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-ABSTRACT-

Experimental and theoretical studies on the high frequency dynamics of (GaAl)As 

semiconductor lasers center on three main areas: 1) analog modulation response of 

laser diodes; 2) pulse (pulse code modulation} response of laser diodes and 3) gen­

eration and quenching of intensity pulsations in laser diodes coupled to external 

cavities. 

The basic analog modulation and transient characteristics of injection lasers with 

various structures are studied and compared. The basic limitations on ultrahigh fre­

quency ( > 5GHz) modulation of lasers are considered. Self-pulsations in injection 

lasers are studied and their interaction with external cavities are clarified. These 

studies lead to the quenching of self-pulsation and ultra-short short pulse genera­

tion in laser diodes by coupling to an external cavity. A novel external ft her resona­

tor is introduced for this purpose. Pattern effects in pulse code modulation of injec­

tion lasers are studied and a bipolar pulsing scheme devoid of the above effect is 

described. The transverse mode shift in a transverse junction laser under ultra­

short electrical pulse excitation is investigated. Finally. the frequency response of 

superluminescent lasers (lasers without mirrors) is analysed. 
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CHAPTER 1 

INTRODUCTION 

1.1 Fiber-optic communications and semiconductor lasers 

Lightwave telecommunication systems using glass fiber guides seem destined for an 

important role in terrestrial communication[l]. The driving force for putting fibers 

into practical systems is their low transmission loss, light weight and attractive 

bandwidths. Installed cables have shown loss in the vicinity of 4dB/km at 

wavelengths of 0.82 - 0.85 µrn, while laboratory samples have shown loss below 0. 7 

dB/km near 1.3 µm. This is to be compared with a loss of 20-30 dB/km for high 

quality ~ inch thick coaxial cables. In the multimode fibers now being produced, 

dispersion would permit a bit rate of 50Mbit/sec for repeater spans of at least 10 

km, and with a carefully designed refractive index profile larger bit-rate- distance 

products should become feasible. In single mode fibers, a bit-rate -distance product 

of 100Gbit/sec-km is feasible (from the standpoint of dispersion) for a laser system 

near 1.3 µm. 

The key components needed for lightwave systems are the fibers, the carrier­

wave sources and the light detectors. Semiconductor lasers and light emitting 

diodes (LED's) are the dominant candidates for fiber-guide transmission sources, 

but within that scope there are numerous options. Lasers[2] are near ideal sources 

of light for communication in fibers. This is due to the fact that lasers emit highly 

directional radiation which makes coupling into fibers very efficient. Furthermore 

their narrower spectral width reduces the effect of the intrinsic chromatic disper­

sion of the silica fibers, and they can be directly modulated at a very high speed (in 

the GHz range). They are thus used in high data rate systems, composed of short 

lengths of multimode fibers or long lengths of single mode fibers. On the other 

hand, LED's can be more attractive for low bit rate (< 100 Mbit/sec} short haul 
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connections, because of their lower sensitivity to temperature changes and because 

they do not require complex stablizing and driving circuitry. 

Fig. 1.1 shows a diagram of a basic double heterojunction {GaAl}As semiconductor 

injection laser. The active region is the thin undoped layer of GaAs, where its lower 

bandgap retains the electrons and holes injected from the confining N and P doped 

GaAlAs layers, thereby facilitating radiative recombination. This heterostructure, in 

addition to electrical confinement, also provides optical confinement by dielectric 

waveguiding action perpendicular to the junction plane, which is crucial to the suc­

cessful operation of a cw injection laser. The laser cavity is formed by the two paral­

lel cleaved crystal facets. The narrow contact stripe confines the injection current to 

within a limited region in the tranverse direction along the junction plane. 

The wide bandwidth available in fiber-optic lightguides cannot be fully utilized 

unless the transmission source can be modulated at very high speeds. Semiconduc­

tor injection lasers can be directly amplitude-modulated at frequencies up to 1-2 

GHz, but numerous distortions and transient effects require special measures to be 

taken in analog and pulse-code modulation of the laser. 

In addition to data and voice transmission, there is great interest in certain 

applications in directly modulating the laser with a microwave signal at very high 

frequencies : in the X-band { ...... lOGHz} or even higher. As an example, because of its 

light weight, it is extremely attractive to use a laser- optical fiber system to syn­

chronize airborn radar arrays[3], which is presently being done through bulky, 

heavy metallic waveguides. A similar application is to use optical fiber for transmit­

ting precise frequency and timing signals between ground antenna stations many 

kilometers apart, so that the antenna network can be phase-arrayed to perform 

such experiments as the VLBI (Very Long Baseline Interferometry)[ 4]. 1t is therefore 
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Figure 1.1. Schematic diagram of a double heterostructure injection laser. 
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necessary to seek the optimal laser design for high frequency modulation, and to 

ascertain whether modulation at such high frequencies is fundamentally attainable 

in injection lasers. 

Another area concerning the high speed dynamics of injection lasers that 

recently has gained much attention is the generation of ultrashort pulses in sem­

iconductor lasers[5,6]. A simple, light-weight semiconductor laser capable of gen­

erating optical pulses of widths in the picosecond range, repetitive at microwave 

frequencies, has considerable advantage over conventional bulky mode- locked laser 

systems, and can have such practical applications as airborn or space born ra!1ge­

finding lidar (laser radar)[ 14]. 

1.2 Summary of thesis 

In the following, the content of this thesis is summarized. 

Experimental and theoretical studies of the high frequency dynamics of semicon­

ductor lasers center on three main areas: 

1. analog modulation response of laser diodes; 

2. pulse (pulse code modulation) response of laser diodes; and 

3. generation of short pulses by mode-locking a laser diode inside an external ca•rity. 

The dynamic chacteristics of lasers have been described successfully by a pair of 

spatially uniform rate equations[?] governing the photon and carrier densities 

inside the active region. These equations, though simple, are in fact approximate 

spatial averages of the more precise "local" rate equations[B], which take into 

account the fact that the photon and carrier densities vary along the laser. The 

range of validity of this approximation is summarized in chapter 2, using the line of 

approach of Moreno[8]. The approximation will be justified, and the chapters Lhat 

follow will make heavy use of this pair of equations to explain many of the 
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modulation characteristics of injection lasers. 

Some basic transient and analog modulation properties of injection laser will be 

discussed in chapter ·3. The response of the laser diode to a microwave current drive 

is studied theoretically through the small signal analysis of the rate equations, and 

experimentally using various lasers and standard microwave equipments. The rate 

equations predict a relaxation oscillation resonance peak in the frequency response 

of the laser. Experimental measurements of the small signal amplitude and phase 

responses of the laser diode show characteristics very similar to that of a two-pole 

system, as the rate equations predict. The effect of lateral carrier diffusion in the 

modulation response is discussed briefly. The major effect of lateral carrier diffusion 

is a dampening of the relaxation oscillation resonance[ll,12]. The maximum fre­

quency response attainable in GaAs injection lasers under constraints of limited 

current density and optical power density is also examined in chapter 3. It is found 

that under a prescribed current and optical limit, an optimum cavity length exists 

at which the highest frequency response can be obtained. Fundamental trequency 

limitations under various operating conditions are depicted graphically. 

Semiconductor lasers, when operated in cw mode, will sometimes emit a train of 

very short pulses at a microwave frequency repetition rate. This phenomenon is 

known as self-pulsation[9], and is believed to be caused by saturable absorbing 

defects inside the laser medium. In chapter 4, numerical studies are performed 

using the trap model for self pulsation. The results explicitly show how optical 

pulses are generated and quenched when the laser is coupled to an external cavity 

of various lengths. Experiments performed with various lasers yield results that 

agree closely with the calculated results. 
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Mode locked laser systems can generate optical pulses in the picosecond range. 

The laser diode-external cavity system is primarily a passively mode-locked system 

caused by saturable absorbing defects inside the laser medium. The presense of 

saturable absorbers causes self-pulsation of the laser diode itself. Thus the study of 

mode-locking of laser diode involves, lo large extent, the study of self-pulsing lasers 

coupled to an external cavity. A laser diode with a sizable amount of saturable 

absorber, when coupled to an external cavity, does not always result in mode­

locking. The external cavity length is a crucial factor in determining whether mode­

locking occurs or not, among the other factors such as the absorber density, the 

bias current, and the coupling coefficient between the laser and the external cavity. 

The presence of saturable absorbing defects in semiconductor injection lasers 

leads, on the one hand, to undesirable self-pulsation and on the other hand, to 

picosecond pulse generation by passive mode-locking. The latter would have been 

extremely useful if not for the fact that the absorbing defects in injection lasers 

cannot be reliably controlled, and that short pulses can be generated only with 

lasers aged to the point where catastrophic failure is imminent. To circumvent this 

difficulty, a laser with controllable amount of saturable absorption has been 

designed and fabricated. The absorber can be controlled by varying the pump 

current into part of the laser diode. This device can be made to exhibit all the 

dynamic characteristics of a self-pulsing laser but is otherwise extremely well 

behaved. It is expected that this device will form the basis of reliable picosecond 

pulse generation with compact laser diode sources. 

Analytical calculations in chapter 5 shed light on the conditions of optical pulse 

generation. The analysis is based on a simplified saturable absorber model with a 

delayed photon feedback. The Nyquist diagram technique is used to determine the 
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stability of the system. It yields closed form solution!'! for the various conditions 

{external cavity length, absorber density, bias current, coupling coefficient) under 

which periodic optical pulse trains are generated spontaneously. 

A primary concern for analog modulation is harmonic distortion, which is the 

subject of chapter 6. It is found analytically that such distortions (even at low 

modulation frequencies} are closely related to the relaxation oscillation itself, and 

this is supported by experimental evidence. Self-pulsation can be regarded as an 

extreme form of relaxation oscillation, and thus one would expect that the har­

monic distortion in (even weakly) self-pulsing lasers is extremely severe. Experimen­

tal results confirm that this is indeed the case. In addition, intermodulation pro­

ducts between the modulaton signal and the self-pulsation produce anomalous dis­

tortion products at low frequencies. 

The results of previous studies on the behavior of self-pulsing lasers in external 

cavities suggest a means of reducing such distortions. By coupling the laser tl1 an 

external cavity of suitable length, the self pulsation was shown to be quenc'i ed. 

Since relaxation oscillation can be regarded as a milder form of self-pulsation, it 'al­

lows that by coupling to an external cavity, relaxation oscillation can be suppressed 

too. Various distortions in analog modulation can consequently be minimized. This 

has been demonstrated experimentally using a multimode glass fiber as an exh~rnal 

cavity. A lens formed on one end of the multimode fiber significantly increases the 

coupling between the laser and the fiber, whir::h is a key factor in rendering f.he 

scheme successful. 

For digital transmission, laser diodes are modulated by pseudorandom cur. ont 
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pulses at high rates. Small signal analysis is no longer applicable in this regime, and 

the rate equations have to be analyzed including the full non-linear terms. Extensive 

numerical analysis was performed to assess the role relaxation oscillation plays in 

pulse modulation. The strength of relaxation oscillation is an indication of the sta­

bility of the system. An unstable system responds swiftly, but is hard to control; 

whereas a stable system behaves smoothly but is slow. Relaxation oscillation can be 

suppressed by the same methods described in analog modulaton, only to sacrifice 

speed. This can be justified in an analog modulation scheme because it can improve 

the linearity of the response - which is not of special merit in pulse modulation. Jn 

chapter 7, the response of a laser to a long sequence of pseudorandom current 

pulses was simulated on a computer to study pattern effects and their dependence 

on bias current and excitation current pulse area. The numerical results and other 

published experimental data indicate that the highest data rate attainable in pulse 

modulation of a laser diode is limited primarily by the population relaxation time. 

This difficulty can be overcome by very precise control of drive current pulse 

parameters. A scheme free of these limitations is devised using very low threshold 

lasers and bipolar pulse modulation, and bas experimentally achieved 3-4 Gbit/sec 

pattern-effect-free modulation. Numerical simulation indicates that with improved 

current pulse generators, even higher bit rates are possible. It is thus assessed that 

the limitation on the modulation bit rate of laser diodes is technical rather than 

fundamental. 

In most analyses of pulse modulation of laser diode, the uniform rate equations 

are used which do not account for the transverse mode pattern. Indeed, when pulse 

modulated at high rates the transverse mode differs significantly from that of the 

cw profile. This effect is more prominent in gain-guided lasers, where the mode is 

supported by transient injection of the carriers. This is illustrated by experimental 
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and theoretical analysis of the transverse mode profile of a transverse junction 

stripe {TJS) laser under short pulse excitation, the subject of chapter 8. 

The superluminescent diode[13] is a close relative of the injection laser : it is a 

laser without mirrors. Devoid of any optical feedbck, it is essentially a one-pass 

amplifier of spontaneous emission. The photon and electron distributions are highly 

non-uniform along the active region, and the common rate equations do not apply 

in the analyses of the transient response of such a device. In chapter 9, a systematic 

numerical study using the full "local" rate equations is made on the small signal 

modulation response of the superluminescent diode. The results indicate that under 

some conditions the superliminescent diode can excel usual laser diodes in modula­

tion performance, though at the moment it is not obvious how these conditions can 

be practically realized. 
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CHAPTER2 

LASER KINETICS. RATE EQUATIONS AND 

mEIR RANGE OF APPLICABILITY 

Laser dynamics are commonly described by a pair of equations governing the pho-

ton and carrier densities inside the laser medium. This pair of equations, known as 

the laser rate equations, will be used extensively in the following chapters. It there-

fore seems appropriate, in this chapter, lo summarize the results of Moreno[B] 

regarding the conditions under which the rate equations are applicable. 

2.1 The "local" rate equations 

The starting point for the analysis of laser kinetics involves the coupled rate equa-

lions which are basically local photon and injected carrier conservation equa-

tions[l] : 

ax- ax- N 
-- - c-- = ctcNX- + {l-at az ~ 

2.l(a) 

2.l(b) 

2. l(c) 

where x+ and x- are the forward and backward propagating photon densities (which 

are proportional lo the light intensities), N is the carrier density, c is the group 

velocity of the waveguide mode, IC is the gain constant in cm-1 /(unit carrier den-

sity), f1 is the fraction of spontaneous emission entering the lasing mode, T 5 is the 

spontaneous recombination lifetime of the carriers, z is the distance along the 

active meC.ium with z=O at the center of the laser, J is the pump current density. e is 

the electronic charge and d the thickness of the active region in which the carriers 
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are confined. The following simplifying assumptions are made in writing down (2.1): 

1. The quantities x: describe the photon number densities at a given position in the 

laser cavity, at time t, integrated over the lasing linewidth of the mode of oscillation, 

which is assumed to be much narrower than the homogeneously broadened laser 

transition line profile; 

2. the gain coefficient (1eN) is a linear function of the injected carrier density N; 

3. variations of the carrier and photon densities in the lateral dimension are not 

significant, and 

4. diffusion of carriers can be ignored. 

(1) and (2) are very reasonable assumptions which can be deduced from detailed 

analysis[2-4]. The representation of the semiconductor laser as a homogeneously 

broadened system can also be derived from basic considerations [5]. Transverse 

modal and carrier diffusion effects, ignored in assumptions (3) and ( 4), can lead to 

modifications of the dynamic behavior of lasers[B,7]. This will be discussed in 

chapter 3. 

Equation (2.1) is to be solved subject to the boundary conditions 

2.2(a) 

2.2(b) 

where Lis the length of the laser, and R is the reflectivity of the end mirrors. The 

steady state solution of (2.1} gives the static photon and electron distributions 

inside the laser medium, and has been solved by Casperson[2]. The solution is sum-

marized as follows, where the zero subscript denotes steady state quantities : 
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aeu(z) - (3 
Xcf(z) = ---~-

ICC T 5 

Xo(z)= ae-u<z>-p 
ICC T 5 

where a is a quantity given by the following transcendental equation: 

where 

(1-2(3)( + 2asinh( = JJi=_ 
2 

(=!I,; /(R-1)2,5'2 +_±_ + (R-1)_(!__ V-' (Ra) 2 R Ra 

T 
and g =/CJ 0 e~ is the unsaturated gain, and u(z) is given transcendentally by 

(1-2(3)u(z) + 2asinh u(z) = gz 

The electron density N 0(z) is given by 

1CcNo(z)= g 
1 +2a coshu (z )-2(3 

2.3(a) 

2.3(b) 

2.4 

2.5 

2.6 

2.7 

Fig. 2.1 shows plots of Xt (z ),Xc) (z) and g 0(z) = 1ecN 0(z) for a 300µm laser with 

three values of end mirror refiectivities, (a) 0.3, (b) 0.1 and (c) 0.9. The high non-

uniformity in the distributions becomes apparent at low refiectivities . 

. 2.2 Spatially averai1ed rate equations and their range of validity 

Equations (2.1) constitute a set of three coupled non-linear differential equations in 
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Figure 2.1. Static photon and electron density distributions inside laser diodes 
with mirror reftectivities of (a) 0.3, (b) 0. 1 and (c) 0. 9. 
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two variables and do not lend themselves to easy solution. Considerable 

simplification can be made if the spatial variable is integrated over the length of the 

laser. Such simplification is valid only when the end mirror reflectivity is 

"sufficiently large". A more precise definition of the range of validity is given in the 

following, using the approach of Moreno[B]. 

We start by integrating equations (2.l(a)) and (2.l(b)) in the z variable, resulting 

in 

dX-• L -L N* -- - c(x-(-)-x-(-)) = ctc(NX-)* + {3-
dt 2 2 Ts 

J,_ 

2.B(a) 

2.B(b) 

where* denotes the spatial average j 2 
dLz. Adding equations (2.B(a)) and (2.B(b)). 

-L 
2 

dP* + 2c(1-R)P(~L) = ctc(NP)•+ 2{3N* 
dt L(l+R) Ts 

2.9 

where p = x+ + x- is the total local photon density and the boundary conditions 

(2.2) have been used. Equation (2.l(c}) integrates straightforwardly to 

dN* J N* -- = ----ICC (NP)* 
dt ed Ts 

2.10 

where we have assumed a uniform pump current density; J =constant in z. 

Introducing factors f 1 and f 2 as follows: 
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2.11 

2.12 

one can write the spatially averaged rate equations (2.9) and (2.10) in the following 

form: 

2.13 

2.14 

which are recognized as the commonly used rate equations[9,10] if the conditions 

f 1 = 1 

lnR /2 = -~--1-R 

2.15 

2.16 

are satisfied. The first of these conditions requires, for the quantities N and P, that 

the spatial average of the product equal~ the product of the spatial averages. This 

condition is not satisfied in general, but it will be true if the electron density N is 

uniform, as in the case when R approachs unity, which is apparent from Fig. 2.1(c). 

The second condition requires the photon loss rate (eqn. (2.13)) to be inversely pro-

portional to the conventional photon lifetime. It will also be satisfied if R is very 

close to unity, since both (2.12) and (2.16) converge to~ in this limit. 

A more precise delineation of the range of the applicability of conditions (2.15) 
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and (2.16) is obtained by calculating f 1 and / 2 from exact steady state solutions 

(2.3) through (2.7), and comparing them with (2.15) and (2.16). From (2.3) and 

(2.7), 

L j p dz 
l+ICC 1 5 P 

f 1 = --------
! dz jP d 

l+icc 1 5 P z 

j _ LX+(~L) 
2 - J p dz 

2.17 

2.18 

where the integrals are evaluated over the length of the laser. These integrals can 

be numerically evaluated using eqns. (2.3) through (2.7), and the results are shown 

in Figs 2.2 and 2.3. Fig. 2.2 shows plots off 1 and J
2 

as a function of end mirror 

reflectivity R. the calculation was done with the laser biased above threshold. The 

dotted lines are the "ideal" values off 1 and f 2 given by eqns. (2.15) and (2.16). The 

figure indicates that the usual rate equations will hold for R larger than approxi-

mately 0.2. Fig. 2.3 shows plots of J
2 

as a function of the pumping level, expressed 

in terms of the total unsaturated gain gL. It shows that the usual rate equations are 

not valid below the lasing threshold as well as for low refiectivities or a low spon-

taneous emission factor, {J. 

The above results lead to the conclusion that the simple rate equations , 

expressed in the following form {where the N and P now denote averaged quantities): 

dN J N - =----a.NP 
dt ed Is 

2.19 

dP P N - = cxNP--+{3-
dt Ip Is 
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Figure 2.2. Variations off 1 and )
2 

with R, when (3 ~ 10-3 and gl > 10. 
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2.20 

( ~ = ~ ln ~ is the ·classical photon lifetime and a=Kc) will hold if the end mirror 

reflectivity is above 0.2 and the laser is above threshold. The spontaneous emission 

factor f3 in (2.20) is a factor of two higher than that defined in (2.1) due to tbe inclu­

sion of photons propagating in both directions. Common GaAs lasers, with the mir­

rors formed by the cleaved crystal facets, have a reflectivity of 0.31 and are thus 

well within the scope of equations (2.19) and (2.20). In a later chapter (chapter 9) 

describing the kinetics of superluminescent lasers, the exact small signal version of 

(2.1) will be solved and it will be found that (2.19) and (2.20) can very accurately 

describe the small signal frequency response of the laser for reflectivities as low as 

10-3. This is certainly not expected from any physical standpoint and serves as a 

surprise bonus for the simplification. 

Another factor that can render the spatially-uniform assumption invalid is when 

"fast" phenomena, occurring on the time scale of a cavity transit time, are being 

considered. It is obvious that the "cavity lifetime" and the concept of cavity modes, 

appearing in eqn. (2.20), are no longer applicable on that time scale. In common 

semiconductor lasers where the cavity length is approximately 300 µm, the cavity 

transit time is about 3.5 ps. The usual rate equations are therefore not applicable in 

describing phenomena shorter than about 5 ps, or at modulation frequencies higher 

than 60 GHz. 

Jn the following chapters, we shall make heavy use of equations (2.19) and (2.20) 

which will serve as the basis for most of the analysis of the modulation characteris­

tic of lasers. 
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CBAPTER3 

TRANSIENT RESPONSE AND SMAIL SIGNAL MODUIATION 

CHARACTERISTICS OF SEMICONDUCTOR INJECTION LASERS 

Most type of lasers emit a series of sharp optical spikes in response to a step 

increase in the excitation level. and continue to "ring" for some time before the out­

put settles to a steady state value[l]. This phenomenon, called relaxation oscilla­

tion, also occurs in some semiconductor lasers . The frequency of the ringing, due 

to the small size of the lasers and the short spontaneous lifetime {a few 

nanoseconds), is higher than those in most other types of lasers - in the GHz range. 

This presents a problem in high speed digital modulation of semiconductor lasers in 

optical communication, since the highly irregular spiking can interfere with the bit 

pattern. This temporal instability is manifested as a sharp resonance in the modula­

tion frequency response of the laser, at the same frequency as that of the ringing. 

This puts an upper frequency limit on the analog modulation of the laser diode. 

However, injection lasers of different structures exhibit relaxation oscillations of 

different strengths, and some do not exhibit any. This can be accounted for by two 

features unique to injection lasers: that carriers can diffuse laterally within the 

active region, and that injection lasers have an unusually high amount of spontane­

ous emission entering the lasing mode due to the waveguiding structure. Both of 

these factors vary with laser structures, and can be controlled to some extent by 

pertinent laser design. In this chapter, we shall examine and compare some basic 

small signal modulation responses in lasers of different structures. In sections 3.1 

and 3.2, the well known analytic results for the steady state and transient response 

of semiconductor lasers are summarized. In sections 3.3 through 3.5, previous 

experimental results on the transient characteristics and carrier diffusion effects 

are summarized and are compared with our experimental results on a number of 

laser structures. In section 3.6, results on ultimate limits in the modulation 
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response of GaAs lasers, drawn from basic considerations, are presented. 

3.1 Steady atate characteristics of injection lasers 

Relaxation oscillation in semiconductor lasers and its frequency dependence on the 

pump current can be accurately predicted by the simple spatially-uniform rate 

equations, described in chapter 2, eqns. (2.19) and (2.20). In this section, we first 

examine the steady state solution of the rate equations which serves to illustrate 

the basic light versus pump current characteristics of an ideal injection laser. The 

rate equations are (eqn. (2.19} and (2.20)): 

dN - = J-N-(N-N )P dt om 3.l(a) 

dP dt = -y((N-Nom)P-P+{JN) 3.1 (b) 

where, for convenience, the variables have been normalized as follows: 

N, the electron density and Nam. the electron density for transparancy, have been 

normalized by - 1-, 
O.Tp 

P, the photon density, has been normalized by - 1-, 
O.Ts 

ed J, the pump current, has been normalized by --­
O.T5Tp 

t, time, has been normalized by T5 , 

7'. 
and -y = - 5 

, {J = the fraction of spontaneous emission entering the lasing mode. An Tp 

additional parameter, Nam• has been added in the stimulated emission terms in 

(3.1(a)) and (3.1(b)). This is a more accurate description of stimulated gain in GaAs, 

where the electron density must excePd a certain level for the medium to exhibit 
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positive gain. The inclusion of N om in the rate equations would introduce an offset in 

the variable N, and otherwise would not affect the physics of the system in a 

significant way (except for an offset in the threshold current). Therefore in some 

later chapters when simplicity is desired, Num will be set, without loss of generality, 

to zero. 

Typical values of the parameters listed above are as follows[2]: T 5 = 4 ns. Tp = 2 

ps, d = 0.2 µm, a= 2.Bx10-6cm 3sec-1, N 0 m = 7.5xl0 17cm-3, (3 varies between 10-5 to 

10-3, depending on the laser structure and guiding mechanism. With these numbers, 

7 = 2000 and Num = 2.5. The steady state solution of (3.1), in the limit (3-+ 0, assumes 

the following simple form {where the zero subscript denotes steady state quantities): 

P 0 = 0, N 0 = J J< Nam+l 3.2(a) 

J>Nrnn+l 3.2(b) 

The optical output (proportional to the photon density) remains at zero up to the 

threshold pumping level, and increases linearly with further increase in the pump 

current. The electron density is clamped to the value N 0m + 1 when pumped above a 

current density equal to Nam+ 1. which is defined to be the threshold current den­

sity, Jth· When the laser is above threshold, all the electrons injected into the active 

region recombine to emit photons. The solutions are slightly different when one 

takes into account spontaneous emission, whose major effect is to "smooth out" 

the threshold point. The steady state solutions with (3 ¢ 0 are. expressed to the 

lowest order in (3: 

above threshold, J > > N om+ 1 
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Nom+l 
No= (Nrrm+l)-{J(J N ) 

- om+l 
3.3(a) 

(N +l)(J-N ) p = J-(N +l)+n om om 0 om I-' J-N +l 
om 

3.3(b) 

at threshold, J = N om+ 1 

3.3(c) 

3.3(d) 

and below threshold, J <<Nam+ 1 

J-N 
No= J(l+{J om ) 

J-Nom-1 
3.3(e) 

P - {3J o- Nom+l-J 
3.3(f) 

Figure 3.1 shows plots of the electron density and photon density as a function of 

bias current, for the cases {J = 0 and {3 ;it 0. The approximate formulas (3.3(a) - (f)) 

agree with the exact results extremely well except near threshold. 

3.2 Relaxation oscillation and the influence of spontaneous emission on the transient 

behavior 

Relaxation oscillation results from the interplay between the optical field and the 

population inversion, as governed by the rate equations (3.1). The relative temporal 

instability results from the following mechanism: an increase in the optical intensity 



(a) 

(b) 

No 

4 

3 

2 

- 26 -

Solution with /3 = O 

\ 
I~ -Solution with {3=10-2 

~~""-\ 
:: ~Approximate solultons 
I (3.3) 

11 
11 
11 
11 

~ 
00~----:------:!:2-----:1;-3--f--4:!-------..,J5L-----1.6__J 

J Jth 

2.0 ,--,----,---,--------,.---~---

1.5 

I 
I 

~ 
11 

p 
0 1.0 

11 
11 
11 ,, 

0.5 

Approximate 
(3.3) 

solutions 11 

~ 
2 

Solution w1tc f3=10-2 

4 5 6 

Figure 3.1. Steady state solutions of the rate equations. Fig 3. 1 (a) and (b) 
show the static carrier and photon densities respectively, versus the 
pum.p current J. 
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Figure 3.2. Relaxation oscillation resulting frcrm a step change in the excitation 
level. 
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causes a reduction in the inversion due lo the increased rate of stimulated transi­

tions, which in turn causes a reduction in the gain that lends to decrease the field 

intensity. Fig. 3.2 shows the result of a numerical integration of eqn. (3.1), with 

{3 = 10-4• N 0 m = 2.5, so that the threshold current is Jth = 3.5. The laser was biased at 

J = 3 before t = 0, and was excited to J = 3.55 after t > 0. One notices that there is a 

time delay between the onset of the current step and the emission of the first opti­

cal pulse. During this time delay the electron density builds itself up from the initial 

value to above the threshold inversion level. 

Much information. can be gained about the oscillation behavior by a small signal 

analysis of the rate equations - a procedure that linearizes (3.1). Writing 

3.4 

we separate the variables into the steady state part and a "small" sinusoidally vary­

ing part. Upon substitution into (3.1) and ignoring products of the "small" terms, 

one obtains: 

3.5{a) 

3.5(b) 

This represents a conjugate pole-pair type of frequency response, and the system is 

underdamped, critically damped or overdamped depending on whether F 2 is larger 

than, equal to or smaller than 4C, where 
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F = 7(N,,,.,,,+l-No)+Po+l 
3.B{a) 

3.B(b) 

The underdamped case corresponds to the occurence of relaxation oscillation, and 

the critically damped case gives a fiat frequency response with maximum bandwidth. 

One can see easily, with the help of Fig. 3.1, that F increases and G decreases as f3 

is increased. This suggests that with a sufficiently high spontaneous emission factor, 

the system will be critically damped and relaxation oscillation will eventually cease 

to occur. This was first pointed out by Boers and Vlaadingerbroek[3]. One can cal-

culate, from eqns (3.5), (3.6) and (3.3), a condition for {3 to produce critical damp-

ing. Expressed to lowest order in .l: 
)' 

3 

_ (J-NO'm-1)2 -~-
f3rnin - 2 1 +N "'! 

om 
3.7 

A plot of f3min vs the pump current J is shown in Fig. 3.3 with 7 = 2000 and Nam = 2.5. 

Typical values of Prrun range between 10-3 to 10-2• Fig. 3.4 shows results of numerical 

calculation of the rate equations, with the same parameters for N 0 m and -y as in Fig 

3.2. The system is biased at J = 3.6 at t < 0 and excited by a step current to J = 4.5 

at t = 0. The successive increment in f3 from 2.9x 10-4 to 1.4x 10-2 clearly illustrates 

the damping effect in the response. 

Lang and Kobayashi[14] first suggested and experimentally verified that injecting 

external coherent photons into the laser cavity can have the same effect as having a 

large spontaneous emission factor, thereby suppressing the relaxation oscillation. 
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(a) 

(b) 

Figure 3.5. Observed transient responses of (a) proton stripe and (b) c~:p laser. 
Top traces : current, bottom traces : light. Hor. scale : 1 ns/div. 
I = 1. llth in each case. 
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Otsuka[15] gave a detailed analysis of the effect and recently, an integrated version 

of the device was fabricated[16]. The analysis is done in a straightforward manner 

by adding an external injection term Pi into the right hand side of the photon rate 

equation (3.l(b)). Small signal analysis indicates that quenching of the relaxation 

oscillation occurs for Pi< 10-2• ie., injecting 10-2 of the photons emitted from a simi­

lar laser is sufficient to harness the effect. 

3.3 Comparision of transient responses of lasers with various structures 

In this section, the transient responses of several types of lasers are compared. Fig. 

3.5 shows the actual response of some lasers excited by a current step. Fig 3.5(a) 

shows the response of a proton bombarded stripe laser[ 4], which belongs to the gen­

eral class of stripe geometry lasers[5]. This type of laser has neither carrier nor 

optical confinement in the transverse direction (along the junction plane), and has a 

typical stripe width of 10 µm. The transient response of this type of laser shows 

strong relaxation oscillation. Fig 3.5(b) shows the transient response of a 

CSP(Channelled Substrate Planar) laser[6], which belongs to a second class of lasers 

with transverse optical guiding but no transverse carrier confinement. The response 

shows little relaxation oscillations, and is suitable for medium bit rate(< 1Gbit/sec) 

optical transmitters. A third important class of lasers has transient responses lying 

somewhere between the first two classes - the spiking is more pronounced than the 

second type but less drastic than the first type. This class of lasers, exemplified by 

the BH(Buried Heterostructure)[?] and the embedded laser[B], have both carrier 

confinement and optical guiding in the transverse direction. Schematic diagrams of 

the cross sections of the above three classes of lasers are shown in Fig 3.6( a) -

3.6(e). Another laser structure that exhibits excellent characteristics (in terms of 

low threshold, single stable transverse and longitudinal mode) is the TJS(Transverse 

Junction Stripe) laser[9, 10 ], which is different from most lasers in that the carriers 
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are injected transversely across a pn homojunction instead of across the 

GaAs/GaAlAs heterojunctions. This will be discussed in more detail in chapter B. 

The transient response of the TJS laser resembles that of the CSP laser and is thus 

ideal for transmitters. 

The different transient behaviors of various lasers can be partly explained by the 

calculations in section 3.2. The spontaneous emission factor {J varies among struc­

tures and directly influences the strength of the relaxation oscillation. The calcula­

tion of (3 is done by first evaluating the radiation efficiency of an infinitesimal dipole 

radiator into the specific optical mode, which is assumed to be known for the laser 

structure. The total spontaneous emission factor is obtained by integrating the 

dipole radiation efficiency over the entire carrier distribution[ll,12]. This quantity 

is found to be inversely proportional to the optical mode volume. Therefore, lasers 

with a tight optical confinement in the transverse direction, such as the BH and the 

embedded laser, have a high value of {J and hence show relatively weak relaxation 

oscillation. It does not, however, explain why the CSP or the TJS lasers show even 

weaker relaxation oscillation. This is due to transverse carrier diffusion effects, 

which have been neglected in the simple rate equation approach. The separate roles 

played by spontaneous emission and lateral carrier diffusion in the transient 

response were first clarified by Chinone et.al.[13], by numerically solving the full 

rate equations including the diffusion term, and comparing them to real lasers. The 

results will be summarized in the next section. 

3.4 Effect of lateral carrier diffusion on the transient characteristics of various types of 

lasers 

Except for those lasers which have built-in structures for confining carriers in the 

lateral direction such as the BH and the embedded lasers, lateral carrier diffusion 
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within the active layer plays a role, sometimes very significant and sometimes less 

so, in dampening the transient spiking. The mechanism can be visualized through 

the following heuristic consideration, suggested by Wilt and Yariv[ 1 7]: assuming 

that, for simplicity, the injection current and the optical mode are in the form of a 

0-function in the transverse direction along the junction plane - ie., in the limit of 

zero stripe width and infinite optical confinement. The diffusion of carriers in the 

transverse direction, neglecting the optical field, is described by the following: 

aN = D a
2
N + J(x. t) - N at ax 2 T 3.8 

where N is the carrier density, J is the injection current : J(x,t) = J(t) o(x), xis the 

transverse coordinate, D is the diffusion constant, and T is the recombination life-

time. The optical mode, having a transverse distribution of o(x), sees a gain propor-

tional to N{x=O,t). Separating the variables into a steady state and a sinusoidally 

varying part, 

N = N 0(x )+n(x )eiwt 

J = Jo(x)+j(x)eiwt 

the small signal diffusion equation reads: 

which has the solution 

D a
2

~ -n ( _!_+ic.i) = j o(x) ax T 

.L =EJ_ 
n(x) = .l__e L 

2D 

3.9(a) 

3.9(b) 

3.10 

3.11 
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where L =~is the small signal diffusion length, and__!__=..!.. + ic.J. The amplitude of 
T

1 
T 

the sinusoidal modulation in the optical mode gain is proportional to n(O), given by 

n(O)=_L-~ 2Dyv~ 3.12 

Hence, diffusion effectively introduces a "one-half pole" in the modulation response 

and acts to damp the resonance. A self-consistent analysis, including the optical 

field, has been worked out by Wilt and Yariv[l 7] in this limit of zero stripev.,idth. 

Chinone el.al.[13] classified injection lasers into three main categories, in the 

same way as that described in section 3.3: type 1. those with neither carrier nor opti-

cal confinement in the lateral direction; type Il, those with lateral optical 

confinement but with no lateral carrier confinement; and type III, those with both 

lateral carrier and optical confinement. The analysis was based on the following 

local rate equations which include spatial dependence in the lateral direction: 

3.12(a) 

d .. .. 1 "'.N -J_ P(x)dx = J_ (I'gt--)P(x)dx + {3j_ -dx dt _.., _.., T p _.., T 
3.12(b) 

where P(x) is the optical mode profile, r is the confinement factor, 9t is the local 

gain coefficient, and {3 is the spontaneous emission factor as defined before. The opt-

ical mode profile P(x) is solved independently in the case when a built-in waveguide 

exists, and must be solved self-consistently with the carrier distribution N(x) when 

guiding is provided by the gain profile. The system (3.12) is excited with a step 

increase in the pump current, and the strengths of the resulting relaxation oscilla-

tions, defined by the peak to valley ratio of the first spike of the relaxation 
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. . Pmax 
oscillation, -p , are shown in Fig 3.7{a) and {b) for various type of lasers. Fig 

min 

3. 7{a} shows the relaxation oscillation strength vs pump current for type JI lasers 

{e.g. CSP) of 5 µm stripe width. It can be seen that both carrier diffusion and spon-

taneous emission have substantial effects on the strength of the relaxation oscilla-

tion. However, it is also observed that carrier diffusion is more effective in this 

respect. In type III lasers {BH, embedded) no carrier diffusion occurs and sponlane-

ous emission is the primary factor for reducing the spiking. Fig 3.7(b) shows a com-

parision between type II and type III lasers of various stripe widths. Narrow stripe 

lasers always show larger damping because, for type III lasers, the spontaneous 

emission factor is larger and for type II lasers, the effect of diffusion is more sub-

stantial. For type I lasers with stripe widths larger than a diffusion length of the car-

riers, neither carrier diffusion nor spontaneous emission are significant enough to 

p 
reduce spiking, and p max of over 100 can be observed. 

min 

Summarizing the above findings: in lasers whose stripe width is narower than "'10 

µm, carrier diffusion plays a heavier role than spontaneous emission in suppressing 

the relaxation oscillation, especially for lasers without a lateral carrier confinement 

structure. On the other hand, the fraction of spontaneous emission going in to the 

lasing mode is primarily responsible for suppressing the spiking in lasers with a 

lateral carrier confinement structure. 

3.5 Small signal analog modulation response of injection lasers 

The small signal analysis of section 3.2 leads to a conjugate-pole-pair type of fre-

quency response. Equation (3.5) leads to the following transfer function for the 

small signal photon density: 
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The corner frequency of this response function occurs at 

fr= -
1-.JY(J0-1) +higher order terms in (3 

27T 

3.13 

3.14 

T 

where J 0 is the d.c. bias current (normalized by Jth• the threshold current), 7 = - 5 
, 

Tp 

and fr is normalized by__!_. as mentioned before. The spontaneous emission factor (3 
Ts 

determines the Q of the resonance but has no significant effect on the corn er fre-

quency itself. The phase of the modulated output, in the case of a high Q, under-

takes an abrupt transition from 0° to -180° at the corner frequency, but exhibits a 

soft transition in the case of a low Q. At low bias currents, a prominent resonance 

peak seldom exists, because a very low (:J is sufficient to produce a very low Q. All 

these features follow directly from the typical characteristics of a second order 

transfer function. 

The kinds of amplitude and phase response described above are actually observed 

in various types of injection lasers, and the corner frequency is found to follow the 

square-root dependence of (3.14) extremely well. Fig 3.B(a) and {b) shows results of 

measurements on a proton stripe laser. The relationship between the phase and the 

Q of the amplitude response is evident. Fig 3.9 shows the amplitude and phase 

response of a TJS laser. The frequency response is relatively flat, as would be 

expected from the absence of the relaxation oscillation as described in section 3.3. 

Fig 3.10 shows plots of the corner frequency vs "'- fJJ -1 for the two lasers. The 
'\· th 

modulation bandwidth of the two lasers are very similar, but the flat response of the 
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TJS laser is certainly a more desirable feature, not to mention its much lower thres-

hold current( 1:::: 30mA., versus 70mA for stripe lasers). 

3.6 Ultimate frequency response of GaAs injection lasers 

The ability of GaAs semiconductor lasers to be modulated at the GHz frequency 

range opens up some interesting applications concerning transmission of microwave 

signals through optical fibers[lB]. From the analysis of previous sections, it is clear 

that the useful modulation frequency range is limited to that below the relaxation 

oscillation resonance, which occurs at around 2-3 GHz, depending on the structure 

and the internal parameters of the laser. Questions are being raised as to whether it 

is fundamentally possible lo push the modulation frequency into X-band ("' 1 OGHz) 

or even higher : how should one design such a laser, and what price one has to pay 

in obtaining such a wide bandwidth. 

The laser relaxation resonance frequency is given by eqn. (3.14). In the unnormal-

ized form it reads: 

1 v. 1 J fr=- -(--1) 
27T T 5 Tp Jth 

3.15 

where the variables are as defined before in section 3.1. This frequency in'creases 

with increasing bias current, so that one can obtain a wider bandwidth simply by 

raising the pump current. Operating at a high current density is not compatible with 

reliability, and the corresponding increase in optical power may even cause calas-

trophic facet damage. If one tries to shorten the internal laser parameters such as · 

Ts and Tp to obtain a higher fr• one simultaneously increases the threshold current 

density Jth and one might not gain at all. The pertinent question is thus : given cer-

lain limits in the operating current density* and optical power density, what is the 
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highest achievable fr? And, how can it be achieved? 

To analyze this problem in a systematic manner, we first express Jth in terms of 

the internal laser parameters (section 3.1) 

3.16 

where e,d,a,r and Nurn are the electronic charge, active layer thickness, gain con-

stant, confinement factor and electronic density for transparency as defined before. 

Substituting (3.16) into (3.15) 

1 3.17 

One immediately sees that for a fixed current density J, a longer spontaneous life-

time 'is would increase fr, and there exists an optimum photon lifetime 'ip for which 

fr attains its maximum. The photon lifetime is related to the length of the laser by 

L 
'ip = v(pL-ln(R )) 

3.18 

where pis the free carrier absorption coefficient, vis the group velocity of the mode, 

and R is the end facet reflectivity. Fig 3.ll(a) - (c) shows equi-fr contour plots on 

the lrJ plane, represented by solid lines, for three different temperatures T = 300K, 

250K and BOK. The values of the parameters are listed in Table 3.1. The dependence 

of the spontaneous lifetime on the carrier density is neglected for convenience; its 

inclusion would not lead to significantly different results. The heavily shaded areas 

are regions below threshold. At T = 300K, for example, fig 3.ll{a) shows that if one 

•Actually, the limit to be imposed should be the injected carrier per unit volume, bul we shall assume a 

uniform active layer thickness of 0.2 µIn and express the limiting quantity in terms of the more 
familiar current density. 
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Table 3.t • 

7"5 = 3ns 

d = 0.2 µm 

R = 0.3 

a= 15 cm-1 

r = o.e 

N""' = 7.5x 1017 cm-3 at T= 300K 

Nam= 5.9x1017 cm-3 at T= 250K 

Nam= 1.0x1017 cm-3 at T= BOK 

a = 2.Bx 10-6 cm 3sec-1 at T = 300K 

a= 3.5x 10-6 cm 3sec-1 at T = 250K 

a= l.Ox10-5 cm3sec-1 at T =BOK 

• These numbers are taken from Ref. 20. 
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limits the current density to 2.5 kA/cm 2, then the highest fr achievable is about 2.5 

GHz, and the laser should be about 150 µm long to achieve that maximum. F'or the 

same current constraint, the maximum fr would be about 8.5 GHz when one cools 

the laser down to BOK {fig 3.11{c}) and the optimum length of the laser should be 

about 50 µm. The main factor associated with this increase in fr is the increase in 

the optical gain a: and the decrease in N 0 m at lower temperatures. 

In addition to the current constraint, one should also consider the optical con-

strainl. The optical power density inside a mirror facet is given by 

<I> = hc.JPo (mode volume) 
2T' P ( 1-R )(cross section area) 

3.19 

where P 0 is the static photon density, Tp is the photon lifetime associated with mir­

ror loss only=~ ln(~). and c..i is the optical frequency. Substitute into (3.19) the 

expression for Po one has: 

<I> = ln (R) hc.J ( J 1 ( 1 +N ))L 
ln (R }-a:L (1-R) ed --;; fa:Tp om 

3.20 

Equi-<l> contours are represented by dashed lines on the lrJ plane in figs 3.1 l{a) - (c). 

At 300K, for example, if one limits the pump current to no more than 2.5 kA/cm 2 

and an optical power density to no more than 1 MW/ cm 2 , the only operational region 

is the unshaded region as shown in Fig 3.11(a). One should then search for the point 

in this region where fr is maximum. For conventional 300 µm lasers, one usually 

first runs into the optical power limit as one increases the pump current. This can 

be avoided by shortening the cavity to the optimum value, in which case the 

response is current limited. The current levels shown in fig 3.11 may be somewhat 

optimistic, for we have assumed zero leakage current in the calculations. 
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It appears that the specific structure of the laser itself does not play a direct role 

in the frequency response. As mentioned above, a laser with high gain would have a 

higher frequency response simply because it can be biased to a higher ratio of JJ 
th 

before running into a prescribed current limit, while the optical limit can always be 

overcome by keeping the laser length short or by antirefiection coating. Specific 

structural designs can push these limits to a high level - for instance, a higher opti-

cal power limit can be tolerated in lasers with a crank structure [21]. All of the 

structural designs aiming towards a low threshold laser, such as reduced current 

leakage, increased optical confinement factor, etc., would also be helpful in the 

quest for higher frequency response. The basic properties of the material system of 

GaAs, however, impose a fundamental limit on the frequency response as depicted in 

figures 3.11. Still, the problem of exactly how high a current density a laser diode 

can sustain without reducing its lifetime and the reliability of the device at low tern-

perature have not been clearly settled, and probably should be the direction of 

further research. 

Appendix - Cha_r>ter 3 

Experimental notes concernin£ high frequency measurements of injection lasers 

Components and experimental arrangements for high frequency measurements of 

injection lasers are briefly described in this appendix. For high frequency measure-

ments, the laser chip is mounted at the end of a 500 microstrip line, as shown in fig 

A3.l(a), for lasers fabricated in our liquid phase epitaxy laboratory. Commercial 

lasers come in special packages, which usually provide a fly-lead for bonding on lo 

the stripline (Fig A3.l(b)). For impedance matching, a 400 microwave resistor 

should be placed in series with and close to the laser chip. The optical output is 

focussed with a microscope objective onto a photodelector, usually a high speed sili-
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Figure A3.1. Injection laser mounting for high frequency measurements. (a) 

laser chip mount. (b) mounting for commercial lasers. 
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(a) 

(b) 

Figure A3.3(a). Impulse response of the APD. Upper trace : 500 ps/div, lower 

trace: 100 ps/div. 
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con avalanche photodiode {APD). The APD is reverse biased to near avalanche break­

down (fig A3.2(a)}. At this bias voltage, the ratio of the signal current (due to the 

incident light) to the background reverse current reaches a maximum [22], leading 

to the highest signal to noise ratio. In some cases where the signal power is abu;1-

dant, it can be advantageous to bias at a lower reverse voltage, which reduces the 

avalanche gain but increases the detector speed. To ensure good frequency 

response, the commercial APD in a T0-18 package is mounted as shown in fig 

A3.2(b). The impulse response of the APD package is checked with a cw mode-locked 

dye laser, which produces a train of pulses of width ""'lps at ....... 6100 A. F'ig A3.3(a) 

shows a typical impulse response of an APD, showing a risetime of about 130 ps and 

very weak ringing. The fourier transform of fig A3.3(a) produces the frequency 

response characteristics of the APD, shown in fig A3.3(b). The -3dB point is observed 

to be around 2 GHz. Thus for measurements above 2GHz, it is necessary to normal­

ize the measured frequency response with the APD response curve. 

A typical setup for the frequency response measurement of the injection lc,ser is 

shown in fig A3.4. The laser can be excited with a fast current step (~ ns risetime), 

or by a sharp current impulse (70 ps) generated by a step recovery diode generator 

(Hp33002), or by cw microwave sources from 25 MHz to 4 GHz (Hp 8690, 8640). The 

signal is fed into the laser via a microwave bias tee (Hp33150) through which a de 

bias current is applied. In earlier experiments when commercial bias tees were not 

available, a chip capacitor was mounted on the 500 stripline, and the de was 

directly applied to the laser through an rf choke. 

The laser output was usually focused onto the APD by a microscope objective. 

Alignment was done with the help of an infrared viewer. The signal output from the 

APD, in the case of a weak signal, was fed into a variable gain wideband microwave 

amplifier (B&H3002, bandwidth 0 - 2 GHz), and then through a sampling head 
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(Tektronics S-4, 25 ps risetime)and into a microwave spectrum analyzer (HpB5B5) 

which is capable of detecting frequency components as high as 18 GHz. The 

detected signal can also be fed into a microwave network analyser (HpB410), which 

compares the phase and amplitude of the microwave signal with a reference signal 

split off from the sweep oscillator by microwave directional couplers (Hp778 series). 

In the automatic frequency- sweep mode, this arrangement provides a very con­

venient way of measuring the amplitude and phase response of the laser at various 

bias currents. The step and pulse responses of the laser were displayed in lhe time 

domain on a sampling oscilloscope. The spectrum analyser was used to measure the 

harmonic distortions and noise characteristics, and was extremely useful in self­

pulsation and mode-locking experiments, which will be described in chapters 4 and 

5. 
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CHAPTER4 

INTENSITY SELF-PULSATIONS IN SEKICONDUCTOR LASERS 

AND THEIR INTERACTIONS 1flTH AN EXTERNAL CAVITY 

4.1 Self-pulsation in semiconductor injection lasers 

It has been observed that some injection lasers, when driven by a de current. em.it a 

continuous train of sharp optical pulses, at a microwave repetition rate somewhere 

between 200 MHz and 2 GHz. This phenomenon, called self-pulsation, apparently 

occurs in all types of III-IV semiconductor lasers that have ever been fabricated; the 

pulsation is more pronounced in some types and less in others. Basov(l) first 

attempted an explanation of this peculiar phenomenon by assuming a non­

uniformity in the pump current over the length of the laser diode, so that the 

regions depleted in pumping will form saturable absorption centers. The coexistence 

of both saturable absorption and saturable gain within a cavity mimics a passi·;ely 

mode-locked laser[2,3]. However, the pulsations observed in injection lasers cannot 

be caused by made-locking, since the pulsation frequency is much lower than the 

cavity mode separation of 40-50 GHz. The pulsation is actually a form of undamped 

relaxation oscillation. Lee et.al[ 4] fabricated laser diodes with a purposely built-in 

non-uniform pump current, and produced pulsations as predicted by Basov. How­

ever, another theory was advanced by Paoli and Ripper[5] who speculated that the 

pulsations, though not produced by the locking of the cavity modes, can be pro­

duced instead by the locking of the combination-tones [8] of the modes, called 

second-order mode-locking. They supported their theory by the experimental obser­

vation that when light is selectively fed back into the laser by a ditrraction grating to 

produce single mode oscillation, the pulsations are quenched. However, later experi­

ments by Chinone et.al.[7] and Figueroa et.al[B] showed that the pulsation can be 

quenched even with optical feedback from a non-frequency-selective element like a 

plane mirror. There was no further experimental evidence to support the theory o! 
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second order mode-locking. As the quality of injection lasertr improved and their 

commercialization required serious life-tests to be undertaken, it became apparent 

that pulsations are related to the aging and degradation of lasers. Massive amount 

of relevant data was gathered. The test results of Paoli[9] and Hartman et.al.[ 10] 

unmistakeably relate self-pulsation to absorbing defects in the active region of the 

lasers. The exact nature of the defects is still a matter of controversy; some be1i eve 

them to be deep level traps[11,12] and micro-degradations di!tributed througtiout 

the active region[13], but there is also evidence that pulsations are due to mirror 

facet degradation[14] or proton induced damaged [15,16]. There exist little experi­

mental data that can verify any one of the above proposed mechanisms con­

clusively. The correlation between theory and experiment is further complicated. by 

the different laser geometries and the mathematical similarities between the 

different models. Self-pulsation is the only remaining outstanding problem in sem­

iconductor lasers that has not been solved completely, and is still an area of active 

research in industrial laboratories. Here, we list the major properties of self­

pulsation: 

1. a large percentage of lasers that do not self-pulsate when they are "fresh" will 

eventually do so after several thousands {or hundreds, or even tens) of hours of 

continuous operation; 

2. when self-pulsations first develop in a laser, they are in the form of a weak 

sinusoidal undulation at relatively high frequencies (> 1 GHz). However, as the laser 

continues to age and degrade, the undulation develops into sharp spiking in the out­

put at ever decreasing frequencies; some lasers pulsate at as low as 200 MHz which 

would severely interfere with the modulation signal if they were used as a signal 

transmitters; 

3. the self-pulsation frequency increases as the de bias current is increased; how­

ever it does not follow the simple square-f'oot dependence of the relaxation oscilla-
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tions described in section 3.5. 

4.2 General behavior of self-pulsing lasers coupled to an external ca'rity 

Interests in studying the behavior of self-pulsing lasers coupled to an external cavity 

arises, on the one hand, from intentions to quench the pulsations by optical feed­

back, and on the other hand, from attempts to enhance the pulsations to produce 

extremely short and stable picosecond optical pulses. It has been reported that pul­

sations can be quenched by coupling a self-pulsing laser to a short external cav­

ity(?]. However, other experiments by Paoli[17] showed no quenching effect in cou­

pling the laser to an external cavity; instead the pulses were even sharpened and the 

pulsation frequency was locked to an external cavity harmonic (ie., harmonics of the 

external cavity mode separation). These observations were not successfully 

explained. 

Recent interest in ultra-short pulse generation in injection lasers was revived by 

the mode-locking experiments of Ho and Glasser et.al.(18-20], who reported generat­

ing 18 ps optical pulses from actively mode-locked injection lasers coupled to an 

external cavity. Studies by Figueroa et.al.(21] and Lau et.al[22] suggested that the 

mechanism for short pulse generation can be passive mode-locking, due to the very 

same degradation-induced defects that cause self-pulsation. Later mode-locking 

experiments by lppen et.al.[23] using badly degraded lasers generated the shortest 

pulse yet, 5 ps wide, confirming the predictions by Figueroa and Lau. The length of 

the external cavity was also found to be very important for effective mode-locking 

[21,22], and the theory also predicts that non-self-pulsing lasers can be induced to 

self-pulse when coupled to an external cavity of appropriate length. When this 

happens, the pulsation frequency locks to the beat frequency between the external­

cavity modes or its harmonics. In essence, this is passive mode-locking, or self-
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locking as it is commonly called. This in fact has been previously observed by 

Broom et.al.[24], but has never been satisfactorily explained. The model used to 

analyze passive mode-locking can also predict the quenching and frequency locking 

effects described in the beginning of this section. Thus, the numerous and 

apparently unrelated major experimental observations in the dynamic interaction 

of injection lasers with external cavities can be explained with a single theory in a 

coherent fashion. In the following sections of this chapter, the experimental obser­

vations and the theoretical model will be described. Results on the use of a section 

of multimode optical fiber as the external ca~ity will also be reported. This novel 

arrangement can render the laser external-cavity system highly compact and thus 

practical. An analytic small signal theory of the laser-external cavity interaction, to 

be presented in the next chapter, will give insights into how the pulsation behavior 

depends on the external cavity length, coupling coefficient, trap density and other 

parameters. 

4.3 Quenchin1 and frequency locking of self-pulsations in (GaAl)As injection lasers operat­

ing in an external cavity 

As mentioned in the last section, Chinone et.al.[7] reported on a method for the 

suppression of intensity pulsations by using a short external cavity (0.3 - 2cm), while 

experimental results by Paoli et..al.[17] showed that the external cavity locks the 

self-pulsation frequency to a cavity harmonic, with no significant quenching effect. 

These results are not adequately explained by the conventional rate equations, 

which do not predict sustained pulsations. In this section we present a study of a 

self-pulsing (GaAl)As injection laser operating in an external cavity. The conven­

tional set of rate equations widely used to analyze relaxation oscillation in lasers 

{Chp. 2 and 3) are used as the starting point. These are modified by the addition, in 

the manner of Copeland[12], of absorbing electron traps, and also by a term 
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accounting for the feedback due to the external resonator. Using these equations, 

we show that the aforementioned observations are not independent, and fit well 

within the scope of a single model. The analysis is confirmed by our experimental 

results on a self-pulsing laser. Although Copeland's equations are used in our calcu-

lation, we believe that other well known models for self pulsations, when modified to 

include the external cavity, will produce similar results. Secondly, we describe a 

novel method for suppressing self-pulsations using an optical fiber resonator. The 

compactness of the laser-fiber system makes it a very attractive method for stabiliz-

ing self-pulsing lasers in practice. 

According to Copeland, self-pulsations are produced by electron traps distributed 

throughout the active region which can modulate the gain of the laser. The model is 

described by the following set of equations: 

dP(t) 
dt 

dN(t) = L - !!.fil-aP(t)(N-N) + dT(t) 
dt ed Ts o dt 

dT(t) dt = uocoP(t)(To-T) - u 0vN(t)T(t} 

4.1 

4.2 

4.3 

The first two equations with the exception of the last terms (those involving T and E) 

are the conventional rate equations, with N being the electron density, and P the 

P(t-T) 
photon density. The term £ , represents the delayed feedback from the exter-

Tph 

nal mirror where T represents the roundtrip time in the external cavity, E is the 

fraction of light fed back into the laser, which we define to be the coupling 

coefficient , and T;h only includes the mirror loss. The use of the delayed photon 
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feedback term, which neglects the optical phase, to describe the external cavity can 

be justified as follows: for sharply pulsing solutions, the situation is that of one or 

more discrete photon packets bouncing back and forth between the laser diode and 

the external mirror. It is clear that in this case the inclusion of the phase term is 

not necessary. In the case of nonpulsing {steady) or slowly varying solutions (slow 

compared to the external cavity roundtrip time), the result could be affected by 

coherent effects [25,26]. However, if one neglects small variations (on the order of 

an optical wavelength) in the external cavity length, the overall picture can be well 

described by the above approach. 

The last equation {4.l(c)) represents the equation of motion for the traps, the 

parameters are as follows: c 0 is the speed of light in the medium, T is the density of 

empty traps, T 0 is the total density of traps, a 8 is the electron capture cross section, 

vis the thermal velocity, and a 0 is the photon capture cross section by a trap occu­

pied by an electron (whose density is (T 0-T)). In the calculations we use typical 

values for the laser parameters: cx=l.5x 10-6 cm 3sec-1, 1 5 =3ns, T'ph=2.9ps, d=0.2µm, 

Nom =5x 1017cm-3 , P=lo-·4, c 0=8x 109cmsec-1, a 8 =1.5x 10-17cm 2 , v = 4.42x 107cmsec- 1, 

and a 0=3x10- 16cm 2. The calculations were performed by integrating eqns. (4.1) -

(4.3) using the Runge-Kutta fourth-order algorithm. The system is excited with a 

step change in the current and run until steady-state oscillation or its absence is 

confirmed. 

Calculations were first performed without the external cavity {r-0). A plot of the 

frequency and the amplitude of the pulsation versus injection current is shown in 

Fig 4.l(a} and {b). Depending on the bias level, the trap density- must exceed a cer­

tain value for pulsation lo occur. One can also observe the increase of the pulsation 

frequency with the bias current, and the decrease of the pulsation frequency with 
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increasing trap density. As lasers age, the defect density inside the active region 

increases, and the calculated results above can explain the corresponding drop in 

the pulsation frequency. The results also show the rapid increase in the pulsation 

amplitude when the bias current is raised above threshold, which is also observed 

experimentally. 

The experiment (fig 4.2) consists of collimating the light from one facet of a Hita­

chi buried heterostructure (BH) laser, operating cw, using a 40X objective. A portion 

of this light is returned to the laser by using a mirror mounted on a micrometer 

stage. The light from the other laser laser facet is focused onto a TI XL55 Avalanche 

diode (risetirne Fl:! 130ps). The signal from the APD is amplified and displayed on a 

spectrum analyzer. In the absence of an external cavity, the BH laser self-pulses for 

currents slightly above threshold (I> 1.02lth). The observed pulsation amplitude and 

frequency are also plotted on fig 4.1, and it can be seen that a good fit can be 

obtained with an assumed trap density of To= 5.Bx 10 16cm -s. 

Figure 4.3 shows an experimental plot of the amplitude and frequency of self­

pulsation versus the ·external cavity length L, for I=l.15lth· We note that there is a 

broad minimum in the amplitude of the self-pulsation for 6< L< 10 cm. Similar 

results are obtained for currents varying from l.04lth to 1.25lth· An estimate of the 

coupling coefficient t: can be made from the measured reduction in threshold curent 

when the external reflector is aligned (section 4.4). Our results indicate a coupling 

coefficient in the range 0.01 - 0.05. We find no significant variation in £as the mirror 

is moved, indicating that the output laser beam is well collimated. In Fig 4.4, we 

show the suppression of the self-pulsation using an external fiber resonator (EFR). 

The resonator consists of a piece of rnultimode graded index fiber with one end 

formed into a lens using the thermal melting technique[27], while the other end is 

cleaved, polished and is evaporated with gold to form a reflector. The operation 
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Figure 4.2. Experimental setup for coupling of laser diodes to an external cav­

ity. 
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characteristics of injection lasers in an EFR will be discussed in more detail in the 

next section. 

When the fiber resonator is aligned with the injection laser and the length of the 

fiber is properly chosen, we are able to suppress self-pulsation with very little cou­

pling into the EFR (ie., the change in Ith is not measurable). The suppression of the 

self-pulsation is maintained for currents up to 1.llth· 

The calculated amplitude and frequency of the self-pulsations are plotted versus 

external cavity length in fig. 4.5. The bias was at 1.1 x threshold, and E: = 0.01; how­

ever, the results do not change significc,, itly for 0.01 < E: < 0.2. Several important 

observations can be pointed out. First, we find regions of L where the self-pulsations 

are suppressed. The first band occurs for 3 < L < 12cm. This region corresponds 

roughly to our experimental results. In practice, the self-pulsation is not quenched 

completely in the suppressed region, leaving a resonance significantly broadened 

and greatly reduced in amplitude. In all the regions where the pulsations are not 

suppressed (except for L< 3cm), their frequency corresponds to fp = mc/2nL where 

m is an integer, and n is the refractive index. Starting with the first cavity harmonic, 

the pulsation locks to successively higher harmonics as L is increased. Near the 

region where frequency jumping occcurs, the oscillation is relatively unstable and 

takes place in both harmonics. 

The n::.:ults presented in fig. 4.5 conform qualitatively to the experimental results 

of Paoli et.al.[1 7] who used an external cavity approximately 75cm in length. Our 

calculations show that the self-pulsation cannot be suppressed for all L > 50cm, and 

the pulsation frequency is locked to successive cavity harmonics as the cavity length 

is increased, as observed by Paoli et.al. Chinone [7] observed the quenching effect in 

a CSP laser, but for cavity lengths much shorter (0.3 < L < 2cm) than that 
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predicted by our calculations. We believe the results obtained by Chinone could be 

explained by using a shorter photon lifetime in the calculations. 

The mechanism involved in the suppression of the self-pulsations is the locking 

action produced by the external cavity feedback. By introducing external feedback, 

the injection laser is forced to pulsate at a frequency fp equal to me /2nL. As L is 

decreased, the laser is forced to pulsate at higher frequencies. If T, (i.e., l/f P) is 

_shorter than the time required to replenish the electrons consumed in generating 

an optical pulse, then the pulsation cannot be sustained. As expected, higher pump 

currents can sustain pulsations at a higher frequency, and thus a shorter cavity is 

necessary for quenching. For very short cavity lengths (L < 3cm} the pulse width is 

comparable to the transit time of the light in the external cavity and no frequency 

locking occurs. Thus the pulsation is primarily determined by the parameters of the 

injection laser. On the other hand, if L is too long, the self-pulsation frequency will 

lock to a higher cavity harmonic, with a frequency above the natural pulsation fre­

quency and below the quenching frequency. 

In conclusion, it has been demonstrated that self-pulsation in a cw injection laser 

can be suppressed by an external cavity. A useful external cavity for this purpose 

can be made using an optical fiber. Lastly, the numerical calculations using the elec­

tron trap model of Copeland confirm our experimental results and predict that 

suppression of self-pulsation in lasers occurs over a small range in external cavity 

lengths. 

4.4 Operation characteristics of an external fiber resonator 

In the last section, the quenching of intensity self-pulsations by a novel external 

resonator using a multimode graded index fiber was described. The laser-fiber com­

bination can be relatively compact, rugged, light weight, mechanically stable, and 
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therefore useful. The theoretical coupling coefficient expected from this arrange-

ment is examined in this section, which would be a useful piece of information dur-

ing the actual alignment procedure. 

Figure 4.6 shows the experimental arrangement. The laser used in the experiment 

should operate in the fundamental lateral and transverse mode, otherwise coupling 

would be extremely difficult. A piece of multimode graded index fiber with a numeri-

cal aperture of 1.4 was used in the experiment. One end was cleaved, polished and 

coated with about 2500 /... of Au to form a reflector. A spherical lens (shown in fig 

4. 7) was formed on the other end of the fiber using the thermal melting technique, 

resulting in a typical radius of curvature of 80 - 120 µ.m. The laser was mounted in 

the same way described in chapter 3, but so arranged that both laser facets were 

accessible. The fiber was placed inside a capillary tube which was mounted on an x-

y-z translation stage with provision for rotation about two of the axes. The align-

ment was performed using PZT(lead zirconate) piezoelectrically controlled 

micrometers. The light from the second facet of the laser focused onto an APD and 

displayed on a spectrum analyzer or sampling oscilloscope. 

Fig 4.8 shows typical light output versus current characteristics for an external 

fiber resonator. Also shown are the characteristics with no external fiber resonator 

present. An important figure of merit for the external fiber resonator is the thres-

hold reduction factor, K. given by 

Jth EFR 
K=--­

Jth 
4.4 

where Jth EFR and Jth are the threshold current densities with and without the exter-

nal fiber resonator, respectively. This reduction in threshold is related to the cou-

pling coefficient E, defined before as the fraction of light returned from the external 



DC 

/Au COATING 

/ RESONATOR 

FIBER FIBER 
LENS 

- 76 -

"\.-....--lf-.l'v'V'v---0 R F 

HEAT SINK 

Figure 4.6. Experimental setup. 

SPECTRUM 
ANALYZER 

OR 
SAMPLING 

OSCILLOSCOPE 



- 77 -
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Figure 4. 7. Tap view of optical fiber showing a lens tip. 
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resonator into the lasing mode, by the following: 

aN0 m + ~{p+(1/2L)ln(1/R){1/t:}} 
f( = ~~~~~~~~~~~~~~~~ 

aN0m + ~ (p+( 1/L )ln ( 1/R) 
4.5 

where the definitions of a, Nom• r, p, L and R are the same as that in chapters 2 

and 3. As a reminder, a is the gain coefficient, N 0m is the carrier density for tran-

sparency, r is the confinement factor, p is the internal absorption loss, L is the 

length of the laser and R is the mirror reflectivity. The coupling coefficient can be 

expressed as[30] 

\ = R + 2..Jif .JR;cos26 + R1 
1 + 2-../R ..Jff;cos26 + R1R 

4.6 

where 26 is the round trip optical phase delay between the laser cleaved facet and 

the end reflector of the fiber, and R1 is the effective reflectivity of the entire exter-

nal fiber resonator, including various loss mechanisms. Since the laser is a free 

oscillator, the phase factor 26 will adjust itself such that £ is maximized, ie., the laser 

oscillates at a frequency closest to the maximum on the gain curve[3B]. Then £ 

becomes 

1 

t: = (..Jif + ~2 /(l+(R1R)2)2 4.7 

In fig 4.9 we plot Kasa function of R1 with a 0 = aNam as a parameter. For the calcu-

lation the following numbers were used: L=150 µm, d=0.3µm, f=0.8, R=0.3, and p = 

20 cm-1• These numbers were either measured or assumed to be typical for injec-

lion lasers. A reasonable value for a 0 is 100 - 200 cm - 1• and its variation among 

different laser structures can help explain the different laser sensitivity to external 
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feedback. 

To estimate the coupling coefficient £ we first make an estimate of the effective 

reflectivity of the fiber resonator, R 1 as follows: 

R J = R.Au T/c T/p T/R 4.8 

where R.Au is the reflectivity of gold, T/c is the input coupling coefficient at the fiber 

lens, T/:p is the coupling due to polarization effects, and T/R is the air /glass transmis-

sion = 0.96. The factors T/c and 7Jp are estimated as follow: 

1. T/c is calculated by first calculating the half acceptance angle, 'lj; for a spherical 

lens on a multimode step index fiber, given by[31] 

4.9 

where nc and net are the core and cladding index, respectively, d is the diameter of 

the core, and r is the radius of the fiber lens. Assuming nc = 1.5, net = 1.4935, d = 

65µm, and r = 100µm we have 'lj; = 0.312 rad. The coupling coefficient T/c is estimated 

[32] by integrating the farfield distribution 1(19) of the laser over the acceptance 

angle of the fiber and normalizing by the total power emitted: 

T/c = " fo /(19)sin19 d19 
It 

4.10 

fo 2 
/(19)sin19 d19 

where we have assumed the beam divergence in the lateral direction to be negligible 

and the distance between the laser and the fiber lens is sufficiently small such that 

the beam pattern falls within the fiber core cross section. The far field distribution· 

of the laser in the transverse plane can be approximated by[39]: 
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I (17) = Io cos (2.417), 17 ~ 0.65rad, 4.ll(a) 

I (17) = 0 ~ ~ 0.65rad, 4.ll(b) 

Using eqns.(4.9) and (4.10) we find 7Jc = 0.43 One effect of the lens is to significantly 

increase the coupling efficiency of the external fiber resonator compared with a fiat 

fiber end. For example, when d/2r = 0 ( ie. a fiat end) 17c i:::::: 0.1 and increases to 

above 0.9 when d/2r ·i:::: 0.5. Another effect of the lens is to provide beam refocusing 

into the active layer of the laser, which is extremely important. Since the lens is an 

integral part of the external fiber resonator, the tolerances in alignment can be 

relaxed compared to a discrete fiber and lens combination. 

2. The depolarization coupling coefficient T]p is related to the rotation of the input 

polarization. Since the laser output is polarized along the junction plane (TE), polar­

ization conversion in the fiber effectively reduces the efficiency of the coupling. It 

has been observed that a length of 50 cm in a step index multimode fiber random­

izes the polarization of the incident wave[33]. For a single mode fiber, the fiber 

length required for depolarization is much larger (> 300m). However, the results are 

a strong function of fiber stress and inhomogeneities. Thus the effect of depolariza­

tion is difficult to estimate. At worst, the polarization is completely mixed and we 

assume 7Jp = 0.5. 

Using the above numbers, the threshold factor K, eqn.(4.4), is estimated to be 

0.86 < K < 0.91, while the experimental value of K is 0.9(from fig. 4.8). The coupling 

obtained in the experiment can thus be as good as could be expected. Further 

improvements can be made by using a fiber lens with a smaller radius of curvature. 
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4.5 Pasaive mode-lockin1 of injection laaera in an external cavity 

As mentioned in the general review section 4.2, very short optical pulses can be gen­

erated by active mode-locking a laser diode operating in an external cavity. Another 

simple method to generate pulses of moderate width (30-40 ps}is by directly driving 

the isolated laser diode with a very strong sinusoidal signal near the relaxation oscil­

lation frequency, or by driving the laser with very sharp and intense electrical pulses 

(35,36]. But by far the shortest pulses were generated by passive mode-locking of 

badly degraded lasers coupled to an external cavity. (Incidentally, passively mode­

locking produces shorter pulses than active mode locking in general - the passively 

mode-locked dye laser produces subpicosecond pulses unmatched by other actively 

mode-locked systems.) Passive mode-locking can also be produced with some unde­

graded lasers that do not self-pulse, but the optical pulses generated were generally 

sinusoidal and are far from being sharp. Generation of pulsations in a non-pulsing 

laser by coupling to an external cavity is sometimes called self-locking. It was also 

observed that the pulse repetition rate is not always at the inverse round trip time 

but at multiples of it. The above observations can be explained by the same trap 

model used in section 4.3. This model, although originally introduced for self­

pulsing lasers, can also be applied to non-self-pulsing lasers. We assert that a sizable 

amount of traps or other absorption centers, whose density is below the critical den­

sity for self-pulsation, exists in non-self-pulsng lasers. When the laser is coupled to 

an external cavity, the coexistence of the saturable absorption and the laser gain 

medium mimic a weak passive mode-locking system. 

The theoretical treatment is based on the same equations of the trap model, 

eqns. (4.1) - (4.3). The trap density T0 is set at values below the critical value 

required for self-pulsation. When the laser is coupled to an external cavity with a 

sufficiently large coupling coefficient, the system becomes unstable and self-pulses. 
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The strength of this induced pulsation depends on the actual trap density. Fig 4.10 

shows the calculated results of induced pulsations with different trap densities. The 

output in 4.lO(a) resembles a sinusoid, while in 4.lO(b) the pulses are considerably 

sharper. The diffference in trap density is about 9x 1015cm - 3 , indicating that only a 

small difference in the density of absorbers can affect the pulse shape. These results 

can help explain the sharp contrast between the results of Broom el.al.[24 J and 

other workers[23,37]. Fig 4.11 shows plots of the amplitude and frequency of the 

induced pulsations versus the external cavity length. The plots are taken for the 

same parameters as previously described in section 4.3, but for a much larger cou­

pling coefficient E of 0.2. The results are very similar to the observations by Broom 

et.al.[24]. One should also note the frequency jumping phenomenon as has been pre­

viously observed [11], but never fully explained. 

In the following, we present some experimental results on the self-locking and 

passive mode-locking of injection lasers. In our studies we have observed. in some 

cases results similar to those reported by Broom et.al[24]. However in other cases 

we observed a spiking of the light output at the cavity transit time or a harmonic of 

it. Using the model developed above we are able to qualitatively explain our results. 

The microwave spectrum of several lasers coupled to an exteral cavity are shown 

in Fig 4.12(a) -t (c). These lasers display a fiat microwave spectrum when the exter­

nal cavity is blocked, indicating that they are not self-pulsing. Spikes are induced in 

the spectrum at the cavity round trip frequencies( except in (b), where the reso­

nance occurs at twice the round trip frequency} indicating self-locking. The 

difference in the strength of the pulsations in these three lasers can be attributed, 

according to the above theoretical model. to the difference in absorber densities 

present in the lasers. As a matter of fact, the laser in fig 4.12(c) has been operated 

for a considerable longer period of time than those in fig 4.12(a) and (b). The 
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Figure 4.11. Calculations showing the amplitude and frequency of the induced 
pulsations vs external cavity length. 
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(a) 

( b) 

( c) 

Figure 4.12. Microwave spectrum of output of three ·different lasers coupled to 
external cavities. Vert.: 1 OdB/div. Hori.: 50MHz/div, center at 2.3 
and 2.1GHz respectively for (a) and (b), 0 - 1.BGHz full scale for 
(c). 
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pulsation frequency locks to the external cavity round trip frequency as it length is 

varied, as shown in fig 4.13. The amplitude and frequency of the induced pulsation 

of the laser in fig 4.12( c) are shown in fig 4.14 ; these results are very similar to the 

results as plotted in Fig 4.11. 

The temporal display of the light output of the laser shown in fig. 4.12(a) is shown 

in fig. 4.15, with a small microwave drive applied at the spiking frequency to sta blize 

the pulses. The output is modulated, but the pulses do not appear sharp. This is 

similar to the computed low-trap-density case in fig. 4.lO(a). Fig 4.16 shows the tem­

poral pulsing output of the laser in fig 4.12{c); the pulses are about 150ps in width 

and is detector limited. The results are very similar to the calculated result in fig 

4. lO(b) corresponding to the high-trap-density case. 

With a self-pulsing laser, the trap density T0 is sufficiently high that the isolated 

laser pulses without an external cavity. The effect of the external cavity is either to 

enhance or suppress it, depending on the cavity length, as illustrated in section 4.3. 

Fig. 4.17 shows the pulse output of a self-pulsing laser coupled to a cavity of such a 

length that the spiking is enhanced. The pulses in this case is detector limited to 50 

ps. Nonlinear second harmonic generation (SHG) autocorrelation measurements 

have shown that this kind of passively mode-locked system can give pulses as short 

as 5 ps [23]. 

In closing, we would like to mention that the results presented above provide a 

method for diagnosing self-pulsing before it develops. Using equations (4.1) - {4.3) 

presented in section 4.3, we can correlate the amplitude and bandwidth of the 

induced resonance versus external cavity length and absorber density T0. The exper­

imental curves can be fitted to the calculations to give T0 . The test can be per­

formed in a laser which does not self-pulse initially, but still contains a high density 
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Figure 4.15. Output pulse shape (positive going) of an incompletely mode-locked 
laser. Hori. : 200ps/ div. 

Figure 4.16. Detector limited output pulse (negative going) of a pass'ively 
mode-locked laser which initially does not self-pulse. Hori. : 
200ps/div. 
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Figure 4.17. Detector limited output of a passively mode-locked laser which 

self-pulses without an external cavity. Hori : 50ps/div. 
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of absorbers. When this laser is placed in an external cavity, an induced resonance 

can be obtained. By monitoring the amplitude and bandwidth of the induced reso­

nance versus time one can determine the time rate of change of the absorbers 

dTo/dt. It should then be possible to correlate laser structure and fabrication pro­

cess to dTo/dt. These measurements can be made before the isolated laser starts 

to self-pulse. This technique should provide a convenient and non-destructive test. 

4.6 Operation characteristics of a buried heterostructure laser with controllable amount of 

saturable absorption. 

As we have seen in the above sections, lhe presence of saturable absorbing defects 

leads, on the one hand, to undesirable self-pulsation, and on the other hand, to 

picosecond pulse generation by passive mode-locking. The latter would have been 

extremely useful if not for the fact that the absorbing defects in injection lasers 

cannot be reliably controlled, and that short pulses can be generated only with 

lasers aged to the point where catastrophic failure is imminent. Controlled satur­

able absorption has been introduced in semiconductor lasers by Lee et al [ 4] more 

than a decade ago with a two-section contact conficuration, and indeed verified that 

self-pulsation can be generated with this structure. Recently, this double-section 

scheme was applied on a more advanced laser structure (the transverse junction 

stripe laser)[ 40] and subsequent streak-camera measurements showed that the pul­

sations so generated have pulse widths of about 16ps. Due to the fact that contacts 

had to be made to both of the tandem sections, the lasers could not be bonded 

junction-down and cw operation was difficult, which made the device not suitable for 

practical applications. Recently, Carney and Fonstad [ 41] fabricated an eight­

section contact on a proton-stripe laser, and, despite relatively high thresholds 

(> 150 rnA) managed cw operation of the device. They observed some nonlinearities 



- 94 -

m lhe light-current characteristics. In this section, independent results of a seg­

mented contact laser using very low threshold state-of-the-art laser devices will be 

described. The following characteristics of a "classical" self-pulsing laser have been 

observed: non-linearities in the light-current characteristics, light-jumps, hysteresis, 

self-pulsation above the light-jump, and strong coupling with the external electrical 

circuit near the light-jump region ( 42]. The device is a buried heterostructure (BH) 

laser with a two-segment contact as shown in fig 4.18. The use of the sophisticated 

BH structure eliminates other extraneous effects such as lateral carrier diffusion, 

unstable lateral optical modes or damage defects as in a proton-stripe laser. These 

are effects that mask the artificially introduced nonlinearity and can lead to self­

pulsations and light-jumps by themselves[16]. These BH lasers have cw thresholds in 

the 30-40 m.A range with junction-up and diode lengths of 250 µm. The results 

described below show that this device should prove useful in reliable picose•.;ond 

pulse generation by passive mode-locking. 

The currents through the two sections are provided by independently controlled 

current sources. The measured cw light-current characteristics of the device are 

shown in fig. 4.19. The curves are the light vs the current(/ 1) passing through one of 

the contact segments {the segment with length 125 µm) with the current through 

the other segment (I 2 ) held at a fixed value. The measured characteristics wilh I 2 = 

0 shows a lasing threshold of about 27 mA and a linear light-current relation up to 

an output power of 3 - 4 mW /facet. This is not expected since, with a zero pump 

current, the second section should act as a saturable absorber and non-linearities 

should result. The possibility that lhe pump current from one section can leak lo 

the other cannot be justified since the resistance between the two contacts was 

measured to be about 1 k 0 . A possible explanation is due to the difference in the 

band-gap of the two sections under different pumping conditions and the saturation 
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Figure 4.18. Buried heterostructure laser with segmented contact. 
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Figure 4.19. Measured light-current characteristics of the segmented contact 
laser. 
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of the unpumped section by spontaneous emission from the first section. With I .i = 
-2 mA, however, non-linearities including a light-jump result. Thi!I kind of charac-

teristic is expected from the presence of saturable absorbers. With further incr::ase 

in the negative current (-/ 2)through the second section, the jump becomes more 

spectacular and hysteresis is observed. These results are in agreement with the cal-

culated light-current characteristics predicted in lasers including saturable 

absorbers, as shown in fig. 4.20. These results are the steady state solutions of the 

simple laser rate equations including an absorption which saturates as 
1 

p , 
1 +---­

Ps 

where P is the photon density and Ps is the saturation density. The rate equations 

are 

dN - =J-N -NP 
dt 

dP 
- =NP -P(l + 
dt 

Lo 

1+ p 
P. 

) +{JN 4.12(b) 

The quantity Lo describes the amount of saturable absorption. It is directly propor-

tional to the length of the absorbing section, and is related to the current passing 

through that section - L 0 increases as I 2 is decreased[ 43]. The steady state relation-

ship between the pump current J (through the first section) and the photon density 

Pis given by 

4.13 

J = (l+P){l + _L_o_ - ..f!_(l+ Lo )2 + ... ) 
1+..E.. P 1+L 

Ps Ps 
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Figure 4.20. Calculated light-current characteristics of a laser with satuarable 

absorption. 
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4.14 

The condition that light jump and hysteresis occur can be calculated in a straight-

forward manner: 

_!_> 1+-1-
Ps Lo 

4.15 

This means that for bistability to occur, the saturation photon density Ps must be 

considerably smaller than one, which can be shown to be the case in real semicon-

ductors. The results shown in fig. 4.20 are obtained with Ps = 0.2. 

The microwave spectrum of the detected output was observed with a spectrum 

analyzer. It was found that selt-pulsation occurs above the light jump. The pulsing 

frequency increases as the current through the first section I 1 is increased, in a 

manner similar to a typical self-pulsing laser, as shown in fl.g. 4.21. The lasing spec-

trum consisted of a single mode for I 2 = 0, but consisted of a large number of 

broadened lines when I 2 was decreased to a value where non-linearities in the liglit-

current characteristics are observed. This is consistent with the occurence of self-

pulsation in that regime of operation. Near the light jumps, the random fluctuations 

between the two possible light levels interacted with the external electricial circuitry 

to produce very narrow band oscillations, similar to that observed by Paoli l '12]. 

Near and far field measurements indicate that despite self-pulsing, the transverse 

mode remains stable in the fundamental mode at all operating currents, showing 

the effectiveness of the waveguiding structure. 

It was thus demonstrated that a controllable amount of saturable absorber ::-an 
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be introduced into an otherwise well-behaved laser lo produce characteristics of a 

self-pulsing laser, which can be used for reliable picosecond pulse generation. 
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CBAPTER5 

SMALL SIGNAL THEORY OF THE DYNAMICS 

OF LASER-EXTERNAL CAVITY INTERACTIONS 

In the last chapter, the general pulsation behavior of injection lasers coupled to 

an external cavity was discussed, and a theory was presented to explain the experi­

mental results. The theory made use of the fairly complicated electron trap model, 

which made analytic description of various important features of the results 

difficult. Among these features are the dependence of the pulsation characteristics 

on the external cavity length as shown in figs 4.5 and 4.14, and the minimum 

amount of coupling between the laser and the external resonator required for 

quenching or induced pulsation at various bias levels and trap densities. However, 

common to most models proposed for self-pulsation is the presence of a saturable 

loss or a superlinear gain inside the laser medium; the trap model is actually a com­

bination of both : the traps are saturable absorbers, and when the traps are 

bleached, electrons are released into the conduction band which effects to increas­

ing the optical gain. In order to gain additional understanding of the dynamics of 

the laser-external cavity system, we shall use a simple phenomenological saturable 

absorber in the following calculations. Through a small signal analysis, we shall 

derive analytical expressions for the ranges of external cavity length where quench­

ing and induced pulsing occur. Intuitive understanding of the general cavity-length 

dependence can be gained by casting the model in the form of a microwave oscilla­

tor with a finite gain band, the width of which depends on the coupling cofficient 

between the laser diode and the external cavity. 

5.1 Analysis of rate equations with a saturable loss or superlinear eain 

As mentioned before, common to most proposed models for self-pulsations are two 

underlying effects : saturable loss and superlinear gain. It is thus reasonable to 



- 106 -

believe that a general saturable loss description is applicable to most lasers. The 

Lo rate equations with a simple saturable absorbing loss of the form L = ---- [ 1 J 
(1+:} 

s 

are: 

N =J-N-NP 
5.l(a) 

F = -y(N-1-L )P 5.l(b) 

where N is the electron density, P is the photon density, Ps is the saturation photon 

density of the absorber, J is the pump current density 7 is the ratio of the spon-

taneous to photon lifetimes as before.and the dot denotes derivative with respect to 

the normalized time. The absorber density Lo here mimics the trap density T 0 of 

the last chapter. When L 0 exceeds a certain critical value, the system of equa-

tions(5.1) will become unstable and predict pulsation, as in the case of the trap 

model. Fig. 5.1 shows plots of the frequency of the pulsation versus pump current, 

for various absorber densities L 0• The plot looks surprisingly similar to fig 4.l(a), 

obtained using the trap model : the pulsation frequency decreases as the absorber 

density increases, and increases with the bias current. 

Stability of the steady state of (5.1) is examined by the familiar small signal 

analysis, where we write N = N o+n, P = Po+p where n and p are small perturbations 

and N 0 and P 0 are the steady state values. Assuming solutions of the form e5 t, we 

have the following characteristic equation: 
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Figure 5.1. Calculated self-pulsation frequency vs injection current usin9 sim­
ple absorber model. No pulsing occurs above the dotted line. 
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No 
f (s) = s + -yP0 ( s +{l+Po) - t) = 0 5.2 

where 

Lo 
t = [1+(Po/Ps)]2Pa 

5.3 

~ is well known, instability results if any of the zeros of f{s) lie! in the right half of 

the complex plane. 

We shall perform a stability analysis using Nyquist diagrams [2,3]. Although (5.2) 

is simple enough for direct analytic solution, the Nyquist diagram approach proves 

to be very useful in the case when external cavity feedback is introduced. The 

Nyquist plot is generated by mapping the coutour C on the complex plane into a new 

contour r by an analytic function f(z}, where C is the right half circle at infinity as 

shown in fig. 5.2. The number of times r encircles the origin in the clockwise direc-

tion is the number of zeros minus the number of poles of f(z) in the right half com-

plex plane[2]. Fig. 5.3 shows a plot of f; the solid line is the locus f(jCJ). It can be 

shown that r will encircle the origin twice if 

l+Po 
~ > '"'/Po 

5.4 

Under this condition, the zeros have positive real parts and pulsations start to build 

up. Expressed in terms of the absorber density L 0, {5.4) can be written as 

5.5 
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This result is similar to that of Haus[ 1] in analyzing parameter ranges for passively 

mode-locked lasers. 

It is hardly surprising to find that a superlinear gain - a stimulated gain that 

takes the form g = NP(l+EP}, where N and Pare the electron and photon densities, 

respectively - would produce the same instability if E exceeds the amount given in 

(5.4}. 

5.2 Characteristic equation of the combined laser-external cavity system 

The photon rate equation with a delayed feedback term is 

P(t) =7(N(t)P(t)-P(t)- La~+ E:P(t-T)) 
1+ t 

Ps 

5.6 

where Tis the roundtrip time of the external cavity, and l: is the coupling coefficient 

as defined in earlier chapters. This t: can be estimated experimentally by the shift in 

the lasing threshold as described in section 4.4. The steady state solution of the 

modified rate equation {5.6) is 

Na= 1 + 5.7 

The small signal photon equation is obtained in a straightforward manner: 

jJ =7[Pan + (PoP + t:(-p+p(t-T))] 5.8 

where E is defined as before ((5.4)). Note that as T-+ 0, the feedback term disappears, 

showing that any quenching or induced pulsation effects are retarded effects and 
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not merely a change in the photon lifetime. 

Equation (5.B} is a difference-differential equation which does not lend itself to 

easy solution. However, its stability can be analyzed through Laplace transformation 

[ 4] and the use of Nyquist diagrams, and simple expressions for the minimum E 

required and the quenching bands can be deduced geometrically. 

A Laplace transformation of equation (5.B) and (5.l(b)) gives the following tran-

scendental characteristic equation: 

No 
f!b (s) - s +..,,[Po - tpo + t:(l-e-s'T\] = 0; 

. . - ' (l+Po)+s s ' 5.9(a) 

5.9(b) 

where f (s) is the characteristic function of the laser without feedback. 

5.3 Quenching range of self-pulsing lasers coupled to a short external cavity 

We first consider the case of a self-pulsing laser. The Nyquist diagram of a self-

pulsing laser is shown in fig. 5.4(a). The locus of f (j w} as parametrized by w passes 

very close to the imaginary axis. Since the locus is symmetric with respect to CJ, we 

will just look at the positive branch of c..i. The portion of the locus closest to the ori-

gin approximates a vertical straight line at a distance K = 1 +P 0 -~-yPo to the left of 

the origin (fig. 5.4(b). The value of w at that part of the locus is approximately equal 

to c.J0 , the imaginary part of the zero of f (s ), which corresponds roughly to the puls-

ing frequency of the laser. (The actual frequency is somewhat lower due to the large 

signal effect.) When feedback is included, the locus becomes 

ff.b. (jw) = f (jw)+7e{1-e-;'"}. The effect of this additional term on the portion of the 

locus closest to the origin is shown in fig. 5.5. The locus is shifted to the right by an 
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Figure 5.4. (a) Nyqui.st diagram for a self-pulsing laser and (b) approximate 
locus near the origin. Only the +ve r.; branch is shown. 
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amount 7E( 1- cos r..J0T). For sufficiently large E and a suitable delay T, we can see 

that the locus would no longer encircle the origin - the system becomes st.able and 

pulsations are quenched. From fig. 5.5 we can see that the minimum amount of 

coupling t required is 

Emin = -K /27 5.10 

where K = 1+P0--,P 0t < 0 for a self-pulsing laser, P 0 Rr J-1, J is the pump current, 

and t is as defined previously (eqt. (5.3)). The range of external cavity round-trip 

time T for which quenching occurs is 

5.11 

where rp = ( 1-K /71:) and c..i0 is approximately the self-pulsing frequency of the laser. 

We note that a very small 1: is sufficient to harness the quenching effect. Taking a 

value of L 0 = 0.02 {which gives self-pulsation frequencies that fit typical experimen-

tal data, fig. 5.1), and assuming that the laser is operated at 1.1 threshold, i' = 
1000, we have Eminf:::j 0.002. Of course, this amount of e just barely pushes the zeros 

of the characteristic equation across the imaginary axis into the left half plane. To 

have a significant quenching effect, a larger E is required so that the zeros lie deeper 

into the left half plane, which leads to a large damping. 

To estimate the quenching band, we use the above numerical values, resulting in 

a self-pulsation frequency c.10 of about O.B GHz. Then, K = 1 +Po - 7f Po RS -0.49, and 

if we let 1: = 0.01, the quenching band is calculated using (5.11) to lie approximately 

between 3 and 15 cm. This is compared with the numerical results shown in fig. 4.5 

calculated using the trap model. The trap density used in that case produced self-

pulsations at roughly the same frequency as above (0.8 GHz) and the same coupling 
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coefficient. t: = 0.01 was used. The approximate agreement shows that the above 

analysis of the quenching effect is quite general and model independent. 

Thus, it appears that as the external cavity length is increased, we expect to find 

alternating bands of quenching and pulsations. However, the above analysis is suit­

able only for short cavity lengths {which is where the quenching bands occur). For 

long cavity lengths, the Nyquist plot takes the form of a spiral as shown in fig. 5.6. 

The origin could not escape the fate of being enclosed at long cavity lengths, as 

shown in the pulsation amplitude versus cavity length plot of fig. 4.5. 

It is also obvious from eqn. (5.10) that it will become increasingly difficult to 

quench the pulsations at higher bias current - which is what we observe in our 

experiment. 

5.4 The microwave aain lineshape and mode structure of the combined system 

Non-pulsing lasers, when coupled to external cavities, can be made to self-pulse with 

a pulsewidth in the picosecond range. As mentioned in section 4.5, such induced 

pulsing occurs only over a certain range of the external cavity lengths. In some 

cases, induced self-pulsing occurs at twice the external cavity roundtrip frequency. 

It is also a common experience, when working with lasers coupled to long fiber 

pigtails. to observe on the microwave spectrum of the optical output a cluster of 

spikes around around 1 - 2 GHz, and the frequency separation between spikes 

corresponds to the inverse of the pigtail round-trip time. All of the above mentioned 

hitherto complex pulsation phenomena can be explained very intuitively by inter­

preting the combined laser-external cavity system as a microwave oscillator with a 

limited gain band and discrete mode structure. The small-signal microwave gain 

lineshape and the mode frequencies will be derived analytically. 
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Figure 5.6. Nyquist diagram for a self-pulsing laser coupled to a long cavity. 
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As mentioned before, the dynamic behavior of the system is determined by the 

zeros off f.b. {s) {eqn. {5.9)). Due to its transcendental nature, f /.b. {s) has an infinite 

number of complex zeros gk± ir.Jk, k = 1. 2, · · · . Alternatively, we can define a con-

tinuous function g{r.J) such that g(r.Jk)=gk. The imaginary part of the zeros CJ1c indi-

(,)le 
cates a resonant peak at the frequency - and these are the modes of the system. 

27T 

The system will spontaneously oscillate at the frequency r.Jk if g (c.;1c )> 0. 

The gain curve g (c..i) can be derived with the help of the Nyquist diagram. This is 

done in the Appendix, resulting, for frequencies near the peak of the gain curve, in 

c.;4 - 2-yPo(N o+-ye()c..i2 + -y'~'PoN o(PoN o+2e{1 +Po)) 
g{c..i)=~~~~~~~~~~~~~-~~-

27ec..i2 

and the mode frequencies 

CJ1c = {2rrk-19) 
T 

5.12 

5.13 

where T is the external cavity roundtrip time, and 19 is a small frequency pulling 

term given by 

19R:: _l_/m(/{2rrki)) 
7£ 

5.14 

Fig. 5.7 shows a plot of g{c.;) for various coupling coefficients e, with i' = 1000, P 0 = 

0.3, N 0 = 1, t = 3.9x 10-3, and Ts = 3ns. As expected, the system is 'below threshold' 

unless e is above a certain £min• and the linewidth widens with further increase in e. 

For the modes near the line center {peak) of g(CJ), the frequency pulling term 't9 is 

approximately given by 17 = Im[! {r.J0 ) ]/-ye, where CJo is the line center frequency. For 

the above parameters, 17 is approximately 0.05 rad so that the modes are virtually 
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Figure 5.7. The small signal. microwave gain lineshape of the combined laser­

external cavity system for various coupling coefficients t:. 
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that of the passive external resonator. 

We thus have the conditions for sustained microwave pulsation: first, the coupling 

between the laser and the external cavity must exceed a critical value so that there 

is a certain frequency range over which g (c..i) > 0. Then, at least one or more 

'modes' given by (5.13) must lie within that frequency range. This range can be 

easily found by setting g (c..i) = 0, giving 

where 

2NoK 
~n = ~2-/Po 

5.15 

5.15 

is the minimum coupling for induced pulsing. The quantity K defined as 

K=l+P0--yP0~ as before is an indication of how close the laser is to self-pulsing, or 

in the case when it is negative, it measures how deep the laser is into self-pulsing. 

The solid lines in fig. 5.B are plots of &min versus the bias level as measured by the 

static photon density P 0 for two cases : 1) absorber density L 0 = 0.005 and satura-

tion photon density Ps = 0.5; 2) Ps = 1 and L 0 = 0.006 (-y is taken to be 1000). (The 

calculated minimum absorber densities Lo for self-pulsing are L 0 r::::. 0.005 and 0.007, 

respectively, for cases 1} and 2).) We can observe from fig. 5.8 that a very high cou-

pling coefficient is required for inducing pulsations if the bias level is not optimized. 

The hitherto complex behavior of the laser diode coupled to external cavities of 

various lengths can now be understood in very intuitive terms. When the external 

cavity length is very short, the microwave mode frequencies are very high and do 

not fall under the positive gain line. In fact, the value of g (c..i) is large and negative at 
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high frequencies so that a short cavity actually serves to stablize the laser diode. As 

the external cavity length is increased, the first microwave mode ( ~ ,k= 1) falls 

within the gain line and induced pulsation occurs at the fundamental roundtrip fre­

quency. Further increase in the external cavity length br·ings the k= 1 mode outside 

the gain line, and pulsation will cease until the k=2 mode moves in and induced pul­

sations occur at twice the roundtrip frequency, and so on. For very long caviLies, 

several microwave modes lie within the gain line simultaneously, and 'rnultirno·ie' 

microwave oscillation occurs, as often observed in lasers coupled to very long fiber 

pigtails. Badly degraded lasers, with a large absorbing defect density, are particu­

larly vulnerable to such disturbance, as indicated by eqn. (5.16). 

5.5 Effect of spontaneous emiaaion on pulsation characteriBtiCB 

In the analysis in previous sections, the spontaneous emission factor bas been 

neglected for simplicity. However, if sufficiently large, it does influence the pulsation 

characteristics of the laser diode. It is known that a large spontaneous emission can 

suppress relaxation oscillation (section 3.2). Thus. suppression of self-pulsation 

should be expected for lasers with strong spontaneous emission[6]. This effect can 

be conveniently expressed in terms of an effective t. where t is a measure of the 

absorber strength as defined in equation (5.4). It will be shown that the effective 

value of t will be decreased, due to spontaneous emission. This. of course, is due to 

the physical fact the spontaneous emission saturates the absorber and effectively 

reduces its strength. 

Inclusion of spontaneous emission modifies the photon rate equation (5.l{b)) into 

the following: 
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L P = 7[(N - 1 - --~-)P +(JN] 
1+-

Ps 

5.17 

where (1 is the spontaneous emission factor as defined before (section 3.2). The 

steady state solution of (5.17} is 

=1+ 

Lo 
(1 +--p-) 

1+-0 
Ps 

No=-----
1+1-

Po 

- L + higher order terms in f3 
Po 

The small signal photon equation is obtained as before: 

. [( Lo p=-yNo- p - l)p + (P 0+(1)n] 
(1+-0 )2 

Ps 

= 7[<f Po-J
0 

)p + (Po+P}n] 

Thus the effective (is given by 

I: - I: - _/!_ 
<>fl!J - " P8 

5.lB(a) 

5.lB(b) 

5.20(a) 

5.20(b) 

5.21 

Because ( itself is of the order of 10-2 to 10-3, the spontaneous emission will 

significantly reduce the absorber strength when (1;?; 10-3• The effect becomes more 

prominent when the laser is biased near threshold, for then most of the generated 
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photons are due to spontaneous emission. Thus, its inclusion does not affect the 

results we have obtained in previous sections, except for the reduction of the 

absorber strength. There is yet no direct experimental proof of this result. Wide 

stripe lasers, which have a smaller spontaneous emission factor, do tend to self-

pulsate more often than lasers with good optical confinement, but this can be attri-

buted to mode instability[7], which serves the opposite role of enhancing self-

pulsation. Sophisticated structures such as the BH or the embedded laser eliminate 

this problem, but pulsations are still being observed in these lasers[B]. 

Appendix - Chapter 5 

We shall derive g {CJ) and the mode frequencies CJk 's with the help of the Nyquist 

diagram - a plot off J.b. {s) in the complex plane. We assume that one or more zeros 

of fJ.b (s) lie very close to the imaginary axis. Then, the curve fJ.b. (iCJ) makes its 

closest approach to the origin when CJ equals the imaginary part Ci.!>: of a zero, and 

the distance of closest approach is the real part Yk of that zero. The quantity gk is 

by convention positive (negative) if the locus does(does not) encircle the origin. 

To see what fJ.b. (jCJ) looks like, we first plot f {jCJ) (the case without feedback) as 

shown by the dashed line in fig. A5.1 *. This curve will itself encircle the origin if 

K> 0, as defined in (5.10), ie., the laser self-pulses. Now we divide this curve into tiny 

segments with end points parametrized by CJ= 27Tk/T and c.; = 2rr(k+1)/T, k=0,1,2, ... 

Then, it is obvious that addition of the feedback term 7E:(l-exp(-ic.;T)) transforms 

each segment into {roughly) a circle of radius 7i, as shown in fig. A5.1. 

From simple trigonometry, the closest approach distance of this circle to the origin 

is g = J'E: - .J(7E:+x )2+y 2 where x and y are, respectively, the real and imaginary part 

ofj{j(.J): 

-·-.-St~-~~T(-j c.i) = f* {j CJ), the locus is symmetric about the real a.xis so that only the +ve CJ branch 
is considered. 
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FigureA5.1. Nyquist diagram for the derivation of g(CJ) and the mode spec­
trum. 
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A5.1{a) 

A5.1(b) 

The value of g is then the real part of a zero off J.b. (s ); the imaginary part r..Jt of this 

zero is the value of r..J at which the closest approach occurs. From fig. A5.1, we have 

where~ is the angle as shown, 

~Rj tan-l[ y(2rrki) ] 
7t:+x {2rr ki} 

A5.2 

A5.3 

In the frequency range of interest (where the locus is closest to the origin), 

c.; >> l+Po and for induced pulsation to occur t: has to be sufficiently large such 

that -yt: >> x,y. Making approximations and substituting (A5.1) into the expression 

for g, we obtain the gain spectrum (5.12) and the mode frequencies (5.13) and 

(5.14). 
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CHAPTER6 

NON-LINEAR DISTORTIONS IN THE MODULATION OF NON-SELF-PULSING 

AND WEAKLY SELF-PULSING INJECTION LASERS 

In analog transmissions systems, the linearity of a component is weighed heavily 

in determining its quality. In fiber optic systems, the general modulation responses 

of laser diodes are well known[1] and have been discussed in some detail in chapter 

3, and their harmonic distortion characteristics have been considered theoreti­

cally[2 - 4]. In this chapter, we present a perturbation analysis of the non-linear dis­

tortion characteristics and results of experimental studies of the non-linear distor­

tions in the current modulation of various types of lasers. These results show that 

harmonic distortions become extremely high at frequencies far lower than the 

relaxation oscillation(RO) resonance frequency. The Q of this resonance significantly 

affects the distortion characteristics both quantatively and qualitatively, in good 

agreement with theoretical predictions. Moreover, it is known that many lasers 

exhibit self-pulsation(SP) of some kind after a period of operation much shorter 

than the time to failure. As described in the last two chapters, when the pulsations 

first develop they are in the form of weak sinusoidal undulations at relatively high 

frequencies (> 1.5 GHz). The small signal modulation response of a weakly pulsing 

laser remains relatively fiat up to the self-pulsing frequency. One might then ask 

whether such lasers can still be used in a system with a bandwidth lower than the 

pulsation frequency. Unfortunately, intermodulation in such lasers generates 

undesirable distortions at relatively low frequencies. Thus, extreme care must be 

taken in designing wideband(> 1 GHz) analog fiber systems, for even minor degrada­

tion of the laser can be devastating. It is known that by aligning the laser with an 

external cavity of appropriate length, RO can be suppressed[6], and SP can be 

quenched[7,B]. This has been analyzed in some detail in the last two chapters. We 

found that various nonlinear distortions in analog modulation can be significan' 
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reduced by the same arrangement. Jn the event the laser suffers minor degradation 

and exhibits weak pulsations, this measure becomes a necessity rather than a lux-

ury. 

6.1 Perturbation analysis of non-linear distortions in non-self-pulsinr; injection lasers 

We start with the dimensionless rate equations introduced in chapter 3: 

N =J -N -NP 
6.l(a) 

P = -y(N P - P + (JN) 6.l(b) 

where the variables are the same as defined in chapter 3. The fact that these rate 

equations are nonlinear leads to harmonic distortions in the pure sinusoidal 

responses calculated from the small signal analysis of chapter 2, especially when the 

oscillation amplitude becomes large. To determine the amount of distortion, we 

shall assume a sinusoidal modulation current, and expand the electron and photon 

responses in harmonics of the modulation frequency. It is convenient to employ the 

complex notation: 

N =No+ I: [~nkeik"'t + ~sk•e-ik"'t] 
k 

P =Po+ L B~pkeikc.lt + ~k•e-'ik"'t] 
k 

6.2 

6.3 

6.4 

where •represents complex conjugate. The steady state values N 0 and Po have been 

evaluated in section 3.1. 
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Substituting (6.2) into the rate equations {6.1) and applying harmonic balance 

(ie., equating terms with the same c.; dependence) we obtain 

5.5 

5.6 

5.7 

6.8 

Equations (6.5) and (6.7), except for the higher order product terms n2]) 1* etc. are 

just the small signal equations. The non-linear product term nJP 1 in equations (6.6) 

and (6.8) serves as a drive for the second harmonic. Since to first approximation, 

both ni and p 1 oscillate at GJ, the product oscillates at 2c..i and thus drives the second 

harmonic. Based on the same reasoning, the third harmonic is being driven by 

We employ the conventional perturbation approach. First we solve for the first 

harmonic, assuming absence of higher harmonics (which are weak compared with 

the first), then for the second harmonic using products of the first harmonics as the 

drive, assuming absense of third and higher harmonics, and so on. 

1) First harmonic: Eqns. (6.5) and (6.7) are just the small signal solutions given in 

section 3.5, when the higher order terms are ignored: 

6.9(a) 

P1= 
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6.9(b) 

where 

g(r..;) = ir..; + -r(l-No) 
6.10 

h (r..;} = ir..; + 1 +Po 6.11 

J(r..;) = h(r..;}g(c.J) + -rNo(Po+P) 6.12 

2) Second harmonic: using eqns. (6.6) and (6.8), we have: 

6.13 

_ u [ -7(Po+P)+7h (2c.J)] 
P2 - nntP1 /(2c.;) 6.14 

3) Third and higher harmonics: based on the same reasoning, the Nth. harmonic is 

given by 

6.15 

_ lL [N~l . ·][-7(Po+f3)+7h(Nc.J)] 
PN - n i~l Tl.;.PN-'I. f (N c.J) 6.16 

The factor f (r..;) in (6.12) gives rise to the RO resonance characteristic. The Q of this 

resonance is determined primarily by (3 which, apart from its definition as the spon-

taneous emission factor, can be adjusted to account for other physical mechanisms 

such as lateral carrier diffusion[9] described in section 3.4. The factors f (N CJ) in the 
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expressions for higher harmonics indicate that the N"' harmonic has N resonance 

CJ 
peaks at modulation frequencies ; , where "'r 1:t1 .JY(J 0-1) is the RO frequency. The 

modulated output is thus especially rich in harmonics at modulation frequencies 

equal to submultiples of r.lr. 

Fig. 6.1 shows a plot of the harmonic distortion characteristics when prefiltering 

is applied to the modulation current to compensate for the RO resonance, ie., let 

it= imf (c.J) in eqn. {6.1), where im is a constant, so that the first harmonic response 

is flat. The parameters used are (J = 10-3, J 0 = 1.6, -, = 2000, spontaneous lifetime = 

3 ns, and the optical modulation depth {of the first harmonic} = 60%. It shows that 

the harmonic distortion is actually worst not at the RO frequency but at submulti-

ples of it. 

6.2 Harmonic di11tortion11 in Yariou11 types of lasers 

Since the same factor f (r:.J) giving rise to the RO resonance is also responsible for 

the resonance peaks of higher harmonics, it follows that lasers having a high RO 

resonance Q would have larger harmonic distortions. Indeed, this is what is observed 

experimentally. Fig. 6.2{a) shows experimentally measured harmonic distortions for 

a proton stripe laser which has an RO resonance at about 1.7 GHz in the small signal 

response; the peak is about 10 dB {in amplitude} above the 'midband' (low fre-

quency) value. The data were obtained with the laser biased at 1.2 threshold, and 

driven with a sweep oscillator to an optical modulation depth of about 70%. The 

drive amplitude is adjusted at different frequencies so that the first harmonic 

response is constant (ie., prefilter the modulation signal). The detected output from 

the APD is fed into a microwave spectrum analyzer. Fig 6.2(b) shows a similar plot 

for a TJS [10] laser, which has no discernable resonance peak in the small signal 

response up to the fall-off frequency at 1.8 GHz (section 3.3). The distCJrtion 
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characteristic contrasts sharply to that of fig. 6.2(a). 

While the above results show that harmonic distortions are extremely high when 

modulated at frequencies above approximately 1/3 of the RO frequency, they 

nevertheless would not affect system performance in a significant way if we limit the 

baseband to frequencies below the RO frequency (ie. low-pass filter the recieved opti­

cal signal). This measure, however, would not be effective for a self pulsing laser. In 

addition to harmonic distortions, such lasers exhibit additional distortions within 

the baseband due to the beating of the modulation signal with the self-pulsation. 

Experiments were performed with a weakly self-pulsing proton stripe laser: when 

operated at 1.15 threshold, this laser self-pulses at 2.15 GHz, the output waveform 

showing sinusoidal undulation of < 10% modulation depth. The result of applying a 

sinusoidal modulation at 0.95 GHz to the laser is shown in fig. 6.3. In addition to the 

signal at 0.95 GHz. one observes its second harmonic at 1.9 GHz and the self­

pulsation at 2.15 GHz (both of which can be low-pass-filtered) and in addition the 

sidebands at 2.15 ± 0.95 GHz. The modulation current in this case produces an opti­

cal modulation depth of only 30%, stronger modulation would further increase the 

intermodulation sideband amplitudes and even the second lower sideband at 2.15 - 2 

x (0.95) GHz = 250 MHz would become significant. Such performance is unaccept­

able in a wideband analog transmission system. Thus, even minor degradation of 

the laser diode can be detrimental. 

8.3 Reduction of non-linear distortions by neaative feedback 

Based on the results presented in the previous sections, some measures should be 

taken to reduce tr , various distortions in laser diodes. It is well known that nega­

tive feedback can in general reduce distortions in systems. We found that this is 

also the case with injection lasers. One has the choice of applying the feedback 
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Figure 6.3. Microwave spectrum of a weakly self-pulsing laser modulated at 
0.95 GHz. Vert.:10dB/div, Hori.: 180MHz/div. 
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electrically or optically. At the range of frequencies involved (> 1.5GHz) electrical 

feedback (or more precisely, optoelectronic feedback) is extremely difficult because 

of the short feedback loop length required. It is, however, not impossible if one care­

fully designs a compact module for the feedback circuitry, and developments in 

integrated optoelectronic circuits[12] could make important contribution in this 

respect. This problem does not arise in optical feedback[7,8], for the external cavity 

length can be easily adjusted to make the feedback negative at the self-pulsing fre­

quency range. Mechanical instablilty of the optical elements can be avoided, as has 

been demonstrated in chapter 4, by using an optical fiber as the external cavity 

[B,11]. Fig. 6.4 shows the modulation response of a self-pulsing proton-stripe laser 

with and without optical feedback. When a 5 cm multimode optical fiber (with a lens 

formed at the end, cleaved and gold coated on the other end , as described in sec­

tion 4.4} is aligned with the laser, the highly undesirable lower sideband vanishes 

along with the self-pulsation. The coupling reduces the threshold by only about 2% in 

this case. The fundamental response becomes fiat up to 1. 7 GHz, and the harmonic 

distortions have the general characteristics of a TJS laser as in fig 6.2(b ). In other 

words, the output is indistinguishable from a laser with no RO resonance. 

In conclusion, we have examined and compared the nonlinear distortion charac­

teristics of several types of lasers. Modulating non self-pulsing lasers at frequencies 

higher than approximately 1/3 of the RO frequency results in very high distortions, 

but they can nevertheless be filtered out at the output. Self-pulsation, even though 

weak and occuring at high frequencies, would lead to distortions at low frequencies 

via intermodulation. Jn wideband analog transmission systems, suitable feedback 

should be applied to the laser to prolong its useful life as a signal transmitter. 
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(a) Without external cavity 

Lower sideband Self pulsation 

Modulation 

(b) With external cavity 

Modulation 

Figure 6.4. Microwave spectrum of a weakly self-pulsing laser (a) without and 
(b) with negative optical feedback. Vert.:10dB/div. Hori.: 
180MHz/div. 
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CBAPTER7 

PULSE CODE MODULATION AND 

Gbit/sec RATE BIPOLAR PULSE MODULATION OF SEMICONDUCTOR LASERS 

7.1 Inteniymbol interference in hi£h rate di£ital modulation or injection lasers 

For digital transmission, laser diodes are modulated by pseudorandom current 

pulses at high rates. Based on the results of chapter 3, the most obvious problem 

encountered in the digital modulation of injection lasers is transient relaxation 

oscillations. The problem, can, nevertheless, be solved by using lasers of suitable 

structures which exhibit little or no relaxation oscillation (section 3.3). However, the 

damping mechanism in these lasers, in addition to suppressing the relaxation oscil­

lation, at the same time slows down the response. The strength of the relaxation 

oscillation is an indication of how stable the system is. An unstable system can 

respond swiftly, but requires careful control - the price one has to pay for a ultra­

high bit rate fiber optic transmission system. 

Both the numerical simulation and the experimental evidence of sections 3.2 and 

3.3 indicate that the first spike of the relaxation oscillation is extremely short. Com­

mon experimental observations indicate detector limited pulse widths of approxi­

mately 100 ps. Ultrafast streak camera measurements show pulse widths on the 

order of 15 - 30 ps generated in some lasers under very high current pulse excita­

tion[!]. Thus it appears that by employing the first spike of the relaxation oscilla­

tion, modulation pulses can be spaced approximately 30 - 40 ps apart, correspond­

ing to bit rates of 25 - 30 Gbit/sec! Two factors render the above proposition 

improbable. First, there is a finite time delay between the onset of the current pulse 

and the turn on of the laser - the time required for the electrons to fill up to above 

the threshold level, as illustrated in fig. 3.2. This turn-on delay can be minimized by 

prebiasing the laser at or slighly above the lasing threshold, although this will 
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introduce a small optical background. A more serious problem is the intersy:nbol 

interference, or the pattern effect. This arises from the relatively long spontaneous 

carrier lifetime of 1 - 3 ns. After emission of an optical pulse, the electron ponula­

tion inside the laser is usually not the same as the pre-pulse level - the system will 

take a length of time, on the order of a spontaneous lifetime, lo relax back to the 

equilibrium pre-pulse level. When a second modulation pulse is applied during this 

period, the resulting optical pulse will not be identical to the previous one due to a 

different starting condition. Fig. 7.1 shows a simulation of the response of a laser to 

a long series of pseudorandom digital modulation pulses, at 1.5 Gbit/sec - the pat­

tern effect is apparent. The effect can be even more severe when a different modula­

tion pulse width is used, or at higher data rates. Danielsen[2] suggested that. by 

carefully adjusting the area of the modulating current pulse, it should be possible to 

make the electron density at the end of the current pulse return to the pre-pulse 

level. In this way, a second modulation pulse immediately following the first onP. will 

see the same starting conditions as the first pulse and hence would produce an 

identical optical pulse. The modulation pulses in fig. 7.1 are in fact somewhat too 

long, and it can be observed that the electron density after the current pulse is 

higher than the pre-pulse level. Fig. 7.2 shows a numerical simulation of the case 

when the pulse area is optimized, resulting in pattern effect-free modulation. This 

was subsequently verified experimentally[3], resulting in a 1.1 Gbit/ sec patter-n­

effect-free modulation capability with clean, background-free optical pulses. As 

predicted theoretic~Uy, the bias current and the drive current pulse area had to be 

carefully controlled, to within 1% and 10% respectively, to attain the pattern-effect 

free condition. Lee and Derosier( 4] had suggested that pattern affect can be reduced 

by adding a backward swing to the drive current pulse {bipolar pulsing) which 

removes the excess carriers left in the active region after the optical pulse. This 

also requires a carefully controlled current pulse to assure the " identical before 
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and after" condition, and has only been demonstrated at 500 Mbit/sec. The pattern 

effect can also be reduced when the laser diode is biased very high above threshold 

and driven with relatively small current pulses. This just pushes the resonance fre-

quency of the laser to a very high frequency by increasing the bias, and moduhtes 

in the small signal regime. In addition to shortening the life of the laser, this illso 

introduces a constant optical background and reduces the modulation depth oi the 

optical pulses. Russer and Schulz[5] achieved 2.3 Gbit/sec optical transmission ·'iith 

return-to-zero• received pulses, but the modulation depth was less than 20%. If 

non-return-to-zero pulse output from the detector is acceptable, the pulse-bits ~an 

be packed considerably closer and can result in a two- to three-fold increase in lhe 

transmission bit rate. Recently, Tell and Eng[6] applied this scheme to a TJS Lser 

and achieved B Gbit/sec non-return-to-zero optical transmission; the modul~; ~on 

depth was not shown though. 

In the following section, a scheme will be described in which a bipolar adve 

current pulse shape and very low threshold (9mA) lasers are used to generate 

return-to-zero pulses at a rate of up to 4 Gbit/sec without a pattern effect. 

7 2 Gbit/sec rate bipolar pulse modulation of injection lasers 

It appears that if one desires high bit rate optical modulation devoid of pattern 

effects and with a zero background. one has to resort to Lee and Derosier's or 

Danielsen's scheme. The requirement for careful control of bias and drive current 

parameters is a setback for Danielsen's scheme. This is also the case with the bipo-

lar pulsing scheme, unless a de bias current is not required. If a de bias durrent is 

applied to the laser, the amount of backward swing in the drive current pulse has to 

be carefully controlled in order to have identical carrier density immediately before 

• Of course, here the optical pulses do not actually return to "zero" because there is a constant optical 
background -it is better termed return -to -background. 
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and after the current pulse. However, if no de bias is applied to the laser, the carrier 

density before the current pulse would be zero, and the carrier density after the 

current pulse would also be zero if the backward swing is sufficiently large that all 

the excess carriers are withdrawn. No parameter needs to be carefully controlled -

not the bias (there is no bias}, nor the amplitude of the forward swing of the current 

pulse (provided that it is sufficiently large to cause lasing), nor the precise ampli-

tude of the backward swing (so long as it depletes the inversion). 

The highest modulation bit rate that can be achieved with the above scheme is 

apparantly not limited by the response of the laser diode itself. Provided the drive 

current amplitude is sufficient to drive the carrier density above the threshold level, 

the laser responds immediately with a single optical pulse that bas been shown to 

be as short as 30 - 40 ps [7]. Fig. 7.3 shows a computer simulation using the rate 

equations (normalized}: 

N = J -N - (N-N0m)P 
7.l(a) 

P = -y[(N-Nom}P - P +{:JN] 7 .1 (b) 

where N and P are the normalized electron and photon density respectively, with 

T 
-y=_!_, Ts = 2ns, T11 = 2ps, N 0m = 5 and {:J = 10-3• The cw threshold current is given by 

Tp 

J = 1+Nom = 6. The response to a single injected current pulse of 70 ps wide (FWHM) 

(a raised cosine functional form is assumed) and of amplitude = 180, is shown in fig. 

7.3. No de bias current is applied. No backward swing is added to the current pulse 

in this case, and we notice the large residual charge left after the optical pulse, as 

contrasted to the result of applying a bipolar drive as shown in fig. 7.4. The response 

of the laser can made arbitrarily fast provided the drive current pulse can be made 
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arbitrarily short and its amplitude arbitrarily large, simultaneously. For a very 

short drive current pulse of width T, its minimum amplitide I min required for lasing 

to occur (without any de bias) is given approximately by 

Ts 
f min = !threshold ( 7) 7.2 

where I thresh.old is the cw threshold current of the laser. With the above parameters, 

the minimum pulse amplitude is about 30 times that of the cw threshold current. 

The highest bit rate that can be attained is thus limited by the ability to generate 

short current pulses of sufficient amplitude. 

7.3 Experimental demonstration of a 3.3 Gbit/sec modulation of a semiconductor laser 

An experimental simulation of pseudorandom bit modulation at 3.3 Gbit/sec was 

performed with the scheme described in section 7.2. The experimental setup is 

shown in fig. 7.5. The current pulses were generated with a step recovery diode 

{SRD){Hp33002A) which produces pulses with amplitude up to 20V {into 500 ) and of 

70ps duration at lOOMHz repetition rate. These pulses were passed through a high 

pass filter (HPF) which differentiated the input pulse and produced an output pulse 

consisting of a forward and backward swing, about 70 ps wide with 12V amplitude in 

each swing. The SRD-HPF combination thus forms our pulse generator. Two of these 

generators are mounted on the ends of two 500 microstrip lines converging on the 

laser diode. This arrangement allows the laser to be driven by two consecutive 

current pulses with maximum available amplitude; the separation between the drive 

pulses can be varied by varying the relative phases of the RF drives to the SRDs. Fig. 

7.6 shows two such consecutive current pulses separated by 300ps; the amplitudes 

of the pulses were 12V {into 500 ). The laser used was a BH laser with 9mA thres-

hold. Its forward bias impedance of about 50 was quite small compared to the sys-
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Figure 7.5. Schematic diagram of the experimental setup. 
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Figure 7 .6. Electrical pulses generated with a step recovery diode followed by a high 
pass filter. The pulse height was 12V (into 500 ). Hori. : 200ps/div. 
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tern impedance of 500 , and the peak pulse current delivered into the diode was 

[1 - ~~g ~~g ]x(12V /'500) ~ 430mA. Of course, this is only an optimistic estimate 

of the actual current passing through the active region - the parallel parasitic caµa­

citance would reduce the actual current; its magnitude is hard to estimate. No de 

bias was applied to the laser. The minimum amplitude for a 70 ps current pulse to 

cause lasing is, as estimated above, about 30 times the cw threshold current, which 

in this case amounts to 270 mA. 

The response of the laser to the drive pulse pattern of fig. 7.6 is shown in fig. 

7. 7(a). The output was detected with a fast APD (Telefunken BPW2B) with about 100 

ps risetime. No significant pattern effect was seen for a pulse separation as small as 

250 ps. This was not the case when there was no backward swing in the drive current 

pulse, or when a de bias current was applied, which would have been required had 

the lasing threshold not been very low ( < 10 mA}. The pulses are not completely 

return-to-zero, which is mostly due to the detector limited response. At a lower 

modulation rate of 1.9 Gbit/sec, the pulses are completely return-to-zero, as shown 

in fig. 7. 7(b). 

It was thus demonstrated that by using a bipolar drive current pulse shape and 

very low threshold lasers, zero background pseudorandom optical pulses can be gen­

erated and detected at a rate of 3 - 4 Gbit/sec without a pattern effect. This bit rate 

was limited, in our experiment, by both the width and amplitude of the SRD drive 

current pulse and by the response of the APD detector. This bit rate can be made 

higher if it is acceptable for the pulse output to be non-return-to-zero. The laser 

itself should not be a limiting factor - its response to a strong current pulse drive is 

expected to be almost instantaneous and the actual pulse width has been reported 

to be less than 40 ps[7]. By employing shorter and more intense current pulse 
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(a) 

(b) 

Figure 7.7. (a} Response of the laser to the drive pulse in fig. 7.6, corresponding to a 

3.3Gbit/sec modulation rate. The cw threshold of the laser was 9mA. 
Hori : 200ps/div. (b) Bipolar pulse modulation at 1.9 Cbit/sec. Hori. : 
500ps/div. 
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generators, it should prove possible to modulate the laser to well above lOGbit/sec 

without a pattern effect, using the drive scheme described above. The real limita­

tion to the transmission bit rate, then, is on the detector side of the link. 
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CHAPTER8 

TRANSVERSE MODAL BAHAVIOR OF A 

TRANSVERSE JUNCTION LASER EXCITED BY SHORT ELECTRICAL PULSES 

8.1 Introduction 

Among the many laser structures developed for optical communication, the 

transverse junction stripe (TJS) laser[l-4] has established itself as an outstanding 

candidate - low threshold, high reliability [5], and as we have seen in chapters 3 and 

6, a fiat frequency response - all these are favorable factors for a signal transmitter. 

Since its inception[l], significant improvement in performance was made possible by 

fabricating the laser on semi-insulting substrate[2], with MBE grown layers[3] and 

with multiple active regions having multiwavelength output[ 4]. The transient 

response of this laser shows little relaxation oscillation and has been explained with 

an effective pump rate model[6] which accounts for both the junction capacitance 

and the lasing wavelength shift due to heating. The TJS laser has also proven itself 

capable of generating ultra-short optical pulses ( 13ps) by direct current pulse 

modulation[?]. In the preceding chapters, the transverse modal behavior of lasers 

has not been considered. In this chapter, we present results on the transverse 

modal behavior of TJS lasers under short (70ps} intense electrical pulse excitation. 

It was experimentally found that the transverse mode profile depends on the excita­

tion pulse amplitude and , to a lesser extent, on the bias level. Conventional stripe 

geometry lasers do not show this kind of mode shift. The results are successfully 

explained by theoretical calculations that include injected carrier diffusion [B] 

which significantly affects the gain-guided mode profile. These results are important 

in high data rate communication links using single mode fibers, for the transverse 

mode pattern of the laser significantly affects the coupling between the laser and 

the fiber. 
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A schematic diagram of a TJS laser is shown in flg. B.1. Confined by the heteros-

tructure in the vertical direction, the carriers are injected across the p •n homo-

junction in the active layer, thus creating an inverted population near the junction. 

It has been suggested that[ 1] the p •n homo junction actually consists of a p •pn 

junction in the parallel direction which provides a built-in index guide, due t'J a 

lower refractive index in the highly doped p• and n region. The carrier concentra-

tions in the p•, p and n regions are typically 10 111
, 1018 and 2x 1018 cm - 3

, respectively. 

Recent theoretical and experimental results by Ueno and Yonezu[14] show that with 

these carrier concentrations, index guiding should not te a dominant mechanism. It 

seems more likely that guiding is provided mainly by the injected holes in the n 

region. Our experimental observation that the optical mode actually shifts with 

injected current density tends to confirm this asumption. 

8.2 Transient mode-pin calculations 

The carrier density distribution p (x) in the steady state takes the form of an exr ~m-

ential extending into the n region : 

8.1 

where xis the distance measured from the junction into then side, Tis the recombi-

nation lifetime of the carriers. D is the diffusion coefficient, and J 0 is the injer: ~ed 

current density. The optical mode guided by a gain distribution given by (B.1) was 

found to be a Bessel function of complex order and argument[9]. The boundary c .Jn-

ditions were that the optical field vanishes al x =O and x = °". We will use this same 

boundary condition in solving the transient problem under an injected current 

pulse. 
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Figure B.1. Schematic diagram of the cross section of a T JS laser. 
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We shall calculate the time evolution of the optical mode gain after the inject.ion 

of an intense narrolf current pulse. We assume that the laser is biased far below 

threshold so that very few photons exist in the cavity. When the current pulse is 

injected across the junction, the carriers initially accumulate at the junction and do 

not support a mode with positive gain. Only after the carriers diffuse to a cer~ain 

width will the mode experience net gain, and an optical pulse follows. The transvr!rse 

mode structure of this optical pulse clearly depends on the amplitude and widlt of 

the carrier profile at the moment that the mode gain crosses (from below) the 

threshold. Up to this moment, we can neglect the optical field and treat the conven-

tional carrier diffusion problem in a straight-forward manner. 

The transient carrier density distribution satisfies the following field-free 

diffusion equation: 

.EE. = n.E1 - p_ 
at ax 2 T 

3.2 

where the variables are defined as before. Suppose that the laser is biased by a de 

current and we asume at t=O, a 6-function current pulse of total charge Q is injected 

across the junction: 

D~(x =O) = Jo + uo(t) 8.3 

where u = Q /wl, w is the thickness of the active layer, and l is the length of the 

laser. We assume that before t = 0, the system is in equilibrium, ie.,p {x; t =O )=p .-:(x) 

as given by that in (B.1). The carrier distribution after t=O is obtained by solving 

(8.2) subject to condition (B.3), resulting in 
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u _j _ _ .;:i 
p(x,t>O)= Tnd(t)e Te r1. +p0 (x} 8.4 

where the time dependent width of the gaussian d(t) = 2..Jiit. In using (8.3) as an 

initial condition, we have assumed that the source impedance of the drive circuit is 

infinite, ie. a current source drive. The exact solution in the case of a finite source 

impedance is highly non-linear[11] and complex. However, it is evident from an 

equivalent circuit of the laser diode [6,12] that the above assumption holds for 

cases where the source impedance is large compared with the diode shunt resis-

tance. This condition, to a fair extent, applies to the actual situation, in which the 

source impedence is 500 and the diode shunt resistance is less than 50 . 

We will next apply the solution p (x, t) of (8.4) to obtain the transient solution of 

the electromagnetic laser mode. Since ~ R:i 2µm for D = 20cm 2/sec and T = 2ns, 

we can approximate Po(x) = p 0(0) = J 0~for the region within one or two µm of 

the junction. Futhermore, we assume that this carrier profile in (8.4) produces a 

gain proportional to the carrier concentration p. The relative permittivity of the 

medium can thus be written as 

e(x} = er + iG (p (x, t )-P0 ) 
8.5 

where Po is the carrier density for transparency, G is the coefficient as defined in 

(8.5), which is directly related to the gain coefficient of the laser mode in a straight 

forward manner, and £,- is the square of the refractive index. With the gaussian 

profile in (8.4) we have 
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.z2 

t:(.x) = t:r + i (Ae - d.£ _B +C) 8.6 

t 
u -- - r-r 

where A= CFnd(t) e -r, B = GPo. C = GJoVjj· Expanding the gaussian in power 

series and keeping the first two terms only, the one dimensional scalar wave equa-

tion with the above permittivity profile reads 

8.7 

where {3 is the propagation constant of the mode. This is analogous to the harmonic 

oscillator, but with an imaginary quadratic potential instead of a real one[10]. The 

mode profile, with the boundary conditions IEI = 0 at x = 0 and x = oo, is therefore 

the odd parity Hermite-Gaussians: 

B.8 

1 

where a= [ic.J2A/(c 2d 2)]'', and with the 'energy levels' 

B.9 

We are only interested in the lowest order mode m = 1 which is closest to the junc-

tion where the quadratic approximation is valid. The maximum of this mode occure 

at 

x = - p-:;3/4(_g_)1/4 
m Vi:::;-Cl Ad 8.10 
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f1i gives the mode gain: 

f1i ~ or 27T (A-B+C) _ 1_~ 
2t:r A. d 2 

8.11 

The product of the width d and the amplitude A of the gaussian gain profile is, from 

equation {B.4} 

t 

Ad 
_ Cu --,= - --;,r;e 

so that the mode gain, as a function of time, is 

t 

P· = or 2rr(Cu/~e -;: 
't 2 f:r 2A...Jiit 

__ t_ 

3( Gu /""'1r) 1/2e 2T 

4(Dt )3/ 4 
- 2rr (B-C}] 

A. 

8.12 

8.13 

The first two terms are due to the o-function current pulse, Bis due to intrinsic loss 

and C is the contribution from the bias current. The threshold value of f1i for lasing 

is (1/Z )ln R +ex, where l is the length of the laser, R is the intensity reflectivity and 

ex is the internal loss. 

We have assumed for convenience, in the above calculations, that the current 

pulse is a o-function. In actual experiments, the current pulse is of both finite width 

and amplitude. In the following numerical calculations, we shall therefore describe 

the strength of the o-function by an equivalent current amplitude such that a 

current pulse of this amplitude and of 70 ps duration (the actual value in our exper-

iments) contains the same amount of charges as in the a-function pulse. The other 

parameters used are T = 2 ns, G = 6.9x 10-8µm 3 as calculated from Stern's 

result[13] and that the thickness of the active layer is 0.2 µm and the cavity length 

is 250 µm. The carrier density for transparency is taken to be 2.Bx 1018cm - 3 , Fig. 
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B.2{a) shows a plot of p,· = (J;. -~(B-C), ie., the contribution to mode gain due 
"\/Er A 

to the current pulse, for various injection pulse strengths. We notice that {Ji' 

diverges to co as t -+ 0 according to eqn. (B.13). This is non-physical and results from 

the quadratic approximation: at t = 0, the carrier distribution is a 6-function at the 

junction, so that in the quadratic approximation it becomes -co everywhere except 

at x = 0. An exact numerical solution of the wave equation with the gaussian profile 

shows that p,· actually converges to zero at t -+ 0 as shown in fig. 8.2(a). This, as 

mentioned before, results from the fact that a 6-function gain profile does not sup-

port a mode with gain. The minimum value of f3i' for lasing to occur is 

7T 1 GJo7T _ Tr" = --GPo + -lnR - ----r=;-y-,, 
~ l vt:r'A D 

8.14 

where Jo is the de current. The cw threshold current calculated with the above 

parameters is about 30 mA. From fig. 8.2(a} we see that the time delay for the mode 

gain to go above threshold is less for a pump pulse of higher amplitude. Since the 

carrier diffusion distance d and time t are related by d = 2..JDt, we can plot f3i' as a 

function of d, as shown in fig. 8.2(b). This plot shows that for a given bias level. at 

the time lasing occurs, d would be smaller for higher pulse current. The peak of the 

actual optical mode when lasing first occurs is at a position Xm related to d as in 

(8.10). F'1g. 8.3 shows a plot of Xrn for different bias levels and various pulse current 

amplitudes. 

8.3 Experimental observation of the transverse mode 

The dependence of the transverse mode position on the pulse current amplitude 

predicted above has been observed experimentally. The laser used was a TJS laser on 
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semi-insulating substrate with a cw threshold of about 30mA. The laser was biased 

with a de current below threshold, ranging from 5 - 15 mA. It was driven with a step 

recovery diode{SRD) similar to the one described in section 7.3. The near field was 

imaged with a 40x, 0.85 NA microscope objective and the time resolved nearfield pal­

tern was measured with a 12 µm slit at the image plane, at a distance of 12 cm from 

the lens (fig. 8.4); the output was detected with a fast APD followed by a wideband 

amplifier, and displayed on a sampling scope. The peak voltage of the pulse output 

from the SRD was variable between approximately 6 - 15V (into 500 ), which roughly 

corresponds lo peak currents between 200 to 450 mA through the laser. The laser 

responds to the current pulse with a single sharp optical pulse, the width of which is 

very possibly below 100 ps - the risetime of the APD used. The transverse mode 

structure of this optical pulse is measured by scanning the 12 µm slit along the 

image plane. It is possible that the transverse mode structure changes within an 

optical pulse, but cannot possibly be resolved with the APD. 

Fig. 8.5 shows the transverse mode structure of the optical pulses under different 

excitation conditions. As the peak current of the exciting pulse is increased, the 

mode shifts closer to the junction. Compared with the mode structure when the 

laser is operated cw above threshold, the pulsed mode shows a second 'bump', which 

is possibly the second order transverse mode. The measurements at different pulse 

amplitudes are made at different bias levels, for the laser diode cannot be pulsed 

too high above threshold without risking destruction. The amount of mode shifts 

measured are in good agreement with theoretical predictions in fig. 8.3. 

The mode structure of the cw operated laser, contrary to what is expected from a 

gain guided mode, does not shift significantly with bias current. This can be due to 

spatial bole burning. At higher bias levels, the mode in principle should narrow down 

and shift toward the junction. Spatial hole burning would, however, counter the 
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into N Side 

Figure B.5. Measured transverse mode profile with bias and peak pulse currents 
respectively equal to (a) 12mA, 430mA, (b) 15.SmA, 3,S:OmA, 
(c)20mA, 205mA. For comparison, the mode profile under cw opera­
tion is also shown. 
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above effect and result in a broader mode width than expected. This does not occur 

in the case of short pulse excitation, because when the photons deplete the gain, 

the optical pulse is already over. The observed mode shift under pulse excitation, as 

shown in fig. 8.5 just reflects this mechanism. 

At a certain fixed bias level, the pump current pulse has to exceed a c2rtain 

amplitude before an optical pulse is produced. At this threshold, the optical pulse 

has a significant delay, approximately 150 - 200 ps. When the current pulse ampli­

tude is increased, the delay rapidly shortens and becomes undiscernible. This is also 

in rough accord with the calculations of fig. B.2(a). Delays of less than 100 ps, as 

shown in the figure, cannot possibly be detected by the 100 ps risetime APD. More­

over, since the current pulse itself is of a finite width of 70 ps, the difference in the 

delay at various pump pulse amplitudes might be even smaller than that shown in 

fig. B.2(a}. The transverse mode position, on the other hand, shows much larger vari­

ations than the time delay. 

This pump-dependence of the transverse mode structure is strongly manifested 

when the TJS laser is pulsed by two closely spaced electrical pulses of different 

amplitudes. In our experiment, the second pump pulse is actually due to electrico.l 

reflection. The impedance of the laser constitutes a large mismatch to the 500 line 

and consequently there is a reflected electrical pulse, of about ~ the amplitude of 

the original pulse and of opposite polarity, propagating from the TJS back to the 

SRD. The SRD, looking from the output, is a perfect short which then reflects the 

reflected pulse and inverts its polarity. The separation between these two pump 

pulses in our experiments is about 1.3 ns, which is comparable to the spontaneous 

lifetime of the carriers. Even though the second electrical pulse is weaker than the 

first, the second optical pulse can be equal or even larger than the first one because 

of charge left-over - the pattern effect, as shown in fig. B.6. The transverse mode 
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I st pulse J 2nd pulse 

into N side 
of junction 

Figure 8.6. Output pulses (- ve going) from a T JS laser taken at four different 

positions of the transverse Tnode, successively going into the N side. 

The laser is excited with two consecutive current pulses, 1.4ns 

apart and repetitive at 250-'ifHz. 
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structure of the two successive optical pulses are distinctively different. As seen 

from the picture, the relative amplitudes of the two optical pulses are different 

when scanned across the transverse mode profile, which is a clear indication that 

the mode structures of the two successive pulses are non-identical. Fig. B.7 shows 

the transverse mode pattern of the two pulses. We have performed similar experi­

ments with several other kinds of lasers including proton stripe and CSP lasers, but 

did not observe the effects described above. Thus, it can be concluded that the 

results are specific to lasers with such a time dependent gain-induced guiding as the 

TJS. 

Finally, we speculate that the guiding mechanism of the TJS laser is responsible 

for its ability to generate ultra-short pulses under current modulation[?]. Since the 

mode is primarily gain guided, the mode loss {or gain) depends crucially on whether 

the gain profile exists. Because of the short stimulated lifetime, the optical pulses 

can evolve extremely rapidly {within 10 - 20 ps) once the gain breaks above thres­

hold. However, as soon as the optical pulse emerges, the gain is immediately 

depleted and the guiding no longer exists, resulting in extra-high mode loss and the 

optical pulse self- terminates after a few cavity transits. Experimental verification of 

the above proposition, however, would be very dificult since it calls for measuring 

the transverse mode pattern on a picosecond timescale. 
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CHAPTER9 

MODULATION RESPONSE OF SUPERLUMINESCENT LASERS 

9.1 Introduction 

The superluminescent diode is one alternative to the well established GaAs injection 

lasers and LEDs as light sources for fiber-optic communications. A superlumines­

cent diode is a laser diode without mirrors. The first investigation of the super­

luminescent diode was carried out by Kurbatov et al.[l], its static properties were 

evaluated in detail by Lee el.aL[2] and Amann et al.[3,4]. Superluminescent diodes 

have also been integrated monolithically with detectors for optical memory readout, 

their fabrication being simpler than that involved in laser-detector integration since 

a mirror facet is not required within the integrated device [13]. It has also been 

observed that [5,6] the optical modulation bandwidth increases substantially as 

light emitting diodes enter the superluminescent regime. This regime is character­

ized by a rapid increase in the optical power output and a narrowing of the emission 

spectrum. An increase in the modulation capability also occurred in some edge 

emitting LEDs, though they were not purposely operated in the superluminescent 

regime[7]. This increase in modulation speed was attributed to the shortening of the 

carrier lifetime due to the stimulated emission of photons. 

Due to the non-uniformity in the longitudinal distribution of the photon and car­

rier densities in the active region, the modulation response of superluminescent 

lasers cannot be described by the usual spatially uniform rate equations, so suc­

cessfully applied to describing laser dynamics. This is evident from the discussions 

in chapter 2. Rather, the 'local' rate equations of chapter 2 should be used in their 

original form. Results on numerical calculations of the small signal modulation fre­

quency response are presented in this chapter. The results show that in most cases, 

the responses are of single-pole type, unlike the pole-pair response of a laser. The 
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cut-off frequency increases with the pump current, as has previously been observed, 

in a rather non-linear fashion. Under some conditions, the frequency response can 

be much higher than a laser diode of similar construction, under the same pump 

current density. These conditions require that the reflectivity of the mirrors be less 

than 10-4, and the spontaneous emission factor be less than 10-3 . The second of 

these conditions can be achieved with special designs, but the first condition is 

difficult to attain under the present state of the art of laser fabrication. 

9.2 The small si2nal superluminescent equations and numerical results 

The superluminescent diode is assumed to be constructed as a double heterostruc­

ture laser with guiding in both transverse directions, but with no mirrors. The local 

rate equations for the photon and electron densities were first introduced in 

chapter 2, eqns. (2.l(a}) - (2.l(c)). In the pure superluminescent case (no mirror), 

the steady state is given by the solutions (2.3) - (2. 7) with R = 0. Fig. 9. l(a) shows a 

plot of the steady state relative output optical power, Xd' (L/2) = X 0 (-L /2), as a 

function of pumping level indicated by the unsaturated gain g, for various values of 

the spontaneous emission factor f:J. The linear part of the curves at the higher values 

of the pump level is the saturated regime, where most of the optical power is 

extracted from the inverted population by stimulated emission. Fig. 9. l(b) shows the 

static gain and photon distributions inside a superluminescent laser, illustrating the 

effect of spontaneous emission on the distributions. 

To investigate the modulation frequency response of the superluminescent diode 

we employ the usual perturbation expansion 

9.l(a) 

N(z,t) =N 0(z) +n(z)eic..it 



- 175 -

20 

/9:10- 3 
~ 15 '""' Q) 

~ 
0 
~ 

:; 
~-~ 10 

" " '\ 
0 5x10- 4 

5 
10- 4 

00 200 400 6CX) 800 1000 

Unsaturated gain (cm- 1
) 

10.------..-----....-----.....-----~-----r------r------ir-----ilOOO 

6 
c: 
2 
0 .s= 
a. 4 

2 ' / )( 

/ 

/ 
/ 

I 
/ 

I 

I 
I 

I 

/ .................... _ 
---

I 

800 

600 'E 
I u 

-~ 
0 

400 l? 

200 

1=:-.,,.-...,...,,i,,..,,.--~~--..,,,...:;~--~~;__~-~---.,...,~,,...--:-::~--~o -1.250 -0.625 0.625 1.250 1.875 2.500 

Z(cm) x 10- 2 

(a) 

(b) 

Figure 9.1. (a) Static photon output of, and (b) gain and photon distibutions in 
a superluminescent diode. The unsaturated gain in (b) is 500cm-1. 
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9.1(b) 

where :r:l: and n are ''small" variations about the steady states; This assumes that 

the electron and photon densities throughout the length of the diode vary in unison. 

This is true when propagation effects are not important, ie, when modulation fre-

quencies are small compared with the inverse of the photon transit time. This would 

amount to over 15 GHz even for very long diodes(0.25 cm) considered in later sec-

lions. 

Adopting the usual technique of substituting (9.1) into the superluminescent 

equations (9.1}, and neglecting the nonlinear product terms, we obtain the following 

small signal equations: 

dx• =Ax•+ Bx-+ C 
dz 

dx- = Dx• +Ex-+ F 
dz 

where A,B, C,D,E,F are given by the following : 

iw (Xti+f!)go 
A =go- -- -------

cTs 1+ic..i+(Xi+X0 ) 

-(X6+fi)go B = ~~~~~~~ 
1+ic..i+(X6 +Xo) 

Ym(Xti+f3} c = ~~~~~~-
1 +i c..i + ( X 6 + X o) 

(Xo+f3)go D =~~~~~~-
1+ic..i+(Xt+Xo) 

9.2(a) 

9.2(b) 

9.3(a) 

9.3(b) 

9.3(c) 
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9.3(d) 

E =-[go_ ic.; _ (Xo+fJ)go ] 
cTs l+ic.i+(Xt+Xo) 

9.3(e) 

F = -gm(Xo+f3) 
l+ic.;+(Xcf +Xo) 

9.3(f) 

where g 0(z) = aN0 (z)= small signal gain distribution, Ym = ajT5 /(ed) = small signal 

gain due to RF pump current, and c.; has been normalized by the inverse of spon-

taneous lifetime. 

The boundary conditions for solving (9.2) are the same as that in solving the 

steady state case, eqn.(2.2): 

9.4(a) 

9.4(b) 

Equation (9.2) is solved by assuming an arbitrary value for x+(o) = x-(o) = te and 

integrating (9.2) to give x+(L/2) = P ,x-(L/2) = Q, these quantities are complex in 

general. The system (9.2) is integrated again assuming x+(o) = x-(o) = p ;i! IC, to give 

x+(L/2} = T, x-(L/2} = S. The solution is given by a suitable linear combination of 

the above two solutions such that x-(L /2) = 0. The small signal output of the super-

luminescent diode is 

9.5 

The frequency response curve is obtained by solving (9.2) for each c.J. One set of 
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results is shown in fig. 9.2, where we show the frequency response of a 500 µm diode 

pumped to various levels of unsaturated gain. The spontaneous emission factor f3 is 

taken to be 10-4, and the spontaneous lifetime 3ns. The dashed curves are the phase 

responses. One noticeable feature is that the response is flat up to the fall-off fre-

quency, and the fall-off is at approximately lOdB/decade. The cut-off frequency 

(defined to be the abcissa of the intersection point between the high frequency 

asymptote and the 0 dB level of the amplitude response ) easily exceeds lOGEz at 

pump levels corresponding to unsaturated gain values of 1000 cm - 1• This kind of 

gain may be unrealistic in real devices, but we shall show that equally high fre-

quency responses can be attained with longer devices at much lower pump levels. 

In conventional (ie. two-mirror) lasers, the spontaneous emission factor is found 

to play an important part in damping the resonance in the modulation response, 

while its effect on the corner frequency is not significant (see chp. 3). In the case of 

superluminescent diodes, the spontaneous emission has a strong effect on both the 

damping as well as the magnitude of the resonance. This is shown in fig. 9. 3, where 

we plot the frequency response of a 500 µm diode pumped to an unsaturated gain of 

500 cm - 1, at different values of f3. The modulation capability increases extremely 

fast as {3 is decreased, and at values below 5x 10-e a resonance peak appears and the 

fall-off approaches 20 dB/decade. Fig. 9.4(a) shows plots of the corner frequency 

versus pumping, with different spontaneous emission factors {J. The corner fre-

quency increases rapidly as (? falls below 10-3• For comparison, the frequency 

response of a conventional laser with the same length of 500 µm, with an end mirror 

reflectivity of 0.3, is also shown in the figure. This curve is calculated using the well 

known formula described in chapter 3: 

1 v. 1 n 
211' ~sTp Yth 

fr= - --{_..:z_-1) 
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9.6(a} 

assuming a linear dependence of gain on pump current density, and where Tp= pho-

ton lifetime, g = unsaturated gain, 9th = threshold gain. Since 1/rp = cgth.• eqn. 

(9.B(a)} can be rewritten as 

9.6(b) 

It is apparent from fig. 9.4(a) that superluminescent diodes are not competitive with 

lasers of similar construction except at extremely high pump levels and for very 

small spontaneous emission factors. The spontaneous emission factor, depending on 

the waveguiding geometry, varies from about 10-11 in simple stripe geometry to 10-4 

in lasers with real lateral guiding(12]. Since the superluminescent spectrum is at 

least an order of magnitude wider than the laser spectrum, the actual spontaneous 

emission factor must lie around 10-s to 10-4. To obtain values of f3 as low as 10-5 

would require some special effort. However, one interesting feature of the freqw:·ncy 

response of superluminescent diodes is that the corner frequency is invariant to gL, 
. 

total unsaturated gain of the device. This is true for diode lengths as long as 0.3 cm. 

thus, the frequency response of a 0.2 cm diode pumped to an unsaturated gain of 

200 cm -t is identical to that of a 500 µm diode pumped to BOO cm -t - an unrealistic 

value. Coaventional lasers do not have this property since longer diodes have a 

longer photon lifetime, and would have a lower corner frequency when pumped at 

the same level of g /g1,.,,. In other words, very high frequency responses can be 

attained at very modest pump current densities by using very long diodes, as illus-

trated in fig. 9.4(b), which is a similar plot to fig. 9.4(a) but for a 0.25cm diode. 



- 183 -

9.3 Effect of a small but finite mirror reflectivity 

In practice, the reflection from mirror facets cannot be reduced to zero. By using 

Lee's structure[2] or by placing the waveguide at an angle to the facets, the only 

feedback into the waveguide mode is due to scattering, which can be made quite 

small. However, even with a reflectivity of 10-6, the conventional threshold gain 

{neglecting internal absorption loss} of a 500 µm laser is l ln ~ ~ 27 6cm -I; for 

longer diodes the threshold decreases inversely to L. Thus at pumping levels where 

we are interested in (gL > 20) the diode can well be above the conventional lasing 

threshold. The question arises as to whether the frequency response of such a device 

behaves like that of a conventional laser diode, with a square root dependence as in 

(9.6), or like that of a superluminescent diode. There is actually no reason to believe 

that a laser with mirror reflectivities as low as 10-6 should behave as predicted by 

the spatially uniform rate equations. The optical spectrum, though wider than com­

mon laser diodes because of the extremely low finesse cavity, would be considerably 

narrower than the free superluminescent spectrum. The following calculations are 

carried out to illustrate the effects of a small but finite mirror reflectivity on the 

frequency response of the superluminescent diode. It also serves to illustrate the 

actual range of validity of the conventional rate equations. 

In the case of a finite reflectivity the pertinent boundary conditions are 

9.7(a) 

9.7(b) 

where R is the mirror reflectivity. The above boundary conditions modify (9.5) into 
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+( ) _( ) QT-SP 
x L/2 = x -L/2 = (Q-P) + R(T-P) 9.8 

A set of results is shown in fig. 9.5{a} and 9.5{b), where we show the frequency 

response of a long (0.25cm) diode with fJ = 10-3 and 10-4 , and assuming a mirror 

reflectivity of 10-6 • Features of both the laser diode and the superluminescent diode 

can be observed in the frequency response. The corner frequency is sensitive to the 

spontaneous emission factor, increases much faster than a square root dependence 

on pumping, but at a sufficiently high pump level a resonance peak ocurs similar to 

a conventional laser. Fig. 9.6 shows plots of the corner frequency versus pump level, 

for spontaneous emission factors of 10-3 and 10-4 • Also shown is the response of a 

laser of similar length (0.25cm) with a reflectivity of 0.3. As the mirror reflectivity 

increases from 10-6 , the superluminescent response curve merges continuously 

onto the laser curve and becomes essentially the laser curve at refiectivities around 

Using a plausibility argument one can formulate a rough criterion as to how 

small the end mirror reflectivity should be for the frequency response to be 

superluminescent-like. In the pure superluminescent case the photons are gen-

erated at one end through spontaneous emission , and are amplified as they 

traverse the active medium. Thus, if the product of the reflectivity and the outward 

travelling photon density at a mirror facet is larger than p, then the device resem-

bles more closely e. conventional laser than an amplified spontaneous emission dev-

ice. With fJ = 10-4 and a typical normalized photon density of 10 near the output 

end, the mirror reflectivity must be smaller than 10-5 for the response to be 

superluminescent-like. This plausibility argument is supported by results of numeri-

cal calculations. 
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Figure 9.5. Frequency response of a 0.25cm diode uri.th mirror reflectivity of 
10-6, and (3 = 10-4 in (a) and 10-3 in (b). g is the unsaturated gain 
in cm-1. 
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Figure 9.6. Corner frequency of a 0.25cm diode with mirror reflectivity of 10-6, 

at spontaneous emission factors of 10-4 and 10-3. The response of a 
conventional 0.25cm laser is shown in dotted line. 
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Finally, in going to longer devices one cannot neglect the internal optical loss, 

which amounts to about 10 - 20 cm-1 [11] in common GaAs laser materials. The opt-

ical output power will not increase linearly as shown in fig. 9.1{a}, but will saturate 

at a value X 5 given by 

_JJ_ -J 
1+Xs - 9.9 

where f is the internal loss in cm - 1, g is the unsaturated gain. For devices as long as 

0.25 cm, the internal loss is considerably lower than the saturated gain anywhere 

inside the active medium except for a small region near the ends, where the photon 

density is highest. The effect on the frequency response proves to be insignificant. 
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