Studies of Shock Wave Focusing

Using Geometrical Shock Dynamics

Thesis by

Joseph E. Cates

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1996
(Submitted May 1, 1996)



il

© 1996
Joseph E. Cates
All Rights Reserved



iii

Acknowledgements

I am grateful to the faculty, staff, and students of GALCIT for their friendship
during my studies at Caltech. Without their assistance, in far too many ways to
list, this thesis would have been impossible. In particular, I wish to thank my advisor
Professor Sturtevant for his guidance and support during my work. Throughout, he
has allowed me the greatest freedom to explore many fascinating problems, even when
in areas not directly related to my research.

During my undergraduate studies at the University of Alabama, Dr. Freeman,
Dr. Visscher, and Dr. Whitaker, provided many opportunities and encouragement to
embark on my graduate studies.

The support of my family has been unfailing — Mom and Dad, Jim, Charlotte,
and Claire deserve a long-overdue “Thank you.” In closing, I owe Lourdes my dearest

thanks for her loving support and infinite patience during the final months.



iv

Abstract

A finite-difference numerical method for geometrical shock dynamics has been de-
veloped, based on the analogy between the equations and the supersonic potential
equation. The method has proven to be a valuable tool for analyzing the complex
nonlinear processes that occur in shock focusing. The approximate shock dynamics
theory is able to capture the effects of initial Mach number and aperture angle on
the focal region. The numerical results duplicate the strong, moderate, and weak
shock behaviors observed in experiments, with good agreement for focal pressure and
triple-point path. The primary error arises due to the inability of shock dynamics
to allow regular reflection along the centerline. Adequate resolution of the focal
region proves to be particularly important to properly judge the accuracy of the shock
dynamics solution. The appropriate shock dynamics equations are developed for the
case of shock propagation into a nonuniform media for a general equation of state with
nonuniform freestream velocity. The modification of the numerical method to this
more general problem is straightforward. The complete shock dynamics equations
are derived for both perfect gas and water using the modified Tait equation. The
results for propagation of a planar shock over cylindrical gas inhomogeneities shows
excellent agreement with experimental results.

The propagation of sonic booms through the atmosphere provides examples of
all major types of weak shock behavior. The extensive seismic network in Southern
California, consisting of over two hundred sites covering over 50,000 square kilometers,
is used to map primary and secondary sonic boom carpets. The results show sonic
boom ground exposure under the real atmosphere is much larger than previously

expected.
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Chapter 1 Introduction

The focusing of shock waves produces localized high pressures in the focal region, and
the shock emerges from the focus with the front geometry fundamentally changed.
Understanding the mechanisms of focusing is critical because converging fronts occur
frequently, indeed whenever thé front becomes concave forward such as by passing
through nonuniform media or reflection from curved surfaces. The high pressures
localized near the focus may be beneficial, as in lithotripsy, or detrimental, as in
superbooms from aircraft sonic booms. The change in shock geometry downstream
of the focus has significant implications for shock stability, sonic boom propagation,
and sonoluminescence.

One application of shock wave focusing is extracorporeal shock wave lithotripsy
(ESWL). In this treatment for urinary tract stones, weak converging shock waves
are generated externally and shaped to focus within the patient’s body at the stone.
Outside the focal region, the weak shocks pass through the surrounding tissue without
causing damage. In the focal region, the shock pressure increases dramatically to over
50 MPa leading to fragmentation of the stone, although the exact fracture mechanisms
are not completely understood. Over the course of several thousand shocks, the
stone is shattered into pieces small enough to be passed by the patient. To better
understand the source of tissue damage and the primary means of stone fragmentation
in the ESWL procedure, exact knowledge of the flowfield in the focal region is required.

A linear description of shock focusing is given by geometrical acoustics. The shock
is advanced along rays at the local sound speed relative to the surrounding medium,
the front speed being independent of the shock strength. The strength of the shock is
inversely related to the ray tube area. Whenever the shock front is concave forward
the rays will cross. At the crossing point, the ray tube area goes to zero and the
amplitude becomes infinite in acoustic theory. Downstream of the ray crossing, the

shock front emerges folded.
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In real fluids, nonlinear effects dominate the flow in the focal region and prevent
infinite amplitude at the focus. The experiments of Sturtevant and Kulkarny (1976)
first demonstrated the complex types of behavior seen at the focus. Weak, moderate,
and strong types of behavior are observed according to the initial strength of the
shock. The front emerges from the focus crossed and folded for weak shocks, cor-
responding to regular reflection at the centerline, and with a triple point and Mach
stem for strong shocks, corresponding to Mach reflection at the centerline.

A successful model must accurately include nonlinear effects. Ideally, one would
like to numerically solve the Euler equations for the shock focusing problem, but
this remains a difficult, computationally expensive task. The problem involves a
combination of very weak shocks outside the focus and much stronger shocks in the
focal region with disparate length scales which combine to require high resolution in
the focal region. Although Euler solutions of limited problems have been presented
and the problem would seem to lie within the capability of modern numerical schemes
with advanced mesh refinement algorithms, to the author’s knowledge no detailed
study with rigorous comparison to experimental results has been completed.

The theory of geometrical shock dynamics (Whitham 1957, 1959) offers an ap-
pealing alternative to a full Euler solution. As in the linear theory of geometrical
acoustics, the shock is treated as a front propagating along rays, but in nonlinear
shock dynamics the shock speed along the ray is a function of the shock strength.
By neglecting the flow behind the shock in favor of concentrating on the motion of
the shock itself, the problem is greatly simplified and the dimensions of the problem
compared to a full Euler solution are reduced by one. This approximation seems
appropriate for problems where the shock is accelerating, and disturbances behind
the shock are less likely to strongly effect the shock propagation. The accuracy of the
approximation for specific problems is difficult to assess in advance, but the theory
has historically been viewed as less accurate for weak shocks. Nonetheless, in prac-
tice geometrical shock dynamics has proven to be a valuable theory for a surprisingly

large set of problems. Various efforts to extend shock dynamics have been proposed

(Best 1991, Prasad 1994), but none have gained wide acceptance.
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Analytical solutions of the shock dynamics equations are available for simple ge-
ometries, but numerical methods are needed for most problems of interest. Since the
equations are hyperbolic, characteristic methods have been used for problems such as
shock propagation over cylinders and spheres (Bryson & Gross 1961). Front-tracking
numerical methods, where discrete points along the shock front are advanced along
rays, have been extensively developed (Henshaw et al., 1986). As noted by Whitham
(1959) the equations of geometrical shock dynamics are analogous to the supersonic
potential equation, and numerical schemes for the supersonic potential equation can
be adapted to shock dynamics (Schwendeman 1993). The use of finite-difference
schemes offers advantages over previous characteristic and front methods. Finite-
difference schemes provide conservative formulations where the effects of artificial
viscosity can be clearly characterized. The method is easily extended to three dimen-
sional problems with optimal grids for specific problems. In addition, finite-difference
schemes are typically easier to set up and apply to specific problems than previous
methods, especially for problems with weak shocks.

The related problem of shock propagation through a general, non-uniform medium
is essential to understanding the mechanics of shock focusing. The problem is es-
pecially applicable to sonic boom propagation through the atmosphere and ESWL
treatment involving propagation through inhomogeneous tissue. The theory of shock
dynamics has been extended to non-uniform perfect gases by Catherasoo & Sturte-
vant (1983), who used a characteristic method to study planar shock propagation over
a gaseous interface. The front-tracking numerical method has been adapted to shock
dynamics in non-uniform gases (Schwendeman 1988). Apazidis and Lesser (1996)
extended the method to non-uniform freestream flow ahead of the advancing shock,

although an additional term required in the Area-Mach relation was omitted.

1.1 Outline

In Chapter 2, a conservative, finite-difference scheme for geometrical shock dynamics

is developed for an arbitrary grid, based on the analogy with the supersonic potential
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equation. The resulting numerical method is used to explore the problem of focusing
of weak shocks in Chapter 3 with the goal of assessing the accuracy of shock dynamics
for this type of problem. The results duplicate the behavior of strong, moderate, and
weak shock waves observed experimentally. In comparison with the experiments of
Sturtevant and Kulkarny (1976), shock dynamics is seen to accurately predict the
focus location, but overpredicts the pressure. For weak shocks, the main inaccuracy
can be attributed to the failure of shock dynamics to allow regular reflection at the
centerline.

In Chapter 4, the theory of geometrical shock dynamics and the numerical method
are extended to the more general case of shock propagation into a nonuniform medium
with non-zero freestream velocity. The equations are derived for a general equation
of state, with the equations expanded for the special case of a perfect gas. Results
for propagation of a planar shock over cylindrical gas inhomogeneities show excellent
agreement with experimental results of Haas (1984, 1987).

In Appendix A, the Area-Mach relation for water using the modified Tait equation
is derived. An analytic equation of state for water is also used to calculate the shock
jump conditions to assess the accuracy of the Tait equation, and to examine the
temperature and entropy changes across the shock.

The propagation of sonic booms through the atmosphere provides examples of all
major types of shock behavior: focusing, refraction, diffraction, and reflection. In Ap-
pendix B, seismic stations, which routinely detect the small ground motions produced
by sonic booms, are used to analyze sonic booms from a SR-71 pass at M = 3.15 at
high altitude, the landing of space shuttle Discovery at Edwards AFB, the passage
of shuttle Discovery over Washington and Oregon at approximately M = 14, and a
set of “mystery booms” in California. In particular, the extensive seismic network in
Southern California, consisting of over two hundred sites covering over 50,000 square
kilometers, provide a unique opportunity to map the carpets from direct and indi-
rect sonic booms. The ground patterns under a real atmosphere are observed to be
extremely complex. Ray theory fails to predict indirect sonic boom arrival times,

observed multiple booms within the first shadow region, and extensive overlap of



5

the multiply refracted sonic booms. The extensive ground coverage of the “mystery
boom” and shuttle reentry booms suggest boom exposure under the real atmosphere

is much larger than previously expected.
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Chapter 2 Numerical Method

In this chapter, a finite-difference numerical method is developed for the equations
of geometrical shock dynamics for a perfect gas. In the first section, the equations
of shock dynamics are introduced; a complete derivation is delayed until Chapter 4
for a more general case. The analogy between the equations of geometrical shock
dynamics and the full potential equations, outlined in Section 2.2, provides a basis

for development of the finite-difference method in Section 2.3.

2.1 Geometrical Shock Dynamics

Geometrical shock dynamics is an important approximate theory for problems involv-
ing shock propagation. For problems such as the focusing of weak shocks, where a
wide range of shock strengths are encountered and high resolution is required in the
focal region, numerical solutions of the Euler equations are still difficult and compu-
tationally expensive. By neglecting the interaction of the shock with the flow behind
the shock, shock dynamics reduces by one the number of dimensions of the problem,
greatly simplifying the computation.

In geometrical shock dynamics, the shock is considered as a wavefront propagating
down ray tubes normal to the front, as with geometrical acoustics. However, shock
dynamics is nonlinear, in that the velocity of the shock depends on the strength of the
shock. To close the system, an equation is introduced to relate the shock strength,
represented by the Mach number, to the variation of the ray tube area. To accomplish
this, the motion of the shock down the ray tube is treated as propagation down a
tube with solid walls and a slowly varying cross-sectional area. By ignoring the effect
of disturbances overtaking the shock from behind, a relationship can be derived for
the Mach number as a function of area. This Area-Mach relation is then applied to

express the Mach number as a function of ray tube area along the shock front.
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Since the theory emphasizes the effect of the geometry on the shock propagation
by ignoring the interaction of the shock with the flow behind the shock, one would
expect the theory to be particularly appropriate for problems with accelerating shocks
and problems dominated by geometry. However, geometrical shock dynamics has
proved to be accurate for a much wider range of problems. In simple problems where
comparison is available with full compressible flow solutions, shock dynamics has
shown better agreement for strong shocks, and is generally considered less reliable for
weak shocks. |

The equations of geometrical shock dynamics (Whitham 1957, 1959) are

V- (-ﬁ%w) =0, M=—. (2.1)

a(x) = apt gives the shock position at time t, ag being the undisturbed sound speed.
A(M) is the Area-Mach number relation, which specifies the relation between the
area A of the ray tube and the shock strength M. For a perfect gas, the Area-Mach

number relation is given by

B M MA(M)
A(M)—exp[ " Mz—ldM}’ (2.2)
where
21— 2 1
MM)=1{14+ — — 2.
(M) (+7+1 ; )(1+2;;,+M2), (2.3)

o (y=1M*+2
2yM? — (y—1)

T (2.4)

An analytical expression for the Area-Mach integral was originally given by Bryson
and Gross (1961); in which several misprints were later pointed out by Henderson
(1980). A slightly more compact expression was derived by Catherasoo (1982).

Two approximations are commonly used for the Area-Mach relation, the weak

shock approximation (M — 1):

AM) = (M -1)"2, (2.5)
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and the strong shock approximation (M — o0):

2 2y
AM)=M", n=1+4—+,/—. 2.6
(M) o (2.6)
Area-Mach relations for other equations of state have been used in shock dynamics.
The Area-Mach relation for water using the modified Tait equation is developed in

Appendix A.

Y

normal

Figure 2.1: Shock front geometry and characteristic angles.

The equations of geometrical shock dynamics form a hyperbolic, second-order par-
tial differential equation that describes the wave motion of disturbances propagating
along the shock front. Discontinuities, called shock-shocks, can form along the shock
carrying a change in shock angle and an increase in Mach number. Shock-ezpansions
can also form, for example in shock diffraction around a sharp corner.

For two-dimensional problems, the equations can be conveniently written in char-
acteristic form (Whitham 1957, 1959). As shown in Fig. 2.1, the characteristics lie at

the characteristic angle m above and below the ray angle 6:
dy
Cy:—==tan(@£m). 2.7
L L=t (@£m) 27)
Along the characteristics, the compatibility relation is given by:

6 + w (M) = constant. (2.8)
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The additional variables introduced are defined as:

1/2
w(M)::/;M LQEM_)J dM, c(M)-—-\/———ZA%, tanm:%. (2.9)

The derivative A’, which represents differentiation of the Area-Mach relation with

respect to the Mach number, is always negative. The Area-Mach relation A(M) and
the functions w(M), ¢(M), and m(M) are plotted in Fig. 2.2 for a perfect gas with
~v = 1.4. For weak shocks, in the limit M — 1, the characteristic angle approaches

zero, and the characteristics collapse into the rays.

|
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Figure 2.2: Area-Mach relation A(M) and functions w(M), ¢(M), and m(M) for
perfect gas, v = 1.4.
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2.2 Analogy with Potential Flow

The conservative form of Eqn. 2.1 in Cartesian coordinates can be written as

O(ou) O(ov) 0O(ow)
ox * Oy + 0z

=0, (2.10)
where u = a,, v = o, w = a, are the components of the gradient of a, and

- M
77 o= (2.11)

M= [uz + v? 4+ w?
As originally noted by Whitham (1959), the equations of geometrical shock dynamics
are analogous to the full potential equation for steady supersonic flow.! The shock
front position « is analogous to the velocity potential and the ratio of the Mach
number to area ¢ is analogous to the density. To complete the comparison with the

supersonic potential equation, the variable a, analogous to the sound speed, is defined

a? = [MQ (1 - %ﬁ)y , (2.14)

where the prime represents differentiation with respect to the Mach number. With

as

the above definition, a is directly related to the characteristic angle:

sinm
= , 2.1
a="1 (2.15)

and appears frequently in the numerical method.

1Tn Cartesian coordinates, the potential equation in terms of the velocity potential ¢ is:

0(pgz) | O(pdy) | O(pd:)
R van i »

=0, (2.12)

where u = ¢z, v = ¢y, w = ¢, are the velocity components, density and speed of sound are:

y—1

")"—1 1/v-1
p:[l——(————)Mw(uQ'%—vz-!-wz—-l)] , a=

5 (2.13)

x>

The characteristics are Mach lines which lie at the Mach angle x4 = sin™! (1/M) above and below
the streamline.
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2.3 Finite-Difference Formulation

Only a small relatively simple set of problems of interest can be worked analytically
using the method of shock dynamics. Two numerical approaches have been used
for a wide range of problems: the method of characteristics (Bryson & Gross 1961,
Catherasoo & Sturtevant 1983) and front-tracking methods (Henshaw et al., 1986).
Characteristics methods are typically more cumbersome than finite-difference meth-
ods and difficult to extend to three dimensional problems, and thus their numerical
applications have been fairly limited. In the front-tracking methods, points along the
shock front are advanced along rays normal to the front according to the shock Mach
number. The ray-tube area is then used to compute the Mach number along the front
at the new position. The extension of front-tracking methods to three-dimensions is
straightforward. However, the method requires the frequent splining of the points
with addition of points in areas where the front contracts, and the removal of points
where the front expands. The precise effect of adding and deleting points, and what
artificial viscosity is introduced by this smoothing, is difficult to quantify.

With the analogy between the shock dynamics equation and the potential equa-
tion, Whitham (1959) noted that numerical methods for the potential equation could
be directly applied. Extensive numerical work on finite-difference methods for the
potential equation was done in the 1970’s and 1980’s before computation of the full
Euler equations was feasible. Only recently have these finite-difference schemes been
applied to the equations of shock dynamics (Schwendeman 1993). Schwendeman
presented a finite-difference method for three-dimensional problems using the strong-
shock approximation for the Area-Mach relation, and considered the problems of
shock propagation in channels.

For problems involving weak shocks, where very strong shock-shock discontinuities
can occur, sophisticated numerical methods are required. In the front-tracking meth-
ods, points along the shock front at the shock-shock can cross several other points
in one time step. To continue the solution requires either sophisticated methods to

remove intermixed points or else extremely small time steps. Using the existing,
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simpler finite-difference methods, solution steps can fail due to iterations which pro-
duce Mach numbers less than one during convergence. In this section, an improved
finite-difference scheme is developed based on the methods developed for the super-
sonic potential equation (S