resonance (xm-»oo, @ = 0) which occurs
with finite amplitude of excitation at a frequency w = y&'. The amplitude of
excitation which yields this behavior may therefore be looked upon as a critical

parameter for the particular system under consideration and will be denoted by

r, = 4(1-a)/m. (2.98)

Stability

The validity of the iterative procedure used here has been based upon the
premise that solutions begun at some arbitrary initial point in phase space will
eventually converge to a steady state configuration if such exists. However, it
will be recognized that this is precisely the way in which one usually defines a
stable solution. Therefore, if in a particular case the iterative procedure
actually does converge independently of the initial conditions, the solution obtained
therehy should be stable.

All of the information relative to the response curves of Figs. 11, 12 and
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13 was obtained by means of the iterative method with arbitrary initial conditions.
Although convergence on the nearly vertical portions of these curves was very
slow, a steady state solution was reached in every case considered. Thus, on the
basis of this convergence it may be concluded that the solutions represented by
these figures are in fact stable.

For the present case of trigonometric excitation the stability of the steady
state solutions may also be treated purely mathematically. In order to do this,
one assumes a small initial perturbation on the displacement and-velocity at the
beginning of one cycle and then, using the equations governing the steady state
behavior, calculates the status of these perturbations at the beginning of each
subsequent cycle. N, Ando(12) has carried out such an analysis and has thereby
shown that solutions of the type shown in Figs. 11, 12, and 13 are stable in the

sense that any initial perturbations will die out for large time.

Harmonic Content —— Fundamental Response Range

As a guide to the eventual formulation of approximate methods of solution,
it is instructive to examine the harmonic content of the steady state displacement
wave form,

Let the steady state solution be given by

OO
X t) = § (a][1 sinnwt + bn cos nwt), (2.99)
n=1
where
1 2mr
a = —Tr—j(; xs(t) sinnwt d(wt) (2.100)
and

1 [2T .
b_ = ——[ Xs(t) cos nwt d{wt). (2.101)
0
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Then, for the purposes of the present analysis the harmonic content of X, may be

defined as
(e ]
9 9 1/2
E (@ .~ +b ")
n=2 .
X = 5 5 ) (2.102)
(3.1 + bl)

In order to evaluate X in practice it will be convenient to introduce the new
quantity A defined by

A = {xs(t) - (a1 sihwt + Py coswt)]

[ad
= E (a_sinnwt +b_ cos nwt).
f— ' n n

Then, using the orthogonality properties of the trigonometric functions, it may be

(2.103)

shown that
21
xZ. | A d(wt)/ﬂ(a? + btf). (2.104)
0

But now A, a_., and b1 may all be determined directly from the nature of the

1’
displacement X (t). Thus, if X is known either explicitly or numerically, it is
conceptually a rather simple matter to calculate X using equation (2.104). This
has been done for two different cases. In one case the actual non-linearity is
moderate (= tan TT/8) and in the other the non-linearity may be considered
extreme (a - tan 20). For each case, the frequency of excitation was
selected so that the amplitude of response would be in the medium value range

where the effects of the non-linearity are maximized. The results of this analysis

are presented in Table I,
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TABLE 1.
Case Fig. no. of |Harmonic
no. o T w response | content,
curve X
1 tan /8 0.746 0.80 12 0.008
2 tan 2° 0.955 0.50 13 0. 089

From Table I it is seen that even for the two relatively severe cases taken
above, the actual harmonic content is very low. Indeed, for the case with
o = tan 77/8, the harmonic content might be considered negligible. Thus,
within the range of predominantly fundamental response the displacement solution
may be approximated quite well by its fundamental Fourier component,

Fig. 14 shows the displacement and velocity wave forms which correspond
to the cases considered in Table I. Again it will be noted that the displacement

wave forms are very nearly trigonometric. However, this same observation may

not be applied too well to the velocity wave forms.
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E. Approximate Steady State Theory

Oune of the earliest published attempts to formulate an approximate theory
for the steady state oscillation of the bilinear hysteretic system was made by
N. Ando(lz) . In this treatment of the problem an equivalent linear damping coeffi-
cient was obtained by energy considerations and an equivalent linear spring
constant was selected on the basis of a two point displacement collocation. Fre-
quency response curves predicted by this procedure have somewhat the same
shape as those for the exact solution, but in general the agreement is not as close
as might be desired.

More recently, T.K. Caughey(lg) has treated the problem very successfully
by fhe method of slowly varying parameters. This method not only gives an
extremely good approximation to the steady state response but also enables
direct investigation of the stability of such motion. This approach will be consider-
ed later in connection with the addition of viscous damping.

The method of solution which will be employed in the present study is the so
called method of equivalent linearization developed by Kryloff and Bogoliuboff
(See Ref, 16). The biggest advantage in using this method is that it gives a very
clear picture of the nature of the approximations involved and at the same time
enables estimation of the magnitude of the errors which are introduced through
the linearization process. It will be found that this method arrives at exactly the
same steady state equations as the method of slowly varying parameters, Unfor-
tunately, however, the present method gives no direct information about the

stability of steady state solutions. Thus, it will be necessary to defer a full
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consideration of this point to the investigation of the viscous damped hysteretic

system where it may be treated as a limiting case,

Formulation of the Governing Equations

Let the differential equation of motion for trigonometric excitation be written
in the form

X+7X+KX + EX,X) =T coSwt. (2.105)
where from (2.4) it will be seen that

E(X,X) = f(X,X) - X - KX, (2.106)
Then &(x,x) is, so to speak, the error which would be introduced into the equation
of motion if the nonlinear system were approximated by a linear system with
Spring constant 4 and damping coefficient 7. In seeking to linearize the problem,
one must therefore select « and » so as to make € (or, strictly speaking, the

mean squared value of £) a minimum. This will be accomplished if

2
ot =0 ' (2.107a)
d K

and
de?
55 =0 (2.107b)

where the bar denotes an average over one complete cycle of oscillation, Having

thus made 82 a minimum, the equation of motion may be linearized by neglecting
€ in (2.105). This gives

X+ 7X+AX =T coswt, (2.108)

Equation (2.108) may now be used to solve for the fundamental steady state



- 60 -

motion in the usual manner by letting

X = Acos @ (2.109)
where

G=wt-@. (2.110)

Substituting (2.109) into (2. 108) yields

—wz Acos@+ kA cosb -wrAsinf =rcos (B+¢)
Thus, collecting terms in cos & and sin @, it will be seen that the two equations

which determine A and @ become

-w2 A+xA=rcos @ (2.111a)
- WYA - -1 sin @, (2.111b)
where for the linearized problem both « and > will in general be functions of A,

The values « and ¥ which minimize 52 may now be found directly from

equations (2.107a and b) using the linearized solution (2.109). In this case
5 1 [T 2
£(x,X) :7/ [f(A,9)~KA cos @ + wXA sin@] do. (2.112)
0

Therefore, making use of the orthogonality properties of the trigonometric

functions,
de? 2 A[zn
_kA? -2 | fA, @)cos 6 dB 2.113)
oK ™ _Jo
and
2 21
3‘; :w27A2+—A—ﬁ°9—/ f(A, 0)sin® db. (2.114)
) 0
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But from (2. 107a and b), both partial derivative must vanish. Thus,

1 2m
K:’A—;T*f f(A,8)cos@ dE (2.115)
0
and
1 21
Y = —Awrr,/(; f(A, 8)sin® d&. (2.116)

At this point it may be noted that -A w ¥ is just the total energy logs per cycle
due to viscous damping, Therefore, equation (2,116) states that the energy loss
per cycle due to viscous damping should be equal to that due to hysteresis where

both losses are calculated on the basis of the linearized displacement.

Letting
21

C(A) = —#/(Z £(A, &) cos 6 d6 (2.117a)
21

S(A) :—:r—/; f(A, 6)sin® de, (2.117b)

equations (2111la and b) which govern the steady state response may then be

written as
~w? A+ C(A) = T cos & (2.118a)
S(A) = - r sin @. (2.118b)

Squaring and adding equations (2.118a and b), it is seen that

[—w2A+ C(A)]z-«- [S(A)]z -2, (2.119)
Therefore, the equation for the frequeney response becomes

2 C(A) i{[ ],2 ,[%)_]2 }1/2 (2.120)
w : )

]

A
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Evaluation of C(A) and S(A)

The functions C(A) and S(A) as defined by equations (2.117a and b) contain
integrals over one complete cycle of oscillation. However, due to the assumed
symmetry properties of the steady state hysteresis loop, these integrals may be
replaced by twice the integral over a half cycle. From equation (2.5) it will be
seen that for the half cycle of negative velocity,

A cos © - (A-1)(1- a) ; (A-2)/A<cos© <1 2.121)

f(A, 8 ) =
o Acos 6 - (I-a) ; cos O < (A-2)/A.

*
Thus, defining the angle € by

* -1 A-
& = cos 1% , (2.122)

the equations (2.117a and b) for C(A) and S(A) may be written as

*

e*
C(A)=—12}-[0 [Acose—(A—l)(l—o()]cose ae

T
+f* [A cos € - (1- ot)] cos©® d6  (2.123a)
6

and

*

)
S(A) = f [A cos 6 - (A-1)(L- a)] sin®de
0

2

=
o

+j;* [Acose-a—oz)]sinede : 2.123b)

Carrying out the indicated integrations, it may then be shown that

* - *
%[(1—0()9 +oc1'r—(1—2—al sin 2 € ]; A>1

C(A) = (2.124a)

s AL1

and

*
(1-a)sin> @ ; A>1
S(A) = (2.124b)
L A<l

1
Al
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Discussion of Steady State Results

Using equations (2.120) and (2.124a and b), it is possible to construct
frequency response curves which correspond to the exact solutions of Figs. 11,
12, and 13. This has been done and the results are shown along with the exact
solutions in Figs. 15, 16, and 17.

For the cases of small to moderate « in Figs. 15 and 16, it will be noted
that the agreement between exact and approximate steady state solutions is quite
good. This is in large measure due to the fact that the actual displacement wave
forms for moderate a in the fundamental frequency range (w = 1) are very nearly
harmonic as was shown in a previous section. In these cases then, the first order
approximation presented here very nearly describes the true motion of the system.

For the extreme case of a=tan 2° shown in Fig. 17, agreement is like-
wise quite good so long as consideration is restricted to the frequency range
where the behavior is predominantly fundamental in nature. However, for fre-
quencies approaching w= 1/3, it is seen that the difference between exact and
approximate solutions becomes rather large. This is for the most part due to the
presence of ultraharmonics in the exact solution which have been neglected in the
present single component approximation. More will be said concerning this

matter in a later section.

Error Term
One reason for the closeness of agreement between the approximate and
exact steady state theories may be seen from an analysis of the so called "error

term'" €(x, x) which is defined by equation (2.106). Substituting for < and 7 in
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equation (2.112), it will be seen that
5 1 [27 2
£, %) = 5 [f(A, 6) - S(A) sin & - C(A) cos 9] ae. (2.125)
0
Integrating this expression and using the orthogonality properties of the trigonome-
tric functions then gives

i

£ (x, %) = 2—1-17— £(A, 9)]2 ae - %[CZ(A) + SZ(A)]

0

- £ (A)—-;—[CZ(A)+SZ(A)]. 2.126)

All of the quantities appearing on the right hand side of equation (2.126) are
known or may be calculated using equations (2.121) through (2.124). Thus, .;é
may be regarded as a known function of the amplitude A and the hysteresis loop
parameter . In particular, for the limiting case of &~ 1, it may easily be
shown that € is of order (1- «) for all A finite,

Assume that the true steady state displacement may be written as

X = Acos (wt-¢@)+¢ (2.127)
where A cos (wt - @) satisfies the linearized equation of motion (2.108), and ¢ is
composed of terms in 3wt and higher multiples of the excitation frequency. Then,
from the complete equation of motion (2.105) it is seen that §{ must satisfy a
differential equation of the form

F+7E +kE =ex, %, t) 2.128)
where the time dependence of € has been noted explicitly, If € is broken up into

its Fourier components this equation may be solved directly. Thus, assuming

that the largest contribution will come from the term in 3wt, the magnitude of
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the solution becomes approximately

el

' -
2 1
\f(ng - K+ (Yw)

But, in the range of frequencies where the motion is predominantly fundamental

(2.129)

HE

in character

w =1
and, as a first approximation, & may be taken as 1 and >"as 0. Hence for these
conditions

8] =~1el/s. 2.130)
A measure of the fractional amount by which the single component approximation

misrepresents the actual system displacement may therefore be defined by

—\1/2
p
v = __(_‘C;__)___ 2.131)
8A/ V2
AR
2 | — (2.132)
5
X

Values of this parameter have been calculated and are shown in Fig. 18. On the
basis of this figure one would expect the closeness of agreement between approx-
imate and exact solutions to be very good even for rather marked system non-
linearities so long as attention is limited to the region of validity of the present
analysis («w =1). Indeed, this is exactly what was observed in the calculated

frequency response curves of Figs. 15, 16, and 17,
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Locus of Peak Amplitude

The condition for peak amplitude of response will be that the two roots of the
frequency equation (2.120) coalesce. Formally, this condition may be stated as

r=-S(A) (2.133)

where the subscript p signifies the value corresponding to the peak response, and
the negative sign is chosen because r has been defined as positive and S(Ap) is
inherently negative. Then, from (2.120) the equation for the locus of peak ampli-

tude becomés
w2 C(A_)/A_. (2.134)
p p p

Expanding C(Ap) from equation (2, 124a)

2 (1-a) 1 *
@, = a+ (ep —281n29p ) (2.135)
where
1] @A -2)
9*=cos1[ D } . (2.136)
P Al

The locus of peak amplitude as obtained from (2.135) and (2.136) is shown by a
dashed line in Fig. 17.

From equation (2.133) it is possible to obtain an expression relating the
peak amplitude of response to the amplitude of excitation. Thus, substituting for

S(Ap) from (2.124Db) it will be seen that

- *
r=A @ Tra) sinZ o, (2.137)

*
But & may now be eliminated using equation (2.136). Therefore, rearranging
terms it is found that

A o A-a)/m
p - 4(1-x)/TT-T

(2.138)
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Since AD has been defined as positive, equation (2.138) implies that the system

exhibits unbounded resonance if
r>4(1- «)/ . (2.139)

From (2.135) and (2.1386) the frequency at which this resonance first occurs will

be
w :Va”‘. (2.140)
Also, from (2.133) and (2.118b) it will be seen that at the point of peak response
sin o= 1, = TTZ 2.14:1
i ¢p ¢p / ( )

Therefore, the approximate theory predicts precisely the same type of
unbounded phase and amplitude resonance as was obtained by means of the exact
theory in an earlier section. The underlying reason for this is, of course, that
in the limit of extremely large amplitudes of oscillation the equation of motion
actually becomes linear. Thus, in this limiting case the linearized treatment

should be expected to be equivalent to the exact analysis.

Locus of Vertical Tangency

The condition that a frequency response curve have a point of vertical

tangency may be stated as

dw _
3A "

€

0. 2.142)

Now, expanding equation (2.118a) by means of equation (2.124a) gives

*
2 (1-a) X sin2€@ r ,
w = —_TT 6 + a - (1-— O()——“-é—?r——* - K cos ¢, (2 143)

Thus, applying the vertical tangency condition (2.142),

a

€

(1- )
A:O: =

2w

|

(1—Cos29) ‘39A+Z—cos¢+ sin @ aﬁ (2.144)

(a9
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But, from equations (2.118b) and (2. 124b)

rooo (lma) . 2%
Asmfﬁ_—-——ﬂ_ sin” 8 | (2.145)

and from equations (2.118a) and (2.134)

r 2 2
'ACOS¢:wp -w . (2.146)

Hence, differentiating (2.145) and using (2.146) to eliminate cos @ it may be

shown that
%
20 . *
38 - a)A§1n9+ aAsmze 2. 147)
OAT wpz C P

Further, using equation (2.122), it will be seen that

26 2
o . 2. 148)
A sin &
and
b 3
sin? 0" = L (A-1), 2. 149)
A

Therefore, equations (2.145) through (2.149) may be substituted into the vertical
tangency equation (2.144) to give
2 2

- * -
(w;-w?,) _z{i(i;()sine (AV)J (wg—w3)+[%£‘l;—:7)sine* (Av)] -0

(2.150)
where the subscript v signifies the value of the variable at the point of vertical
tangency. Now the left hand side of (2.150) is a perfect square so the equation

for the locus of vertical tangency becomes simply

W =W

2 2 _2(1-a)
v P Av i

sin 6 (a,). .151)
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Or, in expanded form this may be written as

w? -2 [(1-a) " (a,) +am- (1- ) sin 3 (AV)] . 2.152)

The locus of vertical tangency as obtained from equation (2.152) is shown by a
dashed line in Fig. 17.

It will be noted that the present case there is only one locus of vertical tan-
gency since the two roots of (2.150) were identical. This result enables one to
make certain conclusions regarding the stability of steady state oscillations as

will be discussed in the following subsection,

Stability

Derivation of the approximate system equations by the method of equivalent
linearization does not lend itself to any direct investigation of stability. Therefore,
the only observations which can be made relative to stability must be made on the
basis of the general character of any loci of vertical tangency. In the present
case, there is only one such locus. Thus, it may be concluded that the steady
state frequency response curves are all single-valued, but beyond this, little can
be said as to the actual stability of any particular portion of the frequency response
curve. The stability problem was considered in some detail in the earlier men-
tioned work by Professor Caughey using the method of slowly varying parameters.
There it was shown that the steady state response predicted by the first order
theory is stable or marginally stable for all frequencies of excitation, A similar
analysis of stability will be carried out later in the course of the present work

for the hysteretic system with viscous damping.
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Ultraharmonic Response

Assume that the displacement can be represented by

x(t) = A(l) cos 9(1) + A(3) co8 9(3) (2.153)

where

9(1) = wt - ¢(1)
(2.154)

o) _ 3wt - g®
Then, the restoring force f(x,ﬁc) may likewise be expressed in terms of the first

two odd order terms of a Fourier series giving

fix, %) = €1 cos @) + s 5in 6@ 4 ¢®) cos 6B) 4 @) 5in 6B - 159)
where

cW :%T/Ozwf(x,fc) cos0W ge® 55 13 (2.156a)

gt) =%/(;2Trf(x,5<) sine@Wae® . j_ 13 2. 156b)
But from (2.153)

K= -w?A® cos 0@ _9w? A®) cos0 ), @.157)

Thus, substituting (2. 155) and (2.157) into the differential equation of motion (2.4),

for trigonometric excitation

—wz A(l) cos 6(1) -9 w2 A(S) cos 9(3) + C(l) cos 9(1) -+ S(l) sin 6(1)

+ C(S) cos 6(3) + S(S) sin 9(3) = I cos (9(1)+ ¢(1)). (2.158)
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Collecting coefficients of like trigonometric terms then gives

—sz(l) +c@ oy cos ¢(1)

s _¢ sin ¢(1)
(2.159)

—9w2aB) £ B _ g
8(3) =0
Hence, the problem of determining the steady state motion has been reduced to the
solution of the four equativons (2. 159) for the four unknown quantities A(l), A(3),
e (1) and 6(3).

For a linear system f(x,;’() is equal to some linear combination of the
displacement and velocity and it is readily seen from the last of equations (2.159)
that A3 = 0. However, for a non-linear system S(S) will in general be a function
of both A(l) and A(3) in such a way that A(g) will not be identically zero for all
w and r. Therefore, in the case of the bilinear hysteretic system one would also
expect to find that A(S) is finite.

Actual evaluation of the functions C(1>, S(l), C(S), and S(g) for a particular
case is complicated by the fact that the hysteresis loop may no longer have the
simple shape of Fig. 2. Also, the problem of solving for the time angle at each
point of slope change now becomes much more involved and it may be necessary
to consider as many as three such points. Therefore, the analytic analysis of
ultraharmonic response will be carried no further at this time. However, the

entire problem will be taken up again later in connection with electric analog

studies.
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F. Addition of Viscous Damping

In this section the problem of the steady state response of the bilinear
hysteretic system will be extended to include a viscous damping term, The
method of solution will be the method of slowly varying parameters originally
developed by Kryloff and Bogoliuboff (See Ref. 16) and used, as mentioned earlier,

by T.K. Caughey(ls) to investigate the case without viscous damping.

Formulation of the Gover‘ning Equations

The differential equation of motion with viscous damping may be written as

X +2Bx +1(x,%) = r cos wt (2.160)
where f(x,x) is again the bilinear hysteretic restoring force function and g is the
coefficient of viscous damping.

Assume a solution of the form

x(t) = A cos (wt - @) (2.161)
where both the amplitude A and phase angle @ are slowly varying functions of t.
Let

6=-wt- @ (2.162)
Then, differentiating (2.161) with respect to t,

x(t) = - Awsin® +APsin® +Acos 8. (2.163)
But, by analogy to Lagrange's method of variation of a parameter one may set

Acos9+A¢sin9=0. (2.164)
Thus,

X(t)=-Awsin® (2.165)

and it will be seen that

x(t) = - sz cos 6 - A wsin® + Aw P cosH . (2.166)
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Substituting equations (2.165) and (2.166) into the equation of motion (2.160)

then gives

~Aw? cos 0 - Awsin® + Awpcos O - 2BAwsin © +1(A,0) = r cos (O +).
(2.167)

Multiplying (2.164) by wsin®, (2.167) by cos@ and adding it is seen that

Acugz - Aw? cos?O - 2,9Awsin9 cos® + f(A,0)cosB -r cos (B+@P) cos O,

(2.168)
However, both A and ¢ Have been assumed to be slowly varying functions of the
time t. Therefore, within the limits of validity of this assumption one is justified
in regarding A, @, A, and ¢ as very nearly constant over any one cycle of 6,

Hence, if equation (2.168) is averaged over one complete cycle of € it will be

found that

: 2 1 [T
2Aw P - Aw +1~ff f(A, ) cos® dO=r cos P. (2.169)
0

Multiplying (2.164) by wcos 6, (2.167) by sin® and subtracting, it is seen that

Awéd +Aw? cos O sin + 2/9Awsin29 -f(A,0)sin@ - -rcos (6+P)sinB.
(2.170)

Thus, again averaging over one cycle of € and regarding A, A and ¢ as slowly

varying, it will be found that

217

2Aw+2/3wA-—1—f f(A, 6)sin @ d6 = r sin @. (2.171)
TJo

As in the case of the system without viscous damping, it is convenient to

introduce the two parameters C(A) and S(A) defined by

1 27
C(A)=1?/(; f(A,@)cos @ d8
(2.172)

L 2T
S(A) :T—Tfo f(A, ©)sin® d
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where it will be recalled that in terms of the hysteresis loop parameters

C(A):%—-[(l—a) 6"+ aTr—-Q;—a)sinZQ*]; A>1

s@a) = - 2EDsin® 67 L A>1 (2.173)
9* - cos 1 1 - %)

Then equations (2.169) and (2.171) which govern the system motion may be written

as

2Aw P - Aw’+ C(A) = r cos @ (2.174a)

2Aw +2BwA - 8(A) = r sin P (2. 174b)

Steady State Results

The equations for the steady state response will be obtained by setting A and
¢ equal to zero in equations (2.174a and b). This then gives

—A0w2+ C(A,) = T cos ¢, (2.175a)

+2B WA, - S(Aj) = T sin ¢0. . (2.175D)

where the subscript 0 signifies steady state values. Equations (2.175a and b) may
now be used to obtain the steady state values of A and @ as a function of w for
given «, r, and 8. This has been done for the case of r = 4(1- a )/ and the
results are shown in Fig. 19. It will be noted from this figure that the major
effect of the addition of viscous damping is, as one would expect, to reduce the
peak amplitude of response. However, it is also seen that this amplitude reduc-
tion is accompanied by a marked decrease in the slope of the low frequency side

of the response curve. Thus, even for moderate levels of viscous damping the
frequency response curves lose nearly all of the asymmetric character of the pure-

ly hysteretic system and become more like the ordinary curves for a linear damped
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system. This is one reason why it is very difficult to recognize the existence of

hysteretic behavior in most real physical systems.

Stability of the Steady State Response

Let

A= A0+E

: (2.176)
¢= ¢O+ y’

where & and ¥ are small perturbations on the steady state values AO and ¢0.
Then, substituting relations (2.176) into equations (2.174a and b) and using the

steady state equations (2.175a and b)

ZAO"}Z’w-— §w2+—g% = —r%sin¢0

(2.177)
2§w+2ﬁw§ ~-—§7§-?’ - eros¢0
where it is to be understood that both § and C are functions of A and all partial
derivatives are evaluated at the point A = AO. Thus, using the steady state equa-

tions (2.175a and b) to eliminate r sin ¢0 and r cos ¢0 from (2.177), one obtains

ZAowi&* [2/5‘“% - S(Ao)]y’ * "‘aa_% - wz) =0
2.178)
2wl + [w?A, - Clap)] ¥ +[26w - ——g—i—): 0.
Now, let
At
- e
§= 50 2.179)

¥=% ™.
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Then, substituting relations (2.179) into (2.178)

(22,0 A+ 28008 - sa)] ¥ + ~w?) gy =0
(2.180)

2 28 )
[w AG—C(AO)]VO+(2w>\+2w/8— A EO:O
The frequency equation is obtained by setting the determinant of the coefficients

of the set of equations (2.180) equal to zero. In this way it is found that
S(A,) S(A,)
2 0/ 98 0 98
(Zcu >\) -+ (2 w)\)[élﬂw - —A—O—-— —ﬂ-:l+|i2ﬂw - -—“A—O—} 2ﬂw - "S“Kjl

C(A,) '
+[———g—%—w2 ][——9— -wz]: 0, 2.181)

From equations (2.173) it may be shown that

—g—%:%[(l-a)93+av‘r+ (- a)smze (1-a)sin9;]
(2.182)

gi:—(1}a)(2—200s6;—sin292).

Thus,
(&) 08 ye  2][C€%e) 2
R s oy N (e
2 l[aﬂ 1- 9 1 i 6*]2+4:cu[ d-aj, e*

=W - o + (1-4a) - (1-a)sin 0 :B Bw +——T—r—( - Cos 0)]

(2.183)
But equations (2.173), (2.182) and (2.183) may now be substituted into the fre-

quency equation (2.181) to give

@ w3)2+ 2(2w)\)[(1—_1_r—oi-)(1—cos 9;)+ 2,3w] + 4,@w[,8w + (1'Tr°‘)(1—cos 9;)]

2
+[w2—T1—T(a1T+ (1—0()9)(;— (1—0()sin92)] -0 (2.184)
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Therefore,

(2w) = - [Q—;Tg-)(l-—cos 9;) + Z/Bw] + {4,6«/ [,Bw + (L?,Fal (1-cos 9;)]

9 1/2

—[a)z —%,(om’+(l—-a)9 -(1- a) sin & )] [Q—g—)(l cos9)+2/5w] }
(2.185)

and if B is finite,

R (2ewA)<0. (2.186)
Thus, the steady state soiution for the viscous damped bilinear hysteretic system
is always stable,

It is also possible to consider the stability of the hysteretic system without
viscous damping merely by letting & go to zero in equation (2.186). In this case

(ZwA)——[L——)(l cos B ] {[(———l(l cose)]2

1/2
2 1 * . 9* 2
—[w —ﬁ(aﬂ+ (1- a)QO— (1- a) sin O)] (2.187)
and it is apparent that
RERewA) L0 (2.188)

for all A and w. Thus, even in the absence of viscous damping the system is
always stable or marginally stable. Points of marginal stability are defined as
points where

2ewA) =0
and in the present system this will be observed to be the case when

W =%[mr - (1-a)9; - (1- @) sin 63] . (2.189)

But this expression is recognized as being exactly the same as equation (2.152)

for the locus of vertical tangency. Therefore, it is seen that the points of vertical
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tangency are also the points of marginal stability.

Locus of Peak Amplitude

The steady state equations (2.175a and b) may just as well be written in the

form
W za+ 322 (6] - Lsinzey icosqﬁ (2.190a)
CLIE g, - 00070 ]
w= 5 [Aos1n¢0 —Hsin’0 | (2.190b)

But now one may think of these two equations as being two separate functional
relations giving w in terms of 950 for fixed AG and r. In general, these two
relations will have two points of intersection signifying the two roots of w which
exist for a given A0 and r. However, at the point of peak response there will be
only one root of w and correspondingly only one point of intersection for the two

relations. This condition may then be expressed as

dw | _ dw
oy T 9%,
a b

(2.191)

where the subscript "a' denotes that the partial derivative is evaluated from
equation (2.190a) and the subscript "b' has a similar meaning with regard to

equation (2.190Db). Cari‘ying out the differentiations indicated in (2.191)

dw
—a—ao = 2A sm¢
a (2.192)
: (73] r
XN ) “2K 8 °F P

"Thus, from (2.191)

sin ¢0 = ,8 Ccos ¢O (2.193)
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The equation for the locus of peak amplitude may now be obtained by eliminating

r between equations (2.190a and b) and using (2.193) to eliminate ¢0, This gives

3 [ 2 (1-a)yp* (A-a) . *] Bl-a) . 2%
W+ 2B8° - a- 90 e sm290 wp+ — sin 90:0
(2.194)
where the subscript "p" denotes that the value is at the point of peak amplitude.

*
For large amplitudes A0 it is seen from (2.173) that 90 approaches zero,

Therefore, equation (2.194) becomes
3. .2

w_+ (2 ~ayw_ =0

b @@ ) p

and

2
cup—»l/\/a -28 as AO—><>0. (2.195)

*
For AO equal to one, 90 equals 1 and (2.194) becomes
3 2
+ (2 -1 =0,
wp @p )wp

Hence, in this limiting case of linear behavior

3
w, = /\/1—2,3 . Ay = 1. (2.196)

Unbounded Resonance

*
Finally, consider equation (2.175b) eliminating 90 by means of the last of

equations (2.173). This gives

eBaw) AL +[r sin¢0—4—(—l%q—)]AO—ﬂl%rg—):0 2.197)

But now for finite 8 and w, this equation will have no infinite roots. Thus, the
infinite amplitude resonance which was observed in the system without viscous

damping will not be found in the present case with viscous damping included.
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Locus of Vertical Tangency

It may be shown on a completely general basis (See Ref. 17) that the condi-
tion for a vertical tengency to the frequency response curve is that the constant
term of the frequency equation of stability be identically zero. The frequency
equation for infinitesimal stability in the present case is equation (2.184). Thus,

the condition for a vertical tangency will be

2
* * - *
[w2_1_1T_ (am+ (1- a) 6, - (1- a)sin B, )] + 48w L2201 _cos 67)+ 28w)’= 0
(2.198)
But if both 8 and w are non-zero, it is seen that condition (2.198) can never be

satisfied. Therefore, no locus of vertical tangency exists for the bilinear

hysteretic system with viscous damping.
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G. Transient Response

Due to the inapplicébility of the principle of superposition, a completely
general treatment of the transient response of hysteretic systems is not feasible,
Instead, each new problem must be treated as a special case using some method
of graphic, numeric, or piece-wise analytic integration of the equation of motion.
Although such methods may become quite involved, they have been used recently
by several vworkers to study the response of the bilinear hysteretic system to
various forms of transient excitation, L.S.Jacobsen(l’ 2) has considered the

(

transient response to pulse and step function excitation, G.Berg 10) has investi-
gated the problem of earthquake excitation, and N, Ando(lz) has solved for the
iniktial transient oscillations of a system which is suddenly subjected to sinusoidal
excitation,

One of the more important questions which arises in connection with the
transient response of the general hysteretic system concerns the nature of the
final state of the system upon completion of the excitation. In some cases it will
be found that the system develops a certain permanent offset, while in others the
system returns to oscillate about its original point of zero displacement*. If the
excitation is reasonably symmetric and of low enough level that the response is
due primarily to resonance effects or, if the excitation is of very short duration,
any final offset will most likely result from the behavior of the system after the

excitation has ceased, Thus, in order to better understand the mechanism by

which such an offset may occur, it is instructive to actually follow the motion of a

* If there is no viscous damping in the system, the final state will in general be
oscillatory.
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hysteretic system during the period from the end of the excitation until a steady
state condition is reached. This will be done below for the bilinear hysteretic

system.

Analytic Considerations

Let the first maxima of the displacement after the excitation has ceased be

*
denoted by Xy and for the present assume that x. is positive . Then, from (2.3)

1
the subsequent motion of the system will initially be governed by the homogeneous
differential equation

X+ X - -D(A-a)= 0. 5 (x-2) <x<X (2.199)

1
This equation will remain valid until the system reaches the point at which the
restoring force diagram first changes slope. Letting the system displacement
and time at this point be x’ and t’/, it is seen from the general solution of (2.199)
that

/

X'= [Xl - (xl-l)(l- a)] cos t’ + (x1~l)(1— a) (2.200)

and

4

%= -[xl - (x,-1)(1- a)] sin t”. 2.201)
But from the normalization of the hysteresis loop, it will be recalled that

X = X, - 2. (2.202)

* A "maxima of the displacement" will herein be taken to mean any displacement
X, which satisfies the conditions

x. =0, |x,] 1
1 1

and
lf(xi,O)I = alx,| + (1- a).
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Thus, from (2.200)

x, -2 - (& -1)(1- «)
cost = X, - & 1= a) (2.203)
1 1
Using this result in equation (2.201) for 5{’, it may then be shown that
x' = -2 [a(xl—l)] /2. (2.204)
where it will be noted that x” is real only if
x, > 1. | (2.205)

1
Having determined both x” and )'c/, these values may now be used as initial
conditions for the motion which proceeds along the restoring force segment of
slope cx’, From (2.3) the differential equation of motion in this regime will be
X+ax - (1- o) = 0, (2.206)
This equation will govern the system behavior until the velocity becomes zero.
If the displacement at the point of zero velocity is denoted by X, and the time

interval between points x’ and X, is tz, then

X

il

, = &'/ V@) sin V&b, + [X/ - (1- a)/a] cos V&b, + (1-a)/ot  (2.207)

and

%, = 0 =% cos VAL, - va“[xx - (- a)/a] sin Vo't (2.208)

But, from (2.208)

-1 %’

va“[x’ - (- oc)/a}

Therefore, substituting relations (2.202), (2.204), and (2.209) into equation (2. 207)

(2. 209)

’ '\[O—C'tz = tan

%y = - [y -1-1/a P+ 4 0]V s - w/a (2.210)

2
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wheré Xy is now the second maxima of the displacement (in this case a minimum).
Equation (2.210) has been derived by assuming that Xy is the first maxima
of the displacement, that this maxima is positive, and also that Xy satisfies the
condition (2.205). However, the first two of these assumptions were made only
as a matter of convenience and it is readily seen that the same type of analysis
could be used to find the relation between any two successive maxima regardless
of whether they are positive or negative. Thus, with only minor changes of
notation, equation (2.210.) may be generalized so as to give the value of the

i+ l)th maxima of displacement solely in terms of the ith maxima and the

hysteresis loop parameter a. This generalized relation will be

2 12
X; , 1 = (sgn xi){- [(|xi| -1-1/a) +4(Ix - 1)] + (1- a)/a} (2.211)

and condition (2,205) becomes

-X; (sgn X, +1) >1 (2.212)

where

Ix,1 > 1. (2.213)

Using equation (2.211), the course of the system motion upon completion of
the excitation may be followed from maxima to maxima until condition (2.212)
is no longer satisfied. At this point equation (2.211) becomes invalid and the
system merely oscillates along the restoring force segment of unity slope being
energetically unable to move into a region of slope a. These residual oscillations

will be undamped linear oscillations and will take place about some mean displace-
ment ‘SS given by

5, = (1- ) [(sgn x,_1) +xk] 2.214)
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where Xy is the last maxima which can be obtained by means of equation (2.211),

Graphical Interpretation

The information contained in equation (2.211) and condition (2.212) may be
interpreted graphically as shown in Fig, 20. This figure gives a family of curves
which may be used to obtain the (i + 1)th maxima of the displacement in terms of
the ith maxima for various values of the parameter a, If, for a particular maxima

Xj, the point (xj Xj) lies within the cross-hatched area of the figure, then xj

+1°

is the last maxima which will satisfy condition (2.212). Hence, in this case

Xj+1

unity slope segment of the restoring force diagram with an offset SS given by

equals x, and subsequent motion of the system will take place along a single
k

(2.214). Thus, for a given initial maxima x, one may easily determine each

1
successive maxima up to and including the final maxima X which may then be

used to calculate the resultant offset.

Maximum Absolute Offset

It will be noted from Fig. 20 that the absolute offset ISSI has a definite
upper bound which depends only on the value of the hysteresis loop parameter Q.
In general, this upper bound may be obtained by setting

oy

= 0 ‘ (2.215)
dxp 1

where from (2.211)

9 1/2
Xk = {sgn Xk_l){—[uxk_ll -1-1/a)" + 4(|xk_ll - 1)] + (1~ a)/cx}. (2.216)
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Thus, differentiating equation (2.216) and setting the resulting expression equal
to zero, it may be shown that

= (l-a)/«. (2.217)

X1l | ax

However, there can be no solution for Xy if ka_ll < 1., Therefore, if the value of

|xk_1| which is predicted by (2.217) is less than one, the maximum of |8s| will
actually occur at the point lxk_ll = 1. Now, from (2.217)
%11 dx, < 1, implies that a >1/2. (2.218)
e =0
k-1

Thus, it will be seen that
(1-x)/ . ; xg1/2
)| - (2.219)
1 ; & 21/2

where the superscript (m) denotes the value which makes ISSI a maximum.

Substituting (2.219) into (2.216) then gives

(sgn xl(:fll)) {(1— a)/ot -2 [(1- a)/a] 1/2} C ag1/2
x}({m) - 2.220)
(sgn xl(:?l)){-l} s a»1/2

and from equation (2.214)

(1- a){l/a - 2[(1- a)/a] 1/2} Cag1/2

$ =
‘s'max 0 S a1/2

H

@.221)

Conclusions
‘Based on the above analysis which presupposes only the existence of a

"maxima of the displacement" after completion of the excitation, it may be
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concluded that the maximum offset ISSI resulting from an arbitrary transient
oscillation will be bounded for all a>0 and may become unbounded only if a- 0,
In particular, if a>1/2, it has been shown that there can be no permanent offset

regardless of the value of the initial maxima X, 80 long as lel > 1.
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III. TWO DEGREE OF FREEDOM SYSTEM

A. Approximate Steady State Theory

The problem of the steady state response of a two degree of freedom
bilinear hysteretic system will now be considered using the method of slowly
varying parameters which was so highly successful in the treatment of the single

degree of freedom system.

Equations of Motion

In order to simplify the problem mathematically, it will be assumed that
the system has the configuration shown schematically in Figs. 21 and 22 with equal
unity masses and identical normalized hysteresis loop properties. Let the dis-
placement of the first mass with respect to the moving base be denoted by Xy and
let Xg be the relative displacement between the first and second masses. Then, for
trigonometric excitation of amplitude r and frequency w the differential equations
of motion may be written as

5(’1 + f(xl,}'cl) - f(xz,icz) - r coswt (3.1)
'x'2 + 2f(x2,>'<2) - f(xl,;'cl) =0 (3.2)

where the dot denotes differentiation with respect to the time t.

Formulation of the Approximate Steady State Theory

Assume that the solutions to equations (3.1) and (3.2) may be approximated
by
Xy = A1 cos 91

(3.3)
Xy = A2 cos 92
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where

91 —wt - ¢1

(3.4)
6,= 61~ %,
and where Al’ AZ’ ¢1, and 952 are all slowly varying functions of the time t.
Then
Xy =- wAl sin 91 + Al cos 91 + A1 ¢1 sin 91

, : : (3.5)
X, = - wA, sin 92 + A, cos 92 +A, ¢2 sin 92

But by analogy to Lagrange's method of variation of a parameter, it is permissible

to set
A, cos 91+A1¢1sm91: 0 (3.6a)
A, cos 6, + A2¢2 sin 0, = 0. (3.6b)
Thus,
lz—w A cos B ——wAlsmG + wA; ¢ cos@1
(3.7)

2=-wA c059 —wA sm9 +wA, ¢ c039 .

Substituting equation (3.7) into the equations of motion (3.1) and (3. 2) then gives
9 . .
~w A, cos O, ~wA, sinf + wA1¢1 cos 0+ f(A;, 8)) - {(A,, 6,)

=r cos ( 91 + ¢1) (3.8)

2 . . .
-~w"A, cos 92 -wA, sm@z+ wA, ¢2 cos 92 +2f(A,, ©,) - £(A,, 0)

=0 (3.9)

Multiplying (3.6a) by wcos 91, (3.8) by sin B,, and subtracting it will be seen
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that
2 . . .
~w A sin 6, cos 0, -wA  + (A}, B;)sin 8, - f(A,, 6,)sin (6,+ ¢2)
=rsin &, cos (6 + ¢1). (3.10)
But now due to their assumed slowly varying character, the variables Al’ AZ’ ¢1,
and ¢2 will remain essentially constant over one cyecle of 81, Thus, equation

(3.10) may be averaged over a cycle of 91 giving

~wA+ 5_1—7’-[0 f(Al, Gl)sin 91 d Gl-sin ¢2 —2—;‘_—/0 f(Az, ez)cos 62 dGz

2
1 . r .

- Ccos ¢2 —Z—TT—j(; f(A2, 62)s1n 92d92 = ——2—s1n¢1 (3.11)
where strictly speaking the A's and @'s now represent mean values of the functions
over the cycle in question. Multiplying (3.6a) by wsin 91, (3.8) by cos 6 1 and
adding

2 2 :
~w A, cos 91+ WA, ¢l + £(A;, ;) cos 91 - f(A,, ©,) cos (8, + ¢2)
= I cos 91 cos (6, + ¢1). (3.12)

Therefore, averaging (3.12) over one cycle of 91

2
-w A1 1 21 1 2
5 +2—;£ f(Al’ el)cos 91 d el-cos 9252 Q_F«/O f(Az, Gz)cos 92 d 92

2
. 1 . :
+ wA1¢1+ sin ¢2 -2-—1}—/(; f(Az, Gz)sm 62 d 92 =T CcOS ¢1. (3.13)

Similarly, multiplying (3.6b) by wcos 92, (3.9) by sin 6., subtracting, and

29

averaging, it may be shown that

. 1 2m 1 2m
—wA2+2-2—;r—’/(; f(A,, 92)s1n 62 d92 - cos ¢2 2—1—1,—-[) f(Al, el)sm 610161

2
R 1
- sin ¢2 ‘2‘1'1’[0 f(A;, 6 ) cos € d 6, = 0. (3.14)
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Finally, multiplying (3.6b) by wsin 82, (8.9) by cos 6, adding, and averaging

2’

gives

w AZ 1 21 1 27
- + 2'211f0 f(Az, 6,)sin sz 92—005 ¢2 ﬁ«/; f(Al, Ql)cos Gld 91

21
) . 1
+ wA2 ¢2 - sin ¢2 '2—1?/0 f‘(Al’ 61) sin 61 d 91 =0 (3.15)

In order to simplify the notation, let

L r2m

C;(A) = ?[o f(A;, ©;) cos 6, d 6, i=1,2 (3.16)
L e

8;(A;) = —Tr-fo f(A;, ©,)sin 6, d 6, i=1,2 (3.17)

Then equations (3.11), (3.13), (3.14), and (3.15) may be written as

- ZwAl + 5, (A)) - Cy(A,) sin B, - S,(A,) cos B, = - T sin b, (3.18)
~w? A+ 2wA B+ O (A)) - CyAy) cos By + Sy(Ay)sin B, =T cos B (3.19)
- ZwAz +25,(A,) - 8,(A;) cos B, + C (A)) sin @, = 0 (3.20)
_w? Ay +2wA, gZZ +2C, (A

o) = C;(A;) cos ¢2 ~8;(A) sin ¢2 = 0. (3.21)

Within the range of applicability of the approximate analysis, the four equations
(3.18) through (3.21) may now be regarded as a complete statement of the problem

in terms of the four variables Al’ A2’ ¢1, and ¢2.

Evaluation of Ci(Ai) and Si (Ai)

Except for the subscript notation used here, the functions Ci(Ai) and Si(Ai)

will have precisely the same form as the functions C(A) and S(A) defined earlier
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in connection with the formulation of the single degree of freedom approximate

theory. Thus, from equations (2.124a and b) it will be seen that

A
i * _ (1= *] :
TT[(1--(:()9i+om1’ 5 sinzei ’Ai>l
C(A,) = i-=1,2  (3.22)
A ; A< 1
i i
A, .
- Laia)ysin?8 ;oA >1
™ i i
5,(4,) = i-1,2 (3.23)
, 0 ' s A< 1
i
where
A, -2
* -1 i .
Bi = COS ( T ) i=1,2. (3.24)

1

Approximation of Ci(Ai) and Si(Ai) for Large Ai

In much of the work to follow it will be advantageous to have approximations
for Ci(Ai) and Si(Ai) which are valid for large amplitudes Ai‘ Using equation

(3.24), it may be seen that for large Ai

* * 3 .k
O, =sin 6; + %Siﬁo Gi - (See Ref. 18)

1/2 8
*% 73
1

(4, - 1)3/2
A,

1
6

2
:K; (Ai_l)

.2 +—1— 1 -+
A;L/z 3 A?/z

=n) - 3.25)
i

Thus, substituting (3.25) into expression (3. 22) for Ci(Ai)

A,

C.(A.):—l[(l—a) 2 L \raw-(1-a)—2 (1-—2—)(1-—1- 40— H

i) = Ai172 3 A?72 Ai172 A, 2A, A?72
—Acx+m—3{—————7—2-+0 ———7-2) . (3.26)
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In the case of Si(Ai) the function may be evaluated exactly in terms Ai giving

4(1- a)
s

1
I—K-‘) . (3.27)

8,(A)) = - :

Approximation of Ci(Ai) and Si(Ai) for Aj=1+ Y, Y<<1

Consider the limiting case in which

Ap =1+ Y, V<< 1. (3.28)

Then, from equation (3.24)

*

9i=1T— sm9+§sm 9 + .

:n_zu1/2-§V3/2+0(u5/2). (3.29)

But now, using (3.29) in expression (3. 22)

¢, = X [a-aym-2 7)1/2—?;1/3/2] o - -i———(ll ;))Vl/z (-1+22)+0(¥ %)

=1*”"1‘6%:£—)V3/2+0<75/2) (3.30)

In the same manner, it may also be shown that

C;(A,)

aA =1 - ——————8(1T'r°‘)7)1/2 +%2—7)3/2 +o(2%% (3.31)
5,(A,) = ~4—(1§T—°‘—)V+0(7/2) (3.32)
and
S, (A,)
—L oMl g 22) + 0(2%). (3.33)

All of these relations will be referred to later in the course of the analysis.
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Steady State Equations

The steady state equations may be obtained by setting Al’ AZ’ é‘l and é‘z

equal to zero in equations (3.18) through (3.21). In this way it will be seen that

sl(Af) - Cz(Ag) sin ¢g - SZ(AS) cos ¢g = -rsin ¢(1) (3.34)
-szg + Cl(A(l)) - C,(Ag) cos B9 + SZ(A(Z)) sin @, = r cos &) (3.35)
2 sz(Ag) - Sl(A(l)) cos ¢g + Cl(A(l)) sin ¢g =0 (3.36)
-w?Ag + 2 Cz(Ag) - Cl(Ag) cos @y - Sl(A(l)) sin @, = 0 (3.37)

where the superscript 0 denotes the steady state value. The variable ¢(1) may now
be eliminated from this set of equations by squaring and adding equations (3.34)

and (3.35). This gives

2 2
2.0 0 0 0 0 . 40 0 0 . 40 0 0 2
[— w A1+ C1 - 02 coSs ¢2 +S2 sm¢2] + [Sl - 02 sm¢2 - S2 coS ¢2] =T
(3.38)

where for convenience the functional notation for Ci and Si has been dropped.
Expanding equation (3.38) and using equations (3.36) and (3.37), it may then be
shown that

2.0 2.0 0 0 2,0.,0 . 0 2 * 0,52

~w Ay (- w”A] + C/2) cos ¢2 - (w”A,8,/2) sin@, + (-w A, + C;/2)
2 2
+(w?AJ) /4 +(8y) /4 = 2 (3.39)

But, from equations (3.36) and (3.37)

sin 0 - [—2 cgsg + sg(- szg +2 cg)]/[(c(l’)z + (s(l))z] (3.40)

cos ¢g - [ Cg(—szgf 2 Cp) +2 sgsg]/[(cg)z + (si’)z] (3.41)
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Thus substituting (3.40) and (3.41) into equation (3.39) and rearranging

2,0 0.0

4,0,0.0
wA A C w A 288
a2+ Al | L2 L vwalnd 12
1+ 2 t2C) | 52 0273 1%2 03, 02
€ +s9) €+ d)
2,02 02
w2 @,
+ + =T (3.42)
Z 7

A second equation containing only the variables A0 and Ag may be obtained

1
by squaring and adding equations (3.40) and (3.41). This gives

2,0 0.2 0,2 0.2 0.2

(-w A2 +2 Cz) = (Cl) + (Sl) - 4(82) (3.43)
from which

1/2
2 0,0 0,2 0,2 0.2 0

w? =2 Cy/A] = [(Cl) + 657 - 460) ] /A (3.44)
~ Thus, the statement of the steady state problem has been reduced to a set of two
simultaneous equations, (3.42) and (3.44) in terms of the two unknown amplitudes

[
A1 and AZ' A method for the solution of these equations is considered in the next

subsection.

Numerical Determination of the Steady State Response

Due to the highly transcendental character of equations (3.42) and (3.44),
explicit determination of A1 and Az in terms of w and r is not practical. Thus,
one is forced to consider numerical techniques as an alternate means of obtaining
the desired solution of the steady state response. A method of solution which is
particularly suited to high speed numerical computation is outlined in the following
paragraph.

Using equation (3.44), wz may be eliminated from eqﬁation (3.42) giving a

new equation in Al’ A2’ and the parameter r. Thus, if r is given and A2 is select-
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ed arbitrarily, one may obtain A1 by solving for the roots of this newly formulated
equation. In general there will be several such roots each of which may then be

usedalongwith A, tocalculate a value of w from equation (3.44). If the w obtained

2

thereby is real, the particular solution for A_ and A2 is valid, if not, the solution

1
is rejected. After checking the validity of all of the roots for an assumed A_, the
procedure is begun anew using a new value of AZ' In this way it is possible to

calculate a complete response curve for any given level of excitation r.

Discussion of Results

Digital computer solutions of the steady state response have been obtained
using the general approach outlined above and the results are shown in Figs. 23,
24,‘ and 25, It will be noted that these response curves are similar in many re-
spects to those of a linear two degree of freedom system. However, at the same
time there are some very definite differences., The low-frequency peaks for both

x, and x, resemble the response curves for the single degree of freedom bilinear

1 2
hysteresic system and are typical of ""soft" type resonance; i.e. the response
curves appear to lean toward lower frequency and the peak response moves to a
lower frequency as the level of excitation is increased. On the other hand, the
high-frequency response peaks behave in a somewhat different manner. The upper

peak for X, has the typical soft character but that for x. appears to lean in the

1

opposite direction. This observation may at first seem contradictory but it is not
at all unreasonable in the light of the complex nature of the forces resulting from
non-linearities in both of the system restoring forces. Also, it should be noted that

there is a very steep slope on the low-frequency side of the upper x, peak even

1
though the peak itself leans toward higher frequency.
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Although certain portions of the response curves will be seen to have very
‘steep slopes, all of the curves appear to be single valued thus implying that the
system does not possess any of the "jumps' which are often associated with soft
systems. This is consistent with the analogous conclusioh which is arrived at for
the single degree of freedom system. Whether or not the resemblance between
the one and two degree of freedom systems also carries over into the existence of
a critical force level for unbounded resonance is not apparent from the figures

and must be treated separately as a special problem,

Large Amplitude Steady State Behavior

0
1

remains finite. Then substituting the large amplitude approximations (3.26) and

0

Assume that A and Ag both become very large but that the ratio of A(l) to A2

(3.27) into the steady state equation (3.44), it will be seen that

2 9

2 4 o 4 o 211

w =2 0(+§32¥ Aloc+§12 +O‘(—A-1)
Az; AL 1
1
1/2

PRI 6 S o P S 3.45
A 573 (3.45)

2 A,

where it is understood that Al and A2 refer to steady state values and where

6 =4(1-a)/ /1. (3.46)
Expanding equation (3.45) and introducing the new variable

N = A /A, (3.47)
it may then be shown that

2

2 4 1 1 .80 (1)1 ..] 1
w :Q(Z’FN)-{-g(f 2?—1‘72)—372:&2“ (N) 2+0 —5—72). (3.48)
N A2 A2 A2

Making a similar large amplitude approximation in the remaining steady
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state equation (3.42), it will be seen that

2 1 1
oA 2 2 (LK“) LK_) w4A2
R Y — + WAL A 1 2 +— 2
= 3"'72 172 ) 4 w4 _o 12, 2(_1)2 4
ad*TZ3TI3) YO
A 1
1
B 4 4 o -
ouAlA2 0(A1+~3- 173 )
A 2
2 8 1 w A
+|-wA +2ah,+ 2—Z -2
2 273 12| [ja s o 12 2[;.1)2 2
2 173871/2 S A
Aj 1
1 2 1 )2 o B
+30 (1--A—i—— + 0 ———37—2) . (3.49)
A
2
Thus, expanding and using equation (3.47)
2 272, 2 a2 2 2 Fo1 Wt
1= 4G [N+ 5+ o w’ s 2a)( - )+ -]
4 1/2
2] w 4 azN 2 1/2
+§-—&—A [ ——57—2—'( (,() +2a)+2w + — - aw (N +1)]
2 4 4 2
o i2w W 2 o
+ - Cw +2a)+—— }+0 —7) . (3.50)

Consider now the special case where N has a fixed value N, defined by

N, =lim A /A,. (3.51)
0 Ay, A,oo 172

Then, equation (3.45) may be used to eliminate w2 from equation (3.50) giving

2 2.2 4 3 .2
r =a A2 (N0=F2NO—NO:|:2NO+1)

,Ba0 ,1/2 3 .2 13
88T A, [($2NO+NO:|:3N0+1)+§17§(N0—2N0$1)]

2 3 3 1 2.1
e [‘IT\T_(; (-4N+18N )7 4)*T\T0 (2F1)2FN) *I] +0

—117—2-) . (3.52)
Ag
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For r finite, equation (3.52) indicates that there can be an unbounded resonant

solution (A, and A2 infinite) if and only if the coefficients of both the Ag and A;/ 2

terms vanish identically. Thus, the conditions for unbounded resonance with finite

excitation may be stated as

(N%)$2Ng—N(2)12N0+1):O (3.53)

FONS + N2 £ 3N, +1) + —— (NS - 2N xl]-o 3.54

[(oo 0)N172(0 0¥ =0 (3.54)
0

Now, from (3.53) it is seen that
2 2 '
(N, ¥ Ny - 1)" = 0. (3.55)
Hence,
N, =3 (V5 £1). (3.56)
But, it may then be shown that

3 2
(¢2N0+ NO¢3NO+1): 0
. (3.57)
(N0 - 2N0 F1)=0.

Therefore, the value of NO which satisfies (3.53) simultaneously satisfies (3.48)

/2

and the coefficients of Ag and A; in equation (3.52) may both be made to vanish
identically by the same value of NO' This then implies the existence of an unbound-
ed amplitude solution in which both N and r remain finite.

The limiting excitation level for unbounded resonance may now be obtained
from the constant term of equation (3.52). After simplification by means of (3.55),
this yields

(NO + 1)

o= 6(2——-—-N0 1 (3.58)

r
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where the subscript ¢ denotes that this value of r has the nature of a critical
system parameter. The frequency which corresponds to unbounded resonance

may be found from equation (3.49) and is easily seen to be

2
Wy = a2 ¥ Ng)

- % (3% 5). (3.59)

Making the large amplitude approximations in equation (3.41), it may be

shown that’
0'2 1 1
cos =1 +— @4 F5)— +0 )
2 9 aZ A2 A572
1 1
and hence that
$,—~0,m as A, A0, (3. 60)
Similarly, from equation (3, 35)
aA
2 .2 1
cos P, =2 —= Ny FNy - 1) +0 —m)
A
2
.0 ( 1|
- 1/2]| °
A
2
from which it will be seen that
¢1—~Tr/2 as A, A,>o09. (3.61)

Thus, the unbounded resonance described above has much the same character as
an ordinary linear undamped amplitude and phase resonance. This of course is
completely reasonable since it will be seen that the bilinear hysteretic system

actually approaches linearity in the limit of large amplitudé oscillations.
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By means of the above analysis it has therefore been possible to demonstrate
the existence of two unbounded amplitude and phase resonances which occur for
finite values of the excitation parameter r. In this respect then the two degree of
freedom bilinear hysteretic system exhibits precisely the same type of response

behavior as the one degree of freedom system considered earlier.

General Infinitesimal Stability of the Steady State Solution

Let

0 \
AizAi+gi 1:1,2
(3.62)
0 ,
¢i=¢i+yi i=1,2

where §i and ’Vi are small perturbations on the steady state values A? and ¢?

Then, substituting relations (3.62) into equations (3.18) through (3.21) and neglect-

ing all terms of higher order than unity in gi and %i’ it may be shown that
. v 0 ! 0 0 0 0, . 0
2§+ S by - §,(Cysin @) +8,cos ) - VZ[CZ(AZ) cos B - S,(Ay)sin ¢2]
0
=-r Vl cos ¢1 (3.63)
2 0. ! ! 0 ! 0
-w §1 +2wA; ¥, +C i - §,(Cyc0s ¢2 - 8, 8in ¢2)
0 0 0 0 . 0
+ %, [C2(A2) sin ¢2 +S,(A,) cos ¢2 ] =-r Vl sin ¢1 (3.64)

: ' ' 0 0 0. . 40 0 0
2w, +28, 8, + £ (C sin B, -5, cos By) +702[s1(A1)sm B0+ C, (A7) cos B, ] -0
(3.65)

2 0,. p ! ' 0 " AD
~w E,+ 2WAL(F +Py) + 2058, - §1(Cy cos Py + S sinPy)

+%, [Cl(Ag) sin @) - 5, (A7) cos ¢g] -0 (3. 66)
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(3.67)

The first two steady state equations (3.34) and (3.35) may now be used to eliminate

r Ccos ¢g and r sin ¢(1) from (3.63) and (3.64), and the remaining steady state equa-

tions (3.36) and (3.37) may be used to simplify the form of (3.65) and (3.66). This

gives

N v U i 2
-2w§1+ 8, £ - EZ(CZ sin ¢2+ 8, cos ¢2) - (W A - Cl)‘V1

2' . ] t t 3
- §1 + 2wA1’}01+ Clgl - EZ(C2 cos ¢2 - 8, sin ¢2) - ”}biSl

2wl + 28,8, + §,(Cy sin @, - S; cos B,) + W (~w A, + 2C,) = 0

2 » . 1 \ H .
—w T, + 2WAL (Y + W) + 2C,k, - t,(C, cos ¢2+ 8, sin 2,)

- (¥ + ’)#z)(C2 coS ¢2 - 8, sin ¢2) =0

(¥ + ’}”2)(02 sin ¢2 + 8, cos ¢2) =0

> (3.68)

-/

where it is understood that all Ai’ Ci’ and Si refer to steady state values even
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.though the functional notation and superscripts have been set aside for the sake
of brevity.
In order to examine the time behavior of the small perturbations §i and ’)#1 ,

let

B (3.69)

Then, substituting relations (3.69) into the stability equations (3.68), one obtains
t — 1 1 —— . 2 — 7
2wAr-8,) §1 + (C, sin ¢2+ S cos ¢2) 52 +(C, cos ¢2 -8, sin ¢2+ w' A, -Cy) ’}”1

+(C,cos ¢2 -8, sin ¢2) ’Wz =0

2 T t 1 . . _
(-w' Cj)}, - (Cycos ¢2—stin ¢2)g2+ (Cysin ¢2+ 8, cos ¢2+2wA1)\ sz
+(C, sin ¢2+ 8, cos ¢2)’}02 =0

(cl'sin ¢, - sl' cos By)E; - QwA - 282')"5; +(—w2A2 +2C) ¥, = 0

1 1 . — 2 | J— — —
(C1 cos ¢2 + Sl sin ¢2)€1 + (w —202)§2+(—-2a,A2)\)3V1 + (—2wA2A+ZSZ)'yfz =0

-

(3.70)

The frequency equation is obtained by setting the determinant of the coefficients
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of equation (3.70) equal to zero and may be written as

Cwnt+@wr)ag+@wr)a,+ @wr)a +a=0 (3.71)
where -
1 A\
T{ ~2A.8, - 24 A8, - A,S A AS, } (3.72)
g ' 1 b
-5, (24,8, - A8, ~2A A S, )+ 4A 5,5, +2A,8 S, 28 (@)
g, = 54 498 8. +A,(C. - uWPA ) (-l +C.) + (WA, -2C )[A (®)+A (w?"-zcv)] *
2 = A A, 155 +45(Cy Pw+Cy 27 2C))| Ay 1 2

[ +4qA H@ND)+A (B NB®)
(3.73)

{4A 89S, +2A S s - 28 (®)+2s S +(wA -2C )[A (®)
+A (@ -202)]}+45282(®)—4slszs (w Ay-2C)) (@ 2_sc )

| Ay 20,6 - 20 (@) - (@ (@)2A,5,+ 4,8,) + (A, -2C,)

[4,(®@)+a,¢a” + C))| } - (€, -0 )[-A,( @) (@) +25,4, (-w+C))

+28,(-a+ C) - (O ND)] - (@) -4, (@)W’ -20,) - 25, -4+ C))

-l

| *6;12A Szv)( ® )]
(3.74)

[48 32(@)) 48,8, s -S (w A -202)(w2—20?1)+(w2A2~202)

(0" -2C,)(D)] - (@)[25,(@)D)-25,5,(D )-8, (A, -2C,)(®)
| +ePa,-20)(®)@)] - (€, -«”ap[(@)[25,(®) - (& - 20,)(D)]
28,28, (-« + C)) - (O N D)] + (e’ ay+ 20,)[ (- + 0 ) - 20,)
@ N@)|}- (@ (@)]s," -20,) - 25,(®) ] - 25,[5,(®)

28, (e + C)) | + (@A, - 20,)[-aP+ ¢ )P -2¢)- (©)(@)] }

" ‘ (3.73)
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and where

=C,sin @, + 8 cos¢

2 2 72 2
@:S’sinQS - C.cos

2 2 2 2

@:Czy sin¢2+ Sé cos¢2

(3.76)

@:Clvsingl‘z—sly cos ¢2
@:Czcos¢2—82sin¢2
:01’ cos ¢2+81' sin¢2.

Thus, from the Routh-Hurwitz stability criteria the system will be stable if

aj>0 j=90,1,2,3 (3.77)
and if
2 2
212580 > 87 + AAg. (3.78)

It may be shown on a completely general basis that aq is always greater than zero
for A1 and A2 finite. However, the complicated nature of the a o 21> and a, terms
precludes any such general treatment for these coefficients. Therefore, one must
be content with making detailed studies of stability only for those limiting cases
which will lead to a substantial simplification of the frequency equation, Two such

cases will now be considered,

Stability of Small Amplitude Solutions

For cases in which both A1 and A2 are less than unity, the normalized

bilinear hysteretic system behaves exactly like an undamped linear system and
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it is easily shown that the steady state solutions are marginally stable (ﬁ( A) = 0) .
However, such cases of purely linear response are not at all typical of the general
system behavior. Therefore, as a means of observing the effect of hysteresis on
the system stability, it is instructive to consider the case where one of the system
displacements has an amplitude somewhat greater than unity while the other has

an amplitude which is less than unity.

Case 1) A2<1; Alz 1+, v<<1l.

Consider the case in which A1 is slightly greater than unity and A2 is less

than unity. Then,

1
cz/A2 =Cy =1
(3.79)

and using relations (3.28) through (3.33) in equations (3.66) through (3.69) gives

a

3= T +0(¥)>0

/

@NZ - 2N +3) + 0(p %) >0 for all N

(3.80)

a, =0 (N - 2N + 2) +0(»2) 50 for all N

a, = (N2 -N- 1)2+ 0(1)1/2) > 0 for allN#%—(\/?+1).

0
For the present case, the particular amplitude ratio N = % ( '\/_5—' +1) corresponds
to the limiting steady state solution as r approaches zero. Thus, for r finite

2gs 24, 3o, and ag are all positive and the first stability condition (3.77) is

satigfied.
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From equations (3. 80) it may now be shown that

2 a ag = 0'2(2N - 1)2 ; (3.81)

aaa—al 0

17273

and thereby that

2 2
2,858, >a] +a,dq for all N # 1/2.

However, by supposition N >1. Therefore, the second stability condition (3.78)

is also satisfied, and the system is stable,

Case 2) A1<1; A2=1+1}, v <<1.

Now, consider the case where A, is slightly greater than unity and A1 is

2

less than unity. In this case then

1
C,/A;=0C =1
(3.82)
1
S1 = Sl = 0,
and expansion of equations (3.66) through (3.69) in powers of 2 yields
ag = 20 +0()>0
ag = (2N2 + 2N + 3) +O(V1/2) >0 forall N
(3.83)
ay :cr(ZN2 + 6N +5) + 0(7/1/2) >0 forall N

2 2 1/2 1
ay= N+ N-1)" +0( / ) >0 forauN#-z—(\/?—l).

where here, as before, the particular amplitude ratio which causes a 0 to vanish

corresponds to the limiting steady state solution as r approaches zero. Thus, for

r finite a and a4 are again all positive and condition (3.77) is satisfied.

0 10 Ao
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But now from equations (3.83) it may further be shown that

2
a,a, - a

2 2 2
aj8585 - 8; ~8483 =0 (2N +1)

(3. 84)
>0 for all N,

Therefore, the stability condition (3.78) is also satisfied and it is once again

found that the system is stable.

Stability of Large Amplitude Solutions

Assume that Al and A2 become very large and that the ratio of A1 to A?.
remains finite. Then, using the large amplitude approximations of equations

(8.28), (3.27), and (3.48), it may, with some effort, be shown that

a3=o-(1+2N)-£— >0 forallN >0
1

2 .2 1
ag = & (2N ~=F2N+3)+O —Fé >0 forall N
1 (3. 85)
a :aa2[2N3+(1?6)N2+(5=F2)N+2]~}—+0 1150 forallN
1 A 5
1 A
1
8. = (N2FN-1)+0 |—Lz| >0 for all N near N
0= £372| 7 0
1

Thus, for all but the limiting case of infinite amplitudes a 0 21 29 and ag are all
positive and the first stability condition (3.77) is satisfied. In the limiting case
where A1 is actually infinite (unbounded resonance) a 0 21 and ag approach zero

and the system is marginally stable (A= 0).

From equations (3.85) it may now be shown that

2 2 2 4([..3 2 ][ 3 2
a 8,8y -2, ~agds = 0 [zN FAFONT+ GFN+2|] 2N+ (12 2)N
2 1 1
+N+1]—(1+2N)(N IN-1) 540 | (3.86)
Ay Aq
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But for large amplitude oscillation

1

Ak

N=N,+0 k >0 (3.87)

0

Therefore, substituting (3.87) into (3.86) and using relation (3.56),

2 2 2 4 1 1
a1a53q ~ 2y ~8A3 =0 a (28?25)—2+0 S m >0
A A
1 1
>0 for all A1 large but finite, (3. 88)

Hence, the second stability condition (3.78) is also satisfied and it is concluded
that the system is stable for all A1 and A2 large becoming marginally stable in the

limit of infinite amplitudes,

By way of summary, Fig. 26 shows those regions of the response curve

which the above analysis has shown to be either stable or marginally stable,

Loci of Vertical Tangency

It can be shown on a completely general basis (See Ref. 17) that

OA,

a(j——-oo if and only if a 0. (3.89)

Thus, in the present case the loci of vertical tangency, if such exist, may be
obtained by setting expression (3.75) equal to zero. However, to do this for the
entire range of variables Ai would lead to such a complicated relationship for the
loci that practically speaking the problem cannot be solved. Therefore, as in the
treatment of stability, one must resort to an analysis which is valid only in certain
limiting cases thereby demonstrating the existence (or non existence) of loci of

vertical tangency without actually obtaining their detailed character.
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Case 1) A2< 1; A1 =1+ Vl, 7)1<< 1.

Let Al be slightly greater than unity and A2 be less than unity. Then,
expanding equation (3.75) by means of relations (3.79) and (3.28) through (3.33),
it may be shown that

1/2

ag = [w4 -3-20 7J1/2)w2+ (1- 20‘7)1

](w - 3w? +1) +0(%)). (3.90)
But, from (3.89) the condition for a vertical tangency is
= 0. : (3.91)

1/2

20
Therefore, to order V the locus of vertical tangency will be given by

1/2

—(3—20#1/2)w2+(1—2crﬂ _ 0. (3.92)

where the subscript '"v"" denotes the value at the point of vertical tangency. Solving

equation (3.92) for w,with the stipulation that A1 > A2 then gives
:%(3-\/?)-0-2);/2 (1 -5/5), v > 0. (3.93)

The existence of at least one locus of vertical tangency has thereby been demon-~
strated and it is seen that this locus originates at the point w = —~(3 \/—') A
and moves toward lower frequency as A1 increases.

The above result was derived in terms of the amplitude Al’ however, since
there is a definite steady state functional relationship between A1 and A2 for all
w , precisely the same type of analysis could have been applied using AZ' Thus,
a vertical tangency for A1 directly implies the existence of a vertical tangency for
A2 and vice versa. From equation (3.44) and relations (3.30) and (3. 32) it is seen

that in the present limiting case

1/2
1 2 2
A, - - C, +8
- [ s7]
- - 21 (1+V)+0(7J3/2 (3.94)
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But at the point of vertical tangency cuz = cu2> and using (3.93)

A -2 4opl/2a- V72)+0(V

= ). (3.95)
27 @+ V5) Loa+Ve? !
Thus, letting
A, 2 +V,, (3.96)
(1+V5)
equation (3.95) gives
7)2:-40721/2 .'L——V—_@w(z} (3.97)
1+ V5’
and thereby,
12 _ —Jl—f—V:L—V +0(¥2 (3.98)

= ).
1 10(1-V5/2) 2

Hence, from (3.93) the locus of vertical tangency for A2 may be written as
1 1 2 2
=5 G-VB)+ 7 A+ VB) ¥, +0(¥)) (3.99)

where from (3.97), 7)2 < 0, It will be noted that the above locus for A_ originates

2

at the point cu2 = % 3 -\/—5'), '\/_-I 1) and unlike the corresponding locus for

2"2

Al’ moves initially downward from its point of origin.

Case 2) A <1, A, = 1+7)2, 7/2 <<1

Next, consider the case where A2 is slightly greater than unity while Al is
less than unity. Expanding (3.75) in powers of 7J2 for this case, it may be shown

that

a, = [w4 - (3—40-7J1/2)w2+ - 20-711/2 ]((.u4 - 3w2+ 1) + O(Vz). (3.100)

0=
1/2

° the equation for the locus of vertical tangency becomes

Thus, to order ?

4

w) - (3—40-7)1/2)w + (1- 207)1/2 - 0 (3.101)
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where again the subscript denotes that the variable is evaluated at the point of

vertical tangency. Solving equation (3.101) and stipulating that A, < A2 then gives

1

wi:%(%ﬁ)-gavgm 1+ 2 V5/5), 7, >1. (3.102)
Equation (3.102) therefore represents a locus of vertical tangency for A2 which
originates at the point wz = 1 (3 + V_Sﬁ), A2 = 1 and moves away from this point in
the direction of increasing amplitude and decreasing frequency.

As pointed out earlier, the existence of a locus of vertical tangency for A2

implies the existence of a corresponding locus for A1 and this latter locus may be

obtained directly from (3.102) if the functional relationship between A1 and A2 is
known. Now, from equation (3.44) and relations (3.30) and (3. 32)
2 2 2 2 2
Al = Cl = (Azw - 202) -+ 482
2 3/2 2 2
:{w (1+7J)-2[1+v +0(Y )]} +0(22). (3.103)
2 2 2 2
Thus,
Ay = (W -2)+ 2(w’ - 2)V, + 0(7/2/2). (3.104)
But at the point of vertical tangency w2 = wi so using equation (3.102)
A ~1(V€-1)-20rv1/2 1+2V5/5) +0(2,) (3.105)
172 2 27 ’
Hence, letting
1
A =5 V5-1) + 2 (3.106)
it is seen that
‘ 1/2
P1:—~20‘7/2 (1+2\/?/5)+0(7/2). _ (3.107)

where it is required that Wl < 0 within the range of validity of the present approx-

imation for 0 < VZ < 1. The locus of equation (3.107) therefore moves towards
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decreasing amplitude and frequency from an origin at the point w2 = —21— 3+ \/—5—'),

1
A = g(\/3—1).

On the basis of the above analysis and information obtained from the steady
state response curves, the probable configurations of the known loci of vertical

tangency have been sketched schematically in Fig. 27.

Summary

The results of the p'receeding analysis of the two degree of freedom bilinear
hysteretic system may be summarized as follows:

(1) The low-frequency response peaks for both Xy and X, are typical of soft
type resonance in that the response curves appear to lean toward lower frequency
and the peak response moves to a lower frequency as the level of excitation is
increased. On the other hand, the high-frequency response peaks behave some-
what differently with Xy having typical soft character but Xy appearing to lean in
the opposite direction for at least two of the cases considered. All of the reson-
ance peaks regardless of their general shape have very steep slopes on the low-
frequency side of the peak response.

(2) Associated with the steep sloped portions of the response curves are
four loci of vertical tangency having the probable configurations shown schemati-
cally in Fig. 27,

(8) For all of the specific cases investigated here the response curves were
single-valued indicating that "jumps' between multiple stable branches are not
present within the range of the present analysis.

(4) There are two critical levels of excitation above which the system

exhibits unbounded amplitude and phase resonance, The lowest critical level
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corresponds to unbounded resonance of the low frequency response peak (A1 > Az),
and the highest corresponds to a similar behavior of the high frequency peak
(A,2 > Al)' For the present normalized problem the values of the critical excita-
tion levels are a(ﬁ—l)/z and o(3 V5 +7)/2 where 0= 4(1- a)/1r.

- (6) The system has been shown to be stable or marginally stable for the

regions of response shown schematically in Fig. 26,
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B. Numerical Integration of the Equations of Motion

As a means of checking the approximate steady state theory, one may solve
for the system motion by direct numerical integration of the equations of motion.

This procedure will now be discussed,

Steady State Solutions

Steady state solutions have been obtained for a number of specific cases
using a fifth order RungeéKutta numerical integration technique (See Ref. 19) with
the approximate theory results as initial conditions. These solutions have been
denoted by dots on the response curves of Figs. 24 and 25, It will be noted that
for all of the cases checked the amplitude as predicted by the approximate and

numerical solutions is in quite close agreement.

Harmonic Content

In the linearized treatment of steady state motion, it is assumed that the
displacement contains a single harmonic component with a frequency equal to the
frequency of excitation., However, unless both amplitudes are less than unity this
assumption will be violated due to the presence of higher order harmonic terms
in the real system. Thus, a good indication of the overall merit of the approximate
theory will be obtained from the harmonic content of the true displacement wave
forms as calculated by numerical integration.

Let A(t) be the difference between the actual displacement x(t) and the
fundamental Fourier component of this displacement. Then

A(t) = x(t) - (a1 sin wt + bl cos wt), _ (3.108)
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where

o0
x(t) = g (an sin nwt +bn cos nwt (3.109)
n=1

and

L 2w ,
a, = F/(; x(t) sin nwt d(wt)

(3.110)
1 21
b = —/ x(t) cos nwt d(wt).
0oy
But now from (3,109) and (3.110)
A(t) = § (a_sinnwt +b_ cos nwt), (3.111)
n=2 n n

and using the orthogonality conditions for the trigonometric functions

1 27T
A(t _-.—2— A(t) d(wt)

.21. E (ar21+b ) (3.112)

(3.113)
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Table II gives the values of X which correspond to the numerical integration

solutions denoted in Figs. 24 and 25. The steady state displacement wave forms

TABLE 11
Harmonic Content, X
(04 T W £ f

or x, or X,
0.50 0.706 0. 025 0.063

(Fig. 26)
tan T7/8 1.600 0.003 0. 004
1.00 0,611 0.026 0.083

(Fig. 27)
1.500 0.003 0.006

for the four cases of Table II are shown in Figs. 28 and 29, and velocity wave
forms for two representative cases are shown in Fig, 30.

It will be noted that the harmonic content of the true displacement wave
forms is quite low (1-3%) for small amplitude solutions but becomes significant
(~8%) when the amplitude of one or both displacements is moderately large. On
the other hand, the actual values of the steady state amplitude of response as
predicted by the approximate theory agree very well with the numerical results

over the entire range of amplitudes considered.
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IV. ELECTRIC ANALOG STUDIES OF THE ONE DEGREE OF FREEDOM SYSTEM

Introduction

All of the approaches thus far considered involve some degree of numerical
calculation in order to obtain a steady state solution. Indeed, in some cases these
calculations have tended to become so involved that they have obscured much of
the real character of the solutions which they represent. It is therefore desirable
to constructv an analog capable of providing rapid cursory checks of analytic pro-
cedures while giving a feeling for the overall nature of the system response.
Both electrical and mechanical analogs could be used but in general the electric
analog provides greater flexibility and closer control of system parameters.
Thué, the remainder of the present discussion will be limited to this type of analog

In the case of piece-wise linear systems and specifically in the case of the
bilinear hysteretic system, at least two general methods of electrical simulation
have been employed. One method uses high speed switching circuitry to alternately
activate separate linear sub-circuits corresponding to different system regimes
while the other uses inherently nonlinear circuit elements whose characteristics
may be utilized directly to generate the desired piece-wise linear function. The
first method has been employed rather successfully by W.'T. Thompson(s) to repre-
sent a bilinear hysteretic system subjected to a unidirectional force excitation,
However, the overall complexity of this method makes it somewhat impractical
when applied to the steady state problem, In this case the potential physical
simplicity of the second method may be used to advantage.

T. K. Caughey(lg) has generated the bilinear hysteretic. function by means of
a parallel network consisting of two oppositely biased conventional diodes and a

capacitor, In this configuration the biased diodes act to limit the voltage which
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may appear across the capacitor thereby causing a discontinuity in the slope of the
charge-voltage characteristic of the network which is exactly analogous to the
slope discontinuity of the restoring force in the mechanical system. Studies of the
steady state response of the bilinear system using this network in conjunction with
an electric differential analyzer gave results which agreed quite favorably with
theoretical predictions over a fairly wide range of parameters.

The method used to simulate the bilinear hysteretic function in the present
study is basically justa modification of the technique employed by Professor Caughey.
However, in the present case use has been made of certain recent developments
in the field of semiconductor devices which enable further simplification of the
required circuitry along with improvement in the overall performance of the

analog. This will now be discussed in some detail.

Function Generation for Systems Having Some Form of Coulomb Damping

As a semiconductor diode is more and more strongly reverse biased, apoint
is reached where the resulting electric field in the semiconductor is strong enough
to pull electrons from the lattice structure of the material thereby causinga sudden
onset of conduction. Once this conduction has begun, it increases rapidly with
increased reverse bias giving rise to a sharp knee in the current-voltage charac-
teristic of the diode. The transition between conduction and non-conduction is much
more abrupt than that associated with the usual forward diode characteristic, and
the resistance during conduction is extremely low. The voltage at which this so
called Zener breakdown first occurs is strongly dependent on the impurity concen-
tration or "doping' of the semiconductor and can be rather closely controlled.

In order to provide a limiting or clipping device, two of these Zener diodes

having very nearly the same doping may be manufactured as a single unit in a back
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to back or cathode to cathode configuration. These "Double-Anode' Zener Diodes
have remarkably symmetric current-voltage characteristics with a general shape
similar to that shown schematically in Fig, 31. It will be noted that except for an
interchange of the coordinate axes, this characteristic is very nearly the same as
the force-velocity relationship of a Coulomb damper. For this reason, the
“"Double-Anode' Zener Diode is an extremely useful tool in the electrical simula-
tion of systems which can be realized physically by the introduction of Coulomb

damping. The bilinear hy‘steretic system is such a system.

Idealized Analog Circuit for Bilinear Hysteresis

The mechanical model of Fig. 32 is an example of a physical system which
has a bilinear hysteretic restoring force characteristic. Therefore, making use
of this model and the Coulomb damping character of Fig. 31, it is a straight
forward matter to construct an electrical analog which is governed by a differ-
ential equation of the desired form. The direct passive analog obtained in this
way is shown in Fig. 33.

In order to understand the manner in which the hysteretic restoring force
is generated, consider the voltage-charge characteristic of the portion of the
circuit between points a and c¢. The operation of this portion of the circuit is best
understood using Fig. 34 and can be explained as follows: For simplicity assume
that the initial current and charge is zero in both branches of the circuit. Then,
when a positive voltage e is first applied and current begins to flow, the voltage
ey, across the Zener diode will be insufficient for conduction and the diode will
act as an open circuit. Voltages therefore appear across the two capacitors in

proportion to the time integral of the current in the loop and operation is in the

range 0 to 1 of Fig. 34 where the voltage-charge characteristic has a slope
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1/C0 = 1/C1 + 1/(32. If the voltage 0 becomes sufficiently large, the voltage
€.}, across capacitor Cz will reach the Zener breakdown voltage e, and the diode
then acts as a short circuit-device having a fixed voltage drop. Any further charge
storage must therefore be accommodated by C1 alone and the slope of the voltage-
charge characteristic becomes 1/Cl. As €c reaches the maximum denoted by
point 2 in Fig. 34 and is then decreased, the current reverses direction and both
C1 and 02 begin fo discharge. But, as 02 discharges, its voltage drops below the
Zener voltage e, and the.diode ceases to conduct. Thus, the voltage-charge char-
acteristic will once again be determined by the series combination of C1 and CZ’
and the voltages €. and e will again decrease in proportion to the charge until
the current becomes zero or until b equals -e, and the diode again conducts, -
Since the circuit of Fig. 33 is a direct current-velocity analog, charge
corresponds to displacement in the mechanical system and voltage corresponds to
force. Thus, the voltage-charge characteristic of the circuit between points a and

c is seen to be exactly analogus to the bilinear hysteretic restoring force charac-

teristic of the mechanical model.

Equivalence of the Electrical and Mechanical Systems

The normalized differential equations describing the behavior of the system
are equations (2.3a) and (2.3b). If the system is subjected to a sinusoidal force

excitation of frequency w and amplitude r these equations become;

2

d"x . dx dx

—dtz +X =T sinwt - (sgn T ) (|xm| -1)(1- a); (]xm| -2)<- (sg‘n a ) x<|xm|
4.1)

2

d'x \ dx dx ,

—5 + X :rsmwt—(sgnat—)(l—a) ; —(sgnaT)x<(|xm| ~-2)

dt
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where the natural frequency for the limiting linear case is normalized to unity and
« is the slope of the second linear regime of the restoring force characteristic,

From Fig. 33, the electrical system equations which correspond to equations (4.1)

are:
2 E q C e
(.i._g 1 q_ OSln‘U T - (Sg-n gq) ._I.I_l;_(l__o__ ._;Z_
dT C T LC0 1 L
“4.2)

2 E e

1 0 A

q_ smcuz‘—(sgn-——)—

drz L dt’ L

where in these equations q is the charge, CO is the series capacitance of C1 and
02, w, is the excitation frequency in the analog system and 7 is the analog time.
~ The two systems represented by equations (4.1) and (4. 2) will be equivalent if the

following relations are satisfied:

X = 43—+ ¢ 4. 3a)
COez

a=Cy/C = Cy/(C + Cy) (4.3b)

w:'\/LCO W, = wa/wo (4.3c)
E, |

r=—(1-a). 4.3d)

If ais greater than zero, C1 will be finite and the simplest means of

measuring the charge q is to measure the voltage drop ey, across Cl' Then,

1-a) ©
24 e
Z

X =

However, in the limiting case of elasto-plastic behavior, & approaches zero
which requires that C1 become infinite (assuming a finite C 0 and thereby finite x

and w). Therefore, direct measurement of q is impossible in this case and special
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circuit techniques must be employed.

Practical Circuit Considerations

In the above idealized treatment of the analog circuit all parasitic elements
and the effects which they cause have been neglected. However, in practice such
elements certainly exist and their presence must be reckoned with, In general,
there are two ways of doing this; 1) an estimate of the effect of the parasitic ele-
ments may be ihcorporated into a correction factor which is applied to the results
of actual measurements, or 2) an attempt may be made to directly compensate for
the effect of such elements within the analog itself, Where feasible, the second of
‘these approaches is felt to be the best and is the one used in the present work.

T'ig. 35 shows the analog circuit with major parasitic elements included;
these are the resistive impedance of the source Rs’ the series resistance of the
inductor RL’ and the equivalent series resistance of the diode RZ, As all of these
elements are resistive in nature, it would appear possible to eliminate their effect
by simply introducing an equivalent negative resistance at some convenient point
in the circuit. Basically, this is correct but certain other steps must also be taken.
Since in normal operation the diode conducts during only a portion of each cycle,
its series resistance Rz is likewise in the circuit for only a portion of each cycle,
The total main loop resistance is therefore a discontinuous function of time and
cannot be accurately approximated by any single negative impedance device. This
problem can be overcome by introducing a resistance RC in series with the capaci-

tor C2 where R ., is equal to RZ over the desired range of operation. Then, either

C

Rz or RC will be in the circuit at any given time and a negative impedance device

may be used which has an effective resistance -R = —(RS +R, + Rz)' The negative

resistance device used in the present study consists of a resistance shunting the
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FIGURE 35. ACTUAL ANALOG CIRCUIT
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input of a greater than unity gain "ﬂoatiné" amplifier as shown schematically in
Fig. 35.

A parasitic element which has been ignored in the above discussion is the
internal shunt resistance of the two capacitors Cy and Cy- For good polystyrene
capacitors, this resistance will generally be of the order of 1 x 108 ohms as
compared with a nominal operating impedance of 5 - 6 x 103 ohms for the capaci-
tors. Thus, any effects due purely to the existence of an additional current path in
the circuit should be quité small. The time constant for such capacitors will be
approximately 1 - 10 seconds which is sufficiently long that steady state operation
in the 200-600 cps range should not be significantly affected by capacitor self-
discharge. However, for transient operation the effect of discharge may become
significant as the length of time for which information is desired approaches the
time constant of the caioacitors. This fact should be kept in mind when establish-

- ing the duration of any transient measurements.

Discussion of Results —- Fundamental Frequency Range

The measured response of the analog circuit to inputs of varying frequency
and amplitude is shown in Figs. 36 and 37 along with the corresponding exact
solutions obtained by numerical techniques. It is seen that over the range of
variables considered, the agreement is quite good, The only noticeable difference
between the analog and exact solutions occurs for values of response which are
only slightly larger than unity. This is to be expected, however, since it is in
this range that the Zener diode is operating near the knee of its current-voltage

characteristic where the effects of rounding may be significant,
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Ultraharmonic Response

The existence of ultraharmonic behavior in the bilinear hysteretic system
was discussed in a previous section of this thesis. However, due to the analytic
complexity of the problem no information was obtained regarding the detailed
character of this behavior. It is now possible to complete this earlier discussion
and to show the nature of the ultraharmonic response by means of the electric
analog described above,

Fig. 38 shows a famﬂy of response curves where the frequency range and
amplitude of excitation have been chosen so as to allow for the appearance of
ultraharmonic response peaks. Due to low frequency limitations on the physical
circuitry, only ultraharmonic response peaks of order 3, 5, and 7 are shown.
However, this does not in any way indicate that ultraharmonics of higher order do
not also exist.

It is noted from the figure that the ultraharmonic response peaks clearly
exhibit a tendency to lean towards lower frequencies as is typical of soft systems
in general and the bilinear hysteretic system in particular. However, it is not
possible on the basis of these results to either confirm of deny the existence of a
locus of vertical tangency for the ultraharmonic peaks.

Fig. 39 is a reproduction of oscilloscope records showing the displacement
as a function of time and the hysteretic restoring force as a function of displace-
ment for frequencies at or near the ultraharmonic response peaks. The presence
of the relevant ultraharmonic is clearly visible in the displacement and leads to the
successive doubling back exhibited in the hysteresis loop. As mentioned earlier,
this doubling back along certain segments of the hysteresis lbop is one of the
primary causes of difficulty in treating ultraharmonic behavior by means of any

exact or approximate analytic techniques.
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w= 0, 260

{(b) Ultraharmonic of Order Three

= 0 175

(c) Ultraharmonic of Order Five

w=0,128

(d) Ultraharmonic of Order Seven

Figure 39. Displacement Wave Forms and Hysteresis Loop
Configurations in Regions of Ultraharmonic Response.

o= tan Wy By, = A a2s
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V. SUMMARY AND CONCLUSIONS

On the basis of the present investigation it has been possible to make
certain observations and conclusions about the dynamic response of one and two
degree of freedom bilinear hysteretic systems. These observations and

conclusions are summarized in the following paragraphs.

One Degree of Freedom System

From the exact steédy state solutions for square wave and trigonometric
excitation it is concluded that the one degree of freedom system exhibits a
typical soft type resonance with the peak response moving to a lower frequency
as the level of excitation is increased, All of the response curves are apparently
single valued but their general shape is noticeably asymmetric having a very
steep slope on the low-frequency side of the peak response., For amplitudes of
excitation greater than or equal to (1- &) in the case of square wave excitation
and 4(1- a)/m in the case of trigonometric excitation, the system displays
unbounded resonance which first occurs at a frequency of w-= ‘\/3[' . An examina-
tion of the steady state displacement wave forms for trigonometric excitation
shows that these are very nearly sinusoidal with a harmonic content in general
less than 4%.

Approximate theories based on either the method of equivalent linearization
or the method of slowly varying parameters prove quite adequate in predicting the
steady state system response to trigonometric excitation even for relatively
small values of a*. Both of these theories indicate the existence of an unbounded

resonant solution with finite excitation and both indicate the existence of a single

* o= 0 corresponds to the limiting case of elasto-plastic behavior.
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point of vertical tangency on the low-frequency side of each response peak. The
method of slowly varying parameters further indicates that the system is stable
or marginally stable for all frequencies of excitation.

If viscous damping is introduced into the system the steady state response
curves lose much of their asymmetric character and become more like those for
a linear damped system. Application of the method of slowly varying parameters
in this case indicates that the peak response remains finite for all finite levels of
excitation, that there arevno loci of vertical tangency, and that the system is
stable for all frequencies of excitation.

Electric analog studies of the system without viscous damping show the
existence of ultraharmonic response peaks under certain conditions of excitation.
These peaks appear to have much the same character as the harmonic peaks
described earlier but the nature of the analog method precludes detailed exam-
ination of such features as loci of vertical tangency.

For transient excitation of finite duration where at least one maxima of the
diSplacement* occurs after the excitation has ceased, it has been shown that there
will be no resultant permanent offset if o > 1/2; i.e. the final motion of the
system will be oscillatory with zero average displacement. This conclusion is
particularly applicable when the system response is due primarily to resonance
effects as in short duration shock and pulse excitation or low level random

excitation,

* A "maxima of the displacement” is defined as any displacement x satisfying
the conditions

}.(:O, IXI >1
If (x,0)|=a|x]| +(1- «).
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Two Degree of Freedom System

In the case of the two degree of freedom system an approximate analysis
by the method of slowly varying parameters gives modified soft type response
curves which are single Vglued within the range of the investigation but which
are definitely asymmetric and have very steep slopes on the low-frequency sides
of each peak. Associated with the steep sloped portions of the response curves
are at least four loci of vertical tangency occuring in such a way that there is
one locus corresponding each peak of the two system displacements. There are
two critical levels of excitation above which the system will exhibit unbounded
amplitude and phase resonance, For the normalized system these critical
excitation levels are r = 4(1- a)( '\/_5_'—1)/217 for unbounded resonance of the low-
frequency response peaks and r = 4(1- a)(3 Vs +7)/2m for a similar behavior
of the high-frequency peaks. The stability of the system has been examined
only in certain limiting cases but in each of these the steady state motion was
found to be stable or marginally stable,

No exact steady state response solution is available for the two degree of
freedom system but the eqﬁations of motion can be integrated numerically for
specific cases in order to provide a spot check of the approximate theory. In
the case of = tan /8, examination of the true steady state displacement
wave forms obtained in this way indicates that the harmonic content is quite low
(1-3%) for amplitudes only slightly greater than unity but may become significant

*
(~8%) for moderately large amplitudes . Similarly, the steady state amplitude

* For very large displacement amplitudes the system approéches linearity and
the harmonic content thereby approaches zero.



- 150 -

of response as predicted by the approximate theory is in very close agreement
with the numerical results for low amplitudes and disagrees somewhat only for
moderately large amplitude solutions. Strictly speaking, the approximate theory
can be considered accurate only for the nearly linear cases of a=1. However,
on the basis of the present analysis it is concluded that the theory will actually
give quite good results over a fairly wide range of « if interested is restricted

to lower displacement amplitudes as « is decreased.
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