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Abstract

A finite-difference numerical method for geometrical shock dynamics has been de-
veloped, based on the analogy between the equations and the supersonic potential
equation. The method has proven to be a valuable tool for analyzing the complex
nonlinear processes that occur in shock focusing. The approximate shock dynamics
theory is able to capture the effects of initial Mach number and aperture angle on
the focal region. The numerical results duplicate the strong, moderate, and weak
shock behaviors observed in experiments, with good agreement for focal pressure and
triple-point path. The primary error arises due to the inability of shock dynamics
to allow regular reflection along the centerline. Adequate resolution of the focal
region proves to be particularly important to properly judge the accuracy of the shock
dynamics solution. The appropriate shock dynamics equations are developed for the
case of shock propagation into a nonuniform media for a general equation of state with
nonuniform freestream velocity. The modification of the numerical method to this
more general problem is straightforward. The complete shock dynamics equations
are derived for both perfect gas and water using the modified Tait equation. The
results for propagation of a planar shock over cylindrical gas inhomogeneities shows
excellent agreement with experimental results.

The propagation of sonic booms through the atmosphere provides examples of
all major types of weak shock behavior. The extensive seismic network in Southern
California, consisting of over two hundred sites covering over 50,000 square kilometers,
is used to map primary and secondary sonic boom carpets. The results show sonic
boom ground exposure under the real atmosphere is much larger than previously

expected.
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Chapter 1 Introduction

The focusing of shock waves produces localized high pressures in the focal region, and
the shock emerges from the focus with the front geometry fundamentally changed.
Understanding the mechanisms of focusing is critical because converging fronts occur
frequently, indeed whenever thé front becomes concave forward such as by passing
through nonuniform media or reflection from curved surfaces. The high pressures
localized near the focus may be beneficial, as in lithotripsy, or detrimental, as in
superbooms from aircraft sonic booms. The change in shock geometry downstream
of the focus has significant implications for shock stability, sonic boom propagation,
and sonoluminescence.

One application of shock wave focusing is extracorporeal shock wave lithotripsy
(ESWL). In this treatment for urinary tract stones, weak converging shock waves
are generated externally and shaped to focus within the patient’s body at the stone.
Outside the focal region, the weak shocks pass through the surrounding tissue without
causing damage. In the focal region, the shock pressure increases dramatically to over
50 MPa leading to fragmentation of the stone, although the exact fracture mechanisms
are not completely understood. Over the course of several thousand shocks, the
stone is shattered into pieces small enough to be passed by the patient. To better
understand the source of tissue damage and the primary means of stone fragmentation
in the ESWL procedure, exact knowledge of the flowfield in the focal region is required.

A linear description of shock focusing is given by geometrical acoustics. The shock
is advanced along rays at the local sound speed relative to the surrounding medium,
the front speed being independent of the shock strength. The strength of the shock is
inversely related to the ray tube area. Whenever the shock front is concave forward
the rays will cross. At the crossing point, the ray tube area goes to zero and the
amplitude becomes infinite in acoustic theory. Downstream of the ray crossing, the

shock front emerges folded.
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In real fluids, nonlinear effects dominate the flow in the focal region and prevent
infinite amplitude at the focus. The experiments of Sturtevant and Kulkarny (1976)
first demonstrated the complex types of behavior seen at the focus. Weak, moderate,
and strong types of behavior are observed according to the initial strength of the
shock. The front emerges from the focus crossed and folded for weak shocks, cor-
responding to regular reflection at the centerline, and with a triple point and Mach
stem for strong shocks, corresponding to Mach reflection at the centerline.

A successful model must accurately include nonlinear effects. Ideally, one would
like to numerically solve the Euler equations for the shock focusing problem, but
this remains a difficult, computationally expensive task. The problem involves a
combination of very weak shocks outside the focus and much stronger shocks in the
focal region with disparate length scales which combine to require high resolution in
the focal region. Although Euler solutions of limited problems have been presented
and the problem would seem to lie within the capability of modern numerical schemes
with advanced mesh refinement algorithms, to the author’s knowledge no detailed
study with rigorous comparison to experimental results has been completed.

The theory of geometrical shock dynamics (Whitham 1957, 1959) offers an ap-
pealing alternative to a full Euler solution. As in the linear theory of geometrical
acoustics, the shock is treated as a front propagating along rays, but in nonlinear
shock dynamics the shock speed along the ray is a function of the shock strength.
By neglecting the flow behind the shock in favor of concentrating on the motion of
the shock itself, the problem is greatly simplified and the dimensions of the problem
compared to a full Euler solution are reduced by one. This approximation seems
appropriate for problems where the shock is accelerating, and disturbances behind
the shock are less likely to strongly effect the shock propagation. The accuracy of the
approximation for specific problems is difficult to assess in advance, but the theory
has historically been viewed as less accurate for weak shocks. Nonetheless, in prac-
tice geometrical shock dynamics has proven to be a valuable theory for a surprisingly

large set of problems. Various efforts to extend shock dynamics have been proposed

(Best 1991, Prasad 1994), but none have gained wide acceptance.
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Analytical solutions of the shock dynamics equations are available for simple ge-
ometries, but numerical methods are needed for most problems of interest. Since the
equations are hyperbolic, characteristic methods have been used for problems such as
shock propagation over cylinders and spheres (Bryson & Gross 1961). Front-tracking
numerical methods, where discrete points along the shock front are advanced along
rays, have been extensively developed (Henshaw et al., 1986). As noted by Whitham
(1959) the equations of geometrical shock dynamics are analogous to the supersonic
potential equation, and numerical schemes for the supersonic potential equation can
be adapted to shock dynamics (Schwendeman 1993). The use of finite-difference
schemes offers advantages over previous characteristic and front methods. Finite-
difference schemes provide conservative formulations where the effects of artificial
viscosity can be clearly characterized. The method is easily extended to three dimen-
sional problems with optimal grids for specific problems. In addition, finite-difference
schemes are typically easier to set up and apply to specific problems than previous
methods, especially for problems with weak shocks.

The related problem of shock propagation through a general, non-uniform medium
is essential to understanding the mechanics of shock focusing. The problem is es-
pecially applicable to sonic boom propagation through the atmosphere and ESWL
treatment involving propagation through inhomogeneous tissue. The theory of shock
dynamics has been extended to non-uniform perfect gases by Catherasoo & Sturte-
vant (1983), who used a characteristic method to study planar shock propagation over
a gaseous interface. The front-tracking numerical method has been adapted to shock
dynamics in non-uniform gases (Schwendeman 1988). Apazidis and Lesser (1996)
extended the method to non-uniform freestream flow ahead of the advancing shock,

although an additional term required in the Area-Mach relation was omitted.

1.1 Outline

In Chapter 2, a conservative, finite-difference scheme for geometrical shock dynamics

is developed for an arbitrary grid, based on the analogy with the supersonic potential
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equation. The resulting numerical method is used to explore the problem of focusing
of weak shocks in Chapter 3 with the goal of assessing the accuracy of shock dynamics
for this type of problem. The results duplicate the behavior of strong, moderate, and
weak shock waves observed experimentally. In comparison with the experiments of
Sturtevant and Kulkarny (1976), shock dynamics is seen to accurately predict the
focus location, but overpredicts the pressure. For weak shocks, the main inaccuracy
can be attributed to the failure of shock dynamics to allow regular reflection at the
centerline.

In Chapter 4, the theory of geometrical shock dynamics and the numerical method
are extended to the more general case of shock propagation into a nonuniform medium
with non-zero freestream velocity. The equations are derived for a general equation
of state, with the equations expanded for the special case of a perfect gas. Results
for propagation of a planar shock over cylindrical gas inhomogeneities show excellent
agreement with experimental results of Haas (1984, 1987).

In Appendix A, the Area-Mach relation for water using the modified Tait equation
is derived. An analytic equation of state for water is also used to calculate the shock
jump conditions to assess the accuracy of the Tait equation, and to examine the
temperature and entropy changes across the shock.

The propagation of sonic booms through the atmosphere provides examples of all
major types of shock behavior: focusing, refraction, diffraction, and reflection. In Ap-
pendix B, seismic stations, which routinely detect the small ground motions produced
by sonic booms, are used to analyze sonic booms from a SR-71 pass at M = 3.15 at
high altitude, the landing of space shuttle Discovery at Edwards AFB, the passage
of shuttle Discovery over Washington and Oregon at approximately M = 14, and a
set of “mystery booms” in California. In particular, the extensive seismic network in
Southern California, consisting of over two hundred sites covering over 50,000 square
kilometers, provide a unique opportunity to map the carpets from direct and indi-
rect sonic booms. The ground patterns under a real atmosphere are observed to be
extremely complex. Ray theory fails to predict indirect sonic boom arrival times,

observed multiple booms within the first shadow region, and extensive overlap of
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the multiply refracted sonic booms. The extensive ground coverage of the “mystery
boom” and shuttle reentry booms suggest boom exposure under the real atmosphere

is much larger than previously expected.
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Chapter 2 Numerical Method

In this chapter, a finite-difference numerical method is developed for the equations
of geometrical shock dynamics for a perfect gas. In the first section, the equations
of shock dynamics are introduced; a complete derivation is delayed until Chapter 4
for a more general case. The analogy between the equations of geometrical shock
dynamics and the full potential equations, outlined in Section 2.2, provides a basis

for development of the finite-difference method in Section 2.3.

2.1 Geometrical Shock Dynamics

Geometrical shock dynamics is an important approximate theory for problems involv-
ing shock propagation. For problems such as the focusing of weak shocks, where a
wide range of shock strengths are encountered and high resolution is required in the
focal region, numerical solutions of the Euler equations are still difficult and compu-
tationally expensive. By neglecting the interaction of the shock with the flow behind
the shock, shock dynamics reduces by one the number of dimensions of the problem,
greatly simplifying the computation.

In geometrical shock dynamics, the shock is considered as a wavefront propagating
down ray tubes normal to the front, as with geometrical acoustics. However, shock
dynamics is nonlinear, in that the velocity of the shock depends on the strength of the
shock. To close the system, an equation is introduced to relate the shock strength,
represented by the Mach number, to the variation of the ray tube area. To accomplish
this, the motion of the shock down the ray tube is treated as propagation down a
tube with solid walls and a slowly varying cross-sectional area. By ignoring the effect
of disturbances overtaking the shock from behind, a relationship can be derived for
the Mach number as a function of area. This Area-Mach relation is then applied to

express the Mach number as a function of ray tube area along the shock front.
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Since the theory emphasizes the effect of the geometry on the shock propagation
by ignoring the interaction of the shock with the flow behind the shock, one would
expect the theory to be particularly appropriate for problems with accelerating shocks
and problems dominated by geometry. However, geometrical shock dynamics has
proved to be accurate for a much wider range of problems. In simple problems where
comparison is available with full compressible flow solutions, shock dynamics has
shown better agreement for strong shocks, and is generally considered less reliable for
weak shocks. |

The equations of geometrical shock dynamics (Whitham 1957, 1959) are

V- (-ﬁ%w) =0, M=—. (2.1)

a(x) = apt gives the shock position at time t, ag being the undisturbed sound speed.
A(M) is the Area-Mach number relation, which specifies the relation between the
area A of the ray tube and the shock strength M. For a perfect gas, the Area-Mach

number relation is given by

B M MA(M)
A(M)—exp[ " Mz—ldM}’ (2.2)
where
21— 2 1
MM)=1{14+ — — 2.
(M) (+7+1 ; )(1+2;;,+M2), (2.3)

o (y=1M*+2
2yM? — (y—1)

T (2.4)

An analytical expression for the Area-Mach integral was originally given by Bryson
and Gross (1961); in which several misprints were later pointed out by Henderson
(1980). A slightly more compact expression was derived by Catherasoo (1982).

Two approximations are commonly used for the Area-Mach relation, the weak

shock approximation (M — 1):

AM) = (M -1)"2, (2.5)
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and the strong shock approximation (M — o0):

2 2y
AM)=M", n=1+4—+,/—. 2.6
(M) o (2.6)
Area-Mach relations for other equations of state have been used in shock dynamics.
The Area-Mach relation for water using the modified Tait equation is developed in

Appendix A.

Y

normal

Figure 2.1: Shock front geometry and characteristic angles.

The equations of geometrical shock dynamics form a hyperbolic, second-order par-
tial differential equation that describes the wave motion of disturbances propagating
along the shock front. Discontinuities, called shock-shocks, can form along the shock
carrying a change in shock angle and an increase in Mach number. Shock-ezpansions
can also form, for example in shock diffraction around a sharp corner.

For two-dimensional problems, the equations can be conveniently written in char-
acteristic form (Whitham 1957, 1959). As shown in Fig. 2.1, the characteristics lie at

the characteristic angle m above and below the ray angle 6:
dy
Cy:—==tan(@£m). 2.7
L L=t (@£m) 27)
Along the characteristics, the compatibility relation is given by:

6 + w (M) = constant. (2.8)
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The additional variables introduced are defined as:

1/2
w(M)::/;M LQEM_)J dM, c(M)-—-\/———ZA%, tanm:%. (2.9)

The derivative A’, which represents differentiation of the Area-Mach relation with

respect to the Mach number, is always negative. The Area-Mach relation A(M) and
the functions w(M), ¢(M), and m(M) are plotted in Fig. 2.2 for a perfect gas with
~v = 1.4. For weak shocks, in the limit M — 1, the characteristic angle approaches

zero, and the characteristics collapse into the rays.

|
10° ¢ 4
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!
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Figure 2.2: Area-Mach relation A(M) and functions w(M), ¢(M), and m(M) for
perfect gas, v = 1.4.
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2.2 Analogy with Potential Flow

The conservative form of Eqn. 2.1 in Cartesian coordinates can be written as

O(ou) O(ov) 0O(ow)
ox * Oy + 0z

=0, (2.10)
where u = a,, v = o, w = a, are the components of the gradient of a, and

- M
77 o= (2.11)

M= [uz + v? 4+ w?
As originally noted by Whitham (1959), the equations of geometrical shock dynamics
are analogous to the full potential equation for steady supersonic flow.! The shock
front position « is analogous to the velocity potential and the ratio of the Mach
number to area ¢ is analogous to the density. To complete the comparison with the

supersonic potential equation, the variable a, analogous to the sound speed, is defined

a? = [MQ (1 - %ﬁ)y , (2.14)

where the prime represents differentiation with respect to the Mach number. With

as

the above definition, a is directly related to the characteristic angle:

sinm
= , 2.1
a="1 (2.15)

and appears frequently in the numerical method.

1Tn Cartesian coordinates, the potential equation in terms of the velocity potential ¢ is:

0(pgz) | O(pdy) | O(pd:)
R van i »

=0, (2.12)

where u = ¢z, v = ¢y, w = ¢, are the velocity components, density and speed of sound are:

y—1

")"—1 1/v-1
p:[l——(————)Mw(uQ'%—vz-!-wz—-l)] , a=

5 (2.13)

x>

The characteristics are Mach lines which lie at the Mach angle x4 = sin™! (1/M) above and below
the streamline.
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2.3 Finite-Difference Formulation

Only a small relatively simple set of problems of interest can be worked analytically
using the method of shock dynamics. Two numerical approaches have been used
for a wide range of problems: the method of characteristics (Bryson & Gross 1961,
Catherasoo & Sturtevant 1983) and front-tracking methods (Henshaw et al., 1986).
Characteristics methods are typically more cumbersome than finite-difference meth-
ods and difficult to extend to three dimensional problems, and thus their numerical
applications have been fairly limited. In the front-tracking methods, points along the
shock front are advanced along rays normal to the front according to the shock Mach
number. The ray-tube area is then used to compute the Mach number along the front
at the new position. The extension of front-tracking methods to three-dimensions is
straightforward. However, the method requires the frequent splining of the points
with addition of points in areas where the front contracts, and the removal of points
where the front expands. The precise effect of adding and deleting points, and what
artificial viscosity is introduced by this smoothing, is difficult to quantify.

With the analogy between the shock dynamics equation and the potential equa-
tion, Whitham (1959) noted that numerical methods for the potential equation could
be directly applied. Extensive numerical work on finite-difference methods for the
potential equation was done in the 1970’s and 1980’s before computation of the full
Euler equations was feasible. Only recently have these finite-difference schemes been
applied to the equations of shock dynamics (Schwendeman 1993). Schwendeman
presented a finite-difference method for three-dimensional problems using the strong-
shock approximation for the Area-Mach relation, and considered the problems of
shock propagation in channels.

For problems involving weak shocks, where very strong shock-shock discontinuities
can occur, sophisticated numerical methods are required. In the front-tracking meth-
ods, points along the shock front at the shock-shock can cross several other points
in one time step. To continue the solution requires either sophisticated methods to

remove intermixed points or else extremely small time steps. Using the existing,
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simpler finite-difference methods, solution steps can fail due to iterations which pro-
duce Mach numbers less than one during convergence. In this section, an improved
finite-difference scheme is developed based on the methods developed for the super-
sonic potential equation (Shankar 1982, Shankar et al., 1983, 1985) which is suitable
for weak shock problems with strong discontinuities.
Introducing an arbitrary coordinate system (not necessarily orthogonal) defined

by £ = &(z,y), n = n(z,y), Eqn. 2.10 can be written in strong-conservation form:
L) 4 ()0
where U, V are the contra-variant velocity components given by
U = anae + 41204, V = a0 + axay, (2.17)
and the grid parameters are
an = E + fyz, a12 = &M + EyMy, ag =2 + 775» (2.18)

J =&y — &N (2.19)

The Mach number is now given by
M =[Uae + Va,] 2. (2.20)

In the solution procedure, we consider £ to be the marching, time-like direction
and assume all information is known at the ith and all previous levels. The problem
is to advance the solution to the level ¢ + 1 and obtain new « values.

At all levels, the quantities ag, a, are computed from

a"'_ai.. ’. a.’. 1 “a,—l
(ag)y, = i ge 0 ()= =55 (2.21)

where a backward difference is used for the marching direction £ and a central
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difference is used for the crossflow direction 7. For half-points, the velocities are

averaged between neighboring points which gives:

(41 — Qi1 j1) + (i — 1)

(aé')i,j.;.l/g = NG (2.22}
Qi j+1 — Qg
(an);jr1ye = ’ An-——l' (2.23)

Once these quantities are known, U and V follow directly from Eqn. 2.17 and M from
Eqn. 2.20.

2.3.1 oU/J Term

Since the & direction is the marching direction, the ¢ derivative term in Eqn. 2.16 is

backward differenced as

0 <UU> ~ (a1 — 6by) {(UU/J)i+1,j - (O'U/J)i,j} — 6b; {(UU/J)i,j - (JU/'])i—-l,j}

aE\ J a1A& — 0b1 (A& + Ag) 7
(2.24)
where
a = (A& + A6, b= (A&), (2.25)
and

AG =& —&, AL =¢& & (2.26)

The parameter 6 controls the order: 6 = 0 gives first-order accuracy and 6 = 1 gives
second-order accuracy (Shankar & Osher, 1983).
The upwind differencing of the £ derivative term produces a truncation error whose

leading term is

g (12(111
m(l -z )UQaE&Ag. (2.27)

This term always represents a positive artificial viscosity when
U2

— >a?. 2.28
- (2.28)
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As an illustration, consider the case of Cartesian coordinates where the stability
requirement for the marching direction reduces to u* > a?. Since M =1/ \/m
and 6 is the ray angle, u = cosf/M. Substituting from the definition of m and

simplifying, the requirement reduces to
cos® § > sin®m, (2.29)

Since m is the characteristic angle (see Fig. 2.1), the condition is equivalent to the
requirement that characteristic information propagates forward in z.

In general, the stability requirement of Eqn. 2.28 is satisfied if the information
propagates along characteristics only from behind the current point. To march along
the ¢ direction, the domain of dependence for point ¢, 7 must not include information
from forward of the current £ row. For problems where the shock is strongly curved,
the numerically grid must be chosen to maintain £ as the propagation direction. For
weak shocks, the characteristic angle approaches zero and stability requires only that
the component of the shock velocity along the marching direction be positive. The
stability condition is more restrictive for higher Mach numbers as the characteristic
angle increases, and the ¢ direction must be more closely aligned with the shock
normal. Ideally, the grid is aligned such that locally at each point the ¢ direction is

normal to the shock.

2.3.2 oV/J Term

The 7 derivative term in Eqn. 2.16 is central-differenced and written at level i + 1 to

make the resulting scheme fully implicit:

o (oV 1 (oV) (o*V) }
=== ~— = — | — . 2.30
87;( J )H_l,j An{ J Jit1,5+1/2 J Jit14-1/2 ( )

The suitability of the above difference depends on the nature of the flow in the
crossflow plane. When 1 — aga?/V? < 0 the crossflow is elliptic-type as shown in

Fig. 2.3(a). The characteristics propagate information from both the positive and
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negative 7 directions, and the central differencing is appropriate. For hyperbolic-type
crossflow as shown in Fig. 2.3(b), 1 — ag2a?/V? < 0. In this case, the characteristics
propagate information a single 7 direction, and the central differencing of Eqn. 2.30

is unstable. In this case, artificial viscosity is necessary to preserve stability.

Elliptic Crossflow Hyperbolic Crossflow

(a) (b)

Figure 2.3: Crossflow type according to characteristic angles.

To implement the required artificial viscosity, the value of o is biased in the

direction of the crossflow V.2 The o in Eqn. 2.30 is replaced by & defined to be

Giv141/2 = (L = V)0iy1541/2 + 5V (0i+1,j+1/2+2k + Ui+1,j+1/2~1) (2.31)

where & = 0 when Vii1 412 > 0 and & = 1 when Vi4qj41/2 < 0. The artificial
viscosity coefficient v can be computed by one of two alternate methods discussed

below. The simplest method is to apply the biasing at all points with v calculated as

viprgere = (1- aQMz)iH’jH/z. (2.32)

The coefficient v — 1 in the weak shock limit M — 1, and for a perfect gas with
~v = 1.4, v — 0.835 in the strong shock limit, M — oc.
However when the crossflow is elliptic-type, artificial viscosity is not required.

Shankar and Osher (1983) introduced an artificial viscosity which employs upwind

2This corresponds to density biasing, often referred to as artificial compressibility, in the case of
the supersonic potential equation.
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differencing based on the direction of the characteristic signal propagation which
turns off the upwind differencing when the crossflow is elliptic-type. In this case, the

artificial viscosity coefficient is given by

a900°
Vi+1,j+1/2 = /1,{1 - ?/2,2 } s (233)
i+1,j+1/2
with
V2
u = 0 for (am - —2) >0 (elliptic-type crossflow), (2.34)
O J iv14+1/2

2
= 1 for (0,22 — -‘*/:2—

) <0 (hyperbolic-type crossflow). (2.35)
0% Jis1,5+1/2

Since, the density biasing is switched off when the crossflow is elliptic-type, this

method typically produces sharper resolution of discontinuities.

2.3.3 Step Convergence

Given the « values at all previous levels, the differencing results in a set of nonlinear
algebraic equations for a;y; which are solved using Newton’s method. In general,
the artificial viscosity given by Eqn. 2.31 leads to a pentadiagonal system. For large
Mach numbers where the artificial viscosity terms are small and for flows without
strong shock-shock discontinuities, the derivative terms due to the artificial viscosity
can often be neglected to give a tridiagonal system. In this case, more iterations may
be required for convergence of each £ step, but each iteration is significantly faster.
For most problems, a simple forward difference can be used for the initial estimate
of ;41 which is then converged. For problems with strong discontinuities or Mach
numbers close to unity, a more accurate initial estimate is often needed. In order for
the &-derivative term to be explicit in «, we locally linearize cU about the known

values at the ith plane:

N o(aU),

(0U); 41 = (0U); a

(Qip1 — i), (2.36)



where

= —U+o—. (2.37)

Substituting from the definitions of U and ¢ and grouping terms,

U?\ o uvy o
(oU)iyy = oiU; + 0 Kau - -(i;)zg + (a12 - EQ_)JJ (01 — ) . (2.38)

The above linearized equation is explicit, having ;1 as the unknown. However, the
n-derivative term is still implicit due to the presence of 6. To force the step to be
explicit, the retarded value is used, i.e., ¢ at the current level, ¢ + 1, is calculated

based on the values at the previous level, i.

2.3.4 Boundary and Initial Conditions

Boundary conditions require that the shock front be normal to solid boundaries. If
n is the unit vector normal to the boundary, the condition requires da/On = 0 along
the boundary. For the grid systems used, the boundary is assumed to be given by
n = constant; therefore, the boundary condition reduces to V' = 0. The initial
conditions of a and Mach number are specified along an initial row, £ = constant.
Since the Mach number specifies the derivative of «, the values of a at the previous £
can be estimated from the Mach number. Then with a values specified for two £ rows,

the solution can be advanced.
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Chapter 3 Shock Focusing

The finite-difference numerical method for geometrical shock dynamics developed in
the previous chapter is ideally suited for analysis of shock focusing problems which
involve strong shock-shock discontinuities in the focal region. In the opening section,
existing experimental results for shock focusing are reviewed. In Sections 3.2 and 3.3,
results for the convergence and focusing of cylindrical portions of shocks is examined.
The numerical results duplicate the different strong, moderate, and weak shock type
behaviors observed in experiment. In Section 3.4, comparison is made between the

numerical results and the focusing experiments of Sturtevant and Kulkarny (1976).

3.1 Previous Experimental Work

A number of experiments have examined the shock focusing problem. The experi-
ments of Sturtevant and Kulkarny (1976) characterized the three primary types of
shock focusing behavior using plane shocks reflected to a focus from parabolic reflec-
tors. Interest in lithotripsy applications has led to additional experiments with weak
shocks and elliptic reflectors in both gases (Holl 1982) and water (Miiller 1987, 1989).

In the experiments of Sturtevant and Kulkarny (1976), plane shocks were reflected
from parabolic reflectors to a point focus. The three types of focusing behavior
observed are shown in Fig. 3.1 reproduced from Kulkarny (1976). Solid lines represent
the shock fronts after reflection from the parabola shown at the left. For sound pulses
in acoustic theory, the rays continue to a point focus; afterwards the shock front is
crossed and folded as shown in Fig. 3.1(a). At the focus in acoustic theory, the
ray tube area goes to zero and the shock amplitude is infinite. For weak shocks,
Fig. 3.1(b), a Mach stem is formed near the focus. The triple point initially moves
outward, but is eventually pushed back to the centerline, and the shock front becomes

crossed and folded. For strong shocks, Fig. 3.1(d), a Mach stem is again formed, but
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the triple point moves outward as the front advances past the acoustic focus. A
transition case for moderate strength shocks is also observed, Fig. 3.1(c), where the
triple point initially moves outward from the centerline. Further downstream, the
triple point is swept back toward the centerline but never reaches the centerline.
Instead the triple-point begins to move outward again. Later experiments with weak

shocks have observed consistent behavior (Holl 1982, Miiller 1987, 1989).

(c) Moderate strength (d) Strong shock

Figure 3.1: Types of focusing behavior observed in experiment [Reproduced from
Kulkarny, 1976].

The shock strength near the focus of a shock wave lithotriptor, M ~ 1.03 — 1.05,
corresponds to the weak shock case, Fig. 3.1(b). For these weaker shocks, the behavior
near the focus approaches the prediction of acoustics. The focal amplification is
higher, and the focal region is narrower and located nearer the acoustic focus than
for stronger shocks (Sturtevant & Kulkarny 1976, Holl 1982).

Experimental studies have also examined the effect of the aperture angle of the
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reflector on the location and pressure at the focus. For smaller aperture angles,
corresponding to shallow reflectors, at equal initial Mach numbers, the focal pressure
is lower and the focus is located further upstream of the acoustic focus than for larger
aperture angles. For weak shocks with large aperture angles, the location of the
maximum pressure can lie behind the acoustic focus. With stronger shocks or smaller
aperture angles, the focus is located upstream of the acoustic focus (Sturtevant &
Kulkarny 1976, Miiller 1989).

To be considered successfui, the numerical shock dynamics analysis should du-
plicate the strong, moderate, and weak focusing behavior observed experimentally.
This entails accurately predicting the path of the triple-point seen experimentally,
represented by a shock-shock in the current analysis. The path of the triple point
is the most demanding element, since this defines the geometry of the flow near the
focus. The parameters to compare include the shock front positions downstream of
the focus, the shock pressure jump at the focus, and the location of the maximum
pressure jump. The dependence of the focus parameters on the initial Mach number
and the aperture angle of the initial front are also important features to replicate.
The conditions behind the leading shock cannot be determined with the theory of

shock dynamics.

3.2 Focusing Problem

In this section, the idealized problem of the convergence of a portion of a cylindrical
shock front is considered. The problem can be expressed by two parameters shown
in Fig. 3.2: the initial Mach number M, and the aperture angle of the front 6.

The lead disturbance from the corner travels inward along the C, characteristic
originating at the corner. The arrival of this lead disturbance at the centerline signals
the beginning of the focusing process. Until the arrival of the lead disturbance, the
shock front is outside the region of influence of the corner, and the front is converging
unaware of the diffraction at the corner. The arrival point of the lead characteristic

in shock dynamics can be computed analytically. On the lead C, characteristic, the
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compatibility relation gives

By + w(My) = e + w(M,), (3.1)

where subscript ¢ refers to values at the centerline. Since the angle of the flow at the

centerline is zero, the centerline Mach number on arrival is given by:

w(M.) = by + w(My) (3.2)

Before the arrival, the shock front is radially converging, so the area is simply the
ratio of the final radius to the initial radius. The location of the arrival of the lead

disturbance, z., non-dimensionalized by the initial radius is

A(M.)

(3.3)

Te = A(MO)

Figure 3.2: Focusing problem parameters: initial shock Mach number Mj and the
aperture angle 6.

Results for the centerline Mach number and normalized distance from the center
of the original converging front are shown in Fig. 3.3 for initial aperture angles of 36°,

60°, and 80°, with v = 1.4. For low Mach numbers the speed of the characteristic

along the shock front is small, and the disturbance does not reach the centerline until
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very near the acoustic focus. For this case, the amplification at the focus has increased
to extremely high values. However, until the arrival of the lead disturbance, the Mach
number will continue to increase, so the lead disturbance always must arrive before
the acoustic focus. Only in the limit of initial Mach number of unity, the disturbance
does not reach the centerline until the geometric focus and the results of acoustics are
recovered. For smaller initial aperture angles, the disturbance has a shorter transverse
distance to travel to reach the centerline; therefore, focusing begins further upstream

of the acoustic focus at a lower Mach number.
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Figure 3.3: Mach number M. and x-coordinate z. of the arrival of first distur-

bance from the corner at the centerline as a function of aperture angle 6, and initial
Mach number M,.

This simple analysis is able to capture many of the aspects of the focusing behavior
seen experimentally, since the velocity of the lead disturbance is directly related to
how strongly nonlinear effects are felt. However, the arrival of the lead disturbance
at the centerline marks only the beginning of the focusing process; a full numerical

solution is required to resolve the focal region.
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3.3 Numerical Results

Two aperture angles were considered for v = 1.4, 6, = 36° and 6, = 80°, both of
which correspond to reflectors used in experiments (Sturtevant & Kulkarny 1976,
Miiller 1989). The aperture angle of 6, = 36° corresponds to the reflector ellipse used
in the Dornier HM3 lithotriptor which has an eccentricity e = 0.8.

The initial condition specifies the shape of the shock front with the initial «
values given along the line £ = 0. The upper boundary at = 1 is taken as a line
of symmetry. The numerical treatment of the lower boundary depends on the initial
Mach number. For a given My there is a limit in shock dynamics to the maximum
angle the front can be turned before M = 1 is reached,’ denoted by the angle /3 in
Fig. 3.2. When the initial Mach number is sufficiently high, the lower boundary is
chosen parallel to the centerline. The numerical solution is then allowed to turn the
shock front to a lower boundary parallel to the upper boundary. For weaker shocks,
the lower boundary is placed at an angle to allow the shock front at the corner to
be turned to a Mach number approaching unity. Provided a large enough angle is
turned, the exact turning angle was observed to have only a weak effect on the focal
region.

For cases where the maximum turning angle does not allow the upper and lower
boundaries to be parallel, the grid is taken as a polar grid with an angle based on
the aperture angle minus the maximum turning angle. This choice allows use of an
orthogonal coordinate system which improves convergence. Since in this case the
initial £ row does not correspond to a shock front, the o and Mach number values are
advanced to the start £ analytically, since the front is just converging without effect
from the corner. In no case is the shock front fitted using other methods; the initial
values are always calculated using only shock dynamics.

For all cases, typical runs use several hundred grid points in the 7-direction. For

better resolution of the focal region, grid points are packed near the upper boundary.

1 Continuing the analogy with the supersonic potential equation, the situation corresponds to the
maximum turning angle in compressible flow where the flow can only be expanded until p = 0 where
M = oc.
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The solution is marched at variable £ steps chosen to maintain an average CFL number
of unity.

Results for aperture angle 6y = 80° with initial Mach number M, = 1.3 are shown
in Fig. 3.4 and Fig. 3.5. The upper figure, Fig. 3.4(a), shows the shock fronts which
are contours of constant a. The normal to the fronts, which give the direction of
the shock propagation, are shown in the center ray diagram, Fig. 3.4(b). Finally, the
lower figure, Fig. 3.4(c), displays the contours of Mach numbers. A surface plot of
the shock Mach number is shown in Fig. 3.5. For clarity, the solution at every grid
point is not plotted on the surface plot which makes the discontinuity appear coarser
than in the actual solution.

The maximum turning angle for My = 1.3 is 88°, but to avoid excessive starting
oscillations at the corner, a polar grid is used and the lower boundary is inclined
slightly to the centerline. The front is advanced analytically to the start £ row using
shock dynamics theory. This portion of the solution is shown with dashed lines in the
plots of shock fronts, Fig. 3.4(a), and Mach number contours, Fig. 3.4(c). In each of
the three figures, the shock propagates left to right, and the original cylindrical front is
shown as the darker line on the far left. The z, y coordinates are non-dimensionalized
by the initial radius of the shock front with the center located at (z,y) = (0,0).

The My = 1.3 case for 0y = 80° is an example of the strong-shock type behavior.
The lead characteristic from the corner arrives at the centerline and turns the shock
front out from the centerline which slows the Mach number increase. To maintain
the boundary condition that the shock front is normal to the centerline, the shock-
expansion from the corner reflects from the centerline as disturbances turning the
flow back toward the centerline. These disturbances coalesce into a compression which
eventually forms a shock-shock discontinuity. The shock-shock is clearly shown in the
figures by the change in angle of the shock front and the increase in Mach number.
The shock-shock advances outward throughout the solution. As the shock-shock
propagates outward and the Mach stem extends in length, the discontinuity weakens

and the Mach number behind the shock-shock decreases. Downstream of the focus,

a large Mach stem is present which is slightly convex forward.
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Figure 3.5: Mach number surface for converging shock, My = 1.3, 6y = 80°, v = 1.4.
The center of the initial front lies at (z,y) = (0,0). Slight overshoot is visible at the
upper-edge of the shock-shock discontinuity.
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at (z,y) = (0,0).
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Figure 3.7: Mach number surface for converging shock, My = 1.1, 6y = 80°, v = 1.4.

The center of the initial front lies at (z,y) = (0,0). Slight overshoot is visible at the
upper-edge of the shock-shock discontinuity.
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An example of moderate shock behavior is shown in the next set of results for ini-
tial Mach number My = 1.1 with the same aperture angle 6§, = 80°. Fig. 3.6(a) - (¢)
show the shock fronts, the rays normal to the shock front, and the contours of the
shock Mach number. Fig. 3.7 displays the surface plot of the Mach number. The
maximum turning angle for My = 1.1 is 51°, so the lower grid boundary is inclined
to the centerline.

The path of the disturbances from the corner can be clearly seen propagating
inward on the Mach number contour plot and surface plot. The shock-expansion
reflects from the wall and coalesces into a shock-shock discontinuity. Although the
triple point propagates outward along the shock front, the shock front itself is still
moving inward. The net result is that the shock-shock discontinuity is swept back
toward the centerline. The strength of the shock-shock increases as it is pushed
inward, producing a further increase in the centerline Mach number. The inward
motion of the shock-shock forms a shoulder in the Mach number profile as shown in
the Mach number surface plot, Fig. 3.7. The strength of the shock-shock continues
to increase until the velocity of the shock-shock discontinuity along the shock front
is sufficient for the shock-shock to begin to move outward. Downstream of the focus,
a narrow Mach-stem is visible.

Similar behavior is seen for weaker shocks, with the arrival of the disturbance
from the corner occuring nearer the acoustic focus. A shock-shock forms at the focus;
however, the discontinuity is pushed back toward the centerline almost immediately
and the open region is further reduced in size. For weak shocks, the shock-shock is
pushed to several grid points from the centerline, and the path of the shock-shock
becomes dependent on adequate grid resolution.

The path of the discontinuity is plotted superimposed over the solution grid for
the region near the focus in Fig. 3.8. For each solution row, the location of the
maximum Mach number gradient is displayed. From the left, the maximum gradient
shows the path of the expansion from the corner. These disturbances reflect from the
centerline and produce a compression discontinuity moving out from the centerline

which coalesces into a discontinuity. For moderate and weak shock behavior, the
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discontinuity propagates back toward the centerline and increases in strength until
strong enough to begin to move outward. For moderate type behavior, adequate grid
points exist to correctly resolve the distance of the discontinuity from the wall at
closest approach. However for weak shock behavior, the discontinuity is immediately
pushed to within several grid points of the centerline, even for much smaller grid

spacings.

Pmox / PO

Figure 3.9: Centerline pressure ratios for varying initial Mach numbers, M,, aperture
angle 6y = 80°, v = 1.4. The center of the initial cylindrical front lies as z = 0.

Figure 3.9 plots the centerline pressure ratio for strong, M, = 1.3, moderate,
M, = 1.1, and weak shock, M, = 1.05, cases for aperture angle 8y = 80°. The pressure
ratio is defined as the pressure behind the shock normalized by the pressure behind
the initial shock. The z-coordinate is non-dimensionalized by the initial radius, and
the acoustic focus lies at z = 0. For strong shock behavior, a single peak is formed
slightly ahead of the acoustic focus. For the moderate and weak types of behavior,

the initial peak occurs near the geometric focus when the corner disturbance arrives
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at the centerline. An absolute maximum occurs further downstream when the shock-
shock becomes strong enough to again move outward. For the weak case, M, = 1.05,
the initial shoulder is only visible as a change of slope. From comparison with ex-
periment, the shoulder on the centerline pressure for the weak cases is expected to
mark where experiment shows a transition to regular reflection and the front becomes
crossed and folded.

Results for the initial Mach numbers for a strong case, My = 1.1, and a weak case,
M,y = 1.01, for a smaller aperture angle of 6, = 36° are shown in Figs. 3.10 — 3.13.
Two major effects of the smaller aperture angle are seen in the results. The distur-
bance from the corner has less transverse distance to travel and reaches the centerline
to start the focusing process further upstream. This also means the disturbance
reaches the centerline at a lower Mach number, producing lower Mach numbers at
the focus. Due to the lower Mach numbers, the onset of weak shock behavior oc-
curs at a lower Mach number. For 8y = 36°, moderate shock behavior is still seen at
My = 1.1, while weak shock behavior is seen at My = 1.01.

A summary of the maximum Mach number and focus location from the numerical
computations are shown in Fig. 3.14 for two aperture angles 6, = 36° and 6y = 80°.
The focus is taken as the location of the maximum centerline Mach number. The
dashed line shows the location and Mach number at the arrival at the centerline of
the lead disturbance from the corner in shock dynamics theory. For the weak shock
and moderate shock type behavior, the location of the initial shoulder is denoted by
the plus symbols. The results show that the arrival of the lead disturbance from
the corner provides an accurate estimate of the beginning of the focal region. The
actual maximum Mach number occurs further downstream as more of the bulk of the
disturbance from the corner arrives.

For aperture angle 6, = 36°, which corresponds to a deeper reflector, the focus
occurs ahead of the acoustic focus, except for the very weak case My = 1.01. For this
case, even the initial shoulder forms slightly behind the acoustic focus. For 6, = 80°,
which corresponds to a deeper reflector, the location of the focus is behind the acoustic

focus for weaker shocks. The focus Mach number is higher for the larger aperture
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for converging shock, My = 1.01, 6, = 36°, v = 1.4. The center of the initial front
lies at (z,y) = (0,0).
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angle across the entire range of initial Mach numbers.
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Figure 3.14: Maximum centerline Mach number and x-location of maximum for aper-
ture angles #y = 80° (¢) and 6y = 36° (O), with v = 1.4. For weak shocks, the location
of the original peak is denoted by the + symbols. Dashed lines represent the arrival
in shock dynamics of the lead disturbance from the corner.

3.4 Comparison with Experimental Results

The numerical shock dynamics method was used to calculate results for the focusing
experiments of Sturtevant & Kulkarny (1976). In this series of experiments, plane
shock waves were reflected from a parabola to a point focus in the 17" shock tube
at GALCIT. An insert of square cross-section was used in the cylindrical tunnel;
therefore, the problem is treated as two-dimensional, instead of axi-symmetric.
After reflection the shock propagates back into the uniform flow behind the in-
cident shock. The problem can be treated with the general method developed in
Chapter 4; however, since the velocity is uniform, a simple coordinate transformation
is sufficient. If the uniform velocity is given by ug, the freestream is at rest in the

coordinate frame given by x’ = & + ugt. Therefore, at any point on the shock front
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a(x’) = apt, the physical z-coordinate value must be computed as

r=1+ (EQ) a. (3.4)

Qg

Provided the initial conditions are specified properly in the (', y) coordinate system,
the problem can be solved with the present numerical scheme.

A parabolic grid is used for the calculation so the parabolic reflector is a line of
constant &, and the initial conditions are specified along the reflector. The initial
a values are calculated from the arrival time of the incoming shock at each point on
the reflector. The Mach number is taken as the Mach number of the initial planar
shock, since the oblique shock relations predict regular reflection along the entire
parabola. Computations using the reflected-shock Mach number from the full oblique
shock relations show that the variation in initial Mach number along the reflector has
only a small effect on the focal region. The outer corner is treated as described in
Section 3.2.

The computed reflected shock fronts and Mach number contours for strong shock
type behavior with initial Mach number M, = 1.3 and moderate type with My = 1.1
are shown in Fig. 3.15 for the parabolic reflector with half-angle of 80°. The shock
fronts are shown in the upper set of figures, and contours of shock Mach number are
shown below. The z, y coordinates are non-dimensionalized by the focal length of the
parabola. The outline of the reflector is shown at the left of each figure. The focus
of the parabola lies on the centerline at (z,y) = (0,1).

Fig. 3.15(a) shows an example of the strong shock type behavior observed for
My = 1.3. As seen for the earlier cases, the initial disturbance from the corner of
the parabola travels along the shock front until it reaches the centerline, where a
shock-shock discontinuity forms on the shock to enforce the boundary condition. The
uniform velocity pushes the location of the maximum pressure further upstream of
the acoustic focus. The path of the shock-shock propagating outward along the shock
front represents the path of the triple-point seen experimentally. As the discontinuity

propagates outward, it weakens and the Mach number behind the shock-shock de-



Figure 3.15: Shock fronts and Mach number surface for for reflection of planar shock
waves from a parabola with initial Mach number (a) My = 1.3 and (b) M, = 1.1,
v=14.

creases. For moderate strength shock waves, the triple point does not immediately
propagate outward, but is initially swept back toward the centerline causing a further
increase in Mach number as shown in Fig. 3.15(b) for My = 1.1. For the moder-
ate case, the transition period when the shock-shock moves toward the centerline is
elongated by the uniform velocity.

The computed pressure amplification and shock-shock path are compared with
the experimental results in Fig. 3.16. The pressure amplification is defined as the
pressure jump across the shock normalized by the pressure jump of the reflected

shock as it leaves the reflector surface. The experimental pressure is the maximum
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Figure 3.16: (a) Pressure amplification and (b) shock-shock path computed for re-
flection of planar shock waves from a parabola compared with experimental results
of Sturtevant and Kulkarny (1976). The numerical results are shown as lines without
symbols, experimental results are corresponding line types with symbols. The exper-
imental pressure amplification is based on the maximum pressure which outside the
focal region is not the pressure directly at the shock.

pressure, which outside the focal region is not the pressure directly at the shock.
The approximate shock dynamics theory cannot provide the pressure behind the
shock. However, within the focal region, the maximum pressure observed is the shock
pressure jump and comparison can be made with the results of shock dynamics.
For the strong case My = 1.3, the shock dynamics pressure is twice the experimental
results, but the overprediction falls to a factor of 1.5 for My = 1.1. The overprediction
is not significantly affected by accounting for the finite size of the pressure transducer.
Within the focal region, the numerical results correctly predict the location of the
maximum pressure for the stronger shocks. For the moderate strength case, the
location of the original peak corresponds well to the experimental focus location, but
the additional rise in the Mach number due to the requirement for Mach reflection at
the centerline is not seen experimentally.

The path of the shock-shock is one of the most exacting comparisons since the
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effect is sensitive to nonlinear effects. The path is well-predicted for My = 1.3, but
for weaker shocks the agreement deteriorates. Whereas moderate type behavior was
seen experimentally for My = 1.2, shock dynamics does not show this behavior until a
lower Mach number. However, the shock dynamics approximation is able to capture
the moderate type behavior of the shock-shock being swept towards the centerline for
M,y = 1.1. For all cases, the origin of the shock-shock agrees closely with the origin
of the triple point observed in the experiments.

From an analysis of a straight shock diffracting around a corner with a small
turning angle, Whitham (1957) showed that the speed of the initial signal predicted
by shock dynamics is half the value from the full gas-dynamics relations. However even
for weak shocks, Whitham demonstrated that the total magnitude of the disturbance
is quite accurate. Examining the current focusing problem, the diffractive disturbance
from the corner arrives at the centerline too late in shock dynamics, after the Mach
number and pressure have reached too high a value. The shock-shock discontinuity
then has too high a speed outward from the centerline as seen in the comparison with
experimental results.

For a valid comparison with experimental results, the focal region must be ade-
quately resolved numerically. Too coarse a grid or high artificial viscosity can reduce
the maximum Mach number at the focus, leading to an artificial agreement with
experiment and an over-optimistic assessment of the accuracy of shock dynamics.
This is especially true for very weak shocks where the focal region becomes extremely

sensitive to grid resolution.

3.5 Conclusions

The finite-difference method developed for geometrical shock dynamics can efficiently
solve shock focusing problems where strong shock-shock discontinuities occur. The
numerical results qualitatively capture the strong, moderate, and weak shock types
of behavior observed in experiment. The major effects of the aperture angle and

initial Mach number predicted by geometrical shock dynamics agree with results seen
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experimentally. In comparison with experiments of Sturtevant and Kulkarny (1976),
the location of the focus is accurately predicted. Due to the underprediction of
the speed of the corner disturbance by shock dynamics, the pressure at the focus
is overpredicted, which leads to too high a speed of the shock-shock out from the
centerline. Agreement deteriorates somewhat for weaker shocks, as expected with

shock dynamics.
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Chapter 4 Generalized Equations of
Shock Dynamics

In Chapter 2, a numerical method for a shock propagating into a uniform gas at rest
was developed. In the current chapter, the theory of geometrical shock dynamics
is extended to the case of a shock propagating into a general, non-uniform fluid in
motion.

In Section 4.1, the equation is derived for shock propagation into a fluid in motion,
the primary additional complexity being that the rays are no longer normal to the
front. In Section 4.2, the appropriate Area-Mach relation is developed for varying
properties upstream with a general equation of state. As an example, the equations
for a mixture of perfect gases are expanded in Section 4.3. In Section 4.4, the finite-
difference numerical method developed previously is extended to the more general
problem. In conclusion, the final section presents results for shock propagation over

cylindrical gas inhomogeneities.

4.1 Development

To begin, the function a(x) =1t is defined as the shock front position at time ¢.
Defining the vector n as the unit normal to the front as shown in Fig. 4.1, the normal

vector follows from the definition of «:

Vo

Considering the differential motion of a point on the shock front from a(x) =t to

a(x + dx) = t + dt, the normal velocity of the front can be expressed in terms of the
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gradient of a:
1

= (4.2)

Vs

The total normal velocity is the normal velocity of the shock relative to the freestream

velocity, Ug, plus the component of the freestream velocity along the normal:

Vs =Us+up-n. (4.3)

a(x)=t

Figure 4.1: Shock front geometry showing normal and ray vector geometry.

Due to the uniform velocity, the rays are no longer orthogonal to the front; there-
fore, i is introduced as the unit vector along the ray. Since the shock front will
propagate at the normal velocity of the shock itself, Us, plus the freestream velocity,

the ray vector is
U sn + ug

i= m. (4.4)
Applying the divergence theorem to the ray tube between two successive shock posi-
tions (Whitham, 1968), the ray-tube area can be directly related to the divergence of
the rays:

V.— =0, (4.5)

where the area A, is defined as proportional to the cross-sectional area of a ray-tube.
The ray-tube area is related to the normal area as A, = A(i- n).

Substituting the expressions for the normal and ray vectors, Eqn. 4.5 can be
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simplified to
Us
A

v. [ (Va + U‘;/sﬂ = 0. (4.6)

For zero uniform velocity, the second term immediately disappears and the familiar
relation of Chapter 2 is recovered. For the special case of uy constant, the equation
can be simplified to the form given by Whitham (1968).

Eqn. 4.6 provides the governing equation for the motion of the shock front. At
this point, the development is still general: Eqn. 4.6 follows only from the shock front
definition as a(x) = t, with the assumption that the shock front moves at its normal
velocity plus the freestream velocity. To proceed further to a differential equation for
a(x), an expression for the area as a function of the shock strength is required. As in
Whitham’s original theory of shock dynamics, the shock propagation down each ray
tube is treated as a shock propagating down a tube with solid walls. The variation
‘of area along the ray tube is taken as the area variation along the tube. Provided a

relation is known between the shock strength and area, the system is closed.

4.2 General Area Relation

To develop a general area relation, the problem of propagation of a shock down a
tube with slowly-varying area is considered. The shock relations are applied directly
along the C characteristic from the continuity and momentum equations for the 1-D
problem. Including body forces, along the C.. characteristic:

du pua® 1dA pa

dp
c—ig+pa(_i;+u+aAds u-+a

F =0, (4.7)

where s is the distance along the channel. The p, u, p, and a values behind the shock
from the shock relations are substituted directly into Eqn. 4.7. Whitham (1958)
showed this approach is equivalent to Chisnell’s (1957) treatment as a series of small
area changes where disturbances overtaking the shock from behind are ignored.

To postpone any assumptions about the fluid equation of state, the pressure and

velocity derivatives will be expanded into two terms. The first term contains the
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contributions from changes in the shock front velocity. The second term, the total
derivative at constant Ug, contains all contributions from changes in the freestream

ahead of the shock:

dp  Op dUs Op
ds 9Us ds (BS)US’ (4.8)
du  Ou dUs ou
a—s‘ = 3Us ds + (GS)US. (4.9)

Substituting the derivatives into Eqn. 4.7 gives a differential area relation for the

generalized system:

O 4 1 (Us, ) dUs + 5 (Us, )) = 0. (4.10)

Both f and S are functions of the shock velocity and the upstream conditions, denoted
_(u+a Op Ou
f‘_ (pua2> (GUS +pa‘aUS>? (4"11)

S = uta —8—22 + pa '(?E
pua? 0s Us 0s Us

The contributions due to the area-change, due to changes in the shock front normal

by (),- Simplifying,

F
—. 4.1
N ua (4.12)

velocity relative to the upstream velocity, and due to the upstream conditions are
separated into different terms. The partial terms must include the effect of all changes
upstream, from both changes in fluid state and changes in fluid composition, including
gradients in freestream velocity ahead of the advancing shock.

Because of the assumption that the shock conditions can be applied along the C
characteristic, the shock jump conditions for the appropriate equation of state can
be used to evaluate the differential terms in the equations for f and S. With the
equation of state for the fluid, the system can be completely expressed in terms of the
velocity of the shock front and the upstream conditions. In general, the terms may

include both the shock strength, represented by Ug, and the upstream conditions.
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4.3 Perfect Gas Case

As an example, the case is considered of a perfect gas where the freestream conditions
along with the composition of the gas vary, including the effect of uniform velocity.
The area relation for this problem for zero uniform velocity is available for comparison
(Catherasoo 1983).

Two thermodynamic variables, py and ag, are used to describe the freestream state
with the upstream velocity normal to the shock front given by wg,. The variation of
perfect gas composition requires an additional term for the change in . Therefore,

the upstream contribution terms are expanded into four terms as follows:

ég — _(2}19!22 + _@Z_% 5p dugn _(222(_11 (4 13)
ds |y, ~ Opg ds  Oag ds = Oug, ds  Ovyds '
dul _ Oudpy Oudag n Ou_dugn  Oudy (4.14)
ds Us Opg ds  Odag ds =~ Oug, ds Oy ds

The derivatives in the Area-Mach relation are along the ray tube, so the upstream
velocity term contains the velocity component normal to the shock, ug,.

Using the standard normal shock relations, the derivatives can be expressed in
terms of M, the Mach number of the shock relative to the fluid velocity ahead of

the shock. The pressure partial derivative terms are given by:

%:H%(Mg—l) %:ﬁ(%)Mg (4.15)
82]; - Z% g% = @:2—1_)5 (M2~ 1) po (4.16)
The velocity partial derivative terms are:
5 =" e 3T @1
cﬁn - (’yfl) (M% : ’g% T ;21)2 (M%; Lo (4.18)

For a perfect gas, all terms are functions of the Mach number, v, and the upstream
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properties. The differential form of the Area-Mach relation can be expressed in the

form:
dUg dao dpo .dugn, dry
-—dA + +h— + + k— = 0. 4.19
A f o Do 7 Uon Y ( )
The coefficients are defined as:
M, 1 US
fly, My) = M -1 (1 + 24+ Mi) (1 + — ) ” (4.20)
(7. M) = —2 (14 1My = (3 = 1)) WH 4 (4.21)
I M) =27 2(M2 — 1) oy M2 — ) M, :
1 2
h(y, Mu) = 53—y 2(M—=1)+p (27M (y=1)] (4.22)
. M 2 Uon
Jjlvy, M) = M2 7 (1 +2u+ ) (1 e ) -ag- (4.23)
(=)
k: aM’w = ,Mw 424
(v, My) 7(7+1)9(7 ) (4.24)
where
— 1)M?

CME - (y-1)
For zero upstream velocity, the relations can be shown to be equivalent to the Area-

Mach relation given by Catherasoo & Sturtevant (1983).

4.4 Numerical Method

The extension of the finite-difference method developed in Chapter 2 for the uniform
perfect gas case to the more general case of the current chapter is straightforward. The
differencing scheme is carried over directly. The main complication is the dependence
of the Area-Mach relation on the upstream properties at the current point.

The governing equation, Eqn. 4.6, can be expressed as

v. [ (Va+ )] 0, o= U5 (4.26)

USVS A(Us,X>
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Rewriting in strong conservative form for an arbitrary grid:

0 0(U+M0/U5V5> 0 O‘(V -+ N()/USVS) .
5 ( ; + 5 - =0, (4.27)
where
U= a110¢ -+ G120y, V= Q120¢ + Q200,. (428)

The standard grid parameters a1, @12, age, and J are defined as in Chapter 2. The
total front velocity, Vs, is:

Vs = [Uag + Van]“l/Q, (4.29)

with the shock normal velocity relative to freestream velocity, Usg, given by subtracting
the freestream velocity:

US - VS - (M()Oé& -+ N()Oén). (430)

In the general coordinate system, the components of the upstream velocity are written

in terms of the Cartesian components of the velocity ug = (ug, vg):
My = &ug + &y, No = 2 + 7y Vg. (4.31)

The quantities o and o, are computed using backward differences in the marching
- & direction and central differences in the crossflow 7 direction. The 0/9¢ and 9/0n
terms are differenced as in the original numerical scheme of Chapter 2.

Due to the variation of freestream conditions, the area relation is now a function
of both the shock strength, through Ug, and the freestream properties at the current
point. In general, the area relation cannot be integrated analytically and must be

evaluated numerically. The area relation

1

Z(VA ! Il) + f(USu£7n> (VUS : Il) + S(U57§777) = 07 (432)

is rewritten in (£, 7) coordinates as:
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1

(AU + AV) + f(UseU + Us, V) + 8 = 0. (4.33)

The terms are differenced with the usual combination of backward and central differ-

ences, for example at point (3, 7):

o A¥ .. — Ar.
i—1,7 - 4,741 tLi—ly,
Uiy + =5 A V;,3> . (4.34)

S + a0 = o (B
Similar differencing is used for the Usg term and the derivatives of freestream properties
within the f and S terms. Since A;; depends implicitly on the current row through
A;j+1 and A;j_q, the retarded values of A* from the previous iteration is used for
each iteration. This allows the desired quantity A;; to be expressed as a function of
known quantities.

In problems with strong discontinuities, converging the general area relation often
requires an excessive number of iterations at each step. For the perfect-gas relations,
a simpler method used by Schwendeman (1988) is adapted for improved performance
with only slight loss of accuracy. For zero upstream velocity, the area relation is
written solely in terms of the Mach number:

1

d d d
AU+ 7 M)AM gy, )T+ h(y, M)=2 4 k(o M)=E =0, (4.35)
0 0

 Assuming for each step that the functions g, h, k do not change drastically, the

equation is integrated using the mean value:

(A?O)) (a%)g(pi%))h(%))kze@ (— " f(an)dM), (4.36)

where g, h, and k are based on the average M and ~y for the previous step. The right

side is simply the Area-Mach relation for a perfect-gas for mean 5. For the given
point 1, 7, the simplified formula is dependent only on the Mach number which allows
the A /O« derivatives needed for convergence to be conveniently expressed without

further approximation.
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4.5 Shock Propagation Over Inhomogeneities

As an example, shock propagation over cylindrical inhomogeneities in a perfect gas
is considered. Both experimental and numerical results are available for comparison.
The problem has been investigated numerically using full Euler codes by Quirk and
Karni (1994) and a front-tracking shock dynamics code by Schwendeman (1988). The
problem was investigated experimentally by Haas and Sturtevant (1987) using weak
plane shocks over cylinders containing lighter and heavier gases. The numerical results
compare well with experiment. The inability of shock dynamics to produce regular
reflection, discussed in regard to the focusing problem of Chapter 2, reappears for the
case of a four-shock intersection, and produces features not seen in experiment.

Numerical results for a planar shock propagating over a cylinder containing light
gas, with a higher sound speed, are shown in Fig. 4.2. Figure 4.3 shows the Mach
number variation as a function of distance along the shock front for the five shock
front positions marked in the upper figure with the origin for the distance along
the shock front at the centerline. In the experiment, the helium in the cylinder was
contaminated; therefore, the sound speed ratio of the gas in the cylinder will be taken
as agz/aog1 = 2.32. The radius of the cylinder is R = 1, with the initial Mach number
of the planar shock wave M, = 1.22.

Since the sound speed inside the cylinder is higher, the shock within the cylinder
accelerates ahead of the shock outside. Initially, regular refraction is observed, and
the shock front is kinked at the interface. As the shock propagates forward over
the cylinder, the angle between the shock and the interface decreases until irregular
refraction occurs. A shock-shock forms moving outward along the shock front, pro-
ducing a large increase in Mach number as shown in profile B. An additional corner
forms on the front outside the cylinder due to a second shock-shock. As the front
propagates, the two shock-shocks spread apart producing the visible second corner,
seen for example in profile E. The two shock-shocks weaken as they propagate outward
from the cylinder. A precursor wave joins the straight shock outside the cylinder with

the shock moving ahead in the cylinder. Between the corner and the cylinder, the
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Figure 4.2: Shock dynamics results for plane shock My = 1.22 over cylinder with
sound speed ratio agy/ag; = 2.32.

LA O OO L LB B

..O

/ }
T § P e -
R o e e :
100 vy o D e A I e T T T

o] 1 2 3 4
Distance along shock front (s/R)

RS S T — e

Figure 4.3: Mach number profiles for shock fronts shown in previous figure.
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Mach number of the shock approaches unity as the shock diverges. Downstream of

the cylinder, the shock emerges diverging.

Figure 4.4: Comparison of the (a) four-shock point seen in experiment, and (b) the
double corner formed in shock dynamics.

The second shock-shock seen on the shock fronts in Fig. 4.2 is a limitation of shock
dynamics. The corner is not seen experimentally or in numerical analysis using the
Euler equations (Quirk & Karni 1994). From experiment, a four-shock intersection is
expected as shown in Fig. 4.4(a), which turns the shock without a strong increase in
Mach number. In shock dynamics, a single shock-shock cannot turn the shock without
increasing the Mach number. Therefore after the initial shock-shock discontinuity
which turns the shock, a second shock-shock of the opposite family occurs to further
- turn the front and lower the Mach number. The two shock-shocks are of opposite
family and spread apart as the front propagates, as shown in Fig. 4.4(b). This failure
of shock dynamics produces the regions of high Mach number seen in Fig. 4.3 in
profiles B — E, which are not observed using experimentally. The failure to accurately
resolve four-shock intersections is a direct effect of regular reflection not being allowed
in shock dynamics.

The shock fronts from the numerical shock dynamics results are compared with
experimental results in Fig. 4.5. The solid lines represent the present numerical
results, while the dashed lines are the shock fronts digitized from the shadowgraphs
in the results of Haas (1984). In the experiment, variation in the shock strength or

time origin between shots causes the uneven spacing of the experimental profiles. The



56
numerical results compare extremely well with experiment. Initially, the numerical
shock front appears too highly curved; however, the results agree closely near the back
edge of the cylinder. The experimental location of the shock corner appears centered
between the two shock-shocks produced by shock dynamics. The Mach number along
the shock front would provide a more sensitive comparison to judge the accuracy
of the shock dynamics solution, however the information is not available from the

experimental and numerical Euler-code results.
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~ Figure 4.5: Comparison of shock dynamics results with experimental results: plane
shock My = 1.22 over cylinder with sound speed ratio ags/ag; = 2.32. Solid lines
represent the present numerical results, while the dashed lines are the shock fronts
digitized from the shadowgraphs in the results of Haas (1984).

Figure 4.6 displays the numerical results for a planar shock propagating over a
cylinder containing heavy gas, with a lower sound speed. Figure 4.7 shows the Mach
number variation as a function of distance along the shock front for the five shock front
positions marked in the upper figure with the origin for the distance along the shock
front at the centerline. In the experiment, the cylinder contained refrigerant R22
with sound speed ratio of the gas in the cylinder to gas outside of aga/ag; = 0.53. As

before, the radius of the cylinder is R = 1, and initial shock Mach number M, = 1.22.
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Figure 4.6: Shock dynamics results for plane shock M, = 1.22 over cylinder with
sound speed ratio ags/ag; = 0.53.
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Figure 4.7: Mach number profiles for shock fronts shown in previous figure.
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The gas inside the cylinder has lower sound speed, so the shock outside the inho-
mogeneity advances ahead of the shock front inside, as shown in Fig. 4.6. However,
the Mach number inside the cylinder is higher as shown in the Mach number profiles.
As the shock advances around the outside of the cylinder, the shock weakens and the
Mach number approaches one. The shock front inside forms a corner, approximately
along the caustic predicted by acoustics. At the corner, two shock-shocks of opposite
families begin to form and move outward between which the Mach number reaches
high values. Again, experimerital shadowgraphs show four disturbances meeting at
the corner. However, since shock dynamics cannot treat regular reflection, a pair of
shock-shocks form as in the previous case. The solution cannot be continued past

profile F since the shock at the edge of the bubble intersects itself at the centerline.
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Figure 4.8: Comparison of shock dynamics results with experimental results: plane
shock My = 1.22 over cylinder with sound speed ratio aga/ae; = 0.53. Solid lines
represent the present numerical results, while the dashed lines are the shock fronts
digitized from the shadowgraphs in the results of Haas (1984).

The shock fronts from the numerical shock dynamics results are compared with
experimental results in Fig. 4.8. The numerical and experimental shock fronts are

plotted at equal times. The fronts digitized from the shadowgraphs in the results
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of Haas (1984) are shown as dashed lines, and the thicker solid lines represent the
present numerical results. The agreement is good throughout the solution, especially

the location of the corner on the shock front inside the cylinder.

Bibliography

Catherasoo, C.J. and Sturtevant, B. (1983) “Shock dynamics in non-uniform media,”

J. Fluid Mech., 127, 539-561.

Chisnell, R.F. (1955) “The normal motion of a shock wave through a non-uniform

one-dimensional medium,” Proc. R. Soc. Lond., A232, 350-370.

Chisnell, R.F. (1957) “The motion of a shock wave in a channel, with applications to

cylindrical and spherical shock waves,” J. Fluid Mech., 2, 286-298.

Haas, J.-F. (1984) Interaction of Weak Shock Waves and Discrete Gas Inhomo-
geneities, Ph.D. Thesis, Graduate Aeronautical Laboratories, California Institute

of Technology, Pasadena, CA.

Haas, J.-F. and Sturtevant, B. (1987) “Interaction of weak shock waves with

cylindrical and spherical gas inhomogeneities,” J. Fluid Mech., 181, 41-76.

Quirk, J. and Karni, S. (1994) “On the dynamics of a shock-bubble interaction,”
NASA CR-194978, ICASE Report No. 94-75.

Schwendeman, D.W. (1988) “Numerical shock propagation in non-uniform media,”

J. Fluid Mech., 188, 383-410.

Whitham, G.B. (1957) “A new approach to problems of shock dynamics, Part I:
Two-dimensional problems,” J. Fluid Mech., 2, 145-171.

Whitham, G.B. (1959) “A new approach to problems of shock dynamics, Part II:
Three-dimensional problems.” J. Fluid Mech., 5, 369-386.

Whitham, G.B. (1968) “A note on shock dynamics relative to a moving frame,”

J. Fluid Mech., 31, 449-453.



60

Appendix A Area-Mach Relation for
Shock Waves in Water

A.1 Shock Relations

For a stationary shock, the conservation of mass, momentum, and energy gives the

three equations

p1UL = Palsz, (A1)
1+ pruf = pa + pau3, (A.2)
L, 1,
h1 -+ 5’&1 - hg + *Q'UQ, (Ag)

for the pressure p, enthalpy h, density p, and velocity u. The subscripts 1 and 2 denote
conditions upstream and downstream of the shock respectively. The Mach number of
the shock is given by M = u;/a;. Combining Eqns. A.1 - A.3, the enthalpy difference

is often expressed in terms of the pressure and density as

1

ho — hy = 2 (p2 = p1) (1 + v2), (A4)

where v = 1/p. Assuming the upstream conditions are specified, Eqns. A.1 — A.3
provide three equations for the four unknown downstream values ps, pa, us, and hs.

The set of equations is closed by an equation of state, typically h = h(p, p).

A.2 NBS Equation for Water Properties

In order to make predictions for the temperature and entropy changes across the
shock and to verify the accuracy of the Tait equation for water, the NBS equation of

state for water is used. The U.S. National Bureau of Standards (Haar et al., 1984)
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developed a formulation for the properties of water and steam based on a review of
experimental thermodynamic measurements. An analytic equation containing over
sixty coeflicients approximates the Helmholtz function A(p, T') as a function of density
and temperature. The remaining thermodynamic variables are then calculated by
differentiation of this relation.

The equations are specifically recommended for the range
27315 <T <1273.15 K, (A.5)
where for T' > 423.15 K, the maximum pressure is
Pmaz = 1500 MPa (15000 bar), (A.6)

and for 273.15 < T < 423.15 K, the maximum pressure is

_ (T —273.15 K)
Prmaz = 100 |5 + 5K bar. (A.7)

In addition, a small region near the critical point is excluded. The inaccuracy in
density across the entire temperature range as a function of pressure and temperature
is estimated to be less than 35 parts in 10000 for p < 100 MPa (1000 bar) and less
~than 150 parts in 10000 for pressures up to 1000 MPa (10000 bar).!

With the analytic equation of state, the shock equations are closed, and the system
can be written in terms of the density ratio, and solved by iteration. The resulting
shock properties are shown in Fig. A.1 for the initial pressure of p; = 1 bar and

temperature of T = 20 C.

!The authors claim the equation should also be suitable for the wider range
260 < T < 2500K, (A.8)

0 < p < 3000 MPa (30000 bar). (A.9)
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- Figure A.1: Shock properties from NBS equation of state for upstream conditions
p1 = 1 bar, T; = 20 C.

A.3 Tait Equation for Water

Kirkwood and Bethe (1942) proposed the modified Tait equation for water:

1(0p\ _ 1
E(%)S “T(p+B) (A.10)

Integrating from a reference state:

p(p, 8) + B(s) p(p,s) \©
p(po,s) + B(s) ( ) : (A.11)

N p(p()a 8)
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Taking the reference state as zero pressure py = 0 and rearranging yields the more

(%%)F - 1} , (A.12)

where B(s) is a weak function of entropy, p(0, s) is the density at zero pressure, and

familiar form

p(p,s) = B(s)

I' is approximately constant.
Since the coefficients are only functions of entropy, the sound speed is given with-

out further approximation by

o_ (Op) _ L+ B(s))
o= (Z) -z i

The value of B should be chosen to give agreement with the sound speed at the
reference state. The sound speed varies with entropy. The relation does not imply
that B is a constant or that the Tait equation is an isentropic relation.

The terms B(s) and p(0, s) are only weak functions of entropy, therefore B(s) and
p(0,s) = po are typically taken as constant without significant loss of accuracy:

p(p) =B (M)F - 1} : (A.14)

0o

This further approximation leads to the relation

p+ B
pI‘

= constant, (A.15)

which is similar in form to the isentropic condition for gases. However, since it is not
an isentropic relation, it can be applied across shock waves.

The appropriate choice of I' depends on the pressure and temperature range of
interest. I" decreases with pressure at constant temperature and increases with tem-
perature at constant pressure. For temperature 77 = 20 C, the value of I' = 7.15
is most often used in the literature. The density at zero pressure for 77 = 20 C
sets pp = 998.232 kg/m?3, and B follows from I" and the sound speed (Eqn. A.13),
B = 303.975 MPa.
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With the assumption that B, I'; and p(0, s) are constant, the equation for pressure
p is only a function of the density p. Therefore, the shock Hugoniot p, versus vy follows
immediately. The resulting Hugoniot is shown in Fig. A.2 compared to the Hugoniot

from the full equation of state for initial temperature of 20 C.

500 T T T 1 T 7 T T T T T T T
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- === Tait Egn, y=7.15
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\a
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Figure A.2: Comparison of shock Hugoniot for NBS equation of state and modified
Tait equation for p; = 1 bar, 77 = 20 C.

A.4 Shock Relations Using Tait Equation

Using the Tait equation, which gives p(p) in Eqn. A.14, the system of shock equations

can be solved without reference to the energy equation. Eliminating the density ratio,
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the pressure ratio is given as a function of the shock Mach number by the non-trivial

root of

Z(T+1)/T _ (1 4 I“M2) ZYT L TM? =0, (A.16)

where the ratio of the shifted pressures Z = (py + B)/(p1 + B). The density ratio R
follows immediately from Eqn. A.15:

R=P2 =g, (A.17)
41

Therefore, the density ratio can also be written as the non-trivial root of the equation
R™' — (1+TM?) R+TM? =0. (A.18)

The density ratio and shifted pressure ratio are functions of I' alone. The value of
B is required only to calculate the value of the pressure ratio ps/p;, and the value of
po does not appear in any of the relations. However, the assumed equation of state
does not allow a prediction of the temperature or entropy change across the shock.

Two limits are recognized. In the weak shock limit M — 1, the pressure and

density ratios reduce to

4T

Z(M = 1) = 14 s (M = 1), (A.19)
4
ROM = 1) =1+ s (M = 1). (A.20)

In the strong shock limit as M — oo, the pressure and density ratio are approximated
by
Z(M — o0) ~ M?, (A.21)

R(M — o0) ~ (M%), (A.22)

Unlike for a perfect gas, with the assumed equation of state the density ratio does

not approach a finite value as the shock Mach number approaches infinity.
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A.5 Enthalpy Change

A further approximation for the enthalpy change has been used in the literature
(Holl 1982, Best 1991), which results in a system equivalent to that for a perfect gas.
As will be shown, the approximation is unnecessary and may result in unexpectedly
large errors in Mach number predictions.

From thermodynamics, the enthalpy derivative dh can be written in terms of the

entropy derivative ds and the pressure derivative dp:
dh = Tds + vdp. (A.23)

This expression can be integrated from state 1 to 2 along a path consisting of a

constant pressure segment and constant entropy segment to give

P2 82
he—hi= [ vip| o+ [ Tds (A.24)
P s=s1 V%1 p=p2
If the modified Tait equation is assumed, the first integral can be evaluated explicitly:
r B B s ‘
hy — hy = (p2 TE Pt ) + / “Tds. (A.25)
-1 P2 £1 81

For weak shocks, one might suggest that the entropy contribution to the enthalpy
difference can be neglected, the term being small compared to the total enthalpy

difference. If the term is neglected, the enthalpy relation becomes

hg—hl’fl‘}

r B
(p2+B bt ) (A.26)

r-1 P2 £1

This approximation provides the enthalpy h = h(p, p) which closes the original system
Eqns. A.1 - A.3. The resulting system of equations is identical to the system for
a perfect gas, the only difference being the pressures are replaced by the shifted
pressures p + B. The shock relations for a perfect gas should carry over directly with

the ratio of specific heats 7y replaced by I.
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There are problems with this approach. The system is now overspecified since five
equations (Eqns. A.1-A.3, A.14, and A.26) are now available for the four unknown
quantities py, pa, Uz, and hy. This point is not troublesome, since the choice of which
four equations to solve yields results which only vary by several percent over the range
of low Mach numbers. However, the error in the Mach number corresponding to a
given pressure ratio is much larger than might be naively expected. In fact, denoting
the neglected integral term by Ahs, the correct expression for the Mach number as a

function of the shifted pressure ratio is

M2(1+-1-(1“~1)(1+-‘31) = ):(r+1)z+(r-1)‘ (A.27)

2 p2) he —hy 2T

The right-hand side is indeed the form of the perfect gas relation; however, the correct

condition to neglect the Ah, term is clearly

1 Ah,
5(0-1) (1 + 31) o <L (A.28)

P2

Since I' = 7.15 and p;/p is generally near unity, the error involved in neglecting the
term is some 6x larger than the mere ratio of the neglected term to the total enthalpy
difference. Since at p, = 10 kbars, Ah, is approximately three percent of the total
enthalpy difference, this assumption can lead to a 15 — 20 percent error in the shock
Mach number.

The above approximation does show that for weak shocks the system behaves
essentially as a perfect gas with high « value. However, the loss of accuracy is unnec-
essary since a similar conclusion can be drawn from the weak shock approximation.
The correct approach is to use the full equation for the pressure ratio, Eqn. A.16, or

density ratio, Eqn. A.18.

A.6 Area-Mach Relation

With the shock jump conditions from the modified Tait equation, the Area-Mach

relation in shock dynamics for water can be derived. Recall for geometrical shock
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dynamics, the shock relations are applied along the C'+ characteristic:

dp du = pa*u 1dA

@ Pt uradda

(A.29)

The derivatives of pressure can be expressed in terms of the density ratio using the

definition of sound speed
dp 2 dp
— =g A.30
dr % dz ( )
From the continuity equation, the velocity is written in terms of the Mach number

and density ratio as

’ll,Q:a,]M(l'-l/R), (A31>
which gives the derivative

du R-1dM MdR

dr R dr  Rdz’ (A.32)

The derivative of the density ratio is given by differentiating Eqn. A.18 and simplify-

ing:

Ei_}z_ 2MR(R-1)\ dM
dz | RT+1 — Mf2 dz

(A.33)
Substituting into the characteristic equation, Eqn. A.29; and simplifying yields the
~ Area-Mach relation:

M 1 (REI+D/2 4 M M(R—-1) ‘
A(M F) = exp {/Mo M (m) (1 + W) dM} . (A34)

A comparison of the Area-Mach relation for water using the modified Tait equation
I' = 7.15 and the perfect gas relation, v = 1.4, is shown in Fig. A.3. The reference
Mach number for the A(M) relation is chosen as the midpoint of the Mach number
range; therefore, the values are forced to coincide at the midpoint. Of the coefficients
in the modified Tait equation, only the value of I" appears in the Area-Mach relation.
For problems such as shock focusing, the trajectory of the triple point and the location

of maximum pressure predicted by geometrical shock dynamics will be independent
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of the choice of B. However in converting Mach number results to pressure values,

the value of B will be required.

Figure A.3: Comparison of the Area-Mach relation A(M) for water using the modified
Tait equation I' = 7.15 and perfect gas relation, v = 1.4.
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Appendix B Seismic Detection of Sonic

Booms

The seismic network in Southern California routinely detects sonic booms from air-
craft. The high density of sites and the extensive ground coverage of the network,
over 50,000 square kilometers, provide a unique opportunity to study the long-range
propagation of direct and indirect sonic booms.

In Section B.1, the fundamental features of sonic boom carpets under a realistic
atmosphere are presented. The pressure signals from the N-wave signal in the atmo-
sphere produce a small, but detectable, ground motion as outlined in Section B.2.
Seismic data from three overflights are presented in Section B.3: a west to east SR-71
pass at M = 3.15, the landing of space shuttle Discovery, STS-42, at Edwards AFB,
and the passage of shuttle Discovery over Washington and Oregon. Section B.4
presents the results of an analysis of a set of “mystery booms” which occurred in

California in 1992 and 1993.

'B.1 Atmospheric Propagation

For the propagation of sonic booms through the atmosphere, the linear theory of
geometrical acoustics is applied. In geometrical acoustics, the shock front moves
along rays with speed c relative to the surrounding medium, where c is the local
sound speed. Following Pierce (1981), the raytracing equations can be written

dx c*s

‘a—t" = —Q—+V, (Bl)

ds Q
i —--EVc—sx(va)*(S‘V)V, (B.2)
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where n is the unit normal to the wave, the medium moves with velocity v, the wave-
slowness vector s = n/(c+ v-n), and @ =1-v-s = ¢/(c+ v - n). A stratified model
is typically assumed for the atmosphere where properties vary only with altitude
[v =v(z), ¢ = c(z)], and the vertical wind velocity is zero (v, = 0). For this case,
the equation for the change of s simplifies to a generalization of Snell’s law. The

horizontal components s, and s, must remain constant, while the vertical component

S {(9)2 _s2o 33} " (B.3)

C

is given by

The ray equations become

Ed_?_——cgsl‘ v gg—fﬁa.‘._v .(E-—-C2Sz
dt  Q ° N v’ - ‘

(B.4)

From the assumption of a stratified atmosphere, the right-hand side of Eqns. B.4
are functions of altitude alone, and can be integrated numerically from atmosphere
profiles.

Rays are confined to regions of sound speed and wind speed where 52 > 0. A
turning point exists where s, passes through zero and the ray changes direction of
vertical propagation. For an atmosphere without winds, a ray will only turn horizontal

at the altitude with sound speed

o(z) = —

" cosby’ (B.5)

where ¢q and 6y are the sound speed and ray angle to the horizontal at the point
where the ray is emitted. For the case of a sonic boom, the ray is emitted at the
complement of the Mach angle. Therefore, the ray turning points for an aircraft in
straight and level flight are located at the altitude where the sound speed is equal to
the velocity of the aircraft. For an aircraft flying at below the ambient sound speed
at the ground, all rays will be turned and none will reach the ground, this critical
Mach number being referred to as the cutoff Mach number. Rays which are turned

at high altitude will only reach the ground if the sound speed is greater than that at
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the ground, otherwise the ray will be channeled between an upper and lower turning
point.

For long-range propagation in the atmosphere, the effect of winds cannot be ne-
glected. For a stratified atmosphere with winds, the turning points for each ray
depends on the ray direction. It is convenient to define the effective sound speed seen
by a ray moving in a particular direction c.fy = ¢y + v - n. The turning point for a

ray occurs at the altitude where

Co

Ceff(27) = —5= o (B.6)

which depends on the ray direction through the effective sound speed.

For the present analysis, the Range Reference Atmosphere for Edwards Air Force
Base is used for wind and thermodynamic properties to 70 km altitude (Meteorology
Group, Range Commanders Council 1983). These profiles are comparable to the
U.S. Standard Atmosphere, Supplemental Atmosphere (1966) and climatic data for
the Pacific Missile Range, California (de Violini 1967, 1969). In Fig. B.1, profiles
of temperature and zonal and meridional wind components are shown as a function
of altitude from the monthly profiles for January and November. Zonal winds are
positive when from west to east and meridional wind components are positive when
\ from south to north. During the winter months the zonal wind component shows
strong stratospheric winds blowing from west to east. Meridional wind components
are much weaker and tend to fluctuate in direction, although stronger meridional
wind components are also found at stratospheric altitudes.

Effective sound speeds for five ray directions are shown in Fig. B.1. Shallow rays
traveling east will be turned downward toward the ground between 40 km and 60 km
altitude. The effective sound speed for rays traveling directly north or south is not
sufficiently high at altitude to diffract the rays to the surface, but a significant area
of high effective sound speeds exists even for the northeast and southeast directions.
Rays traveling west will not be turned back to the ground at any altitude. The tem-

perature rise in the stratosphere alone is not sufficient to return rays to the ground.
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Reference Atmosphere.

60 60

40 40

Z (km)

20 20

Olowaddiidaasl
280 320 360 400
S (-90.0 deg)

[ A
280 320 360 400
SE (—45.0 deg)

0 gl [ . oo bl
280 320 360 400 280 320 360 400 280 320 360 400
N (0.0 deg) NE (45.0 deg) £ (0.0 deg)

Figure B.2: Effective sound speed profiles for January (—) and November (—-),
Edwards AFB Range Reference Atmosphere.



74

For a uniform atmosphere with no winds, the sonic boom forms a Mach cone
which intersects the ground to produce the hyperbolae typically associated with the
sonic boom footprint. For realistic atmosphere profiles, the sonic boom footprint
becomes much more complex as shown in Fig. B.3. The primary carpet lies directly
beneath the aircraft and consists of direct rays from the aircraft to the ground. The
increasing temperature as rays approach the ground leads to the refraction of the rays
upward which limits the width of the primary carpet. Outside of the primary carpet,
a secondary carpet is formed of indirect rays which have propagated upward and been
refracted back to the ground. Additional carpets are formed further from the aircraft
flight path by rays which have reflected from the ground, returned to high altitude,
and then back toward the ground. Even higher order carpets exist further out from

the flight path.

PRIMARY SECONDARY

Figure B.3: Illustration of sonic boom carpets.

Between the primary carpet and secondary carpet, geometrical acoustics pre-
dicts a shadow region where no rays reach the ground. However, the full theory
of acoustics allows for a creeping wave launched at the edge of the primary car-
pet which propagates along the ground in the ray direction. The creeping wave is
typically illustrated as a wave moving along the ground continually launching rays

upward. Since the creeping wave sheds energy, the amplitude dies off exponentially
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with distance (Rickley & Pierce 1980).

Examples of these atmospheric effects have been observed experimentally for sonic
booms. Rickley and Pierce (1980) measured secondary sonic booms from Concorde
flights along the East coast of the United States. Microphones captured similar
indirect sonic booms from the Concorde refracted from the level of the stratosphere
(40 - 50 km) which had propagated a horizontal range of over 165 km. These were
followed several minutes later by low-frequency signals which had refracted from the
level of the thermosphere (100 — 130 km) and propagated over ranges up to 1000
km (Balachandran et al., 1977). Sonic boom signatures are often recorded past the
nominal edge of the primary carpet; however, the occurrence of creeping waves is
difficult to detect due to the similar effects of turbulent scattering (Onyeowu 1975).

Although pointwise pressure measurements have been made for indirect sonic
booms, fundamental questions about the size and shape of the indirect carpets and
the shadow regions remain unanswered. Measurement of indirect sonic booms has
traditionally been very difficult due to the locational dependence on the atmospheric
conditions at high-altitude and the wide geographic coverage required to resolve the
carpets. As shown in the next section, existing seismic networks, such as the network
in Southern California which covers over 50,000 square kilometers, provide a very

useful tool for analyzing the indirect sonic booms.

B.2 Seismic Detection

Early use of seismographs in sonic boom research was primarily restricted to exam-
ining the effects of sonic booms on ground motion and the possibility of damage to
structures or triggering of earthquakes (Cook & Goforth 1970). These studies involved
only a few seismograph instruments, often specifically emplaced for the overflights.
Only recently have larger existing seismograph networks been used to detect sonic
booms from aircraft and meteors (Kanamori et al., 1992, Qamar 1993).

Due to the much higher sound speed in the surface, the majority of the energy

of the N-wave is reflected; however, several effects of the wave are observed in the
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ground. The primary effect of the pressure wave is the moving strain field in the
surface immediately beneath the N-wave. A secondary, weaker effect is the produc-
tion of coupled Rayleigh waves which follow the passage of the N-wave. In addition,
irregularities in the ground properties and acoustic coupling with geographical fea-
tures become local sources which radiate additional seismic waves. Since the wave
speed is higher in the ground, precursor waves are often observed to arrive several
seconds before the sonic boom (Cook et al., 1972).

If the shock wave is approximated as a moving normal load over an elastic half-
space, the displacement and velocity of the surface can be computed from a superpo-
sition of solutions producing zero normal and shear stress at the boundary. Consider

an incident wave moving along the surface at velocity U with pressure distribution
p(z,t) = poe™ /U, (B.7)

The vertical displacement u, at the surface is given by:

U A+ 2 ~ ;
uz(x,t) = —5% (—i—i—jj) ezw(t—a:/D)1 (BS)

where A and p are the elastic constants of the halfspace (Ben Menachem & Singh
1981) The surface velocity follows immediately by derivation of the displacement.
- The theoretical surface displacement and velocity predicted by Eqns. B.7 and B.8 for
a pressure N-wave with duration 7 = 0.2 is shown in Fig. B.4. The surface velocity
diagram shows the inverted U-type of signature characteristic of an N-wave for veloc-
ity seismograms, the two strong downward peaks corresponding to the leading and
trailing shock on the original N-wave.

Pressure transducers have been added to a number of the TERRAscope stations
in Southern California operated by the Caltech Seismological Laboratory. This allows
direct comparisons between sonic boom pressures and surface velocity. In Fig. B.5,
data are shown for the two TERRAscope stations CAL (CalState LA) and RPV
(Rancho Palos Verdes) for the reentry of space shuttle Endeavour on March 18, 1995.
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Figure B.4: Surface effects of pressure wave.

- (Data provided by Dr. H. Kanamori, Caltech Seismological Laboratory.) The pres-
sure and surface velocity are measured directly and corrected only for instrument
response, and the surface displacement is integrated from the velocity. The charac-
teristic double-peaked signature of an N-wave is clearly visible in the surface velocity
traces which provides an accurate estimate of the N-wave duration. The features of
the N-wave are also very well captured in the surface displacement.

The seismic network used in the current study consists of over 200 stations shown
in Fig. B.6 from TERRAscope (Caltech’s broadband seismic network), the Caltech-
U.S.G.S. Southern California Seismic Network (SCSN), and the University of Cali-
fornia Los Angeles Basin Seismic Network. The majority of sites are SCSN stations

which measure ground motion velocity in the frequency range of 1 to 20 Hz. These
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Figure B.5: Pressure, surface displacement, and surface velocity for TERRAscope
sites CAL (Cal State LA) and RPV (Rancho Palos Verdes) for the reentry of
space shuttle Endeavour, March 1995. (Data provided by Dr. H. Kanamori, Caltech
Seismological Laboratory.)
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Figure B.6: Seismic stations in California used for the current study.

. instruments record frequencies well within this range, but response falls off above
20 Hz due to an anti-aliasing filter near 30 Hz. Only a limited response is avail-
able below 1 Hz. Raw output voltage data were provided at 100 samples per second
by Dr. H. Kanamori, Caltech Seismological Laboratory and Dr. J. Mori, U.S.G.S.,
Pasadena. For magnitude analysis, the data was corrected for instrument response;
otherwise the raw signal data were used for selecting arrival times.

For the entire network, amplitude information is difficult to extract from the
seismic data due to the lack of detailed knowledge of the local surface conditions of
the seismic stations. When the site and instrument properties are known, seismic
data have been shown to produce accurate estimates of N-wave pressures for the

primary sonic booms from shuttle landings (Kanamori et al., 1992). However, for the
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extensive network used in this study, the sites are typically only classified as hard or
soft rock sites. A useful approximation for at least a basic comparison of pressures
is available from Goforth and McDonald (1968). In flight tests with a wide variety
of aircraft using velocity seismographs with a frequency range of 1 to 100 Hz, the
peak ground velocity was found to be proportional to the maximum overpressure:
for high-density rock, maximum ground velocity was approximately 1.5 um/sec per
Pascal of overpressure, and approximately 2 um/sec per Pascal for low-density rock.

The seismograph records provide accurate information for arrival time of the pres-
sure disturbances. When the signal characteristic of N-waves is visible, the duration
of the N-wave can also be determined. However, at soft-rock sites, the actual N-wave
signal itself is often lost in reverberations of the local sediment. Due to the extremely
low magnitude of the ground motion, disturbances often are indistinguishable from
local sources such as noise or nearby traffic. Events which are not also observed on
nearby sites have to be ignored as local noise when choosing arrival times from the

time traces.

B.3 Flight Results

B.3.1 SR-71 Mach 3.15 Overflight

First due to the relative complexity of the space shuttle reentry trajectories, the results
from a portion of an NASA SR-71 flight on December 9, 1993 are presented. As part
of a pre-scheduled flight, the SR-71 flew a high-speed pass from east to west over
Edwards AFB at M = 3.15 at an altitude of 21 km. Through the kind cooperation of
Dr. Robert Meyer of NASA Dryden, the SR-71 trajectory was modified to facilitate
collection of seismic data.

The seismic data from the overflight are shown in Fig. B.7. All seismic stations
available are denoted by the triangle symbols, and solid symbols denote the sites
which detected the sonic boom. The arrival time data were converted to a regular

grid and contoured to produce the solid arrival time contours. Since the majority of
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Figure B.7: Contours from seismic arrival times (—-) compared with raytracing
results (——) for SR-71 flight, December 8, 1993, at M = 3.15, altitude 21 km. The
small plus symbols represent where rays from raytracing intersected the ground.

the rays are propagating east to west, no indirect carpets are observed. The seismic
data clearly show both the north and south edges of the primary carpet.

For comparison, a raytracing computation was performed. A cone of rays was
launched at the Mach angle at discrete times along the trajectory, and the rays were
then propagated using the wind and temperature profiles from the Edwards AFB
Range Reference Atmosphere (Meteorology Group, Range Commanders Council 1983).
The small plus symbols in Fig. B.7 represent the locations where the computed rays

intersected the ground. The majority of the ray ground intersections are direct rays
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in the primary carpet underneath the aircraft trajectory, only a few indirect rays ap-
pear north of the primary carpet. The ground arrival time contours from raytracing
are shown as dashed lines. The raytracing contours compare well with the arrival
times from the seismic data, with the only significant disagreement being a loss of
resolution due to the lack of sites as the aircraft begins to turn north.

Sections of the seismic traces for seven sites from the SR-71 flight are shown
in Fig. B.8. The time traces show the ground velocity signal characteristic of an
N-wave. The MAR site is shown as an example of a site where the signal is lost
in reverberations in the ground layers. Precursor waves are seen before several of
the N-wave signatures, most notably at the SBK site. This example provides an
important verification that the seismic data do not show spurious signals, but only

the signal from the N-wave.
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Figure B.8: (a) Seismic station locations relative to SR-71 trajectory and (b) time
traces from selected seismic stations which detected the primary boom. Time traces
record ground motion, vertical scale is voltage output in counts.
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B.3.2 STS-42 Reentry

The seismic data were examined in detail for the landings at Edwards AFB of space
shuttle Discovery, STS-42, on January 30, 1992. The flight approached Edwards AFB
from the west over the Pacific Ocean, leading to rays which propagated predominantly
from west to east producing a complex set of indirect sonic boom carpets.

Contours of arrival time from raytracing results for the reentry of STS-42 are
shown in Fig. B.9. A cone of rays was launched at the Mach angle at discrete times
along the trajectory, and the rays were then propagated through the wind and tem-
perature profiles. The small plus symbols represent the locations where computed
rays intersected the ground. The shuttle trajectory is shown as a dashed line. Within
the primary carpet the arrival time contours shown as dashed lines have the charac-
teristic hyperbolic shape, modified by the maneuvering of the shuttle. The shockfront
predicted by raytracing is crossed and folded within the primary carpet, as denoted by
the curve of ground intersection points for rays emitted at subsequent times cross. As
the altitude and Mach number decrease, the width of the primary carpet decreases.
In addition to the primary carpet, two indirect carpets to the east are apparent,
separated by shadow regions where no rays reach the ground from raytracing.

The seismic network detected four booms from the STS-42 landing. Arrival time
contours from the seismic data for the four booms are shown in Fig. B.10. Arrival
times are chosen from the time traces, converted to a regular grid, and contoured
at 50 second intervals. The most immediately striking feature of the seismic results
is the complete ground coverage. Virtually the entire network detected at least one
boom, and no shadow region is visible, in contrast to the raytracing results (Fig. B.9).
Within the primary carpet, the contours agree very well with the raytracing results,
verifying again the ability of the seismic network to accurately map the primary
carpet.

Due to the rather unexpected amount of ground coverage of the sonic booms,
three sets of representative time traces are shown in Figs. B.11 — B.13. The first

figure, Fig. B.11, shows seven seismic sites situated in the shadow region predicted
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by geometrical acoustics. The sites, both north and south of the trajectory, show
two booms within the shadow region. The first boom is almost certainly the primary
boom, labeled Boom 1. This is consistent with the underprediction of the carpet
width by raytracing as was observed for the SR-71 overflight. The second boom,
labeled Boom 2, may be a creeping wave, although the magnitude appears too large.
Attempts to vary the atmosphere profile, such as introducing unusually strong jet
stream winds, failed to duplicate the second boom in this region by raytracing.

The second figure, Fig. B.12, shows seven sites in an area roughly 100 km square,
slightly inside the secondary carpet predicted by raytracing. Boom 2 appears on
each of the sites, but splits into two peaks on the eastern sites, for example at the
MDA and RAY sites. The low amplitude disturbance seen on these sites appears to be
a third and fourth disturbance, labeled Boom 3 and Boom 4, which strengthens and
becomes clearly visible further east. The final set of time traces for STS-42 reentry,
Fig. B.13, shows a line of seven sites stretching 150 km, offering a rare opportunity
to view the development of the indirect carpets. The second boom, Boom 2, is seen
to disappear further from the flight track to be replaced by Boom 3 and Boom 4.
The indirect booms are split into two segments, which one would assume is caused

by discrete bands in the atmosphere profiles.
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Figure B.11: (a) Seismic station locations relative to the STS-42 trajectory and
(b) time traces from selected seismic stations within the shadow region predicted
by raytracing for STS-42 reentry. Time traces record ground motion, vertical scale is
voltage output in counts.
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Figure B.12: (a) Seismic station locations relative to the STS-42 trajectory, (b) map
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pet predicted by raytracing for STS-42 reentry. Time traces record ground motion,
vertical scale is voltage output in counts.
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Figure B.13: (a) Seismic station locations relative to the STS-42 trajectory and
(b) time traces from line of seismic stations outside the secondary carpet predicted
by raytracing for STS-42 reentry. Time traces record ground motion, vertical scale is
voltage output in counts.
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B.3.3 Discovery Reentry

A network of seismic stations in Washington and Oregon detected the December 9, 1992
reentry of space shuttle Discovery (Qamar 1993). Figure B.14 shows contours of
arrival times from 66 seismic sites covering both sides of the flight track for distances
of over 500 kilometers. Arrival times supplied by Qamar have been converted to a
regular grid and contoured without any assumptions about the original trajectory.
The strong curvature of the contours and the relatively sparse data result in the
oscillations seen along the contours; however, the outline of the hyperbolae in the

primary carpet is clearly visible.
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Figure B.14: Arrival time contours from seismic data for the December 1992 reentry of
space shuttle Discovery over seismic network in Washington and Oregon. Time traces
record ground motion, vertical scale is voltage output in counts. (Data supplied by
Dr. A. Qamar, University of Washington.)
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Sections of the time traces for the seven labeled stations are shown in Figure B.15.
The stations are plotted in order of the arrival of the signal, i.e., north to south;
however, the time origin is shifted to align the arrival of the primary disturbance. The
later stations show two disturbances which Qamar postulated were the two peaks of
the N-wave, which would correspond to an N-wave duration of over 1 second.

To the present author’s knowledge, such long duration N-waves have not been
observed before. A simple calculation of the Mach angle from the hyperbola contours
in Figure B.14 yields a Mach number of approximately M = 14. From a typical
shuttle reentry profile, this Mach number corresponds to an altitude of approximately
55 km. Computing the N-wave duration from the standard approximate relations
(Whitham 1974) gives an N-wave duration of no more than 0.8 sec. However the
accuracy of the estimate for such high altitude and Mach number is difficult to assess.
Long N-wave durations up to 0.7 sec have been observed from the space shuttle reentry
using pressure transducers (Garcia et al., 1985), for a sonic boom estimated to have
originated from the shuttle at M = 5.87 at an altitude of 39.4 km, which is still much
later in reentry than the sonic booms recorded in Washington. The appearance of

the two peaks on such widely separated sites does rule out local geological effects.
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Figure B.15: Seismic traces for stations shown in Fig. B.14 for December 1992 reentry
of space shuttle Discovery. (Seismic data supplied by Dr. A. Qamar, University of
Washington.)
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B.4 Mystery Booms

In the latter-half of 1991 and early 1992, the U.S.G.S. office in Pasadena received
a number of calls from the general public concerning “mystery booms” heard in
Southern California. Initially the events were assumed to be earthquakes, but fur-
ther analysis of the seismograph records suggested sonic booms as the most-likely
source. An initial analysis of the seismic signals by the U.S.G.S. by attempting to
fit hyperbola to the arrival time data for 25 sites near the coast attributed the sonic
booms to a source flying at high altitude and high Mach number. These reports
were picked up in the popular press and attributed to a top-secret hypersonic Aurora
spyplane. A unique feature of the events was that all occurred on Thursday morning

at approximately 0700, as shown in Table B.1.

Time Date
6:34 PDT Thu June 27, 1991
6:46 PST Thu Oct. 31, 1991
6:43 PST Thu Nov. 21, 1991
7:17 PST Thu Jan. 30, 1992
6:59 PST Thu Apr. 16, 1992
Unknown Thu June 18, 1992
6:38 PDT Thu Oct. 15, 1992

Table B.1: Mystery boom occurrences. The October 1991 and January 1992 events
are analyzed in the current work.

Following the early claims, the Air Force commissioned MIT Lincoln Labs to
investigate the incidents. The available seismograph records for 41 sites for the
October 1991 event were analyzed. Again the arrival times were fit as hyperbola,
although an attempt was made to include the effects of vehicle deceleration and at-
mospheric refraction. The disturbances were attributed to the sonic booms from two
F-4 Phantoms returning to Edwards AFB, flying supersonic near Mach 1 overland.
None of the sites examined by Lincoln Labs included the third boom mentioned below.

In view of the above disagreement, the October 1991 and January 1992 events
were analyzed in the present study. The raw seismograph time data were obtained

and analyzed for all 209 available sites for both events. Arrival times were chosen



99

from the data and contoured without any assumptions concerning the shape of the
time contours.

On the October 31, 1991 event, three booms are clearly distinguished on the time
traces. The first boom appears on 90 sites throughout the seismic network. The boom
dies out as one moves east and is not seen on the easternmost sites. The first boom is
generally followed by a second boom which appears at the largest number of sites, 104,
at an average of 83 seconds later. A third boom appears only at 30 of the easternmost
sites, an average of 84 seconds after the second boom. The contours of arrival times
are shown in Fig. B.16 for each of the three booms identified. The triangle symbols
represent seismic sites for which data were available, and filled triangles show the
sites which detected each boom.

The northern limit of detection of the sonic boom is clearly defined, since a large
number of sites in the northeast did not detect the boom. This is consistent with
the low amplitude of the boom observed near the northern boundary. However, the
southern edge of the boom carpet is not well defined, due to the lack of seismograph
sites further south in Mexico. The booms show a relatively high amplitude at the
southern sites which suggests the boom carpet may extend further south. Twelve
additional sites in Mexico logged no unusual activity for that morning. However,
since the actual seismographic data are not available, the sites are not included in
~ this report.

A second event, from January 30, 1992, was also examined in detail, and arrival
time contours for the three booms observed are shown in Fig. B.17. The same pattern
of three disturbances are observed: the first boom on the western sites, the second
across the entire network, and the third only on the eastern sites. The booms were
detected across the entire network from west to east, but the booms were confined to
a narrower north to south band.

Only one of the events examined does not display the circular patterns stretching
from west to east characteristic of the above two events. The boom from Wednesday,
September 30, 1992 is a narrow circular pattern extending from south to north. The

center of the circular pattern lies offshore, south of Catalina Island.
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The analysis of the complete set of data eliminates both of the early theories for
the source of the mystery booms. The lack of characteristic N-wave signatures and
the fact that no booms were detected on the northwestern sites rules out the original
theory of a high-speed aircraft flying north off the coast. At the speeds predicted
(Mach 5 - 6), one would expect to see strong N-wave signatures with high amplitude
near the coast, as with the shuttle reentry booms. The Lincoln Lab theory of two
aircraft flying essentially down the center of the boom pattern fails to explain the three
events detected. The aircraft would have to be flying at a speed of approximately
Mach 1 relative to ground sound speed which would place the aircraft at or near the
cutoff velocity for their altitude. In the case of a single aircraft, the first boom would
be considered the primary boom carpet, and the second and third booms would be
secondary booms. However, this single aircraft theory can be ruled out, since indirect
booms would not be expected to appear under the aircraft track.

From the complete analysis, all the observed booms appear to be indirect booms
from a source offshore propagated inland by high winds. Southern California typi-
cally has strong jet stream winds and stratospheric winds blowing from west to east.
Such anomalous sound propagation is well-known, and mystery booms attributed to
aircraft are not a new phenomenon. In the late 1970’s, a series of East Coast mystery
booms occurred. Although a wide range of phenomena were grouped into the “mys-
~ tery booms,” the majority were attributed to indirect sonic booms from the Concorde
(Rickley & Pierce 1980) and sonic booms from military aircraft maneuvering offshore.
Similar propagation of sonic booms over 100 kilometers by the high jet stream winds
have been observed in Tucson (Wood 1975).

The magnitudes of the ground velocity for the October 31, 1991 events are shown
in Fig. B.18. Magnitudes are corrected for instrument response, however no attempt
is made to incorporate local site surface properties. For clarity, all amplitudes over
200 are plotted as 200. Higher ground velocities are found offshore, near the theorized
source of the sonic booms. The large amplitudes on the easternmost sites seem to be
due to local ground properties near the sites. Using the estimate of of 1.5 — 2 pum/sec

per Pascal of overpressure, the ground velocity amplitudes correspond to the range of
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average pressures 0.15 — 0.2 Pa observed for Concorde indirect sonic booms (Rickley
& Pierce 1980).

An attempt to associate the mystery booms with specific flight operations from
any of the local military bases has been unsuccessful. Local military bases reported
no unusual activity on the dates of the mystery booms; in particular, the Pacific
Missile Test Range which operates offshore from Point Magu reported no supersonic

flight operations on the mornings of the October 1991 or January 1992 events.
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Figure B.18: Ground velocity magnitude (cm/sec) for October 31, 1991 events, cor-

rected for instrument response. All amplitudes over 200 are plotted as magnitude 200

for clarity.
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B.5 Conclusion

The seismic network in Southern California has provided the first opportunity to
study the size and shape of indirect sonic boom carpets over a large area. The
high density of the sites and large ground coverage allow analysis of the direct and
indirect boom patterns on both sides of the flight trajectory, and the development
of the booms can be followed over several hundred kilometers. The recent addition
of pressure transducers at selected TERRAscope sites remedies the only significant
weakness of the seismic data, the difficulty of predicting amplitudes.

From analysis of the space shuttle STS-42 reentry, the ground patterns are ex-
tremely complex. Ray theory fails to predict indirect sonic boom arrival times,
observed multiple booms within the first shadow region, and extensive overlap of
the multiply refracted sonic booms. The extensive ground coverage of the “mystery
boom” and shuttle reentry booms suggest exposure under the real atmosphere is much
larger than previously expected.

The inverse problem of predicting the aircraft trajectory from the ground arrival
times is more difficult. Nonetheless, using the seismic network data, we were able
to identify the source of the “mystery booms” as indirect booms propagated from
offshore operations. However, careful study of the seismic data is required to identify
~ direct and indirect sonic boom carpets before attempting to make predictions about

the trajectory.
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