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Abstract

This work contributes to the understanding of thermodynamic aspects and
microscopic mechanisms of the crystal to glass transition and its relationship to
melting. The topological order to disorder transition was investigated primarily
in a model system consisting of Lennard-Jones binary solid solutions via molecu-
lar dynamics simulations. Under constant temperature and pressure, thermody-
namic properties and structures of the solid solutions are mainly determined by
solute/solvent atomic size difference and solute concentration. At a critical atomic
size difference and/or concentration, the transition was found to occur with ex-
tremely small latent heat and density change, but large softening of shear elastic
constants. Microscopic details such as atomic configuration show that the transition
is induced by collective topological defects created by differences in atomic sizes of
the solute and solvent atoms. The inhomogeneity in atomic displacements caused
by these defects was shown to be directly responsible for crossover of the transi-
tion from a first order transition to a continuous one. The fundamental difference
between melting and the crystal to glass transition was demonstrated by their ther-
modynamic, dynamic, and structural behavior under different kinetic environments.
It was shown that melting is intrinsically a first order transition, whereas crystal to
glass transition can occur in a variety of forms that are crucially dependent on the

kinetic constraints imposed on the solid phases.
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Chapter 1

Introduction

It is now well known that a metastable glassy phase can be obtained either
from a liquid phase or from a gas phase by techniques that can greatly reduce the
atomic mobility so as to prevent nucleation and growth of crystalline phases [1.1].
This thesis, however, deals primarily with a different type of glass formation that
begins with a crystalline solid phase [1.2]. Unlike the liquid to glass transition
where space symmetry of a parent phases is the same as that of the glass phase
(although an entirely different symmetry, the ergodicity symmetry, is obviously
broken at the liquid to glass transition [1.3]), the crystal to glass transition (CGT)
involves two phases that have completely different symmetry. In this thesis, we shall
investigate the nature of the transition and behavior of related thermodynamic
properties, dynamic properties, and structural changes of both phases. We will
focus our attention on microscopic mechanisms and collective behavior of atoms at
the transition. In particular, we are interested in the effects of defects, microscopic
strain and stress, and the role they play on destabilizing the crystallinity.

The only phase transition that closely resembles this type of topological order
to disorder transition is thermal melting. When heated up to melting temperature.
a crystalline phase transforms readily into a liquid. The liquid phase is topologically
different from the crystalline phase in such a way that there exists no mapping, or
transformation of atomic coordinates, so that the former can be continuously re-
lated to the latter {1.4]. A glass can be considered as a frozen liquid that has a

similar static structure factor as that of a liquid above melting temperature. Atoms
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in a glass lack mdbility and thus cannot diffuse as easily as in the liquid. If slow
relaxation of the metastable glassy structure is neglected, atoms in a well equili-
brated glass appear to be indefinitely locked into the instantaneous coordinates of a
liquid phase. From this perspective, the crystal to glass transition can be regarded
as a “melting” transition at which a crystalline phase becomes a configurationally

frozen, metastable liquid.

Although such an analogy made between melting and the CGT neglects the
dynamic aspect of the transition (a glass is different from a liquid dynamically; see
mode coupling theory {[1.5]), it certainly has facilitated the understanding of the
crystal to glass transition tremendously [1.2, 1.6]. In this thesis, we shall review
various theories and models of melting which have been extensively used to explain
the crystal to glass transition. We will show that it is the difference in the imposed

kinetic constraints that can differentiate melting and the crystal to glass transition.

The crystal to glass transition has been observed to occur in almost all types of
crystalline solids, covalent, ionic and metallic systems [1.2, 1.7]. In the present work,
much of our attention will be focused on metallic systems only. Because of simplicity
of their structural units and isotropic interactions, each atom in a metallic system
can be treated as a particle without internal structure. So it is relatively easy to
study a metallic system, especially theoretically. Metallic glasses exhibit a variety
of fascinating properties that range from magnetic, photoelectronic, and thermo-
physical as well as mechanical properties that other forms of condensed matter lack
[1.8]. These properties make metallic glasses an extremely promising technological
material to be used in various applications where conventional crystalline materials

have failed to perform satisfactorily [1.1, 1.8].
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Traditionally metastable metallic glasses are prepared by rapid quenching of
melts at cooling rates of 10* ~ 107 K/s [1.1, 1.8]. However, glasses obtained by these
techniques are limited severely by their size and geometry. Because a large cooling
rate is required, techniques such as rapid solidification and vapor deposition can
only produce samples with one dimension greatly reduced. Applications for such
thin metallic sheets or ribbons have been found to be very limited, despite the very
promising properties these materials exhibit. In addition, these limitations have
posed great difficulty for measurements of physical properties that are manifested

on long wavelengths or large sample size.

To overcome the shortcomings in synthesis of metallic glasses, great efforts
have been made in the last several decades [1.1, 1.2]. The crystal to glass transition,
among the relatively successful attempts, has opened a new avenue for production
of large sized, bulk metallic glasses not only for technological applications, but also
for scientific investigation of physical properties of these materials. In addition, like
melting, the crystal to glass transition has posed fascinating but extremely chal-
lenging problems for our understanding of topological order to disorder transitions

and metastable phase transitions in general.

Topological order to disorder transitions are often associated with some types
of internal or external perturbations on an ordered system that usually cause ran-
dom displacements of atoms from the ordered state. The disordering is random in
nature and is often manifested in the formation of a variety of defects [1.9]. In the
case of melting, input thermal energy enhances vibrations of atoms and when the
melting temperature is reached, the mean amplitude of random deviations of atoms

from their lattice positions become so large that one can no longer associate each
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atom with the underlying equilibrium lattice position; thus a liquid phase forms. At
elevated temperature, except very close to melting temperature, crystalline solids
remain in thermodynamic equilibrium because thermal activation enables access to

the entire phase space.

The types of external perturbations that can induce the CGT are not only
large in number but also in variety. The CGT has been observed during irradiation
of solids with high energy particles [1.10], hydrogen absorption by crystalline in-
termetallics [1.11], severe mechanical deformation of crystals [1.12] and solid-state
interdiffusion reactions of elemental metals [1.13]. In the case of mechanical defor-
mation induced CGT, externally applied stresses directly drive atoms out of their
equilibrium positions, while in hydrogen and interdiffusion induced CGT, internal
stress fields created by different chemical species drive each atom away from its
underlying equilibrium lattice position. Unlike in melting, a solid phase that un-
dergoes the CGT is often in a thermodynamic metastable state. The metastability
is characterized by elevated free energies compared with the equilibrium crystalline
phase under the same thermodynamic conditions, such as composition, tempera-
ture and pressure. The metastability is usually made possible by imposing kinetic
constraints on the system during the course of the CGT. Usually this is achieved by
keeping the system below the glass transition temperature. At such a low tempera-
ture, atoms lack sufficient thermal activation to execute long-range diffusion. So the
system is able to retain its chemical homogeneity. The CGT under such a constraint

is called polymorphic amorphization, or polymorphic melting. Maintaining such a

condition is necessary in order to prevent other more stable phases from forming due

to diffusion that can preempt the CGT. Various crystalline defects created during
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the course of the CGT will also be constrained from large scale rearrangement due
to the low thermal activation, giving rise to the needed excess free energy to drive

the metastable crystal to a glass. As shown later in this work, “frozen-in” disorder
plays an extremely important role in destabilizing the crystallinity. Depending on
temperature and certain material properties, “frozen-in” disorder can induce the
CGT with characteristics that are similar to those of a smeared first-order phase

transition.

In order to study a phase transition, the most convenient way is to relate ther-
modynamic properties to symmetry change, or to use an order parameter [1.14].
However, in a topological order to disorder transition, there are no apparent sym-
metry relations between the two phases. The lack of an underlying lattice in the
disordered phase poses a great difficulty for mathematical analysis. So finding
meaningful and manipulatable order parameters has always been a challenge. Cer-
tain physical quantities such as density and the Bragg diffraction intensities have
been widely used in describing melting and vaporization transitions [1.15], but they
will not serve the purpose for the CGT. This is because neither the liquid to glass
transition nor the CGT necessarily involves any appreciable change in densities.
In addition, an order parameter based on diffraction peaks contains many compo-
nents that correspond to different reciprocal lattice vectors, making it very difficult
to manipulate. Recently, orientational symmetry has been emphasized [1.16] that
made the order parameter approach to the glass transition and melting possible
[1.16-18]. The biggest challenge to this so called orientational order parameter ap-
proach comes from the experiments. So far, all results on atomic systems, mainly

from computer simulations, are widely divided and still remain the subject of much



debate [1.19, 1.20].

Such aifﬁculties can be avoided, though not entirely, in computer simulations.
- The only limitation for computer simulation is sample size and available simulation
time. With modern digital computers and efficient algorithms, one can perform
simulations comfortably with a few thousands atoms for the real time equivalent
of a couple of hundred nanoseconds. However, problems can still arise at phase
transitions where extremely large critical fluctuations and critical slowing down
can lead to diverging correlation lengths and relaxation times that are far beyond
the sample size and available time [1.21]. If no special measure is taken, these
effects can lead to very misleading results. Fortunately, techniques such as finite
size scaling can offer help in reducing these problems to a tolerable level [1.21-22].
Additional problems arise in systems which contain certain random variables, such
as the “frozen-in” random disorder and random substitutional solid solutions which
we are going to deal with. The difficulties for a random system can be categorized
into two kinds. One is insufficient sampling due to the limited distribution of random
variables on a finite size sample. The finite size scaling can not cure this problem
and an additional configurational sampling over the random variables is needed.
Another problem is associated with slow relaxation due to low temperazfure of the
system. So extended simulation time is need. The details will be presented in the
next chapter. Computer simulation can also offer additional information relating
macroscopic properties to microscopic parameters. For instance, by manipula.ting
model interatomic interactions, one can tailor the system and thus relate the results

to different real systems that have similar features in their interatomic interactions.

The primary reason for us to investigate the CGT using computer simula-
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tion stems from the difficulties experienced in synthesizing metastable crystalline
phases which are chemically homogeneous, bulk, and free of extrinsic defects. So
far, almost all the experiments conducted on the CGT use crystalline phases that
contain macroscopic scale chemical inhomogeneity and a variety of extrinsic defects.
The results obtained from these experiments at low t‘emperature are kinetic in na-
ture. Although attempts have been made in the last few years, the thermodynamic

aspects of the transition is still far from understood [1.2, 1.23-24].

The most frequently encountered problem in a bulk metastable crystalline
phase is caused by the failure to maintain kinetic constraints. Since the system
is typically not in equilibrium and the metastable crystalline phase is frequently
driven to evolve along competing pathways favored by other processes, so that
keeping it homogeneous both in its chemical composition and structure becomes a
real challenge. For example, chemical segregation and/or formation of more stable
crystalline phases are frequently observed in bulk samples [1,23]. Furthermore, in
real crystals, defects and imperfections, free surfaces and interfaces, etc., may serve
as preferred nucleation sites for new phases and thereby complicate experimental

observations.

Computer simulation provides an alternative method which can eliminate
some of the problems encountered in experiments. With this method, it is possible
to study the CGT on a homogeneous system that is free of these complications
to the maximum possible extent. In addition, we can obtain detailed information
about atomic structure, thermodynamic and dynamic properties of the metastable
systems close to the CGT. It can also provide information such as heat capacity,

thermal expansion coefficients and elastic constants, which is not otherwise avail-
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able. The most profitable aspect of computer simulation is its ability to provide
information on the atomic level. Then the macroscopic properties can be linked to

their microscopic origins.

This thesis is organized as follows. In chapter 2 we shall give a brief intro-
duction to the computational method, molecular dynamics simulation techniques.
Since a large number of physical quantities are calculated, compared and analyzed
later on, it is coﬁvenient to define them and give brief explanations of each of these
quantities in this chapter. Thermodynamic potentials such as free energy, enthalpy
and entropy, density, phase diagrams, and thermodynamic response functions such
as thermal expansion, heat capacity and elastic constants, are of primary interest to
identify the nature of the CGT. Time dependent properties such as the vibrational
density of states, diffusion, mean square atomic displacements, and time dependent
density-density correlation functions provide crucial information about dynamic
characteristic of the system undergoing the CGT. For instance, the diffusional in-
formation obtained from mean square displacements, or density of states, can tell
us directly whether the polymorphic constraint is in force or not, and how differ-
ent types of atoms diffuse in a multicomponent system. Topological defects such as
disclinations, dislocations and grain boundaries can be identified through a mapping
technique using the Voronoi polyhedron construction. The information provided by
this direct visualization of disorder will help us greatly to identify the role these
defects play, and their manifestation in destabilizing the crystal. Random stress
and strain associated with the randomly “frozen-in” disorder are analyzed through
their distributions and their correlation functions in space. We also analyze the

translational as well orientational symmetry at different stages of the CGT via spa-
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tial correlation functions. These correlation functions can give information on the

nature of transition and its special relation to the symmetry.

We have found that it is convenient for various purposes such as visualization,
to work in two and three dimensions separately. Chapter 3 deals primarily with the
CGT in a binary Lennard-Jones random solid solution in three dimensions. Qur
emphasis will be on the elastic instability mechanism proposed for the CGT [1.2].
So the elastic behavior of the solid solution will be investigated as the amount of

disorder increases [1.25].

In chapter 4 the results obtained in a three-dimensional system will be in-
terpreted using a phenomenological Landau theory. The role of disorder will be
explored by taking into account the interactions between the primary order param-
eter and a local, microscopic strain field. The consequence of this interaction is a
profound one. It is found that the nature of a normal first order transition, such
as the polymorphic melting, can be changed to a continuous one by the presence of
microscopic strains. The observed thermodynamic properties and elastic properties

in the three-dimensional simulation can be rationalized by this theory.

Due to the three-dimensional nature, the system of chapter 3 and 4 can not be
examined thoroughly, except for the case of some important thermodynamic proper-
ties, and certain structural changes. So we have turned to a two-dimensional system
in chapter 5 for these “hard-to-get” details of the microscopic features such as atomic
configurations. This is the major content of chapter 5. Because of convenience in
computations in 2D, a large amount of microscopic information is available, so the
CGT can be investigated in detail. These results will be compared with those in 2D

melting in order to examine the analogy proposed early, with particular emphasis
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on the effects of kinetic constraints.
Chapter 6 will give a brief summary of the present work and a discussion of

the relation between melting and the CGT.
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Chapter 2

Molecular Dynamics Simulation and Phase Transitions

2.1 Introduction

Computer simulation has been extensively used in the last several decades in
investigation of physical properties and phase transitions. It has become an indis-
pensable part of scientific research [2.1]. Its merits lay in the ability to provide
essentially exact information of a system under investigation with only an arbi-
trariness introduced by interatomic interactions used. Unlike analytical approaches
where problems have to be simplified very often in order to be made feasible, com-
puter simulations can provide direct linkage between microscopic and macroscopic
properties for any system without invoking any approximation. Such a characteris-
tic makes it possible to use simulations to tackle problems where analytic approaches
fail. Like any real experiment, computer simulation is performed in a fashion that
is subjected to constraints from conditions provided by the system under investi-
gation. Its power also lays in the fact that it can be applied to situations beyond
the current experimental capability. However, like all its counterparts, computer
simulation also has its own shortcomings and disadvantages. The most noticeable
ones result from the finite size and finite simulation time. Effects caused by these
limitations can become serious when a system is close to a phase transition. As dis-
cussed in the last chapter, critical fluctuations can lead to diverging length scale and
relaxation time. Even for a typical first order phase transition, finite size can also
present a big problem for nucleation and interface formation. Finite size scaling,

a technique developed for reducing the same problem encountered in experiments,
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can effectively help to avoid the drawbacks in certain cases. However, there are
other cases such as a random system where special measures have to be taken in
order to reduce the effects of finite size effects.
In the following sections, we shall give a brief introduction to a specific simu-
lation technique, molecular dynamics. Various physical quantities that are typically

computed using this method will be introduced.

2.2 Molecular VDynamics Simulation Method

Molecular dynamics (MD) is a computer simulation technique used to gen-
erate phase space trajectories (atomic positions and velocities) for a collection of
atoms. For a given interatomic interaction between atoms the corresponding New-
ton equations of motion for all the atoms in the system are integrated numerically
for a set of discretized time steps. The MD ensembles generated from these trajec-
tories provide linkage between microscopic properties and average thermodynamic
properties. Equilibrium thermodynamic averages of a physical quantity A, equal

the ensemble average,

<A>=<A >ensemble - (21)

If a system is ergodic, that is, if the ensemble average is the same as the time
average, the thermodynamic average can be obtained from the time average over

the trajectories generated from the MD,
1 =T
<A>= fm 7 3 AKYR(O), (2.2)

where 7 is the discretized time used in the simulation, 7' is the total simulation

length, r(7) and p(7) denote collective symbols for atomic positions and momenta.
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Depending on what extensive or intensive thermodynamic variables are fixed
during a MD simulation, the ensemble generated can be different. For a system with
N atoms, and total potential energy E and fixed density, or volume V, the ensem-

| ble is microcanonical (NEV); while if a system is kept at a constant temperature
and density, it is a canonical ensemble (NTV). Since most experiments are done
under constant pressure and temperature, the most desirable ensemble is the Gibbs
ensemble (NPT). There are a variety of ways to generate a constant temperature
ensemble, but the most convenient one is devised by Nosé [2.2]. Throughout this
work, we shall use the Nosé algorithm to achieve the constant tempera:ture.

In order to simulate an infinite system from a finite sample with N atoms, pe-
riodical boundary conditions are usually used. Atoms that moved out of the central
simulation “box” at one side of the boundaries will be put back to the other side.
This technique can eliminate boundary effects caused by a large fraction of atoms
sitting on boundaries of a finite system. So its real function is to simulate a portion

~ of an infinite system that is embedded in an infinitely large environment. For cer-
tain physical properties that only manifest on large scales, such as the composition
fluctuations during phase decomposition and critical opalescence, a large number of
atoms have to be used. So in this case, using the periodic boundary coadition will

not guarantee the accuracy of the properties from a simulation on a finite system.

2.3 Modified Parrinello-Rahman Molecular Dynamics

Most molecular dynamics simulations are performed in the microcanonical
and canonical ensembles. In microcanonical ensemble, the total energy and volume
are held fixed and in canonical ensemble, temperature and the density are held

invariant. However, such constraint on certain thermodynamic variables can lead to
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an undesirable consequence, that is, fluctuations of these thermodynamic quantities
from their equilibrium values are suppressed. Since fluctuations and responses of a
system depend on the ensemble generated by the molecular dynamics trajectories
[2.3], most of the thermodynamic response functions, particularly those relevant to

structural variations, are not directly available.

Recently propbsed molecular dynamics techniques attempt to remedy these
difficulties. Andersen [2.4] was the first to use volume as a dynamic variable to allow
fluctuation of the MD cell. Using this technique, he was able to extend molecular
dynamics from microcononical and canonical ensembles to constant pressure and
temperature (NPT) and constant pressure and constant enthalpy (NPH) ensem-
bles. This idea of using macroscopic quantities as dynamic variables led Parrinello
and Rahman [2.5] (PR) to propose a new molecular dynamics method which allows
not only volume but also shape, or symmetry, variations of the MD cell. With
Parrinello-Rahman molecular dynamics (PR MD), it is possible to study compli-
cated problems like structural phase transitions and mechanical properties of ma-
terials where structural change is the primary concern. Most importantly, the re-
sponse functions related to the symmetry change, such as elastic constants [2.6] and

the thermal expansion coefficient, can be obtained.

Despite the promise of Parrinello-Rahman molecular dynamics, however, in
practice it has been found to have several severe problems which make it difficult
and unambiguous to interpret simulation results and, worst of all, lead to unphys-
ical results. The primary problem is symmetry variance, or MD cell distortion.
which occurs when a stable or equilibrium structure is used in a simulation and

occurs even at zero temperature, when thermal fluctuations are completely absent.
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In these cases, the MD cell distorts in a continuous manner and finally ends up
in a structure of totally different symmetry. For example, fcc to bec distortion
has been observed and interpreted as a consequence of using pair potentials [2.5].
This is disturbing when investigating structure changes induced by structural phase
transitions or mechanical deformation, because one cannot tell whether or not the
structure variations are artificial or arise from true physical causes. (For example,
the Bain transformation in iron involves the tetragonal distortion of the fec cell.)
Secondly, it has been found that PR MD often leads to MD cell rotation, which has
been observed in molecular systems [2.7] as well as in simple Lennard-Jones solids
[2.8]. Rotation of the MD cell indicates that the structure being simulated is not in
mechanical equilibrium [2.9]. The direct consequence of such rotation is that it is al-
most impossible to find an equilibrium reference state for the calculation of strains
and elastic constants. Besides, rotated coordinates make it difficult to interpret
simulation results. The last and most practical issue is the very slow convergence
- of RP MD in calculating thermodynamic quantities such as the thermodynamic
response functions, which are directly related to fluctuations or to derivatives of
structure variations. It has been reported [2.10] that elastic constants of a simple
Lennard-Jones solid have been obtained, but with very slow convergence. However,
these results have not been confirmed as yet. In contrast, the present author found
that it is impossible to calculate the elastic constants in nearest-neighbor LJ solids
using PR MD, due to the above mentioned distortions and rotations. Furthermore,
there are no reports of heat capacity, thermal expansion and compressibility calcu-
lated directly from fluctuations in Parrinello-Rahman MD simulations, even though

extensive work has been done related to structural changes.
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In practice, constant energy and shape (EhN) or constant temperature and
constant shape (ThN) ensemble PR MD [2.6] are used to calculate Cp or Cy respec-
tively, as well as adiabatic or isothermal elastic constants, while constant (NPT)
or (NPH) ensemble PR MD are used to obtain equilibrium structures [2.11]. Since
the volume and shape of a MD cell in constant (EhN) and (ThN) ensemble MD are
fixed, distortions and rotations of the MD cell are no longer a concern. The calcu-
lated elastic constants and heat capacities using these fixed volume (or shape) PR
MD has been found to converge very quickly [2.6]. However, it is inconvenient and
time consuming to switch between different ensemble molecular dynamics in order
to obtain the desired structures, fluctuations, and response functions. In particu-
lar, when the evolution of fluctuations and responses is needed for cases like phase
transitions and structural variations, such shuffling among two or three different
ensemble MD becomes quite a burden. Furthermore, since most experiments are
performed uﬁder constant temperature and pressure, it is desirable for one to use
_ constant (NPT) PR MD in which volume is allowed to fluctuate, to compare the

results with experimental ones under the same conditions.

In this section we present a new version of the Parrinello—RahmaI_l, type with
a modified kinetic energy term associated with the phenomenological dynamic vari-
able of shape, or symmetry. We will test this algorithm by calculating certain ther-
modynamic and structural properties of a nearest neighbor Lennard-Jones solid.
These results are shown to be in good agreement with those from existing Monte
Carlo simulations [2.12,2.13] and those from constant shape, or symmetry, molecular
dynamics simulations [2.6]. All of these results are obtained with fast convergence

of only about 10° or less MD time steps.
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In the original Parrinello-Rahman molecular dynamics, the shape, or symme-
try, of the simulation MD cell is used as phenomenological dynamic variable. The
cell is a parallelepiped with its edges represented by the three vectors a, b and c.
| The positions and velocities of particles in the MD cell are scaled by a matrix A,
that is, r; = hs; and I; = hs;, where h = {a,b,c}. The Lagrangian proposed by
Parrinello-Rahman includes phenomenological kinetic and potential terms for both

the scaled particles and the MD cell,

N N
L= % S mistGai - 303 6(rig) + %Tr(iztl.z) P, (23)
i=1 i=1 j>i
where G = h'h is the metric tensor (A’ is the transpose of k), 2 = detla-b x c| is
the volume of the MD cell, and P.,; is the externally applied pressure. W is the
fictitious mass associated with the phenomenological dynamic variable k. A pairwise
interaction ¢(r;;) is assumed. The equations of motion for the time evolution of
the dN particles, where d is the dimensionality of the system being simulated, and

h matrix take the form

m;S; = — Z XijSij — miG_IGéi, (2.4)
J# -
and
Wh = [0 — PegeI]A, (2.5)

where A = %% = Qh7" is the area tensor (A™¢ is the inverse transpose of h). ¢ is

the microscopic stress tensor, which is defined as

- PiP:
o= 1[2 o —szjrijr,-j], (2.6)

i>j
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with linear momem#tum P: = m;hs; and x;; = ri_jl%ﬂ. In PR MD the strain
tensor is defined as [2.14]

= %h;t[a — Goh3Y, @D

where hg =< h > is the equilibrium MD cell under no external applied pressure or
stress. It is used as the reference for strain calculation and < --- > stands for time
average.

The equation of motion for s; in the constant (NPT) ensemble PR MD can

be shown easily to take the form -

midi = f2= ) xijsij — mi(F2GTIG + 2ff)si]. (2.8)
i

The Nosé scaling method [2.2] is used to fix the temperature, and f is the Nosé
scaling variable. The equation of motion for A remains the same as in (3).

Using the equations of motion (2.4) and (2.8), we simulated a nearest-neighbor
- Lennard-Jones solid. We used 500 atoms arranged in a cubic cell with the fcc struc-
ture. Initially the atoms are kept at the positions corresponding to the Lennard-
Jones potential well minimum, or the nearest neighbor distance is kept at (2.0)*/6.
Temperature and pressure are set equal to 0.3 and 0.0 (in reduced LI units) re-
spectively. The fifth-order Gear’s predictor-corrector algorithm is used to solve the
equations of motion. The length of time step in our MD runs is kept at 0.005 (in
reduced LJ units). It is found that the cubic MD cell rotates continuously accom-
panied by a tetragonal distortion. For a typical run, at 500 MD steps the MD cell

h = (a, b, c) looks like
1.56 —-7.27 —2.46
5.32 293 -5.04
5.55 —-0.89 5.73
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with |a| = 7.84, |b| = 7.89 and |¢| = 8.02. And the angles between each of the vectors
are 6,5 = 90.64,60;. = 91.80 and 6,. = 88.95. With such rotation and distortion it
is virtually impossible to find an equilibrium reference hg to calculate strain and
elastic constants.

Since the PR molecular dynamics used above is not derived from first princi-
ples, in order to modify PR MD one must first check the invariance or conservation
of dynamic and structural variables. First, the kinetic energy term associated with
the h matrix is not invariant with the choice of the A matrix, or MD cell (which
has been observed also by other researchers; Nosé and Klein 1983 [2.7], Cleveland
1988 [2.15] and Wentzcovitch 1991 [2.16]). However, in a system with translational
symmetry two different choices of h are related by a transformation matrix B such
that ho = hy B and hy = hy B. Any dynamic or structural variable in such a system
must be invariant with respect to the transformation. A simple choice of a new
kinetic energy term

Ky = gTr(hQiﬁ), (2.9)

where @ is chosen to be any linear function of h~*A~?, would eliminate the depen-
dence of K}, on the choice of MD cell. Such a choice of @ makes the transformation

of K with respect to different choices of MD cell invariant, that is,

W
2
W . .
= TTT(hl Q1 hi)

I{hz = Tr(izg Q2 h;)

= K,

where @1 ~ hl_lhl_t and Q2 ~ h;'h;'. The proportionality constant C in

Q = Ch™'h™* should be chosen as Q% such that the kinetic energy approaches
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the isotropic limit when h = Q/ 31, where I is an unit matrix,
1 )2
Ky = §W Q- (2.10)

where the W' = W/3 is the mass associated with the MD cell volume. Eq. (2.10)
was originally proposed by Andersen [2.4] to simulate the MD cell volume fluctua-
tions in an isotropic media such as liquid and glass.

After replacing K}, the new Lagrangian leads to a new equation of motion for

the h matrix,
Wh = Q7 Yo — PogeIlh + WQ™2[—2Q0h + Tr(hQh* )R + hQG — QARR]. (2.11)

The equation of motion for variable s; remains the same as in equation (2.8).

In addition, the total angular momentum in RP MD is not formally conserved.
We found that the nonconservation of angular momentum is related to the approx-
imation used for the scaling relation for particle velocity, r; = hr;. In fact, this
relation neglects the part contributed from the MD cell breathing, that is, hr;. If
the RP MD cell h is analogous to a “piston” or, a box with all its walls connected by
mobile hinges, to maintain a constant pressure (stress in general) and temperature
each atom has to exchange linear and angular momentum with the outside heat
bath and pressure or stress reservoir. In an equilibrium system conservation of total
angular momentum keeps the shear stress tensor symmetric, and thus the strain
tensor symmetric, leaving the system unrotated [2.9]. Unlike most constant volume
MD, the Parrinello-Rahman MD has orientational degrees of freedom for the MD
cell (the h matrix has nine components, six of which specify shape and volume

and the additional three describe orientation). Because of this, nonconserved total
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angular momentum can lead to net rotations at the end of a simulation, as we in
fact observed. (Although the use of periodic boundary conditions also leads to total
angular momentum nonconservation, weighting over a long time might be expected
to average out such an effect). So neglecting hs; will not only lead to violation of

the law of conservation of angular momentum but also the total linear momentum.

However, if thé full expression ©; = h$; + hs; is used in the formulation of a
new MD, the resulted equation of motion for the h matrix will no longer depend
on the microscopic stress tensor (2.6), even though all the conservation laws are
obeyed. In the case of isotropic limit, it can be shown that the equation of motion
for the MD cell becomes Wh = — zt- For most cases the external pressure is
zero, so the equation of motion for the MD cell is completely decoupled from the
rest of the system. This may explain the justification of neglecting the second term
in the original proposal by Andersen [2.4]. A more convincing argument for the
approximation is based on the fact that fluctuations of the wall (h tensor) is much
~ slower than the scaled particles (with coordinates s;). Typically, the ratio of the
frequencies of MD cell fluctuation to the scaled particle vibration is 55 to 135 in an
equilibrium monoatomic Lennard-Jones solid. Therefore, one can neglect the MD
cell fluctuation. However, close to structural phase transition the MD cell fluctuates
more quickly and on the other hand, particle vibration becomes slower, such the
approximation may not be valid. In fact, we have observed certain distortions and

rotations of the MD cell in systems close to the CGT.

There are certain empirical measures one could take to reduce the effects of
rotation and distortion. The most effective ones are as follows. First one can

increase the MD wall mass and second, one can set the initial atomic configurations
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as close as possible to the equilibrium or steady one. These tricks were found to be
able to reduce the problem to a tolerable level. But the underlying mechanism has
not been clear yet.

Using Eq. (2.8), (2.11) and the following one for the Nosé variable f

. 2K 2(D+1)T

Mf== — (2.12)

where M is the mass for Nosé variable f, K is the kinetic energy of atoms in
Eq. (2.3) and D is the number of degrees of freedom of the system, we calculated
the nearest neighbor Lennard-Jones solid again using this new formulation. The
distortion and rotation have not shown up in these calculations and the average
thermodynamic properties converge very rapidly with a chosen optimal MD cell
mass W. Average total energy, MD cell edge lengths and the angles between them
for the nearest neighbor LJ solid become stable at 5 x 10* and 10° MD steps. All
of the average properties have reached equilibrium in at most 10* MD steps. The
fluctuations and hence the response function calculated show excellent agreement
with those calculated from Monte Carlo [2.12-13] and constant (NhT) MD [2.6].
From the convergence of fluctuations we conclude that the ensemble generated from

Egs. (2.3), (2.11) and (2.12) is a Gibbs ensemble and is ergodic. -

2.4 Thermodynamic Properties and Fluctuations

Thermodynamic properties that are of great interest to understand phase tran-
sitions are thermodynamic potentials and response functions. These include Gibbs
free energy G, entropy S, enthalpy H, the total potential energy E, kinetic energy
K, density D, isothermal heat capacity Cp, thermal expansion ar, compressibility

k7 and isothermal elastic constants, etc.. At a phase transition, these quantities
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will often show dramatic changes. In particular, thermodynamic response functions,
which are second derivatives of thermodynamic potentials, are extremely sensitive
to the changes. A first-order transition usually shows finite changes of latent heat
or entropy and finite change of density. In addition, very little precursor effects can
be seen far away from the transition. In contrast, the thermodynamic functions
change continuously at a continuous transition and thermodynamic response func-
tions usually show large precursor effects quite far away from the transition; and
they diverge and show singular behaviors at the transition [2.17].

Except for free energy and entropy, the rest of the thermodynami‘c quantities

are straightforward to calculate using MD. For instance the total potential energy

and enthalpy are obtained easily by

E=<) ¢(ri) > (2.13)

i>j
and

H=E+P...Q, (2.14)

where ¢(r;;) is a pair potential, Pes; is the external pressure and Q is equilibrium
volume. Calculation of absolute free energy and entropy needs special treatment
because they are not functions of mechanical variables, r; and p;, rather they are
functions of phase space variables. In order to obtain them, one needs to sum over
all the states in the phase space.

The thermodynamic response functions have close connections to such subtle
properties as thermal fluctuations in the system. At a continuous phase transi-

tion, the fluctuations will become extremely large and result in divergent response
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functions [2.17]. The fluctuations and response are related through expressions

< (5H)2 >= kBTZCp, (2.15)

< (59)2 >= QkpTkr, (2.16)

< (6QH) >= QkBT2aT, (2.17)
kgT

< (55ij6€kl) >= ngkl’ (2.18)

Q
where (2 is the equilibrium volume, T the temperature and ¢ the strain tensor defined
in Eq. (2.7). Cp, &1, ar and Cjjz; are isobaric heat capacity, volume isothermal
compressibility, thermal expansion coefficient and isothermal elastic constants re-
spectively. The time average of fluctuations is given by < §46B >=< 4B > - <
A >< B >, where A and B are functions of the dynamic variables. The elastic

constants are inversely related to the strain fluctuations [2.14].

2.5 Dynamic Properties

Dynamic properties are characteristics of time dependent processes in the
system and are closely related to the transport properties. An advantage of a
molecular dynamics simulation, compared with other simulation techniques such as
Monte Carlo method, is that it can calculate time dependent propertie—s naturally

from the trajectories generated. For instance, the Einstein relation relates the mean

square displacements of atoms to diffusion constants,
D= lim = <6r’(t) >= lim — Z < |ri(t) — ri(0))2 > (2.19)

in a three-dimensional system, where D is the diffusion constant, ¢ is time and N

the total number of atoms. The average is over the ensemble at the initial time
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t = 0, or over the time origins chosen along the trajectories. From the slope of the
< ér(t)? > versus ¢, one can obtain the diffusion D.
Transport properties can also be obtained from time correlation functions by
so called Green-Kubo relation [2.18]. The velocity-velocity autocorrelation function
can also lead to diffusion constants through its Fourier transform at low frequency

limit. The velocity autocorrelation function is defined as
Z(t) =< v(t) - v(0) > / < v(0) - v(0) >, (2.20)

where v(t) is the particle velocity. Fourier transform of Z(t) gives rise to the so
called generalized vibration density of states.

Other time correlation functions that are relevant to the CGT are time depen-
dent density-density correlation functions and time dependent orientational corre-

lation functions defined as follows,

G(r,t) = 5 < p(r,1)p(0,0) > (2.21)
and
O(r,1) = 5 < (r,19(0,0) >, (2.22)

where p(r,t) and ¢(r,t) are particle density and orientational order parameter re-
spectively. The later will be defined in next section. The Fourier Transform of
G(r, t) gives rise to the dynamic structure factor S(k,w) which can be measured

by inelastic neutron scattering [2.19].

2.6 Topological Defects
We are interested in topological defects for the following reasons. First, they
can directly alter the topological ordering and second, they can result in nonho-

mogeneous, “frozen-in” microscopic strain and stress field. As demonstrated in the
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next chapter, the static strain field has a significant effects on the CGT. In this

section, we shall define these defects.

The structure of a topologically disordered metallic glass is conventionally
described by radial distribution functions (RDF) which can be readily obtained
from most scattering experiments. Since it is a two-body density-density correlation
function averaged over all directions throughout the entire sample, in principle the
RDF can not provide local information on atomic arrangements over a scale of a
few nanometers. For instance, the split second peak of a RDF present in most of .
metallic glasses could not be explained until Bernal’s dense random packing model
(DRP) [2.20] was available. The detailed atomic arrangements in the disordered
material available in models such as the DRP and the computer simulations [2.21]
that followed also led to the possibility of the description of topological defects. The
distribution of the five different types of Bernal’s polyhedra [2.20] and the deviations
of certain faces and volumes from a crystalline counterpart in the Voronoi polyhedra
" [2.21] in glasses are examples of the attempts to describe structure of glasses by

certain irregularities or disorder in these geometrical quantities.

In fact, description of defects in topologically disordered materials has been a
very difficult task owing to the fact that they do not possess any reference lattice as
in the crystalline counterpart (where topological defects are often associated with
breaking of translational symmetry). For example, the usual way to identify a
dislocation in a crystalline phase using Burgers circuit [2.22] becomes meaningless
without a reference lattice. However, topological disordering of a glass phase can be
presented, to at least some extent, by changes of the nearest neighbor coordinates

of the atoms [2.23]. The defects defined in this way are clearly confined to the
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local atomic arrangement and therefore, any topological disordering beyond the
scale of the nearest neighbor is not adequately presented. So strictly speaking, the
definition of topological defects in a glass phase does not necessarily have the same
| physical content as in its crystal counterpart, even though the same name may be
used without specification of this distinction.

Identifying such topological defects in crystalline and noncrystalline materials
is conveniently done by examining the nearest neighbor coordinates of each atom
with the help of certain mapping techniques. The most reliable method to ob-
tain nearest neighbors of an atom is the Voronoi polyhedron construction [1.1]. A
Voronoi polyhedron of an atom, or Voronoi cell, is defined as a region bounded by
planes bisecting the vectors connecting the center of the atom to these of its nearest
neighbors. A Voronoi Polyhedron in a Bravis lattice is a Wagner-Seitz cell which
has the same point group symmetry as that of the lattice. However, a disordered,
glassy phase lacks any long-range translational symmetry. Since the edges (E),

vertices (V) and faces (F) of Voronoi polyhedra obey Euler-Poincaré relation
V-E+F=2, (2.23)

in three dimensions, the absence of the translational symmetry, or the topological
order in a glass is reflected by the distorted geometry (the relative variations of
lengths of the edges, areas of faces, numbers of faces and vertices, etc.) and varying
volumes of its Voronoi cells. The topological disordering is characterized by the
random fluctuations of these geometrical entities from one Voronoi cell to another
throughout the system [1.1, 2.21].

Using the definition stated above, we can define different types of topological

defects in crystalline or amorphous solids from their nearest neighbor coordinations.
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Because the symmétry of local order is the same as that of the lattice in crystalline
solids, this definition of topological defects for crystalline solids is not restricted to
their local atomic configurations. Defects defined by their nearest neighbor coordi-
nations are the same as defined on an infinitely large system. However, deviations
from this observation occur in disordered phases where low energy, local ordering,
such as icosahedral clusters, does not possess the same symmetry as that of the
crystalline lattice, so care must be taken in this case. Topological defects can be
defined easily in two dimensions by directly mapping out the nearest neighbors.

Some commonly encountered defects in two dimensions will be presented as follows.

Line defects include disclinations and dislocations. A disclination in a close
packed hexagonal lattice can be defined as a defect centered on an atom which
has a number of nearest neighbors different from the average coordination number.
Most frequently observed ones are 5- and 7-nearest neighbor disclinations which
are termed “negatively” and “positively” charged disclinations (Fig. 2.1). A discli-
nation can not only destroy long range translational order but also orientational
order. A dislocation (only edge dislocations exist in two dimensions) is composed
of an extra row of atoms along one of the close packed directions (in order to have
the smallest Burgers vector). Such a configuration can be decomposéa into two
disclinations with opposite charges (Fig. 2.2). A dislocation with an extra row of
atoms can effectively destroy translational order but leave the orientational order

intact.

However, complications can arise in two dimensions because of the degeneracy
of the configurations of line defects and point defects. For instance, a Frankel pair

composed of an interstitial and a vacancy separated only by a few lattice spacings
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Fig. 2.1 Disclinations in a two-dimensional hexagonal lattice. Crystal orientations

change by 60° along a circuit enclosing both disclinations. They can effectively
disrupt orientational order and translational order of the lattice. Note they can be
identified by nearest neighbor coordinates. (a) a disclination with 5 nearest neigh-
bors (negatively charged) and (b) a disclination with 7 nearest neighbors (positively
charged).
apart, after some local relaxation, can look the same as a dislocation pair from two
dislocations consisting of two 5- and two 7-nearest neighbor disclinations.

The definition of disclination and dislocation will be carried directly to the case
of amorphous materials, although, as we mentioned early, their physical meaning is
not quite the same. But they offer certain help for comparison of how these defects

evolve from crystalline phases to amorphous phases.
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Planar defeci.s are grain boundaries and stacking faults in crystalline phases.
But the number of planar defects in an amorphous phase is considerably restricted
compared with its crystalline counterpart due to the absence of translational sym-
metry, or lattice periodicity. Strictly speaking, whether the equivalents of the planar
defects exist or not in amorphous solids is still not entirely clear [2.23]. This may

justify the classification of defects by only nearest neighbor coordinations.

As well kﬁown, a grain boundary in a crystalline phase can be considered
as composed of large number of dislocations. A small angle grain boundary is
composed of relatively smaller number of edge dislocations, the identity of which
can be well resolved. In contrast, a large angle gain boundary is densely packed
with dislocations and the identification of each dislocation is almost impossible. Two
adjacent grains are separated by a grain boundary across which they have different
orientations. In two dimensions, a grain boundary or any other two-dimensional
defect degenerates into a line defect and thus the identification of these defects is
mainly by visual inspection of their atomic configurations (Fig. 2.3).

Identification of topological defects in three dimensions faces essentially two
difficulties. First, there has been lack of direct experimental evidence of extended
defects in amorphous materials so far, although indirect evidence has shown the
existence of point “defects” similar to those found in crystalline materials [2.23].
The absence of lattice periodicity and open packing in amorphous phases make it
difficult to observe the defects (for instance, strain contrast cause by dislocations
in crystalline materials is not available in amorphous materials). This leads to
the conclusion that extended defects are “delocalized” by which it is meant that

an extended defect like a dislocation in three dimensions will be broken up into
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Fig. 2.2 An edge dislocation in a two-dimensional hexagonal lattice. Note the
extra atomic planes. It can effectively disrupt translational order of the lattice, but
leave orientational order intact. Top: an edge dislocation formed on a bubble raft

[2.26] and Bottom: such a dislocation can be decomposed into two disclinations

[2.27].
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Fig. 2.3 A small angle asymmetric grain boundary made of edge dislocations with
perpendicular Burgers vectors {2.28]. Note it can not only interrupt translational

order but also orientational order in the adjacent grains.

segments of a few lattice spacings with no correlations between each of them either
in direction or configurations. This leads to a more fundamental question of very

existence of any extended defects at all. However, recent theories [2.24, 25] have
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predicted that at least line defects like disclinations can be stable in amorphous
phase, but ‘as stated earlier, no direct observations have been available for these
defects yet.

As mentioned earlier, the defects, the topological defects and point defects such
as solute atoms (an impurity in a supersaturated solid solution), have nonhomoge-
neous strain and stress field associated with them [2.22]. The internal, microscopic
fields can be retained by the kinetics. This static field from the frozen configuration
of defects can play an important role in affecting crystalline stability.

Before ending this section, we like to mention some technical prol;lems associ-
ated with identifying the nearest neighbors using Voronoi Polyhedron construction
in multicomponent systems. The usual way of bisecting the vector connecting the
nearest neighbor atoms will lead to errors due to the different atomic sizes, which
sometimes can be substantial., ‘g\ﬁsecting the nearest neighbor bond in order to local
planes of a Voronoi polyhedron can misidentify atoms as the nearest neighbors in
such a system. In the present work, we used the Radical Plane method [2.29] to

identify nearest neighbors in the binary solid solution.

2.7 Symmetry, Order and Microstructures ]

The absence of any long-range symmetry in a topologically disordered phase
does not necessarily exclude the possibility of existence of other local ordering. The
well defined first and often, second peaks in RDF of most glassy phases indicate
that atoms in these materials are arranged in a quite orderly manner on that scale.
The local ordering therefore is not an exception but a common characteristic of

glasses. However, the manifestation of this local ordering can be quite different in

its size, in the atomic configurations, and in its chemical ordering.
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It has long been argued that a glass can be represented by an ensemble of
microcrystals with completely random orientations of each grain [2.30-31]. However,
the RDF’s constructed from this model agree only qualitatively with experimental
measured RDF’s [2.31] or RDF’s constructed from DRP [2.20]. Unfortunately, this
issue was not pursued further after initial attempts [2.31]. Recently, this matter
was addressed, not from direct structural modeling, but from kinetic properties of
crystalline and amorphous phases [2.32]. According to this proposal, a microcrystal
is different from an amorphous phase in its kinetic behavior on nucleation and
growth. A microcrystal, when heated up, needs only to grow, while an amorphous
phase needs to first underdo nucleation and then grow. Isothermal calorimetry close
to the crystallization temperatures would be able to distinguish the difference.

However, atomic disordering on the scale of a few nearest neighbor coordi-
nation shells involves the configurational changes on the scale of a critical crystal
nuclei. Also local inhomogeneities in chemical compositions and densities in amor-
phous phases can further complicate the issue, making it difficult to distinguish a
true amorphous phase, as depicted by the DRP model [2.20], and a microcrystal-like
ensemble. This issue will become more clear when results on two-dimensional solid
solutions are presented in chapter 5. -

To observe any local ordering and collective behavior of atoms, correlation
functions of a variety of physical quantities representing symmetry and composition
distributions are needed. First, we define the correlation functions of translational

and orientational order. A translational order parameter is defined as
pa(r) =e7¢7, (2.24)

where G is a reciprocal vector of a perfect lattice and 7 is the position of an atom.
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The translational correlation function is defined as

Calr) =< pg(r)es(0) > . (2:25)

It is directly related to the structure factor in Bragg diffractions at a specific recip-
rocal vector é,
S(G) = Z < e iGTi =i 5o ECG(T, (2.26)
N4 j=1 i=1
where N is the total number of atoms in the system. From Eq. (2.25) it is clear
that all atoms contribute to the diffraction intensity at G for a systern with long-
range translational order and only fraction of the atoms will contribute if short-
range translation order exists. The correlation length within which the translational
symmetry is preserved defines the size of a crystal-like entity.
An orienfational order, which presents orientation of local crystallographic
axes (for instance, directions of atomic planes), can be defined by a so called bond

orientational order parameter [1.16-19],
P (r) = 7D, (2.27)

in two dimensions, where () is the angle that a vector connecting an atom to its
nearest neighbor makes with respect to a reference axes. m = 6 for a hexagonal
lattice and m = 4 for a square lattice. In three dimensions, ¥m(r) is defined as a

spherical harmonic Y, (r) [1.18]. The orientational correlation function is defined

Crn(r) =< ¥m(r)¥m(0) > . (2.28)

The correlation functions defined above are closely related to the local order-

ing. The change in their magnitudes and the correlation lengths can reveal possible
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mechanisms of disfuptions of this type of ordering due to the presence of topological
defects. The spatial extension and local symmetry of local ordering in a topolog-
ically disordered phase can also be measured by these correlation functions. For
instance, a collection of atoms that are locally ordered can form certain types of
configurations with relatively lower energy [1.18, 2.33] in an isotropic glass phase.
This locally ordered atoms form icosahedral clusters [1.18] that can be measured
by the bond orientational correlations functions. It was found that such local or-
der possesses five-fold point symmetry, thus long translational arrangement is not

possible, but orientational order over a relatively long range is not prohi_bited [1.18].

2.8 Atomic Displacements, Frozen-in Random Strain and Stress

There are two equilibrium conditions a system must satisfy in order to be in
a metastable system. One of these conditions is thermodynamic equilibrium and
another is mechanical equilibrium. It is very important to distinguish them, es-
pecially in the case of the CGT and melting. For example, a point defect is in
thermodynamical equilibrium at any finite temperature, but mechanically it is not.
A dislocation in three dimensions is mechanically stable but thermodynamically it
is not in equilibrium. The mechanical equilibrium is determined by either boundary
conditions or constraints on mechanical variables that cannot be either included in
the system’s Hamiltonian or can not be intergrated in the partition function. In
the CGT or any metastable phase transition, the thermodynamic metastable equi-
librium caused by defects and kinetic constraint plays a crucial role in determining
the phase stability.

In the next chapter we shall use a binary solid solution as a model system to

demonstrate how the CGT proceeds. In this system, two types of atoms are mixed
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together randomly to form a metastable solid solution. Atomic configurations, or
local packing formed by these two atoms are not in mechanical equilibrium if the
atomic size difference between them exceed certain limits. Such nonequilibrium
arrangement will result in enormously large stress on atoms in the vicinity of the
solute atom. This stress field is defined as in (2.7) for each atom. This stress
field, o(r;), is randomly distributed in space because the mismatching solute atoms
are randomly distributed in solid solution. These “impurity” atoms are the source
of stresses. The atoms that are affected by these stresses can relax to reach an
equilibrium. However, under the kinetic constraint, large atomic coordination ar-
rangements are prohibited, but local, small amplitude atomic displacements could
occur. In general, not all the atoms that are displaced can reach equilibrium. A
certain number of these atoms can form topological defects because mechanically
they are stable. This case includes dislocations, grain boundaries and interfaces.
These defects will have inhomogeneous strain and stress fields around them [2.22]
that can in turn influence the atomic displacements. Depending on specific kinetic
constraints imposed on the system, the configuration and density of these defects
can change dramatically. If the temperature is low, these nonequilibrium, random.
defects and thus the strain field can be retained. This “frozen-in” strain field will
be shown to play a crucial role in determining the metastable phase stability, the

CGT, (chapter 4), and in distinguishing melting and the CGT (chapter 6).

2.9 Finite Size Scaling
The finite size effects on MD simulations are from two different origins. The
first is related to some intrinsic length scale of the systems that is larger than the

system size used in MD. This happens mostly when systems are close to phase
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transitions. A second order transition can be affected most seriously because of
the diverging correlation lengths at the transition. A first-order transition can also
be influenced by a finite size sample in simulations of critical nucleation which
requires far more atoms than one can currently handle. The large fraction of atoms
sitting on interfaces will prohibit the possible phase fluctuations and lead to large
hysteresis, and sometimes even disappearance of the characteristic of the first-order
transition. Systematic methods have been developed for eliminating the finite size
effects that occurred in experiments {1.22]. This so called finite size scaling of
a variety of physical quantities as function of system sizes has been found to be
quite satisfactory. In computer simulations, similar scaling relations can be applied
to eliminate finite size effects. This technique will be tried for a two-dimensional
Lennard-Jones solid solution at the CGT.

The second is attributed to the realization of probability distributions of cer-
tain random variables on a finite sample. For a random variable R(r) distributed
on a finite sample, its probability distribution Pr will approach the correct value
if only the sample size goes to infinity (or sufficiently large). If the sample is not
large enough, the random distribution can-not be realized. The same problem was
encountered in spin glasses [2.34] where probability of having a true random distri-
butions of spin configurations is also restricted by finite system sizes. To get rid of
this size limitation, an additional average is performed over the ensemble of random

spin configurations on a finite system size, that is,

<< A>>=<<A > > random—con figurations (229>

where the < A > is the usual thermodynamic average over a MD ensemble. In MD

simulation, generating such the ensemble of random configurations cannot be done
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as naturally as in Monte Carlo simulations, so we chose to take the average over
several different runs with different initial conditions on a finite system. In practice.
we found that in atomic system, averages over several different (usually around ten),
initial random configurations are adequate to get satisfying convergence.

In addition, there is a particular aspect of finite size effects related to the
MD method we used. If the size is below certain threshold value, an obvious MD
cell distortion will arise. This artificial structural change is found to be related to
the nonhomogeneous distributions of random solute atoms in a finite sample. The
minimum MD cell size is obtained by increasing the system size by trial and error

until no distorsions are observed.
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Chapter 3

Lattice Instability Mechanism for
Crystal to Glass Transition

3.1 Introduction

In this chapter, we shall give a brief introduction of thermodynamics and ki-
netics of metastable solids with emphasis on effects of kinetic constraints (see [1.2]
for a detailed review). We will focus on polymorphic amorphization in multicom-
ponent alloy systems. In particular, the concept of polymorphic melting will be
introduced that relates a metastable, homogeneous, crystalline phase to an amor-
phous phase, or a diffusionless undercooled liquid at the CGT with no composition
change. The CGT was considered as a transition from a topologically ordered phase
to a disordered phase. The same symmetry relation suggests that the CGT is analo-
gous to melting and therefore, the CGT results from crystalline lattice instability in
the same way as in thermal melting. In 3.3 we will review some instability criteria
and models an emphasis on elastic instability, atomic displacements, and atomic
strains. In 3.4 we shall present results from a MD simulation of a model system,
a Lennard-Jones (LJ) binary random solid solution. Elastic behavior shall be em-
phasized in this work, along with other quantities that characterize the transition.
However, inherent difficulties resulted from requirements of large sample size and
long simulation time, and visualization of atomic configuration and defects in the
three-dimensional system have limited us from further exploring the transition. In
3.5 we shall compare these results with experimental ones. The observed lattice in-

stability, represented by elastic constant softening, and seemingly continuous phase
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transition will be explained by a phenomenological Landau theory in the next chap-
ter. This theory illustrates the importance of random, “frozen-in” strains and its
role in altering the nature of the transition. Detailed work in two dimensions, where

the computational limitations can be greatly reduced, will be given in chapter 5.

3.2 Thermodynamics and Kinetics of the CGT

Although thermodynamic properties are formally defined for systems at equi-
librium, analogous quantities such as thermodynamic potentials and relationships
among these quantities can also be used in metastable systems provided that the
relaxation time, Tg, of the metastable system toward equilibrium is longer than

experimental observation time, T', that is,
< T < 7x, (3.1)

where 7k is the characteristic time at which kinetic constraints remains effective. If
this condition is satisfied, thermal averages can still be obtained by the time average
(equation (2.2)). The ensemble average (equation (2.1)) is no loger uniquely defined
since the ergodicity hypothesis assumed for an equilibrium system does not hold for
a metastable system [3.1]. i

In section 2.8, we mentioned one type of metastability caused by boundary
conditions. This type of metastability often happens to systems with extended
structural defects, such as dislocations, grain boundaries and free surfaces. The
stress field generated by these defects cannot dissipate because of the presence of
certain boundary conditions [3.2]. So the free energy of these systems will be higher

than the same system having no imperfections. Metastability can also be achieved

under a more general condition, or under kinetic constraints. This constraint is more
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profound because of its effects on microscopic processes and collective motions of
atoms. The kinetic constraint is to slow down relaxations of atoms and defects
to more stable states. It can also couple to boundary conditions to enhance the

metastability.

In multicomponent alloy systems used for the CGT, a kinetic constraint is
applied by holding a crystalline phase below the glass transition temperature. At
such a temperature, long-range diffusion is restricted, so the atoms must remain
in a fixed configuration, no matter how unfavorable it is energetically. If an amor-
phous phase can be obtained from such a metastable crystalline phase _Without any
substantial development of composition fluctuations on macroscopic scales, we call

this type of CGT polymorphic amorphization.

The importance of the polymorphism in the CGT has to be stressed here
for the following reasons. First, it is a truly metastable phase transition. The
constraint on composition fluctuations can lead to the possibility of the CGT driven
or altered by frozen-in atomic disorder (see chapter 4). Second, it is the simplest
transition that involves only topological configurational change at the CGT. The
polymorphic amorphization can be characterized by a well defined metastable phase
diagram. The phase boundary connecting a crystalline phase and a,n_amorphous
phase is polymorphic melting temperature, Ty, which is an analogue of the melting
temperature of a multiple component system at different compositions. Ty provides

a conceptual linkage between equilibrium thermal melting at high temperature and

metastable CGT at low temperature [1.2].

Fig. 3.1 is a schematic metastable phase diagram for a binary system con-

structed from a related equilibrium phase diagram with an eutectic reaction. Tp 1s
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defined in the same way as for melting in a pure system except that the locus of
the Gibbs free energies is of a liquid (L) and a solid solution (see Fig. 3.2). The
polymorphic melting line can be extended conveniently down to low temperature if

metastability can be maintained by satisfying (3.1) for both phases.

The polymorphic CGT is likely to occur below Ty, the glass transition temper-
ature where diffusion is known to be extremely slow, in a crystalline solid solution
with excessive solute concentrations (beyond the equilibrium solubility). In this
work, we shall limit ourselves to such a system which could exhibit polymorphic

amorphization transitions.

In practice, however, achieving this condition (3.1) has been found to be ex-
tremely difficult. Other processes are likely to interfere with the metastable phase.
Most commonly encountered are formation of equilibrium intermetallics and other
undesirable metastable phases. Fundamental parameters determining the stability
of these processes, e.g., Tgr, are critically dependent of kinetics of the formation of
" these phases in metastable systems during the course of the CGT. Usually there is
a broad distribution of 7g’s that result from different time scales of these processes,
while, on the other hand, there are only a few kinetic constraints one can manip-
ulate to make 7x satisfying (3.1). To make a homogeneous, “clean” -r-netastable
crystalline phase that can transform into an amorphous phase polymorphcally has

been a great challenge for experimentalists (for example, see [1.2, 1.24}).

The crystalline solids used in most existing methods of synthesizing amorphous
phases have large scale chemical inhomogeneity. Typical examples are diffusion cou-
ples [1.13], mechanical deformation induced amorphization [1.12], etc. In addition,

the presence of defects created during processing of these materials, particularly
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Fig. 3.1 Schematic phase diagram for a metastable binary solid solution con-
structed from an equilibrium binary phase diagram (dashed line) which has an
eutectic crystallization transition. Cp is the solute concentration. a and 7y are two
equilibrium terminal solid solutions. Beyond the equilibrium solid solubility line,
low temperature equilibrium phase is a two-phase mixture composed of a and . L
refers to equilibrium liquids. T§(Cp) is the polymorphic melting line. T,(Cp) is
glass transition temperature. The cross hatched region shows the equilibrium solid
solution and the shaded region shows the metastable solid solution. The CGT likely

occurs below Ty(Cpg) and beyond Tp(Cp), or in the shaded area.

those of topological nature such as dislocations and grain boundaries that can break
the crystalline translational symmetry efficiently, can induce the CGT locally. In
all of these experiments, it is indeed observed that the CGT proceeds in a manner

strikingly similar to that of a first-order phase transition: nucleation of amorphous
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—

Fig. 3.2 (a) Schematic free energy diagram (temperature T vs. composition Cp)
of a binary system at a temperature below solidus; (b) free energy diagram at a
temperature between the solidus and liquidus; (c) binary phase diagram with two
~ eutectic transitions; L is liquid, « and § are terminal solid solutions, and v is an
intermetallic compound; (d) polymorphic transition (I and IV), primary (II) and
eutectic (III) transition from an undercooled liquid; (e) Tp line for terminal solid

solution a, v and liquid L (from Ref. 1.2).

phase at boundaries of regions of chemical inhomogeneities/defects and subsequent
growth of the amorphous phases controlled by either the crystal/amorphous inter-

face or diffusion through both phases [3.3].

To understand intrinsic, microscopic mechanisms of the CGT and thermo-
dynamic properties of metastable solid solutions, we need to use systems that are

free of these inhomogeneities and geometrical constrains. There are only a handful
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of such systems available, one is the rare earth-transition metal intermetallics in
which hydrogen can be absorbed quickly and homogeneously, and another is our
computer generated solid solution for which a bulk, homogeneous metastable crys-
talline phase can be easily obtained. Radiation induced amorphization can produce
homogeneous metastable crystalline and amorphous phases, but due to the special

nature of disordering it is kinetic transition rather than a thermodynamic one [3.4,

3.5].

3.3 Criteria for Lattice Instability -

The next question one likes to ask is why and how a stable, homogeneous crys-
talline metastable phase becomes unstable and transforms to a metastable amor-
phous phase? Because of the special nature of the CGT that involves topological
configurational change of atoms, lattice instability is naturally introduced to relate
this transition to lattice response [1.2], in particular, elastic properties.

Instability of a phase can be described in general by Gibbs criterion that sets
limits for the stability of a phase (stable or metastable) against perturbations of
different kinds [3.6]. Depending on the type of disturbances, Gibbs stability criterion

takes different forms,

&G
=Cijr1 > 0, 3.2

Beyen . M (3.2)

PG

2 = B0 > 0, (3.3)

G Cp

W = —"'—f— <0 (34)

and

2

OC _ ver<a, (3.5)

OP?
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where G is Gibbs free energy, and ¢, T, ¢; j,V and P are composition, temperature,
elastic straih tensor, volume and hydrostatic pressure, respectively. The positive
definiteness of the thermodynamic response functions, such as chemical potential
gradient, Op /08¢, heat capacity, Cp, elastic constant, C;jxi, and compressibility, k7,
mark a stability region for a phase against small variations of these thermodynamic
variables.

However, it is not adequate to employ the instability approach for phase tran-
sitions, because it cannot answer the questions of what the resulting phase is going
to be and how a transition proceeds. These questions are, in fact, essential for
understanding phase transitions [3.7-8]. Nevertheless, they could offer a quick ref-
erence, or criterion, for analysis of phase stability when detailed information is not
available. The CGT, as well as melting, happen to fall into this category. Much
of the understanding of the CGT up to date has been derived from instability ap-
proaches for thermal melting. In the remainder of this section, we shall critically

. review some of these criteria proposed for both the CGT and melting.

A. Elastic Lattice Instability Criterion

It is one of the most intuitive ways of relating a crystalline phase to an amor-
phous phase at the CGT [1.2]. When a crystalline phase becomes amorphous, it is
no longer stable configurationally and thus the associated structural response, elas-
tic constants, will exhibit certain changes at the transition, or vice versa. Born [3.9]
proposed this model for melting in 1939 based on the observation that a liquid can
not support acoustic shear waves. The collapse of crystalline order can therefore be
represented by the disappearance of, at least, one of the shear elastic constants at

melting. The free energy density proposed for such a crystalline phase is composed
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of elastic energy only, which is expanded in a power series in terms of strain tensor,
1
F=- Z Cijki€ij€t, (3.6)

2
t,3,k,1

to quadratic terms. The expansion coefficients are elastic constants, Cjjri. The
stability of crystalline phases requires that the free energy be positive definite. From
the definition (3.6), we know that this can be achieved only when the expansion
coefficients, elastic constants, are positive definite. For a cubic Bravis lattice, the
Born stability criterion can be obtained conveniently by expressing (3.6).in principal
(eigen) strain coordinates. Diagonalizing (3.6), we obtain the stability condition for

a crystalline solid with cubic symmetry,

Cu 4+ 2012 = % > 0, (37)
Ci1—Ci2 >0 (3.8)

and
Cyq > 0, (3.9)

where Ci1,C12 and Cyy are three independent elastic constants. « is compressibil-
ity constant. Egs. (3.7-9) are just a specific expression of Gibbs elastic stability
criterion expressed in (3.2). As mentioned early, this approach cannot tell how the
elastic constants behave when a crystal gets closer to melting and what happens
if the stability condition is violated. At T = Tjnstability, the curvature of the free
energy, or an elastic constant, becomes zero. The crystalline solid loses the restoring
force even against an infinitesimal structural fluctuation., and melting should occur.

But with only the quadratic terms included, Born’s theory predicts a catastrophic
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transition that will proceed without a bound. This is why the Born theory is called

one phase theory of melting, or elastic instability of melting.

To avoid this problem, or to turn the one phase theory into a two-phase theory,
higher order terms have to be included, as suggested by Landau theory of phase
transitions [3.8], to stabilize the final phase after the parent phase has collapsed.
But it is not clear Whether or not the strain can be used as an order parameter in the
case of melting, because essentially there are only dynamic (high frequency) shear
strains in liquid state. Thus it is impossible to extend Born’s stability criterion to
a two-phase theory of melting by including higher order strain terms. However, we
will show in chapter 4 that in a metastable crystal, a frozen liquid, or an amorphous

solid, strains and stresses are perfect order parameters for a Landau theory.

Contrary to the expectation that a solid cannot support shear waves [3.9] at
melting, it has been observed experimentally that elastic constants remain finite
for most solids when the transition occurs [3.10-11]. A careful analysis by plotting
elastic constants versus volume expansion, however, reveals that at melting, at least
one of shear elastic constants, when extrapolated from the crystalline phase region
and across the crystal/liquid expansion gap, does go to zero at a volume expansion
corresponding to a liquid phase {3.10-11]. This result suggests that .the volume
ezpansion can be used as an indicator for lattice instability of metastable solids
[1.2, 1.16]). It simply states that if the volume expansion of a crystalline phase

exceeds that of a liquid, it will not be stable elastically.

This criterion derived from lattice instability actually fails on two accounts
for understanding of the CGT, and melting in general. First, it may exaggerate the

needed volume expansion for the CGT, since experiments have shown that glass
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differs little from its crystalline counterpart in densities [3.12]. Volume expansion
at melting is typically around 5%, while the density change for glass is usually less
than 1 ~ 2%. Second, it gives no information on local changes in the crystalline
phase. The melting transition in general can be regarded as originating from local
regions that are full of structural imperfections. Locally, Born’s criterion may be
met in regions along the crystal/liquid interfaces. But experimentally measured
elastic constants are over the entire sample that includes both crystalline and liquid
regions, as in a typical first-order transition. So elastic constants can approach
zero only when liquid regions percolate through the entire sample. This explains
why Born criterion fails to predict behavior of elastic constants at melting. The
same author found [3.10-11] that the number of atoms that are in a true liquid
state, or executing diffusion motion, with the volume expansion at which a shear
elastic constant becomes zero, is only about 10% of the total number of atoms. The
fraction of liquid-like region agrees quite well with the critical volume predicted

. from volume percolation model [3.12].

The critical volume expansion criterion was tested [3.13] recently in a Lennard-
Jones monoatomic solid. In this work, the volume of the crystalline solid was artifi-
cially expanded uniformly and subsequently held fixed. It was found that the crys-
talline solid starts developing microcracks at the volume expansion corresponding
to the critical expansion. At a higher temperature, the microcracks are replaced by
microcavitations. Under both conditions, the topological configuration of the solid

bears no resemblance to an amorphous solids.

Despite the inadequacies mentioned above, lattice instability still remains an

attractive approach because of its connection between configurational, or structural
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change and the elastic responses that a system can demonstrates at a transition. In
the case of CGT, one expects that changes in volume or density from a crystalline
solid to an amorphous solid will be much smaller than that of a liquid, as required
by the critical volume expansion criterion if Born stability criterion applies. This is
partially due to slow kinetics that constrains the glass-like regions from percolating
fast and efficiently. So lattice instability, even if it occurs, will be more gradual and
exhibit large precursor effects. Indeed the results in an expanded LJ solid mentioned

above [3.13] support this argument.

B. The Generalized Lindemann Criterion

This approach represents another class of approaches that use mean square
displacements (MSD) of atoms as an indicator to set a limit for crystalline stability
[3.14]. Mean square atomic displacements can be measured from the reduction
in intensity of the Bragg diffraction peaks of a crystalline phase. In melting the
major part of mean square displacements comes from lattice vibrations of atoms
from their equilibrium positions, whereas in the CGT, the static displacements of
atoms contributes a large fraction to the total mean square displacements “‘.15—17].
The MSD directly measures an average magnitude of disordering resulting from
atomic configurational changes. Thus it represents a general characteristic for all
structurally disordered processes.

Based on this consideration, the MSD, or in general atomic displacements
fields, can be used as an order parameter to represent configurational disordering
in transitions between a crystalline and an amorphous phase. As an indicator, or
criterion, the MSD is not as useful to represent the topological transition, because it

is the mean, average value taken over the entire sample that is used af the transition.
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So the MSD used in Lindemann’s criteria unavoidably suffers from the same problem
as that in the critical volume expansion criterion derived from the lattice instability.
It is unable to give any local information of the transitions and the manner of how
the transition proceeds. For example, as shown later in this thesis, behavior of
mean square displacements for a first-order and a continuous topological transition
are quite different. The former usually shows a abrupt change very close to the

transition, whereas the later exhibits a smooth change with a large precursor effect

[3.18].

C. Microscopic Strain and Stress

Microscopic strains resulted from atomic displacements can be defined in gen-

eral as
€ = %(Jf.]i ~I), (3.10)
where J; is the Jacobian Matrix
aui
Ji = —5; (3'11)

u; is atomic displacement vector from equilibrium positions of the ith atom, a;. The
microscopic strain defined above is not limited to infinitesimal displacements, as in
linear elasticity theory. It includes nonlinear displacements. ]

Such defined atomic strain and stress defined by equation (2.6) can be shown

to be related to macroscopic stress ¢ and strain e by
o=y <List>, (3.12)

where p and p, are densities of strained and unstrained systems, and

1 N
6=N2<6i>. (3.13)
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Microstress and strain have been widely used to relate structural disorder in

solids and liquids [3.19-20]. For a solid phase, crystalline or amorphous, when in

their stable (equilibrium or metastable) states, any unfavorable configuration of
atoms that is different from the equilibrium configurations can introduce nonzero
forces that can lead to nonzero stress. When a liquid is quenched rapidly, the
atoms have no time to reach a equilibrium position, then the microscopic stress may
result. This “frozen-in” microscopic stress was shown to be directly responsible for
the liquid to glass transition [3.19-20]. At the liquid to glass transition the shear
stress-stress correlation function approaches a finite value. Similar concépt was also
used to predict the onset of the CGT in intermetallics caused by irradiations [3.21}.

As we briefly mentioned previously, nonzero microscopic stress corresponds to
a mechanically nonequilibrium state. Relaxation of atoms to reach a local equilib-
rium under the action of these stresses in general is accessible, except in the case
of rapid cooling. Most systems that are unstable mechanically will be relaxed to a
metastable or stable state. However, if defects are present, this relaxation will not
be accomplished fully, especially at low temperature, then microscopic static stress
and strain field will result.

It is clear from the above analysis that microscopic strains should be consid-
ered in topological order to disorder transitions in metastable systems. Its close
relationship with defects and to elastic properties make it a very useful quantity to
analyze the transition. In the next chapter we shall present a simple Landau theory

that uses microscopic strains as an order parameter to explain the CGT.

D The Entropy Crisis, or Inverse Kauzmann Paradox

This approach sets a different stability limit for a solid phase by an argument
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similar to that of Kauzmann’s [3.22]. Kauzmann argued that a liquid cannot be’
supercooled indefinitely because, at some point, the entropy of a solid would be
~ greater than that of a liquid, which is against the common sense. In order to
avoid such a paradox, the liquid must decrease its entropy with cooling in order to

approach that of a solid. This leads to massive freezing into a glass.

Strictly speakiﬁg, Kauzmann’s paradox does not violate any thermodynamic
law, or stability criterion, except that the extrapolated entropy of the supercooled
liquid will become negative if it does not approach that of the solid. The glass transi-
tion temperature defined by the entropy crisis therefore is an ideal, thermodynamic

glass transition temperature, or isentropic glass transition temperature.

The same concept was used in a rather different situation [3.23], superheat-
ing, which is inverse from that of Kauzmann’s. It was argued that entropy of a
superheated solid cannot be greater than that of a liquid. The temperature that
defines the equality of entropies of a solid and a liquid is an “intrinsic, ultimate”
stability limit of a superheated crystal [3.23]. This argument was elaborated and
extended to multicomponent alloy systems at low temperature where a crystalline
phase transforms polymorphically, or is superheated to “melt” into a glass at a

nonequilibrium composition.

In order to achieve this entropy crisis, or to raise the entropy of a solid close
to/above that of a liquid, defects have to be considered. The vibrational entropy,
represented by increasing heat capacity, is not enough. However, the number of
point defects needed is much larger than any experimentally observed value [3.23].
Furthermore, as we will show later, the collective defects play a more important role

than the point defects in destabilizing crystallinity. The point defects are seldom
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found in disordered metastable crystals, even very close to the CGT. It is grain
boundaries and dislocation networks, which, ironically, have less contributions to
entropy than point defects, that can effectively destabilize crystallinity.

To summarize, stability arguments, presented as various criteria that are either
directly related to thermodynamic quantities (Gibbs criterion, Born lattice stability,
Kauzmann paradox) or other physical properties (generalized Lindemann’s criterion
and microscopic stress/strain), can only be used as a technique for rough estimation
of the occurrence of a phase transition. Detailed information must be sought by
other means that relate to the thermodynamic properties of the two phaées, and link
microscopic properties to observed phenomena. However, these physical quantities,
especially those that are directly related to topological transitions, such as micro-
scopic stress/strain, the MSD of atoms, are extremely useful for our understanding
of melting and the CGT.

Because the averaged properties are used, stability criteria in general will
. lead to exaggerated values for phase transitions, i.e., higher transition temperature,
larger magnitude of disordering, stronger correlations of ordered phases, etc.. Also
detailed precursor effects, if there are any, will not be correctly presented by the
stability criteria because they are closely related to local effects. Despite all the
drawbacks associated with instability criteria, they can still be very useful a.s' a quick
reference for predicting phase stability in cases where no other detailed information

is available.

3.4 The CGT in a Binary Lennard-Jones Solid Solution
As we mentioned early, in order to probe the “would-be” intrinsic mecha-

nisms of the CGT and thermodynamic properties of both crystalline and amorphous
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phases, it is desirable to have a system that is chemically homogeneous and contains
no ertrinsic defects. A genuine system of this kind, however, is rarely obtainable
experimentally (see [1.2, 1.24] for details). Rare earth metal hydrides mentioned
early have shown early promise [3.24-26], but detailed work later [3.27] showed that
in FexEr-hydride neither of these requirements for polymorphic amorphization is
met. The biggest problem is the short-range ordering resulting from strong rare
earth metal-metal atom interactions [3.27]. A hydride made from Zr3zAl did, on
the other hand, exhibit a transition in regions free of chemical inhomogeneity and
defects [3.25]. In the remainder of this chapter, we shall present results for the CGT

in a model system that meets these demands, even on microscopic scales.

A binary solid solution is the simplest system that can be made glassy with
cooling rates accessible to most experimental techniques. A monoatomic system
can become glassy, but its stability critically depends on its impurity content. An
extrapolation of substrate temperatures vs. solute composition in NbSi indicated
that substrate temperature needs to go to zero in order to form a monoatomic
metallic glasses [3.28]. Thus amorphous phases are unstable thermodynamically.
Atoms in the amorphous phase of pure metals are simply kinetically frozen into a

disordered phase due to lack of mobility at such low (often cryogenic) terhperatures.

The easy glass forming ability of multicomponent alloy systems has been at-
tributed to constraints on kinetics that can prevent nucleation and growth in an
undercooled liquid. Empirical relationships have been sought to correlate glass
formability to certain material properties, such as enthalpy of mixing, atomic size
ratio, or atomic size difference of solute and solvent atoms in binary mixture. The

later has been considered as a crucial factor [3.29-31]. Atomic size mismatch can
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affect the topological packing of an alloy directly through altering its coordination
numbers. A large atomic size ratio can also lead to anomalous, esymmetric dif-
fusion for one of the species, which kinetically favors undercooling and thus glass
formation [1.2]. In crystalline solids, solute solubility was thought to be related to
atomic size differences between solute and solvent by strain energy created by size
mismatch. Under such conditions, the maximum solubility of a solute in a binary
solid solution is reached when solute and solvent atoms have a 15 at% size mismatch
(Hume-Rothery rule) {3.32], or 85% size ratio, which in fact agrees quite well with

experiments for a large number of binary alloys [3.33].

Despite different routes taken in synthesizing amorphous alloys from crys-
talline solids, the basic principle remains more or less the same [1.2]. Most of these
methods can be reduced to a simple solid solution model. For instance, hydrid-
ing of rare-earth intermetallics can be considered as a solid solution consisting of
~ hydrogen located interstitially with the compound; a solid-state reaction produces
a solid solution by interdiffusion at the interfacial layer of two pure metals; while
mechanical attrition makes solid solution by forming defects and by interdiffusion
between different constituents; and even irradiation induced amorphization can be
regarded as producing a metastable solid solutions by disordering the ordered inter-
metallics. The essential point for all these processes is to make a metastable solid
solution that has the same chemical composition as that of an amorphous phase. So

the metastable solid solution model presented here can be expected to be a general

model for the CGT.

The interatomic interaction used in this work is the Lennard-Jones (LJ) po-
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~ where €,5 and 044 are parameters that are proportional to the potential depth and

tential,

atomic radius of each interaction between two atoms. a and 8 denote two types of
atoms, A and B.

The LJ potential is particularly suited to inert gas elements such as argon
which have closéd outer shells for their valence electrons. For metallic elements.
and in particular, for transition metals, interatomic interactions are relatively com-
plicated due to involvement of s, p and d electrons [3.34]. However, all interatomic
potentials constructed so far have the same basic characteristics. They have the
following features: a strong repulsive region close to the ion core and an attractive
part at distances of a few nearest neighbor shells. The long-range behavior of a in-
teratomic potential can vary due to many reasons. For example, Friedel oscillation
[3.35] caused by incomplete electron screening of ion potentials can lead to a long-
range oscillating tail. Details of these subtle features are fortunately less important
for situations where collective effects of atoms in phase transitions are predominant.
So the LJ potential is satisfactory for the purposes of investigation of thermody-
namic and kinetic properties at the CGT. However, care has to be taken if local
properties, such as short-range chemical ordering, phase separation and detailed
atomic configurations of defects, must be considered. It is known, for instance, that
the potential well depths of the LJ potentials (3.14), e44,€e4p and epp, can effect
short-range ordering in binary liquid mixtures [3.36]. A strong attractive interac-
tion between solvent A and solute B atoms will favor an arrangement of more B

atoms surrounding A atoms. To avoid this undesirable situation in the binary LJ
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solid solution undergoing the CGT, we set all three parameters equal,
€AA = EAB = €EBB = €. (3.15)

The case of using unsymmetric potential depths will be presented elsewhere for
investigation of the possibility of dislocation pair unbinding mediated melting [1.9,
1.16]. A stronger solute-solute repulsion, or a shallow potential depth, ¢gp, will
raise the barrier for dislocation clustering, thus forcing dislocations to unbind into
singlets at melting,.

In our simulation atomic size difference can be expressed conveniently by LJ

parameters, 044 and oppB, as

where R44 and Rpp are radii of atom A and B. At constant temperature and
pressure, there are only two parameters required to characterize the binary alloy,
~ the atomic size mismatch, (1 — &), and the solute concentration,

_Np  Np
BTN T Ni+Ng’

(3.17)

where Ng, Ns and N are numbers of A and B atoms and the total number of
atoms respectively. The only intrinsic defects are found to be those that are induced
directly by atomic size mismatch.

In our simulation, solid solutions were generated by randomly dispersing small
solute atoms on an fcc lattice which was originally occupied by large solvent atoms.
The reason to do this is because disturbances caused by small atoms are relatively

small, so one can have a large composition window to observe the transition.
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Usually a simulation consists of two parts. The first part, usually 10° ~ 108
time steps, was used for equilibrating the system. The second part, which usually

lasts for ~ 106 time steps, was used to determine thermodynamic averages.

To quantitatively estimate the degree of supersaturation of the metastable
solid solutions, one needs to know equilibrium solubilities. For the LJ binary system,
the equilibrium phase diagrams crucially depend on the atomic size ratios [3.37]. In
principle, equilibrium solubilities should be calculated from Gibbs free energies of
two equilibrium phases at the given temperature using tangent rules. However, the
required intensive computation prevents us from doing so in a limited time. Instead
we used results of a binary hard sphere solid solution calculated from a density
functional theory [3.37] to estimate the equilibrium solubility of the LJ binary solid
solution having approximately the same atomic size ratio between solute and solvent
atoms as that in the hard sphere model [3.37]. The equilibrium solubility of the hard
sphere binary solid solution at roughly 50% of its melting temperature is less than
3 at.%. Considering the softness of the LJ potential (3.15), a larger equilibrium
solubility for the LJ binary solid solution is expected, but no more than 5 at.%.
On the other hand, most binary metallic solid solutions that have roughly the
same atomic size ratio (for example, Fe-Be solid solutions), were sho-\;vn to have
equilibrium solubilities less than this value [3.32-33]. When solute concentrations
go beyond equilibrium solubilities, the system is said to be supersaturated. The
solution become thermodynamically metastable because its free energy is higher

than that of the equilibrium phase(s) determined by tangent rule (see Fig. 3.2).

Fig. 3.3 shows a phase diagram of such a random LJ solid solution at constant

T and P in a two-parameter space («, xg) for a fcc binary solid solution made of 500
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atoms. In our simulation, it was found that above a critical atomic size ratio, a.,
the binary solid solution can be continuously saturated. Below this critical value,

the solution ceases to exist at a maximum supersaturation, z., where the CGT
occurs. Depending on the atomic size ratio, this critical, or maximum, metastable
solubility can vary substantially. However, it is doubtful that a solid solution can
still exist for very low atomic size ratios, since intermetallic compounds will likely
prevail at such large size differences [3.33]. It is interesting to notice that critical
atomic size ratios required to induce the CGT in a solid solution is very close to that
required for forming the Laves phase [3.33]. In fact, the Laves phase has been found

to be one of the most frequently observed competing phases in glass formation in

the CGT [1.24].

To prevent diffusion from occurring, the temperature was set at 0.3 (in reduced
LJ units) for all samples simulated. This is slightly below the glass transition
temperature (T, = 0.4), and roughly one half of the melting temperature (T;, =
0.78) of a pure LJ system. When the temperature is too low, it results in slow

relaxation and thus longer simulation time.

At the temperature, and zero external pressure, the solid solution behaves
differently in two regions separated by a critical value a., which is close to 0.83 for
the given temperature, pressure and interatomic potentials (see Fig. 3.3). With
smaller size mismatch, it forms a continuous metastable solid solut_ion with almost
perfect cubic symmetry, but in a narrow region close to «. the solution becomes
distorted from cubic to tetragonal. Such a structural change could be caused by
large shear strain fluctuations. However, a possibility of an artifact caused by small

sample size cannot be ruled out either. Further tests with different sample size are
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Fig. 3.3 Schematic metastable phase digram of LJ binary solid solution in param-
eter space (a,z) at constant pressure temperature (T=0.3) and pressure (P=0.0).
The total number of atoms is 500. The LJ potential cutoff distance is 2.450. X
marks the phase calculated using molecular dynamics. The areas at the two upper

corners are the equilibrium terminal solid solution.

needed. In the following we shall focus on another region of the phase diagram

which corresponds to larger atomic size mismatch (< o). The CGT always occurs

at a finite supersaturation z. in this region.

The radial distributions functions (RDF) (Fig. 3.4) show systematic changes
of the structure of the solid solution with « = 0.80, as more solute atoms are
added. The first and second nearest neighbor coordination numbers for various
pairs (e.g., AA, AB and BB) which are proportional to the areas under the peaks

in the RDF’s, have the same mean density as the overall solute composition. Thus



67

no local chemical ordering has developed. Broadening of all the peaks of various
coordination shells for the pure LJ crystal (zp = 0) is due entirely to thermal
vibrations of atoms at this temperature. Additional broadening of these peaks and
their decreasing intensities at nonzero solute concentrations (xp > 0) are attributed
to disordering induced by solute atoms. The same behavior can be observed for
partial RDF’s for AA, AB and BB atoms, but the broadening is more spread out
and the intensities are much lower.

Below the critical size ratio, a quantitatively different RDF starts emerging
at approximately a 20% solute concentration. Peaks corresponding to the second,
fourth and fifth, etc. nearest neighbors disappear and two broad humps develop
at distances beyond the nearest neighbor peaks. More striking is the split second
peak, in particular, of the partial RDF’s. Such a split peak is commonly observed
in most metallic amorphous phases.

The structural changes can also be revealed in more detail by examing the
~ local translational order parameter defined in (2.23) with a slight modification,

1N
PG = 3 Z exp(—iG - r;), (3.18)

=1
where the shortest reciprocal lattice vector along [111] direction, which corresponds
to the densest packed atomic planes, is chosen for G. Fig. 3.5 shows the tr-anslational
parameter defined above as a function of solute concentration. It shows that the
change in the translational symmetry is discontinuous; from zp = 0.20 to zp =
0.225 pg drops abruptly from 0.82 to 0.12.

Accompanying with the structural change are structural fluctuations which

are represented by the MD cell parameter,

< (6R)? >=<h® > — < h>%. (3.19)
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Xg =0.225
a=0.80

Pair Correlation Functions

Fig. 3.4 Partial and the total pair correlation functions of the fcc LJ binary solid
solutions at different supersaturations at temperature T' = 0.3 and pressure P = 0.0.
The atomic size ratio between solute and solvent is 0.80, which is slightly below the
critical ratio (a. = 0.83). Solid line is for the total RDF; dashed line for partial
RDF of AB atoms; dotted line for partial RDF of AA atoms; dot-dashed line for

partial RDF of BB atoms. Distance is normalized by the LJ parameter o.
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This quantity is directly related to strain fluctuations through the following relation,
1oy -1
be = §h0 0Ghy ™, (3.20)

 which in turn is related to elastic constants defined by equation (2.18). The strain
fluctuations can be seen more clearly in elastic constants in the principal strain
coordinate. Fig 3.6 shows the three independent isothermal elastic constants. Here
(C11 + C12)/3 is the bulk modulus, and C' = (C11 — C12)/2 is the tetragonal
shear elastic modulus which represents responses of deformation along the [001]
direction. Cy4 is a rhombohedral shear modulus corresponding to strain along the
[111] direction. From the figures one can see that the largest structural fluctuation is
along the [001] directions as the system gets close to the CGT. In fact, the tetragonal
shear elastic constant shows an extremely large precursor effect even far away from
the CGT. Experimentally measured elastic constants usually show a linear decrease
with increasing temperature, or with volume expansion in ordinary melting. The
softest elastic constant are different for different systems, but the most frequently
observed one is tetragonal shear elastic constant [3.10-11] in crystals with cubic
Bravis lattice. In our case, Cy4 appears “lagging behind” showing a linear decay with
increase of solute concentration at low solute concentrations. Very close to the CGT,
it decreases abruptly. Structural fluctuations are large on the metastable crystal
side, but become stabilized on the amorphous side. The two shear elastic constants
approach the same value as the solid becomes an isotropic glass. A continuously
decreasing C' and its extremely small value close to the CGT suggest that the
CGT in the solid solution is closely related to the (elastic) lattice (shear) instability
and the transition proceeds in a manner similar to a continuous phase transition.

Although our work has provided much more detailed information, unfortunately the
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Fig. 3.5 Translational order parameter (Bragg peak intensity) along G = [111]
direction for the binary LJ solid solution as a function of solute composition at
T = 0.3 and P = 0.0. The atomic size ratio is 0.80. The solid lines are drawn to

guide eyes.

crucial part of it has not been available at the CGT, due to the finite size/time used
in the simulation. At solute concentrations very close to the CGT, large structural

fluctuations prohibit us to get a convergent C' and Ci,.

Our results presented above can be summarized briefly as follows. First, the
structural transition from crystalline to amorphous is through shear, although what
structural unit is involved is not clear yet; and the different behavior of C' and
C44 suggest that tetragonal shearing is predominant. Second, shearing can occur
on different scales, as suggested by increasing lattice distortions of the system as

a whole along the [001] direction as solute concentration increases and formation
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of small patches of crystalline clusters with each one deformed along a different
variant close to the CGT (also see chapter 5 for details). Third, the continuous
and significant softening of C’ indicate a gradually growing correlation between
“frozen-in” strains, as predicted by the basic fluctuation-response theory (chapter
4 for details), which is in contrast to that of a typical first-order transition.

The above observations are in fact consistent with other thermodynamic prop-
erties we obtained from simulations. Fig. 3.7 is molar enthalpy and molar volume of
the binary solid solution versus concentration. The molar volume (its inverse is den-
sity) decreases linearly at dilute concentrations (Vegar’s law), but a slight change
of curvature close to the CGT can be seen. The same is true for the molar volume
of the amorphous phase. There is a small jump of volume at the CGT from the
crystalline phase to the amorphous phase, but the magnitude is very small (< 1%).
The molar enthalpy also increases linearly at the dilute limit and then bends down
slightly when it gets closer to the CGT. On the amorphous side it appears to be
saturated: further increase of the solute concentration leads to only a slight change.

It is difficult to obtain thermodynamic properties right at the CGT boundary,
especially the Gibbs free energy and entropies. But we can use the available results
to estimate those quantities close to the CGT. The entropy change of a binary solid

solution under constant pressure can be expressed in general as

S a8 as
2= (ar) 27+ (), 27+ 5, (52). 2

Cv « (6;L> ,
= —AT+ —AV - — Az;, 3.21
T KT i——;B oT VT * ( )

where Cv, a, k7 and u are constant volume molar heat capacity, isothermal volume

expansion and compressibility and chemical potential respectively. At constant
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Fig. 3.6 (a) Isothermal tetragonal shear elastic constant, C’; (b) rhombohedral
shear elastic constant, Cy4, of the LJ binary solid solution with atomic size ratio
0.80, at temperature 7' = 0.30 and pressure P = 0.0. Note the large fluctuations
close to the CGT.

temperature (A T = 0) and under polymorphic constraint (Axg = 0), the entropy

change is related to volume change only,

AS = ZAV. T (322)
KT

The molar volume change at the CGT is less than 1% from the crystalline solid
solution to the amorphous phase. Such a small volume change can be anticipated
from the behavior of the shear moduli and the small change of the bulk modulus.
Shear deformation preserves volume and thus is easy to achieve. The coefficient in
(3.22), the ratio between isothermal volume expansion and compressibility at the

CGT, is on the order of ~ 10 in both three- and two-dimensional systems. Thus
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Fig. 3.7 Molar enthalpy (e) and molar volume (A) of LJ binary solid solution with
atomic size ratio 0.80, at temperature T' = 0.30 and pressure P = 0.0.

the change of the entropy is approximately 0.15 ~ 0.20 Nkg. As such, we set the
entropy change equal to zero,

AS =~ 0, (3.23)

at the CGT. This result, combined with enthalpy change (AH ~ 0 ) at the CGT

leads to an expected result for Gibbs free energy at the transition,

AG = AH + TAS ~ AH ~ 0. (3.24)

In a binary system, the free energy is a function of composition and tempera-
ture only, G (z, T). At a given temperature, (3.24) defines phase boundaries of the
polymorphic transition, or To(z) line. From the above results, one can see that the

crystal to glass transition under polymorphic conditions could have no latent heat
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and no abrupt density change. This is in sharp contrast to ordinary melting where
a latent heat and volume change are observed. For example, for pure metals, AS is
roughly a constant ~Nkg = R (8.14 J mol™! K™, Richard rule), and the density
| change is ~ 5% [3.38].

3.5 Comparison With Experiments

It is clear from the MD simulations that the CGT is indeed a phase transi-
tion (albeit from one metastable phase to another) and is well defined by all the
thermodynamic properties (AG = 0). With dramatic softening of shear elastic
constants and extremely small changes of density, enthalpy and entropy cross the
T, line, the crystalline phase is apparently approaching a stability limit set by a
diminishing “restoring force” to retain crystallinity. The lafge precursor effect of
the shear elastic moduli indicates that such the transition occurs not in an abrupt
but rather a gradual and continuous manner. However, none of these results has
been observed unambiguously and consistently in experiments so far. Some recent
experiments nevertheless have demonstrated some interesting features resembling
those presented in this work [3.39-40]. In the following, we will compare these
results with ours. )

Okamoto, et al. performed an experiment using Brillouin scattering to mea-
sure shear sound velocity of a polycrystalline intermetallics Zrz Al irradiated with
1Mev Kr* [3.39]. In this experiment they found that transverse sound velocity de-
creases with increasing radiation dose, or displacement per atom (dpa), in a similar
fashion as that calculated by MD simulations (see Fig. 3.8). At the onset of the
transition, the shear sound velocity plunged almost 50% from that of the initial

ordered crystalline sample. As the dpa increases further past the transition, the
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Fig. 3.8 Measured transverse sound velocity (V;/V?, normalized by the shear
sound velocity of an unirradiated sample) vs. displacement per atom for an irradi-
ated ZrzAl. The ratio is proportional to that of shear elastic constants. S is the
long-range order parameter. ¢§ and ¢ denote dpa at the onset and completion of

amorphization. Note the large fluctuations in the data close to ¢§.

shear velocity starts leveling off. Note that the CGT occurs in an very wide range

of radiation dose (0.1 ~ 0.3), and large errors in the measurements also occur in

this range.

In the same system, chemical disordering which is represented by the long-
range order parameter S, obtained from electron diffractions from the irradiated
samples, shows a dramatic decrease in the long range chemical order. This implies

that the compound is severely disordered chemically and formed a random solid
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solution, along with topological disordering that occurs either simultaneously or
subsequently.

Another experiment was done by Ettl et al. [3.40] on Zr;_ Al; solid solu-
tions prepared by mechanical alloying of Zr and Al. Because the solute concen-
tration is increased gradually, their results offer a direct comparison with ours. In
their experiments, effective elastic constants M were obtained from low temperature
(1.5 ~ 9.0K) calorimetry measurements of Debye temperature. Debye temperature

is related to M by the following equation [1.2],
M = (kp©p/tgp)*p, (3.25)

where ©p and ¢p are Debye temperature and wave vector, both of which can be
directly obtained from heat capacity. The shear modulus y is obtained from the
following equation, assuming a slow variation of the bulk modulus K with changing
composition,

M = const(B™3/% 4 u=3/2)2/3, (3.26)

Fig. 3.6 shows their measured shear elastic constants of the mechanically
supersaturated Zr-base solid solution as a function of solute concentration (room
temperature equilibrium solubility of Al in Zr is < 1.0 at.%). Softening of elastic
shear modulus can be clearly seen. The deepest cusp also occurs at a composition
that corresponds to the onset of the CGT.

It should be pointed out that there are certain differences in the systems used
in the experiments and ours. The samples used in the experiments are polycrys-
talline and also have different structures. The Zr;_;Al; solid solution has a closed

packed hexagonal structure and the intermetallics Zrz Al has a L1, structure with
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Fig. 3.9 Measured effective elastic modulus, M(e), and shear modolus, (o) of
ZrAl solid solution vs. Al composition. M and p are obtained from egs. (3.25) and
~ (3.26). For experimental details, see Ref. [3.40].

Zr atoms sitting on face center positions and Al on corners of an fcc lattice. The
experiments actually measured average shear elastic constants. In the case of the
Zrq1—zAl; solid solution, there are a total of 5 independent elastic constants and
four of them are shear elastic constants; in the irradiated Zrz Al, there are two shear
moduli. These experiments, therefore, were unable to identify the softest shear
mode(s) that is primarily responsible for lattice instability. However, the behavior

of the shear elastic constants as demonstrated, is quite encouraging.
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Chapter 4

Landau Theory of Crystal to Glass Transition

4.1 Introduction

The central question we intend to address in this chapter is whether a normal
first-order phase transition, such as polymorphic melting, could become continuous,
and under what circumstances does the crossover become possible. Sharp, divergent
properties such as heat capacity in a continuous phase transition can’be smeared
out if growth of the coherence length is blocked by frozen-in impurities [4.1]. This
problem has not received much attention for first-order transitions, although a few
attempts have been made [4.2]. The reason is related to the nonuniversal properties
exhibited at first-order transitions where scaling relations in general are not appli-
cable. Impurities and finite size effects would not have any substantial effects on the
correlation length at a first-order transition that is intrinsically finite, thus making
this problem less attractive. Nevertheless, rounding or smearing out of the transi-
tion can occur in metastable systems that otherwise undergo a first-order transition.
The underlying mechanism, however, is ﬁot related to “blocking” of the correlation
lengths, as in the case of a continuous transition, instead it is due to the altered
behavior of order parameters under constraints imposed by slow kinetics. So the
abrupt change of thermodynamic properties usually seen at a first-order transition
can be smeared out. If such effects become large, a first-order transition can lose its
characteristics and appear continuous [4.2]. In this chapter, we shall explore this
possibility in the CGT using a phenomenological Landau theory.

In the next section, we will discuss experimental limitations and restrictions
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on investigation of the nature of the CGT in general. We will use a diffusion couple
as an example. In section 4.3 we will discuss how to chose order parameters for a
~ Landau theory that describes a metastable crystalline solid to glass transition. The
role of random, “frozen-in” stress and strain will be emphasized. We will present a
simple Landau theory for the polymorphic melting in section 4.4 and subsequently
discuss the possibility of crossover from a first-order polymorphic melting transition
to a continuous one and necessary conditions needed to do so. Since the Landau
theory is a phenomenological approach, without losing generality, certain assump-
tions are made in order to proceed with analysis. However, these restrictions can

be easily removed, so the result obtained from this theory is general.

4.2 Could the CGT be Continuous?

The CGT observed experimentally can be characterized as kinetically con-
trolled, because large chemical inhomogeneities, finite size confinement and extrinsic
defects are always present in samples used for experimental measurements. In this
section, we shall take the solid-state reaction induced amorphization in an interdif-
fusion couple as an example to demonstrate this.

Fig. 4.1 is a typical setup of a diffusion couple used for solid state reactions
(SSR). Two pieces of pure metals are placed in close contact, either by thin film
growth techniques [1.13, 4.3] or mechanical adhesion [4.4]. At room temperature or
elevated temperature, a layer of amorphous phase forms in between. Accompanying
the growth of the amorphous layer usually is a gradual formation of voids and
ultimately some stable intermetallics along the interfaces adjacent to the amorphous
layer. It has been found that such properties as the heat of mizing of solid solution

and amorphous phases, asymmetric diffusivity of one of the elements and crystalline
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defects are crucial factors to the formation of the amorphous phase {1.2].

The artificial constraint on chemical composition and geometry confines the
transition to a narrow region of an interface. The low ambient temperature im-
posed in order to prevent long-range diffusion (to avoid stable phase formation),
will further obscure the transition. Next we will examine the effects from geomet-

rical confinement, chemical inhomogeneity and defects on the CGT separately.

Reaction Paths

or
A-B Couple
(A)

Fig. 4.1 Illustration of two alternative solid state reaction sequences which lead to
glass interlayer growth. Case A corresponds to direct formation of amorphous phase
at the original interface. Case B corresponds to substantial mutual dissolution of
the parent metals and formation of amorphous phase at the interface between two

solid solutions (from Ref. 1.2).

A. Finite size
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A continuous phase transition differs from a first-order one essentially in the
fact that the systems undergoing these transitions have totally different behavior
in terms of their correlation functions of order parameters, or collective behavior
of atoms, at the transitions. A phase undergoing a continuous transition has a
diverging correlation length and large fluctuations of thermodynamic properties
associated with it, whereas a first-order transition has only a finite correlation length
and finite response. But if a transforming system is constrained to be a “finite size”
as in the diffusion couple, the correlation as well as response will be limited, thus
making it impossible to tell the difference between an intrinsic continuous transition

and a first-order one.

B. Chemical Inhomogeneity

In a solid solution, the instability happens only when the two elements mixes
in a critical proportion, r > z. and a < a.. However, in the diffusion couple, there
is a huge initial composition difference cross the interface between two elements
that restricts solute composition to reach required “supersaturation” z., in order to
initiate the instability. Low temperature will further worsen the situation by lim-
iting diffusions during subsequent formation of new amorphous phase. The critical
condition (z., a.) to form a homogeneous amorphous phase from a metastable crys-
talline solid is met only at a very narrow region along the interface. The macroscopic
chemical inhomogeneity is strongly maintained by kinetic constraints on diffusion
throughout the entire process of the amorphization reaction.

If the enthalpy of mixing of the two elements is negative for forming a solid
solution, such mixing will occur naturally. Atoms could diffuse across the interface

and mix into a solid solution. But the large composition gradient can jeopardize
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the metastability By forming more stable intermetallic compounds if both types
of atoms diffuse equally quickly under the large driving force. In order to form
metastable solid solution with supersaturation, one atom, often the small atom, can
diffuse. Thus the required critical composition can be reached by “saturating” the
small atom in the matrix of the larger atoms. This has in fact been observed in
many diffusion couples formed by early-late transition metals such as Ni-Zr [1.2].
But the formation of the amorphous phase by the collapse of crystalline lattice is
still restricted subsequently on further diffusion to reach the critical condition in

order to propagate the amorphous front.

If the enthalpy of mixing for forming the solid solution is positive, the insta-
bility can occur only in a very narrow region at the crystal/crystal interface and
the amorphous layer so formed must propagate subsequently with greater difficulty

caused by the absence of diffusion.
C. Defects

In addition to the finite size and chemical effects discussed above, struc-
tural imperfections can also influence the CGT critically. Crystalline defects can
function as special sites for transporting atoms to satisfy the instability condition
(z¢,a.) along the crystal/crystal interface to initiate the transition, or at the amor-
phous/crystal front for subsequent growth. In addition, they act directly as nucle-
ation sites for the topological order to disorder transition. Such extrinsic defects
can induce the CGT locally and inhomogeneously. Indeed, it was found that no
solid state amorphization occurred in a Ni-Zr diffusion couple formed on a single

crystal Zr substrate with an atomically smooth interface [4.5].

Despite the difficulties, recent experiments have provided some interesting re-



86

sults that lead to certain characteristics of a possible continuous CGT. It was found
that the energy barrier to start the amorphous layer at the interface in certain diffu-
sion couples appeared to be very small in the early stage amorphization [1.2], which
indicates a small nucleation barrier for the formation of the amorphous phase [4.6].
And if the layer thickness of pure metals in multilayers is reduced to critical values
ranging from 10 to 20 A, amorphization appears to occur almost spontaneously
[4.7). However, these results are far from conclusive because the scale on which
these observations were made are close to the limit of experimental resolution.

Direct observation of the formation of a homogeneous a,morphou-s phase was
reported during the process of hydrogen absorption induced amorphization [4.8].
This should be anticipated based on the fact that hydrogen diffuses fast enough
to nullify the kinetic constraint to reach the condition (x¢,a.) to initiate a new
amorphous phase and for subsequent growth. However, the presence of crystalline
defects, mainly grain boundaries in the polycrystalline sample, leads to a competing
- mode of amorphization. Thus heterogeneous nucleation of amorphous phases at

these defects still prevails [4.8].

4.3 Order Parameters for Landau Theory

As we mentioned earlier, if an homogeneous metastable crystalline ;;hase trans-
forms polymorphically to an homogeneous amorphous phase, phase equilibrium con-
ditions applied to equilibrium phases are also applicable to the metastable phase
transition. However, if the free energy versus temperature and composition be-

haves as depicted in Fig. 3.2 (a) for a binary solid solution, the CGT would occur

discontinuously. Across the locus (Ty(z) = 0) where

AG(Ty, z) =0, (4.1)
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the derivatives of the free energy with respect to composition, the chemical po-
tentials of the crystalline and amorphous phase are different at this point, that
s,

BTy, 2) # WP (T, ) (42)

and

WP Ty, 2) # WP (T, ). (43)

This becomes the driving force for atomic diffusion. So the equilibrium phase would
be a mixture of both crystalline and amorphous phases or other equilibrium inter-
metallics (y). However, the kinetic constraint will restrict such mass transporta-
tion from occurring at low temperature. So the thermodynamic functions in the
metastable system will be expressed as functions of relevant thermodynamic vari-
ables under constant chemical potential differences. This difference is called chemi-
cal potential affinity [4.9]. So the chemical potential is no longer a thermodynamic
variable to satisfy the equality in Eqs. (4.2) and (4.3) at the transition, rather a
constraint that restricts the system in a particular portion of the phase space.
One of the profound consequencies of this kinetic constraint is to cause local
atomic displacements, or local arrangements and the formation of defects; and most
importantly, to retain, or freeze the atomic configurations. As we discussed earlier,
the nonhomogeneous, random stain field associated with these defects, topological
and nontopological, is retained too. It is this “frozen-in” displacement and strain
field that can give rise to the excessive free energy for the system to transform
to the amorphous phase. If the kinetic constraint weakens, such as by increasing
temperature, the defects begin to move to lower the energy. These defects can

coalesce, cluster or even be annihilated. The strain field therefore becomes weak
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and less influential. In fact, it is this property that makes melting first-order and

the CGT either first-order or continuous depending on system’s temperature.

The long wavelength, random, and “frozen-in” strain not only gives rise to
elastic energy in the system, but can also affect the atomic displacements. These
two effects are crucial for the CGT and thus will be taken into account explicitly
(see next two sectioﬁs). The effects, or the static, random strain on the metastable
system and the CGT vary depending on the solute concentration, atomic size ra-
tio and temperature. The strain-strain correlation function can provi~de both the
strength and correlation length of the static, random strain field. By examining the
variation of elastic constants and symmetry order correlation functions (see next
‘chapter), one determine the effects. For instance, at the critical supersaturation,
Z¢, 0, the static, random strain become strongly correlated, which leads to vanish-
ing elastic constants. So atomic displacements at this critical point are completely
dominated by the strain fluctuations in the system that has no elastic rigidity, thus

the CGT occurs spontaneously.

As we discussed in section 3.3, the atomic displacement, D(r), represents
topological disordering and is a natural order parameter to represent the states of
the system and thus to describe the transition. But a distinction has _to be made
for cases of melting and the CGT. We shall come to this point later. The atomic
displacement which includes dynamic and static contributions, is analogous to spin
vectors in magnetic phase transition, except that it is a vector with a variable length.

Lindemann’s criterion [3.14] is then a simple statement that at a first-order melting

transition, the mean order parameter has a finite jump.

To summarize, the relaxation of microscopic stress resulted from unfavorable
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atomic conﬁguratién of two mismatched atoms leads to random, local, static atomic
displacement, which is a natural order parameter to describe the topological order
to disorder transition. The static, random strain, which results from the presence

of “frozen-in” defects is then the secondary order parameter for the transition.

Now we return to answer the question of why this choice for order parameters
does not suit melting. As we stressed above, the static nature of the local, random,
microscopic displacement and strain is an essential criterion for determining the
validity of using these order parameters. The atomic displacement becomes mean-
ingless at sufficiently high temperature when diffusion starts. Thus one cannot use
it as an order parameter to describe a phase transition where both phases have to be
considered. However, this limitation is no longer applied if diffusion is absent, which
is precisely the situation corresponding to polymorphic melting. Therefore, strictly
speaking, the order parameter approach is only valid when there is no diffusion, or

under constant chemical affinity.

The assumption made for an order parameter approach will break down when
diffusion starts, or the chemical affinity changes. Fast relaxation, represented by
long-range diffusion, can make the local variations of of the atomic displacement
and strain field quickly spread out or smooth out. Except for spontaneous, ho-
mogeneous, dynamic atomic displacements and strain, there is essentially no local,
random, static displacements and strain fields in a hot crystal or a liquid. In fact,
this result has been known ever since molecular dynamics was invented [4.10]. The
displacement field fluctuates with frequencies typical of several hundred femto sec-
onds [4.11], which implies that the strain field is also dynamic in nature. For this

reason, we can conclude that the static atomic displacement and strain field can
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not be used as an 6rder parameter for thermal melting.
It is interesting to point out, based on the above argument, that the glass
formed by rapid quenching from a liquid will not have a strong strain field, instead it
will be stressed, if cooling rate is faster than the stress relaxation time. Such a result

could have some profound consequencies on mechanical and transport properties of

metallic glasses [4.12-13).

4.4 Landau Theory of the CGT’

In the following, we shall present a simple phenomenological model, a Landau
theory to describe the CGT using the order parameters discussed above. Before we
proceed with the theory, we should like to make the following assumptions.

First, the primary order parameter used in this model to describe the first-
order transition is the atomic displacements, D(r). This choice of order parameter
is a natural one to describe the CGT. For convenience, we will use the mean square

atomic displacements (MSAD),
1 &
D= N_Z|<Di >2 |1/2=|R2‘1/2, (4.4)
¢ i=1

where D; is the atomic displacement of the ith atom and N, is the number of
atoms in a finite region. In general, D, is a coarse grained MAD. In the present
model, we use D(r) in the place of D., where r denotes the positions of the coarse
grained displacement fleld. If No = Ngystem, R? is the mean square displacement
(MSD) used in the Lindemann’s criterion. D(r) usually includes two parts, one

from dynamic vibration and another from static atomic displacements, D;(r) =

D;(r)qs + Di(r)s. The MSD is then

R? = R+ R, (4.5)
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where the cross prddu’ct of D4-D, is absent due to randomness of the displacements.

Dynamic displacement is defined as
1 & )
R% = = ; < (ri— <r; >)? >, (4.6)

and static displacement is defined as

N
1
R? = FZ < (ri —19)% >, (4.7)

i=1
where < r; > is the average atomic position and r? is an underlying lattice position.
< .-+ > denotes the time average. At the temperature at which the CGT occurs,
the dynamic part is very small compared to the static part.

The SMSD becomes meaningless in liquid state and a crystal close to melting
where atomic diffusion sets in. In the solid state, when diffusion is absent, it behaves
well on both sides of the crystal to glass transition, although changing the thermal
expansion coefficient at different solute concentrations can lead to a small, but
noticeable increase well before the transition occurs. It can be easily corrected if a
better behaved MSD is desired. Therefore, it can describe first order polymorphic
melting.

We also assume that the random, static strain field is small and has long
wavelength, so it can also be coarse grained. In general, the strain field also includes

the dynamic part due to thermal vibrations of atoms at the temperature,

€ = €static T Edynamic,

but it is relatively small compared with the static one in the case of the CGT.
Second, only scalar order parameters are used, D(r) and €(r), which of course

is an oversimplification, but will make our analysis simpler. However, if atomic
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displacement vector and all the possible components of strain tensor must be con-
sidered, we can treat each eigenvector of the SMAD as an independent primary
- order parameter that can couple to the corresponding component of the strain ten-
sor diagonalized in this eigendisplacement coordinate. Since it is sufficient to have
only one strain order parameter in order to trigger the CGT. Without losing gener-
ality, we shall not treat the mutiple order parameter Landau theory. In the present
model, the primary order parameter is a scalar, the SMAD along the tetragonal
principal shear axis, and therefore the secondary order parameter is the tetragonal
shear strain tensor component. The elastic constant is thus the tetre;gonal shear
elastic constant, C'.

Third, we assume that the normal first-order transition is not symmetry re-
lated, that is, the Landau free energy does not include the cubic term in terms of
the primary order parameter D. This assumption is actually valid based on the
fact that the primary order parameter is a random variable D(r), a random atomic

~ displacement vector, for instance. So its average, or coarse grained value is zero,
/dr < D(r) >=0, (4.8)
but its mean square amplitude is not, _

/ dr < D*(r) >+ 0, (4.9)

where < --- > denotes thermodynamic average and the integral is over the entire
sample.

For the present model, we assume that the strain field is small in its magnitude.
So only the terms of the strain order parameter up to the second order are used in

the Landau theory.
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Therefore, a Landau free energy that describes such a normal, first order
transition can be expanded in a Taylor series in the primary order parameter, D(r),

in the following form,
FIT,, D(r)] = Fo(T, z) + / drf[T, z, D(x)], (4.10)

where f is the Landau free energy density function that depends on the spatially

varying order parameter D(r),
fIT,z,D(r)] =
ao(T,z)D(r)? + b(T,)D(r)* + o(T,2)D(x)° + -+

%d(T, 2)|wDE)| + -, (4.11)

where the inhomogeneity in the order parameter is presented by a gradi-
ent term explicitly,. T and z are temperature and composition respectively.
a(T,z),5T,z),c(T, z) and d(T, ) are expansion coeflicients. For stability reasons,
¢(T, z) is assumed to be always positive, ¢(T,z) > 0. b(T, z) is a decreasing function
with increasing T and z and it becomes negative at polymorphic melting.

To minimize the Landau free energy functional as presented in (4.10), we

performed a functional variation of F' with respect to the order parameter, D(r),
§F = / dréD(r) {Za(T, 2)D(r) + 4b(T, z)D(r)* +
6¢(T,z)D(r)° +---+
d(T,z)76D(r) - 7D(r) + - - ] . (4.12)

Under the boundary condition, §D = 0, minimization of free energy with respect

to order parameter leads to

OF
m = h(r)
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= 24(T,z)D(r) + 45(T, z)D(r)* +
6¢(T,z)D(r)° + -+ —

d(T,z)7*D(x) + -, T (413)

where h(r) is the conjugate field of the order parameter D (it is not necessarily the
force on atoms).

Assuming the conjugate filed is zero, h(r) = 0, and neglecting the fluctuation
term, 6D(r) = 0, at the moment, then (4.13) will leads to a first-order transition
at T = T, and = = o, when the expansion coefficient (T, z) is negative, whereas
a(T, z) is still positive. The order parameter at the polymorphic melting transition
define by Tp(z) is,

T > Tp or x > zo (diffusionless supercooled liquid or glass)

pi=-2 (4.14)

0=
. which has a finite jump at Tg, and
T < Ty or = < z¢ (metastable crystalline solid solution)

Dy = 0. (4.15)

At the transition, the relation a(T,z) = b(T,z)*/4c(T,z), determines the
To(z) line, or the polymorphic phase diagram of a binary system at high temperature
when strain field is not in effect.

Next we shall consider the case where the free energy will then depend not

only on local atomic displacements D(r), but also on the strain.

1
Flelastic = _2'CO(T, 23)6(1‘)2, (416)
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Fig. 4.2 Local Landau free energy for a nonsymmetry driven first-order transition
at high temperature (T' = T} > T., where T, is the critical temperature. z, is the
composition on the polymorphic melting phase boundary Ty(zo). (see Fig. 4.6 for
further explanations).

with the bare, or nonrenormalized elastic constant, Cy, which equals the elastic
constants without the SAMD and the presence of static strain (Dy = 0 and €g¢4¢ic =

0). ]

Another part is the interaction term that couples the primary order parameter,

D, and the second order parameter, the strain field,
Eipt = e(T, z)De(r). (4.17)

Only the linear terms for both order parameters is included. (T, z) is the coupling
parameter. The interaction term reflects the fact that the strain can affect atomic

displacements during “relaxation” or a rearrangement process occurring inside the
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system. It represeﬁts the effects of the defects on the atomic displacements. This
term is invariant because the fluctuations of D can follow the fluctuations of the
strain field. This is true in general for all static displacements. With these two

terms included, the new Landau free energy becomes

fIT,, D, e =a(T,2)D* + KT, c)D* + o(T,2)D° +---+
1 -

1 1 -
e(T,2)eD + 5Co(T,2)e* + - + 59(T,2)|vel’,  (418)

where, for convenience, r is omitted. The last term is the contribution from the
spatial variance of strain field.

Variation of the free energy functional with respect to strain order parameter
6F = /dr [6e(eD + Coe)+ -+ — gvbe- e, (4.19)

will lead to the stress field,

OF

| =0= e(T,z)D + Co(T,z)e + g Ve (4.20)

D

assuming ée(r) = 0 at the boundary.

Let’s next consider a homogeneous case where the conjugate local stress is

-

zero and omitting spatial dependence of strain, Ve = 0, two order parameters are

related by
_ e(T,z)
CO(T7 :E)

€=

D, (4.21)

which implies that atomic displacements are indeed effected by the strain fleld.

Since D and € are “in-phase”, or the displacements follow the strain field, the linear
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term is therefore invariant under inversion symmetry and nonzero when averaged
over random configurations (see (4.8)).
Substituting (4.21) into (4.18) to replace strain, one obtains the renormalized

Landau free energy,

f[T, z,D] =a(T, z)D?* + (T, :I:)D4 + (T, :z;)DG 4t

1 ~ -

with a renormalized expansion coefficient for the quadratic term,

. _ e(T,z)?
a(T,z) = a(T, z) 23Co(T,2)" (4.23)
and a renormalized coefficient for the gradient term,
= e(T, z)?
=d —_— .
d(T,z) =d(T,z) + Co(T, o) (4.24)

Equation (4.22) is the central expression for Landau free energy. From now
on, we will deal with only the local Landau free energy, (4.22), without the order
parameter gradient term present. Without losing generality, the order parameters
are coarse grained over a local region. The inhomogeneous Landau theory with the
gradient term and present will be treated at the end of this section to investigate
how correlation lengths behave close to different transitions. Next, we shall present

the thermodynamic properties derived from the Landau theory.

A. Critical Point, Crossover
The coefficient a(T,z) as defined by (4.23) is reduced by the presence of the
random strain fleld through the strain-displacement interactions. The shift of the

quadratic term coefficient from a(T,z) to a(T,z) changes not only the To(z) line
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Fig. 4.3 Local Landau free energy for a nonsymmetry driven first-order transition
at temperature (T' = T.), (see Fig. 4.6 for further explanation). Random strain
field is included. The instability occurs when @ = 0 and b = 0 where a second order
‘ transition preempts the first-order transition.
but also the nature of the first-order transition at the critical point which we discuss
next (see Fig. 4.3).

The shift of Ty(z) line is determined by .

(T, ) _ HT,z)*

&(T,z) = a(T,z) - 2Co(T,z) ~ 4¢(T,x)

(4.25)

Fig. 4.4 shows the shift of the first-order transition to lower temperature and
lower concentration, (T, zg). The change of the order parameter can be determined

from the following equation

~ (T, z)
-DO - _QC(T’ x) Té z,’ (4.26)

o
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with (7, z) now determined by (4.24). The first-order transition is smeared over a
range Az = (z9 — z{) at the temperature Ty > T (see Fig. 4.4).

The first-order polymorphic melting transition becomes continuous if the
renormalized coefficient can be reduced such that when 8T, z) — 0, &(T,z) — O,
simultaneously. The state point defined by this condition is a critical point,
(T = T.,z = z.) (see Fig. 4.3) where a line of first-order transition becomes termi-
nated in a continuous one. At this point, the order parameter becomes completely
smeared out. The discontinuities of the first-order thermodynamic properties, such

as entropy and chemical potential are also smeared out.

B. Entropy

The entropy change is finite at a first-order polymorphic melting transition,

_ aft af-
_ ot _ Y . S
o osres (-2

b
= —5-ar + 0(¥"), (4.27)

where ft, f =, ST and S~ are renormalized free energies, entropies of metastable
liquid and crystalline phases respectively. ar is the partial derivative of @ with
respect to T. As the critical point is approached, (T, ) — 0, then entropy vanishes.

So there is no latent heat associated with the transition.

C. Chemical Potential
The chemical potential change, or chemical affinity, at each composition can
also be obtained by differentiating the Landau free energy with respect to compo-

sition, then

_ 8ft o8f-
Apl =pt—pT =
(T.2) oz Oz
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T=T1> T

Order Parameter, D

(c)
T=To < T¢

X { Xeg X2

Composition, x

Fig. 4.4 Order parameter vs. solute composition z at different temperatures. (a)
The shift of 29 at T = T1 > T, is éz; (b) this smearing effect suppresses the first-
order transition completely when (T¢, z.) is approached; (c) at lower te;nperature,

the CGT is described by line OC defined in Fig. 4.6.

— b . 2
= oz + O(F), (4.28)

where @, = 8a/0z. The chemical potential difference, or the chemical affinity, is
finite for the first-order transition, but becomes zero at the critical point. So the

potential for driving atoms to diffuse vanishes.
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D. Elastic Constants
Next we shall devote our attention to investigate the behavior of elastic con-
stant close to the critical point. Cp is the bare, or unnormalized elastic constant
when random, static displacement and strain field are absent.
An elastic constant in general can be obtained from the second derivative of

the Landau free energy with respect to strain,

82F
C = <7 (4.29)

where F' = F[D(e), €] is used. In order to obtain the equilibrium elastic constant,
we need to minimize the Landau free energy with respect to the primary order
parameter, from which the relation between strain e and the order parameter D

can be obtained.

)
5—1F) =0, (4.30)
which gives
eD[e] = — [2aD +4bD? + 6cD5} } (4.31)
From the above relation we obtain
OD[¢ . e _ - ,
3¢ 2a+ 126D + 30cDt  X© (4.31)

where xo is the unnormalized primary order parameter susceptibility defined as

§2F\ 1

Therefore, an elastic constant at T and z is

C(T,z) = Co(T, z) — e(T, z)* xo(T, ). (4.33)
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At the critical poinf, the unnormalized susceptibility equals

C
(Tcazc) € -

when @ = 0 as given by equation (4.23) and D = 0 at the critical point, so the
elastic constant becomes zero. Fig. 4.5 shows the elastic constant C(T,z) vs.

solute composition z as predicted using eq. (4.33).

E. Correlation Lengths and Fluctuations ]

So far, we have been dealing with only a homogeneous Landau theory with
order parameters that are coarse grained. Therefore, this treatment can give us
only local information about a phase transition of a homogeneous system. For
instance, smearing of the first order transition, the shift of transition temperature
and composition, are occurring only in a finite region defined by the correlation
length of the disordered phase. In order to gain insight of how inhomogeneity
and fluctuations in both order parameters affect the transition, we shall treat the
inhomogeneous Landau theory given in (4.22) to obtain correlation lengths of order
parameters at the topological order and disorder transition. Inhomogeneous order

parameter can be written as
D(r) = Do + (r), (4.35)

where Dy is the coarse grained, homogeneous order parameter, independent of po-
sitions r and ¢(r) is fluctuation of order parameter. We also assume that the stress
associated with the random, static strain field is fully relaxed (the relation (4.21)
holds).
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Fig. 4.5 Elastic constants versus composition at higher temperature T =11 > T,
and at the critical temperature T.. The finite jump at T' > T, is due to a finite

jump of xo for a first-order transition (a). The elastic constant becomes zero at T

where xo = Co/e? (b).
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To simplify our analysis, we will confine ourselves only to the region close
to the critical point. By doing so, we can make the assumption that the order
- parameter fluctuations, ¢(r), are relatively small and thus can be linearized.

At T > T, the transition is shifted to lower temperature and composition,
but is still first-order, and the homogeneous order parameter is given by (4.26) and
the expansion coefficients by (4.25). If the system is isotropic, r is replaced by 7.

Keeping only the linear terms in ¢(r), we get
D(r)? ~ D? + 2Dg(r), - (4.36)

D(r)® ~ D + 3Dgo(r), (4.37)

etc..

Variation of the nonuniform Landau free energy (4.22) gives
OF = / d*r [5D(r) (2&(T, 2)D(r) + 4b(T,z)D(r)* +
6c(T,:v)D(r)5> + -+ d(T,z)6D(r) - vD(r)|. (4.38)

Integrating the last term by parts and using boundary condition 6D(r) = 0,

(4.38) becomes
§F = / d*réD(r) [2&(1", z)D(r) + 4b(T, z)D(r)* +
6¢(T,2)D(r)® + - -- — d(T,z)7*D(r)]. (4.39)

The conjugate field equals

h(r) = 6]‘;% = 2aD(r) + 4bD(r)® — d 7 D(r). (4.40)
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Substitute (4.‘36), (4.37) and (4.25) in to (4.40), we obtain the following equa-

tion for the order parameter fluctuations,

T<T,
Tolr) - Ze(r) = —3h(r), (4.41)
and
T>T,
Velr) ~ ) = = h(r), (4.42)

The above equation can be solved easily using Green’s functions, with A(r)

replaced by hoé(r). Then

ho 1 _,
o(r) = Z;—d:;e I, (4.43)
where for
T<T.
cz 1/2
= [2—&-] , (4.44)
and for
T>T,
od 1 :
€ Z[W} } (4.45)

For a first-order transition, the correlation length is finite. This in fact can be
seen from (4.45). Both b and & are finite so is the correlation length. However, the
correlation lengths become divergent when the critical point is approached, where
both b and @ become zero simultaneously. It implies that as the CGT is approached
at T < T. by increasing composition z, the disorder fluctuations become stronger

and spread farther. It is also interesting to note that the coupling to a random
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strain field leads to a larger d = d + ¢2/C2d, thus resulting in a longer correlation

length even for the first-order transition.

F. Phase Diagrams

From the above discussion and results, we can roughly estimate the phase di-
agram of the metastable polymorphic transition using the Landau theory presented
above. In order to obtain a detailed phase diagram, specific assumptions for the
expansion coefficients have to be made in order to proceed with the analysis. The
choice of these parameters varys depending on different material parameters in the
supercooled regime of a liquid, or superheated regime of a crystal. Unfortunately
they are not widely available. Therefore, we only discuss some important features
of the metastable phase diagram for polymorphic melting.

The condition @(7T,z) = 0 determines the phase diagram for the continuous

transition at T' < T.. The slope of this phase boundary is thus

da ~
?Z: —_os %= (4.46)
Oz 08~ G’ )
continuous 3T T

where the subscripts denote partial derivatives. Whereas the phase boundary of the
polymorphic melting at T > T, can be determined similarly using relation (4.25)

obtained at the normalized first-order transition. Then

~:c a z §bb:z:
or S i e L (447)
arc+ act — gbbT

ax discontinuous

At the critical point, both a(T,z) and b(T,z) approach zero, so (4.47) reduces to
(4.46). Therefore, crossover from a first-order to a continuous one is smooth and

continuous.
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From egs. (4.‘46) and (4.47) we can get a glimpse of the phase digram, (T, z),
if the functional forms of the Landau expansion coefficients are explicitly known.
‘But a complication arises in determining the derivative (4.47) when the transition
becomes continuous, because the derivative is proportional to the ratio between
the cherﬁical potential difference (4.28) and entropy change (4.27), to the order of
O(b?), which approach zero simultaneously at T.. So (4.47) is not determined at
the (T¢, z¢).

Using the condition of continuity and egs. (4.27) and (4.28), at T' < T, we

can write :
or _ 8 B D
Oz

, (4.48)

continuous

ar — AS  ASe |75
where higher order derivatives of a(T,z) are used (L’Hospital’s rule) as the critical
point is approached. In fact, (4.45) suggests that a precise phase diagram for the
crystal to glass transition in the vicinity of T, depends on the rate of change of
chemical potential and entropy with respect to change in composition.

Apg is related to the second derivative of Landau free energy by

_ B*AF

A - ’
I‘I’I T 6$2

(4.49)

which is always positive definite (see Gibbs stability criterion, equation (3.3)), ex-
cept for a system that exhibits spinodal decomposition. Such chemically unstable
situation involves two competing processes, chemical spinodal mixing and the CGT.
We will not discuss this case at the moment. For chemically stable systems, the
phase digram of a continuous CGT in such a system is solely determined by AS,,

or —Apr which is obtained using Maxwell relations. Then (4.48) becomes

o
oz = Apr’

(4.50)
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in the vicinity of (T¢, zc).
This relation reflects the importance of the kinetic constraint on the binary
system and on the metastable phase transition. As we discussed before, the poly-
morphic transition is characterized by a nonzero chemical potential Ay. Without
it, the transition would proceed with equilibrium phase transitions, most likely,
phase separation. In this case, Ay = 0 and the 8T/0z becomes zero, and thus
the phase transition degenerates to normal phase coexistence. From (4.49), it can
be seen that the nonzero chemical potential, Ay, and its change with respect to
both temperature and composition, Aur and Ay, ultimately determine the phase
diagram in the vicinity of the critical point.
According to the manner of how Aur changes, the CGT can take three pos-
sible turns at T < T, as illustrated in Fig. 4.6. For cases where Aur is negative
or zero, the phase diagram is characterized by

Z—f - 00, (4.51)
at the critical point. For the former, the phase boundary bends back for T' < T, and
z < z. (line OA in Fig. 4.6), which corresponds to a situation of re-entrant melting
[4.14] where a glass, or supercooled liquid can form upon cooling. Whereas for the
latter, To(z) becomes a vertical line at z = z. (line OB in Fig. 4.6). If the entropy
increases with increasing temperature, or Aur is positive, the phase boundary will
extend over to higher concentrations (line OC or OD in Fig. 4.6). But its detailed
shape is again determined by higher order derivatives of Ay with respect to T' and
z.

Finally, we ask the question: does T, correspond to the glass transition tem-

perature? In order to answer this question, one needs to have a theory that includes
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liquids and glasses, or supercooled liquids. Unfortunately the Landau theory pre-
sented above includes only crystalline solids and a supercooled, diffusionless liquid
or glasses, so a direct answer cannot be provided. 3

However, one can get an answer based on the assumption that an amdrphous
phase formed by CGT from a crystal is the same as that formed from a supercooled
liquid. So on the metastable phase diagram shown in Fig. 3.1 and Fig. 4.6, a Ty(x)
has to coincide with T,(z) where three phases, a diffusionless liquid, a crystal and a
glass, coexist. Since the ideal T, is determined under the condition AS = 0, it will
coincide with the ideal glass transition temperature, Tk, or Kauzmann £emperature
if liquid to glass transition occurs as predicted by Kauzmann’s entropy crisis [3.22].

At this temperature, the entropy difference between a supercooled liquid and a glass

is zero, as it is between a metastable crystal and a glass.
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Fig. 4.6 Metastable phase diagram for the binary solid solution undergoing the
CGT. Note the differences compared with Fig. 3.2. (T¢, z.) is the critical point.
Solid line at higher temperature defines the original polymorphic melting transition
and the dotted line is polymorphic melting corrected by including random strain
field. Tk is Kauzmann’s temperature, or ideal glass transition temperature, which is
a lower bound on the glass transition temperature obtained from rapid solidification

experiments.
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Chapter 5

Crystal to Glass Transition

and Melting in Two Dimensions

5.1 Introductrion :

In chapter 3, the crystal to glass transition in a clean, bulk and homogeneous
binary solid solution was investigated. Structural and thermodynamic properties
obtained from molecular dynamics simulations suggest that the transition can be
described by thermodynamics and can be linked to an instability represented by
diminishing shear elastic constants, entropy and density. Such a phenomenon was
interpreted using a Landau theory to bridge the gap between microscopic entities,
the atomic displacement field and strain field, and the topological transition. This
Landau theory also provides information at the possible critical CGT where com-
puter simulations have not yielded precise results. As shown by these results, the
random, static strain field caused by defects is retained due to slow kinetics of the re-
laxation of chemical (polymorphic constraint) potential on microscopic scales. The
inhomogeneous atomic displacements represented primarily by the random strain
fields can effectively smear out the polymorphic transition. When the static, ran-
dom strain reaches the critical fluctuation, the long-range coupling, which gives rise
to cooperative behavior of atoms, becomes a short-range one and as a results, the
system loses the elastic shear rigidity. Therefore, the atoms, or groups of atoms
within this short correlation length, can be driven and displaced randomly, thus
leading to a continuous polymorphic melting: the CGT.

The purpose of this chapter is to provide the direct microscopic evidence that
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supports this scenario and to link the phenomenon to microscopic structural defects
that are ultimately responsible for the topological disordering. Structures, atomic
~configurations, and especially, a variety of defects are among the features that we are
mostly interested in. Topological disordering is reflected in the behavior of both the
translational and the orientational symmetry of the system. From subtle changes
in symmetry, the role of defects, in particular, those of a topological nature, can
be clearly comprehended. Atomic configuration evolution as well as the behavior
of these defects are of particular importance to reveal the microscopic mechanisms

for the CGT which we proposed above.

As we mentioned, computational effort can be greatly reduced in two-
dimensional systems. Therefore, we can afford to maké simulations with larger
systems and run longer times. Another distinct feature of a two-dimensional system
which its three-dimensional counterpart lacks, is its visualizability. With appropri-
ate mapping techniques, a variety of atomic defects, microstructures and atomic con-
- figurations can be directly observed in two-dimensional systems, whereas it would

be very difficult in the three-dimensional case.

Dynamic properties can also be easily obtained in two-dimensional systems
using molecular dynamics. From dynamic as well as static correlation functions of
different physical quantities, we can obtain the characteristic spatial and temporal

scales for configurational, defect, and kinetic changes of the system undergoing the

CGT.

Melting theory is far more advanced in two dimensions than in three dimen-
sions. This provides an opportunity to directly compare it with the CGT, even in

microscopic details. The unique mechanism of disordering crystallinity at low tem-
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perature such as in the CGT, leads to a possibility of realizing the so called defect
unbinding mechanism of melting [5.1], which is the only existing analytical model
for melting so far, but has been the subject of much controversy. Through compar-

ison with our simulation results, we expect to gain insight for the understanding of

melting and the CGT.

5.2 Computational Method

The molecular dynamics simulation technique used here is essentially the same
as we presented in 2.3, except for a few modifications which we shall discuss next.
First, we used a Lennard-Jones potential that has a smooth cutoff achieved by using

a switch function [5.2],
Oa Oo
8(rij) = —deap [(22)2 = (Z22)°| S(ryy), (5.1)
1] %]

where a and 8 denote two types of atoms, A and B. S(r;;) is the switch function

which is defined as

1, r<mn
2 —
S(ry =4 1- Lz Cren=tn 0y cp o,
03 T2 T

where 7. and r; are cutoff distance and the distance at which S(r)_ joins ¢(r)
smoothly (Fig. 5.1). This modification of potential could guarantee the minimum
of errors caused by cutoffs during long simulations.

Second, different sizes of a binary solid solution were tried in order to deter-
mine the finite size effect. We did find that there is a minimum size below which
the random solution does not look random, even though solute atoms on the lattice
are still dispersed using a random number generator. The reason is simple. Be-

cause a true random distribution can be realized only when a sample is large. A
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Fig. 5.1 Smoothed Lennard-Jones Potential. The dashed line is the original LJ
potential, the broken line is the switch function and the solid line is the smoothed
LJ potential. The cutoff distance is 2.45¢0 for interactions between A-A, A-B and

B-B atoms.

small sample size cannot guarantee this. This finite size effect is entirely different
from the one due to thermal fluctuations close to critical transitions. To reduce
the size effects on randomness, in addition to use larger sample size, we normally
prepare several samples with different initial solute distributions. The final results
are obtained by averaging over all these samples (2.29) which have different initial

configurations. This has been found to be satisfactory, even quite close to the CGT.

A normal MD simulation usually consists of 10° ~ 10% MD steps (one MD
step is approximately 1.1 x 10~ second, or 11 femto seconds, for the LJ parameters

of crystalline argon) to equilibrate the system, and followed by another 10° ~ 107
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steps, which is roughly 50 nanoseconds, to obtain thermodynamic averages. The
simulation time need to obtain convergent thermodynamic averages has been found
to increase when the system gets close to the transition. So in the vicinity of the
transition, we normally increase both the equilibrating time and the time to obtain
averages. However, at a critical solute concentration very close to the CGT, the

time and size needed to achieve a satisfactory convergence appear diverging.

1.0
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O 1 2 3 4 5 6 7 8 9 1.

Solute Concentration, Xg
Fig. 5.2 Phase diagram for two-dimensional binary substitutional solid solution
with hexagonal crystal structure at 7 = 0.20 and P = 0.00. The atomic size
ratio a = 0.75. The so-called hexatic phase is characterized by quasi-long range
orientational order and short-range translational order. Its microstructure suggests

that it is composed of “crystalline-like” clusters and glassy regions. (see text for

details).
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As in the three-dimensional case, we performed the simulation under constant
temperature and pressure. The atomic sizes and concentration are varied. A phase
diagram of the metastable phases found for two-dimensional binary solid solutions
is quantitatively similar to that of the three-dimensional one (Fig. 5.2). In the

following sections, we shall present detailed results obtained from these simulations.

5.3 Atomic Configuration and Structural Change

The lattice structure used in the two-dimensional binary solid solution is
hexagonal. It is the only close packed structure in two dimensions. There is a dis-
tinct difference between two-dimensional and three-dimensional packings in terms of
the relation between their local and global packing, or symmetry. Local symmetry
of a three-dimensional crystal prefers either tetrahedral or icosahedral symmetry.
This local symmetry, usually adopted by forming clusters of the local symmetry,
is energetically favored [5.3-4], but does not lead to long-range crystalline trans-
lational symmetry. The preferred local symmetry in two dimensions is triangular.
This naturally leads to the closed packed hexagonal symmetry for crystalline phases.
Because of this difference, glass formability in a two-dimensional monoatomic sys-
tem is extremely difficult. However, such a preferred local triangular symmetry can
be broken by introduction of different types of atoms, as in solid solutions, which
have different atomic sizes. So the isomorphism of local and global symmetry can
be eliminated.

Similarly as in three dimensions, a random binary array of two different atoms
with different atomic sizes is generated by randomly dispersing solute atoms onto
hexagonal lattice sites originally occupied by solvent atoms. The crystal to glass

transition therefore will crucially depend on the atomic size difference and the solute
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concentration.

The rﬁelting temperature for the two-dimensional pure LJ hexagonal solid
with interatomic interaction given by (5.1) was found to be about 0.41 ~ 0.43
(in reduced LJ units) and the glass transition temperature is around 0.25 ~ 0.28,
which is close to one half of the melting temperature. Our simulation is performed
at temperatures below the glass transition temperature. The phase diagram shown
in Fig. 5.2 is for a binary array at T = 0.20. At such a low temperature, long-
range diffusion is absent (see details in section 5.5), so the polymorphic constraint is
strictly maintained. Solute atoms will not move far from the lattice sites where they
were dispersed initially. The atomic size ratio between the smaller solute atom and
the bigger solvent atoms was varied from 1.0 to 0.70. It was found that a critical
atomic size ratio, a., is needed to induce the CGT in two dimensions. Its value is
relatively smaller, or the size mismatch is larger, than that of its three-dimensional
counterpart. For example, a, = 0.75 at T' = 0.20 for two-dimensional binary array,
while it is only 0.83 for the three-dimensional fcc solid solution, both of which are
at temperature approximately equal to 0.57;,. The critical concentrations of solute
atoms at this temperatures is roughly the same, that is, 19 ~ 25 at.% for both

cases.

These results seem to contradict the general prediction made for two-
dimensional crystalline solids [5.5, 5.6, 5.7] that they are unstable thermodynami-
cally, because thermal fluctuations can effectively destroy long-range translational
symmetry. However, the spatial scales at which a crystalline solid loses its transla-
tional symmetry was shown to be on the order of In(N) [5.8], where N is the total

number of unit cells in a two-dimensional crystal. In order to have a mean square
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displacement comparable to lattice spacing, which usually is a few angstroms at
melting (as in Lindemann’s criterion [3.14]), the area of the two-dimensional crys-

talline solid has to reach the order of ~ 1027 cm? [5.9]. Therefore, two-dimensional
crystalline solids do exist, but their translational symmetry is no longer a constant
over distances; rather their correlation functions decay algebraically [5.5, 5.6, 5.7].
For glass formability, it is the total number of degrees of freedom of the atoms
that is more important. In three dimensions, atoms have more freedom to exe-
cute displacements from their equilibrium lattice positions than in two dimensions.

Therefore, it is easier to form a glass in three dimensions.

Another factor effecting the glass formability is related to the iéomorphism of
local and long-range symmetry in two dimensions as we discussed early. In order
to break the local triangular packing, the atomic size mismatch of the two different
atoms must be larger than that in three dimensions where such an effort is essentially

unnecessary [5.3].

Fig. 5.3 (a)-(e) show the radial distribution functions of the two dimensional
binary array made of two types of atoms with atomic size ratio @ = 0.75. The
RDF’s have the same behavior as those observed in three dimensions: namely, the
broadening of each crystalline peak and a decrease of intensities as soh;te concen-
trations increase. At roughly 20 at.% solute concentration, the RDF’s transformed

to that of a rapidly quenched glass. The peaks beyond the second and third ones

are essentially smeared out and become flat.

As the solute concentration increases, small but noticeable peaks appear at the
position of the total RDF’s that corresponds to those of the first peak of the partial

RDF’s of A-B and B-B atoms. This is caused essentially by the lack of mobilities
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of afoms at such a low temperature. Upon heating slightly, they will disappear.
They do not have any effect on the local chemical and structural order. Indeed, one
can get a quantitative result by examining the probability distribution of nearest
neighbor atoms as shown in Fig. 5.4 (a) and (b). As shown in Fig. 5.4 (a), the
mean of the distribution of solute atoms B around a solvent A atom always agrees
with the average nearest neighbor numbers for the given solute concentration. De-
viations from this usually result in either clustering (the mean is less than the solute
composition, or more solvent atoms around a solvent atom) or short-range order
(the mean is greater than the solute composition, or more solute atoms around a

solvent atom). So the distribution of solute atoms is macroscopically homogeneous.

The partial RDF’s (Fig. 5.3(b)-(e)) contain more subtle details of structural
change. Even when the system becomes amorphous (z > 0.199), the partial RDF’s
still show a well resolved double maximum at the second peak. But the peaks at
distances beyond the second nearest neighbors become more broadened and ap-
" proach unity as the solute concentration increases further. The spatial scale of
the ordered regions is approximately close to the third or fourth nearest neighbor
distance, even in the amorphous phase. This finding is also supported by more

detailed, quantitative results from various correlation functions (see 5.4)_.

Detailed atomic configurations at each stage of the structural evolution can
be seen in Figs. 5.5. Systematic changes of atomic configurations at different
solute concentrations are apparent. We shall briefly summarize several outstanding
features observed from these configuration changes. These features support the
arguments we put forward in chapter 4 for construction of the Landau theory. In the

present two-dimensional model, we can obtain direct evidence by visual inspection.
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Fig. 5.3 (a) The total radial distribution functions for the two-dimensional solid

solutions at 7' = 0.20, P = 0.0 and o = 0.75.
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Fig. 5.3 (b) Partial radial distribution functions of solvent-solvent (A-A) atoms

for the two-dimensional solid solution at T' = 0.20, P = 0.0 and a = 0.75.
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Fig. 5.3 (c¢) Partial radial distribution functions of solvent-solute (A-B) atoms for

the two-dimensional solid solution at 7' = 0.20, P = 0.0 and « = 0.75.
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the two-dimensional solid solution at 7' = 0.20, P = 0.0 and « = 0.75.
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Detailed, quantitaﬁive results will be given in the next section.
(1) Topological disordering, represented by atomic displacements as defined in Egs.
(4.4 -7), is caused by local relaxation of size-mismatched atoms. The displacements

occur gradually and have small amplitudes.

(2) Such displacements are very localized before the CGT occurs. Once they form,
they will be limited to the regions, usually within the nearest neighbor shells, and

will not spread substantially as the time goes on.

(3) The sizes of disordered regions largely depend on the average solute composition.
But even for a fixed composition, it varies from a few atomic spacings to relatively
large clusters of hundred atoms. Such disordered regions have different geometrical

shapes, but most frequently they adapt the shape resembling networks of rivers.

(4) Ordered regions are separated by these disordered networks and are preserved
even in the amorphous phase which form at very high solute concentrations. Their
sizes and relative orientations will change gradually. These ”crystalline-like” cluster
regions will eventually decrease in number and lose their orientational correlations

in the amorphous phase.
(5) There are more solute atoms in the disordered regions.

(6) The “interface” between the ordered and disordered regions is not clearly distin-
guishable, especially in the samples with compositions close to that of the CGT. In

fact, the more solute atoms are added, the more blurred these boundaries become.

At low solute concentrations, these disordered regions lock like “grain” bound-
aries that separate ordered regions, but when more solute atoms are added, these
regions get bigger. Very close to the CGT and in the amorphous phase, these micro-

configurations can no longer be defined as “imperfections” such as grain boundaries.
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Fig. 5.5(continued) Snapshots of equilibrium atomic configurations.
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but instead, they are an essential part of the landscape. Note such boundaries are
not sharp, especially at the later stages of disordering. As the solute concentra-
tion increases, more and more disordered regions appear and at the same time the
boundaries of the disordered/ordered regions become~more diffuse. Finally when
disordered regions begin to percolate throughout the entire sample, the CGT oc-
curs. It is interesting to note that the entire process proceeds in a smooth and
gradual manner, which is in striking similarity to that of a system undergoing a
continuous phase transition [5.10).

These intriguing features can be analyzed in more quantitative wa;ys to reveal
more detailed information about the microscopic structural changes. In particular,
the role that defects play in the topological order to disorder transition can be
perceived more cleaﬂy with the help of such analysis. These results provide useful
information on how and why the local relaxation and disordering occurs around the

mismatched atoms. This will be the task of several of the following sections.

5.4 Defects, Translational and Orientational Symmetry

In chapter 4, we mentioned that it is the local atomic relaxation from me-
chanically unstable configurations caused by two different atomic sizes that directly
results in the topological order to disorder transition. The local atomic configura-
tional rearrangement involves the coordination number change. They can lead to
formation of topological defects. These topological defects can be characterized by
topological defect configurations using the technique discussed in chapter 2. Thus
the analysis of defects and its effect on long-range translational and orientational
symmetry can provide us with detailed microscopic information on how the CGT

occurs. In this section we shall present the configurations of various topological
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defects, and discuss their relations with the symmetry changes.

As pointed out by Nelson et al. [5.11], a crystalline phase is characterized
by not only the long-range translational symmetry, but also orientational symme-
try. These two different aspects of long-range order in crystalline phases are closely
related. Disruption of translational symmetry in general will not disturb the ori-
entational symmetry. If long-range orientational symmetry is broken, so is the
translational symmetry. Such an argument had motivated Nelson et al. (5.11] to
propose a new phase that is characterized by long-range orientational symmetry and
short-range translational symmetry. They called it “hexatic phase” adopted since
it is formed from a hexagonal lattice. For a two-dimensional solid, these symmetries
can be quantitatively expressed by translational ;,nd orientational order correlation
functions defined in (2.3-8). From the behavior of these correlation functions with
distance, information about the degree of disordering, spatial scale of the correla-
tions of the ordered phase and relationship between disordering and defects can be
analyzed quantitatively.

A perfect two-dimensional crystalline solid has quasi-long-range translational

symmetry. Its correlation function decays algebraically [5.11],

Ca(r) =< pg(r)ps(0) >~ r7, ’ (5.2)

where 7 is the exponent for the power-law decaying function. 1/4 < 9(T,,) < 1/3 at
the melting temperature Tp,. From the relation (2.25), the Bragg diffraction peak
of the shortest reciprocal vector G of such a two-dimensional crystal is no longer
a delta function, but exhibits a power-law decay. The orientational symmetry, on
the other hand, is long-ranged. Its correlation function, as defined in (2.27), is a

constant.



132

Long-range translational and rotational symmetry defined by (2.23) and (2.26)
and their correlation functions defined by (2.24) and (2.27), are extremely sensitive
to crystalline defects, especially to those of a topological nature that can effectively
disrupt the long-range symmetry [5.11]. Point defects can destroy neither long-
range translational nor orientational symmetry, unless they form certain types of
extended complexities such as dislocations. Topological defects, such as dislocations,
disclinations and grain boundaries, can disrupt both kinds of long-range symmetry
effectively, but the sensitivity of each type of long-range order varies with different

defects.

In two dimensions, an edge dislocation is defined as a defect represented by a
missing or an extra row of atoms (see 2.6 for details). The elastic energy associated
with the dislocation disorder is long-ranged [2.21, 3.1], so two dislocations with
opposite Burgers vectors are usually paired up to reduce this energy. At low tem-
perature, dislocation pairs are the most frequently encountered topological defects.
Other types of topological defects such as disclinations can also disrupt translational
symmetry by rotating different parts of a crystalline phase with respect to others,
but because the formation energy is much higher than that of dislocations, they

seldom occur and do not affect crystallinity at relatively low temperature.

As the disordering progresses, defect density will increase and the defect con-
figuration will change too. Ignoring defect-defect interactions, one would expect
that the dislocation-pairs become unstable against thermal agitation. If the acti-
vation energy is higher than the binding energy, the pairs eventually break into
two singlets. Once this occurs, the long-range translational order will be destroyed

completely, but the long-range orientational order will be intact. This phase is thus
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characterized by long-range orientational order and short-range translational order.
It is termed the “hexatic” phase. The Burgers vector associated with each disloca-
tion can cause a phase shift in the translational order parameter across the extra
or missing atomic plane. In general the Burgers vector is not an integral number
of the lattice spacings, so the phase shift will lead to a decrease of the translational
order correlation.

In order to have a topologically disordered phase with neither long-range trans-
lational symmetry nor long-range orientational symmetry, further disordering is
needed. If the excitation energy is large, the single dislocations in the intermediate
“hexatic” phase can be broken down further into the single disclinations which form
the dislocation. Once again this can occur only when there are no other competing
processes, or no defect interactions present.

In fact, this simple argument led Kosterlitz and Thouless, [5.12] and later,
Nelson and Halperin [5.11], to propose a theory of melting in two dimensions. They
. assume that two-dimensional melting is caused by dislocation-pair unbinding into
single dislocations at melting, T,,, where long-range translational order is destroyed,
but orientational order is left intact. This will result in the intermediate phase, the
hexatic phase. At a higher temperature, T;(> Tn), single disclinations will be
generated from these single dislocations, thus destroying the orientational order.
Only at this second stage (T > T;) does the system becomes a true isotropic liquid.

At the intermediate stage (T, < T < T;) where the translational order is
short-range, but the orientational order is quasi-long-range. The orientational order

correlation function behaves in a power-law fashion,

Com(r) =< $m(r)thm(0) >~ 7%, (5.3)
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where £ is the exp‘onent for the power-law decay of Cr(r). £(T;) = 1/4 at T; when
single disclinations form. As we learned in 2.6, a disclination is the defect that
consists of a group of extra, or missing, atoms that form a 60° angle wedge. Across
such the defect, the nearest neighbor atomic bond will be rotated. The disclination
is primarily responsible for destruction of the long-range orientational order, but it
can also reduce the long-range translational order. When the single disclinations
proliferate, the orientational order will be destroyed. Thus in a true liquid state, or

an amorphous state, both correlation functions decay exponentially.

In fact, interactions between these topological defects cannot be neglected.
As we show later, they can be effective even with the very moderate density of
defects. They must be taken into consideration in the topological order to disorder
transition. The collective motion and correlation between the elementary defects
(dislocations, disclinations, dislocation pairs, and disclination pairs, etc.) can play

a dominant role in disrupting both long range order.

One type of the collective defect is the grain boundary-like network. Relative
crystalline orientations are different in adjacent “crystalline-like” regions across such
a boundary. A grain boundary-like, or collective defect, can not only destroy trans-
lational order but also orientational order (see Fig. 2.3). The degree of _disordering
across a grain boundary depends on the density and the orientations of the disloca-
tion arrays that make the boundary. In most cases, the collective defects are more
energetically favored than the elementary defects, thus making them extremely im-

portant in destabilization of crystalline order.

There is an important difference between collective defects and a true grain

boundary. A grain boundary defined as a crystalline imperfection is character-
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ized as a localized defect with relatively low density. However, when it becomes
delocalized and occupies a large portion of the total volume or area comparable
to that of the crystalline regions, it can no longer be regarded simply as a grain
boundary. In addition, the collective defects are not connected below certain solute
concentrations, while a grain boundary is always connected, forming a closed loop
in two dimensions. By no means, therefore, can the collective defects be regarded
as grain boundaries. They are microscopic defects characterized by chemical (solute
concentration) as well as configurational (atomic displacement) inhomogeneities on

microscopic scales.

Nevertheless, the role elementary and collective defects play in destruction
of the long-range symmetry in the melting transition are equally important in our
analysis of the CGT because the defects, though not generated from thermal ex-
citations, are responsible for the transition [5.12]. Because of the low temperature
constraint, one could observe the different stages of the transition and the different
behaviors of symmetry correlations, and the different defect configurations. In the
remainder of this section, we shall correlate the behavior of the order correlation

functions with defects present in the two-dimensional binary solid solutions.

Fig. 5.6 and 5.7 show the translational and the orientational order correla-
tion functions of the binary solid solution at different solute concentrations. It can
be seen clearly that in the pure LJ hexagonal phase, where z = 0, the transla-
tional order correlation function decays algebraically. The correlation length is thus
quasi-infinitely long. For comparison, see Fig. 5.7 where the orientational correla-
tion function for the pure LJ crystalline phase is a constant. At this low tempera-

ture, there are no imperfections present in this system. The algebraic decay of the
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translational order correlation function is simply caused by thermal vibration.

Further increase of the solute concentration results in two different behav-
iors of the correlation functions (see Fig. 5.6 (b)). In the composition range,
0.0 < z < 0.199, the translational order correlation function decays algebraically
with distance and the correlation length over which the atoms still maintains their
translational order is quasi-long ranged. At z > 0.199, the atoms have lost their
long-range translational correlation. The correlation length of the solid solutions at
this composition range is approximately on the scale of the third and fourth nearest
neighbor distance, which agrees quite well with the crystalline sizes presented in

Fig. 5.5.

The orientational order correlation function behaves rather differently (see
Fig. 5.7(b)). At the composition range, 0.0 < z < 0.199, it decays algebraically
and is quasi-long-range. At higher compositions (0.199 < z < 0.30) where the
translational order correlation function becomes short ranged, it still maintain a
persistent, nonzero value at distance. This behavior of the orientational correlation
function persists until the solute composition reaches z > 0.30. Beyond this point,
the long-range orientational correlation becomes short-ranged with a correlation
length of the same scale as that of the translational correlations in the “amorphous

phase.

We can observe this behavior also from the local, average translational order
parameter (TOP) and orientational order parameter (OOP). They are defined as

follows.

A"
1 -
TOP = & E pa(ri), (5.4)



R

1 | 1 | { ]

® @ b N i N

[=] (=) o (=] [ n.v

UONHOUN} UOIIBIBII00 18PI0 UOE[SURI L
T |
~
.
|-|l
1 | | 1

Q @ Q < ™ <
- (=) o o Q (=]

UOIOLN} UOHEBI10D 13PI0 [BUOREjSURIL

10 12 14 16

8

12

i0

ric

1 1 T T
wn
~
el -
- o
1
L x -
- — -
i 1 H | 1
@ @ 3, o ° ]
=) =3 S o =1 ]
UONOUN} UONE|SLI0D J3PIO [eUOHE|SURI |
T T I T
o _
<
!
i —
H
E3
_— .
1 | 1 1 i
et @ - N ° b
o =} ] 5 o g

UOHOUNJ UONE[BII0D 18PIO |BUOHE|SUBLL

10 12 14 16

8

8 10 12 14 16

6

ric

rlgo

x = 0.30

| | I 1 I 1
< ) o~ v o - ~
=] o o = o =3 S
UOIOUN} UOI|91I0D JAPIO [BUONEBISURIL
T T T
@
3
- s -
S
]
B x —
- —— .
1 1 I I
= z o o B
o = o S g

UOH2UN} UOIIE|BII0D JBPIQ) [BUOHEISURI |,

6

1

8 10 12 1t4

€

g

/

r/'ec

ional solid

1mens

d

Fig. 5.6 (a) Translational order correlation functions of the two

solutions.



138

1.0 I I I | | I i
: : & X = 0.125
0.8 L $4,., . —

Translational Order Correlation Functions

0.4 N TS RN N N R

r/ o

Fig. 5.6 (b) Translational order correlation functions of the crystalline phase

(dashed line), intermediate phase (solid line) and amorphous phase (thick line).



139

]

x =0.125

==

10 12 14 1

i
8

| ! 1 1
bt © < o
o [ =] -3

UOIIUN] UOHE{BHOD [EUOHEIUSLO puog

A s
2
o

x =090

=
12

10’

L =

U

-

1 i | 1
e @« @ 3 ™
o o @ ©o @ ©

UONOUN} UONEIS1I0D 1BPIO [BUOIEIUBNO puoh

0.0

w
T T T T 7 -
A
- .
D
o awN
. S o
u
* do
B -
<]
- - — ®
=z
- - ©
- i B d
= R L
1 ! 1 ! I °
o Q (e] o o —N
LOIIOUN} UCHEIB4I09 |BUONEIUBLO puog
-
T T T T ¥ T T -
1«
- @
(39
py e
B -
[}
* do
[~ Ll
o
- }— e
=
L. -1 ©
- -1 <
- .Mﬂn.l“ —A N
1 1 i L1 1 °
© w ¥ o & - 9 7
c © © e © o o 9

UOJjOUN) LONE|S1I02 [RUOjEIUSLO puod

ric

ric

w
¥ I j -
<t
- -
8 ~
. 9 o
W
L x =)
2
- [1e]
L @
- <
— o~
1 L I °
™ o~ - =)
o o =] o
UoHOUN) UGHEJ81I00 13PI0 feuolieluaLo puogd
T
o
= @
o
W
- >
1 ] [
® ] - =)
o o s o

LOIOUN} UOIRIBII0D 13pI0 [BUCHRIUDIC pug

/o

r/ie

Fig. 5.7 (a) Bond orientational order correlation functions of the two-dimensional

solid solutions.



140

X = 0.125

1.0

uoloUN} UOIJB|1I0D JBPIo jeuoijejusuio puog

r/o

Fig. 5.7 (b) Bond orientational order correlation functions of the crystalline phase

(dashed line), intermediate phase (solid line) and amorphous phase (thick line).



141

and
1 N
OOP = — Z (i), (5.5)

where ps is defined by Eq. (2.24). ¥(r;) is the averaged bond orientational order
parameter associated with the zth atom over its nearest neighbor atoms,

Nﬂ.ﬂ.
1

U(r) = =— > ¥m(rs), (5.6)
Npn 4=

where ¢, is given by Eq. (2.27) and N,, is the number of its nearest neighbor
atoms. Fig. 5.8 shows the averaged TOP and OOP defined above. The average
TOP exhibits an abrupt decrease at 0.148 < z < 0.199 and almost approaches zero
at z = 0.199 where amorphization was observed to occur. The OOP drops in the
same fashion as that of. the TOP at 0.148 < z < 0.199, but begins leveling off at
z > 0.199. The finite value of the OQOP in 0.199 < = < 0.30 defines an intermediate
region resembling that of the hexatic phase [5.11].

However, defect configurations presented in Fig. 5.9 for the two-dimensional
binary solid solutions in the intermediate region do not reveal any significant in-
crease in the number of single dislocations or disclinations. Instead density of the
dislocation pairs increases rapidly. As their density increases, the collective defects
become entangled as more solute atoms are added. As Fig. 5.9 shows, they start
forming networks at higher solute concentrations. The collective behavior of dislo-
cation pairs results directly from the mutual interactions between the pairs to lower
the elastic energy associated with the defects [5.13]. Obviously the collective de-
fects formed from the dislocation pairs preempt the formation of single dislocations,
leading to the absence of unbinding of the dislocation pairs.

The peculiar morphology of the collective defects can be explained by the
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anisotropic stress field of an edge dislocation. Fig. 5.10 (Top) shows the force field
between two parallel edge dislocations with parallel Burgers vectors. The equilib-
rium positions of the dislocation configuration are shown in Fig. 5.10 (Bottom).
By forming a dislocation pair, a dislocation can reduced the anisotropic stress field
at large distance. If more dislocations are present, they can be attractéd to align

on top of the pair by the residual force, thus forming the network structure.

It should be pointed out that the clustered dislocation pairs are caused by only
local atomic arrangements, because the low temperature constraint does not permit
the large-scale relaxation. They are essentially “frozen”. On the contrary, the net-
works formed during thermal melting result from large scale atomic rearrangement

assisted by long-range diffusion motion and large amplitude thermal vibration.
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plot the solvent atoms as circles and solute atoms as squares. Atoms with 4 nearest
neighbors are represented as triangles, 5 nearest neighbors as cross and 7 nearest

Fig. 5.9 Snapshots of atomic configurations of defects (dislocations and disclina-
tions) of the two-dimensional solid solutions. In order to have a better view, we

neighbors as plus signs.
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Fig. 5.9 (continued) Snapshots of atomic configurations of defects (dislocations

and disclinations) of the two-dimensional solid solutions.
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Snapshots of atomic configurations of defects (dislocations

)

and disclinations) of the two-dimensional solid solutions.

Fig. 5.9 (continued
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Fig. 5.10 Top: Forces between two parallel edge dislocations with parallel Burgers
vectors. Unit of force is in Gb% /2n(1—v)y, where G, b, v are shear modulus, Burgers
vector and Poisson’s ratio respectively. Solid line is for like dislocations and broken
line for unlike ones. Bottom: Stable positions two edge dislocations of the same

sign and opposite sign (from Rdf. 5.15).

The total defect density is presented in Fig. 5.11, which sums up the total
number of atoms that are topological defects. The majority of defects were found
to have 5 and 7 nearest neighbors. We have never found 8 nearest neighbor defects.
A few 4 nearest neighbor defects were found in the metastable crystalline phases at
compositions very close to the CGT and in amorphous phases.

The defect density increases slowly, almost linearly at the crystalline phase.

It starts to increase at around z = 0.148 and becomes saturated around z > 0.199
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where the amorphous phase was observed to form. It is very intersting to note that
the fashion of how the defect densities vary as the CGT and melting are approached.
The defect density in two-dimensional LJ solids increases only slightly in the case
of melting, usually from zero to 10 at. % close to melting. Then it increases
abruptly at melting [5.14, 4.11]. The saturation defect density for the solid solution
undergoing the CGT can reach 35 ~ 39 at.%, while that for melting is only 10.0
at.% [5.22, 4.11].

Although the behavior of the short-range translational order and the quasi-
long-range orientational order in the intermediate stage of the CGT coincides with
that predicted by the two-dimensional melting theory, the underlying microscopic

defects that are responsible for this behavior are totally different. The dislocation
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pairs do not unbind into isolated dislocations, instead, they tend to connect to each
other. Such networks formed by the dislocation pairs can effectively disrupt both
translational and orientational symmetry. The atomic configurations shown in Figs.
5.5 clearly show the patches of crystalline regions that are rotated. We conclude
that it is the total number of defects and the microscopic configurations that are
primarily responsible for the CGT as well as melting.

The non-dislocation unbinding mechanism can be tested also by examining the
dislocation pair coupling constant {2.21, 3.14, 5.11}, or Kosterlitz-Thouless constant

[5.12], which is expressed as a combination of two elastic constants, u = C'=Cy

and A = Cqa,

_ 4d® p(p+ )

= T AN’ (57)

where a is the lattice parameter and 7' is the temperature of the system. If the
dislocation pair unbinding occurs, K will approach the universal value 167 as pre-
dicted by the theory from renormalization group approach {5.11]. Instead it remains
above this value (Fig. 5.12) when the long-range translational order disappears at
z = 0.199 and begins leveling off at z > 0.199. In fact, we can attribute the large
decrease of the dislocation coupling constant to the screening effects caused by in-
creasing populations of dislocation pairs. Exactly as argued by Nelson [5.11], it is
the new dislocation pairs generated by addition of solute atoms that can “block” or
shield the elastic stress field between two existing dislocation pairs, thus reducing
their couplings.

The shape that these collective defects adopted is not strictly linear. They
form networks with finite, diffusive width. These networks remain isolated before

the CGT, but begin to percolate through the system at/after the CGT. They mean-
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der through the entire sample and as a result, they partition the crystal into pieces
each of which still retains the crystalline feature. The size of each “crystalline-
like” region separated by the networks is determined by the correlation length of
the translational order correlation function. The sizes and orientations of these
“crystalline-like” clusters vary significantly. As the solute concentration increases,
they become smaller and more misaligned. The network density as well as its thick-

ness also increase with the increase of the solute concentration.

Apparently this type of special microstructure formed by a collection of dis-
locations is directly responsible for destroying the long range translational and ori-

entational symmetries. Within the networks of the diffuse collective defects, the
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atoms completely lack translational and orientational order. But in general the
orientations of the nearest neighbor atomic bond in the adjacent crystalline clusters
separated by the disordered networks vary relatively slowly compared with that of
the translational order. This explains the persistent behavior of the orientational

order.

As the solute concentration increases further to z = 0.30, both orientational
correlation functions start decaying exponentially. The corresponding correlation
lengths reduce to only the third or fourth nearest neighbor distances. The detailed
atomic configurations in Fig. 5.5 and Fig. 5.9 show that the dislocation networks
become truly diffusive and only a small portions of the areas in the sample are
still occupied by “crystalline-like” clusters. The correlation lengths of both transla-
tional and orientational order correlation functions actually coincide with the size
of these clusters. Interestingly, even at this stage, we seldom observe any isolated
dislocations or disclinations (see Fig. 5.9). The complete destruction of the quasi-
long-range orientational order is caused by proliferation of the defect networks, not
by spontaneous generation of single dislocations as predicted by the two-dimensional

melting theory [5.11, 5.12].

The results presented above further confirm the role of collective defects in
topological transitions such as melting and the CGT. The same phenomenon has
been observed for melting transition at the much higher temperature than that for
the CGT. Naturally, one does not expect that the clustering of defects can occur at
such a low temperature, because thermal activation needed for the dislocation-pairs
to migrate to form collective defects are not sufficient. Therefore, one might expect

to have a better chance to see defect unbinding. Instead, one still observes the same
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collective behavior of defects at this temperature. It suggests that the collective

defects are mainly responsible for the topological order to disorder transition.

In addition, we have never observed any point defects (such as vacancy) or any
stacking fault in the crystalline solid solution at any compositions. The temperature
is too low to create any thermal vacancies. Also because the configurations of point
defects (such as Frankel pairs) and line defects in two dimensions are degenerate,

they cannot be distinguished (see 2.6 for detailed discussions).

High density of stacking faults were reported [5.16] in a binary hard sphere
solid solutions. In this experiment, two types of steel ball bearings of different sizes
were used to simulate glass formation induced by defects. In addition to the same
dislocations and dislocation networks found in the LJ binary solid solution, they
found & large number of stacking faults. In a separate work [5.17] a similar result
was reported in a binary array made of two types of hard spheres with different
sizes [5.18] that was generated using Bennett’s random packing model [5.18]. The
stacking faults were found in a large quantity. They can retain the configurations
even after a great number of violent shakings to simulate thermal annealing [5.16].
Also it was observed that the hard spheres sitting on the stacking faults possess
local fourfold symmetry [5.16, 5.17], which can be observed clearly on computer

generated rigid binary arrays [5.17].

The results that we obtained from the MD simulation on the binary solid
solution with much softer LJ potential suggest that the stacking faults found in
the hard sphere binary arrays are resulted from a combined effect by insufficient
relaxation and extremely repulsive potential of the hard spheres. A stacking fault is

mechanically unstable, normally it is not present in equilibrium crystalline phases.
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A soft potential and a sufficiently long “annealing” can eliminate the artifact.
The stacking fault does not disturb long-range orientational symmetry, but
it can disrupt the translational order very effectively. In the hard sphere exper-
iments, the translational order was indeed found to decrease drastically, but the

orientational order was found to decay extremely slowly [5.16-17].

5.5 Atomic Displacements and Random Static Strain Fields

There are two salient features of the low temperature solid solutions undergo-
ing the CGT as we already mentioned in last two chapters. The first is thie formation
of the topological defects caused by local relaxation of the atoms with different sizes.
The second is the retention of the configuration. These results have profound ef-
fects on the crystal to glass transition (Landau theory, chapter 4), thermodynamic
and dynamic properties (sections 5.4, 5.5), and the formation of microstructures of
metastable solid solutions and amorphous phase.

In principle, a topological order to disorder transition can be described exactly
by the atomic displacements, u;, which are deviations of each atom from its equilib-
rium position in a topologically ordered phase. The only drawback to this approach
is the number of degrees of freedom (dN numbers of them for a d-dimensional sys-
tem with N atoms) of the displacement vectors. The quantity cannot be handled
easily if it is used as an order parameter (it is equivalent to a Heisenberg spin
but with a wariable length). In the Landau theory (chapter 4), we used the coarse
grained displacement field to simplify this issue. To simplify the matter further,
one can even use an averaged atomic displacement (the Lindemann’s criterion, see
3.3).

Fig. 5.13 (a) shows the static mean displacements of the binary arrays versus
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the solute concentration. We notice the qualitative differences in the mean displace-
ments between melting and the CGT (Fig. 5.13 (b)). In the case of thermal melting,
it increases slowly and linearly up to melting temperature, but then abruptly jumps
to a large value at melting temperature. In the CGT, the mean square displacement
increases slowly in the crystalline side and shows a gradual rise at z > 0.125 and
becomes almost saturated at > 0.20 where the long-range translational order be-
gins to disappear. Such the different characteristic of MSAD exhibited during the
melting and the CGT suggests the profound difference between them. The similar

abrupt change in defect density has been mentioned early [5.14].

The strain fields associated with the defects in the solid solution are closely
related to the atomic displacement field caused by the particular atomic configura-
tions of these defects [3.2]. In general, one cannot separate it from the rest of the
displacements, such as those caused by thermal vibrations. In addition, since it is
a tensor, visualization is not possible. Fig. 5.14 provides the atomic displacement
" fields for the binary solid solutions at different compositions corresponding to a

crystalline phase and an amorphous phase.

Fig. 5.14 demonstrates some startling features of the atomic displacement fleld
of the solid solution. One observes a large number of “displacement vertices”. The
displacements occur at the places where defects are present. The displacements take
place in a circular fashion around an area that is free of defects. The dislocations
as well as the dislocation networks generate the same type of displacements. The
displacements associated with the defect networks are larger and more organized.
As the solute concentration increases, more “displacement vertices” are generated

and the distance between them becomes smaller. The CGT occurs when these
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“displacement vertices” become highly populated and collide with each other. The
displacement vectors between the colliding vertices are “frustrated”, or misaligned,

thus forming the amorphous structure.

The displacement field, especially in the crystalline phases, are representative
of the strain field. One can see that the strain field is mainly generated by the
defects, not only by dislocations and dislocation pairs, but also by collective defects.
Most striking is the result of the almost similar strain fields generated by all those

defects.

The displacement fields look “frozen” or static. They show little change of its
configuration during the entire time of the simulation. This is in sharp contrast to
that of a hot crystal or liquid where the configuration and the atomic displacement
fields fluctuate quickly with a typical frequency comparable to the Debye frequency
and the static strain dissipates quickly [5.9, 5.14]. This static nature of the displace-
ment field in the solid solution is also confirmed by absence of long-range diffusion

~ (section 5.6).

It 1s interesting to see the effects of these results to other related properties.
First, the density of a metastable crystalline solid solution is microscopically inho-
mogeneous, but the amplitude of the density wave is small. The truly disordered
regions have lower density, whereas the “crystalline-like” clusters have higher den-
sity. But the overall density of the system barely shows any significant change.
Second, the solute atoms are also microscopically inhomogeneous. They are more
populated in the dislocation networks than inside the “crystalline-like” clusters.
But the scale of this distribution is small. These results could have significant im-

pact on our understanding of mechanical properties of metallic glasses, nucleation
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and growth of crystalline phases from the glass phase and other properties that

sensitively depend on the microstructures.

5.6 Thermodynamic Properties

We have demonstrated the thermodynamic aspects of the CGT in three-
dimensional binary solid solutions that undergo the transition. However, we were
limited by the finite size and time used in our simulations on this system. In two-

dimensional system, we can obtain these results by using large samples and longer

simulation times.
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Fig. 5.15 (a) Molar density versus solute composition at 7' = 0.20.

The molar density and enthalpy change with increase of solute concentration

are shown in Fig. 5.15 and 5.16. The density change (Fig. 5.15(a)) shows three
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Fig. 5.15 (b) Atomic Volume distribution. From the top to the bottom: z =
0.0,0.05,0.101,0.125,0.148,0.175,0.199, 0.25, 0.3.
distinctive parts that can be seen from the different slopes in these regions. The
first region is at 0.0 < z < 0.05, the second at 0.05 < z < 0.199 and the third
at z > 0.199. From the results presented in previous sections, we know that the
CGT occurs around z = 0.199. The first region in the dilute limit z < 0.05 likely
corresponds to the equilibrium substitutional solid solution. The almost linear
fashion shown in the density change in all three regions is striking,.

The atomic area distribution was obtained using the Radical Plane method
(Fig. 5.15 (b)). The area distribution of the large solvent atom is a Gaussian at
the dilute solute concentration, but becomes slightly asymmetric at the high solute

concentration. Most interesting is the solute atom area distribution. It shows a
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gradual shift from the mean at 0.82 for the crystalline phases at the dilute solute
concentrations to the final Gaussian-like distribution for the amorphous phases with
a mean at 0.71. At the CGT (z = 0.199), the solute atom exhibits a very broad
distribution spreading over the entire area of both the crystalline phase and the
amorphous phase. It appears that the solute atoms are liberated and free of being

in both the crystalline phase and the amorphous phase.
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Fig. 5.16 Molar enthalpy versus solute composition at T' = 0.20.

As for the CGT in three dimensions, the density change at the CGT at T' = 0.2
from the crystalline phase to amorphous phase at £ ~ 0.199 is also very small. The
variations are almost within the errors introduced by thermodynamic averaging. In

fact, in order to make sure that the system at z = 0.199 is sufficiently equilibrated,
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we performed several simulations with different sample sizes and extremely long
equilibrating time (8 x 10® MD steps). We found no substantial change of the

densities for these different runs.

The molar enthalpy also behaves similarly to that observed in the three-
dimensional binary solid solutions. It increases rapidly at the dilute end of the
solute concentration énd begins curving down slightly before the CGT occurs. The
change of the enthalpy at the CGT, by extrapolating the enthalpies from both the
crystalline and the amorphous sides, is almost zero. In addition, no hysteresis was
observed. The enthalpy appears to increase continuously from the crystalline phase
to the amorphous phase. The system spontaneously transforms to amorphous, or a

“hexatic”-like phase, which has no long-range translational symmetry.

Interestingly we observed some quantitative changes at higher temperature.
Fig. 5.17 and Fig. 5.18 are the density and molar enthalpy at T' = 0.25 which
is very close to the glass transition temperature. By extrapolating the density
and enthalpy from both sides, one can observe slight jumps at the CGT, which
corresponds to solute composition at ¢ = 0.15. These results, together with those
presented above, suggest that the CGT indeed becomes more continuous as the
temperature decreases, as predicted by the Landau theory. In the next section, one
will find that the elastic properties at both temperatures show strikingly similar

behavior.

The plateau region of the enthalpy on the amorphous side is directly related
to the openness, or uncertainty of the amorphous structure. Unlike the crystalline
phase where even a local distortion can lead to a large energy change, as seen at

the dilute end of the binary solid solution, the amorphous phase can accommodate
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Fig. 5.17 Molar density versus solute composition at T' = 0.25.

the local “imperfection” easily. This insensitivity of bulk properties to disordering
in the amorphous phase is one of the interesting characteristics of the amorphous

phase.

5.7 Elastic Properties

The crystal to glass transition is a structural phase transition, thus the sus-
ceptibility of the structure to any perturbation, such as temperature, composition,
stress, etc., is directly related to the elastic constants (see 3.3). A thermodynamic
phase transition such as the CGT is defined by the condition, AG(T,z) = 0, at
the transition. The transition is characterized by different behaviors of the elas-

tic constant, which strongly depends on the polymorphic condition and material
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Fig. 5.18 Molar enthalpy versus solute composition at T = 0.25.
properties (chapter 4).

A pure mechanical instability occurs when an elastic constant vanishes,
whereas the free energies of the starting and end phases bear no relationships.
Fracture, cavitation and any other structural transformation with a characteristic
time much shorter than the intrinsic atomic relaxation time with which thermody-
namic (metal) equilibrium, or cooperative motions of atoms must be achieved, are
related to mechanical instability.

The elastic constants of the solute solutions are shown in Fig. 5.19. Since
the hexagonal lattice is isotropic, there are only two independent elastic constants,
one shear and another bulk. The elastic anisotropy constant, C'/Cuq4, is unity in

an ideal isotropic media, where C' = (C1; — Ci2)/2. From Fig. 5.20, one could
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see that the shear elastic constant decreases sharply in the two-dimensional solid
solution. It plunges to almost 95% from that of a pure hexagonal crystalline solid
at the transition and then levels off at a finite value at the amorphous side. Once

again, we observe the slow response of the amorphous phase to the changing solute

concentrations.
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Fig. 5.19 Isothermal elastic constants versus solute composition. Ci;,Ci2 and
C44 are elastic constants which are related to the Lamé coefficients, A = C;2 and

it = Cy4. B is the isothermal bulk modulus.

As suggested by the Landau theory, the elastic shear constant is determined
by three variables, the homogeneous or non-normalized shear constant po when no

static displacement occurs, the strain-displacement coupling constant e, and the
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non-normalized sﬁsceptibility X0, 4 = po — €2x. po decreases usually decreases
with both temperature and composition. If alloying occurs, which corresponds to
the case where the LJ parameters, €44,€4B, and epp, take different values, ¢ may
increase. In the case of the LJ solid solution where interaction between solvent and
solute atoms are equal, we expect po to decrease. Extrapolating y to the dilute
limit of the solute concentration, one can obtain pg. Fig. 5.20 shows an almost
linear decay of p in the crystalline phase. It begins to curve down at z > 0.13. One

expects the static, random strain to be in effect at/above this composition.

Although extremely small, the shear elastic constant does not go to zero, as
does the Kosterlitz-Thouless coupling constant, K. We tested the finite size effect
on the elastic constants at the concentration of z = 0.199. We did observe a
decreasing u as the system size is increased, but the convergence became very slow.

More extensive simulations are required in the future to resolve this issue.

It is interesting to see the similar behavior of the elastic constants at a higher
" temperature. Fig. 5.21 shows the shear elastic constants at T' = 0.25. The largest

drop of the shear elastic constant occurs at X = 0.16, where the CG'T was observed.

Because there is only one shear elastic constant, one can unambiguously de-
termine its behavior as the crystalline solid becomes progressively disordered. The
shear elastic constant decreases monotonously in the same way as we observed for

C' in the three-dimensional case, but the magnitude of the softening is much larger.

The bulk modulus Bt (Fig. 5.22), which equals Br = (¢ + ), does not show
substantial variations through the crystalline and amorphous phase. It shows a

smooth decrease at the CGT (Fig. 5.23).

It is very interesting to notice the effect of the elastic anisotropy on the CGT.
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Fig. 5.20 Isothermal shear elastic constants versus solute composition at T' = 0.20.

Most crystalline materials used to synthesize amorphous phases are not elastically
isotropic, although most of them have Bravais lattices with high symmetry. So there
are several shear elastic constants associated with the different shear deformation
modes. On the other hand, an amorphous phase has only one shear elastic con-
stant, because it is isotropic. It is important therefore to distinguish which shear
elastic constant is the one that triggers the CGT and which one becomes softening
merely because of the development of the elastic anisotropy at the transition from
an anisotropic structure to another. A two-dimensional hexagonal binary array
is the simplest example with only one shear elastic constant, so no ambiguity is

involved in identification of the softest shear mode.
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Fig. 5.21 Isothermal shear elastic constants versus solute composition at T' = 0.25.
Note the softening of the shear modulus due to increasing temperature (see Fig.

2.20).

5.8 Dynamic Properties

So far we have focused our attention on static, or time-independent properties
of the LJ solid solutions in order to study thermodynamic aspects of the CGT.
Dynamic properties, on the other hand, are also extremely useful for the under-
standing of kinetic aspects of the solid solution and the crystal to glass transition.
For example, from time-dependent fluctuations of strains and radial distribution
functions, one can gain insight of the temporal scale of how static the atomic dis-
placements are; from time-dependent mean square displacements one can obtain

diffusion constants; and from results of the velocity autocorrelation function and
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composition at T' = 0.20.

its Fourier transform, which is the generalized vibrational density of states, one can
perceive not only long-wave, low-frequency acoustic properties such as the elastic
constants, but also localizations of lattice vibrations at high fregencies. In this the-
sis, we present only those properties that are most relevant to our understanding of
the CGT.

The time dependence of the atomic displacements have been discussed in sec-
tion 5.5, we shall not repeat them here. In the remainder of this section, we shall
devote our attention to the following properties, time dependent mean square dis-
placements (TMSD), velocity autocorrelation functions (VCF), and derived proper-

ties that can be directly obtained from these properties, such as diffusion constants,
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generalized phonon density of states and elastic properties.

A. Mean Square Displacement, Diffusion Constants

Figs. 5.23 show the time dependent mean square displacements of the binary
solid solutions at different solute concentrations. According to the Einstein relation
(2.19), the slope of the TMSD at long time limit gives twice the diffusion constants
in two dimensions. Fig. 5.23 shows that all of the TMSD’s for different solute
compositions have a flat tail at relatively long time limit, indicating the absence
of long-range diffusions in the system. One of the differences for these different
systems is the slope at the earlier time caused by dynamic relaxation of atoms. The
saturated values for the TMSD at long-time limit are also different. The dynamic
relaxation at the short time becomes long and less sharp as the solute concentration
increases, indicating the increasingly difficult for the system to reach equilibrium as
the system become more metastable. The saturated mean square displacements at
long time limit increase with the increase of the solute composition.

The intrinsic diffusivity for each type of atoms in the solid solution can be
obtained from the slopes of the TMSD’s of each atoms. The TMSD defined on the
right-hand side of equation (2.19) can be separated into two parts for each type of

atoms,

1 N=Na+Np

<BrelP>=% > <kt -rO)F >
l‘VA'

Np
_ %[Z <In®) = w(OF > + Y < In®) ~ (0 >

=z4 <|6ra(®)|® > +zp < |ér5(t)]? >, (5.

Ot
-1
A

where z4 and 23 = 1 — 74 are the solvent and solute concentrations respectively.
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Fig. 5.23 Total time dependent mean square displacements. Diffusion constants
are proportional to the slopes of the curve at long-time limit. The intrinsic diffusion
constants of each types of atoms, D 4 and Dp can be obtained from the slopes of the
partial TMSD’s of each atom. Solid line: z = 0.0, dotted line: = = 0.101, broken
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The partial mean square displacement is defined as

Na
< |ora(t)]? >= Al, Z < |rei(t) = r:(0)? >, (5.8)

where a denotes two types of atoms, A or B. The intrinsic diffusion constant for
each type of atom in the solid solution can therefore be obtained by the Einstein

relation (2.19) in two dimensions,

o1 \ o
Do = lim = < [fra()l” > . (5.9)

4
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Fig. 5.23 (continued) TMSD for the solvent atom.

As shown by the partial TMSD’s in Fig 5.24, the small atom always has a
larger mean square displacement compared with the large atom. Also the intrinsic
diffusivity of the smaller atom is larger too (not shown here). These results also
indicate that the atoms, most of which are the solute atoms, in the disordered
networks are more mobile than those inside the “crystalline-like” cluster, because
solute atoms are usually situated in these regions. Such an observation is also

confirmed by the velocity autocorrelation functions (2.20) for the two types of atoms.

B. Velocity Autocorrelation Functions

Fig. 5.24 (a) show the VCF’s for the binary arrays. The VCI'’s are quantita-

tively different for the crystalline and amorphous phase. These features include the



171

. | [ ]

0.14 —

012 -]

0.10 —

A
= .
& 0.081+ —
= e D EEIEE T -
= ~ em TS e -
= 0.06 P
.--"*':'.-v)""'?"""-:::i'-"‘:-.-u--*“ e I o RO |
0.04f St -
fS e JRid
i -~
i, T
i 7 -’
0.02 r—_:-:'.;l e -]
Y ! I |
0.00
0 500 1000 1500 2000
Time, t

Fig. 5.23 (continued) TMSD for the solute atom.

“collision” time at which the velocity autocorrelation function changes the sign, the
magnitude of the oscillations, and the characteristic decaying time of the oscillations

to approach zero.

The “collision” time is about a picosecond for the crystalline phase. It in-
creases gradually as more solute atoms are added, while the depths of the first
oscillation become shallower. At the solute concentration z > 0.199, where the

CGT was observed to occur, the VCF look much like that of a liquid.

More detailed information can be obtained from the partial VCF’s of the solute
and solvent atoms. From Fig. 5.24 (b) and (c), one can see that the solute atoms

behave like a liquid, its characteristic vibration frequency, as indicated by the large
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“collision” time, is extremely low. In fact, this result can be seen more clearly later
from the generalized phonon density of states.

C. Genenralized Phonon Density of States

Fourier transformation of the VCF’s gives the generalized vibrational density

of states (DOS). The DOS obtained is no longer limited to low temperatures where
the harmonic approximation is used to facilitate computations. Fig. 5.25 is the
total DOS’s and partial DOS’s for the binary solid solutions at different solute

concentrations. The DOS, and the phonon dispersion relations along high symmetry
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Fig. 5.24 (b) Partial VCF’s for solvent atoms.

directions of the perfect two-dimensional LJ hexagonal crystal calculated using the

harmonic approximation is also shown in Fig. 5.26 for comparison.

We shall summarize briefly some intersting properties that the DOS’s reveal.
First, the slopes at low frequency part of the DOS increases with the increase of the
solute concentration. This part of the DOS is directly related to the slopes of the
phonon dispersion curves, DOS(w) x 1/|v/4w|, where w(q) is the phonon dispersions

and q is the phonon wave vector. The increase of the slopes of the DOS’s at the
low frequency indicates softening of the transverse phonon dispersions, which has
the lowest excitation energy, and thus softening of the shear elastic constant (elastic

constants can be obtained from the the slopes of the phonon dispersion curves at
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Fig. 5.24 (c¢) Partial VCF’s for solute atoms.

the long-wage limit, ¢ — 0). In fact, the entire phonon spectra are shifted to lower
frequency as the crystalline phase becomes more disordered. Second, a nonzero DOS
at zero frequency, DOS(w = 0), is directly proportional to the diffusion constants
(average diffusion constants) For all systems simulated, the DOS(w = 0) are close
to zero. The small amount of increases of the DOS at zero frequency as shown
in Fig. 5.26 suggests that there is no substantial diffusion occurring in the binary
solid solution. Third, the DOS is largely determined by the behaviors of the solvent
atoms at low solute concentrations, but dominated by that of the solute atom at
higher concentrations. Fourth, at such a low temperature, we did not observe any

sharp resonant mode at low frequencies caused by the small solute atoms. We



175

300 l | T T
250 |- X = 0.0 -
200} _
150 -

100~ -

Generalized DOS, D{w)

] | | |
0 10 20 30 40x10°

Frequency, @

500 - T T T
)
1
! \
400+ : A X = 0.125 |
1]

300+ ." 1 ._.l,.. -

200+ .,' :.,.,__..‘:': \.\ '-.,..-.-.'... _

Generalized DOS, D(w)

100+ " . 3 |

..
emt
oy
-

Frequency, @
Fig. 5.25 The generalized phonon vibrational density of states for the two-
dimensional solid solutions. The partial DOS’s for the solvent (dotted line) and

the solute atoms (dot-dashed line) are also shown.



176

Fig. 5.25 (continued)
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also did not see any localized mode at high frequencies resulting from the strong

topological disorder.
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Chapter 6

Conclusion

6.1 Thermodynamics and Microscopic Mechanism for the CGT

The crystal to glass transition was investigated in a model LJ binary random
substitution solid solution. The transition was observed to occur at a critical so-
lute concentration and a solute/solvent atomic size ratio. A critical temperature
exists below which the transition occurs with extremely small elastic shear rigidity,
vanishing latent heat, and density. The microscopic origin of this phenomenon was
sought and found to be related to the topological defects which are created by the
solute/solvent atomic size difference and frozen randomly by the low temperature
constraint. At the critical concentration and the solute/solvent atomic size ratio, the
critical fluctuation of the static, random strain field becomes diverging, leading to
the vanishing elastic shear modulus and the percolating disordered networks. This
proposal of the microscopic mechanism agrees well with the existing experimental

results of the irradiation induced amorphization [3.39, 6.1].

6.2 Comparison with Melting

From the results obtained from studying the crystal to glass transition, we
could draw certain conclusions about necessary conditions required to induce the
topological order to disorder transition. These criteria can be extended to thermal
melting transition, which is a high temperature analogue of the crystal to glass

transition.

A. Topological Defects
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Topological defects are solely responsible for both transitions. In fact, because
they play such a crucial role, the topological transitions can be considered as “defect-
induced”. The defects can be created in different ways, thermal vibration, solute

alloying, irradiation, mechanical deformation, etc..

B. Density and Morphology of Topological Defects

It was found that the defect density and the defect morphology play equally
important role in inducing the topological order to disorder transitions. Kinetic con-
straints, commonly implemented by varying temperature, can alter the transition
profoundly. If the topological defects can be kept randomly distributed without
large scale clustering, at a critical density the transition can be continuous and
spontaneously. Otherwise, if the defects are allowed to coalesce and form extended
aggregates, (correspondingly, the critical density is reduced), the required critical
strain fluctuation will be suppressed or even eliminated, therefore, the transition
will likely proceed with formation and growth of these disordered aggregates, or
phases resulting from these disordered clusters.

Melting occurs at high temperature. The large thermal excitation makes it
possible for atoms to seek equilibrium configurations, thus reducing the defect den-
sity and forming defect clusters. Melting, in two or three dimensions, are therefore,
always first order. The CGT, on the other hand, could be either first order or
continuous, depending on the kinetic constraints imposed on the crystalline phase
undergoing the transition.

It is therefore, not surprising to find that the continuous melting in two di-
mensions has been observed only in systems of which the defects have extremely

large chemical potentials to resist clustering. Such the systems include the dislo-
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cation vector model [6.2] and the Coulomb gas [6.3]. Whether or not melting in
two-dimensional etomic solids is continuous has been much of debate [5.1, 5,9], how-
ever, evidences, mainly from computer simulations using larger samples and longer
simulation times, suggest that it is a first order [5.1, 5.9, 6.4, 6.5].

The conclusion drawn from the CGT inspired us to study a binary solid solu-
tion with an extremely large solute-solute repulsion. The large chemical potential
of the solute atoms could keep the defects, which were found mainly associated with
the solute atoms, to remain separated, thus offering a chance to see the dislocation

unbinding mechanism [5.11] for the CGT in the atomic system.
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