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Abstract

In many applications, some form of input information, such as test inputs or extra
inputs, is available. We incorporate input information into learning by an augmented
error function, which is an estimator of the out-of-sample error. The augmented error
consists of the training error plus an additional term scaled by the augmentation
parameter. For general linear models, we analytically show that the augmented
solution has smaller out-of-sample error than the least squares solution. For nonlinear
models, we devise an algorithm to minimize the augmented error by gradient descent,
determining the augmentation parameter using cross validation.

Augmented objective functions also arise when hints are incorporated into
learning. We first show that using the invariance hints to estimate the test error, and
early stopping on this estimator, results in better solutions than the minimization of
the training error. We also extend our algorithm for incorporating input information
to the case of learning from hints.

Input information or hints are additional information about the target function.
When the only available information is the training set, all models with the same
training error are equally likely to be the target. In that case, we show that early
stopping of training at any training error level above the minimum can not decrease
the out-of-sample error. Our results are nonasymptotic for general linear models and
the bin model, and asymptotic for nonlinear models. When additional information is

available, early stopping can help.
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Chapter 1

Introduction

1.1 Learning from Examples

Consider the following task: We have observed a set of input-outputs. In the future,
we will observe some test inputs and will need to guess the outputs for these inputs.
What should we do to produce the best possible response for the yet unobserved
inputs?

The first step in solving this statistical pattern recognition [Duda, 1973,
Bishop, 1995, Ripley, 1996] task is to choose a model class. The observed
input-outputs are called the training set, and how well a model performs on a
training set is measured by the training error. The goal is to have a model that
has the smallest out-of-sample error. We will define the out-of-sample on a specific
set of test inputs as the test error, and the expected error on a randomly drawn
input as the generalization error. We assume that the training and test inputs are
drawn independently and identically from the same input distribution.! The training
and test outputs are obtained from the outputs of an unknown target function on
the training and test inputs plus additional noise. Under these assumptions, the
training error is an unbiased estimator [Ross, 1987] of the test error. Hence, the
model minimizing the training error is chosen to be the training solution.

In this thesis, we will use general linear models and (artificial) neural networks?
[Hertz et al., 1991, Ripley, 1996, Bishop, 1995] with one hidden layer of tanh hidden

units and a linear output as the model class. A general linear model (figure 1.1)

!Note that in this case the expected value (with respect to inputs) of the test error is the
generalization error.

2An artificial neural network is a nonlinear function approximator. Biological or psychological
merits or relevance of neural networks are out of the scope of this thesis.
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transforms the input x € RY using fixed transformation functions ¢;(x),i =0,...,d
and outputs the weighted sum gy, (x) = S0 wi¢;(x). The output gy(x) is linear
in the model parameters w. Depending on the choice of ¢;(.)’s it can be linear or
nonlinear in inputs x. The training solution is chosen to be the w that minimizes
the training error of gw. We will compute the training solution for the general linear

model using the least squares method [Hocking, 1996].

input:
X

transformed Input

O(x)

g(x)= % w, (bi (x) output
w i=0

Figure 1.1: General linear model.

The neural network model (figure 1.2) will use a specific type of transformation
function, namely tanh of weighted sum of inputs. Given enough number of
hidden units, this model can approximate any continuous function [Cybenko, 1989]
(universal approximation property). Both the input and output weights
(parameters) of the neural network are adjustable. The output, gy(x) = vp +
Zle v; tanh (’Uz"() + Z;{__l ’U@"jafj), is nonlinear both in the weights v and the inputs
x. Due to nonlinearity of the model, the training solution for the neural network
model has to be searched using an iterative optimization technique. Since it is quite
common, we will use gradient descent starting from small initial weights and with
adaptive learning rate [Battiti, 1989] as the optimization technique. Backpropagation
[Rumellhart et al., 1986] is a method to conveniently compute the gradient of

the neural network output with respect to weights. Some other algorithms to
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find the training solution are conjugate gradient [Hestenes and Stiefel, 1952] and
Levenberg-Marquardt [Levenberg, 1944, Marquardt, 1963] methods. The training
error for a neural network has many local minima, hence the experimental results
are meaningful only when one speficies the optimization technique and the starting

point.

input

input weights
tanh hidden units

output weights

d d
g(xX)= v+ > vtanh(v +X v x ) output
v 0 =i =1 i

L0 21 i

Figure 1.2: Neural network model.

The training error is an unbiased estimator of the test error. In some cases when
the variance of this estimator is large, the training solution may overfit the training
set. Overfitting can occur when the training data is noisy, the training set size is too
small, or the model class is too complex. Overfitting can be described as having a
considerably larger out-of-sample error test error than the training error. There are
studies to bound the maximum difference between the training and test error for a
model class, one of the most popular being the Vapnik-Chervonenkis (VC) dimension
[Vapnik, 1982, Abu-Mostafa, 1989, Baum and Haussler, 1989] of the model class.

While the training error is being minimized iteratively, after some time, due to
overfitting, minimization of the training error may increase the test error. This
phenomenon is called overtraining (figure 1.3) or overfitting in time. Due to
overtraining, the training solution can have a large test error. It is desirable to

somehow prevent overtraining.



------- training error
— test error

training solution

errors

* best solution

.,

pass, time, different models

Figure 1.3: Overtraining.

Based on the assumption that the overtrained solution is less smooth (i.e. has
larger derivatives with respect to inputs) than the best solution, methods that choose
smoother models at the expense of a larger training error have been proposed.
Weight decay [Reed, 1993] (also known as ridge regression or shrinkage estimation
[Weisberg, 1980]) results in a model with smaller weights.®> When training starts from
small initial weights, early stopping of training is also likely to result in a solution

with smaller weights than the training solution.

1.2 Questions

1.2.1 Early Stopping of Training

Both weight decay and early stopping of training using a validation set assume that
the target model (the model that has the smallest test error) is a smoother model
than the training solution. However, when the only available information about the

target is the training set, all models with the same training error should be equally

3For the neural network, small weights, correspond to closer to linear and smoother models.
When the input weights are small, tanh hidden units are close to their linear region. The derivative
of the output of the neural network with respect to the input is proportional to the output weights.
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likely to be the target. When this is the case, is there any method that could result

in a better test error than the training solution? Is there a theoretical limitation?

1.2.2 Input Information

In some applications, we know either the test inputs, or some other input information,
such as extra inputs or the input probability distribution.

For example, in the credit card approval task, the training inputs are the
information about the past customers and the training outputs are whether they
defaulted or not. The information about the current applicants are the test inputs.
We are interested in a solution that will predict the default probability best, not for
any applicant, but for the specific set of new applicants. Can we use these test inputs
to obtain a solution that performs better than the training solution?

Sometimes, we have access to extra inputs that are not necessarily test inputs.
For example, in blood cell recognition, many blood cells are drawn from the patient,
but only a small subset are labeled by human experts. These labeled cells are used
as the training set. Can we use the remaining extra inputs to obtain a solution
that performs better than the training solution? What if we know the actual input

probability distribution instead of just the extra inputs?

1.2.3 Hints

Now consider another scenario, we know the training set, and in addition we have some
additional information, or hints [Abu-Mostafa, 1990], about the target function. For
example, in character recognition, the characters remain invariant under translation,
scaling and slight rotations. In other words we know the translation, scale and
rotation invariance hints about the target function. Can we use these hints to obtain

a solution better than the training solution?



1.3 Previous Work

1.3.1 Input Information

The availability of test inputs, extra inputs or input probability distribution is a
special case of the missing data problem [Little, 1992] in statistics. The most popular
approach for the solution of these problems is the EM (expectation maximization)
algorithm [Dempster et al., 1977]. [Shahshahani and Landgrebe, 1994] and
[Miller and Uyar, 1997] have applied the EM algorithm to the missing output
labels problem. The EM algorithm requires density estimation for input-output
distribution, however, especially for high dimensional spaces, density estimation is a
very difficult problem.

[Vapnik, 1982, page 312] mentions that estimation of the target model for the test
inputs only is an easier problem than the estimation of the target model everywhere
in the input space. Since the goal is minimization of the test error, one should
concentrate on the test error itself. Vapnik suggests “transduction, deriving the values
of the unknown function for points of interest from the giwen data” and “If you are
limited to a restricted amount of information, do not solve the particular problem you
need by solving a more general problem.” [Vapnik, 1995, page 169].

There have also been studies on the value of unlabeled examples for classification
problems.  [Castelli and Cover, 1995] and [Castelli and Cover, 1996] show that
labeled examples are exponentially more valuable than the unlabeled examples in

reducing the classification error.

1.3.2 Hints

A hint is any additional information about the target [Abu-Mostafa, 1990,
Abu-Mostafa, 1993a, Abu-Mostafa, 1993b, Abu-Mostafa, 1994]. Invariance
hints  [Fyfe, 1992,  Cataltepe and Abu-Mostafa, 1993], monotonicity  hint
[Sill and Abu-Mostafa, 1997], smoothness hint [Ji et al., 1990], minimum Hamming
distance between patterns [Al-Mashouq and Reed, 1991] are some of the hints that



have been studied previously.

Hints allow additional information to be expressed in terms of an error function
(hint error). Just like the training error, the hint error can also be minimized.
Minimization of both the training and the hint error simultaneously to achieve a
good model is the goal of learning from hints. Different methods (schedules) have

been suggested to learn from hints [Abu-Mostafa, 1994].

1.3.3 Early Stopping of Training

Early stopping has been studied by Wang et. al. [Wang et al., 1994] who analyzed
the average optimal stopping time for general linear models (one hidden layer
neural networks with a linear output and fixed input weights) and introduced and
examined the effective size of the learning machine as training proceeds. Sjoberg
and Ljung [Sjoberg and Ljung, 1995] linked early stopping using a validation set to
regularization, and showed that emphasizing the validation set too much may result
in an unregularized solution. Amari et. al. [Amari et al., 1997] determined the best
validation set size in the asymptotic limit and showed that early stopping helps little
in this limit even when the best stopping point is known. Dodier [Dodier, 1996] and
Baldi and Chauvin [Baldi and Chauvin, 1991] investigated the behavior of validation

error curves for linear problems, and the linear auto-association problem respectively.

1.4 Contributions

In this thesis we show that when the training set is the only available information,
training solution is the best possible solution. When there is extra information, such
as input information or hints available, we propose methods to incorporate them into

learning to obtain a solution better than the training solution.
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1.4.1 Incorporating Input Information into Learning

We develop an estimator of the test (generalization respectively) error using the test
inputs (extra inputs or the input probability distribution respectively). The new
estimator, augmented error, contains the training error, plus the augmented term
scaled by the augmentation parameter.

For general linear models, we prove that the augmented solution is better than the
training solution under certain conditions. We show that the optimal augmentation
parameter increases as the training set size gets smaller or the signal-to-noise ratio
decreases. We also devise the substitution method to find the augmentation
parameter and prove that it results in a better augmented solution than the training
solution.

We experimentally verify that the augmented solution is better than the training
solution on real data sets. We compare the augmented solution to early stopping
using a validation set and weight decay methods. Our simulations on linear models
and linear and noisy targets show that the augmented error is consistently better than
the least squares (training) solution. Although early stopping using a validation set
solution is the best when the signal-to-noise ratio is very small, for large signal-to-noise
ratio it performs very badly. Augmented solution is better or as good as the weight
decay solution for all signal-to-noise ratios.

When the model is nonlinear, we propose two different methods of incorporating
input information into learning. The first method is applicable to neural networks
trained using gradient descent and modifies the output weigths only. The second
method descends on the augmented error directly, choosing the augmentation
parameter by means of leave-k-out cross validation. Our experiments show that
both methods, usually, result in better solutions than the gradient descent solution,

especially for small signal-to-noise ratios.



1.4.2 Learning from Hints

We use the invariance hints to estimate the test/generalization error. Early stopping
on this estimator results in better solutions than the training solution.

Similar to the augmented error, the error function when learning from hints is
also an augmented objective function. We extend the algorithm for descending on

the augmented error to learning from hints.

1.4.3 No Free Lunch for Early Stopping

While additional information, such as test inputs or hints, can lead to better solutions,
without any additional information, the training solution is the best possible solution.

We show that, when the only available information is the training set, and when
the model is general linear model or the bin model, early stopping above the training
error minimum increases the out-of-sample error. For nonlinear models the same
result holds, but within a small enough neighborhood of the training error minimum
and large training set size.

Weight decay and early stopping using a validation set assume that not only the

training set, but also some smoothness property of the target are known.

1.5 Outline

The rest of the thesis is organized as follows.

In chapter 2, we derive the augmented error, our mechanism of incorporating test
inputs and other type of input information into learning. In this chapter we analyze
the augmented error and solution for general linear models. In section 2.3, we prove
that when there is noise in the training data, the augmentation parameter that results
in the best solution is nonzero. We also show that the best augmentation parameter
decreases as the signal-to-noise ratio or the number of training examples increase.
We describe the substitution method to find the augmentation parameter and prove

that it results in an augmented solution better than the least squares solution in
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section 2.4. The experimental verification of results on real and simulated data, and
comparisons of the augmented solution to solutions obtained by other methods, such
as weight decay, early stopping using a validation set, cross validation, take place in
section 2.5.

Chapter 3 is on the incorporation of test inputs into learning for nonlinear models,
specifically neural networks. In section 3.3 we use the substitution method to obtain
an augmented solution for the output weights, keeping the input weights fixed.
Section 3.6 discusses a method of descending on the augmented error instead of the
training error alone. The augmentation parameters during the descent are determined
by means of leave-k-out cross validation method. Section 3.7 discusses extensions
of the augmented error approach to different loss functions, namely, entropic loss,
maximum likelihood with input dependent noise variance and p-norm loss.

In chapter 4, we discuss incorporating hints into learning. In section 4.2, we
estimate the out-of-sample error using the invariance hints and then early stop
training based on this estimator. In section 4.3 we extend the gradient descent on
the augmented error method to learning from hints.

Chapter 5 is about early stopping of training when the training set is the only
available information. When there is no other information, all models with the same
training error are equally likely to be the target. For this case and general linear
models, in section 5.1, we prove that early stopping can not decrease the mean
generalization error. Section 5.2 proves the same result for nonlinear models but
around a training error minimum and for large training set sizes. In section 5.3 we
review the bin model and prove that early stopping can not help for this model either.
In section 5.4 we experimentally verify the early stopping results for general linear and
neural network models. We also show that early stopping can help when additional

information is available, for example in the case of weight decay or invariance hints.
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1.6 Notation

We denote (column) vectors and matrices using lower and upper case bold letters
respectively. I yq is the d X d identity matrix, AT and A~! denote the transpose and
inverse of matrix A. log indicates base 10 logarithm.

We summarize the frequently used symbols below:

training set  {(x1, f1),..., (XN, fn)}
a training input  x, € R?
a training output f, € R
test set  {(y1,h1),---, (Ya, hur)}
a test input  y,, € RY
a test output  h, € R
extra (unlabeled) inputs  {z1,...,2zx}
learning model gy (x) : RY = R
adjustable parameters of

the learning model v
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Chapter 2

Incorporating Input Information

into Learning

In many applications of learning from examples such as disease diagnosis, medical
image recognition, financial market forecasting and credit default prediction, some
form of input information is available, in addition to the labeled training examples.

The additional information can be:

e test inputs without outputs.
e inputs other than test inputs.

e input distribution information.

In this chapter, we provide an analytic solution for incorporating such input
information into learning for general linear models. We cover the nonlinear case
in the next chapter. The test inputs can provide valuable information not contained
in the training error by itself. In figure 2.1 we show a sample training session and
the behavior of training, test and augmented errors. The augmented error follows the
test error as overtraining occurs, whereas the training error keeps decreasing.

We incorporate input information into learning by estimating the out-of-sample
error. The new estimator, augmented error, is obtained by expanding the
out-of-sample error. The input information is used to better estimate some of the
terms in the expansion. Augmented error, which is computed only by using the
training data and the input information, can result in a smaller out-of-sample error
than simple training error.

Previous results on the wuse of input information include Shahshahani

and Landgrebe [Shahshahani and Landgrebe, 1994] and Miller and Uyar
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25 T .
training error ——

test error -----
augmented error. .=
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100 1000
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Figure 2.1: The augmented error, computed without looking at the test outputs at
all, follows the test error as overtraining occurs.

[Miller and Uyar, 1997] who incorporate unlabeled examples into learning using
EM (expectation maximization) [Dempster et al., 1977] algorithm for mixture
models and classification problems. They show that unlabeled examples are useful
especially when input dimensionality is high and the number of examples is small.
[Miller and Uyar, 1997] reports favorable results when the inputs are test inputs.
Castelli and Cover [Castelli and Cover, 1995] show that the labeled examples are
exponentially more valuable than unlabeled examples in reducing the classification
error. Our method is applicable for both classification and regression problems.
The EM algorithm and other approaches to the solution of missing data problem in
statistics (please see [Little, 1992] for a good review), requires density estimation for
input-outputs, however, especially for high dimensional spaces, density estimation
is a very difficult problem. The goal in learning-from-examples is to minimize the
out-of-sample error [Vapnik, 1982, page 312], hence we concentrate on using the input

information to directly estimate the out-of-sample error better. We have presented
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some of our results for linear models in [Cataltepe and Magdon-Ismail, 1998].

The rest of the chapter is organized as follows: In section 2.1 we define the training
and test errors and derive the augmented error. Section 2.2 describes the general
linear models and derives the augmented solution for these models. In section 2.3
we prove that when there is noise in the training data, the augmentation parameter
that results in the best solution is nonzero. We also show that the best augmentation
parameter decreases as the signal-to-noise ratio or the number of training examples
increase. The substitution method to find the augmentation parameter is described
in section 2.4. We also prove that the substitution method results in an augmentated
solution better than the least squares solution. The experimental results take place
in section 2.5. We first show that the augmented solution results in better solution
than the least squares solution on two real data sets from UCI Machine Learning
Repository. Then we show that knowing the test inputs is more valuable than knowing
the input probability distribution, which is more valuable than knowing an extra set
of inputs. We compare the augmented solution to early stopping using a validation
set and weight decay solutions. We also show that the substitution method results in
solutions at least as good as the cross validation method would. Section 2.6 describes
extensions of the augmented error. The two parameter augmented error of section
2.6.1 is a generalization of both the one parameter augmented error and the weight
decay objective function. It also performs better than one parameter augmented error
and hence we concentrate on the two parameter error in the next chapter. Another
possible extension to the augmented error takes into account first order difference
between test set outputs and training set outputs and is covered in section 2.6.2.

Finally, section 2.7 summarizes the results in the chapter.

2.1 Augmented Error

Given a training set and a model class, the goal of learning from examples is to choose
a model that performs best on out-of-sample data. Both the training (in-sample) and

the test (out-of-sample) data are assumed to come from the same distribution, and
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hence the training data is used to guide the search for a good model.
Let the training set be {(x1, f1),..., (xn, fv)} with inputs x,, and (possibly
noisy) target outputs f,. Let the model class be G and denote the model by g, € G,
where v is a parameter vector. When the loss function is quadratic, the training

error of model gy is:

N

Bolge) = 2 (9 (x0) = £’ (2.1

n=1

When the noise in the training outputs is additive, independent, zero mean normal,
the training error minimum is also the maximum likelihood solution [Bishop, 1995,
pp- 39].

The out-of-sample error is measured by the test error. Let
{(y1,h1),.-.,(ym, har)} be an unknown test set, where (y,h) and (x, f) pairs are

drawn from the same distribution. The test error of model gy is:

E(g) = 323 (0 (m) — )’

Expanding the test error:

1 & 2 U 1 <
E(gy) = HZQ% (Ym) — "M_ng (ym) hm + M thn (2.2)
m=1 m=1 m=1

The key observation here is that, when we know the test inputs, we know the first
term exactly. Therefore we need only to approximate the remaining terms using the

training data:

1 & 9 & 1 &
~ 2 _ = - 2
E(gy) = M;gv(ym) N;gv(xn)fn+N;fn (2.3)
1 X 1 &
= Eo(gv)+ 37 D05 (¥m) = 5 D_ 9% (%n)
m=1 n=1

We scale the addition to the training error by an augmentation parameter o
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to obtain a more general error function that we call the augmented error:

Ey(9v) = Eo(gv) ta (_]\:!/f Z 9% (Ym) — %Zgg (Xn)> (2.4)

m=1 n=1

where a = 0 corresponds to the training error Ej.

When the identity of the test inputs is not known, the generalization error
(mean square error) becomes the relevant measure of the out-of-sample error.
Generalization error of a model is the expected error on an input drawn from the

same distribution as the training inputs:

Egen (9v) = ((gv(x) = h(x))*), (2.5)

where h(x) denotes a (possibly noisy) realization of the target output for input
x and (.), denotes expectation with respect to the input distribution Py. Note
that the expected value of the test error with respect to the input distribution
is the generalization error. In order to keep this correspondence, we have not
taken expectation with respect to the mnoise distribution in the definition of the
generalization error.

Expanding the generalization error as we did in equation (2.2), we obtain:

Egen (gv) = <9121(X>>X -2 <QV(x)h(X)>x + <h2(x>>x

When the input probability distribution is known, the augmented error

becomes:
Eq (QV) = Ey(gv) +a (<93(X)>x - % Zgg (Xn>> (2-6)

A third case of the augmented error arises when some extra inputs that are not
necessarily test inputs are available. These can still be used to estimate the (gZ(x)),

term better. Let {z1,...,2zx} be the extra K inputs, then the augmented error for



this case becomes:

1 K N 1 N
Fa(9e) = Folon)+a ( e (Zgz () + g <xn>) -5 <xn>)
K 1
K

k=1 n=1 n=1
K 1 N
= E § ‘ 2 = 2

The best value of the augmentation parameter depends on a number of factors
including the target function, the noise distribution and the model class. In sections
2.3 and 2.4, we will investigate the properties of the augmented solution and the
augmentation parameter and devise a method to find the augmentation parameter

for general linear models.

2.2 Augmented Solution

We will mostly focus on general linear models for the rest of this chapter. The general
linear models are very powerful due to their transformation functions, and they are

also very useful since they allow an analytical treatment of the augmented error and

the augmented solution.

input:

transformed Input

O(x)

d
9,0 =X w (x) output
i=0

Figure 2.2: General linear model.

Let ¢;(x) : RY — R, i = 0,...,d be fixed transformation (basis) functions
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and let ¢(x) = [Bo(x), $1(X), ..., ¢a(x)]". We define a general linear model as
gw(x) = wT¢(x) with fixed transformation functions ¢(.) and adjustable parameters
w (see figure 2.2). If ¢o(x) = 1 and ¢;(x) = z;,1 < i < d’ = d we obtain the usual

linear model; if ¢;(x) = H;'i;l 33?7

k; > 0 we obtain a polynomial model. When the
transformation functions are obvious from context, we will denote a general linear
model only by the adjustable parameters w.

Let X4y be the matrix of training inputs, Yu . be the matrix of test inputs
and fi«; contain the training outputs. Let Poiyun = [P(x1), ..., ¢(XN)](,1+1)><N and
Pyien = [9(V1), - (V)] g1)xm be the training and test inputs transformed
by the transformation functions ¢;(.). We will denote ?{%}ﬁ: by S, and ?%i by S,

respectively. When S, is full rank ! the unique training error minimum is given by

([Hocking, 1996] and the section 2.8.1):

wo =S q;frf (2.8)
The augmented error:
E,(w) = Ey(w)+aw’ (S, —S,)w
is minimized at the augmented solution w,,:
w, = (I-aR) 'w, (2.9)

where R = I —S,7'S,. When o = 0, the augmented solution w, is equal to the
simple training solution wy.
An intuition can be gained about the augmented solution by rewriting the

augmented solution as wo = ((1 — @) S, + aS,) " 2L, The solution that minimizes
g Y N

the test error is S 1%%3’—, however we do not have access to the test outputs h. The

augmented solution modifies S;! in the simple training solution, to make the solution

'Hence we restrict ourselves to problems where N > d + 1. Since the transformation functions
T
are real valued, for most cases i}%\,&— is likely to be full rank.
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closer to the test error minimum.
Let Yyp) = <q§(x)¢(x)T> . When the input probability distribution is known,
X

the augmented solution is the same as equation (2.9) except now R =1 — Sm‘12¢(m).

Similarly, when K extra inputs {z,...,zx} are known, the augmented solution has
R = &5 (I—-S,7'S.) where S, = ?;zgi and ®.(4,1)xx denotes the extra inputs

transformed by the transformation functions ¢;(.).

2.3 Properties of the Augmentation Parameter
and the Augmented Solution

In the previous sections, we made no assumptions about the relationship between
the training input and outputs. In this section, we will derive certain properties
of the augmentation parameter and the augmented solution when training and test
outputs are generated by a general linear model and then by adding zero mean,
independent noise. We will assume that the training outputs are generated according
tof = ®Tw*+¢ where <66T> = 02T, and the test outputs are generated according
to h = ®'w* + § where (067) = o arsent-

In this section, we will analyze certain properties of the augmentation parameter
and the augmented solution. Since the specific realization of the noise in the training
and test outputs are not known, conclusions that depend on the identity of the noise
would not be useful. Hence, we will average out the noise and instead of the test
error of the augmented solution £ (w,), we will concentrate on the expected value of

the test error of the augmented solution with respect to the training and test noise

<E (Wa)>e,6‘

(B (Wa))es (Wgéﬁ()’m) - hm)2>

€,0

= il1=

T T
S

Sk

(W§¢(ym) —w (Ym) = 57n)2>

3
I
A

€,0
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1 & 2
= <MZ(w§¢(ym)—W*T (¥m)) > +og

= <(Wa —w*)’'S, (W, — W*)> + 0?2
Similarly, the expected generalization error is:

(Egen (Wa».z,(s = <(Wa - W*)T2¢(w) (Wa — W*)> +0;

€

2.3.1 Test Inputs

The expected test error of the augmented solution with respect to the noise

distribution is:

(B(Wa))s = W ((I-aRT)" =1)S, (1-aR)” —T) w*
+ —?—V‘Zitr ((I - aRT)Hlsy(I - aR)dS[l> + o2 (2.10)

where we have used <6TAE>e = o2tr (A), and tr(A) denotes the trace of matrix A.
When a = 0, we have the simple training solution and:

2
(B (wo))y = %tr(sys;l)wg (2.11)

Now, we identify conditions under which the best augmentation parameter is nonzero,
i.e. there exists an augmented solution which has lower expected test error than the

simple training solution:

Theorem 2.3.1 If 02 > 0 and tr (RS;'S,) # 0, then there is an augmentation

parameter a # 0 that minimizes (E (Wo)), -

Proof: The derivative of the expected test error in equation (2.10) with respect to
o s

9 (E(Wa)). s

o> = 2w (I-aR") "RT(I- aR")"'S, ((I- aR) "' — ) W'
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2

+ Z%tr ((T-aR)"RT(1-aRT) 's,(1- oR)'S;") (2.12)
where we have used the fact that @—;—ST(Q—) = -B_1(a)g~%—(j—)B“1(@) for any matrix

B whose elements are scalar functions of o [Hocking, 1996, page 684]. Hence the

derivative at o = 0 is:

a <E (Wa)>e,5 03 -1
T o = 27\[—157“ (RSI Sy)

If this derivative is nonzero then a = 0 is not a local minimum of the expected test
error and hence the expected test error is minimized at some nonzero a. O

Theorem 2.3.1 is important and also useful, since the check for the necessity of the
nonzero augmentation parameter can be done only by looking at the available data.

The equivalent of theorem 2.3.1 can also be proven when the target and model do
not necessarily have the same transformation functions.

Let the training outputs be generated according to f = ®Tw* + ¢ where
W, ., denotes the training inputs transformed by the transformation functions
Pi(x) : R — R for i = 0,...,d". Similarly, let the test outputs be h = ‘I’ZW* + 6.
Let the training and test noise satisfy (ee”) = 02Iyyn and (667) = 02Ipr . In this

case, the augmented solution becomes:

wo, = (I-aR) 'wy
P, f
N
< (lIlfW* + e)
N

= (I-aR)'S;!

P
= (I-aR)'S;!

The expected test error of the augmented solution is:

M
1 . 2
(B(Wa))s = <MZ(W§¢(ym)—WT (Ym)) > + o’ (2.13)
m=1 €
2 ¥ Yy ¥ 8y 2,

= W *—M——W* — 2w ————mS;I(I - ClRT)

N M
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&, 07T

* v q’m — -lg— T *p  x
wol ot 7S '(I—aR")7'S, (I - aR) S 5w
—<tr {(I-aR") 'S,(I-aR)"'S; ) + o] (2.14)
N
Theorem 2.3.2 When f = ¥Tw* +¢ and h=®lw*+4, if
-‘J—’-\,?z-tr (RS;'S,) # *T‘I'—LS 1RT( - S,S, ‘1@” )w* then there is an

augmentation parameter o # 0 that minimizes (E (Wa>>67 5

Proof: follows from ?ﬁi(g%ﬁ ata=0. 0

Unlike the previous theorem, in this case, the check for nonzero «, unfortunately,
involves the function that generates the training and test data. An observation is
that even if o2 = 0, the best a can be nonzero for this case. Also note that for a fixed
w* and o2 the best o is 0 only at the solution of an equation in high dimensional
®,, P, P, P, space.

For the rest of this chapter, unless made explicit otherwise, we will assume that

the model and the target have the same transformation functions ¢;(.).

The following theorem gives an approximate formula for the best a:

Theorem 2.3.3 If N is large, M > N, ¢(x,) and ¢(ym) are independent and
identically distributed with ($(x)), = 0, (¢(x)¢"(x)), = 0 ar1)x@+1) and
<(¢(x)¢T(X))2> = co2L(4i1)x(a+1) for some constant c and % < o?w*Tw*, then
X
(B (Wa))e sy 18 minimized at:
, d+1 o?

~) € 2.15
@ N o2wTw* ( )

Proof: is given in the appendix in section 2.8.2. O
This formula determines the behavior of the best a. The best a:

. . . b B L
e decreases as the signal-to-noise ratio, &%

, increases.

€

e decreases as the number of training examples, N, increases.
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The goal of augmented error was estimation of the test error. The augmented error
contains the training error plus the augmentation term scaled by «. When the
signal-to-noise ratio increases or when there are more training examples, the training
error becomes a better estimator of the test error and hence the contribution from

the augmentation term is reduced by means of smaller a.

The following theorem tells us how much the expected test error of the augmented
solution decreases compared to the simple training solution when the a minimizing

the expected test error is used.

Theorem 2.3.4 When the a minimizing the expected test error is used, the erpected
test error of the augmented solution decreases by O (%) if N and M are large

and ¢(x,) and ¢(ym) are independent and identically distributed with (¢(x)), = 0,

<¢(X)¢T(X)>x = 02(ar1)x(a+1) ond <(¢(X)¢T(X))2>x = cogliar1yx(ar1) for some

) 4 tr?(RS, 18,
constant c. More precisely (E(w,)), 5 — (E(Wo)), 5 ~ ~%%;q(-§-?—s—;ﬁ‘£— <0.

Proof: is given in the appendix in section 2.8.3. O

2.3.2 Input Probability Distribution and Extra Inputs

When outputs are generated according to f = ®Iw*+¢ where <€€T>€ = 021 (g11)x(d+1)>
similar to equation (2.10), the expected value of the generalization error of the

augmented solution is:

(Bgen (Wa)) o5 = w7 ((T=aRT) " ~1) Ty (- aR)™ ~ 1) w*

b ey (1= aR") 'Sy -aR) 'S, ) +0?  (2.16)
N #(z) z e :

The expected generalization error of the simple training solution is:

2
o B
(Egen (W0)). 5 = “A-,tr (Z4()Sa 1) + 07 (2.17)
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Note that R =1 — Sz“12¢(@ when the input probability distribution is known, and
R = 55 (I-S,7'S.) when extra inputs {2, ..., zx} are known.
Counterparts of theorems 2.3.1 to 2.3.4 for the test inputs are stated below for
input probability distribution or extra inputs. The proofs are very similar to the
proofs of theorems 2.3.1 to 2.3.4 and are given in the appendix in sections 2.8.4 to

2.8.6.

Theorem 2.3.5 If 02 > 0 and tr (RS, ' Sy(,)) # 0, then there is an augmentation

parameter o # 0 that minimizes (Egen (Wa)), 5-

Theorem 2.3.6 If N is large, ¢(x,) are independent and identically distributed with
(9(x))x = 0, (p(x)87 (%)), = 02N (g41)x(a+1) and <(¢’(X)¢T(X))2>x = o5 (a1)x(d+1)

for some constant ¢ and ‘—;é < o2wTw*, then (Egen, (Wa)) 5, 15 minimized at:
d+1 o2

N azw*eTw* (2.18)

* ~
~

Theorem 2.3.7 When the a minimizing the expected generalization error is used, the
expected generalization error of the augmented solution decreases by O (—]‘%), when

N s large and $(x,) are independent and identically distributed with (¢(x)), = 0,

<¢(X)¢T(X)>X = 02L(as1)x(ar1) ond <(¢(X)¢T(X))2>x = coyliariyx(a+1) for some

2402 -1
constant c. More precisely (Egen(Wa)). 5 — (Egen(Wo)), 5 =~ —%% < 0.

2.3.3 The Parameter Error of the Augmented Solution

Just like the test error and the generalization error, the parameter error Epsram

measures the goodness of a solution:

Bparam (W) = [[W* = W|[* = (w* = W)" (" — W)
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When Xy() = L(gt1)x(a+1), the parameter error equals the generalization error minus
2

as.

The parameter error of the augmented solution w, is:

Bparam(Wa) = w'T (1= (I-aR") ™) (1 (I-aR) ") w*

2

o; _ - _
+2¢tr (8.7 (I-aRY) (1 - aR) )

Hence the parameter error of the simple training (least squares) solution wy is:
o? L
Eparam(wo) = 'Ne’tr (Sa:_ )

The following theorem shows that there is an o # 0 that minimizes the expected

parameter error as well:

Theorem 2.3.8 Ifo2 > 0 andtr (S, 'R) # 0, then there is an o # 0 that minimizes
(Eparam(Wa)).-

Proof: is similar to the proof of theorem 2.3.1 and is given in the appendix in section

2.8.7.00

2.3.4  bias® + variance

We have considered three different types of out-of-sample error in the previous
sections: test error, generalization error and parameter error. The expected value

with respect to the test output noise for all these errors can be written as:
(Bp(Wa))s = (Wo — W) P(we — w") + ¢

T
where P = ﬁﬂ%’- for test error, P = 34, for generalization error and P = I(g 1)x(d41)
for the parameter error, ¢ = o2 for the test and generalization errors and ¢ = 0 for
the parameter error.

The expected out-of-sample error of any estimator w of w*, can be written as



[Geman et al., 1992, Bishop, 1995]:

(Be(w));), = ((w' —W)"P(w' —W)) +c
= <(w* — (W) + (W), — W) P(w" — (W), + (%), — W)
= (w* = () TP(w" = (%),) + (W = (),) P(W — (W),)) +e

= bias? p(W) + variance.p(W) + ¢

+c(2.19)

~o
o

The cross-term <(w* — (w),)"P(W — (W}e)> from equation 2.19 dropped because
w* is independent of € and ((W), — W)_= (W) — (W) = 0.

The simple training (least squares) solution wyq is and unbiased estimator of the

e (%)
P

target w*, because

For zero mean normal and independent noise, the simple training solution wy is
the minimum variance unbiased linear estimator of w* [Montgomery and Peck, 1991,
Gauss-Markov Theorem].

On the other hand, the augmented solution is a biased estimator, since w, =
(I—aR) 'wy. Since there is an a # 0 for which (Ep(Wa)).; < (Er(Wo)).;
(theorems 2.3.1, 2.3.5 and 2.3.8), and the bias® of the augmented solution is larger
than the bias? of the simple training solution, it follows that the augmented solution
has a smaller variance than the simple training solution.

As N and M get large, R =1 — sw—lsy — 0 and w, = (I— aR)*lwg — Wg.
Hence, for large N and M, the bias and variance of w, approach 0, making w, an

unbiased and consistent estimator of w*.
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2.4 Substitution Method to Find

a Good Augmentation Parameter

In this section, we propose a method to find the best o minimizing the test error of
Wq, given only the training and test inputs X and Y, and the training outputs f.
The method also covers the case when the input information is the input probability
distribution or extra inputs.

Equation (2.10) gives a formula for the expected test error which we want to

minimize:

(E(wa)), = wT ((I —oRT) ' - 1) S, (I—oR) ' —T) w*

o? - e -
+ Zetr ((T-aR?)'s,(1-aR)™'s, ) + 02

However, in practice, we do not know the target w* and the noise variance o2. If we

, 3Tw—£)" (®Tw—f
had an estimator w of the target w* then we could estimate o2 by 2: (22w )_ (_ Fw—f)
g e NZd-1

[Montgomery and Peck, 1991, page 16]. Then we could replace w* by the estimator
w and the o? by its estimator and find the o minimizing the resulting approximation
to the expected test error.

We will consider the simple training solution wy in equation (2.8) as an estimator

, , 2Two—f)" (8Two—f) .
of the w* and estimate the o2 accordingly. Note that (w0 N)_ d(_l’”wo ) is an

unbiased estimator of the noise variance 0. Although wy is an unbiased estimator
of the target w*, the first term in equation (2.8) is overestimated. But still, as
the following theorem states, the a found by means of this substitution results in a
solution better than the simple ¢training solution. While theorem 2.3.1 established a
way to understand the existence of a best o # 0, this theorem shows a method that
gives consistently better results than the simple training solution. Only by means of
accessing the available data (training input-outputs and the test inputs) and nothing

else, the augmented solution found this way is superior to the simple training solution:

2If a better estimate of the noise variance is available, that could be used as well.
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Theorem 2.4.1 Let o minimize the expected test error in equation (2.10) with

e 3Two—t)" (8Two—f
substitution wyg — w* and (22w0 N)_ d(_l o=f) — o2, The expected test error

of the augmented solution with the augmentation parameter o' is less than that
of the simple training solution, i.e. (E(wy)) s < (E(wo)). s if N and M are
large, %tr (2RT28yS;1 + RTsyRs;l) > 0 and %tr (RS;1S,) # 0, and ¢(x,) and
¢(ym) are independent and identically distributed with (¢(x)), = 0, ($(x)¢” (x)), =

2
02X (a+1)x(a41) and <(¢>(x)¢T(x)) >x = cosX(ar1)x(at1) for some constant c.

Proof: is given in the appendix in section 2.8.8. Figure 2.3 illustrates the theorem.

O

<E(w0)z <E(W0)z

<E(w,)> <EMw,)> |-
<E(w.)> <E(W > | | N
0 o o oF

o*<0 o*>0

Figure 2.3: When o* minimizes the expected test error and |o/| < |a*|, the expected
test error of w, is smaller than the expected test error of the simple training solution
Wo.

When input probability distribution or extra inputs are available, the wyg
substitution and minimization with respect to « of the expected generalization

(equation (2.16)):

(Bgen (Wa))o s = W*T((I_QRT)*_I) S (T—aR)™ — 1) w*

o2 - g -
+ %etr ((1- aRT) "' Sy(1 - aR) 'S, ) + 07

instead of the expected test error is performed. Note that, again, R = I — Sz"12¢(m)
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when the input probability distribution is known, and R = 'f{%\f (I — Sw_l—q)"—;fz)

when extra inputs {zy,...,zx} are known.
The equivalent of theorem 2.4.1 is valid for the input probability distribution or

extra inputs cases as well:

Theorem 2.4.2 Let o' minimize the expected generalization error in equation (2.16)

. o #Two—£)" (8T wo—f
with substitution wg — wW* and (25wo ]\f,)v dE;"” ) — o2.  Then for large N

and small o', the expected generalization error of the augmented solution with the
augmentation parameter o is less than that of the simple training solution, i.e.

(Bgen(Wor)) 5 < (Egen(wo»e’é if N is large, %,g—tr (2RT22¢(:B)S;1 + RT2¢(33)RS;1) >

6,0 —

0 and %tr (RS;'Sy0)) # 0, and ¢(x,) are independent and identically distributed
with (9}, = 0, (ST, = ey and (6087 x)°) =

ccrgI(dﬂ)X(dH) for some constant c.

Proof: is given in the appendix in section 2.8.9. O

2.5 Experimental Results

In this section, we compare the performance of the augmented solution to the simple
training solution on real and simulated data. We find the augmentation parameter
by the substitution method described in the previous section. We also compare the
augmented solution to two commonly used regularization methods: early stopping
of training and weight decay. All models for these experiments are linear. Finally
we compare the substitution method of finding the augmentation or weight decay

parameter, to the ordinary cross validation method.

2.5.1 Liver and Bond Data

First we compare the augmented solution to the simple training solution on liver data®

and bond data® . The liver database consists of 345 examples with 6 inputs and 1

3ftp:/ /ftp.ics.uci.edu/pub/machine-learning-databases/liver-disorders /bupa.data
4We thank Dr. John Moody of OGI for providing the bond data.
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output. The inputs are different blood test results and the output is the number of
drinks per day. The bond data consists of 196 examples with 11 inputs and 1 output.
The inputs are financial properties of the bond and the output is the rating of the
bond from AAA to B- or lower.

For both data sets, we repeated the following experiment 1000 times. We randomly
selected M examples for the test set, and selected /N for the training set among
the remaining examples. We found the augmentation parameter by the substitution
method. The mean test error (over 1000 different partitionings) of the augmented
solution and the simple training solution is shown in figure 2.4. The augmented
solution is always better than the simple training solution. The advantage of the

augmented solution is more pronounced for small training set size.

2.5.2 Comparison of Different Types of Input Information

We experimentally compared the usefulness of test inputs, extra inputs and the input
probability distribution. For 02 = 1,d = 11, N = 30 and a certain value of SNR
5> and M, we performed the following experiment (again average of 1000 runs are
shown):

select w* from a zero mean normal.

2 T

scale w* to have gﬁl%-y—i =SNR.

select ®, and ®, from zero mean unit variance normals.

find the training and test outputs by adding zero mean unit variance normal
noise to ®I'w* and @gw*.

compute the simple training solution wy.

Find augmentation parameter « by the substitution method, and compute the
augmented solution wg.

print the test error of wy and w,.

We repeated the same experiments when M extra inputs and the input probability

distribution are known. For these cases we printed the generalization errors of wy

5 2w Tw* . . . .
where SNR = ey 18 the signal-to-noise ratio.
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Liver data, d=6, M=60
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augmented error with estimated alpha -+--—
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N: number of training examples

Bond data, d=11, M=50
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least squares —o—
augmented error with estimated alpha --+--

\
N
s
.
5.5 ™
. - s,
N
\

Average test error E

40 60 80 100 120 140
N: number of training examples

Figure 2.4: Performance of the augmented and simple training solution on liver and
bond data.
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and w,.

For M = 11 and 100, the %}:z—; for the test inputs and %‘;—Z”:i—% for extra inputs and
input probability distribution information are shown in figure 2.5. For all the SNR
values and the type of input information, the ratio is less than 1, hence augmented
solution is better than the simple training solution. The M test inputs are more
valuable than M extra inputs. Not surprisingly, knowing the input probability
distribution is more valuable than knowing M extra inputs. As the number of extra
inputs decreases, the augmented solution gets closer to the simple training solution

in performance.

2.5.3 Augmented Solution and Early Stopping Solution

When the learning model is more capable than the target model, or the number of
training examples is small, while minimizing the training error, after some time, due
to overfitting the test/generalization error starts to increase. This phenomenon is
called overtraining. Early stopping of training is a method that aims to prevent
overtraining. Early stopping has been shown to be equivalent to regularization under
certain conditions [Sjoberg and Ljung, 1995]. We will investigate early stopping
further in chapter 5.

Early stopping using a validation set operates as follows: The whole training
data is partitioned into two sets: training set of size /V; and validation set of size N,,.
Starting from small initial weights w, the learning algorithm minimizes the training
error, while the validation error is monitored. The model at the minimum of the
validation error is chosen to be the early stopping solution.

The validation and training set sizes N,, and N; play a crucial role for the success of
early stopping. Although the best validation set size is known in the asymptotic limit,
it is not known for the non asymptotic case [Amari et al., 1997]. For our experiments,
we use validation set sizes of N, = & and N, = &.

Taking the average of early stopping solutions for different partitionings of the

data reduces the variance (please see section 2.3.4) while keeping the bias the
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Performance for Different Types of Input Information, M=100
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Figure 2.5: Performance of the augmented solution for different types of input
information: test inputs, extra inputs and input probability distribution information.
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same [Bishop, 1995]. Hence the average of the early stopping solutions has smaller
out-of-sample error than the average out-of-sample error of the individual early
stopping solutions. In our experiments we investigate the average early stopping

solution as well.

In figure 2.6, we show g((:‘o")), E;X;;)) and E(m;“(f‘f:‘)'e's)) for o2 =1,d = 11, N = 30

and M = 100 and varying SNR. First of all taking the mean of early stopping
solutions always results in better performance. While early stopping solution is
better than both the simple training and the augmented solutions for small SNR,
it performs worse than the simple training for large SNR. The augmented solution
is guaranteed to perform better than the simple training solution, whereas the early

stopping solution lacks that property.

2.5.4 Augmented Solution and Weight Decay Solution

When there is additive noise in the training data, the expected magnitude of the
simple training solution is larger than the magnitude of the target (<wg WO>6 >
w*Tw*). Weight decay aims to shrink the size of the solution by means of adding a
term wIPw to the training error. The matrix P is positive definite (usually P = I),
hence this term penalizes large weights. For a good introduction to weight decay,
please see [Bishop, 1995, Krogh and Hertz, 1992].

For the general linear model, weight decay minimizes the error function:
Ex(w) = Eo(w)+wlw (2.20)

where A is the nonnegative weight decay parameter.

The choice of the weight decay parameter is very important for the success of
weight decay. We determine the weight decay parameter using the same substitution
method we use for the augmentation parameter.

Figure 2.7 shows g((:;g)) for the augmented solution w, and —g—((—l—vv—% for the weight

decay solution wy. For these experiments as well we used 62 = 1,d = 11, N = 30

and report the average of 1000 runs. Again for large SN R the augmented solution
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Augmented Solution and Early Stopping, M=100, Nv=N/3
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Figure 2.6: Performance of the augmented solution

and the early stopping solution.
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results in smaller test error than than the weight decay solution. As in the case of
early stopping, weight decay may result in solutions worse than the simple training
solution for some SN R range, whereas the augmented solution is consistently better

than the simple training solution.

2.5.5 Substitution Method and
the Ordinary Cross Validation Method

Ordinary cross validation method [Wahba, 1990] is a well-known method for finding
a good ridge parameter in statistics. It chooses the parameter that minimizes the

average error of the leave-1-out solution on the left out examples. Let w* minimize:
1 w? T
Z $(%n) — fn)” + WIP(a)w (2.21)
Then the ordinary cross validation chooses the o that minimizes:

V(o) =5 O (w"60x) — 1)

=
NE

Il

k=1

(797 — fud" (x0)) (287 — 9(xi)¢" (i) + NP(a) ™ plxi) fk)2

I
S
[]=

x
il

1

where for weight decay solution P(a) = oI, and for the augmented solution P(a) =
a (S, — S;). We have experimentally compared the ordinary cross validation method
to the substitution method for weight decay and augmented solutions. The results
are shown in figure 2.8. For the augmented solution, the substitution method always
gave better results. For weight decay, although the ordinary cross validation was
superior to the substitution method for small SN R, substitution method was better
for large SNR.

We have also experimented with the generalized cross validation method
[Wahba, 1990], the performance of generalized and ordinary cross validation were

very similar for the simulations we performed.
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Augmented Solution and Weight Decay, M=100
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Figure 2.7: Performance of the augmented solution and the weight decay solution.
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Substitution Method vs Ordinary Cross Validation, M=100
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Figure 2.8: Performance comparison of substitution and ordinary cross validation
methods to find the augmentation and weight decay parameters.
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2.6 Enhanced Forms of Augmented Error

In this section we suggest two other ways of forming the augmented error.

2.6.1 Two Augmentation Parameters

In equation (2.4), when the test inputs are known, we have chosen to have only one

augmentation parameter and have the augmented error as:

Fu(g) = Bolgy)+a (é S vm) Do (xn>)

A more general form of augmented error is formed by using two parameters:

M
1
Ecu,az (gv) - EO (gv) + al—M Z g\Zr (ym) - OQ]_V— Z 9\2' (Xn) (222)
m=1

For the linear model, the augmented error and the augmented solution become:

Ea, o (W> = Ey (W) +w’ (Oélsy - agsm) w

War,as — Qa1,a2W0 (223)

where Qa, 0, = (I — a2l +01S,7'Sy) ~' The expected test error of the augmented

solution is then,

<E(Wa1,az)>e = w' ( Zl,az - I) Sy (Qayjaz — I)w*

2
+ %tr ( Zl,QZSmemS[l) -+ 03 (2.24)

As in the one parameter augmentation case, «; and ay can be found by the

L $Two—f)" (®Two—f ,
substitution wy — w* and ( 0=f) (2wo-f) — 02 in the expected test error and
N—d—1 e p

minimizing the resulting approximation to the expected test error with respect to
both a; and a, simultaneously.

Both weight decay (with decay term w?S,w) and the one parameter augmented
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solution are special cases of the two parameter augmented solution. We compare
the two parameter augmented solution to one parameter augmented solution, weight
decay solution and the early stopping solution in figure 2.9. The two parameter
augmented solution performs better than all the other methods, especially for large
SNR. In the experiments shown the augmentation parameters were determined by

the substitution method.

2.6.2 First and Second Order Differences

The augmented error, in some sense, forces the sample mean of the model outputs
squared on the training and test inputs to be close to each other. How about the
closeness of the sample means of the model outputs on the training and test inputs?

In equation (2.3) we approximated the second term of the test error in equation (2.2)

asi LM 90 (Yim) hem ™ & SN gy (%) fa- Let us reconsider this term

1 M
27 D 0v (Ym)
— .MZ (gv(ym) — M—ng(ym)> hom + MZQV(Ym)”Mth
X n;,v_l 1 ]:]n..l 1 Mm-1 . v m=1
n=1 n=1 m=1 n=1

| X N L&
= ']\—fn;gv(xn fot ( ZQV(Ym “—;gv(xﬂ)) N;«fn

Now the new estimator of the test error becomes:

1, 2 & 1L,
E(gv) ~ 'M gv(Ym)“’ﬁZQv("n)fn‘*‘ﬁZ]%
g
23730t —-—-;gv ) § 20
- Eo(gv>+~]%4—zgi<ym *—ng %)
m=1

6Thanks to Dr. Barak Pearlmutter of University of New Mexico for suggesting this approximation
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Two Parameter Augmented Solution, M=100
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1 & 1 & 1
-2 ('M ng (Y’m) - N ng (Xn)) ‘]V an
m=1 n=1 n=1

Then the augmented error can be formed by means of parameterizing the addition to

the training error by one or more parameters.

Let f = -IqunN-_.l fry bz = %Z,’Ll b(%,), by = e fo:l #(ym). When only one

augmentation parameter « is used, for the linear model, the augmented error becomes:
Eo(w) = Ey(w)+a(wh(Sy—Ss)w—2w" (¢, — ¢) f)

and the augmented solution is:

wo = (T-aR)s) (S 4 a (@ -5)7)
= I-aoR)'wo+a(I-aR)'S, " (¢, — 6s) f

For this case also, the augmentation parameter can be found by the substitution

method.

2.6.3 Combination of Different Forms of Input Information

Sometimes the input information available is a combination of test inputs, extra
inputs and the input probability distribution. Following the derivation in section 2.1,

the augmented error for this case becomes:

E, (gv) Ey (gv) +

K
(( Z 92 (zy +_ng<ym + a3 (g2(x) )———zgv(xn) (2.25)

m=1

where parameters «, oy, ag, a3 can be determined by the substitution method.
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2.7 Conclusions

In this chapter we have derived the augmented error for quadratic loss function. For
general linear model, we have determined when there is an augmented solution that is
better than the simple training solution, and we have devised the substitution method
to find a good augmentation parameter. Our experiments on both real and simulated
data have shown that the augmented solution is consistently better than the simple
training solution and better than the weight decay solution and the early stopping
solution for large signal-to-noise ratio. We have shown that the weight decay solution
is a special case of the two parameter augmented solution and the two parameter
augmented solution is better than the weight decay solution when signal-to-noise

ratio is large.

2.8 Appendix

2.8.1 The Least-Squares Solution for the Linear Model

For the general linear model, the training error is:

N

1 T 2
By (w) = + };1 (W"'6 (xa) = f2)
The gradient of the training error is:
Taw Ty

Solving for d—'il%(vﬂ = 0 we obtain the least squares solution (simple training solution):




44
2.8.2 Proof of Theorem 2.3.3:

Let V, be such that S, = o2 (I - ://—7%) Due to the distribution of ¢(x,), (Sz)yx =

021 hence <\‘/,ziv> = 0 and <(Sm)2>x = clagl for some constant ¢; hence <V—7‘=,\;> =

Co NI for some constant c,. Similarly let S, = o (I — \\/I——-Aﬁ’/]—> with <%>y = 0 and
<YM§> = ¢y MI Note also that since the training and test inputs are independent
_Yz_ly_> - <.Y.y.yi> —
<N% L ATV )y 0 for any ¢ and any odd p.
When the spectral radius (the maximum of the absolute value of the eigenvalues)
-1
of %’fﬁ is less than 1, S, ! = (Ug (I— X—I%)) (I+ AZRNE —@-> + O (355) 1

[Golub and Van Loan, 1993, page 549]. Hence:

R = I-8,7'S,
V, V2 1 \%
= I-1(1I w O I I L
(ﬂ/‘ﬁ N (N>>(+m>

2 V32
R? = y_“’+__y+2_Y“’_Y_y-.{_(’)(__1__>I

R® = O(——f->1 (2.26)

When the spectral radius of aR is less than 1:

I-oR)! = I+aR+*R*+a’R°+
1
= I+aR+’R*+ 0O (N1-5> I (2.27)

From equation (2.12), the derivative of the expected generalization error with

respect to o is:

0(E (Wa))es

e = 2w (I-aRT) 'R7(I-aR7)"'S, (I-oR) " ) w’

0.2

+ 2% ((1- aRT) RT(1- aR”) 'S, (1~ oR)7'S, )

Using the approximations for R and (I - aR)™" above, we can rewrite this
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derivative as:

o(E (Wa)>e,5

2
«T * O, —
i = 20w" R'S,Rw’ +2tr (RS, 'S,)

2
+ 2a;1ve—tr (2r™’s,S8,”" + R”S,RS, ")
w*Tw* o?
+ 0 (-7\,—1—5—> +0 (N%) (2.28)

When we rewrite S, ! and S, using V, and V,, and use the approximations for

powers of R we obtain the following:

8<E (Wa)>€15 2 kT Ug O-g 4 1 1
<T>xy—2(a (%W w +37V-(d+1)) ——]\7((1-1—1)) 20, (N+M—>
w*Tw* o2
 o(XT) o ()

Hence the solution of <?—<§<6WT“))2‘5> =0 is:
X,y

¥

In the last step we have used U—A‘? < o2w*Tw*. For large N the best a is:

d+1 o?

e
N 2w Tw*

~
~
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2.8.3 Proof of Theorem 2.3.4:

From equation (2.28), for large N and M and T4,y = o021, the a that minimizes
(B(Wa)),s is:

a2 tr (RSx“lsy)
N wTRTS,Rw* + %tr (2RT’S,S, " + RTS,RS, )

*
(67 ~ —

(2.29)

Again for large N and M, the expected test error (equation (2.10)) can be

approximated as:

2

(E(Wa))es = g]\—;ltr (SyS;7') + o
2
+ o*wTRTS,Rw’ +2a°tr (RS,'S,)
v a2y (2RT28 S, ' +R”S,RS “1)
N y Pz Y T

+ 0( % ) +0O (W*TW*) (2.30)

N25 NLS

From equation (2.11) the first two terms equal (E(wy)), ;. Substituting for a by the

expression for a* in equation (2.29):

0'2 tr? (RS$_ISy)
<E(wa)>e,5 - <E(W0)>e,5 ~ _—N—zw*TRTSyRW*

2.8.4 Proof of Theorem 2.3.5:

The derivative of the expected generalization error in equation (2.16) with respect to
o is:
9 (Egen (Wa»e,a
oo
2

+ 2%% ((I — aRT) 'R (I - aR”) ' By (I - aR)*ls;l) (2.31)

=2w*T(I— oRT) "RT(I- aR”) Ty (I-aR) —I) w"
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Hence the derivative at o = 0 is:

9 (Egen (Wa)) 6
Ja

2
g
= 2-2tr (RS{12¢($))
N
a=0
If this derivative is nonzero then a = 0 is not a local minimum of the expected
generalization error and hence the expected generalization error is minimized at some

nonzero «. O

2.8.5 Proof of Theorem 2.3.6:

Using V, and approximations for powers of R (equation (2.26)) (with V, = 0) and
(I—aoR) ™" (equation (2.27)) from the proof of theorem 2.3.3:

0 (Egen (Wa»f,a

2
- = 2002w "RTRw" +2%¢o%r (RS, ™)

+ 222 o oltr (2RTZS -1 RTRS *1)
N T T

w* T w* o?
+ 0 ( NL5 > +0 (N2.5> (2.32)

When we rewrite S, ! using V, use the approximations for powers of R (equation

(2.26)) and <1‘V’§

0 (Egen (Wa)>e,5 2. %1 % 03 0—2 1

< e = 2 (a (aww w" + 3_]\7 (d+ 1)) ~ (d+ 1)) czaw—]—v—
wlw* o’

o(S) o ()

Hence the solution of <%8—(?—)—)ﬁi> =0 is:

> = 0 for any odd p, we obtain the following:
X

(d+1)+(9( ;77(;5*)+O(N15)
o2w+Tw* + 3% (d + 1)

Z(d+1)+0 (%)

2w Tw* + O (”2)
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2 |mqm

In the last step we have used

d+1 o?

€
N 2w Tw*

2.8.6 Proof of Theorem 2.3.7:

< o2w*Tw*. For large N the best o is:

From equation (2.32), for large N and Sy(,) = 02L, the o that minimizes (Egen (Wa)) 5

is:

. o? tr (RS{I)

at o —=
N w*TRTRw* + %a2tr (2RT’S, ™ + RTRS, )

(2.33)

Again for large N, the expected generalization error (equation (2.16)) can be

approximated as:

Q

(Byen(Wa)). 5 gj\%agtr (S;™) +o?

+ 2 wTRTRwW* + 2agj\~g—a§tr (RSz"l)
+ az%g- 2tr (mTzsm“1 + RTRSx'l)
+ 0 "—2) +0 (W*TW*>

Oz

N25 N15

(2.34)

From equation (2.17) the first two terms equal (Egen(Wo)), ;- Substituting for a by

the expression for o* in equation (2.33):

ot o2tr? (RS, ™
<Egen(wa>>e75"(Egen(wﬁ»gd ~ ——NE W*Tlg,TRW*)
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2.8.7 Proof of Theorem 2.3.8:

The expected value of the parameter error of the augmented solution with respect to

training output noise is:

(Bparam (Wa)), = w*T ((I —oRT)' - 1) (T—aR)™ - 1) w*

n %‘;tr ((I _ aRT)_I(I _ aR)_ISI—I) (2.35)

The derivative of this expected parameter error with respect to « is:

0 <Eparg:/; (Wa)>€ _ 2W*T (I _ aRT)—lRT (I _ O(RT) -1 ((I . OAR)_I _ I) w*
+ Z%Ztr ((1 —oRT) 'RT(1—-oR7) (I aR)_lsm‘l) (2.36)

Hence the derivative at o = 0 is:

0 <Eparam (ch»e
do

%1 (RS, )
= 2-=tr (RS,~
a=0 N
If this derivative is nonzero then o = 0 is not a local minimum of the expected

parameter error and hence the expected parameter error is minimized at some nonzero

.

2.8.8 Proof of Theorem 2.4.1:

In order to prove this theorem, we first need the following lemma:

Lemma 2.8.1 Let a,b,c,a € R where a > 0 and b # 0. Let o minimize o’a —
2ab+ c. Let o/ minimize o’a’ — 2ab + ¢’ where 0 < a < a'. Then || < |a*|.

Proof: The minimum of a®a — 2ab+c is at a* = £ and at this minimum ol — —

a?
If b < 0 then a* < 0 and it increases as a increases, if b > 0 then o* > 0 and it

decreases as a increases. Therefore regardless of b, the magnitude of the a* decreases

as a increases. Therefore, |&/| < [a*| for 0 <a < d'. O
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Consider the approximation of the (E(w,)), ; in equation (2.30) large N and M:

2
g
(Bwa))s ~ Setr (8,8,7) + o7
2
+ o*wTRTS,Rw' + 2a7tr (RS, 'S,

2
+ ozz%fe—t'r (2RTQSyS[1 +R”S,RS, ")
03 wTw*
o) o ()

The coefficient of a? is w*”RTS, Rw* + ‘_’Aétr (QRT2syS$—1 +RTSyRSw“1) > 0.

Hence the (E (wa))e, s satisfies the precondition of the lemma.
When wy is substituted for w*, (w} RTSyRWO>6 ; = WTRTS,Rw* +
<E—:FT‘\,I'?£S{1RTS@,RS[1%£> > wTRTS,Rw*. When o? is estimated by means

€

#Two—f)" (#Two—f : : :
of wy, <( =70 N)_d(_l"wo )> = 02, hence the coefficient of o in equation (2.30)
€,0

remains the same. Hence by lemma (2.8.1), the o/ that minimizes the expected test
error with the wy substitutions is smaller in magnitude than o* that minimizes the

actual expected test error.

For large N and M, (E(wq)), s is convex, because differentiating it twice gives:

0* (B(Wa)) s

* * 03 2 - —
o~ = wTRTS,Rw’ + 2tir (2R™Ss,S." + R"S,RS, ")

0‘3 W*TW*
+ o (NZ.S) +O< Nl.S >

Since o is in between 0 and o* and (E(w,)), ; is convex, it follows that (E(wq+)), 5 <

(B(War))es < (B(Wo))es O

2.8.9 Proof of Theorem 2.4.2:
Consider the approximation of the (E(wq)), ; in equation (2.34) large N:

2
(Byen(Wa)),; =~ %agtr (S.71) + 02



o1

T

2
+ o2o’wTRTRwW* + 204%/_302151" (RS, )

2
+ aza—]\‘;oitr (2RT25;1 + RTst*l)
0.2 W*TW*

The coeflicient of a? is o>w*TRTRw* + %aitr (ZRTzsm“l + RTRSm‘l) > 0. Hence

the (Egen(Wa)), ;5 satisfies the precondition of lemma 2.8.1.
When wo is substituted for w*, (c?wiR'Rw) , = owR'Rw* +

T@T = _ . .
02 (%S, IRTRS, 1%7.5> > o2wTRTRw*. When o? is estimated by means
€

T\ (HT o —
of wo, <(<I>ﬂc = ;)_d(_q;mwo f)> = 02, hence the coefficient of o in equation (2.34)
€0

remains the same. Hence by7 lemma (2.8.1), the o that minimizes the expected
generalization error with the wo substitutions is smaller in magnitude than o that

minimizes the actual expected generalization error.

For large N, (Egen(Wa)), 5 is convex, because differentiating it twice gives:

0? (Bgen(Wa )>e,5

da?

2
= ach*TRTRW* -+ %o’itr <2RT2S[1 + RTRS[1>

o2 wTw*
o) o (o)
Since o' is in between 0 and a* and (Egen(Wa)) s is convex, it follows that

<Egen(wa*)>6,§ < (Egen(wa’»e,a < (Egen(wo)>e,5' O
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Chapter 3
Test Inputs: Nonlinear Model Case

In the previous chapter, we derived the augmented error for a general model, and then
analyzed the augmented solution for the general linear model case. In this chapter,
we will concentrate on nonlinear models, specifically neural networks with one hidden
layer of tangent hyperbolic units and a linear output. These models can approximate
any continuous function given enough number of hidden units [Cybenko, 1989]. They
are also a natural extension of the general linear model of the previous chapter.

For the general linear model we were able to find the training and augmented
error minimum analytically (section 2.2). For the neural network model (and for
most nonlinear models) we have to use an iterative search technique to find the
minimum. Due to nonlinearity of the model, there may be many local minima and
saddle points. The search technique determines the solution(s) that will be found,
and hence performance of different methods. In this chapter, we will use the gradient
descent with adaptive learning rate and starting from small random initial weights
as the search technique. Since we can not find the solutions analytically, this chapter
will be more experimental in nature than the previous one.

When augmentation parameters are chosen to be co, only the augmented term is
minimized, and when they are chosen to be 0, only the training error is minimized.
Determination of an augmentation parameter that can lead the descent algorithm to
a good solution, regardless of the starting point, is a difficult task. Actually such
a universal augmentation parameter may not even exist. Instead of a globally best
augmentation parameter, in this chapter, we will mainly focus on finding a value
of the augmentation parameter that can lead from the current solution to a better
solution through a perturbation of the current solution.

In section 3.1 we describe the neural network model. Section 3.2 describes how
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to modify an existing solution to reduce the test error and the augmented error. In
sections 3.3 we use the substitution method to obtain an augmented solution for the
output weights, keeping the input weights fixed. Section 3.4 investigates ordinary and
leave-k > 1-out cross validation as an alternative to the substitution method to find
the augmentation parameters. In section 3.5 we present experimental results on using
the augmented solution method repetitively and identifying solutions that could be
used for augmented solutions during gradient descent on training error. Section 3.6
discusses a method of descending on the augmented error instead of the training error
alone. The augmentation parameters during the descent are determined by means
of cross validation method. Section 3.7 discusses extensions of the augmented error
approach to different loss functions, namely, entropic loss, maximum likelihood with
input dependent noise variance and p-norm loss. Finally section 3.8 summarizes the

chapter.

3.1 Neural Network Models

Let x € R¥ be an input. Let gy(x) : R — R denote the output of the neural
network with weights (parameters) v on input x. The weight vector v consists of
weights between inputs and hidden units (input weights) and weights between hidden
units and the output (output weights). Let d be the number of hidden units. Then
vV = [Ug U1...Uq V1o V11---Vi,d ---Vd0 Vd1 - - .vd,d:]T, where v; is the output weight
from ith hidden unit to the output and and v; ; is the input weight from the jth input
to the sth hidden unit. Weights vg,v10,v2p0,...,v40 are the bias weights that are
connected to constant +1 (figure 3.1). The neural network with weights v, tangent

hyperbolic (tanh)! hidden unit nonlinearities and a linear output implements the

following function:

d d
gV(X) = Uy + Z V; tanh (?JLQ -+ Z vi,j$j> (31)
=1 j=1

!Both tangent hyperbolic, tanh(z) =
implement any continuous function.

e® —e®

- . . — 1 .
S+ and sigmoid, stg(z) = T7.= units are enough to



g, = v+ 2 v tanh(v

= i

+25 vV X))

0 =1 0

input

input weights
tanh hidden units

output weights

output

Figure 3.1: One hidden layer neural network.

We will use the notation and definitions from section 2.1 for the training and test

sets, training error, test error and the augmented error:

training set

test set

training error, Ey (gv)

test error, F (gv)

two parameter augmented error,

Eoa (QV)

{(x1, A1), -, (%, In)}
{(YDhl)? B (YM) hM)}

(gv (xn) — fn)2 (3.2)

=
M =

et

n

. w
T v m "hm 2
37 22 5o ) )
1 & 1 &
Ey (9\/)'1“051”]\'4“293 (ym)"aTN" gy (%n)
m=1 n=1

EO (gv) + Aal,az (gV)

where we have renamed the augmented term ;- S0 | g2 (ym) — 02 S 62 (%a)

as Aa, a; (gv). In this chapter we will use the augmented error for the test inputs and

with two augmentation parameters.
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3.2 Perturbing a Solution to Minimize the Test

and Augmented Errors

The arbitrary complexity of the neural network model and the iterative search
procedure requires redefinition of the “best augmentation parameters”. Instead of
trying to find globally best augmentation parameters, i.e. regardless of where the
search starts, the minimization of the augmented error results in the minimization
of the test error, we will focus on finding augmentation parameters that perform
good locally, and obtaining a solution around an existing solution by means of these
augmentation parameters.

Consider a neural network with weights ¥. In this chapter ¥ will be obtained after
a certain number of gradient descent steps on the training error. In general ¥ can be
any solution that is believed to be close to the test error minimum. Assume that the
test error minimum is a small Av away from v. Then the gradient of the test error

at v + Av with respect to Av is given by:

9E(go+av) ~ 4 (E(gq) + AvTVE(gs) + %AVTHE(%)AV>

0Av 0AV
= VE(gs)+ HE(g¢)Av (3.3)
where VE(g¢) = df Ag“,’ is the gradient and HE(g¢ ), = 5 AE(Z‘; is the Hessian of the

test error with respect to Av. At the test error minimum the gradient will be 0
Equating the gradient in (3.3) to 0 and solving for Av, we find the Av that results

in the minimum test error:
Av = —(HE(g)) 'VE(ge) (3.4)

Now comes the connection with the augmented error. Let the augmentation
parameters oy, as be such that the gradient and the Hessian of the augmented error

Eo(9%) + Aay.as(g%) is very close to the gradient and Hessian of the test error E(gs)
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around Vv (see figure 3.2). Then the perturbation Av can also be written as:

Av = —(HEo(g¢)+ HAay (90))—1 (VEo(9¢) + VAa a:(94)) (3.5)
current solution E(V+Av ) is minimum
v V+ AV
AV(OLI,O(Q,(\I)

Figure 3.2: Perturbing the current solution to get to the test error minimum.

Once a good value of augmentation parameters is determined, Av and the new
solution v + Av can be computed. A good value of the augmentation parameter is
the one that results in a Av such that E(v + Av) < E(v).

Now we extend the substitution method into this setting to obtain a good

augmentation parameter.

3.3 Augmented Solution Around the Gradient
Descent Solution

In this section, we will keep the input weights of the solution v as it is and concentrate
on obtaining a better solution for the output weights. This allows a direct extension
of the substitution method from section 2.4 to the nonlinear case. Due to the tanh
nonlinearities of the neural network model and the gradient descent method we use to
minimize the training error, modification of the output weights only is an acceptable
solution.

During gradient descent on the training error, an input weight v;; is modified

according to the gradient of the training error. From equations (3.1) and (3.2),

8Eo(gv) —

the gradient of the training error with respect to an input weight v;; is: 2%
]
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N gy (%xn N i i(Xn
7%? Zn:l (gv(%n) = fr) '“%'J(ij—) = ‘JZV anl (gv(xn) = fn) Uiaatzlil(hx(:))%,%;’z where u;(x) =

vi,o%—}:‘le v; jo;. Training starts from small initial weights and hence the tanh hidden

unit outputs are linear in the inputs initially. After training for a while the input

weights get larger and the tanh hidden units enter their nonlinear region (figure 3.3).

. . . . h(u;
As the nonlinearity increases the gradient %g—uf(g—) gets smaller, and hence the changes
to the input weight v; ; get smaller.
T [ tan‘ u -—— 1t dltanh(u)ll du ~L- ;
05} 08 ]
06
04}
02}
0
2 4 6 6 -4 2 0 2 4 6

Figure 3.3: The tanh nonlinearity and its derivative with respect to its argument.

In figure 3.4 we show training and test errors and the input and output weights
while descending on the training error by means of the gradient descent with adaptive
learning rate. Notice that the input weights remain almost constant after some time
(pass 250) of training, while the output weights still keep changing. On the other
hand, the test error ? starts increasing (i.e. overtraining starts) after the input weights
have settled. Given the solution at the end of the training session, keeping the input
weights as they are and changing the output weights to decrease the test error is our
goal in this section.

When the input weights are kept fixed and the output weights are allowed to
change, we obtain exactly the general linear model (section 2.2). Let ¥ be the solution
after some number of gradient descent steps on the training error. Denote the output

weights of ¥ by W = [0 &1 ... 94", and let &, = [B(x1), ..., d(xn)]gsryxn and

2The jumps in the training and test errors are due to the adaptive learning rate we use for the
gradient descent algorithm. At the jumps, the descent rate has become too high and it is reduced
to a right value after a number of passes.
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output weights —

E:testerror —
EQ: training error -

errors

n (] E (4, [} ~ o] w0
T v T T T T T T

0 100 200 300 400 500 0 100 200 300 400 500
pass pass

Figure 3.4: Training and test errors and the input and output weigths of a neural
network while overtraining occurs.

@y = [p(y1), -, d(ym)a +1)xp be the training and test inputs transformed by the

T
tanh nonlinearities ¢;. Let &N‘?ﬁ_ =S, and q)ﬁy = S,. The gradient and Hessians of

the training error Ey and the augmented term A,, o, become:

b, f
N
VAg a(W) = 2(a1Sy — a3S;)w

VEyw) = 2S,w—2

HAy 0p(W) = 2(qSy — a2S,)

3.3.1 Augmented Solution Around Least Squares Solution

for Output Weights

Let Aw(g41)x1 denote the change to the output weights so that W + Aw is the

minimum of the test error. From equation (3.5) we obtain:

Aw = —(HEy(W)+ HAg 0,(W)) " (VE(W) + VAg, 0y (W)

o, f .
~ + (1S, — a2S;) W)

I

—(Sg + 1S, — ay8,) " (sm —

= —(S;+wS, — agsz)_l (Sz + 1Sy — axS,) W
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L1 ®,f
+(Sz + 1S, — @S,) ™! N
®,f
= W+ (S; + .S, —aS,) " ~
1 B
= Wt (I (oo~ u8;'S,)) 'S,

= —W + Qal,azwﬂ

w+ Aw = Qm,azWO = Waj,as = Was,as,wo

where Qoy 0, = (I— (02l — QIS;lSy))~1 and wo = S;'2:L is the simple training
(least squares) solution for the output layer weights given fixed input weights. Note
that Wo, 0y = Way as.w, 1S exactly the two parameter * augmented solution in equation
(2.23). Since the input weights will be equal to the input weights of ¥, we will denote
the different neural network models by their output weights.

It is possible to use the substitution method (section 2.4) as we did for the general
linear model, to find good augmentation parameters. Then we can compute the
augmented solution Wy, a, w, according to Qa, o, Wo, and replace the output weights
w by the augmented solution Wa, as wo-

We performed experiments to analyze this method of incorporating test inputs
into learning. We obtained the solution ¥ after 1000 passes of training. Then we
computed the least squares solution wy given the input weights of v. Using wy
and the substitution method, we found augmentation parameters and the augmented
solution Wa, o, w, for the output weights. We show the average (over 100 experiments

4 ) test error ratios ﬂ%—(l—%@-) of the augmented and the least squares solution in

3For one parameter augmented error we would get W + Aw = (I — aR)“lwo where R = I —
S;1S,.

4Since other experiments in this chapter will be performed similarly, here are the full details about
the experiments shown in the figure: There were 30 noisy training input-outputs and 50 noiseless test
input-outputs for each experiment. The inputs were chosen equally spaced from [—10 : 10] range.
A teacher neural network with 1 input, 10 hidden and 1 output units was generated by randomly
choosing weights from a unit normal. The training inputs were fed to the teacher network. The
training outputs were obtained by summing teacher outputs with zero mean normal noise with
variance according to the signal-to-noise ratio. The (student) network used for learning was of the
same architecture as the teacher. Training started from random weights drawn from zero mean
0.0001 variance normals. The initial learning rate was 0.0001. While descending on the training
error, the learning rate was multiplied by 1.1 if the training error decreased and the learning rate
was halved when the training error increased. The training was continued for 1000 passes (descent
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figure 3.5. The test error ratio is less than 1, therefore the augmented solution has

better test error than the solution with least squares output weights.

1 .1 T T T T T T
E(augm soln around least sqr soln)/E(least sqr soln) ——
1 .

1.05 .

0.95
0.9

0.85

mean test error ratios

0.8

0.75

0‘7 1 1 1 i 1 i
-2 -1 0 1
log(SNR)

Figure 3.5: The augmented solution Wa, o, w, Obtained from the least squares solution
wy, results in smaller test error than the least squares solution wy.

3.3.2 Augmented Solution Around a Given Solution for

Output Weights

When o,y are small enough Que = (I— (ol-— alsglsy))“l = I+
(al — 1 S7'S,) + (ol — 0y S;1S,)%, . . .. Therefore the augmented solution Qay a,Wo
is close to the least squares solution wg, not to the solution W that we started
with. The least squares solution is guaranteed to have smaller training error than
w. However, the test error of the least squares solution is not necessarily smaller

than W, especially for high noise problems where overfitting to the training data is

steps). In order for the approximation in equation (3.5) to hold, the augmented solution should
not to be too far from the least squares solution wg. Therefore we searched for the augmented
parameters starting from 0 and in the region where the spectral radius (a2l — a3 S;'S,) < 1.
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possible. In figure 3.6 average (over 100 experiments) test error ratios ‘5((‘::‘;)) and
training error ratios g)"((‘z))) are shown. As expected, the training error of the least

squares solution wy is smaller than the gradient descent solution w. However, the

test error of the least squares solution is larger.

145 . . . pf— — } : ,
EO(WAYEO(WO) — 095 | EWN/EW0) — |
141 ]
s
§ 137 2 085t
5 o
5 13t & 08f
2 g o7y
.g 1.25 ¢ 9 07l
z &
S 12} ® 065+
1] £
£ 06}
115
055
1‘1 L 1 1 i 1 1 0.5 L i 1 1 i3
2 4 0 1 2 3 4 2 4 0 1 2 3 4
log(SNR) log(SNR)

Figure 3.6: Least squares solution wy to the output weights of an existing solution w
decreases the training error, however it increases the test error.

Similar to the case of the gradient descent solution, an existing solution can be
better than the least squares solution. Therefore it is desirable to obtain an augmented
solution not necessarily around the least squares solution, but around some given w.
Now we will discuss extension of the augmented error to obtain an augmented solution
around any given w.

Let the input weights of the neural network be fixed and consider the output

weights as the only variables again. The usual augmented error was:
Eoy 0, (W) = Eg(W) + Agy s (W)

For small a4, ay the augmented solution to this equation is in the neighborhood of

the minimum of the training error Ey(w). In order to extend the augmented solution
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to a neighborhood of a specific W we minimize:

Ea1,az,W(W) = (w~— W)Tsm(w - W) + Ay (W)

T
where S, = ?3}\—;.{:@-. The gradient of the new augmented error is:

6Ea1,az,v*v(w)

S = 25,w —2S,W + 2 (S, — axS,) W

= 25, (I— (02X — @2S,'S,)) — 28, W

At the minimum, the augmented error gradient is 0. Therefore the new augmented
solution is: Wa, gy = Qay,e,W. When o4,y are such that the spectral radius
of enI — @,S;'S, is less than 1, Qe = (I— (ol —S;'8))™" = I+
(X — a1S;1S,) + (ool — qu;lSy)z, .... Therefore the new augmented solution is
around w.

The substitution method can again be used with this solution. Let us assume
that the current solution W is a noisy version of the target the same way the least
squares solution wy is. Then W can be used for the estimation of the target and
the noise variance in the expected test error. Once the aq, s that minimizes the
approximation to the expected test error is found, it can be used to find the new
solution Wg, o, w. Replacing the output weights W by wa, 4, %, We obtain the new
augmented solution. Note that if any specific properties of w or the noise in it,
is known, it can be incorporated in the substitution method, while computing the
expected test error of wa, q, w-

We show the experimental performance of the augmented solution around the
solution W in figure 3.7. In this experiment also, the weights ¥ of the neural network
was obtained after 1000 passes of gradient descent on the training data. Especially for
small signal-to-noise ratio, the test error of the augmented solution w,, 4, w is smaller
than the solution w. The augmented solution again is better than the solution that
was used to obtain it.

In figure 3.8 we show the functions implemented by different methods for a single
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1 -4 T T T T T T
E(augm solution arofind grad desc soln)/E(grad desc soln) —e—
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Figure 3.7: The augmented solution wg, o, Obtained from the gradient descent
solution W, results in smaller test error than the gradient descent solution w.

experiment. The top plot shows the outputs of the gradient descent solution and the
augmented solution around the gradient descent solution. Notice that the augmented
solution is fitting the noise less than the gradient descent solution does. The bottom
plot shows the least squares solution and the augmented solution around the least
squares solution for the same experiment. The least squares solution is closer to the
training data points, and it fits the noise more than the gradient descent solution
does. The augmented solution, again, is fitting the noise less than the least squares

solution.

3.4 Cross Validation to Find
the Augmentation Parameters

As an alternative to the substitution method, the ordinary cross validation method

can also be used to obtain the augmentation parameters.
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Figure 3.8: The gradient descent (top) and least squares solutions (bottom) and the
augmented solutions around these solutions.
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Let v be a given solution that is close to the test error minimum. Let W be the
output weights of ¥. The ordinary cross validation method measures goodness of the
augmentation parameters a;, as around w according to:

1 & 2
Via,az, %) = 13 (Gwayumpr (%0) = fi) (3.6)
n=1
where Wq, o, %" is the augmented solution around W with parameters oy, oy and using
all training examples except the nth one.

Since ordinary cross validation solutions may fluctuate due to noisy examples in
the training set, instead of leaving only 1 example out, leaving £ > 1 examples out
at a time may make the solutions more stable. However, since there are (%) such
cross validation set choices, the computational overhead is too much. Instead of all
(IZ ) possible cross validation sets, we experimented with partitioning the training set
into 10 sets of size k = {% and choosing the parameters that minimize the mean cross
validation error on the left out cross validation set.

Beginning from a3 = as = 0 we search for the minimum of V(ay, ay, W) within
the region where the spectral radius of onI — a,S; lSy is less than 1. We use the
gradient descent with adaptive learning rate as the search algorithm.

In figure 3.9 we show the experimental results of using ordinary cross validation
and leave-%-out methods to determine the augmentation parameters. The mean (over
100 experiments) of augmented solution test error divided by the gradient descent
solution test error is shown in the figure. For comparison we also show the mean test
error ratios for the augmented solution with augmentation parameters determined by
means of substitution method. Substitution method results in smaller test error than
both cross validation methods. Although the leave—{%@ut cross validation performs

poorly for this case, in section 3.6 we will see its better use.
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Figure 3.9: Augmentation parameters determined using substitution method result
in smaller test error than augmented parameters determined using ordinary and
leave-{—%-out cross validation methods.

3.5 Different Uses of the Augmented Solution

In the previous sections we discussed how to obtain an augmented solution from
an already existing solution. In this section, we discuss other possible uses of the

augmented solution.

3.5.1 TUsing the Augmented Solution Method Repetitively

Since the augmented solution found by the substitution method is better than
the gradient descent solution, can we find a better augmented solution using this
augmented solution and the substitution method again? Our experiments show
that the answer depends on the signal-to-noise ratio. We experimented with using
an augmented solution (1st) to obtain another augmented solution (2nd) and then

using that augmented solution to obtain another augmented solution (3rd). We



67
performed the same experiment both for augmented solution around the gradient
descent solution and the augmented solution around the least squares solution. The
mean test errors of the augmented solutions (1,2,3) divided by the test error of the
gradient descent (least squares respectively) solution are shown in the top (bottom
respectively) plot in figure 3.10. For small signal-to-noise ratio using the augmented
solution repetitively helps, but it hurts when the signal-to-noise ratio is large. When
the augmented solution is used repetitively, in some sense “overtraining” on the

augmented solution starts.

3.5.2 Which Solution is Good Enough to Obtain

an Augmented Solution Around

We have obtained augmented solutions around the gradient descent solution obtained
after some fixed number of passes of gradient descent. After how many number of
passes is the augmented solution better than the gradient solution? It turns out
that, except some first passes of training, especially for small signal-to-noise ratio,
the augmented solution is better than the gradient descent solution. In figure 3.11
we show the test error of the gradient descent solution and the augmented solution
obtained around that gradient descent solution while descending on the training error.
The augmented solution consistently has smaller test error after the first 100 passes.
The bottom plot shows, the augmented term for ay = as = 1. The augmented
term for the gradient solution keeps increasing as overtraining occurs, whereas the

augmented term for the augmented solution does not show such an increase.

3.5.3 Augmented Solution Around
Early Stopping Using a Validation Set Solution

Early stopping using a validation set works as follows: A subset of all training data
is spared as the validation set, while minimizing the error on the remaining data,
the error on the validation set is monitored. Among the solutions visited during the

descent, the one with the smallest validation error is chosen to be the early stopping
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Figure 3.10: Repetition of the augmented solution finding process around the newly
found solutions may result in worse test error.
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Figure 3.11: When the signal-to-noise ratio is small, except the solutions at the first
passes, the augmented solution is better than the gradient descent solution.
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using a validation set solution.

In sections 3.2 and 3.3.2 we computed the augmented solution around the gradient
descent solution. The early stopping using a validation set also results in a solution
and augmented solution can be computed around this solution as well. As can be seen
from figure 3.12 early stopping using a validation set results in much smaller test error
than the gradient descent algorithm when the signal-to-noise ratio is small. However,
it performs equally badly when the signal-to-noise ratio is high. The augmented
solution around the early stopping using a validation set solution performs about as
good (or bad) as the early stopping using a validation set solution. Early stopping
using a validation set is a good idea only when the signal-to-noise ratio is small. In
the experiments shown, the validation set size was % where N is the training set size.
The validation set size plays a very important role in the success of early stopping

using a validation set.

3.5.4 Early Stopping Based on the Augmented Term

The augmented term Ag, o,(gv) = 177 SM R (ym) — ks SN 62 (x,) for ap =
as = 1is very small at the beginning of training. Because the function g, implemented
by the neural network is initially linear in x and takes small values. As training
proceeds g, starts to get closer to the training data and A starts to increase in
absolute value. When overtraining occurs, especially for small signal-to-noise ratio,
the augmented term tends to increase (or decrease) constantly and takes values much
larger in magnitude then its values at the beginning of training (for example, see
figure 3.11 the bottom plot).

Although, for small signal-to-noise ratio, early stopping of training based on the
constant increase/decrease in the augmented term results in better test error than
the gradient descent solution, for large signal-to-noise ratio early stopping based on
the same criterion results in worse test error than the gradient descent solution. If
the augmented term remains small in magnitude, it usually means that overtraining

is not taking place. However, if it is getting large, depending on the signal-to-noise
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Figure 3.12: When the signal-to-noise ratio is small early stopping using a validation
set solution has smaller test error than gradient descent solution. When the
signal-to-noise ratio is large the opposite happens. In both cases, the augmented
solution around the early stopping using a validation set performs as good (or bad)
as the early stopping using a validation set solution.

ratio, there may or may not be overtraining.

3.6 Gradient Descent on the Augmented Error

Previous sections concentrated on gradient descent on the training error only. The
augmented error was used on the solutions obtained after gradient descent on the
training error. In this section, we will consider descending along the gradient of
the augmented error, computing the augmentation parameters adaptively during the
descent. Let gy be the current function being implemented by the neural network.

The best gradient descent direction at vis —VE(g¢) = — i%%‘—’)- . Let augmentation
v
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parameters ag, s be such that in the neighborhood of v:

VE(g¢) = VEOq,az(g\”/)
= VEy(g¢) + VAq a:(99)

where E,, o, is the augmented error, E, is the training error and A, q, is the
augmented term as we defined in section 3.1. If we had not known the test inputs,
we would approximate the test error gradient VE by the training error gradient VE,
only.

Now we need to find the parameters oy, ay at each step of training, for any v. We
can not use the substitution method in this case, since the hidden unit tanh functions
may still be in their linear region and the input weights may need to be changed.
Instead we will use cross validation, leaving out k£ examples at a time, to find the
augmentation parameters.

Let the training set (X,f) be partitioned into % disjoint parts:
(Xy,f1),..., (X, fr). Denote the training error of g, on all 9 parts except the
ith one by E;;(gy), denote the validation error on the ith part by B,;(gv).
Denote the augmented term using all training inputs except the ones in part i
by Aayanildv) = a1dy(gy) — a2dsi(gy) where Ay (gy) = %30 g%(ym) and
Aei(ov) = o1y Zle,xngxi g2(x,). We need to find ay, oy such that:

VEv,l(gv) - VEt,l(gv) + Cl‘1‘VJ4y(gv) - Q52‘7*‘4‘:13,1(911)

VE,i(gv) = VEi(ge)+a1VA(gy) — VA 1(gv)

We obtain a;, as by simultaneously solving all kdim(v) equations. We shuffle the
training set and obtain different partitionings (Xi,f1),..., (X, f;) at each pass
of descent. There are (ZZ) cross validation choices and shuffling allows different
partitionings to be used to find the augmentation parameter.

In figure 3.13 we show the results of using leave-1-out (ordinary) and leave-£--out



73

1-4 T T T T T T

E(grad desc on augm err (N/10 c.v.))/E(grad desc on training err) —s—
E(grad desc on augm err (ordinary c.v.))/E(grad desc on training err) -&---
¢ i 1

12 r .

mean test error ratios

0.6 L i 1 1

-2 -1 0 1
log(SNR})

Figure 3.13: Obtaining the augmentation parameters via leave—%—out cross validation
and then gradient descent on the augmented error results in better test error than
gradient descent on the training error alone.

cross validation to find the augmentation parameters and then descending on the
augmented error with adaptive learning rate. Cross validation leaving I]% examples at
a time results in smaller test error than both gradient descent along the training error
Ey and the ordinary cross validation methods. Moreover, comparison with figure
3.7 shows that using leave—%%@ut cross validation to determine the augmentation
parameters and descending along the gradient of the augmented error than using the

substitution method to find the augmented solution for the output weights only.

3.7 Loss Functions other than Quadratic Loss

In section 2.1 we derived the augmented error for the quadratic loss function. The
same method of better estimating the test error by means of input information can be

used for other loss functions as well. We will derive the augmented error for different
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loss functions in this section.

3.7.1 Entropic Loss

The entropic loss function is appropriate especially for binary decision problems.
Entropic loss is the maximum likelihood solution when the data is noisy and the
noise has binomial distribution [Bishop, 1995, page 231]. For some problems gradient
descent has been shown to find the solution for entropic loss, whereas it could not
succeed for the quadratic loss [Hertz et al., 1991, page 109].

When the loss function is entropic, the test error is:

M
1 1+ hy, 1—hpy
E(gy) = — 1+ hy)log ————— + (1 — hy) log ————
(00 = 37 2 (L hmloB Ty (L= ) oz =
Similarly, the training error is:
1 & 1+ f, —
Ey(gy) = —«E 1+ fo)log ——"— + (1 — f,)log ———"—
0( ) Nn::1< ) g1+gv(xn) ( ) 1'“gv(xn)

Expanding log’s in the test error and taking the terms that solely depend on the

test inputs as they are, we obtain the augmented error:

Bu(gv) = By (9v) + a (-}V " log (14 gv(x0)) (1 = go(x0)))

n=1

-———Alj Z log ((1 + gv(:Ym)) (1 - gv(y'rn)>))

m=1

3.7.2 Maximum Likelihood with

Input Dependent Noise Variance

Assuming that the noise added to the outputs are normal, minimizing the simple
training error in equation (2.1) maximizes the probability of the training outputs
(with input-independent noise) given the model. When the noise variance o2 is

input dependent, and model s,(x) > 0 is used to predict the o.(x), the negative
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log-likelihood of the data given g, and s, is:

(gv (xn)=fn)?

‘logc(gvysu = —IOgH \/2—71'—3 W
N 2
gy (Xa) — fn
J-\? Z log Su(Xn) ( s2 ()Xn) ) = Eo (gw Su)

Similarly the test error is:

(gv (Ym) — hm)2
sa(Ym)

M
E (gw Su = Z 210g Su y'm

Again collecting the terms in the test error that solely depend on the test inputs,
and estimating the remaining terms using the training data, the augmented error

becomes:

Ea (gv;su) = K (gwsu) +
o 1 ino Sul )+—-—--g‘2’(ym>~i§:210 s(x)+g‘2’(xn)
M £ 2RI g ) TN & TR T )

3.7.3 p-norm Loss

Let the test and training errors be:

1 & 1 &
- Mﬁi‘; lgv (ym) = hm|®  Eo(gv) = I ; lgv (xn) = ful”

where p € R. When quadratic error is used, the augmented error made the 2nd power
of model outputs on training and test inputs close to each other. For the p-norm error

we suggest the following augmented error °:

Ea(gv) = ED(QV) + (M Z Igv Ym Z 19\' (Xn )

5Thanks to Hans-Georg Zimmermann of Siemens for bringing this error function to my attention
at NIPS 97.
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3.8 Conclusions

In this chapter we have analyzed two different methods of incorporating test inputs
into learning for the neural network models. In general, both methods result in
smaller test error than gradient descent on the training error. If there is a solution
that is believed to be close to the test error minimum, then an augmented solution
using substitution method can be obtained by means of changing only the output
weights of the neural network. Descending on the augmented error, obtaining the
augmented parameters by means leave-k-out cross validation, also results in better
solutions than gradient descent on the training error only. We have also shown that
for loss functions other than the quadratic loss, different forms of augmented error

can be derived.
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Chapter 4

Learning from Hints

In learning-from-examples we are given a set of input-output examples (training set)
and our goal is to find the model that performs best out-of-sample. Sometimes, in
addition to the training set, some additional information or hint [Abu-Mostafa, 1990]
about the underlying mapping is also available. For example, in character recognition,
in addition to characters and their labels, it is also known that when characters are
translated, scaled or rotated slightly, the label should remain the same (invariance
hints). Another example (monotonicity hint) is from credit card approval: if person
A and B have the same specifications except that A earns more money, then A is less
likely to default than B.

Hints have been shown to be helpful in learning [Abu-Mostafa, 1990,
Abu-Mostafa, 1993a, Abu-Mostafa, 1993b, Abu-Mostafa, 1994]. Invariance
hints  [Fyfe, 1992,  Cataltepe and Abu-Mostafa, 1993], monotonicity  hint
[Sill and Abu-Mostafa, 1997], smoothness hint [Ji et al., 1990], minimum Hamming
distance between patterns [Al-Mashouq and Reed, 1991] are some of the hints that
have been studied previously.

We first review hints and learning-from-hints in section 4.1. In this section we also
define the hint objective function that allows teaching both the training examples and
the hints. In section 4.2, a method of estimating the out-of-sample error using the
invariance hints and then early stopping on this estimate of test error is analyzed.
The hint objective function that needs to be minimized for learning-from-hints is very
similar to the augmented error of chapters 2 and 3. Similar to section 3.6, in section
4.3 we show a method of descending on the hint objective function, obtaining the hint
parameters by means of cross validation method. Finally section 4.4 summarizes the

chapter.
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4.1 Definitions and Notation

Notation in this chapter is similar to notation of section 2.1. Let the training set be
{(x1, f1),- .., (xXn, fn)} with inputs x,, and (possibly noisy) target outputs f,. Let
the model class be G and denote the model by g, € G, where v is a parameter
vector. Usually G will contain all functions that can be implemented by different
settings of the weights of a neural network with a specific architecture. We will
assume that the performance of the model will be measured on an unknown test
set {(y1,R1),...,(¥Ym,hr)} where (y,h) and (x, f) pairs are drawn from the same
distribution. The training error Ey, test error £ and the generalization error E,., of

model gy is defined as:

Bo(g) = 53 (00 (k) = 1) (@1)
Bla) = 223 (0o (vm) = )’ 4
By (04) = {(0v(x) = b)), (43

where (.), denotes expectation with respect to the (unknown) input distribution Pk.

A hint is any piece of information known about mapping f that generated the
training outputs f. We will define a hint Hj, by an error function e (gy,x) associated
with the input x. ej(gy,x) will measure how much g, does not agree with the hint

on input x. For example:
e H;, examples hint given by the training set:
60(9\!: Xn) = (fn - gv(xn))z

e invariance hints: f(x) = f(x') where x' is obtained by the invariant
transformation of x,
en(gv, %) = (gv(x) — gv(x'))?, where, for example:
— evenness: X' = —X

— scale invariance: x’ = ax for a constant a;
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e . . T T
— cyclic shift invariance: if x = [z 25 ... 24| , then X' = [z5 ... 24 1]

In this thesis we will concentrate on the evenness invariance hint, which is

basically the scale invariance with @ = —1.

e binary hint: f is a binary function,

en(gv, %) = gv(x) * (1 = gv(x))

e monotonicity hint: f(x) is an increasing function of x according to some

ordering < of x:
(gv(x) — gv(x’))z if x' < x and gy(x) > gv(x')

en(gv, x) = or x < x" and gv(x) < gv(x') ;
0 otherwise.

e approximation hint: f(x) € [cmin, Crmaz):
2

(Cmin — gv(%))” if gv(X) < Cimin;
en(gv, x) = (gv(x) — cma:c)2 if gv(X) > Cnaa;
0 otherwise.

e smoothness hint: magnitude of the kth derivative of f with respect to the input

is always less than some cy:
(k) . (k)
MWael) || ¢ Ha gv(x)

Bx(k) > Ck.

en(gv, X) = i

We will define the hint error for hint H by:
Eh(gv) - <eh (gv>xn)>x (44)

where (), denotes expectation with respect to input x.
The examples hint H, is defined on the training inputs. With a uniform

distribution on the training inputs, the hint error for the examples hint is:

N

0(gvs Xn) = ;Z (gv(xn) — fn)z

n=1

EO (gv =

HMZ

which is the training error itself.

The other hints can be defined on one or more of the following input sets:
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e On training inputs:
1
Eh(gv) - “]\‘[‘ Z eh(.gv; Xn)

e If the test inputs are available, on test inputs:

M
1
Bulgv) = 57> enlov.ym)
m=1
e If the hint is known to hold everywhere in the input space, on a set of inputs
Z1,...,zy, randomly drawn from a distribution centered around the training

(and test, if they are available) inputs:

Bu(o) = 3 3 (0%)

N}, depends on the resources available. If IV} is too large, too much time may

be spent on computations for the hint error.

When we know both the examples hint Hy and hints Hy, ..., Hy, we would like to
obtain a model that implements both the training set and the other hints available. If
a hint is known to hold certainly, it may be possible to implement the hint directly on
the model (see, for example, [Giles and Maxwell, 1987] for direct implementation of
invariance hints). However, direct implementation is not always possible, and it may
not even be desirable since the hint is not known to hold for sure. Similar to the case
of noisy training examples, we may not want the model to fit the hint exactly if the
hint is “noisy”. For example, in the case of credit card approval, although high salary
makes a person less likely to default, due to other factors, another person earning less
may be less likely to default.

It is desirable to simultaneously minimize the training error together with the
other hint errors to obtain a good solution. Simultaneous minimization of training

error Fy and hint errors Ej,..., Ey can be achieved by minimization of the hint
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objective function:

E’h,...,’m (gv> = EO(gv) + Z’YhEh(gv) (4.5)

h=1

where v,...,v7g > 0.
When the hint errors E, are differentiable with respect to model parameters v,

E.,,.. ~u can be minimized by gradient descent along:

H
8E71,~--,’YH(gv) = BEO(QV)+Z7haEh(9V>

h=1

where 0 denotes the derivative with respect to v.

If a hint Hj is “noiseless” the hint parameter 7, should be chosen as large as
possible, but not too large to make the optimization algorithm unable to implement
anything other than the hint. For example, in the case of invariance hints, setting the
hint parameter too large and minimizing the hint objective function, starting from
small initial weights, results in function g,(x) = 0. Of course this constant function
obeys all possible invariances!

Since the goal of learning is the minimization of the out-of-sample error, we would
like to obtain hint parameters 7i,...,vy so that minimization of, or early stopping
on, the hint objective function E.,, ., (gv) results in a small out-of-sample error. As
we will see in the next section, in some cases, it is possible to have an estimator of

the out-of-sample error in terms of hint errors.

4.2 Estimation of the Out-of-Sample Error Using
Invariance Hints

In this section we will demonstrate a method of estimating the generalization and
test error in terms of invariance hint errors. In [Cataltepe and Abu-Mostafa, 1993]

we had analyzed the same estimation method for binary targets and models with
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outputs in [0 : 1]. In this section we will assume that the training input-outputs were
generated by a function f : R¢ — R. The model will be denoted by g, : R = R

with adjustable parameters v.
We will approximate the error that the model g, makes on the target f at input

x by a noise function n(x) (not to be confused with the possible noise on the training

outputs):

n(x) = gv(x) — f(x) (4.6)
Assume that the noise function n has mean p and variance o?.

(n(x))x = (4.7)
<n2(x)>x~,u2 = o’ (4.8)

Then the generalization error of model gy is:
Bgen(gv) = ((9v(2) = f(2))"), = (n*(x)), = 1* +0” (4.9)
The hint error for the invariance hint H; is:

Bi(gv) = <(gv(w) - gv(w’))2>x
Insert — f(z) + f(z') =0
Ei(gv) = ((n(x) —n(x))*),
= 2(n*(x)), — 2(n(x)n(x)),
Assume n(x) and n(x’) indep.
= 2(0® + p?) — 2u°
= 20° (4.10)

We will use the training set to estimate the mean u:

B e Do) = 3 3 S = gv(x) (411)
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The training set can also be used to estimate the mean and variance in 4.9:

Egen(gv) = p* + 0* = Ey(gv) (4.12)

Hence, 0? ~ Ey — i?>. Combining this estimator of variance with equation 4.10, and

giving each estimator equal weight, we obtain a combined estimator of the variance:

0;2 _ Q(E() - ﬂ2) + E1
4

(4.13)

and finally, an estimate of Ey,, using both training and hint errors and /i becomes:

A

Bpen = o2+ i°
2(Ey — ﬁﬂ) + E, e

(4.14)

When the test inputs are known, similar to the generalization error estimate,

an estimate of the test error can be obtained using the test inputs. For this case,

2 sample mean and variance on the test

instead of the mean y and the variance o
inputs, py,o% are used. It is also assumed that the sample mean and variance
are the same on the test input set, and the transformed test input set according
to the invariance. When the hint error is measured on the test inputs, Ei(gy) =

i M (9v(ym) — 9v(¥%,))*, we obtain the estimate of the test error:

~

E = o4 i’

2(Ey— p*)+ E
_ (Eo Z)“‘ l_le (4.15)

The estimator of the test error in equation 4.14 can either be used as an early
stopping criterion, or to descend on it. For an example run, we show the training and
test errors and the test error estimate ! in figure 4.1. Three different approximations
of the hint error, on training (X), test (Y) and random (Z) inputs are used in the

figure. As the overtraining occurs, the estimate using the hint error follows the test

1We have taken yu = 0 for these experiments.
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Test error estimate using the hint follows the test error, SNR=1
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Figure 4.1: When overtraining occurs, the estimate of the test error using the hint
error (on training inputs X, or on test inputs Y, or on random inputs Z) follows the
test error.

error, whereas the training error keeps decreasing.
In figure 4.2 we show the performance of this estimator as an early stopping
criterion. In this experiment ? the target function was an even function generated

by a neural network.  The mean (over 100 experiments) test error ratios

E(early stopping on test error estimate)
E(minimum training error solution)

the test error estimate results in smaller test error than the test error of the training

is shown in the figure. Early stopping on

2The targets were generated by (teacher) neural networks whose weights were drawn from unit
normal. First a neural network with 5 hidden units was generated. Then the function was made
even by adding five more hidden units with exactly the same connections, except negative of the
input weights of the first five hidden units. The training, test and random inputs were drawn from a
zero mean and variance 10 normal. The training outputs were obtained by adding zero mean noise
to the teacher outputs on the training inputs. The noise variance was determined according to the
specific signal-to-noise (SNR) ratio for the experiment. The test outputs were not noisy. There were
N = 30 training and M = 50 test examples. The number of random inputs was also 50. The student
(model) neural network had 10 hidden units, and its weights were drawn from a zero mean 0.001
variance normal. The training method was gradient descent. The learning rate was initially 0.0001,
during training, it was multiplied by 1.1 when the training error decreased and halved otherwise.
Training continued for 1000 passes.
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Figure 4.2: Early stopping on the test error estimate using the hint error results
in smaller test error than stopping at the minimum training error. When the hint
error is estimated using training inputs (X), test inputs (Y), random inputs (Z), or
training and test inputs (X,Y), the same performance increase is obtained.

error minimum. The performance does not differ much among different estimations
of the hint error B; (on training inputs (X), test inputs (Y), random inputs (Z),
training and test inputs (X,Y)).

We also experimented with descending on the test error estimate E directly. When
we descended on the estimate directly, most experiments were stuck in a local minima,
especially when SNR = 1. We think the training error and the hint were conflicting
and hence it was not possible to settle on descent either one of them at the beginning
of training. We also experimented with descending on the training error first, till a
certain training error was reached ® and then descending on the test error estimate.

For this experiment, the performance was comparable to figure 4.2.

3We determined this training error level by means of early stopping using a validation set runs.
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4.3 Gradient Descent on the Hint Objective

Function, Estimating the Hint Parameters
Using Cross Validation

In section 3.6 we descended on the augmented error, using the gradient of the
augmented error and determining the augmentation parameters by means of cross
validation method. Similarly, in this section we will descend on the hint objective
function E,, . ., determining the hint parameters 7i,...,yy by means of cross
validation at each pass. Since 1eave—{—vd—out cross validation with shuffling of the
training set at each pass resulted in better performance than ordinary (leave-1-out)
cross validation for augmented error, we will use leave—%—out cross validation in this
section.

Let the training set (X,f) be partitioned into 10 disjoint parts:
(X1, f1), ..., (X10,f10). Denote the (training) error of g, on all 9 parts except
the ith one by E;;(gv), denote the (validation) error on the sth part by E,;(gv)-
Denote the hint error using all training inputs except the ones in part ¢ by

Eni(gv) = ngzl’xﬁxi en(gv,X,). We need to find the hint parameters

71, - --,Yg such that:

O0F,1(9v) = 0E;1(gv) +7110F11(9v) +7a0FmH1(9v)

0Fy10(9v) = 0FE:10(9v) + 110F110(9v) + YHOE 1 10(9v)

We obtain 71, ...,vg by simultaneously solving all 10dim(v) equations. We shuffle
the training set and obtain different partitionings (Xi,f;), ..., (X, fi0) each time we
use cross validation to find vy, ...,vgH.

In figure 4.3 * we show the mean (over 100 experiments) test error ratios

4Olympic score is obtained as follows: The test error ratios are sorted, and the largest 10% and

the smallest 10% are notd<_:011tsi(¢1iered.tThish glimigates: thef effgcct of outliers. Note also that for all the
Eo(gradient descent on hint objective function) .

BEo(gradient descent on training error) < 2, the test error ratio is taken

plots, only when
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E(gradient descent on hint objective function)
E(gradient descent on training error)

the hint error on the training inputs, X. As it can be seen from the figure, gradient

. For these experiments we determined

descent on the hint objective function, determining the hint parameters by means of
leave 10 out cross validation at each descent step, results in smaller test error than
gradient descent on the training error only. Comparison of figure 4.2 and figure 4.3
shows that the estimation of the test error by means of the hint error, and then early
stopping on that estimate results in smaller test error than the method of this section.
When the hint error estimate is available, it should be used. However, when it is not
available, gradient descent and cross validation to find the hint parameters is a better
method than gradient descent on the training error only. Furthermore, enforcing the
hint on the additional test inputs resulted in larger test error. This could be due to
the fact that we are enforcing the hint from the very beginning of training, and the

hint on the test inputs take effect before the training data is fitted well enough.

4.4 Conclusions

In this chapter, we reviewed the learning-from-hints. We demonstrated a method of
estimation of the test error using invariance hint errors and then early stopping on
this estimate of the test error. We also extended the gradient descent combined with
cross validation to estimate the augmentation parameters from the previous chapter,
to learning-from-hints. This descent method is a general enough algorithm that can

be used not only for invariance hints, but other types of hints as well.

into the average. When training with the hint, training may be stuck at a local minima, we try to
avoid counting the local minimum effects by this.
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Figure 4.3: Gradient descent on the hint objective function, determining the hint
parameters by means of leave- m-out cross validation, usually, results in smaller test
error than gradient descent on the training error only.
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Chapter 5
No Free Lunch for Early Stopping

Early stopping of training is one of the methods that aim to prevent overtraining due
to too powerful model class, noisy training examples or small training set. In this
chapter, we study early stopping at a predetermined training error level. If there is no
prior information, other than the training examples, all models with the same training
error should be equally likely to be chosen as the early stopping solution. When this is
the case, we show that, for general linear models, early stopping at any training error
level above the training error minimum increases the expected generalization error.
Moreover, we also show that the generalization error is an increasing function of the
training error. Our results are nonasymptotic and independent of the training data
noise, and they hold when instead of generalization error, iid test error or off training
set error ! are used as the performance criterion. For general nonlinear models, around
a small enough neighborhood of a training error minimum, the mean generalization
error again increases, when all models with the same training error are equally likely.
For classification problems and the bin model [Abu-Mostafa and Song, 1996], the
expected generalization error increases regardless of the probability of selection of
models. Regularization methods such as weight decay and early stopping using a
validation set, or early stopping of training using a hint error are equivalent to early
stopping at a fixed training error level but with a nonuniform probability of selection
over models with the same training error. If this nonuniform probability agrees with
the target function, early stopping may help. One should be aware of what nonuniform
probability of selection is implied by an early stopping procedure.

Early stopping has been studied by Wang et. al. [Wang et al., 1994] who

LOff training set error does not assume that the training and test inputs come from the same
distribution.
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analyzed the average optimal stopping time for general linear models (one hidden
layer neural networks with a linear output and fixed input weights) and introduced
and examined the effective size of the learning machine as training proceeds. Sjoberg
and Ljung [Sjoberg and Ljung, 1995] linked early stopping using a validation set to
regularization, and showed that emphasizing the validation set too much may result
in an unregularized solution. Amari et. al. [Amari et al., 1997] determined the best
validation set size in the asymptotic limit and showed that early stopping helps little
in this limit even when the best stopping point is known. Dodier [Dodier, 1996] and
Baldi and Chauvin [Baldi and Chauvin, 1991] investigated the behavior of validation
error curves for linear problems, and the linear auto-association problem respectively.
Our results in this section will also appear in [Cataltepe et al., 1998].

We borrow the term “no free lunch” from [Wolpert, 1996b, Wolpert, 1996al.
Wolpert shows that when the prior distribution over the target functions is uniform,
and the off training set error is taken to be the performance criterion, there is
no difference between learning algorithms. In other words, if a learning algorithm
results in good off training set error for one target function, it results in equally
worse off training set error for another target function. Like [Zhu and Rohwer, 1996,
Goutte, 1997] who put no free lunch theorems into the framework of cross validation,
our work puts the no free lunch into the framework of early stopping.

Our method of early stopping, choosing a model uniformly among the models with
the same training error, is similar to the Gibbs algorithm [Wolpert, 1995]. Although
the uniform probability of selection around the training error minimum is equivalent
to the isotropic distributions of [Amari et al., 1997], they assume certain noise (zero
mean normal) characteristics, a training minimum close to the generalization error
minimum and large number of training examples.

Notation in this chapter is similar to the notation of chapter 2. We are given
a fixed training set {(x1, f1),..., (X, fn)} with inputs x, € R¥ and outputs f, €
R. The model to fit the training data will be denoted by gy(x), with adjustable
parameters v. We will refer to models by their adjustable parameters v, unless

indicated otherwise. We assume that the training outputs were generated from the
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training inputs according to some unknown and fixed distribution f(x,), hence f, =
f(x5). For example, if the outputs were generated by a teacher model with parameters
v* and additive zero mean normal noise, we would have f(x,) = gy~(X,) + e, where
en ~ N (0, 02) for o2 > 0.
We define the quadratic training error Ey and the generalization error FE at v as:

Eol(v) = go(%n) = f)? B(v) = {(9v(x) = f(x))*),

HMZ

Let vq be a local minimum of the training error Ey. Let § > 0 and E5 = Eq(vo)+4.
Let W5 = {Av : Eg(vo + Av) = Es}. The set of models vy + W form the early
stopping set. We define early stopping at training error E; as choosing a model
from the early stopping set according to a probability distribution on the models in
the early stopping set. We denote the probability of selecting vy + Av as the early
stopping solution by Pw,(Av). This probability is zero if Av ¢ W;. The mean

generalization error at training error level Ej is:

Emean(Eé) = / PW5 (AV)E(VO + AV)dAV
AV€W5

Py, is said to be uniform if VAv, Av' € Wy, Py, (Av) = Pw,(AV'), ie. if
models with the same training error are equally likely to be chosen as the early
stopping solution. (See figure 5.1)

The rest of the chapter is organized as follows: In section 5.1, we prove that early
stopping can not decrease the mean generalization error for general linear models
when all models with the same training error are equally likely to be the target.
Section 5.2 proves the same result for nonlinear models but around a training error
minimum only. In section 5.3 we review the bin model and prove that early stopping
can not help for this model either. In all these cases, we assume that there is no prior
information about the target that generated the training data. In section 5.4 we
experimentally verify the early stopping results for general linear and neural network

models. We also show that early stopping can help when additional information is
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Models with

training error = E5

EO equipotentials

Figure 5.1: The models with training error E5 = Fy(vg) + 6 form the early stopping
set at training error level Ej.

available, for example in the case of weight decay or invariance hints. Section 5.5

summarizes the chapter.

5.1 Early Stopping for a General Linear Model

In this section we will use the general linear models as described in section 2.2 and
figure 2.2. Since the transformation functions ¢;(.) are fixed and only the output
weights are adjustable, we will denote a general linear model only by its output

weights w. Again, ®;(g11)xn = [#(X1),...,¢(xn)] will denote the training inputs

transformed by the fixed transformation functions ¢;(x) : RY — R, i = 0,...,d,
and fy. = [fy, .- ‘,fN]T is the training outputs. Define S, = g%g{ and Mgy =

<¢(x)¢(x)T>x. When ®,®T is full rank 2, the unique training error minimum is

given by (see section 2.8.1):

wy = (,87)'®,f =81

The Hessians of training and generalization errors are constant positive

2Hence we restrict ourselves to problems where N > d + 1. Since the transformation functions
are real valued, for most cases '},@Z is likely to be full rank.
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semi-definite® matrices at all w:

Any higher derivatives of E and E, are zero everywhere. Hence, for any Aw, the

generalization and training errors of wg &= Aw can be written as:

E(wy £ Aw) = E(wo) = AW VE(w,) + Aw Sy Aw (5.1)
Ey(wo £ Aw) = Eg(wg) + Aw’ S, Aw (5.2)

The following lemma proves that when all models with the training error Fo(wg)+
0,6 > 0 are equally likely to be chosen as the solution, the mean generalization error
at training error level Eg(wy) + ¢ can not be smaller than the generalization error of

Wy.

Lemma 5.1.1 When all models with training error Es = Eq(wo) + 8 > Eg(wq) are
equally likely to be chosen as the early stopping solution, the mean generalization error
at training error level Eq(wo)+ 9 is at least as much as the generalization error of the
training error minimum. More specifically, for any § > 0, Epean(Es) = E(wo)+8(9),
for some () > 0.

Proof: is given in section 5.6.1. Please see figure 5.2 for an illustration of the lemma.
Note that this result does not depend on the noise level, number of training
examples or the target function versus model complexity. Even if the target function
is a constant and the model is a 100th degree polynomial, lemma 5.1.1 tells us that
we should stop only at the training error minimum.
If the error criterion is the test error on iid or non-iid inputs {yi,...,¥yum}, the

T
lemma still holds. Because S, = @’ﬁ;y is positive semi-definite.

3 Any matrix of the form AAT is positive semi-definite, because for any w of proper dimensions,
T
wTAATw = ||ATw]||> > 0, hence S, = 222= is positive semi-definite. X,y = <¢(x)¢>(x)T>x is

T
also positive semi-definite since &N‘g@‘__«_} N—soo <¢(x)¢(x)T>
X
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— Early stopping bad
mmm Early stopping good

Figure 5.2: Early stopping at a training error 0 above FEy(wp) results in higher
generalization error when all models having the same training error are equally likely
to be chosen as the early stopping solution.

Furthermore, lemma 5.1.1 holds not only for quadratic loss, but for any loss
function which has a positive semi-definite test error Hessian and zero third and
higher derivatives at the training error minimum.

The following theorem compares the mean generalization error between any two

training error levels:

Theorem 5.1.1 When all models with the same training error are equally likely to be
chosen as the early stopping solution, the mean generalization error is an increasing

function of the early stopping training error. In other words, for 0 < §; < o,

Emean (E& ) < Emeo,n (E52)‘

Proof: is given in section 5.6.2.
Therefore, when the model is general linear, the best strategy is to minimize the

training error as much as possible.
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5.2 Early Stopping for a Nonlinear Model

When the model is general linear we are able to prove lemma 5.6.1 without any
assumptions about the location of the generalization error minimum with respect to
the training error minimum. Also, our results were valid for all models with the same
training error, regardless of how far they are from the training error minimum. For the
nonlinear model we will assume that the distance between the training error minimum
and the generalization error minimum is O (), which is asymptotically the case if
the output noise is additive zero mean normal, see for example [Amari et al., 1997].
Also we will prove the increase in the mean generalization error only around the
training error minimum.

Let the model g, be a nonlinear (continuous and differentiable) model with
adjustable parameters v. Let vy be a minimum of the training error, and
let VE(vo), VEs(vy), HE(vo), HEy(vo) denote the gradient and Hessians of the
generalization error and the training error at vo. Let v* be a minimum of the
generalization error. Let Av be such that Eq(vy + Av) = Ey(vo) + 6, for § > 0.

Now we assert the counterpart of lemma 5.6.1 for the nonlinear models:

Theorem 5.2.1 Let § > 0 and let E; = Eo(vo) + 6. Let Av = O (55%), and
Eo(vo+ Av) = E; + O (?V%—g) Let v —v* = O (—N—lg—g) When all models with
training error Es + O (Nll—g) are equally likely to be chosen as the early stopping
solution, the mean generalization error at training error level Eg(vy) + 8 + O ( ,—V%—g)

i8 Bmean(Es) = E(vo) + B(6) + O (515), for some (5) > 0.

Proof: is given in section 5.6.3.

5.3 Early Stopping for Classification Problems
and the Bin Model

For classification problems, bin model [Abu-Mostafa and Song, 1996] can be utilized

to prove that mean generalization error increases as the training error increases. Since
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the proof does not have any assumptions about the probability distribution on the
models with the same training error, it is worth mentioning here.
We will use the following version of the bin model: Consider M < oo learning

4 with generalization errors m,...,my. Determine the training errors of

models
models vy, ..., vy by picking NV i.i.d. inputs and finding the errors on these samples
for each bin. 7, corresponds to the generalization error E of a model m, and v,

corresponds to the training error Ey. (please see figure 5.3).

1 m M Models

Ty T TCM Generalization errors

V4 Vi Vi Training errors

Figure 5.3: The bin model.

Let Pr[.] denote the probability of the occurrence of an event. The mean

generalization error for training error level v is:
M
Brean(v) = Elnlv] =) mPr{mn|vim = v] (5.3)
m=1

The following theorem is a generalization of theorem 5.1.1 for the bin model:

Theorem 5.3.1 For classification problems and models that can be formalized using
the bin model, the mean generalization error is an increasing function of the training

ErTorT.

Proof: is given in section 5.6.4.

“Fach learning model corresponds to a unique function. For example, each model could be the
function implemented by a neural network for a specific setting of the weights of the neural network.
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5.4 Experimental Verification of Results

We experimented with linear and nonlinear models to verify the theorems and lemma
for these models. We also investigated the weight decay solution for the linear model

and effect of evenness hint on the mean generalization error.

5.4.1 Linear Model

We computed the minimum training error (least squares) solution wg, then we
computed the average generalization error of solutions w with training error Eq(wg)+
0. For comparison, we also computed the generalization error of the weight decay
solution with training error Ey(wq) + d. In figure ® 5.4 we show the behavior of the
mean generalization error as the training error increases. When all models with the
same training error are chosen with the same probability, in agreement with lemma
5.1.1, the mean generalization error increases as the training error increases. On
the other hand, the weight decay solution has smaller generalization error for small
enough weight decay parameter. Note that choosing the weight decay solution with
probability 1 corresponds to a nonuniform (delta function) probability distribution
on models with the same training error, therefore lemma 5.1.1 does not apply. Note
also that, for this experiment both the target and the model are linear and the
training points have zero mean normal noise, therefore, the weight decay provably
results in better generalization error when the weight decay parameter is small enough

[Bishop, 1995].

5For this experiment, both the target and the model were linear. Input dimensionality was d = 5,
plus constant bias 1. Training inputs were chosen from a zero mean unit normal. There were N = 20
training input-outputs. The target (teacher) model was also linear with weights chosen from zero
mean 9 variance normal. Zero mean normal noise was added to the training outputs. Noise variance
was determined according to 0.1 signal-to-noise ratio. The mean generalization error for the uniform
P was computed on 500 different models with the same training error. The generalization error was
computed as the squared distance between the target and the model.
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Figure 5.4: The mean generalization/test error versus training error of a linear model
for a given target and training set. The mean generalization error increases as the
training error increases when all models with the same training error are given equal
probability of selection. When the weight decay parameter is small enough, choosing
the weight decay solution with probability 1 and all other models with the same
training error with probability 0 improves the generalization error.

5.4.2 Nonlinear Model

We experimented with a neural network model, and a noisy and even target function,
also generated by a (teacher) neural network model. We first found a training error
minimum using the gradient descent with adaptive learning rate. Then we chose
random weights Av ¢ such that Fo(vo + Av) =~ Ey(vo) + 0. In figure 5.5 we show
the mean test error versus the training error for a specific target, training set and

model 7 g,,. When the mean test error for a certain training error level is computed

6Since the gradient at the minimum vy is very small but not exactly zero, we scaled Av as
kEAv where k is the best possible solution for kAVIVE, (vo) + kZ%AvTH E0(vy)Av = 6. Hence
k= :—”—3—5—\/225—1——@ where a = L AvT HEO(vo)Av and b = AvT V Ey(vo).

"The training outputs were generated by (teacher) neural network whose weights were drawn
from unit normal. First a neural network with 5 hidden units was generated. Then the function
was made even by adding five more hidden units with exactly the same connections, except negative
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Figure 5.5: The mean test error versus training error of a nonlinear model for a given
even target and the training set. The mean test error increases as the training error
increases when all models with the same training error are given equal probability of
selection. Choosing the models with the smaller evenness error with higher probability
reduces the mean test error.

by giving each model with the same training error equal probability, the mean test
error increases. On the other hand, when the models with smaller evenness hint
error E;(vyp + Av) are given more weight, the mean test error seems to decrease for
sometime and then increase. In other words, early stopping, choosing models with
smaller hint errors with higher probability can decrease the mean test error.

Note that, as shown in figure 5.6, the decrease in the mean test error using

of the input weights of the first five hidden units. The training and test inputs were drawn from a
zero mean and variance 10 normal. The training outputs were obtained by adding zero mean noise
to the teacher outputs on the training inputs. The noise variance was determined according to the
signal-to-noise ratio. The test outputs were not noisy. There were N = 30 training and M = 50 test
examples. The student (model) neural network had 10 hidden units, and its weights were drawn
from a zero mean 0.001 variance normal. The training method was gradient descent. The learning
rate was initially 0.0001, during training, it was multiplied by 1.1 when the training error decreased
and halved otherwise. Training continued for 1000 passes and the model with the smallest training

error was taken to be gy,. When computing the mean test error using the evenness hint, we weighed

. ; . __exp—Ei(vo+Av') L
the model g, . avi according to: SO0 e — B (vo t AV fori=1,...,1000.
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Figure 5.6: When the signal-to-noise ratio is high and the target is even, the mean
test error around the training error minimum may increase, even if the models with
the same training error are weighed according to their hint error.

the hint is dependent on not only the number of training examples N, but also
the signal-to-noise ratio. For the same N, but now for SNR = 10, selecting the
models according to the evenness hint error, in the same way we did for the previous
experiment that had SNR = 0.01, does not decrease the mean test error. It is possible
that the probability of selection of a model should depend not only on the hint error

E;, but also the level of training error and the signal-to-noise ratio.

5.5 Conclusions

In this chapter we analyzed early stopping at a certain training error minimum, and
showed that one should minimize the training error as much as possible when all the
information available about the target is the training set. We demonstrated that using

the additional information about the target to choose a model with higher training
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error can improve the generalization error.

5.6 Appendix

5.6.1 Proof of Lemma 5.1.1:

Let the early stopping training error level be E;s = Eg(wg) + § for some 6 > 0.
Then, from equation (5.2), the early stopping set consists of wo + W5 = wo + {Aw :

Aw'S,Aw = §}. The mean generalization error is:

Erean(Es) = / Py, (Aw)E(wo + Aw)dAw

AweW;

For any Aw € Wy, hence satisfying Aw’S,Aw = ¢, there exists a ~Aw € Wj,

therefore we can rewrite the mean generalization error as:

Emean(EJ) -
05 / (Paw, (AW)E(wo + Aw) + Pay, (— Aw) E(w — Aw)) dAw

AweW,

Now, since Py, is uniform, it is also symmetric, i.e. Pw,(Aw) = Pw,(—Aw).
For the proof of this theorem symmetry is the only restriction we need on Pyw,. Using

symmetry of Py, equation (5.1), and the fact that [ Pw,(Aw)dAw =1:
AweWy

Emean(Eé) - E(W0)+ / PW(S(AW>AWT2¢($)AWC£AW
AwcWy

= E(wo) +5(9)

Since Xy(z) = <q§(x)¢(x)T> is positive semi-definite and Pw,(Aw) > 0,

B(6) = / Py, (Aw) AW S0 AwdAw > 0 (5.4)

AW€W§
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5.6.2 Proof of Theorem 5.1.1:

By lemma 5.1.1, Epean(Es,) = E(wo) + (61) and Epean(Es,) = E(wq) + B(6,) for
B(61),8(62) > 0. Let 0 < 6; < d5. We need to prove 3(d;) < B(ds).

Let V(§) = [ Aw Sy, AwdAw, and let 7. be the surface area of the d
AweWy

dimensional ellipsoid Aw?S,Aw = §. Since Py, is uniform, from equation 5.4:

B(o2) _ Pp V()
B(61) Ps, V(61)

Define k? = -gf > 1. Let W;, = {Aw : Aw’S,Aw = §;}. Then W;, = {kAw :
Aw € W;, }. By means of change of variables Au = kAw in V(§2) we have g(gf; =

kd+1

We can define the surface area as the derivative of the volume:

f dAw — / dAw
1 i AW S Aw<s+1 AwTS, Aw<s
P5 =0 l
(éﬂ)-"—# 1
= lim~2%~1 = dAw
10 l
AwTS, Aw<s
h+1
= — dAw
20
AwTS, Aw<s
Hence —};];— = 5‘2—:5%1 [ dAw. By means of change of variables Au = &% we
! AwTS, Aw<d;
1 pd-11 Py __ p-d+1
have B, = k o Therefore, Py k .

Hence, g%j% =k il =2 > 1. O
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5.6.3 Proof of Theorem 5.2.1:

Similar to equations 5.1 and 5.2, the training and generalization errors at vy + Av

are:

E(vo+ Av) = E(vy) £ AvIVE(vy) + = AVTHE(VO)AV +0 ( = ) (5.5)

1 1
Eo(vo + Av) = Ey(vq) + -iAvTHEO(VO)Av + O (Nl 5) (5.6)

Since vo = v* + O (

505 )

HE (vo) = HE(V +0(N105>>: E(v )+O(N105>

Therefore, using the fact that Av = O (w5, and equation (5.5), we can write the

average generalization error among vy + Av and vp — Av as:

E(vo+ Av) + E(vo — Av)
2

1 1
= E(vg) + §AVTHE( VAV + O (Nl 5)

Define W = {Av : Ey(vy + Av) = Ey(vo) +§ + O (545)}. Therefore for each
Av € Wy, there is a —Av € Wy. As we did for the proof of lemma 5.6.1, using the

uniform probability of selection Pyw,, we can compute the mean generalization error

as:
Eoean(Es) = / Pw, (AV)E(vo + Av)dAv
AveW;
- 05 / (Pav, (AV)E(ve + AV) + Pav, (~Av)E(vo — Av)) dAv
AvEW;
1
= E(vo)+05 / Pw,(AvV)AVIHE(v*)AvdAv + O (Nl 5)

AveEW,

= E(vo) +B(8)+ 0 (Nll.S)

Since v* is the generalization error minimum, H E(v*) is positive semi-definite. Hence,
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B(6)=05 [ Pw,(Av)AVIHE(v*)AvdAv >0. O
AveEW,

5.6.4 Proof of Theorem 5.3.1:

Expanding the mean generalization error from equation (5.3):

Emean(v) = Elnlv] = Z T PT [0 |V = V]

m=1

s T Prltn = vl Prm
Somet Prltin = V] Pr{m]
Z;A::I mer[ﬂm}ﬂ'mNU(l — ﬂ'm)N(l"V)

S Pl (L — 1) )

Taking the derivative of E[r|v] w.r.to v:

dl[nlv] Tm 1 — 7
o Qﬂﬂéi_;ka,k(Wm“ﬁk)ln<1wwm p

— 1
where Qo = e raay? 0 and

Qumi = ™" (1 — Wm)N(lv")wkN”(l — wk)N(l_”) > 0. When 7, < m; both (7, — 71)

and In (-1—’1";‘——1—;—2—%) are negative hence the derivative is positive. Therefore the mean
i

generalization error is an increasing function of the training error. O
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Chapter 6

Conclusion

6.1 Summary of Results

In this thesis, we studied a method of incorporating input information into learning.
We suggested obtaining an estimator of the out-of-sample error using the input
information. The solution of this estimator, augmented solution is superior to the
least squares solution for general linear models. We also provided an algorithm to
descend on the augmented error, determining the augmentation parameters using
cross validation method. This algorithm also performed better than the minimization
of only the training error.

The descent on the augmented objective function by means of finding the
parameters using cross validation is a general method that can be applied to any
augmented objective function, and in particular to objective functions when learning
from hints. For invariance hints, we have shown that this algorithm results in better
performance than gradient descent on the training error, however direct estimation
of the test error seems to result in even better performance. When direct estimation
of the test error using a hint is not an option, the gradient descent on the augmented
objective function can serve as a technique to descend on the training error and the
hint errors at the same time.

Additional information, such as test inputs or hints, result in better performance
than minimizing the training error only. In the last chapter of this thesis, we prove
that unless there is additional information, the training error minimum is the best
possible solution. If a method is choosing a solution other than the training error
minimum, then there is an assumption of prior information. One should be aware of

the prior assumptions implied by an algorithm.
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6.2 Further Study

The following research directions could be investigated for further study:

o Investigation of the best & for leave-k-out cross validation when gradient

descending on an augmented error (for input information or hints).

e The augmented error for classification problems and neural networks with tanh

output units.

e The augmented error for different loss functions, such as entropic, p-norm loss

and loss for input dependent noise.

e Performance of the augmented solution for linear and nonlinear models when

the test inputs come from a different distribution than the training inputs.

e Performance of the augmented solution when instead of gradient descent,
other learning algorithms, such as conjugate gradient or Levenberg-Marquardt

optimization method are used.
e The effect of the test input information on VC bounds.

e Comparison of the augmented solution to EM (expectation maximization)

results.
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