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ABSTRACT 

A discussion is given concerning the development of 

methods for obtaining an accurate representation of the 

forward elastostatic problem of describing the processes 

which accompany faulting. A method is suggested by which 

a more complicated and arbitrary static dislocation function 

could be approximated with the formulations derived for 

simple dislocation sources. A stochastic inverse is used 

to provide optimum estimates of the source description when 

observed elastostatic phenomena are systematically related 

to the media response of the various source parameters. 

This method is applied to the observed static displacement 

data from the 1964 Alaska earthquake and the 1971 San Fer­

nando, California, earthquake. 

For the Alaskan event, the surface static displacements 

are calculated with the finite-element numerical modeling 

technique in which the effects of known geologic heterogene­

ities of the region are taken into account. The fault model 

used is that of a shallow angle fault underthrusting the 

Alaskan continental block. The calculated optimum static 

offset, stress drop, and strain energy density along the 

fault were found to be variable with a maximum offset of 

about 30 m. The region of maximum stress drop (218 bars) 

and maximum strain energy density change is found to 
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correspond to the region of maximum compressional wave 

radiation. The resolution and resolvability of the cal­

culated static fault model is discussed. 

For the San Fernando earthquake~ the static dislocation 

along the assumed fault plane was also found to vary consid-

erably. The observed surface displacements are fit to a 

high degree of accuracy by the given model. Included in the 

inversion data set are changes in the local gravity field 

caused by the earthquake. These changes can be predicted 

from known changes in elevation when a Bouguer correction is 

applied to the gravity data. 

The spatial and frequency distribution of path-correct-

ed Rayleigh waves from the San Fernando earthquake are 

systematically related to the faulting process. The surface 

wave source is taken to be a depth-distributed set of 

double couples. A least-squares inversion is used to find 

the set of source parameters which optimally fit the vari-

ance-weighted data. The inversion results indicate a 

depth-distributed moment of 1.7 x 1026 dyne-cm. The slip 

angles of the sources varied in such a way along the fault 

that the displacements became more predominantly dip slip 

as the dislocation propagated upward from the point of ini-

tial rupture at about 3.0 km/sec. A sophisticated error 

analysis is performed to estimate the uncertainties of the 

calculated model variables. 
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An appendix is included in which the analytical ex­

pressions are derived for the complete strain field due to 

a dislocation on an arbitrarily inclined fault in a homo­

geneous half-space. Although the expressions are lengthy, 

the strain values can be calculated quickly on a computer 

since no numerical integration is necessary. 
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Chapter 1 

Introduction 

In the following chapters of this thesis, we will con­

cern ourselves with the problem of trying to estimate in 

some systematic fashion various parameters which describe 

an earthquake source when a set of surface observations due 

to this source is given. Since observations cannot be made 

directly about the deformation, strain release, etc., that 

occur in the hypocentral volume during the occurrence of 

an earthquake, an accurate investigation becomes a diffi­

cult problem. This problem is compounded even further by 

the fact that the information that is received from the 

source processes is filtered by the earth in the transmis­

sion to the point of observation. The success of the esti­

mation of the characteristics of earthquake phenomena will 

depend basically on our expertise in two separate areas. 

The first is our ability to describe adequately the pro­

cesses which accompany seismic activity. This is referred 

to as the forward problem. Solving the forward problem 

usually involves a theoretical description and parameteri­

zation of the .source mechanism and the responsive nature 

of the medium to this mechanism. The second area is the 

ability to infer something indicative about the variables 
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which characterize these seismic processes when an obser­

vational ensemble of their effects is given. Both of 

these areas will be discussed and applied in some detail in 

this thesis. 

Inherent in the success in the latter area mentioned 

above is our ability to collect pertinent data which can 

be related to the effects from seismic activity. The 

observed data which we associate with seismic activity can 

be classified into two categories: static observations and 

dynamic observations. The static observations normally 

involve the measurement of the permanent changes in the 

displacement, strain, and gravity fields on the surface of 

the earth. These data are usually limited to the region 

in the very near vicinity of the earthquake source region. 

With the exception of direct strain measurements, static 

data require some reference level to be established before 

the occurrence of an event. Dynamical data, on the other 

hand, require no prior data reference plane in the source 

region for the data to be meaningful. This latter type of 

data has the further advantage of being more readily de­

tect ab le than statical data at observation points outside 

the source region. 

In the following chapters, we will use both types of 

data to infer various source parameters. The effects that 

errors in these data have on the estimation of source 
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parameters is often neglected in source mechanism studies. 

In this thesis, we will try to minimize the errors in the 

data that are used to infer a source characterization, but 

we will also investigate how residual data errors are 

translated into uncertainties in the source description. 

Chapter 2 is concerned with obtaining an optimum 

description of the zero-frequency component of the seismic 

source when a set of static data due to that source is 

given. Both areas of expertise which are necessary to the 

successful estimation of the source function are examined 

in some detail in this chapter. Several methods for 

parameterizing the source process are discussed: disloca­

tion theory, stress pulse theory, stress relaxation theory, 

and numerical analogues. In the case for the dislocation 

theory, the parameterization is constructed such that the 

various source components can vary spatially on a set of 

arbitrarily oriented fault surfaces. The latter half of 

this chapter describes a stochastic inversion technique 

for obtaining an optimum estimate of the source parameters 

characterizing a fault model when a set of static observa­

tions which can be linearly related to the faulting 

sequence is given. This inversion method has the property 

of allowing the inclusion of the data variances. Inclu­

sion of these variances gives rise to the formulation of 
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various operators which can be used to estimate the re­

liability of the derived optimum solution. 

Chapter 3 deals with the applications of the inver­

sion technique described in the previous chapter to the 

static displacement data caused by deformation resulting 

from the 1964 Alaska earthquake. For this earthquake, a 

two-dimensional finite element numerical model is used to 

calculate surface displacements from a dislocation imposed 

on a fault surface located in a heterogeneous medium. The 

inversion technique is used to calculate a dislocation 

model which fits the observed data to a high degree of 

accuracy. An error analysis is carried out for the plane­

strain approximation, and the resolvability of the features 

of the calculated dislocation model is examined. The re­

sults of this chapter, which appear in a paper by Alewine 

and Jungels (1973), indicate that the observed deformation 

occurred as the result of massive underthrusting of the 

Alaskan continental block by the downgoing Pacific plate. 

In Chapter 4, the static displacement data obtained 

from the 1971 San Fernando, California, earthquake are 

used to try to determine the faulting mechanism for that 

event. In this case, the forward problem is solved using 

a three-dimensional dislocation theory applicable to a 

homogeneous half-space. The dislocation models calculated 
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to optimally fit the observed data for both this earthquake 

and the Alaska earthquake indicate a large degree of spa­

tial variability of dislocation along the assumed fault 

surfaces. Part of the data set used in the inversion for 

this earthquake is that obtained by converting changes in 

the gravity field into changes in elevation. The gravity 

survey and the method of conversion are described in 

Appendix 2. The gravity study done in connection with 

this thesis is incorporated into papers by Oliver et al. 

(1973) and Robbins et al. (1973). A brief paper describing 

the contents of this chapter is given by Alewine and 

Jordan (1973). 

An analysis of the surface wave spectra obtained 

teleseismically from the 1971 San Fernando earthquake is 

presented in Chapter 5. A numerical method is presented to 

approximate a finite surface wave source. A spatially 

distributed source of this type is shown to have spectral 

values quite different from a point source when the source 

is distributed vertically. A weighted least-squares inver­

sion technique (derived in Appendix 3) is used to obtain 

the combination of dynamic source parameters which optimally 

fit the observed spectra measured at different azimuths 

from this event. The results of this inversion of dynamic 

data are then compared to the source solution obtained with 

the static data. 
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Chapter 2 

Development of the Stochastic Inverse 
as Applied to Static Dislocation Problems 

2.1 Introduction. 

The first requisite in the application of any theory 

toward the estimation of seismic source parameters is the 

ability to solve the forward problem for the observed 

data type for an appropriate seismic source. This means 

simply that given a certain method of physically describ-

ing a source (analytically, numerically, or by analogue) 

we are able to estimate changes in data for a given value, 

or change in value, of particular parameters which 

describe the source. Mathematically this is.mapping 

changes in the source model space into changes in the 

data space. What will be discussed first in this chapter 

is just this process, and later we will look at the 

inverse of this process. By the inverse of this process, 

we mean that given some observations, what estimates can 

be made about the different source parameters which 

describe our source? 

The inversion scheme for static data that we propose 

in this chapter has the provision for the inclusion of 

the estimated variance of the data that is to be inverted. 

The inclusion of this data variance gives rise to the 
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fact that we cannot now estimate the seismic source param­

eters exactly, since small perturbations in the model 

source parameters might cause changes in the calculated 

data values which lie inside the estimated data error 

limits. This concept gives rise to our wondering what 

ability that we have to actually resolve any detail of the 

various parameters of our fault model. This resolution 

question will be examined in some detail in this chapter. 

We will first consider the problem of estimating 

source parameters for static data. The procedure devel­

oped for this case can then be extended to that of esti­

mating dynamical source parameters. This extension is 

done in a later chapter. A brief review o.f the develop­

ment of static field solutions due to various earthquake 

sources is in order. 

2.2 Development of the Forward Static Problem. 

Numerous attempts have been made in the past several 

years to interpret the observed permanent changes in the 

displacement and strain fields due to the occurrence of an 

earthquake. Various approaches to the solution of this 

problem have been proposed, each based on a slightly 

different interpretation of the earthquake source process 

as a whole. In each of these approaches, there exists in 

the interior of the elastic medium some discontinuity 
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surface which we can associate with a "fault". The dif­

ferent initial or boundary conditions that can be applied 

to this discontinuity surface give rise to the various 

approaches. These approaches can be broken into four main 

groups: stress pulse theory, stress relaxation theory, 

dislocation theory, and numerical analogues. With the 

exception of the dislocation theory, which will be treated 

in more detail, a short description of the approach of 

each of these theories will be presented. The dislocation 

theory is reviewed in more detail because it involves. a 

parameter that is readily observable when the discontin­

uity surface breaks the free surface -- a physical offset. 

In addition, it is somewhat more straightforwardly pleas­

ing to model static dislocations on the surface caused by 

static dislocations imposed within the medium rather than 

the more obscure parameters -- stress and strain. 

However, it will be seen that the other theoretical 

approaches can be equivalenced to some dislocation repre­

sentation in the static limit. 

Dislocation Theory. As a mathematical model of a "fault", 

the concept and formulation of a physical dislocation has 

been extensively used. The dislocation surface in an 

elastic medium is viewed as a surface over which there is 

a discontinuity in displacement. One of the first efforts 
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to explain the elastic displacements resulting from a 

dislocation was that done by Vvendenskaya (1956, 1958). 

Probably the most lucid explanation of the dislocation 

theory for calculating static changes that accompany 

faulting was given in a set of papers.by Steketee (1958a, 

1958b). In these papers, Steketee recognized that the 

relations for the displacement field in an infinite elas­

tic medium strained by a dislocation over some surface as 

given earlier by Volterra (1907) would be appropriate in 

describing the deformation that accompanies faulting. 

Steketee derived, through the use of Galerkin vectors, the 

expressions for static displacements in an infinite 

elastic solid. These relations were given in compact form 

as integrals over the dislocation surface. 

In his papers, Steketee poses the following problem. 

A dislocation surface,~ , is created within· an elastic 

solid which is bounded by some surface S . The medium is 

then strained by the introduction of a certain distribu­

tion of "nuclei of strain" (Love, 1944) along the dislo­

cation surface. The nuclei were shown to exist in six 

basic forms corresponding broadly to a combination of a 

center of dilatation and a double force without moment, 

and secondly, two coplanar, mutually perpendicular double 

forces with moments. For pure shear dislocations, only 
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the latter type nuclei are applicable, whereas, for pure 

tensile dislocations, the former are applicable. The 

displacements at a point Q, uk(Q), within the elastic 

solid c'an be writ ten as 

k ti ul. ( P ) w . . ( P , Q ) v . d 2; 
lJ J 

( 2 .1) 

k u. w .. (P ,Q)v .ds l lJ J 

In this equation v. are the direction cosines of the 
J 

normal to the dislocation surface elements, µ is the 

rigidity, and tiui(P) is the dislocation function on the 

surface ~. It is seen that for an arbitrary dislocation, 

a set of six of these functions is necessary. (i=l,2,3 

j=l,2,3 with ij=ji.) The kernels of the integrals, 

w~j(P,Q), are the displacements at the observation point 

due to a single nucleus of strain. A summation over all 

nuclei is implied. As the surface S is enlarged to in-

finity, the displacements, ui, on S approach zero and the 

s~cond integral vanishes. 

The formalism for this problem was extended to include 

a dislocation in a semi-infinite elastic medium by a 
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superposition of solutions, which together satisfy the 

required boundary conditions at the free surface. These 

boundary conditions require the solution to be a fairly 

complex boundary value problem, however, it is cleverly 

solved by a superposition of solutions in the following 

manner. The tangential stress at the free surface is 

made to vanish by the addition of an image dislocation 

"above" the free surface. This last superposition is 

commonly referred to as the Boussinesq problem. The 

strength of the Boussinesq load is such as to cancel the 

normal stress on the free surface which is doubled by the 

addition of the image source. Using the Volterra rela-

tions, the displacement field at a point Qin a semi-

infinite medium is then given by 

= b 1· ( Lwi (P )W~. (P ,Q)v .d~ . o .,, µ } 2. i J J ( 2. 2) 

Comparison of (2.1) and (2.2) shows that only the values 

of the kernels are changed by the imposed boundary 

k conditions. The kernels of (2.2), Wij' are the set of 

Green's functions found from the superposition of solu-

tions which satisfy these half-space boundary conditions. 
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Steketee (1958a) gives the exact form of one of these 

functions, w~ 2 , which is all that is necessary to approxi­

mate a vertical strike slip fault. Chinnery (1961, 1963, 

1965) took the general expression (2.2) and derived an 

exact analytical form of the displacement and stress fields 

on the surface of a semi-infinite medium for an internal 

rectangularly-shaped dislocation surface modeling a verti­

cal strike slip (transcurrent) fault. In performing these 

calculations, Chinnery assumed that the dislocation dis­

continuity was constant over the entire fault, and he also 

assumed that the Lame parameters for the solid were equal 

so that the integration could be carried out exactly. 

Thus, the elastic medium for which this theory is applica­

ble is one in which the Poisson ratio is constant at 0.25. 

Steketee (1958a) showed, however, that (2.2) is valid where 

6ui(P) takes any form (Somigliana dislocation) provided 

that the tensile forces across the dislocation surface sum 

to zero. 

Maruyama (1964) has derived the remaining five sets 

of Green's functions needed in the solution of an arbi­

trary dislocation problem. He further gives explicit, 

analytic solutions for the displacement field at the free 

surface due to constant finite dislocations on rectangular 

surfaces. The dislocations considered are those only along 
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single primary axes. The examples that he presents in­

clude cases for which the dislocation surface,~' is both 

perpendicular and parallel to the free surface. 

Maruyama (1963) and Burridge and Knopoff (1964) 

showed that the displacement fields produced by a disloca­

tion on a mathematical description of a dislocation fault 

surface is equivalent to that produced by a suitable dis­

tribution of forces on the fault surface acting as if there 

was no fault present. Utilization of this fact makes 

possible the use of work in mathematical elasticity theory 

done much earlier than Steketee's (1958a) work. Notable 

in this early literature is that by Mindlin (1936) who 

treated the static problem of a single force acting in a 

homogenous half-space. Mindlin and Cheng (1950) give 

explicit expressions for the displacement and stress fields 

due to point forces and double forces acting in an elastic 

half-space. Maruyama (1964) gives a short summary of the 

early literature in Japan and elsewhere on this subject. 

This includes work done by Sezawa (1929), Honda and Miura 

(1935), Whipple (1936), Soeda (1944) and Yamakawa (1955). 

Press (1965) showed that the kernels of (2.2) could be 

derived in a straightforward manner from the results of 

Mindlin and Cheng (1950). Press obtained the same results 

for a vertical strike slip fault as Chinnery had done 
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previously, and obtained the same results for a vertical 

dip slip fault as Maruyama (1964) derived. In this paper, 

Press (1965) added the analytic expressions for tilts and 

strains for these particular fault orientations. Savage 

and Hastie (1966) used the theory given by Maruyama (1964) 

to calculate the vertical displacements induced by dis­

locations 1on fault surfaces that could have components of 

dip other than in a direction perpendicular to the free 

surface. This led to the ability to model more geologi­

cally realistic faults. 

Mansinha and Smylie (1971) completed the derivation 

of the displacement fields due to buried dislocations on 

finite rectangular surfaces. These authors give the com­

plete closed form, indefinite integral expressions for 

the entire displacement fields, ·both at the free surface 

and at any depth in the elastic half-space, due to a 

rectangular dislocation surface that can be arbitrarily 

inclined. The fields are presented in such a form that 

they are readily evaluated numerically on the computer and 

involve only simple algebraic and trigonometric functions. 

However, these authors do not give the formulas for the 

strain and tilt fields arising from a dislocation across 

an arbitrarily inclined surface. These strain and tilt 

fields can be easily obtained from differentiation of the 
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displacement fields. Appendix 1 of this thesis gives the 

results of this differentiation. 

Chinnery and Petrak (1968) extended the work of 

Chinnery (1961) by considering a model of a vertical 

strike slip fault on which the dislocation uniformly and 

smoothly goes to zero near the edges of the dislocation 

surface. This variation was chosen so as to remove the 

stress singularity that was occurring at the edge of the 

fault surface in the original work. Except in extreme 

cases, the tapering of the dislocation near the edges of 

the surface had little effect on the overall displacement 

fields calculated on the surface. 

Ben-Menahem and Singh (1968a) and Ben-Menahem and 

Gillon (1970) computed the integral expressions for the 

displacement field, both dynamic .and static, at the free 

surface for a model of a vertical strike slip fault and a 

vertical dip slip fault for a medium which contains a 

layer of arbitrary thickness over a uniform half-space. 

These authors point out that due to the complexity of the 

' problem, the use of the Galerkin vectors for elastic 

problems involving more than one layer over a half-space 

would be extremely difficult. These authors suggested the 

use of a method employing Hansen_'s eigenvectors in obtain-

ing the static response of a multilayered homo~eneous 
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half-space. McGinley (1969) and Sato (1971) achieved 

much the same results as these authors by the superposi­

tion of several half-space Green's functions solutions 

off-set in such a way as to represent a layered half­

space. Braslau and Lieber (1968) solved the static 

linearly elastic problem of a concentrated vertical 

Volterra dislocation in a layer over a half-space. They 

made use of a special displacement function which they 

called a modified Galerkin vector to give the solution in 

a form which must be evaluated numerically. Singh (1970, 

1971) has applied the Thomson-Haskell matrix propagation 

method (Thomson, 1950; Haskell, 1953) to solve the problem 

of static deformation in a multilayered elastic half-space. 

He obtains source functions for the six elementary dis­

locations that were given by Steketee (1958a). Explicit 

integral expressions are given for the surface displace­

ments for a vertical strike slip and vertical dip slip 

fault when these faults can be represented by concentrated 

or point sources. Extension to finite size sources is 

given as another integration involving the dislocation 

surface. Recently Chinnery and Jovanovich (1972) have 

calculated the displacement field due to a vertical 

strike-slip fault of infinite length fo~ an earth model 

consisting of two layers of arbitrary thickness and 
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rigidity over a half-space. Their expressions are given 

in series form so that no further integration is necessary. 

On the basis of this model, they conclude (and thus agree 

with McGinley (1969)) that the presence of a low rigidity 

layer would have a very strong (amplifying) effect on the 

observed displacements and strains in the far field. 

Ben-Menahem and Singh (1968b) treated in detail the 

problem of deformation of a uniform non-gravitating sphere 

due to internal Volterra type dislocations of arbitrary 

orientation and depth. This work was subsequently expanded 

(Ben-Menahem et al., 1969, 1970; Singh and Ben-Menahem, 

1969; Ben-Menahem and Singh, 1970; Wason and Singh, 1972) 

to include the computations for the displacement and 

strain fields everywhere on the surface of a homogeneous 

sphere induced by an internal dipolar source of finite 

size. The results for a sphere were shown to be quite 

different than that expected in the far-field half-space 

problem. 

Stress Pulse Theory. This approach has seen limited use 

in explaining elastostatic phenomenon. Kasahara (1957) 

devised this method to model the mechanism of an earth­

quake as a distribution of stresses or strains imposed on 

an underground plane. When the conditions of elastic 

equilibrium are satisfied, the deformations at the surface 

can be calculated. He models an infinite strike-slip 



-18-

fault with a zone of constant stress extending to a given 

depth. The faulting occurs by the liberation of this 

initially applied shear stress. Horizontal displacements 

were calculated for various depth extensions and compari­

sons were made to actual faults. By examining the diminu­

tion of horizontal displacement with distance, the depth 

of extension of this constant stress zone is determined. 

This mechanism is extended in a second paper (Kasahara, 

1959) to include non-vertical strike-slip faults. The 

static mechanism presented by Kasahara is analogous to 

the stress pulse problems encountered in dynamical formu­

lations of seismic sources. Minster (1974) describes the 

mathematical nuances of this approach. 

Stress Relaxation Theory. A third method of determining 

the static deformation from a model of an earthquake is 

obtained through an entirely different approach to the 

theoretical problem. The methods considered thus far are 

all based on relations in which conditions on various 

boundaries are imposed (boundary-value problems). 

Archambeau (1964, 1968) has proposed an alternative mech­

anism of describing the processes which accompany the 

occurrence of earthquakes -- that of material failure. 

This theory is devised in the context of an initial-value 

problem in that a medium is assumed to be initially in 

some prestressed state. Deformation in the medium is 



-19-

caused by introducing some surface, or volume, within the 

medium where the material fails. This failure is accom­

plished by making a significant reduction in the shear 

tractions across the failure surface. The medium then 

responds by "relaxing" to a new equilibrium state by 

radiating the energy released from the local reduction in 

strain energy in the source region. This theory has been 

very successful in the dynamical regime, most notably in 

the prediction of far-field radiation patterns from earth­

quakes and explosions accompanied by tectonic release 

(Archambeau and Sammis, 1970; Lambert et al., 1972; 

Archambeau, 19 72) . Be cause of the theoretical comp le xi­

ties, this source formulation has not yet been directly 

applied to near-field static deformation problems. 

Minster (1974) has discussed from a mathematical 

point of view in some tletail the t;imilarities and differ­

ences between the various formulations of the earthquake 

processes. Although his approach is mainly based on 

dynamical considerations, he shows that in the static 

limit the general representation of the stress relaxation 

and stress pulse problems reduce to the displacement field 

as given by a generalized Somigliana dislocation along a 

surface of shear displacement discontinuity. This same 

proof was attempted by McGinley ~1969), but the arguments 

presented by Minster (1974) are much more complete. 
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Therefore, we may express the source in terms of a 

Somigliana dislocation without loss of equivalency from 

the other source descriptions. An approximation to this 

Somigliana source will be adopted throughout this thesis. 

Numerical Analogue. An altogether different approach to 

solving the forward problem for dislocations in an elastic 

half-space is afforded through the use of the finite 

element numerical technique. Use of this technique, which 

usually requires a large computing capability, enables 

solutions to be found to problems involving heterogeneities 

both lateral and vertical, and anisotropy just as easily as 

those involving a uniform homogenous, isotropic half-space. 

The mechanics of this method have been described exten­

sively in the engineering literature (Martin, 1966; 

Przemienieck~ 1968; Jenkins, 1969; Zienkiewicz, 1971). 

In this technique, the elastic half-space continuum is 

divided into geometric elements which are inter-connected 

only at a finite number of nodal points. It is at these 

nodal points that displacements, stresses, or forces can 

be imposed on the system. Concurrently, stresses and 

displacements at a distance removed from these disturb­

ances can only be measured at these nodal points. The 

solution to the system of simultaneous equations generated 

by a disturbance imposed on a given node is constrained 

by the boundary conditions relevant to the problem and is 
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solved numerically. Jungels (1973) gives a description of 

the adaptation of this method to the modeling of disloca­

tion fault surfaces. The reader is referred to this work 

for a summary of the intricacies of this numerical method. 

Jungels (1973) and Jungels and Frazier (1973) make a 

positive comparison between the calculated static dis­

placement field due to a dislocation in a uniform homoge­

neous elastic half-space calculated by the finite element 

method and by the conventional exact Green's functions 

techniques. Although this author had at his disposal a 

numerical code which would allow only the modeling of 

plane strain problems, i.e., faults of infinite length, 

more recent finite element numerical codes can accommodate 

problems involving finite dimensions in all directions. 

The great advantage of this method in calculating dis­

placement and strain fields from models of earthquakes is 

the ability to vary the elastic properties of the medium 

both over the fault surface and the source to observer 

path. This technique can be limited, however, by the 

sheer size of computer storage necessary to solve a prob­

lem in which the continuum must be very finely sampled 

in order to accurately approximate the continuum for the 

order of the disturbance being modeled. 
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2.3 Application of the Forward Problem toward the 
Explanation of Observed Static Data. 

As is obvious from the preceding discussion, much 

progress has been made toward the static modeling of the 

earthquake source. The state-of-the-art is such that now 

an accurate description of the static processes accompany-

ing faulting can be investigated. However, the inverse 

problem now remains. As the facility for calculating the 

displacement and strain fields from fault models became 

more sophisticated, a wider range of data came under 

scrutiny in trying to infer some information about the 

various parameters which affect the faulting process. The 

earliest attempt to extract source information from static 

data was applied to differential horizontal displacements 

measured near long vertical strike-slip faults. Kasahara 

(1957, 1959), Chinnery (1961), and Chinnery and Petrak 

(1968) tried to infer the depth and distribution with 

depth of dislocation faulting by fitting the rate of fall-

off of horizontal displacements measured parallel to the 

fault strike as a function of distance away from the sur-

face expression of the fault. A trial and error method 

was used to fit the data and to try to exclude possible 

faulting models. Press (1965) and Press and Jackson (1965) 

used Press' calculations to model the close-in vertical 

movements associated with the 1964 Alaskan earthquake. 
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These movements were modeled with a vertical dip-slip 

fault and an indication was sought as to the depth of 

faulting. A comparison of the calculated and observed far­

field residual strain steps was also undertaken. Singh and 

Ben-Menahem (1969) attempted to fit the same strain obser­

vations using their method for taking into account the 

earth's curvature. In both these studies, rio attempt was 

made to systematically vary the source parameters to 

achieve the best fit to the data. 

As displacement data for large earthquakes became more 

abundant and reliable, it became apparent that the simple 

fault models having a constant dislocation over the entire 

fault surface could not adequately represent the observa­

tions. Stauder and Bollinger (1966) first proposed that 

differential slip on the fault surface might provide a 

more realistic model to better fit the data from the 1964 

Alaskan earthquake. They approximated the differential 

movement by allowing the displacement on the fault, 6u, to 

vary piecewise along the direction of the slip. To do 

this, the total fault plane was taken to be a sum of the 

individual fault surface rectangles, each being weighted 

separately. Unfortunately, these authors used a rather 

simple source model representation in that it had differ­

ential movement only on a horizontal fault parallel to the 

surface. Furthermore, they gave no indication as to how 
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they arrived at their final model. One would guess that 

they used the trial and error method. 

Savage and Hastie (1969) and Hastie and Savage (1970) 

have described a quasi-inversion process to be applied to 

the fitting of earthquake static displacement data using 

the dislocation models for an arbitrarily oriented finite 

fault surface imbedded in a homogenous half-space. In 

these studies, these authors swept through predetermined 

sets of sensitive fault parameters fault width, dip 

angle, depth, and slip -- calculating the degree of fit to 

all the data for each model tested. The model which best 

fit the data in a least-squares sense was termed the opti­

mum model. These calculations seem to closely coincide 

with the Monte Carlo techniques used to find acceptable 

models of the radial distributions of the elastic param­

eters within the earth as described by Press (1968, 1970, 

1972). In these cases a reasonable fit to the data was 

obtained, especially in the case for the Fairview, Nevada 

earthquake. Fitch and Scholtz (1971) later extended this 

work to some degree. However, the dislocation model used 

in these cases was highly idealized in that it was 

restricted to the Volterra type dislocation in which the 

slip was constant over the entire dislocation surface. 
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2.4 Construction of the Pseudo-Somigliana Dislocation 
Static Model . 

Since it has been shown that the fault geometries can 

be more complicated than just plane rectangular surfaces, 

some means must be derived to allow in our mathematical 

representation of the faulting process for these complica-

tions. Complications to the simple models can occur in at 

least two ways. The first complication is that we wish to 

be able to allow the dislocation to take on arbitrary 

values as a function of position over the fault surface. 

Secondly, the fault surface may not be a single rectangular 

plane. Both of these complications can easily be repre-

sented approximately by discretizing the dislocation sur-

face. That is, we want to approximate a curved fault 

surface by a series of planar surfaces juxtaposed in such a 

manner as to approximate the curvature of the surface to be 

matched. Curvature, or splaying, could be thu~ modeled in 

any direction. An example of matching curvature in the 

horizontal direction could be envisioned by a model of the 

San Andreas fault which includes the region of the bend in 

southern California. Here a series of plane vertical rec-

tangular surfaces could be concatenated horizontally to 

match the observed curvature. Similarly, a dipping thrust 

fault in which the dip varies with depth could be approxi-

mated by a series of rectangular sheets positioned verti-

cally to make a contjnuous surface in which the dip could 
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change discontinuously between fault elements. Examples of 

modeling dipping thrust faults in this manner is given in 

later chapters. 

With this same scheme, the dislocation could be 

allowed to differ on each of the surface elements which 

comprise the total dislocation surface. Restriction on 

the variance of the source parameters from one surface 

element to the next would have to be imposed to keep the 

problem physical. 

2.5 Linearization of the Forward Static Problem. 

The net displacement or strain field at the surface, 

or at any point off the dislocation surface could be cal­

culated separately for each of the individual segments 

using one of the forward problem formulations discussed 

earlier in this chapter. The total elastostatic field at 

a p<:irticular observation point would be a simple sum of the 

individual contributions from each of the comprising 

elements. 

We wish to pose the problem in such a way as to be 

able to write down a succinct relationship between the 

values of the source parameters and the data functionals 

which we compute from the forward problem calculations. 

Suppose that we calculate the values of the elastostatic 

field at a single point exterior to the dislocation sur­

face of our chosen fault model system which is made up of 
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M different variously-oriented dislocation surface ele-

ments. Consider that the elastostatic field can be 

described by N field variables, preferably those for which 

we can observe in the field following an earthquake. 

Suppose that there are L source parameters which can be 

linearly related to the elastostatic field through the 

forward problem formulations. Then this relationship is 

given through the system of linear equations 

for i = l,N. ( 2. 3) 

In these sets of equations di are the calculated elasto­

static field functional values, mj are the values of the 

linear model source parameters, and the coefficients Aij 

are the elastic media response of a particular data func-

tional due to a particular fault surface element having a 

unitary source strength for the linear parameters. These 

coefficients are in general a function of position. If we 

treat the components of mj and di as elements of a column 

and row vector respectively and if we put the coefficients, 

Aij' in standard matrix form where the matrix has L·M 

columns and N rows, we can express (2.3) in the following 
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matrix notation, 

Am=d. ( 2 • 4) 

The model components of m are contained in the vector 

L·M space E and the data functional components are con-

tained within the vector space EN The matrix, A, can be 

considered a vector operator which maps EL·M into EN. 

We have been careful in this construction to limit 

ourselves to problems where the source parameters in the 

L·M space E can be linearly related to the calculated 

elastostatic field functionals in space EN. This strictly 

linear relation is valid for only a few source parameters 

in special instances. If the forward problem is to be 

solved by the analytic closed form Green's function solu-

tions, for example equation (2.2), then we have to impose 

the Volterra restriction 

Llui(P) = constant. 

With this restriction we can write 

= flu. ff k d W •• (P,Q)v .d~ 
onµ I lJ · J 

and the problem is now linear with respect to slip in the 
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ith direction on the individual dislocation surfaces. In 

general, the solution cannot be so easily linearized with 

respect to other parameters which characterize the dis-

location source-fault length, dip angle, depth, position, 

etc .. An examination of the forward equations given by 

Mansinha and Smylie (1971) is convincing in this respect. 

Fortunately, by numerically evaluating these expressions, 

we can show that they are locally linear. The extent of 

the locally linear domain varies from source parameter to 

source parameter and also with the absolute value of the 

source parameter. If sufficient care can be paid to these 

details, the problem can be approximately linearized for 

all the source parameters listed above. The linearization 

can be accomplished in the following simple way. 

The degree of linearity or non-linearity of the 

forward problem functionals for the various source param-

eters will be model dependent, that is, it will vary from 

source model to source model. If we wish to describe the 

linear domain in a field about some chosen model, m 1 , we 

choose some other source model, m2 , "near" m1 such that 

the following equation can be written 

A om = ad + ( 2. 5) 
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The following definitions have been applied: 

om = ( 2. 6) 

od = ( 2. 7) 

d(mi) is the elastostatic field for a particular source 

model mi. The problem is linearized only if om is 

sufficiently small for equation (2.5) to hold. The con-

ditions for linearity discussed here are equivalent to 

requiring the forward problem functionals to be Frechet 

differentiable with respect to the source parameters. 

If we calculate the forward problem for a source 

model description which we think will reasonably approxi-

mate the observed static field functionals, call this 

model ms' then for small perturbations about this model, 

oll\5, an approximate linear relationship between the two 

vector spaces is established. This is to say that the 

coefficients of' Aij are linear. We note here that in 

general, the coefficients of A .. are not independent of 
lJ 

the model ms. Indeed, their dependence is a measure of 

the non-linearity of the operator coefficients in the 

region of the model space being sampled by the test model 

m . The perturbations, om , must remain small in the sense s s 

that they are approximately linear throughout this region. 
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In our matrix notation the forward problem is now written 

A~ = (2.8) 

2.6 Derivation of the Stochastic Inversion Operators. 

Introduction. This section addresses the problem of ob­

taining the best estimate of the source parameters charac­

terizing a fault model given a suite of observations which 

can be linearly related to the faulting process. The 

problem here follows closely that encountered in the 

studies regarding the estimation of the radial distribu­

tion of velocity and density within the earth. In this 

area of research, much theoretical progress has been made 

in the last six years in the treatment of inversion 

schemes to estimate these distributions. Perhaps the most 

successful and certainly the most elegant of these schemes 

falls in the general category of stochastic inversion 

theory. This theory, which will be applied to the treat­

ment of elastostatic problems in this thesis, attempts to 

give the best estimate of a discretized approximation to 

the continuous faulting process when a limited amount of 

data is obtainable. As pointed out by Jordan (1972), the 

inverse problem when posed in this manner usually has no 

unique solution. However, the solution that is obtained 

is unique in certain respects, as will be discussed later. 
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Furthermore, the stochastic approach allows for the in­

clusion of inaccuracies in the estimation of the elasto­

static field observations. How these inaccuracies affect 

our model estimations will be fully explored in the 

chapters devoted to the application of this theory. 

The fundamentals of the theory for the solution of 

the underconstrained linear inverse problem for data that 

contain certain amounts of "noise" have been presented by 

Backus and Gilbert (1967, 1968, 1969, 1970). Jordan and 

Minster (1971) and Jordan (1972) incorporated portions of 

the Backus-Gilbert theory with the purely stochastic 

theory of Franklin (1970) to present a quite complete 

approach to the solution of this type of problem. The 

theory as applied here to static problems is essentially 

that due to Jordan (1972), and an attempt has been made 

to follow his notation throughout this thesis. Sophisti­

cated discussions as to the validity of this type of in­

verse and the mapping functions of the operators are given 

in this reference. The derivation of the stochastic 

inversion operators below are given only in the context as 

to how they apply to the elastostatic problem. In the 

derivations, for reasons of simplicity the notation used 

is for a linear problem. If applied to non-linear problems 

that have been linearized in the procedure discussed above, 

the difference vectors defihed in (2.6) and (2.7) are 
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merely substituted for the true model and elastostatic 

field vectors. 

Derivation. Consider the problem of determining some M­

dimensional vector model, m, contained in the space EM, 

given a N-dimensional elastostatic field vector, d, in the 

space EN. The elastostatic field values are related to 

by the system of linear equations 

M 

LAijmj = di 
j=l 

In matrix notation 

Am=d 

i = 1, N . (2.9) 

(2.10) 

where the operator A solves the forward problem for each of 

the N elastostatic field values contained in d by mapping 

EM into EN. Thus for every model m there exists some 

unique determination of d where 

d = d (m) . (2.11) 

If we take the actual field observations which are measured 

following the occurrence of an earthquake to be in vector 

form, do, and these measurements are made perfectly with no 
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inaccuracies, then 

d
0 = d (m) . (2.12) 

Assuming, of course, that the formulation of the forward 

problem will exactly determine the elastostatic field 

values. However, if there are any inaccuracies in the 

observed field values, then these observed values, d
0

, can 

be written as a combination of the projected field values 

plus some measure of the uncertainty in these observations, 

= d(m) + n (2.13) 

or by substitution from (2.10) 

Am= d
0 - n . (2.14) 

Here n is a vector containing the components of the "noise" 

in the observed field data. We assume that this noise is 

randomly distributed in a Gaussian fashion and that any 

bias to the data is removed before the noise is estimated. 

Each component, d0 , is assumed to be the mean of a 
i 2 

Gaussian random variable with variance, cri. We can define 

a diagonal variance operator, cnn' to be 
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0 

0 

cr 2 
N 

' (2.15) 

2 where cri is the estimated variance of the ith data value. 

In assuming this diagonal form, we are implicitly assuming 

that there is no co-variance between data. 

Since the only information that we have about m is 

contained in (2.14), we know nothing about the components 

of mwhich lie outside the spaceRSEN which is spanned by 

the base vectors of R. It is reasonable to require that 

our estimate of m, call it~' lie totally within the sub-

space R; then we can assign a non-zero value to only those 

components for which we have information. Under this 

restriction, we can write 

m= (2.16) 

for some vector b contained in the vector data space EN. 

* In this last equation, we are using the notation A to 

represent the transpose of the matrix A. This convention 

will be used throughout this thesis. To select an optimal 
...., 

b, call this b, we wish to minimize a suitable quadratic 
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measure of the errors involved in this estimation. We 

choose to minimize some weighted sum of two measures of 

the errors involved in this problem. This weighted sum can 

be parameterized by a trade-off curve between these two 

errors, with the position along this curve used as the 

parametric factor. Specifically, we want to minimize 

(2.17) 

where 

(2.18) 

and 

2 (b) b* cnn b E2 = (2.19) 

2 The first measure of error, E1 (b), is the square of the 

Euclidian norm, defined by 

11 x 11 2 = 
M 2 L xi ' 

i=l 

of the difference between our estimate of the model, rn, 

and the actual vector we are estimating. This quantity 

decreases as we more closely approximate rn. The second 
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measure of error associated with b arises from uncertainty 

in the components of d 0 . This quantity decreases as our 

estimate becomes more reliable. The parameterization 

angle, e, is allowed to vary on the interval [0,TI/2], so 

that at e = TI/2, E~(b) is minimized, indicating maximum 

reliability of the model. At e = O, Ei(b) is minimized, 

indicating maximum accuracy in the estimation of the model. 

We note here that these two errors are measured with 

two different norms, each in the model space. We must 

establish some common norm on each of these errors so that 

the parameterization of the sum of these errors can be 

accomplished. This normalization is performed through the 

introduction of a correlation operator, \V. This correla-

tion operator can be thought of simply in terms of a 

weighting function for the various model components. The 

norm of this operator is fixed so that at the critical 

point on the trade-off curve between the two types of 

errors, at e = TI/4, the absolute value ·of the two errors 

are equal. 

For the present, we assume that the correlation 

operator, \V, is the idemfactor, I , so that this effect can 

be ignored in our minimization calculations. The results 

of this minimization then will be generalized to include 

an arbitrary correlation operator. 
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2 In order to minimize e: (0,b) given in equation (2.17), 

we take ob to be a small arbitrary perturbation of b. To 

first order in ob we can write 

Performing this first order perturbation on equation (2.17) 

we find that 

2 * * oe: (8,b) = 2[bAA- mA]ob cos(e) + 2 bC ob sin(e) . nn 

In order to minimize e: 2 (e,b), we set oe:(8,b) = 0. When 

this is done, we see that ob truly is an arbitrary pertur­

bation, and e: 2 (e,b) will be stationary if and only if 

* (AA+ tan(e) Cnn)b =Am. (2.20) 

It can be shown (Jordan, 1972) that this stationary point 

is a unique minimum, and the vector, b, which satisfies 

this condition is our optimum vector, b. 

If Cnn is non-singular, that is, each a2 
1 "I 0 , and 

e > 0, then the matrix (Al + tan(e) cnn) is non-singular 

and 

b= * -1 ( A A + tan ( e ) Cnn) A m (2.21) 
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In this last equation, mis unknown but by substituting 

from equation (2.10) we get 

(2.22) 

Substituting this optimal value of b into equation (2.16) 

we see that the optimal estimate of the model for a fixed 

value Of 8 Will be given by 

(2 .23) 

In the above results all components of mare equally 

weighted with the identity operator. A more general 

weighting can be introduced by considering a set {W. ;j =l ,M} 
J 

of non-zero positive weights for the model components. 

Let us define this weighting, or correlation matrix, in the 

following manner, 

w = 

0 

0 

. 
w2 

M 



-40-

This leads us to define a normalized elastic media response 

operator 

A' =AW (2.24) 

With this normalized definition, equation (2.10) is now 

written 

(2.25) 

Following the same procedure as before, we require 

m= A
1
*b (2.26) 

and minimize 

2 '* 2 ·* Ew(e,b) = I Im- A bl lw cos(e) + oCnnb sin(a) 

where I I· I lw is the weighted norm defined by 

I IZI I~ = z*w-1 z = 

This weighted norm, of course, reduces to the Euclidian 

norm if W. = 1 for all i = l,M. The minimization of 
l 

2 EW(8,b) with respect to a variation of b proceeds as before. 

The results are 

m= w A* (AW A* + tan (a) C )-l d
0 nn (2.27) 
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Now since there are uncertainties in the observed 

elastostatic field, the best estimate of the model, m, is 

some filtered average of the true model, m, given by 

m=Rm (2.28) 

This averaging operator, which contains the response ker-

nels for the elements of m can easily be found by substi-

tuting for d0 in equation (2.25). Performing this substi­

tution in equation (2.27) we obtain 

,..., 
m = WA*c AWA* + -l tan ( a ) Cnn) A m 

or by inspection from equation (2.28) 

R = * * -1 W A C AW A + tan C El) C ) A nn (2.29) 

Individual rows of this operator contain the averaging 

of the estimated values of the individual model components 

with respect to the other model components. This averaging 

is taking place in a sense that the estimation of the ith 

model component is actually the true value of this component 

"convolved" in the model space with the function defined on 

the model space by the components of the ith row of the 

averaging operator. If a particular model component is 

perfectly determined, say the ith value, that is, its value 

is perfectly resolvable, then Rii = 1 and all other Rij = O. 
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In the limit of infinite resolution on all model com-

ponents, that is, either a = O or 1C = O, the averaging nn 

operator approaches the idemfactor, I. 

By similar substitutions, we can express equation 

(2.19) as 

2 * e::
2

(e,b) = mV(e)m ( 2. 30) 

where we have defined a new operator 

V(8) = w KCAW K + cnn tan(8))-l cnn( AW;+ 

Cnn tan ( a ) ) -l A W 
(2.31) 

This operator is termed the variance operator. Examining 

equation (2.30) we see that the bilinear product of this 

operator and the model components is a measure of the error 

induced from the data space, through the variance matrix 

Cnn' into the model space. Since we are assuming that the 

errors exhibited in Cnn are normally distributed, we can 

determine the following about the errors induced from the 

data space due to inaccuracies in the description of the 

elastostatic field into inaccuracies in the estimated 

source model parameters. Use of this operator does not 

tell us the absolute inaccuracies of our estimated model 
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per se; instead, it can only tell us whether or not a 

certain perturbation in the model is resolvable to a cer-

tain degree by the data. So in practice, we have to 

prescribe a perturbation vector on our source model and test 

to see if the data can "see" this perturbation. This 

ability to distinguish model perturbations by the observed 

data will depend directly on the accuracy of the data. The 

more accurate the data, the smaller a model perturbation 

these data will be able to detect. Since we are now map-

ping errors in the opposite direction to that defined in 

equation (2.30), clearly the inverse of this operator is 

the projection that we desire. Since the errors are 

induced in directions along the eigenvectors of V(e), then 

we choose to take the inverse of this operator as the 

generalized inverse given by 

( 2. 32) 

Here we are assuming that V(8) has a total of J non-zero 

eigenvalues (A~, i=l,J) with the associated eigenvectors ui. 

* The notation ui•ui indicates an outer-product expansion 

between the two vectors u1 and u~. Since Vt(e) is a 

generalized inverse of V(e), then the inner product of 

V(8) and Vt(e) is not necessarily the identity operator 
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but rather some projection operator, P that is both v 

* idempotent (P P = P ) and symmetric (P = P ) . v v v v v 

In particular, some vector perturbation in the model 

space, q, is resolvable to within a certain confidence 

limit, to which we can assign some confidence coefficient 

k(c), if the following inequality holds. 

( 2. 33) 

For example, for the 95% confidence limit, k(c) can be 

found in any good statistics reference to be 1.96. 

A two-dimensional geometrical argument will illus-

trate the use of equation (2.33). Assume that the errors 

induced from the data space onto the model space by the 

variance operator (eigenvalues of this operator) are o 2 

ml 
and o 2 . (This variance should not be confused with the 

m2 
data variance defined in equation (2.15)). These errors 

A A 

lie along the eigenvector directions, x1 and x2 respec-

tively. Now if a vector x has components along these 

directions then the equation 

* t x v x 

can be written out 

2 2 
xl 

+ 
x2 

-2 7 am 
1 m2 

k2 = . 
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This is just the equation of an ellipse whose semi-major 

axes are ka and ka 
ml m2 

This ellipse, or hyper-ellipsoid 

when this argument is extended to higher dimensions, is 

called the confidence ellipse. The enclosure of this 

ellipse represents the area of unresolvable model pertur-

bations, and the area exterior to the ellipse represents a 

model perturbation which is large enough to be resolvable 

by the data at a certain confidence limit associated with 

the axis parameter k. By making k larger, we are increas-

ing the confidence limit and increasing the size of the 

confidence ellipse thus requiring larger model perturba-

tions before they can be detected by the data at that con-

fidence limit. In order to check the resolvability of a 

given model perturbation, we choose our value of k (say 

1.96) and merely test to see if this vector protrudes the 

confidence ellipse. We note here that this resolvability 

criterion depends only on relative perturbations to the 

source model parameters and not on the absolute configura-

tion of the final or optimum model that we obtain from the 

inversion process. Thus we have to propose a hypothetical 

perturbation,or a series of perturbations, judiciously 

chosen to explain or disclaim certain features of our 

model, and expose them to this testing procedure. Only on 

this basis can we determine the limits the model source 
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parameters can take and still fit the observed elasto­

static field. The power of this operator becomes apparent 

when applied to actual problems as we shall see in later 

chapters. 

2.7 Discussion. 

In this chapter we have discus.sed the development of 

methods of obtaining an accurate representation of the 

forward elastostatic problem for a given description of 

the faulting process. We have reviewed the early uses of 

these forward formulations in attempting to deduce source 

parameters which can characterize a given event. A method 

was suggested by which a more complicated and arbitrary 

static dislocation function could be approximated with the 

formulations derived from simple dislocation sources. It 

was found that by making possible a more complex static 

source description some means must be used to systemati­

cally relate the observed elastostatic phenomena to the 

media response from the various source parameters. The 

stochastic inversion scheme provided an ideal means to 

give the best estimates to the solution for the usually 

underdetermined static problem. By use of this inversion 

scheme, we can benefit from the use and knowledge of the 

various operators which fall out of the derivations. These 

operators deal with the errors in both the observations and 

those in our solutions. Quantitative appraisals of the 
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decency of a given solution to a particular static problem 

become available through the use of these operators. 

For the special case of 6 = O, equation (2.23) is 

commonly known as the generalized inverse. For this case, 

Noble (1969, p. 143) has shown through the method of 

Lagrange multipliers that the generalized inverse also 

minimizes the norm of m. We can think of this as physi­

cally giving the longest wavelength, or smoothest model 

solution, for a given set of data. In elastostatic prob­

lems, this property is especially valuable, since we would 

expect the displacement on a fault surface to locally vary 

in some fairly smooth fashion. 

By combining all of the formalisms discussed in this 

chapter, we should be ab le to take a formidable advance in 

our understanding of the static processes which accompany 

earthquakes. The theory discussed here will be applied to 

data from actual earthquakes in the following chapters. 
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Chapter 3 

A Static Dislocation Model of the 
1964 Alaska Earthquake 

3.1 Introduction. 

The Alaska earthquake of 28 March 1964 which was 

centered near Prince William Sound was probably the largest 

seismic event in North America this century. The magni-

tude of this event has been estimated to be between 

M = 8.3 to M = 8.6. With the possible exception of the 
s s 

1971 San Fernando, California earthquake, this earthquake 

has been the most intensely studied occurrence in the 

history of geophysics. The regional deformation accompany-

ing this event involved changes in land level of unprece­

dented areal extent, encompassing some 200,000 km2 . The 

residual vertical displacements produced were measurable 

geodetically along a 400 km profile approximately perpen­

dicular to the Gulf of Alaska and approximately 800 km 

adjacent and parallel to the coastline. Yet despite the 

importance that this earthquake had on the tectonic 

character of the affected region and the importance of the 

contributions that the data from this event provided toward 

an increased scientific understanding of the origin of 

earthquakes, considerable controversy still surrounds the 

exact source mechanism. It is hoped that the results from 
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this chapter will help allay some of this controversy. 

3.2 Fault Representation. 

Since the first studies of the '1964 Alaska earthquake, 

the main focal mechanism and the accompanying sense of 

motion have remained somewhat of a controversy primarily 

because of the ambiguity of the fault plane solutions 

based on P-wave first arrival data. The two contesting 

mechanisms are one having the geometry of a nearly verti­

cal reverse fault, and the other a low angle thrust fault. 

Figure 3.1 shows a profile extending from the southeast to 

the northwest approximately bisecting the elongated area 

of deformation. This cross section corresponds to profile 

BB' shown in Figure 3.2. In Figure 3.1 we have diagrammat­

ically represented the two possible fault plane mechanisms 

and their relation to the hypocenter, shown at the inter­

section of these two planes. The representative geometry 

that we choose to explain in detail the static fields 

which accompanied this earthquake must be in reasonable 

compatibility with the geometry necessary to explain the 

following observed or calculated entities: 

1) epicenter location and hypocentral depth 

2) P-wave first motion polarities and S-wave 

polarizations 

3) aftershock distribution 

4) radiation patterns of long period Love and 
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Figure 3.1. Schematic diagram of the two possible nodal 
planes and the relative dislocation on each. The hypocenter 
of the main shock is located at the intersection of the 
two planes. 
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Figure 3,2. Regional deformation that accompanied the 
March 28, 1964, Alaska earthquake. Cross section used in 
this study is labeled BB'. The Patton Bay fault is 
indicated as the axis of uplift. Figure is from Plafker 
(1967). 
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Rayleigh waves 

5) geological reasoning for faulting -- island arc 

implications 

6) near field displacements. 

We will briefly review the geophysical literature for 

supportive arguments to favor one or the other of the pro­

posed mechanisms. We will then adopt a model which we 

think will best fit all of these criteria. 

The hypocentral depth for the main event was first 

given to be about 20 km, and in later calculations with 

the inclusion of more data the depth was restricted to 33 

km. (This restricted depth is the standard depth assigned 

a shallow event when the depth determination algorithm 

does not converge, or else converges to a negative depth.) 

No depth sensitive phases, such as pP or sP could be 

positively identified on records of the main shock. A 

reasonable assumption would be to place the depth as lying 

between 20 km and 50 km. The hypocenter certainly was not 

deep as evidenced by the large amplitude surface waves 

generated by this earthquake. The epicenter of the main 

shock was located by Sherburne et al. (1969) and von Hake 

and Cloud (1966) to be near the north shore of the Prince 

William Sound on the small peninsula separating College 

Fiord and Unakwik Inlet. The coordinates of the epicenter 

are given as 61.04° + 0.05° north latitude and 147.73° 
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+ 0.07° west longitude. 

The focal mechanism for the first motion of this 

earthquake has been studied by a number of authors 

(Algermissen, 1964, 1965, 1966; Harding and Algermissen, 

1969; Berg, 1965; Stauder and Bollinger, 1966). These 

studies show only one fairly well-defined nodal plane. 

There is some slight ambiguity in the exact orientation of 

this plane due to non-impulsive, or emergent P-wave first 

arrivals at a number of key stations, but this is a second 

order effect. The preferred orientation of this nodal 

plane is given to be strike N 62° E, dip 82° S. The defi­

nition of the second nodal plane is limited because of the 

almost total lack of geographical control in the station 

locations. Berg (1965) attempted with limited success to 

determine the orientation of this second nodal plane by 

observing a dilatation at one station, Yellowknife, Canada. 

The location of this station is critical in defining this 

second nodal plane. The orientation of this plane has been 

estimated to give a dip of 26° to the northeast. This 

unfortunate distribution of stations to the north of the 

epicenter precludes the identification of the nodal plane 

that would be present due to a low angle thrust, although 

the plane has been restricted by the data presented by 

Stauder and Bollinger (1966). These authors conclude that 

the second nodal plane can have a dip varying from less 
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than 25° to the northeast through 5° to the northwest to 

less than 60° to the southeast. S-wave polarization studies 

suffer from the same restriction in the station distribu­

tion respect. The results from the S-wave polarization 

angle study by Harding and Algermissen (1969) indicate that 

for a double couple type source on a nearly vertical fault 

the required motion to fit the observed S-wave polarities 

would be predominantly strike-slip. 

One suggestion that must be kept in mind when trying 

to interpret the orientation of the nodal planes from first 

motion data is that presented by Wyss and Brune (1967). 

These authors suggested that the faulting which occurred 

over the entire segment involved a complex multiple rupture 

mechanism. If this mechanism is in fact the way the fault­

ing took place, then the initial motion at the hypocenter 

can have little, if any, bearing on how the faulting pro­

ceeded as a whole. 

One clue as to the possibility of deciding which type 

faulting took place is given by examining the spatial dis­

tribution of aftershocks. Algermissen et al. (1972) present 

just such data for over 2,000 locatable aftershocks. 

Special attention was given to a sub-set of this aftershock 

location data which were well located and contained posi­

tively identifiable depth phases. These events showed that, 

especially in the vicinity of Prince William Sound, the 
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aftershocks were shallow. In fact, approximately 62% 

were located at depths less than 20 km with only 1% of the 

events located at depths greater than 40 km. This depth 

distribution of aftershocks suggests that most or all of 

the faulting was confined within the crust and perhaps the 

top of the upper mantle along the continental margin. 

These authors depict the foci of the aftershocks located 

in this area under consideration as defining a plane which 

dips at a shallow angle (4°-6°) under the continental block. 

Focal mechanism studies of the aftershock by Stauder and 

Bollinger (1966) delineate a fault plane some 600 km in 

length and at least 200 km in width having an average dip 

of about 10°, while the main shock had a depth of focus of 

between 20 and 50 km and had a body wave nodal plane solu­

tion dipping between 10° and 15°. 

The outer limits of the aftershock region appear to be 

very well defined and the region is not confined along the 

surface trace of the postulated steep-fault model. The 

aftershocks lie mainly in a broad belt roughly paralleling 

the continental margin mostly falling in the area of mapped 

or inferred major uplifting. The aftershock zone is not 

eve~ approximately centered on the epicenter of the main 

shock. 

Surface wave studies of this earthquake have been 

limited to long period multiple Love and Rayleigh waves due 
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to the tangled complexity of the large amplitude records 

at the WWSSN stations .. With only few exceptions, the first 

multiples to be fully recovered have been the R4 and G4 

wave trains. These signals have been analyzed in two 

different, but hopefully equivalent, ways. Toksoz et al. 

(1965) and Ben Menahem et al. (1972) used the spectral 

phase and amplitude equilization method while Kanamori 

(1970) used a time-domain analysis. For a simple point 

double couple source, the radiation patterns for surface 

waves for the two contesting fault orientations are approx­

imately equivalent. However, if the source has some 

finiteness as exhibited by propagating in a given direc­

tion then asymmetries in the Love and Rayleigh wave ra­

diation patterns are introduced. As pointed out by Savage 

and Hastie (1966, p. 4899-4900), the asymmetries between 

Love and Rayleigh wave radiation patterns will be different 

only if the rupture propagation is not along the null 

axis. If rupture does take place in a direction away from 

this axis then there is a possibility of distinguishing 

uniquely the two fault orientations. Because of differ­

ences in azimuthal coverage, Ben Menahem et al. did not 

detect any asymmetries in his radiation patterns while 

Kanamori did. Kanamori interprets this asymmetry in 

terms of a measured component of rupture propagation 

normal to the strike of the fault. His solutions favor 
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the low-angle thrust mechanism and his model is compatible 

with the long period surface waves radiation patterns for 

a fault dipping at about 20°. 

Plafker (1965) uses his interpretation of a vast 

quantity of field observations in the area of deformation 

to argue rather forcefully for the low angle thrust mechan­

ism. These arguments will not be repeated here but are 

based mainly on the large displacements in relation to the 

focal mechanism studies and the spatial distribution of 

aftershock seismicity. Plafker (1972) extends much the 

same arguments for a low angle thrust fault.in the context 

of being consistent with the mechanism expected for island 

arc tectonics (!sacks et al., 1968; Stauder, 1968). He 

concludes that the earthquake occurred as shear failure on 

a fairly complex major low angle thrust fault, or mega­

thrust, that dips from the vicinity of the offshore trench 

to beneath the continental margin. The overthrusting is 

interpreted in terms of elastic rebound resulting from the 

progressive underthrusting of the oceanic crust and mantle 

beneath the continental margin prior to 1964. This mech­

anism is consistent with Benioff's (1954) theory for 

oceanic trenches and associated mountain ranges. 

On the basis of modeling the observed vertical dis­

placements, Press and Jackson (1965) and Press (1965) 

attempted to demonstrate that the observed uplift and 



-58-

subsidence could be accounted for by about 10 m of con­

stant dip-slip motion on a vertical plane extending from 

a depth of about 15 km down to a depth of 150 km or more. 

These authors did not include in their data set all verti­

cal displacement points available. Savage and Hastie 

(1966) and Hastie and Savage (1970) got better results 

trying to fit the same data with a low angle thrust fault 

with about 10 m of constant displacement over the entire 

surface. Savage and Hastie showed that the vertical re­

verse fault model geometry placed the zone of maximum sub­

sidence too close to the zone of maximum uplift, whereas 

for the low angle thrust geometry, this observed lack of 

symmetry in the vertical displacements is approximately 

satisfied. Stauder and Bollinger (1966) accomplished a 

more realistic modeling of the displacements on a hori­

zontal thrust fault on which differential movement on the 

fault surface was allowed. These authors tried to include 

the effects of local or subsidiary faulting on Montague 

Island (see Figure 3.2). The local faulting shows a 

dominance of vertical slip and has been described by 

Plafker (1965) and Grantz et al. (1964a,b). Stauder and 

Bollinger (1966) model this secondary fault as a constant 

dip-slip dislocation on a vertical surface directly 

beneath Montague Island. 

Additionally, the low angle geometry is preferable in 
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describing the behavior of the observed extensive hori­

zontal surface deformation as reported by Parkin (1966). 

The sense of this deformation is mainly consistent with the 

seaward overthrusting of the continental block. This 

direction of motion is especially predominant in the area 

between the Kenai Mountains and the offshore islands. 

However, we see from Figure 3.1 that we would intuitively 

expect the horizontal displacements to be in the opposite 

direction if the steeply dipping reverse faulting mechanism 

were adopted. Thus we have decided to adopt the low angle 

thrust geometry for our fault model in explaining the 

surface displacement data because it seems most consistent 

with the seismic, geodetic and geologic observations per­

taining to this earthquake. 

In each of these attempts in modeling the vertical 

displacements the formulation of a dislocation in a uni­

form elastic half-space was used (Green's functions 

solutions). Since this is a region where th~re is a large 

contrast in the juxtaposed crustal types -- oceanic crust 

underthrusting continental crust this uniform elastic 

half-space .approximation may not be appropriate. This 

approximation will be investigated later in this chapter. 

All of the above models are able to fit only the gross 

features of the zero-frequency data of this earthquake, 

not just because the earth's crust is not a unlfor~ elastic 
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half-sp~ce and the slip varies continuously along the 

fault plane, but also because the estimates of the fault 

offsets were not related to the observations in a system­

atic fashion. 

For this earthquake we will model the tectonic en­

vironment with a laterally heterogeneous geologic model. 

The finite-element formulation will be used to compute the 

static response of a structural model of the crust to a 

unit offset imposed on a series of nodal segments repre­

senting the fault, and the inversion technique will be 

used to invert any free-surface statical observations to 

obtain the proper linear combination of these offsets which 

will result in a computed movement of the surface which 

fits the observed data to some chosen degree of accuracy. 

Since the finite-element formulation used in this chapter 

is limited to solving problems involving plane strain 

elasticity, any displacement profile that is to be modeled 

correctly must be approximately free of fault end effects 

and movement due to strike slip motion. The effect of 

assuming an infinite length fault will be discussed in a 

later portion of this chapter. 

The structural model chosen for this study is given 

in Figure 3.3. The geometry is based upon that suggested 

by Plafker (1972) and Stonley (1966) as being the most 

consistent with the regional tectonic setting of the 
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earthquake, seismic refraction studies, and the earthquake 

distribution of the area (Tobin and Sykes, 1966). The 

region is modeled by four geologic provinces, and the 

elastic parameters for these units have been adopted from 

the seismic refraction work of Shor (1962) and Hales and 

Asada (1966) and the microaftershock array work of Matumoto 

and Page (1969). The seismic velocities given in these 

studies are essentially those of typical crustal and upper 

mantle material. The velocities and elastic parameters for 

these units are listed in Table 3.1. Superposed upon 

Figure 3.3 is the finite-element grid used in modeling the 

fault and accompanying dislocations. The grid represents 

an area that is 800 km long and 300 km thick. The figure 

shows the Pacific oceanic plate underthrusting the con­

tinental margin beneath the eastern Aleutian arc. The 

majority of the material modeled in this finite element 

grid is that corresponding to the oceanic upper mantle. 

Overlying the oceanic upper mantle is a 5 km thick zone of 

oceanic crust which also underthrusts the continent down 

to a depth of about 44 km. Just under the Alaska trench 

we have inserted a thin layer of typical oceanic sediments. 

The fault model which we have assumed is at the contact 

between the oceanic crust and the continental crust. The 

fault starts under the trench with a dip of about 6° and 

slowly increases its dip until at a depth of 28 km the 
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faul tis dipping at 12°. The dip continues to increase so 

that the dip is 15° at the hypocenter and reaches a maximum 

of 20° below the hypocenter. 

There are only two surface faults associated with this 

earthquake, both of which are exposed on Montague Island -­

the Patton Bay fault and the Hanning Bay fault. Geologic 

relations (Plafker, 1967) indicate that these faults are 

not major geologic boundaries but rather they are subsidiary 

to the zone on which the primary faulting motion took place. 

These faults can be considered as minor imbrications of the 

megathrust. Both of these faults have been mapped to strike 

approximately parallel to the continental margin and the 

fault motion is reverse thrust dipping fairly steeply to 

the northwest. The Patton Bay fault has a large component 

of dip-slip motion associated with its entire length, which 

extends for possibly as much as 450 km to the southwest 

(Plafker, 1972; Malloy, 1964, 1965). Reimnitz (1966) has 

inferred that this fault zone extends to the northeast of 

Montague Island to at least Hichinbrook Island some 50 km 

away. The strike-slip component is measured as being less 

than one meter on this fault so that the motion is almost 

totally dip-slip. Von Huene et al. (1967) carried out 

seismic and echo sounder profiles in this area between 

Montague Island and Kodiak Island. Their results indicate 

a long narrow zone of faulting with the vertical attitude 
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of the fault plane estimated to be 60°. By the observed 

deformation of the sea floor, they conclude that the motion 

was reverse slip along this steeply dipping plane that is 

inclined landward. This fault is included into the struc­

tural finite-element model as a reverse fault dipping at 

58° toward the continent. This fault terminates 

where it intersects the main thrust fault at a depth of 

about 25 km. The second subsidiary reverse fault observed 

on Montague Island, the Hanning Bay fault, was not modeled 

in this study because of the short length (6 km) of the 

fault. Another high-angle imbricate reverse fault has been 

proposed to break the surface between the Patton Bay fault 

and the Aleutian trench. This fault has been inferred to 

explain the large vertical displacements on Middleton 

Island. However, no direct physical evidence confirms the 

existence of such a fault, and it is not included into our 

model. In all, a total of 26 nodes in the finite-element 

grid were used to represent the megathrust and the Patton 

Bay fault, 21 nodal elements for the megathrust and 5 nodal 

elements for the subsidiary fault. 

3.3 Static Data. 

As mentioned in the introduction to this chapter, the 

crustal deformation accompanying this earthquake was very 

extensive. Plafker (1969) has described in detail the 

regional vertical and horizontal displacements. (See 
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Plates 1 and 2 in that paper for detailed contour maps of 

the ground deformation and the location of the observation 

sites.) The vertical displacements were based on a variety 

of methods of measurements, some of which would be reliable 

only if the net vertical deformation was large, as is the 

case for this, event. The great majority of the measurements 

involved measurements of the movements of the shoreline 

which meanders throughout the area of maximum deformation. 

These measurements include changes in tide gauge levels, 

measuring the change in the upper limit of barnacle growth, 

direct shoreline changes, etc .. Taken individually, these 

measurements cannot be given much reliability, however, 

when the entire mass of these observations is considered, 

including correlation between geodetically determined 

changes in bench mark levels, the data become quite in­

formative. Plafker (1969) discusses the acquisition of 

this data and the associated estimate of the errors in­

volved. 

Although the vertical displacements measured after 

this earthquake were large, the horizontal displacements 

appear to be even larger (Whitten, 1964, 1965). Unfor­

tunately, horizontal displacements do not lend themselves 

to the ease of facility of measurement as do the vertical 

displacements for this case. Parkin (1966) has described 

the retriangulation network that was occupied after the 
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earthquake. Horizontal displacements, generally in the 

direction of the seaward motion of the continent, of up to 

20 m were observed. Pope (1972) used these data to compute 

the components of strain on the surface. The surveys to 

determine horizontal movements are too poorly controlled 

and too easily subject to bias to enable a detailed quali­

tative inversion of the strains. 

In this chapter we will limit our inversion data set 

to vertical displacements only. The reason for this is 

that we consider the vertical displacement data to be much 

more accurate than other features of the tectonic deforma­

tion such as horizontal shortening, horizontal displacements, 

and changes in the local gravity field. The vertical dis­

placement data are taken from Plafker (1965, 1969). Since 

with this finite-element method we are limited to plane­

strain problems we will have to limit our data set to points 

that define a profile perpendicular to the strike of the 

megathrust. We chose our displacement profile to coincide 

with profile BB' in Plafker's papers (1965, 1969, 1972). 

Only one major surface fault intersects this profile, the 

Patton Bay fault on Montague Island. By choosing our cross 

section near the center of the large area of deformation, 

the vertical displacements are due almost totally to dip­

slip motion on the fault, thus contamination of the data 

set due to contributions from any strike-slip motion is 
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minimized. By choosing the profile in this position, any 

effects due to the finite length of the fault are also 

minimized. As noted above, only slight amounts of strike­

slip motion were observed along this cross section with most 

of it being on the subsidiary reverse faults found on 

Montague Island. This absence of large strike-slip motion 

over long lengths of the fault allows accurate plane-

strain modeling of the motions involved. We also restricted 

the data set to those vertical displacements that could be 

confidently projected onto this profile. Figure 3,4 shows 

this cross section and the positions of the data available 

for projection onto this profile. The maximum distance 

away from the profile of a data point was about 75 km, but 

about 90% of the available data points were within 40 km 

of the profile. A total of 47 vertical displacement data 

points were chosen along the profile which is defined for 

400 km from Middleton Island to 75 km northwest of Cook 

Inlet. Many more ,observations were available within the 

40 km swath on either side of the profile, however, only 

those points that were not near a curve in the contours or 

crossed a contour were acceptable to be projected onto the 

profile. The projection was done parallel to the contours 

as defined by Plafker (1969). This projection was very 

close (within 10° in most instances) to a perpendicular 

projection onto the profile, so that the relative location 
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Distance 
(km) 

101.0 
102.0 
182.0 
184.0 
184.5 
185.0 
190.0 
191.0 
192.0 
196.0 
207.0 
211.0 
212.0 
214.0 
219.0 
226.0 
229.0 
231.0 
232.0 
233.0 
235.0 
245.0 
247.0 
258.0 

Vertical 
Displacement 

(m) 

3.36 
3.40 
4.56 
4.72 
7.32 

10.88 
9.16 
7.92 
7.30 
5.48 
3.22 
2.68 
2.56 
2.36 
2. 32 
1. 88 
1.84 
1.72 
1.68 
1.56 
1. 48 
o.44 
0.50 

-0. 30 
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TABLE 3. 2 

Distance 
(km) 

259.0 
285.0 
289.0 
291.0 
298.0 
300.0 
304.o 
335.0 
339.0 
342.0 
346.0 
350.0 
351.0 
355.0 
359.0 
362.0 
373.0 
401.0 
409.0 
413.0 
418.0 
423.0 
454.0 
486.0 

Vertical 
Displacement 

(m) 

-0.28 
-1.20 
-1.28 
-1.40 
-1. 54 
-1.62 
-1.62 
-1.72 
-1.80 
-1. 75 
-1.70 
-1.64 
-1.59 
-1.52 
-1. 40 
-0.92 
-0.92 
-0.30 
-0.24 
-0.24 
-0.22 
-0.24 

0.00 
o.44 

Table 3.2. Observed vertical displacement data along 

profile BB 1 • 
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of the data points on this profile can be considered 

accurate to within about 5 km in the most unfavorable 

cases. The corresponding values of the individual pro­

jected data points on the profile are given in Table 3.2. 

These values and their respective locations along the pro­

file will appear in several later figures in this chapter. 

The origin of the profile is some 100 km southeast of 

Middleton Island. For reference, the most southeasterly 

data point on Middleton Island is 101.0 km from the origin, 

and the profile crosses the Patton Bay fault at a distance 

of 185.0 km from the origin (B'). The sources of the in­

dividual data points and their associated errors are dis­

cussed elsewhere (Plafker, 1969). In general, the data are 

accurate to within t 0.3 m, and this value was taken in the 

inversion calculations. 

3.4 Calculated Dislocation Model. 

The media response matrix, A, discussed in the pre­

vious chapter was calculated by the finite-element tech­

nique for the structural model shown in Figure 3.3. In 

this technique, the static displacement on the nodal seg­

ments at the free surface are linearly related to offsets 

imposed on the designated fault nodes. The displacement at 

every one of the nodal segments on the free surface due to 

a unit offset (1 m) on a specified fault node was calculated. 

This was then repeated for each of the nodes describing the 
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fault system. However, since the observed vertical dis-

placement data were only near 16 of the nodal segments on 

the surface, the response matrix was limited to those 

nodes. Thus we have defined the problem of estimating the 

static dislocation on 26 fault nodes given the permanent 

static offset of 16 nodal segments located on the free 

surface. This is precisely the type of problem that was 

discussed in Chapter 2 for which we formulated the sto-

chastic inversion scheme to solve. 
-/ 

In this problem, the operator A is a M x N matrix, 

where Aij is the displacement, calculated at the point on 

the surface where the ith data point is taken due to a unit 

dislocation of the jth nodal segment of the fault. Here 

M=26 and N=l6. Based on experience in calculating best 

model estimates by equation (2.27), it was found that much 

smoother, hence longer wavelength, solutions were calcu-

lated if the starting model was some "distance" in the 

model space away from the null model. Therefore we chose 

to use Stauder and Bollinger's (1966) estimate of the fault 

dislocation as the starting point for our inversion. This 

starting model turned out to be a good choice because the 

inversion scheme smoothly and quickly iterated convergingly 

to a final "best fit" model. Just to make sure that the 

final model that we obtained was not wholly dependent on 

the starting model that we chose, we then repeated the 



-73-

inversion using Hastie and Savage's (1970) fault disloca­

tion estimate as the starting model. The results were very 

similar to t.hat obtained before. We therefore feel that 

this final model is not very dependent on the starting 

model. 

The upper part of Figure 3.5 shows these vertical sur­

face displacement data plotted in profile and the calcu­

lated displacement at the surface nodes of the finite 

element grid. The fit to the observed data is extremely 

good with the calculated surface displacement field fitting 

the observed data used in the inversion to withJn a HM,'.-3 

residual of about 3-1/2 cm, and the fit to all the points 

in the data set is not far from this value. For accuracy, 

only those data points which were very near a surface node 

in the finite element grid were used. Thus, out of the set 

of 46 data points along the profile, only 16 points could 

be actually used in the inversion. An increase in the 

number of surface nodes in the finite element grid would 

probably not add to the resolvability or accuracy of the 

slip model, since the limitations in these quantities were 

the lack of spatial coverage of the data, not the lack of 

data used. The slip model from the inversion process is 

shown in the lower half of Figure 3.5. The maximum slip 

along the fault is 33 m at a point below Montague Island. 

A displacement of about 30 m is maintained over a fault 
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width of about 60 km, then decreases almost linearly at a 

rate of 0.3 m/km over the next 100 km as the fault depth 

increases. At more shallow depths, there is a plateau in 

slip of about 17 m, which would correspond to the fault 

surface between Middleton Island and Montague Island. 

However, the two data points on Middleton Island are very 

important in this model in that their values almost com­

pletely determine the amount of slip along the top 150 km 

of the fault. The resolvability of this plateau will be 

discussed below. The slip on the secondary fault is not 

shown in this figure, but it averages 4 mover its entire 

width with the static offset on the node at the surface 

constrained to be equal to that measured for the scarp on 

the Patton Bay Fault as reported by Plafker (1967). The 

fault offset profile on the main fault is similar in shape 

to that proposed by Stauder and Bollinger (1966) who used 

a much simpler fault model and ignored the effects of 

geology. 

Integrating the area under the slip versus fault 

width curve, we find that we have an average slip of 18.5 

m over a 260 km fault width. This slip is at least 50% 

greater than that predicted by Stauder and Bollinger (1966), 

Savage and Hastie (1966), and Hastie and Savage (1970). 

One check to see if the average dislocation is reasonable 

is to calculate the average moment and compare with that 
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obtained from long period seismic waves. This average 

moment is given by 

= u L w µ 

where u is the average fault offset (18.5 m), L the length 

(600 km), W the width (260 km), andµ is the average rigid­

ity of the region around the fault (3.1 x 1011 dyne/cm2 ). 

By using the rigidity of the continental crust, the mate­

rial in which most of the deformation takes place, we 

obtain an average moment of 0.9 x 1030 dyne-cm. Kanamori 

(1970) arrives at a moment of 0.75 x 1030 dyne-cm on the 

basis of long period (300 sec) multiple path Love and 

Rayleigh waves. At these long periods, the surface waves 

are sampling the entire fault width and thus should give 

a good indication of the average moment. These two values 

compare very favorably indicating that indeed there were 

very large displacements occurring along the fault sur­

face. B. Minster (personal communication, 1973), on the 

basis of a systematic inversion of world-wide plate motion 

data, states that the Pacific plate and the Alaskan contin­

ental block are moving relative to one another at a rate of 

about 6 cm/year at the location of our profile. 

The computed average slip on the fault leads to a recur­

rence time of an earthquake of this magnitude in this area 

of once every 300 years. However, if the central portion 
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of the megathrust with its average 30 m slip is used as 

representing the event, this gives a recurrence time of 

500 years. Plafker and Rubin (1967) obtain a repeat time 

of about 850 years for major events on Middleton Island 

based on the radiometrically determined dates of a set of 

uplifted marine terraces found on that island. However, 

Sykes (1971) has expressed great uncertainty about estima­

tions of recurrence times for major events in this region. 

Although not included in the data set for the inver­

sion, the measured horizontal displacement field was ex­

tensive. Parkin (1966) gives these horizontal movement 

vectors which are made with a free adjustment relative to 

a fixed station (Fishook station) located about 14 km 

north of Palmer, Alaska, an area that was then considered 

to be the most stable. This fixed station is 120 km north­

west of the epicenter of the main shock. As in the case of 

the vertical displacements, only those horizontal displace­

ment vectors near the profile line were chosen. There were 

23 of these vectors in the vicinity of our section. These 

vectors were projected onto the profile and their component 

of motion in the direction of the profile taken. The re­

sulting displacements are shown in Figure 3.6. The data 

points nearest the fixed station are the most accurate, 

being first order surveys, while the data on Montague Island 

are much less accurate, being based on third order 
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observations. The direction of motion for each of these 

points shown is to the southeast. The horizontal dis­

placement in this same direction is calculated from the 

best fit slip model discussed above and shown in the figure. 

These calculated points are translated relative to the dis­

placement at the node on which the observed apparent zero 

isobase is projected. The resulting displacements form a 

smooth curve except for the irregularity at the Patton Bay 

Fault. This irregularity is not resolvable in the data 

shown here. Even though these lateral displacements were 

not used in the inversion scheme, because of their lack of 

accuracy, the fit is surprisingly good. The model predicts 

a movement of 4 m to the southeast at the fixed station. A 

stable area for displacement reference is given to be at 

least 120 km farther to the northwest than the chosen fixed 

station. The consistency of the fit to both the horizontal 

and vertical displacement data seems to indicate that the 

model geometry that was initially assumed is reasonably 

accurate. 

Figure 3.7 shows a contour plot of the calculated dis­

placement field in two dimensions along this chosen section. 

The contour values are indicated on the figure and the units 

are in km. In the upper half of this figure is displayed 

the calculated two dimensional vertical displacement (Y 

direction in figure). From this figure, we see that the 
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Figure 3.7. Contour plots through the cross section of 
relative· displacement .caused by the best fit dislocation 
solution. The contour values have units of km. The upper 
figure is a plot of the vertical displacements and the 
lower figure is a plot of the horizontal displacements. 
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displacement is concentrated under Montague Island and 

above the fault surface. The presence of the Patton Bay 

Fault is clearly visible on this plot. This partitioning 

of the displacement field is due to the effect of the 

nearby free surface. In the lower part of this figure, we 

see that the horizontal displacement (labeled the X direc­

tion in figure) is likewise concentrated immediately above 

the fault surface. 

3.5 Resolvability of Features in the Slip Model. 

Since the data used in the inversion are not perfectly 

accurate, there exist model perturbations which when added 

to our best fit slip model would still fit the observed 

surface displacement data to some chosen degree of confi­

dence. If we can estimate the errors in our data, then we 

want to somehow relate these errors to errors in our model. 

Such a relation between the data space and the model space 

exists in the form of a variance operator (equation (2.33)). 

This operator is useful in this application in the follow­

ing manner. If we take some perturbation, om, to the 

calculated slip, then this perturbation is resolvable by 

the data to within a certain confidence interval if the 

following inequality holds, 
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vt is the generalized inverse obtained by spectral decom­

position of the variance operator, and k(c) is the coeffi­

cient associated with a particular confidence interval. 

In this study we have chosen to examine model perturbations 

at the 95% confidence level, so that in this case the 

coefficient associated with this interval is 1.96. Using 

this method, we can test chosen perturbations to our cal­

culated slip model and compute the maximum perturbation 

that can be resolved at the 95% confidence level by the 

data. We note that these tests are independent of the 

values of the slip model itself, and only perturbations to 

this model can be checked for resolvability. 

The variance operator, V, for this case is a 26 x 26 

matrix. The generalized inverse of this matrix is found 

by using the eigenvector expansion described in equation 

(2.32). We found that there were 16 non-zero eigenvalues 

associated with this operator. For problems where the 

estimated errors are very small, numerical problems may be 

encountered in calculating the generalized inverse of this 

operator. These numerical problems arise from the fact 

that round-off errors occur in the computer calculations 

of the eigenvalues. For small eigenvalues, the problem of 

diitinguishing non-zero eigenvalues from the zero eigen­

values can bec~me serious. Fortunately, this is not the 

case in this problem. The non-zero eigenvalues are well 
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defined. We have empirically noted that the number of non-

zero eigenvalues of the variance operator Vis equal to 

the number of independent data points used in the inver-

sion. The inner product of the variance operator and its 

generalized inverse form a projection operator. This pro-

jection operator is then checked for its idempotent proper-

ties to make sure that all scaling is correct. This test 

is done in the following manner: 

( 3 . 1 ) 

where the components of E, E .. , are taken to be some small lJ 
number relative to the size of the components of V. 

The question that we would ultimately like to answer 

with a study of this type is, "What is the maximum pertu-

bation that we can add to our 'best fit' slip model and 

still satisfy the observed data?" Since we know that the 

size of the maximum perturbation that is at the threshold 

of detection by the data depends on the distribution of the 

perturbation, we choose three perturbations which will 

elucidate the total resolvability of our slip model. We 

first consider how much of a slip perturbation we can add 

to the dislocations in the hypocentral region, so that the 

rapid fall-off from the 30 m plateau is not so rapid. 

Figure 3.8a shows this maximum slip perturbation. The 
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stippled area on this curve is the maximum slip that could 

be added in this region and still be undetected by the 

data. It is seen from the small size perturbation in this 

figure that the data control very closely the rate of fall­

off of slip in this area of the fault. This is due mainly 

to the fact that there is a dense network of data points 

just above these particular nodes. Next, we try to deter­

mine if the data demand the existence of the 17 m plateau 

in the shallow part of the fault. Figure 3.Sb shows the 

amount of slip that could be added in this region. We see 

that the slip gradient in this region could be smaller than 

that presented in our best-fit slip model, although there 

still appears to be a requirement for a sharp decay in slip 

up the fault from the 30 m plateau. The slight minimum in 

slip that appears in this region of the model is not re­

solvable by the data. In Figure 3.Sc we see that there is 

almost no resolution along the upper part of the fault. 

This is due to the paucity of data on the surface above 

this region. In order to explain the behavior of the fault 

slip in this region we have to appeal to arguments based 

on other geophysical data than the statical displacements. 

For instance, it can be shown that large fault offsets in 

the area of the trench would result in a significant amount 

of strain energy stored by the fault in that region. 



-86-

3.6 Averaging Operators. 

In Chapter 2 we say that our "best fit 11 estimate of 

the slip model is in reality some filtered average of the 

true slip model. This filtering operator is commonly known 

as the averaging operator. Before discussing features of 

our final model it is to our advantage to know the extent 

of the averaging that is taking place in our model. The 

kernels of the averaging operator are taken to be indivi­

dual rows of the operator matrix, R, as defined in equation 

(2.29), with a single kernel being defined for each fault 

element comprising the total fault system. We note here 

that if the problem is linear, as it is in this case, 

these kernels do not depend on the final estimate of the 

"best fit" model. 

If a particular slip model value were perfectly well­

known by the inversion then the averaging component cen­

tered on that fault element would be unity and all the 

other components of this kernel would be zero. However, in 

the general case where we have less than infinite data and 

the data that we do have are somewhat corrupted by noise, 

the center averaging values are not unity and the other 

components (off-diagonal components of the matrix R) are 

non-zero. The ability to resolve the details of the actual 

dislocation function depends on two features of this 

operator. One is the size of the kernels. This depends 



-87-

in a general way on the availability of data to be included 

into the inversion that are sensitive to a dislocation over 

the part of the fault model that we are testing. As the 

value of a particular diagonal component of R becomes sub­

stantially less than unity, our ability to even estimate 

the slip value for the corresponding model component de­

creases. The other factor is the averaging width of the 

kernels. This averaging width is expressed by the off­

diagonal elements of R. If these off-diagonal components, 

corresponding to the fault elements "near" the particular 

fault element we are examining are substantially non-zero, 

then the estimated "best fit" value of slip that we obtain 

from the inversion is really some linearly averaged value 

of the actual slip values in the vicinity of this fault 

element. These ideas are probably best expressed by 

examining an example of their use. 

Figures 3.9 and 3.10 show examples of the averaging 

kernels for the Alaska earthquake model. The coefficients 

of the rows of the averaging operator are shown diagram­

matically at the position of the respective fault node 

corresponding to the components of this row. The height 

of the bar plotted on each node signifies the absolute 

value of the averaging coefficient for that node. For 

absolute reference, in Figure 3.lOc, the height of the 

outstanding bar is 0.997. In Figure 3.9, we have plotted 
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Figure 3.9. Resolving kernels for selected nodal segments 
along the megathrust. View is a perspective of the mega­
thrust from the southeast (left) to the northwest (right). 
Depths and profile distances are in km. 
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(b) 

(c) 

( d) 

Figure 3.10. Resolving kernels for selected nodal 
segments along the megathrust (a,b) and subsidiary 
fault (c,d). View is a perspective of the megathrust 
from the southeast (left) to the northwest (right). 
Depths and profile distances are in km. 
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the averaging for representative nodes along the megathrust 

presented here in a perspective view. The arrow in the 

figure indicates on which node the averaging is centered. 

In Figure 3,9a we see that for the upper part of the mega­

thrust, the averaging values are very small, again showing 

our lack of resolvability in this area of the fault. In 

Figure 3,9b the kernel values are larger in amplitude indi­

cating our ability to estimate the slip in this portion; 

however, we see that there are large side lobes. The 

negative averaging coefficient, indicated by the bar extend­

ing downward, means that a positive dislocation on the 

centered fault node could be traded off with a negative 

dislocation on this node, and the data would not be able to 

tell the difference. In Figure 3.9c we see that the aver­

aging over the adjacent nodes to either side of the central 

node is fairly severe, and that there is a slight amount of 

coupling to the subsidiary fault. In the bottom figure, we 

see that the amplitudes start to become more peaked, indi­

cating better resolvability. We also note that the slip in 

this area is completely uncoupled from the slip on the sub­

sidiary faulting. This shows how the-effect of the subsid­

iary fault is very localized with respect to the megathrust. 

The examples are continued in Figure 3.10. Sections a 

and b of this figure continue to show that on the lower 

part of the megathrust we are able to determine fairly well 
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the "best fit" estimate of the slip, but this slip is 

generally averaged over the one or two adjacent nodal seg­

ments. Figure 3.lOc shows the averaging kernel for the 

topmost nodal segment of the representation of the Patton 

Bay fault. Here, the displacement is almost exactly 

determined. The height of the bar is almost unity, 0.997, 

and there is practically no spatial averaging. We would 

expect this result, considering that this fault segment 

breaks the surface and the amount of dislocation on this 

nodal segment is constrained by the scarp size on Montague 

Island. Likewise in Figure 3.lOd, the dislocation at some 

depth on the subsidiary fault is well determined, and there 

is practically no trade-off in dislocation here to a dis­

location on the megathrust. 

The information contained in the averaging operator 

can be summarized by defining a resolvability ratio for 

each kernel. This ratio is defined as the ratio of the 

value of the diagonal coefficient of R to the averaging 

half-width. This averaging half-width, though somewhat 

ambiguous in some instances because of asymmetries, can 

usually be estimated,however. The averaging half-width is 

measured from the central fault node to the point where the 

averaging first crosses zero. This ratio is convenient and 

meaningful in the sense that it takes into account both the 

variables involved in estimating resolvability: the height 
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of the kernel and the averaging distance. For well resolv­

able features of our model we would expect large ratios; 

for less well resolvable features, smaller ratios. The 

results for this particular fault model are shown in Figure 

3.11. 

In this figure, we see that for the upper 75 km of the 

megathrust, there is a total lack of resolvability, con­

trolled by the lack of data which are sensitive to a dis­

location in that area. The resolvability is slightly 

peaked for the area of the megathrust immediately under 

Middleton Island, but again there is no resolvability in 

the area between the islands. The resolvability decreases 

rather evenly for the lower end of the megathrust. This 

is thought to be due to the fact that the dislocations are 

occurring at distances farther and farther away from the 

data, thus dislocation averaging starts to become a 

problem and the resolvability is reduced. 

3.7 Stress and Strain Energy Density Change. 

In terms of understanding the focal processes of earth­

quakes, an important parameter is the stress drop. In 

previous studies of earthquakes, the stress drops were ob­

tained through empirical formulas or exact derivations for 

special purpose geometry of the crack (for example, Starr, 

1928; Knopoff, 1958; Aki, 1966). The stress drop over some 

fault dislocation area is usually given by the following 
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( 3. 2) 

where µis the rigidity, Um is the maximum displacement, W 

is some measure of the size of the fault, and n is some 

constant dependent upon the geometry and nature of the 

faulting. Use of this formula results in stress drop values 

that are averaged over the entire fault plane. For in-

stance, Brune and Allen (1967) estimate the stress drop from 

the average offset given by Savage and Hastie's (1966) dis­

location of the 1964 Alaska earthquake to be 27 bars. In 

this calculation, n is taken to be 1.33, W=200 km, Um= 

13.3 m, and µ=3.0 x 1011 dyne/cm2 . If we were to use their 

formulation with our average dislocation, we would obtain 

a stress drop of 30 bars. Chinnery (1969) and Sato (1972) 

point out that jn order to evaluate n the assurnµLion of an 

infinite length fault is usually made. These two authors 

have derived the expression for the stress drop for a 

finite rectangular fault, and they show that the stress 

drops obtained for these faults are smaller than what one 

would obtain for infinite length faults. For the Alaska 

earthquake, Sato (1972) estimates n to be 0.97 when a 

constant displacement over the fault surface in an ideal-

ized medium is considered. His resulting estimate of the 
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stress drop using this parameter and our average disloca­

tion would be about 22 bars. This last value is still an 

estimate of the stress drop averaged over the entire fault 

surface. However, it is obvious that if the dislocation 

is varying over the fault plane, and the geometry of the 

plane changes with distance, the stress change will not be 

a constant over the entire fault surface. Jungels (1973) 

has shown that for several earthquakes the stress drop can 

vary along the fault by as much as an order of magnitude. 

To estimate the stress drop along the width of the 

fault we can apply equation (3.2) to each of the nodal seg­

ments which define the fault plane, but there is always 

uncertainty in the estimate of the parameter n. Jungels 

(1973) has shown a more direct method of calculating the 

fault stress drop distribution with the finite element 

method. This is accomplished by first imposing a composite 

prestress field on the structural model. This is done by 

applying a dislocation to the edges of the structural 

model. From this initial state, we can compute the equi­

librium final state that would be caused by the introduc­

tion of our best fit dislocation model. Then, at every 

point of the structure, the difference between the initial 

and final stress fields defines the stress change. If ~cr 

is positive, then the particular model caused a stress 

drop. If ~cr is negative, then we have a stress increase. 
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It is clear that for a "dislocation 11 model the magnitude of 

the stress change is controlled only by the magnitude of 

the fault offset and the elastic constants of the struc­

tural model. Thus the prestress only has importance in 

terms of the strain energy change where the sign of the 

stress drop matters. The shear stress change approximately 

parallel to the megathrust is calculated by this method 

and is contoured throughout the cross section studied. 

(Figure 3.12). The values contoured are exact away from 

the fault plane, but for the nodes defining the plane it­

self, the actual stress drop is approximately twice the 

value shown. This error arises from the fact that a linear 

behavior of displacement is assumed inside each element in 

the finite-element grid. This error results in an under­

estimate of the stress change on the fault surface (Jungels, 

1973). Assuming that the error is exactly a factor of 2 in 

this problem, we see that for our best fit model the stress 

change along the fault itself varies from a stress increase 

of 86 bars to a stress drop of 215 bars. The stress change 

over the entire width of the fault averages a stress drop 

of approximately 40 bars. This indicates how misleading a 

value of the average stress drop could be. 

The details of the stress change are very interesting. 

We see that both ends of the fault underwent a net increase 

in shear stress. For the shallow portion of the megathrust, 
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Figure 3.12. Stress change and strain energy released 
around the fault suiface for an average prestress 
level equal to the average stress drop. Positive 
contour values of stress chan~I represent s~ress 
drops. Units are bars and 10 ergs per km . 
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this is an argument in favor of our best fit solution with 

its small offset in this region. It follows that if we 

increased the offset on the shallow end of the fault, even 

though we could not resolve this increase with the surface 

data, the stress change would increase in proportion and 

this in turn would make that region a prime candidate for 

aftershock activity. The fact that significant aftershocks 

were not observed here (Algermissen et al., 1972) argues 

for our best fit solution. On the other hand, if the off­

set at the shallow end of the megathrust were the maximum 

amount indicated on Figure 3.8, in all likelihood the dis­

placements would rupture the free surface. If this was 

the case, the stored stress would be relieved and thus 

there would be very little or no aftershock activity. A 

search of the literature concerning this earthquake re­

vealed that there seems to have been no post-earthquake 

reconnaissance of the ocean floor in the vicinity of 

Middleton Island and further toward the Aleutian trench, 

so that the possibility of this occurring cannot be ruled 

out. A hydrographic and ocean-bottom-scanning sonar survey 

of the area to the southwest of Montague Island revealed 

fresh scarps on older en echelon faults sub-parallel to the 

extension of the Patton Bay fault (Malloy and Merrill, 1969.) 

These authors attribute these scarps to the Patton Bay 

fault system. It is conceivable that much of the strain 
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from the large dislocations on the very shallow end of the 

megathrust could be relieved in this fashion. That is, 

large displacements on the fault surface are absorbed 

through a system of high angle bifurcations of the main 

thrust sheet. We will see in the next chapter that this is 

precisely what occurred during the 1971 San Fernando, 

California earthquake. Unfortunately, for the Alaska 

earthquake, the data are not adequate to prove or disprove 

that this condition existed, and further speculation along 

these lines seems fruitless. 

Another area of slight stress increase on this figure 

is found in that region where the offset function in the 

best fit model goes through a local minimum between the 

30 m slip plateau and the 17 m slip plateau. We have seen 

from the above discussion, however, that this minimum is 

not resolvable, so therefore the existence of the stress 

increase in this region is not resolvable by the data. 

Most of the stress drop along the fault surface occurs 

where the fault dislocation is the greatest. The maximum 

stress drop, 215 bars, is found along the megathrust just 

below the intersection of the Patton Bay Fault. 

A plot of the strain energy density change in the 

media as seen in the lower half of Figure 3.12 illustrates 

that most of the energy available for seismic radiation 

would come from the central area of the megathrust in the 
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same region where the maximum stress drop occurs. The 

contours in the figure are in units of lo21 ergs/km3. A 

direct comparison can be made between this strain energy 

density plot and the multiple rupture characteristics that 

Wyss and Brune (1967) found for this event. These authors 

interpret the P-wave radiation as caused by a multiple 

event source mechanism whereby the rupture initiating at 

the hypocenter travels up the fault plane triggering dis-

crete seismic events larger than the initial event. The 

largest of these discrete events has been located on the 

megathrust 20 km southeast of Montague Island. The pulse 

from this region was delayed from the initial pulse by a 

time corresponding to a rupture velocity of 3.5 km/sec 

and had an amplitude significantly larger (up to 30 times 

larger) than that radiated by the initial shock. This 

agrees qualitatively with our estimate of a large strain 

energy density change of up to 0.28 x lo 20 ergs/km3 concen-

trated below Montague Island, while in the hypocentral 

region, the energy density change is computed to be only 

0.02 x lo 20ergs/km3. 

3.8 Accuracy of the Plane-Strain Approximation. 

We would like to somehow approximate the errors that 

occur by making the plane-strain approximation that we have 

taken in this example. One way of getting an estimate of 

this error is to approximate the fault model by a series of 
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three-dimensional Volterra planes and to use the static 

dislocation theory (Mansinha and Smylie, 1971; or equation 

( 2. 2)) for a three-dimensional fault in a homogeneous half­

space. Although this model will not have the influences 

of the lateral heterogeneities included, it will serve to 

estimate how good or bad the approximation is that we have 

made. A Volterra approximation to the finite-element 

structural model was made. This model consisted of 22 

individual fault elements, 18 to describe the megathrust 

and 4 to describe the subsidiary faulting. The Volterra 

fault elements are planar surfaces centered on the posi­

tion of the finite-element fault nodal segments and extend­

ing halfway to the adjacent fault nodal segments. Only 

those fault nodal segments were modeled on which there was 

a calculated non-zero displacement. Several of the nodal 

segments, at the shallow end of the megathrust and at the 

very deep end of the megathrust, had "best fit" dislocation 

estimates of zero. These segments were not mode~ed with 

the Volterra approximations. The dislocation which is 

constant over the planar surfaces was taken to be equal 

to that of the finite-element fault nodal segment at the 

center. The parameters for this model approximation are 

given in Table 3.3. 

We first calculated the vertical displacement for a 

profile due to this fault model with the length of each 
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TABLE 3.3 

Fault Segment Dip d w <L'rn> 
(deg) (km) (km) (m) 

1 6.0 8.5 22.8 0.99 
2 6.0 11. 0 21.4 2. 9 3 
3 6.0 13. 0 18. 0 10.17 
4 6.0 15.0 16.2 16.72 
5 6.0 17.0 18.2 16.39 
6 6.0 19.0 20.1 14.66 
7 6.0 21. 0 16.o 16.05 
8 6.0 22.5 13.0 24.91 
9 6.0 24.o 9.7 29.98 

10 6.0 25.0 7.1 33.22 
11 6.0 26.0 14.2 29.42 
12 6.0 27.5 20.0 28. 2 8 
13 8.0 29.5 20.0 29.99 
14 11. 5 32.5 20.4 23.91 
15 14.o 36.5 20.4 15.35 
16 15.0 41.5 20.8 11. 70 
17 15.0 47.0 31.2 2.17 
18 15.0 55.5 41.6 1. 03 
19 58.0 0.0 2.4 4.05 
20 5 8. 0 2.0 4.o 3.31 
21 58.0 5.5 5.8 7.18 
22 58.0 10.5 8.0 2.83 

Table 3. 3. Source parameters for the 3-dimensional 

homogenous approximation to the finite-element model 

of the Alaska earthquake. dis the depth to the top of 

the planar fault surface; W is the width of the fault 

surface measured along the dip; and <6u> is the fault 

dislocation. 
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planar surface taken to be 10,000 km, or effectively in­

finity, to thus approximate the plane-strain criterion. The 

profile Was taken to be equidistance from the ends of the 

fault elements and perpendicular to the strike of the 

system. The vertical displacements in a profile were then 

calculated from this fault system but now the lengths of 

the individual fault elements were set to 600 km, the 

approximate lower limit for the fault length estimated to 

be appropriate for this event. The profile was taken, not 

across the center of the fault system, but at a position 

80 km from the center and still perpendicular to the strike 

of the fault system. This profile is 220 km from one end 

of the fault and 380 km from the other end. This is approx­

imately the maximum distance profile BB' in Figure 3.2 can 

be considered from the center of the fault system. The 

estimated errors arising from the plane-strain approximation 

was taken to be the difference between the computed dis­

placements for these two profiles. This difference is a 

function of the distance away from the origin of the fault 

system. The origin of the fault system is taken to be the 

point at which the shallow end of the megathrust projects 

to the surface. The differences are presented in Figure 

3.13a. It is seen from this figure that the maximum dis­

placement error expected from the plane-strain approxima­

tion would be about 0.35 m for this particular model. The 
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differences between these two profiles are relatively con­

stant at about 0.25 m, and the sign of the error is such 

that the deformation at the surface is being underestimated. 

This implies that the free surface displacements for a 

fault dislocation model with a finite size length are 

slightly larger than those from a model in which each fault 

component has infinite length. Thus, we can say that the 

displacements calculated for the finite-element model are 

ru1 upper bound to that necessary to fit the data. Consid­

ering th~ finiteness of the length of the actual fault, we 

would need only slightly less displacement on the mega­

thrust. 

Now the horizontal displacements are put to the same 

test. Horizontal displacements in the direction perpendic­

ular to the strike of the fault system from the Volterra 

dislocation model were calculated for both a profile due 

to an infinite length fault and for a profile 80 km away 

from the center of a fault system that has fault element 

lengths of 600 km. Figure 3.13b shows the differences 

between the former and the latter profiles. It is seen 

here that as the profile distance becomes greater than 

half the fault length, the errors due to the plane-strain 

approximation start to become more significant. It is seen 

here that for the farthest distance along the profile, the 

expected error in the calculated horizontal displacements 
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is about 0.5 m. The sense 6f this error is that the esti­

mated horizontal displacements made under the plane-strain 

criterion are too large. Thus in Figure 3.6 where we 

estimated that the reference station for the measured hori­

zontal displacements (Fishook station) actually moved 4 m to 

the southeast, we have to revise this estimate to be about 

3.5 m. The area of horizontal stability, that is, the area 

where no horizontal movement was expected, is still some 

75-100 km to the northwest of the reference station. 

We will now briefly examine the implications of the 

estimated error due to the plane-strain approximation. 

Since only the vertical displacements were actually used 

in the inversion procedure, only the errors associated with 

these measurements will affect the resolution of our model. 

Since the estimated errors due to the plane-strain assump­

tion affecting the data points used in the inversion were 

about equal to the estimated observational error of the 

data themselves, we can estimate that at most, the total 

variance of the data should be multiplied by a factor of 4. 

As we can see from equation (2.33), if we want to recognize 

a given perturbation to our model at the same confidence 

limit as before (95%), then the size of the perturbation 

will have to be doubled. This means that in Figure 3.8 

the amplitude of the stippled area will be doubled if we 

keep the shape of the perturbation as before. This implies 
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that the steepness of the rate of dislocation fall-off with 

distance from the maximum plateau going toward the hypo­

center is not quite as resolvable as before. For the other 

two perturbations considered, the conclusions arrived at 

before are unchanged. 

3.9 Conclusions. 

A dislocation model has been presented for the 1964 

Alaska earthquake. The surface displacements from this 

model are calculated with the finite-element numerical 

modeling technique in which the effects of both the known 

geologic heterogeneities of the region and the non-linearity 

of the assumed fault plane are taken into account. The 

dislocation model, which was obtained using a stochastic 

inversion scheme, fits with high precision both the ob­

served vertical and horizontal displacements. The calcu­

lated static offset along the fault plane was found to be 

variable and to have a maximum amplitude much greater than 

previously imagined, although the average moment agrees 

with that observed from long period surface waves. The 

two-dimensional displacement field was found to be strongly 

partitioned above and below the fault surface, with most of 

the displacement occurring above the fault. The calculated 

displacement at the shallow end of the fault model was 

found to be almost non-resolvable due to the lack of sur­

face displacement data, while the displacement near the 
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hypocenter was well constrained by the data. Along with 

the displacement calculated along the fault surface, both 

the stress drop and the strain energy density varied widely. 

The maximum stress drop found was 218 bars, while at both 

ends of the fault the stress field increased as a result of 

the static dislocations. The region of maximum stress drop 

and maximum strain energy density change calculated from 

this static study was found to correspond to the region of 

maximum compressional wave radiation. The errors caused 

by the plane strain approximation for this event were 

analyzed and found not to affect any of the above conclu­

sions. 
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Chapter 4 

A Static Dislocation Model of the 
1971 San Fernando Earthquake 

4.1 Introduction. 

On February 9, 1971, a local magnitude 6.4 earthquake 

was initiated below the San Gabriel Mountains north of the 

San Fernando Valley, California. The surface ruptures 

from this event occurred some 13-15 km to the south of the 

epicenter along the Santa Susana-Sierra Madre fault zone 

which forms the frontal system of the southern boundary 

of the San Gabriel Mountains. The behavior and pattern of 

the faulting that occurred during this earthquake exactly 

repeated and further developed the older, already recog-

nized geologic features--faulting and uplift--of the 

southern boundary of the San Gabriel Mountains which began 

in mid-Pleistocene time (Oakeshott, 1958). The stratig-

raphy and geologic structure of this area have been re-

cently described by Wentworth and Yerkes (1971) and by 

Proctor et al. (1972). 

In this chapter, we will not dwell on the geologic 

setting of the area since it is covered in some detail by 

the above references; rather, we will propose a fault 

model, the geometry of which we think to be most consistent 

with all the geological and geophysical observations that 



-110-

have been made concerning this earthquake. These observa­

tions include the focal mechanism of the main shock, the 

mechanism and spatial distribution of the aftershock se­

quence, and the geologic character of the surface faulting. 

As in the previous chapter, once we have fixed the fault 

model geometry we will then use the static displacement 

data available to us along a profile bisecting the surface 

trace of the fault to determine the static dislocation 

function for our fault model which is most consistent with 

thesedata. Features of this calculated static dislocation 

model will then be examined for its resolvability, and 

implications of the model with its associated stresses and 

strains will then be discussed. Let us look first at the 

geological and geophysical observations that will constrain 

our fault model geometry. 

4.2 Fault Model Constraints. 

Main Shock Focal Mechanism. Unlike the 1964 Alaska earth­

quake, there seems to be no controversy of the choice of 

fault planes derived from the first motion studies of the 

1971 San Fernando earthquake. The natural ambiguity in 

the choice of fault planes (assuming a double couple mech­

anism) is essentially removed by the geometric relation of 

the determined hypocenter and the observed thrust fault 

surface ruptures. Because the earthquake occurred in the 

midst of a dense seismographic network, the fault plane 
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solution is extremely well determined (Whitcomb, 1971; 

Dillinger and Espinosa, 1971; Canitez and Toksoz, 1972). 

This mechanism is primarily thrust faulting on a northerly-

dipping fault. Whitcomb et al. (1973) give the following 

fault plane parameters: strike, N67°(i6°)W; dip, 52°(i3°) 

to NE; rake, 72°(67°-95°). 

Surface Faulting. With the exception of the dip, these 

parameters derived from the faulting in the hypocentral 

region agree well with those determined by examining the 

surface ruptures. This surface faulting has been described 

in detail by a number of authors and agencies, most notably 

Kamb et al. (1971), Palmer and Henyey (1971), and Proctor 

et al. (1972). The observed surface faulting can be 

broken into three main groups: 

1. A fault line extending approximately westward 

from the mouth of Big Tujunga Canyon to Foothill 

Boulevard, labeled the Tujunga fault segment. 

Proctor et al. (1972) argue that the name Lakeview 

thrust fault is the appropriate appelation for 

this segment. Nevertheless, we will refer to this 

fault segment as the Tujunga segment so as to be 

consistent, no matter if incorrect, with previous 

work. 

2. A complex group of short length semi-continuous 

faults located 0.3-0.9 km to the north of and 
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sub-parallel to the Tujunga fault segment. This 

group will be referred to later as the splay 

fault group. 

3. A fault zone extending approximately westward 

from Pacoima wash to Sylmar. This fault zone is 

slightly over 1 km to the north of the Tujunga 

segment and is called the Sylmar segment. 

The surface scarps of the Tujunga segment extend more 

or less continuously for 11 km at an average strike of 

N70°W. The observed dips on the well defined scarps are 

in the range 20-25° to the north, and the motion is shal­

low thrust and left lateral. In the sub-parallel splay 

group, the scarps tend to parallel the sediment bedding 

which dips at about 65° to the north. These faults have 

been identified as bedding plane reverse faults with about 

equal amounts of vertical and left lateral motion (Kamb 

et al., 1971). No direct measurement of the dip was 

possible on the Sylmar segment which extends about 3 km in 

an east-west direction. Unlike the Tujunga segment, the 

surface scarps are less well defined here, and the scarp 

displacements become more diffusely distributed (up to 

50 m) toward the western end of this branch (U. S. Geologi­

cal Survey Staff, 1971). 

Aftershocks. The aftershocks of this earthquake have been 

studied intensely by a number of researchers. Hanks et al. 
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(1971), Wesson et al. (1971), and Allen et al. (1971, 1973) 

have described the location and depths of these events, and 

Whitcomb (1971, 1973) has gone into considerable detail 

interpreting the mechanisms and classifying these events. 

The epicentral locations of the aftershocks outline an area 

that is roughly crescent-shaped. The locations are clus­

tered on the exterior of this outline indicating that, 

except at the edges perhaps, the stress was completely 

relieved in the region where the fault plane approached 

the free surface. The distribution also suggests that if 

we take the edge of the faulting plane to be defined by 

the outer limits of the aftershock distribution, then this 

edge is well defined. The hypocenter of the main shock is 

located at the lower, northernmost edge of this zone of 

aftershocks. Hanks (1972), Whitcomb (1971), Allen et al. 

(1973), and Whitcomb (1973) suggest that the western edge 

of the aftershock zone represents a steep flexure in the 

fault plane. The aftersho~ks along this flexure are pre­

dominantly left lateral strike slip and tend to occur at 

deeper depths than on the main fault plane. 

Allen et al. (1973) give evidence for the fault plane 

to have an intermediate dip which is less than that ob­

tained from the focal mechanism of the initial event but 

greater than the shallow surficial dips. These authors 

report that the slip motion vectors for the aftershocks 

l-
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located between the hypocenter of the main event and the 

surface ruptures had an average plunge of 36° toward 

N 20° E. Additional supportive evidence for this inter­

mediate dip angle for the fault plane between the two 

extremities is given by the calculated hypocentral depths 

of the aftershocks. Whitcomb et al. (1973) report that 

these events line up in a zone which has a dip to the north 

of between 35° to 40°. 

4.3 Assumed Fault Model. 

We have assumed the following fault system to conform 

with all the geological and geophysical properties that 

have been determined about this system which was discussed 

previously. The fault system is shown schematically in 

Figure 4.1. The main thrust branch of this system is com­

posed of 21 adjacent fault elements. From the surface 

down to a depth of 7 km, these elements define a plane 

which dips at a constant angle of 35°. From 7 km to 9 km 

depth, the main thrust branch has a dip of 40°, and below 

this depth, each of the elements has a dip of 52°. The 

lower edge of the fault system is at a depth of 14.5 km. 

The splay fault system is modeled by a series of imbricate 

reverse thrust fault planes intersecting the main fault 

plane in the upper 1 km block. These 20 fault elements 

have a constant dip of 65°. We will see later in this 

chapter what effect the addition of these splay faults has 
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on the calculated dislocation function. Also included in 

the fault system is a model of the San Gabriel fault. This 

fault is perhaps the major geologic feature of the entire 

epicentral area. Wesson and Wilson (1972) have postulated 

that this fault was involved in the seismic activity that 
. 

accompanied this earthquake. Kamb et al. (1971) report, 

however, that there was no field evidence of displacement 

occurring on this fault in the aftershock region. We do 

note that there is a correlation of the area of positive 

gravity changes and the position of this fault. This 

suggests that if any displacement did occur on this fault 

during the earthquake, it occurred at depth, and the motion 

was of the normal faulting type. This fault is located 

some 7.2 km north of the main surface breaks on the Tujunga 

segment and is modeled by a plane of constant, 62°, dip 

composed of 6 fault elements. In this representation, the 

San Gabriel fault intersects the main thrust fault at a 

depth of 9 km. Thus, the total fault system is composed 

of 47 separate fault surface elements. Individual elements 

can be eliminated from the system by merely setting the 

weighting coefficient for that particular element to zero. 

We have chosen to take the length of the fault ele-

ments near the surface to be 15 km. We have interpreted 

the clustering of the aftershocks in the epicentral area 

which form the top of the invePted "U'' to be caused by the 
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fault length becoming somewhat less as the fault goes to 

greater depths. The fault lengths in our assumed model 

taper from 15 km at the surface to 9 km at the hypocenter. 

Table 4.1 gives the source parameters necessary for a 

description of this fault system. This table has been 

split into two parts. Part a gives the parameters for the 

fault elements which comprise the main fault. Part b gives 

the parameters for the splay fault group and the San Gabriel 

fault approximation. 

In the fault representation given here, we have not 

accounted for the 1 km north-south offset between the 

Tujunga and Sylmar fault segments, but rather have con­

sidered the Tujunga segment as a continuous fault extending 

linearly over the surf ace for 15 km. Because this offset 

occurs close to a lateral extremity of the fault plane and 

we intend to choose our data for the inversion process from 

near the center of the fault plane, this approximation 

should be a good one. We will see later in this chapter 

how this offset can be modeled with the fault system 

geometry given here. 

4.4 Static Data. 

Although unfortunate from a humanitarian standpoint, 

the earthquake propitiously produced its maximum surface 

deformation in an area of exceptionally good geodetic con­

trol. This deformation was mainly mapped by measuring 
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TABLE 4. la 

Element # Length Dip Mid Pt Depth Width 

Ml 15 25° 0.050 .24 
M2 15 25° 0.150 .24 
M3 15 30° 0.275 .30 
M4 15 30° 0.425 .30 
M5 15 35° 0.600 .35 
M6 15 35° 0.800 .35 
M7 15 35° 1. 050 .35 
MB 15 35° 1.350 .52 
M9 15 35° 1. 650 .52 
MlO 15 35° 1. 950 .52 
Mll 15 35° 2.300 .70 
Ml2 15 35° 2.750 .87 
Ml3 15 35° 3 .. 250 .87 
Ml4 15 35° 3.750 .87 
Ml5 15 35° 4.500 1. 74 
Ml6 14 35° 5.500 1. 74 
Ml7 13 35° 6.500 1. 74 
Ml8 12 40° 8.000 3.11 
Ml9 11 52° 10.100 2.79 
M20 10 52° 11. 950 1. 90 
M21 9 52° 13.450 1. 90 

Table 4.la. Source Parameters for San Fernando 

Fault. Parameters are in km. 
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TABLE 4.lb 

Mid Pt. 
Element # Length Dip Depth Width 

Sl 15 60° 0.25 0.12 
S2 15 60° 0.075 0.12 
S3 15 60° 0.04 0.12 
s4 15 60° 0.11 0.12 
S5 15 60° 0.18 0.18 
S6 15 60° 0.04 0.12 
S7 15 60° 0.13 0.12 
SS 15 60° 0.22 0.23 
S9 15 60° 0.31 0.22 
SlO 15 60° 0.04 0.12 
Sll 15 60° 0.13 0.12 
Sl2 15 60° 0.23 0.17 
Sl3 15 60° 0.31 0.17 
Sl4 15 60° o.44 0.31 
Sl5 15 60° 0.04 0.12 
Sl6 15 60° 0.13 0.12 
Sl7 15 60° 0.24 0.17 
Sl8 15 60° 0.34 0.17 
Sl9 15 60° o.46 0.23 
S20 15 60° 0.60 0.28 

SGl 15 62° 0.75 0.57 
SG2 15 62° 1. 50 1.13 
SG3 15 62° 2.50 1.13 
SG4 15 62° 3,75 1. 70 
SG5 14 62° 5.50 2.27 
SG6 12 62° 7.75 2.83 

Table 4.lb. Source Parameters for San Fernando 

Fault. Parameters are in km. 
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elevation and horizontal line length changes by comparing 

pre-earthquake and post-earthquake measurements. These 

data have been compiled principally by the U. S. Geological 

Survey (Burford et al., 1971; Savage et al., 1973), the 

City of Los Angeles, Bureau of Engineering (personal com­

munication, 1971), and the Survey Division, Department of 

County Engineer, County of Los Angeles (1971). From these 

sources, over 100 vertical displacement data points were 

obtained. These points were then plotted and contoured for 

equal elevation changes. This contour plot is shown in 

Figure 4.2. With the exception of a few points located 

just to the south of the surface ruptures, all the data 

points obtained from the geodetic releveling show an up­

lift. In addition to the releveling data, we can estimate 

changes in elevation by examining the changes in the 

gravity field caused by this change in elevation. For 

this earthquake, we have measured gravity changes in un­

surveyed areas where elevation changes would otherwise be 

unattainable. Appendix 2 of this thesis describes the 

gravity changes which accompanied this earthquake and the 

relationship between the measured elevation changes and 

the gravity changes. 

Figure 4.2 also shows a profile which approximately 

bisects the area of deformation. In this study, we will 

limit our inversion data set to vertical displacement data 
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Figure 4.2. Contour plot of observed vertical 
static displacements. Open circles indicate the 
location of the data values used in the inversion 
profile. Profile is indicated as the line per­
pendicular to the strike of the surface deformation. 
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only. An attempt was made to use horizontal shortening in 

the direction perpendicular to the strike of the fault, 

but the only data which were least contaminated by end 

effects were relative line changes between stations both 

of which were located very near the surface ruptures. 

These data are shown in Figure 4.3 (eg. TUJ-6Pl0). This 

kind of data is particularly ill-suited for inclusion in 

the inversion because if the surface ruptures are mis­

located by even 10-20m, the relative line change can change 

drastically. Since the Tujunga scarp has this much local 

variation in linearity, we considered these data too un­

stable to use in the inversion scheme. We therefore 

limited the inversion data set to vertical displacements 

only. 

As in the case of the Alaska earthquake, we restricted 

our data set to only those points which could be projected 

onto a profile without crossing a contour line. There were 

16 releveling points near the profile which met this cri­

terion. These points are shown in Figure 4.2. It is seen 

on this figure that along the profile the contours for 

displacements greater than 100 cm are quite regular. By 

regular, we mean that they are orthogonal to the profile. 

On the 50 cm contour line north of the surface ruptures 

some asymmetry is apparent. Since we wanted to include 

information over as much of the profile as possible, ~e 
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Figure 4.3. Horizontal displacements (relative 
length changes) in the area (Savage et al., 1972; 
reproduction permitted by Dr. J. C. Savage). 
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decided to include an estimation of the displacement here. 

The data point between the 50 cm contour line and the O cm 

contour line to the west of the profile shows 35 cm of up­

lift, and the data point within the 50 cm contour line to 

the east of the profile indicates 65 cm of uplift. The 50 

cm contour line was drawn halfway between these two points, 

and a 50 cm data value was included into the inversion 

data set at the point where the 50 cm contour line inter­

sected the profile. In making this approximation, we have 

included a larger variance to this point. We will see 

later that a lateral variation of + 0.5 km of the location 

of this particular data point along the profile does not 

degrade the fit of our final model. There are other re­

leveling points along this profile in the epicentral area 

along Sand Canyon Road. The vertical displacement values 

of these points range from 25 cm to 30 cm over a length of 

2-3 km. We have chosen to include this cluster of points 

as a single value of 25 cm and to increase the variance 

associated with this datum. This was done because 

Ellingwood and Williamson (1971) report that these points 

might have as much as 8-11 cm of uplift due to secular 

change. 

Four more vertical displacement data points were added 

to the inversion data set by converting gravity changes to 

elevation changes. Three of these points are located to 
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the north of the points shown in Figure 4.2, but still 

south of the epicenter. One point is located north of the 

Sand Canyon Road releveling points. The exact locations of 

these gravity points are shown in Figure A2.4 given in 

Appendix 2. Further discussion about the gravity points 

can be found in that section of this thesis. 

In this investigation, we will assume that all the 

vertical displacement occurred at the time of the initial 

earthquake. Displacements occurring after this main event 

were found by a number of surveys to be very minor when 

compared with the total vertical displacement (Nason, 1971; 

Lahr et al., 1971; Burford et al., 1971; Savage et al., 

1973; Sylvester and Pollard, 1973). Any vertical afterslip 

that was measured for a particular datum is included in the 

variance of the displacement for that datum. 

Table 4.2 gives the entire data set that we will use 

in the inversion. The origin of the profile is taken at 

the surface breaks with positive distance taken to be in 

the direction of N 20° W. Also included in this table is 

the estimated error in the data. This error estimate is 

taken to be that estimated by the individual investigators 

who measured the data. 

4.5 Calculated Dislocation Model. 

Starting Model. Since several other investigators (Savage 

et al., 1973; Canitez and Toksoz, 1972) have proposed a 
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TABLE 4.2 

Distance 6. z 0(6.z) Reference 
(km) (cm) (cm) Year Source 

-0.73 -1. 0 3.0 1960 LABE 
-0.23 -3. 0 3.0 1960 LABE 

0.22 114.o 4.0 1963 USGS 
0.34 142.0 4.0 1963 USGS 
0.50 185.0 4.o 1963 USGS 
0.55 192.0 4.o 1963 USGS 
1. 26 228.0 4.0 1963 USGS 
1. 48 207.0 4.0 1960 LABE 
1. 87 173.0 4.0 1963 USGS 
2.40 149.0 4.0 1963 USGS 
2.66 122.0 6.0 1963 USGS 
2.78 135.0 6.o 1963 USGS 
3.42 98.0 4.0 1963 USGS 
4.82 71. 0 4.o 1929 USGS 
6.52 50.0 8.0 * USGS 
8.22 29.0 13.0 ** US GS-GRAV 
9.92 ' 0.0 13.0 1970 GRAV 

11. 50 -15.0 20.0 1970 GRAV 
17.00 22.0 17.0 1964 GRAV-USGS 
20.00 10.0 17.0 1964 GRAV 

* Average - 65 cm (1929) and 38 cm (1960) 
** Average along Sand Canyon Road (1963-1968) 

Table 4.2. Vertical uplift data along Inversion Pro-

file. Distance is measured from origin of 

profile, 6.z is the uplift, 6(6.z) is the 

estimated uncertainty of the measurement. 

LABE = Los Angeles Bureau of Engineering, 

USGS = U. S. Geological Survey~ and GRAV = 
Gravity measurements (see Appendix 2). 
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constant dislocation on some constant-dipping fault plane 

to be consistent with the static data for this earthquake, 

one such starting model would be to assume a constant dis­

location throughout the assumed main fault system. A 

simple numerical experiment was devised to test the applic­

ability of this constant dislocation model to the inver­

sion data set. This experiment is described as the 

following. 

From Table 4.2 we see that the maximum vertical dis­

placements occur at about 1 km to the north of the origin 

of our fault system. (The origin of the fault system is 

taken as the point where the Profile AA' intersects the 

line formed when the main fault surface intersects the 

free surface.) If we normalize the observed displacement 

data to this maximum value, we see that there is a rapid 

diminution with distance away from the surface ruptures. 

One way of affecting this rapid distance-decay of the ver­

tical displacements is to have the fault plane dip at a 

steep angle. In the case of this earthquake, the dip of a 

single fault plane representation is limited by the spa­

tial relationship of the surface ruptures and the epicen­

tral location. If we assume that the hypocenter marked 

the lower bound of the fault plane, then the maximum 

angle that a single plane could take would be about 45°. 

This takes into consideration the uncertainty in the 
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locations of both the epicenter and hypocenter. Another 

factor that affects the vertical displacement at distance 

away from the surface ruptures is the depth to the bottom 

of the fault plane. In this problem, this is correlated 

with the fault dip. The minimum value of depth that this 

fault plane could take would be about 9 km. If we calcu­

late the vertical displacement from a fault plane with 

these parameters, we see that the diminution is much 

smaller than that exhibited by the data. These results 

after a similar normalization are shown in Figure 4.4. 

For a more reasonable geometry of a constant dip of 35° 

and a depth of faulting of 10 km, the fit to the data is 

even worse. Intermediate to these two curves in this 

figure is that for a fault plane dipping at 45° and extend­

ing to a depth of 12 km. 

One might argue that local geologic heterogeneities 

might cause such a departure from the idealized elastic 

case which we have assumed in these calculations. This 

same experiment can be carried out with the finite element 

modeling technique. When the geologic structures of this 

area are used in this technique, practically the same re­

sults are obtained (Jungels, personal communication, 1972). 

If we take a planar dislocation surface of constant 

dip, but allow the displacement to vary along this surface, 

we can fit the observed vertical displacement much better 
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Figure 4.4. Test to see if a constant dislocation 
on a fault surface could fit the observed vertical 
displacements. The data (solid circles) are nor­
malized to the maximum value. 
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if the displacement is allowed to vary piece-wise with 

-yh2 
depth in a manner e • No inversion was used in these 

calculations, but rather different slip models, each hav-

ing a different slip decay-rate away from the surface, were 

tried. The constant, y, necessary to fit the data in this 

case can vary from 0.07 km- 2 to 0.12 km- 2 depending on the 

chosen dip of the fault plane. Mikumo (1973) has arrived 

at a similar result. 

This simple calculation has been rather unsophisti-

cated, but we think that this illustration clearly shows 

that the observed vertical displacement data require a 

fault dislocation function which varies along the fault. 

This variation in the fault slip should be in the direc-

tion of decreasing with increasing depth in order to 

properly fit the data. Since we have normalized the am-

plitudes to that obtained about 1 km distance from the point 

at which the fault surface intersects the free surface, 

this conclusion might not hold for the upper 1 km (approx-

imately) of the fault surface. 

We can now proceed with the actual invers~on of the 

displacement data to get the "best fit" dislocation func-

tion. We will use as a starting model one in which the 

displacement varies in an exponential manner as that 

described above. We can note here that we would intui-

tively expect that the displacement data shown in Figure 4.4 
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would be affected by only the upper 5-7 km of the fault 

system that we have chosen. This fault system was made 

to consist of many small fault elements in order to more 

adequately estimate this large slip variation which we 

will expect. 

Inversion Results. The media response matrix, A, was cal-

culated from the analytic expressions given by Mansinha and 

Smylie (1971) for the structural model given in Table 4.1. 

Using this formalism, the static displacement response on 

the surface at the positions of the observed data due to a 

unit (1 cm) dislocation on each of the individual fault 

elements was calculated. Since there were 20 data points, 

or 20 positions on the surface at which the displacement 

response was calculated, the media response matrix was 

composed of 20 rows. The number of columns of the matrix 

indicates the number of fault elements which were used to 

represent the fault system. This number was varied, as 

we shall see below. 

Initially, we assumed that the fault system was com-

posed of only the 21 elements listed in Table 4.la (Ml-

M21). We will refer to this fault system as the main 
I 

thrust sheet. The media response matrix for thi~ fault 

system was composed and the inversion scheme initiated 

with the exponental decay starting model described in the 

previous section. The inversion converged quickly to a 
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"best fit" solution. This solution is presented in 

Figure 4.5. 

The lower part of Figure 4.5 shows this "best fit" 

dislocation on each of the 21 fault elements which com-

prise this present fault system. We see that the disloca-

tion at the surface is calculated to be 266 cm. This value 

immediately decreases to 160 cm at a depth of about 0.3 km. 

The maximum dislocation (515 cm) on the fault surface is 

at a depth of 0.8-0.9 km. At depths greater than 1 km, the 

dislocation on the fault surface decays almost linearly. 

A minimum is reached at about 8.5 km depth, and the dislo-

cation function increases slightly in the hypocentral 

region. The maximum displacement in the hypocentral region 

in this case is 140 cm. The resolvability of the features 

of this particular model will be discussed in a later 

section. 

The displacement at the surface due to this particular 

dislocation function was calculated along a profile at 0.2 

km increments. This displacement profile is shown in the 

upper part of Figure 4.5. The observed displacement data 

as projected onto this profile are indicated along with 

the estimate of their errors. In this figure, we see that 
I 

for the observed data located to the north of the surface 

breaks (given by positive distances along the abcissa in 

the figure), the fit as given by this "best fit" model is 
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SRN FERNRNDO DISPLRCEMENT PROFILE 
NO DISPLRCEMENT ON SRN GABRIEL FRULT 

NO SPLRYING NERR SURFACE 
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Figure 4.5. Lower--Best fit dislocation function 
for the main thrust sheet. Upper--Comparison of 
the calculated surface displacements from this 
model to the observed profile data. 

18 
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quite good. To the south of the surface breaks, the cal­

culated model predicts a larger negative surface dis­

placement than is observed. A noteworthy feature of this 

particular fit is the importance, as far as spatial cover­

age along the profile is concerned, of having included the 

gravity-converted displacement points in the inversion data 

set. These converted data points force the calculated dis­

placement field to go through a slight minimum in the pro­

file distance 10-13 km away from the surface breaks. The 

displacements at distances greater than at the point where 

this minimum occurs are dependent almost totally on the 

dislocation function in the hypocentral region. The RMS 

error residual (observed-calculated) for all the data is 

about 8 cm. 

In the next figure (Figure 4.6), we see what effect 

there is on this "best fit" solution when we exclude from 

the inversion data set the gravity-converted displacement 

data. In this figure, we see that the dislocation function 

along the upper 6 km of the fault system is essentially 

unchanged. Below this depth, the dislocation minimum along 

the fault sheet is reduced from what was previously calcu­

lated and shifted to a slightly smaller depth. Larger 

dislocations (maximum-275 cm) are now given in the hypo­

central region. However, we note that only one data point, 

located at 17 km along the profile, is controlling the 
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SRN FERNRNOO DISPLACEMENT PROFILE 
NO OISPLRCEMENT ON SAN GRBRIEL FAULT 
NO SPLRYING NERR SURFRCE 
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Figure 4.6. Lower--Best fit dislocation function 
for main thrust sheet when gravity-converted data 
points are excluded from inversion data set. 
Upper--Comparison of the calculated surface dis­
placements from this model to the observed profile 
data. 
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amount of dislocation in this region. The resolvability 

of the dislocations in the hypocentral area will thus be 

highly dependent on the variance of this one data point. 

In the section on averaging in this chapter, we will see 

how the inclusion of the gravity-converted displacement 

data, inaccurate as they are, affects the resolution in the 

hypocentral area. 

Next, we want to look at the effect of including a 

representation of the San Gabriel fault into our fault 

system for which we will use the inversion scheme to obtain 

a dislocation model. The structural parameters for this 

addition, which is composed of 6 elements, are given in 

Table 4.lb (SG1-SG6). The media response from these ele-

ments was computed and included in the response matrix. 

Figure 4.7 shows the results of the inversion of the data 

set (including the gravity-converted points) for this 

particular fault system. Comparing the dislocat~on func­

tion found in this figure and that obtained by the single 

thrust sheet (Figure 4.5), we see that practically the 

only difference between the two models is the amount of 

fault dislocation in the hypocentral area. In this present 

model, the slip in the hypocentral area is about/ 60% 

greater than that shown in Figure 4.5. This larger dis-

placement in this region is necessary to accommodate the 

slip calculated for the San Gabriel fault. The slip 



0 
0 

"' 

a_• 
~ 

_.lo 
(/)0 

N 

-137-

SAN FERNANDO DISPLACEMENT PROFILE 
INCLUDES SAN GABRIEL FAULT 
NO SPLAYING NEAR SURFACE 

.___-J_ __ ..__ _ __J_ __ ..___--1__ __ ..__ __ J 
0 2 6 8 

DEPTH, KM 
10 12 14 

Figure 4.7. Lower--Best fit dislocation function 
for the main thrust sheet and San Gabriel fault 
representation. Upper--Comparison of the calcu­
lated surface displacements from this model to the 
observed profile data. 



E 150 
u 
~ 

-+-
c 
Q) 

E 100 
Q) 

u 
0 
0.. 
(/) 

"D 50 

0 

E 
L 

0 
z 0 

-

-

-

-138-

I I I I I I I I 
8 6 4 2 0 

~Depth along San Gabriel Fault, k111 

Figure 4.8. Best fit solution for normal slip on 
the San Gabriel fault representation. 
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calculated for the elements representing the San Gabriel 

fault is not shown in Figure 4.7 but is indicated in 

Figure 4.8. The sense of motion of the slip calculated on 

the San Gabriel section is opposite that on the main thrust 

sheet, i.e., normal faulting. We see here that the normal 

slip decays rapidly almost linearly toward the surface. 

This model predicts no motion on this fault for the upper 

2 km, agreeing with the lack of observable expressions of 

surface motion on this fault after the earthquake (Kamb 

et al., 1971). A later section of this chapter goes into 

detail about whether this slip is required by the data. 

Some mild supportiv~ evidence for the existence of 

normal faulting on the San Gabriel fault representation is 

given in the following discussion. Whitcomb et al. (1973) 

give a strong correlation to the noted areas of compres­

sional release (normal faulting) as determined by focal 

mechanism studies and the area of mapped gravity increases. 

If th~ areas of the San Gabriel fault representation that 

were computed to have undergone normal faulting were pro­

jected to the surface, then this projection would approxi­

mately coincide with the area of gravity increase and the 

correlated compressional release. 

Calculation of the averaging operator (equation (2.29)) 

for this structural model reveals a strong coupling between 

thrust slip in the hypocentral area and normal slip along 
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the lower part of the San Gabriel fault representation. 

This coupling is in the sense that in order to keep the 

same displacement at the surf ace while increasing the 

thrust displacement in the hypocentral region, it would be 

necessary to increase the normal slip along the lower part 

of this auxiliary fault. This coupling is illustrated by 

the results shown in Figure 4.9. In this figure, we have 

significantly increased the dislocation in the hypocentral 

area. Hanks (1974), on the basis of an analysis of the 

Pacoima Dam strong motion records, postulated that this 

earthquake initiated with large (4-9 m) ruptures. in the 

hypocentral region. In this example, we will see if the 

surface static displacement data support this hypothesis. 

In this calculation, we have initially set the fault dis­

location for the three bottom fault elements of the main 

thrust sheet at the levels indicated in Figure 4.9. In 

the inversion calculations, the model weights for these 

elements were set such that these three dislocation values 

remained fixed. The result from the inversion is the 

smooth model given in the figure. The fit to the observed 

data for this particular model is extremely good, with the 

RMS error residual found to be less than 5 cm. We see that 

the minimum in the fault dislocation function is shifted 

to a much shallower depth than in previous examples. The 

dislocation function calculated for the upper part of the 
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SAN FERNANDO DISPLACEMENT PROFILE 

INCLUDES SRN GABRIEL FRULT 

ND SPLAYING NERR SURFACE 

16 18 

Figure 4.9. Lower--Best fit dislocation function 
for the main thrust sheet and San Gabriel fault 
representation when large displacements are forced 
in the hypocentral region. Upper--Comparison of 
the calculated surface displacements from this 
model to the observed profile data. 
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fault sheet is the same as before. However, the maximum 

normal slip on the San Gabriel fault has been increased to 

almost 300 cm -- approximately double that shown in Figure 

4.8. The dislocation function on the auxiliary fault re­

tained the relative shape which is shown in Figure 4.8. 

We next include the splay group of fault elements into 

our fault system. The structural characteristics of these 

elements are listed in Table lb (Sl-S20). The media 

response to these elements was calculated, and the response 

matrix was expanded to include these values. For compari­

son, we chose as our starting model for the inversion the 

final model given in Figure 4.9. The results of this in­

version are shown in Figure 4.10. 

A comparison of the slip model in this figure and th~t 

shown in the previous figure reveals that the two models 

are practically identical except for the upper 1.5-2.0 km. 

This is to be expected since the fault geometry was only 

changed for the upper 1 km, and we would expect this small 

part of the fault system to be relatively uncoupled from 

the rest of the fault system. For this model, the fit. to 

the data to the north of the surface ruptures is equally 

satisfactory as with the unsplayed fault geometry, but the 

fit to the two data points to the south of the surface 

ruptures is degraded somewhat. For the dislocation on the 

main thrust sheet near the surface, instead of varying 
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SRN FERNRNDD OISPLRCEMENT PROFILE 

INCLUDES SRN GRBRIEL FRULT 

SPLRYING NERR SURFRCE 

6 8 
DISTANCE, KM 
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DEPTH, KM 
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16 
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18 

Figure 4.10. Lower--Best fit dislocation function 
for fault system when near-surface splay faults are 
introduced. Upper--Comparison of the calculated 
surface displacements from this model to the observed 
profile data. 
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Figure 4.11. Best fit solution for slip on the 
near-surface splay faults. 
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rapidly as in Figure 4.9, the slip is almost constant at 

250 cm, and the maximum slip on the thrust sheet is re­

duced by about 20% to 400 cm. The slips on the small splay 

faults vary smoothly away from the value on the main thrust 

sheet where they intersect that sheet. The slip on the 

splay faults is better illustrated·in Figure 4.11. Here 

we see that not only does the calculated slip decay 

smoothly toward the surface, the displacements at the sur­

face decrease away from the surface ruptures. 

Since we have limited our inversion data set to points 

which were located near the profile which approximately 

bisects the observed surface deformation, we would now like 

to see how the calculated displacement from this model 

compares to what is observed in areas away from this pro­

file. For observation points away from the center of 

deformation, one must consider the contribution to the 

vertical displacement caused by any strike slip component 

of fault dislocation. In this calculation, we will arbi­

trarily assume that the dislocation slip vector on each of 

the fault elements has a constant rake angle of 60°. This 

is about the maximum component of left lateral motion that 

would be allowable based on the focal mechanism data of 

Whitcomb et al. (1973). At this rake angle, the left 

lateral strike slip dislocation is 0.6 of the pure dip 

slip component. For the majority of the observations, the 
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calculated vertical displacement from the strike slip com­

ponent of dislocation is a secondary effect. 

One obvious feature of the observed surface vertical 

displacements is the offset between the Tujunga and Sylmar 

fault segments. This offset is easily modeled by slightly 

altering the geometry of the upper part of the fault 

system. An advantage of including the small splay faults 

near the surface, in addition to approximating the surface 

ruptures observed north -0f the main Tujunga scarp, is that 

it allows one to easily model the observed offset in the 

surface faulting. This is done by letting the upper six 

elements of the main thrust sheet and all the splay fault 

elements (Sl-314), except the ones farthest from the 

main surface breaks, terminate at the Tujunga-Sylmar off­

set. This means that these particular fault elements have 

lengths of only 10 km with the coordinate system origin of 

these elements shifted 2.5 km to the east. The total con­

tribution to the surface deformation from all the fault 

elements was calculated taking into consideration this 

lateral offset where appropriate. The results are shown 

in Figure 4.12. The fault dislocation function used for 

these calculations is the same as that given in Figure 4.5 

with the addition of the splay fault system. 

A comparison of the contours presented in this figure 

and the areal displacement given in Figures 4.2 and A2.4 
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Figure ~.12. Computed vertical displacement field 
from best fit model given in Figure 4.5 with the 
addition of the near-surface splay faults. The 
fault dislocation includes acomponent of left­
lateral strike slip taken to be 0.6 that of the 
dip slip motion. Contours are in cm of uplift. 
The solid circles show the location of the data used 
in the inversion. Superposed on the contours is 
a map of the roads in the area. 
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shows the degree of fit the calculated model has to the 

observations. If instead we had used the dislocation 

function like that indicated in Figure 4.7, the effect on 

the area deformation would be to increase the magnitude of 

the downward displacement in the northeast area and to in­

crease the northward extent of the 10 cm contour line. For 

contour levels 25 cm and above, there is practically no 

discernible difference between the two plots. 

One feature of Figure A2.4 which does not appear in 

the theoretical contour plots is the delineation of a zone 

of downwarping to the west of the profile line. One pos­

sible explanation for the occurrence of this area is that 

it is associated with the seismic activity along the seis­

mically mapped down step of the main fault plane (Whitcomb 

et al., 1973). A significant amount of left lateral motion 

on a steeply dipping plane could produce the localized 

downward displacements that are observed in this area. The 

addition of this fault geometry was not considered in this 

study, however. 

4.6 Resolvability of Features in the Slip Model. 

The variance operator, V, for this case is a 47 x 47 

matrix. This matrix was calculated in the same manner in 

the previous chapter. For simplicity, the splay fault 

elements were suppressed in these resolvability calcula­

tions. This suppression should cause no change in the 
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conclusions reached in this section. Again, to test the 

resolvability of a particular feature of a model, a model 

perturbation affecting this feature will be considered. 

This perturbation will then be tested for detectability at 

the 95% confidence level. 

The initial model that we consider is that shown in 

Figure 4.5. The first question that we ask about this 

slip model is the following: "Considering that the fault 

geometry of this model is appropriate, do the data demand 

that there exists a sharp minimum in the slip in the upper 

1 km of the fault sheet?" To answer this question, we 

assume a perturbation, which when added to the calculated 

slip model, will just cancel this minimum. This perturba­

tion is then tested and uniformly reduced until it is at 

the 95% confidence limit detectability threshold. The 

resulting perturbation is shown in Figure 4.13a. We see 

that the maximum perturbation allowable by the data is not 

large enough to erase this minimum. 

Next, we try to determine if the data demand the 

existence of the broad minimum in slip between the upper 

and lower parts of the thrust sheet. Figure ~.13b shows 

the amount of slip that could be added in this region. We 

see here that the slip gradient could be smaller than that 

given in the original slip model, but nevertheless, the 
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dislocation does become smaller with increasing depth in 

this region. 

Intuitively, we would expect that the resolvability 

would be less in the hypocentral area than in other parts of 

the fault system because the fault elements in this region 

are located farther from the points on the surface where we 

have data. Also the density of data points on the surface 

near the epicenter is smaller than near the surface ruptures 

and the data in this area are generally not as accurate. 

In testing the resolvability of the calculated dislocation 

in the hypocentral area, we will consider what is the maxi­

mum perturbation that we can subtract from the calculated 

values and still be resolvable by the data. From equation 

(2.33) we see that the sign of the perturbation to be tested 

by our resolvability criterion is not important, only the 

magnitude of the perturbation. Thus, we can either add or 

subtract a perturbation tested at a particular confidence 

level to the calculated model dislocation and still not be 

detected by the data at that confidence level. In Figure 

4.13c, we see that we can add or subtract about 100 cm of 

displacement in the hypocentral region for this perturbation 

shape. From this type of analysis, we indeed find that the 

slip in ~he hypocenter is poorly determined, since the un­

certainty in slip is almost the equivalent of the calculated 
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values. If required to give bounds for the slip in this 

area as predicted by the static data used here, we would say 

that the maximum slip is approximately 130 cm ± 100 cm. 

We now consider the variance operator in which the 

San Gabriel fault representation is included in the fault 

geometry, but the splay system is still excluded. The slip 

model for which perturbations are considered is that given 

in Figures 4.7 and 4.8. Figure 4.14 shows these perturba­

tions. In the upper part of this figure, we see that con­

sidering displacement on the San Gabriel fault alone, that 

is, not taking into account any coupling between fault 

elements, there would be about a 100 cm uncertainty in the 

estimate of the slip. The lower part of this figure shows 

the maximum undetectable perturbation possible when slip 

on this auxiliary fault and slip in the hypocentral region 

are considered simultaneously. We see here that the un­

certainty in slip in the hypocentral area is almost the 

same as that in Figure 4.13c, while the uncertainty on the 

San Gabriel fault has been reduced to about 50 cm. 

4.7 Averaging Operators. 

As discussed in the previous chapter, examination of 

the kernels of the matrix operator, R, provides information 

about the filter through which we are able to view our 

"best fit" estimate of the fault slip. We say that the 
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ability to resolve the details of the actual dislocation 

function depends on the size of the kernels and the aver­

aging widths of the kernels. The ratio of the size of the 

kernels to the averaging widths provides a convenient 

medium for expressing the resolution at a given point in 

the fault system. First of all in this section, we would 

like to examine these ratios to determine the effect of 

the addition of the gravity-converted displacement points 

to the data set. The averaging operator was calculated 

both with and without these data points in the inversion 

data set and the averaging ratios calculated in both in­

stances. 

Figure 4.15 shows the difference in the averaging 

ratios the addition of these data cause. The fault geometry 

considered in this case is that of a single thrust sheet. 

In the figure, we see that the upper part of the fault is 

unaffected by the addition of these data. The area of the 

fault which has the maximum effect is in the range from 

7-11 km depth. In this range, the resolvability ratio is 

doubled. The reason for the increase is not so much an 

increase in the value of the averaging kernels for these 

elements, but more , the fact that the averaging widths of 

these elements are reduced. Thus, the addition of these 

data does not help much in the determination of the actual 
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Figure 4.15. Averaging ratios for data sets with 
and without the gravity-converted displacement data. 
Curve has been made continuous by connecting values 
calculated at the fault element mid-point depths. 
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slip in this area, but the slip that is determined is much 

more localized than could be determined without these data. 

Figure 4.16 shows examples of the averaging kernels 

for the San Fernando earthquake model consisting of a sim­

ple thrust sheet. The arrows in the figure indicate the 

elements around which the averaging is centered. The block 

offset to the right is an expanded view of the upper 1.5 km 

of the cross section to elucidate the fault geometry in that 

area. Examining this figure, we see that the averaging is 

very localized in the upper part of the fault, but the 

averaging length increases with increasing depth along the 

fault. In the.bottom figure, the averaging length (half­

width) is about 4.5 km. In comparing the averaging kernels 

presented here with those given for the Alaska earthquake, 

we notice that the strong negative side lobes are not as much 

in evidence in this present example. This is probably 

caused by the better spatial distribution of data in the 

San Fernando case. 

Figure 4.17 indicates the averaging kernels for se­

lected fault elements when the San Gabriel fault geometry 

is introduced. The top figure is centered on a fault ele­

ment that is located on the main thrust sheet directly 

under the San Gabriel fault representation. We see from 

this picture that there is no coupling in this area between 
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Figure 4.17. Spatial averaging of slip in model 
with San Gabriel fault representation. 
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the main fault and the auxiliary fault. This means that 

there can be no trade-off in displacement between the two 

faults to affect the resolvability test of the slip in this 

area as indicated in Figure 4.13b. Figure 4.17b shows the 

spatial averaging of slip for the upper part of the San 

Gabriel fault. We see here that this too is uncoupled 

from the rest of the fault system. We note here that the 

best fit solution for the fault geometry which included 

this fault indicated little or no slip on this portion of 

the fault. Figure 4.17c indicates the extent of the spa­

tial averaging for the lower part of the San Gabriel fault. 

We see here that there is very strong coupling to the fault 

elements in the hypocentral area. We note that the aver­

aging between the two fault segments is in the same direc­

tion indicating that any normal slip on this portion of the 

San Gabriel fault will be seen by the data as normal slip 

averaged over both the San Gabriel fault and the main fault 

in the hypocentral area. However, we can rule out the 

possibility of the occurrence of normal faulting on the 

main fault from consideration of the focal mechanism of the 

initial motion. These observations are taken to mean that 

this portion of the San Gabriel fault is effectively de­

coupled from the rest of the fault system. If this is true, 

then from the results indicated by the resolvability cal­

culations in Figure 4.14a, the slip on this fault is not 



-160-

detectable by the data. This conclusion is not surprising 

considering that we have presented two separate dislocation 

models -- one without slip on the San Gabriel fault (Figure 

4.5) and one with slip on the San Gabriel fault (Figure 4.7) 

-- each of which is geophysically plausible and fits the 

data to a satisfactory degree. 

4.8 Conclusions. 

Several possible fault dislocation models have been 

presented to explain the observed vertical displqcement 

which accompanied the 1971 San Fernando, California earth­

quake. The fault geometry assumed in calculating these 

models was made to conform to most of the geological and 

geophysical observations that were associated with the 

faulting. In each of the models computed from the inver­

sion scheme, a significant variation in slip along the 

fault was calculated. The maximum displacement was com­

puted to have occurred on the shallow end of the fault 

surface. The resolution of slip in this shallow part was 

very good, and the spatial averaging of slip was relatively 

small. A model was calculated in which there was extensive 

splaying away from the main fault. as the fault neared the 

surface. The slip model calculated for this geometry is 

preferable to that of a single fault for the following two 

reasons: 1) The maximum displacement on the fault necessary 

to fit the data was reduced, and large variations in slip in 
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the upper 1 km of section was reduced; and 2) evidence for 

the existence of and movement on these splay faults was 

observed in the field, and their existence admits the 

possibility of modeling the observed lateral offset in the 

surface faulting. We caution here that the exact number, 

location and offset on the splay elements should not be 

taken as absolute. The addition of these elements into 

the fault system was taken to represent in some systematic 

fashion the observable imbricate ruptures which did not 

appear to be so systematic. However, we think that the 

inclusion of these elements has led to a better under­

standing of the faulting process near the surface. 

Dislocation models were calculated for fault geome­

tries which both included and excluded a representation of 

the San Gabriel fault. It was found that there was very 

little resolution of slip along the San Gabriel fault. If 

slip did occur, this slip would be normal fault movement 

and confined to the lower part of the fault. These two 

models indicated that between 140 and 200 cm of slip 

occurred in the area of initial motion. The uncertainty of 

this slip in the hypocentral area as determined by the 

static data is about 100 cm. All of these calculations 

have been based on the initial assumption that the fault 

sizes were fixed. If we have misjudged the length of the 
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fault elements, the calculated slip would be in slight 

error. For distances away from the fault elements, this 

error is about linear with length. That is, if the lengths 

of the fault elements in the hypocentral area are actually 

10% smaller than the value. that was fixed in the inversion, 

the calculated slip on the smaller fault element would be 

about 10% larger. 

The moment for this event can now be calculated for 

each of the slip models. In the calculations, the value of 

the shear modulus was taken from the estimates given by 

Jungels (1973, p. 29). The values of moment range from 1.0 

x 1026 dyne-cm for the slip model presented in Figure 4.5 
26 to 2.2 x 10 dyne-cm for the model given in Figure 4.10. 

These two extremes just about span the values obtained by 

both static and dynamic observations given in the litera-

ture by various authors (Aki, 1971; Wyss, 1971; Wyss and 

Hanks, 1972; Canitez and Toksoz, 1972; Jungels and Frazier, 

1973; Savage et al., 1973). 

On the basis of choosing the simplest possible model 

necessary to fit the data, we give as our preferred "best 

fit'' model the slip function given in Figure 4.5 with the 

addition of the splay slip shown in Figures 4.10 and 4.11. 
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Chapter 5 

Least-Squares Inversion of Surface Wave Spectra 
to Obtain Source Parameters: 

The 1971 San Fernando Earthquake 

5.1 Introduction. 

In this chapter, we will examine the spatial and fre-

quency distribution of Rayleigh waves from the 1971 San 

Fernando, California, earthquake and how this distribution 

is related to the faulting processes of that event. The 

use of surface waves to determine gross source parameters 

has been a common tool in recent seismological investiga-

tions, e.g.,Wu (1968), Tsai and Aki (1970, 1971), Canitez 

and Toksoz (1971, 1972), and Mitchell (1973). Unfortunate-

ly, the problem of systematically finding values of the 

source variables which optimally fit the observed data has 

not yet received the attention due the problem. With the 

exception of a Monte Carlo technique by Tsai (1972) and an 

iterative technique by Turnbull et al. (1973), the "trial 

and error" method was usually employed in finding suitable 

variables which describe the data. 

We hope to extend the usefulness of surface observa-

tions by showing how an inversion procedure can be applied 

to surface wave observations in order to see what informa-

tion can and cannot be gained about the earthquake source. 
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Along with this inversion, we will use a method of express­

ing the finiteness of the fault plane by numerically sum­

ming point source solutions. This method will allow for 

the variation of parameters over the fault surface. 

Finally, we would like to compare the solution that we ob­

tained for the San Fernando source mechanism from the sta­

tic study in the previous chapter to that obtained by the 

dynamical surface waves. 

5.2 Theoretical Model. 

Spectra from a Point Source. Theoretical surface wave 

spectra will be computed for a source in a multilayered 

medium which approximates the San Fernando area. The 

elastic parameters for this medium are given in Appendix 5. 

Far-field amplitude spectra depend on the surface wave 

amplitude response of the layered medium and also the 

source type, depth and orientation. Expressions for the 

frequency dependent media response factor, which is depen­

dent on the source, are given by Harkrider (1964). Compu­

tation of this factor involves use of the Thomson-Haskell 

matrices for the multilayered half-space (Haskell, 1953)~ 

The formulation for the component of the surface wave 

spectra which is due to different source types and the 

orientation of the source was developed by Ben-Menahem and 

Harkrider (1964). The far-field solution for Rayleigh wave 
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spectra for a point double-couple can be written as 

S(w) k AR x(e,h)e-i(kr+1%) 

\!k; 
(5.1) A(w) = 

where 

S(w) = transformed spectral source function 

k = Rayleigh wave wave number 

AR = medium response factor 

r = radial distance to receiver 

x(e,h) =complex radiation pattern function, where e 

is the azimuth of the station relative to the 

source and h is the source depth. 

The radiation pattern function is given by Ben-Menahem 

and Harkrider (1964) and by Harkrider (1970). This func-

tion is dependent on the source parameters and the source 

depth. At a given depth, this azimuth dependent function 

is characterized by the slip, or rake, angle and the dip of 

the source-equivalent fault. The numerical techniques used 

in the computer programs which calculate these functions 

are discussed by Harkrider (1970). 

The source function is assumed to be a step function 

in moment. This is given by 

{ 

0 
S(t) = 

Mo 

for t < O 
(5.2) 

for t > 0 
' 
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where t is the origin time of the event. 

Source Finiteness Effects. In the above discussion, the 

source was represented by a point source. However, if the 

dislocation on the actual fault surface initiates at one 

point and propagates to another point, the fault finiteness 

and rupture velocity can become important. Ben-Menahem 

(1961) has shown how the dimensions of the source and the 

speed of rupture play an important role in the resulting 

spectral radiation patterns. This author shows that spec-

tra from a source which radiates energy evenly as propaga-

tion occurs was modulated by the shift factor, 

where 

sin (X) 
x 

iX 
e 

The following parameters are defined: 

w = angular frequency 

C = Rayleigh wave phase velocity 

b = horizontal rupture length 

v = horizontal rupture velocity 

(5.3) 

s0 = angle measured from the direction of rupture. 
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However, if the source radiates energy unevenly during 

propagation, then this simple modulation no longer applies. 

One such method of uneven radiation can occur by having the 

dislocation (i.e., moment) vary along the fault. The fact 

that surface wave excitation is depth dependent means that 

a fault which has a vertical component of propagation can 

also give rise to uneven radiation during propagation. The 

analytic modeling of such rupture would be very difficult 

for a layered medium, however, we give here a numerical 

approximation to this phenomena. 

Numerical Approximation of a Propagating Fault. In this 

section, we will present a method of numerically approxi-

mating the surface wave spectra due to a propagating rup-

ture. To do this, we will consider the fault to be 

modeled by a discrete number of double couple sources 

arranged spatially to reflect the length of a fault. Prop-

agation along the fault occurs by "turning on" each of the 

sources sequentially at a time given by 

' 

where ~ is the distance to the ith individual source 
Si 

from some origin and VR is some rupture, or propagation, 

velocity that we wish to approximate. The spectra from 
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each of the sources will have a different phase at some 

fixed observation point. The total spectra measured at 

this point will be the complex sum of the individual con-

tributions. The phase delay of the individual propagation 

sources relative to the initial source taken to occur at 

the origin is given by 

' 

where R0 is the distance from the initial, or reference 
A 

source, to the exterior observation point and Ri are the 

distances from the other sources to the observation point. 

C(w) is the phase velocity. The geometry of this problem 

is illustrated in Figure 5.1. From this figure, we can 

write 

where d is the horizontal separation of the individual 
Si 

sources relative to the initial source taken in the direc-

tion of rupture, A.R. eF is the "azimuth" to the station 

relative to the initial source. Appendix 4 goes into the 

details of how the spectra are summed given this phase 

information. Both strike slip and dip slip faulting can 

be approximated with this geometry. 
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Figure 5.1. Geometry of the assumed multiple double 
couple source. 
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We caution here that the angle eF as defined in 

Figure 5.1 is not the same angle as the angle e in the 

complex radiation pattern term of equation (5.1). A pre­

liminary examination of Figure 1 in the Ben-Menahem and 

Harkrider (1964) paper would indicate that these two angles 

are equivalent, but their definition of e is in error. The 

angle 8 should be measured positively clockwise from the 

positive strike direction when viewed above the half-space. 

As a check to this numerical approximation, we will 

model a vertical strike slip earthquake and check the re­

sulting spectra with that calculated by the method of 

Ben-Menahem (1961). This model consisted of 16 sources, 

each at a depth of 20 km, with dip 90°, slip angle 0° (pure 

left lateral faulting), and identical moments. The sources 

were spaced at 2 km increments along the strike of the 

origin source (As=l80°) so that the fault length and prop­

agation length were 30 km. Spectra were computed for appar­

ent propagation velocities of 1.5, 3.0 and 4.5 km/sec at 

a point in a direction 45° to the direction of propagation 

in order to avoid a node in the radiation pattern of strike 

slip events. These spectra were then compared to that 

calculated for a single point source with the shift term 

for this fault length and propagation velocities. The 

moment of the single source was taken as the simple sum of 
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the moments in the discretized model. The results are 

shown in Figure 5.2. 

In this figure, we have normalized the amplitudes to 

the values calculated for a non-propagating point source 

at the depth of the source at the point of initial rupture. 

By utilizing this normalization, we cancel the media source 

depth effects on the spectra. The ratio shows only the 

effects of the fault finiteness. In Figure 5.2a, we see 

that the directivity calculated by this numerical technique 

matches very closely tha~ given by Ben-Menahem (1961). For 

propagation velocities 3.0 km/sec and greater, there is 

less than 1% difference in the two calculations. We see 

that the directivity is a very pronounced function in the 

period range of interest for slow propagation velocities. 

Now that we have shown that the directivity function 

can be accurately calculated numerically, we now examine 

the effect of dip slip propagation on surface wave ampli­

tude spectra. A model of a 45° pure dip slip fault was 

constructed. The initial motion occurs at a depth of 20 

km and propagates at a constant velocity up the fault to a 

depth of 2 km. A total of 10 double couple sources were 

spaced at a 2 km depth and lateral increments to approxi­

mate this fault. The propagation distance along the fault 

is 28.3 km, and the pure horizontal propagation distance is 
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Figure 5.2. Comparison of the frequency-dependent 
directivity· function given by the Ben-Menahem formu­
lation and the numerical approximation. Upper-­
results for a 30 km long left lateral strike slip 
fault. Lower--results for a 28.3 km wide 45° dip 
slip fault. 
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18 km. The spectra were calculated at an exterior point 

which is in the direction of propagation. Spectra were 

also calculated using the Ben-Menahem formulism for the 

same parameters. All the amplitudes were normalized to a 

non-propagating point source at a depth of 20 km. Figure 

5.2b shows a comparison of the resulting directivities for 

this dip slip case. 

We see in this figure that there is a vast difference 

in the spectra computed by the two methods. The most sig­

nificant difference is the accentuation of the amplitudes 

in the 25-60 sec period range. As a check as to whether 

the large amplitudes calculated in the numerical case were 

due to a Doppler effect or due to the non-uniform depth 

excitation along the propagation length, we normalized 

these amplitudes to the spectrum which was calculated using 

the numerical approach when an infinite propagation velo­

city was used. This normalization cancels any non-uniform 

depth excitation since the depth distribution was identical 

in both cases. The resulting directivity was almost iden­

tical to that calculated by the Ben-Menahem method and 

shown in the lower part of the figure. 

We thus conclude that the effect of a source radiating 

energy as it propagates from one depth to another during 

faulting can be much larger than the Doppler effect and 
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cannot be ignored when spectra due to this type of faulting 

are being modeled. The depth effect on the spectra will 

vary from medium to medium and from source type to source 

type. No attempt was made here to catalogue this effect 

for various media and propagation parameters. 

Approximation of San Fernando Faulting. In the previous 

chapter, we discussed the geophysical observations which 

constrained the fault model geometry for the 1971 San 

Fernando, California, earthquake. In this chapter, we 

would like to adopt an approximation to this same geometry 

to try to explain the radiation of surface wave energy from 

this fault. This approximation is accomplished by using 

four double-couple sources. The primary constraint for 

limiting the approximation to only four sources was econo-

mic, since the forward problem had to be recalculated after 

each iteration for the partial derivative matrix. However, 

we consider that the approximation chosen is adequate in 

light of the periods of the surface waves used. The param-

eters which describe this fault geometry and remain fixed 

in the inversion are listed below. 

Source No. depth(km) dip ds(km) 

1 14.5 52° o.o 
2 10.5 52° 2.49 
3 6.25 35° 7.51 
4 2.00 35° 14.36 
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These loci of the four point sources do not lie on a 

straight depth-distance line, but rather define the center 

line of a fault plane whose dip increases with depth. In 

calculating the propagation delay time for each of the 

elements, the distance, ~i' is used. ~i is given by 

These distances are the straight line distances from the 

initial source to the three other double-couples. The 

delay time error caused by using this distance rather than 

the distance measured along the curved "fault plane'' is 

less than 1 sec in the extreme case. 

5.3 Forward Problem Formulation. 

In this section, we wish to pose a relationship be-

tween the source model parameters and the observed spectra 

in a linear form as in equation (2.3). As we did for the 

static problem, we will propose some fault geometry and 

use an inversion scheme to solve the fault model parameters 

for this geometry. In order to describe the data, we will 

use a set of double-couple sources that are arranged spa-

tially to approximate the fault model system which was 

presented in the previous chapter. Some of the parameters 

of the individual sources, specifically those which 
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describe the geometry of the fault system, will be set 

initially and not changed in the inversion. These param-

eters are the depth and dip associated with individual 

source elements and the spatial relationship between ele-

ments. The variable parameters for each element are taken 

to be the moment and slip angle. In addition, we will in-

elude the propagation velocity and propagation direction 

as variables for the entire system. 

The model response matrix, A, for this problem is 

given to be composed of partial derivatives of the form 

' 
(5.4) 

where Si is the spectral amplitude value at some frequency 

f Q, (Q,=l,L) measured at some "azimuth" 8F (j=l,J) with 
j 

respect to the fault system. Xk (k=l,K) is the source 

parameter which is allowed to be varied. The matrix A has 

K columns and L x J rows, where K is the number of model 

variables (specified below), Lis the number of discrete 

spectral points at a single station and J is the number of 

stations used. For this case, 1=10, J=l8, K=lO. 

We see from Appendix 4 that the addition of multiple 

sources is a non-linear operation. This problem can be 

overcome by mapping only small increments of the model into 



-177-

changes in the data. The criterion for this linearization 

is the same as was discussed in Chapter 2. The partial 

derivatives which compose the matrix A were computed 

numerically for a given model. This was done by the simple 

differencing, 

-- Si(m+~mk) - Si(m) 

~mk 
(5.5) 

The incremental values of the source parameters used were: 

~M0 - moment = 0.1 x 1026 dyne-cm 

~A - slip ahgle = 10° 

~AR - propagation direction = 10° 

~VR - propagation velocity = 0.25 km/sec . 

5.4 Inversion Procedure. 

An inversion procedure will be adopted to find the 

model parameters which best fit the observed spectral data. 

Since the number of data points far exceed the number of 

variables, we will fit the data in a least-squares sense. 

Appendix 3 gives the derivation of the inversion operators 

for the general least-squares case. 

Since we have mixed units in the source model param-

eters and. thus mixed units in A and'. om, a problem of 
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scaling arises. One way of correcting for the dimension-

ality of the parameters is through the use of the weight-

ing, or model correlation, coefficients. The weights of 

the source parameters can be adjusted so that the weighted 

coefficients of the rows of Aare about equal. For a non-

linear problem, this scaling would be model dependent and 

thus would probably vary in the inversion. This method, 

although it can give satisfactory results in obtaining a 

fit to the data, is not esthetically pleasing. A satis-

factory method was found to solve this scaling problem. 

This was accomplished by non-dimensionalizi.ng the problem, 

A om= ad 

by dividing through by the data and model parameters. The 

dimensional matrices and vectors are replaced by their non-

dimensional counterparts in the inversion. The components 

of the quantities are defined as: 

= 1 c 
d~ nn .. 

ll 
oi 

1 
omJ. mj 

We note that this scaling is also non-linear. 
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Throughout the inversion calculations carried out in 

this chapter, we will limit the absolute value of a model 

perturbation in one iteration to that used in the differ­

encing method of calculating the partial derivatives in the 

forward problem. This was done to avoid projecting any 

model perturbation outside the range of assumed linearity. 

As a test to the inversion scheme, we will calculate 

the theoretical spectra at 18 far-field points (correspond­

ing to the location of the 18 stations which are described 

in the next section) for a given set of source parameters. 

The non-variable source parameters are the same as those 

used to describe the San Fernando faulting. These theo­

retical spectra were then input into the inversion scheme 

as "data" to see how accurately the corresponding variable 

source parameters could be recovered. The results of this 

test are shown in Figure 5.3. The initial values for the 

source parameters are that shown on the left at Iteration 

= O. The source values used in calculating the "data" are 

shown by the arrows on the right hand side of the figure. 

We see that at least 6 iterations are required before the 

solution starts to converge to the true values, and after 

11 iterations, the estimated values are very close to the 

true values. The restriction that the maximum size of the 

perturbations can be no larger than the differencing 
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values slows the convergence somewhat. Not shown in this 

figure is the estimate of the propagation velocity and 

propagation direction for each iteration. These two quan­

tities varied more smoothly and converged more quickly to 

the theoretical values than did the moments and slip angles. 

The propagation velocity and propagation direction con­

verged to 4.2 km/sec and 120° from an initial value of 

3.2 km/sec and 100°,respectively. 

In this test, the variance of each "datum" was taken 

to be 5% of the calculated value. The test was repeated 

with the data variances set at 25% of the calculated 

values. Although the convergence to the true model values 

was not as good as in the previous example, the solution 

remained stable through the iterations, and a fair estimate 

of the model parameters was obtained. The results from 

these experiments were encouraging enough to attempt to 

apply the technique to actual observed surface wave spectra. 

5.5 Data. 

The source of the surface wave data used in this study 

was from the long period vertical component instruments of 

the World-Wide Standard Seismograph Network (WWSSN). Only 

the vertical Rayleigh wave component at each station was 

considered in this study. Data from the Canadian Standard 

Stations and the WWSSN stations located in the continental 
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United States could not be used since either the long 

period vertical component was inoperative or off-scale 

during the passage of the Rayleigh wave train. The original 

intent in· collecting these data was to limit the stations 

used to those whose epicentral distances were less than 

60°-70°. However, to provide a more uniform and extensive 

azimuthal coverage of stations, this condition was relaxed 

somewhat. The closest station in a given azimuthal incre­

ment from the epicenter which gave a readable record was 

chosen. A total of 18 records was chosen to be examined, 

and these stations provided a fairly good azimuthal coverage 

for this event. Table 5.1 gives a list of all these sta­

tions used, the epicentral distances, and the geodetic 

azimuth of the station with respect to the epicenter. 

The Rayleigh wave signal was identified on each of 

the records and digitized at an irregular interval taking 

adequate care to sufficiently define the trace. These data 

werethen linearly interpolated to an equal increment rate 

of one sample every two seconds. The digitization was 

restricted to a velocity window of between about 4.3 km/sec 

to about 1.5 km/sec. There was a slight variance to this 

window depending on the distance and source-receiver path. 

The choice of the velocity window was based on a visual 

judgment as to when the signal arrived and essentially 
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ended at a particular station and on the dispersion curves 

expected for the traveled path. Typical of the dispersion 

curves used were those of Brune and Dorman (1963), McEvilly 

(1964), Santo (1963), Tryggvason (1962), and Brune (1969). 

The Fourier spectra of these records were then taken 

with a numerical transform routine. The spectra were cal­

culated for the frequency range from 60 sec period to 8 

sec period, with 512 discrete frequency points in this 

range. The spectra were smoothed slightly with a two-point 

Hanning filter such that for the ith frequency component of 

a particular record 

Instrument Correction. The instrument frequency and ampli­

tude response for the World-Wide long period seismograph 

system were calculated from the published instrument and 

coupling constants for that instrument. These calculations 

are based on the relations given by Hagiwara (1958) and 

Mitchell and Landisman (1969). Both an amplitude and fre­

quency correction were supplied. Since some of the sta­

tions that were used in this study operate at different 

instrument gains during different parts of the year, a 

check was made on each seismogram to verify the listed 
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instrument gain. This was done by comparing the height of 

the calibration pulse to the applied current impulse. The 

magnification computed in this fashion was within about 10% 

of the listed magnification except for station SBA which 

appeared to be off by a factor of 2. 

Geometrical Spreading Correction. All of the amplitude 

spectra A(w) are corrected back to a common distance, 6c, 

by multiplying by the well-known relation for spreading on 

the surface of a sphere 

' 
(5.6) 

where 6 and ~c are given in radians. For the data in this 

case, we chose our reference distance, ~c, to .be 2000 km. 

Attenuation Correction. Following the instrumental and 

geometrical spreading corrections, the spectral amplitudes 

were corrected for attenuation. This correction takes the 

form 

' (5.7) 

where y(w) is the amplitude attenuation coefficient appro-

priate for the particular source to receiver path, and x is 

the epicentral distance. Since the paths from the San 

Fernando epicenter to most of the WWSSN stations used in 
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this study involve mixed crustal type paths, the appropriate 

attenuation coefficient would necessarily be a path-· 

averaged value. We attempted to take this into considera~ 

tion in the following manner. 

We assume that each of the transmission paths can be 

divided into two types: continental and oceanic. From 

the literature, we compiled estimates of the fundamental 

model Rayleigh wave attenuation coefficients for these two 

media. These estimates are summarized in Figure 5.4. The 

continental attenuation coefficients are reduced from data 

given by Gutenberg (1945), Gutenberg and Richter (1936), 

Tryggvason (1965), Nuttli (1973) and Mitchell (1973). The 

oceanic attenuation coefficient curve was reduced from data 

in papers by Gutenberg (1945), Ben-Menahem (1965), and Tsai 

and Aki (1969). The partitioning of continental and 

oceanic travel paths was estimated for each station, and 

the spectral amplitudes measured at that station were 

corrected by multiplying by the following relation, 

where 

(5.8) 

yL(w) = the continental, or land, amplitude dissipation 

coefficient 
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y
0

(w) = the oceanic amplitude dissipation coefficient 

XL = the distance traveled over a continental type 

path 

XO = the distance traveled over an oceanic type path. 

Table 5.1 lists the percentage of the total path length 

that is spent in each of th~ assumed attenuation provinces. 

Also listed in this table is the geometrical spreading 

factor given by the equation in the above paragraph. 

Local Crustal Correction. This correction attempts to com­

pensate for the effects of surface waves traveling later­

ally from one structure to another. 'In the case un~er con­

sideration, there are marked variations in the structure 

of the crust and upper mantle between the area in which the 

surface waves were generated and the area around the sta­

tions at which they are measured. Fortunately, the correc­

tions applied along the path between these two points 

cancel out so that only a local crustal correction at the 

receiver needs to be applied to correct the spectral amp­

litudes back to the medium in which they were generated. 

An approximation which has given satisfactory results in 

predicting the amplitude changes of Rayleigh waves travel­

ing across a lateral boundary has been given by McGarr 

(1969) and McGarr and Alsop (1967). The validity of this 
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approximation has been verified by wave propagation studies 

in laterally heterogeneous media using the finite-difference 

numerical technique (D. Boore, personal communication, 

197 4) . 

If we assume that the total energy in the fundamental 

mode Rayleigh wave remains constant in the process of 

transmissions across the boundary margin, then we can write 

= 

where 

A8 (w) = the amplitude in the source medium 

AR(w) = the amplitude in the receiver medium 

w8 (w) = the normalized energy flux in the source medium 

WR(w) = the normalized energy flux in the receiver 

medium. 

The normalized energy flux is given by 

W(w) = 2 E(w) U(w) 
. ' 

where E(w) is the total potential or kinetic energy at a 

particular frequency normalized to the surface displace-

ment. The calculation of this energy excited in a given 

layered earth model is given by Harkrider and Anderson 
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Figure 5.5. Energy flux as a function of frequency 
calculated for various crustal and upper-mantle models. 
The velocity-density structures for the various models 
are given in Appendix 5. 
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TABLE 5.2 

Crust & Upper Mantle Type 

San Fernando Crust over 
Gutenberg Continent 

Greenlandic Shield with 
Ice Cap 

Iceland 

Irish Continental Shelf 

Iberian Shie1:d 

Mid-Atlantic Ocean 

Western America Tectonic 

Pacific Ocean East 

Pacific Ocean West 

Andean 

Central Japan 

Station 

Source Medium 

NOR, KTG, SBA 

AKU 

VAL 

MAL 

BEC, SJG 

CAR, BHP, COL 

GIE 

AFI, KIP, GUA, WEL 

PEL 

MAT 

Table 5.2. Crust and upper mantle structure used 

for the local crustal structure spectral 

amplitude correction. Velocity-density 

models for the different structures are 

given in Appendix 5. 
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(1966, equation 1). U(w) is the group velocity for the 

particular medium. 

At each of the 18 WWSSN stations used in this study, 

the crustal structure at that st.ation was approximated and 

the velocity dispersion and the spectral energy density 

calculated. The crustal models used in this calculation 

and the references for these models are given in Appendix 

5. The energy flux, W(w), given by these calculations is 

summarized in Figure 5.5. The stations for which each 

crustal model correction was used are listed in Table 5.2. 

In order to correct the spectral amplitudes back to a 

common medium, we multiply by a correction which normalizes 

the amplitudes to the source medium. This correction takes 

the form 

= (5.9) 

Multipath Propagation Removal. The complex cepstrum tech­

nique which was established by Schafer (1969) has proven 

to be an effective means of removing spectral modulations 

caused by the interference of simultaneously arriving 

signals. Two or more signals can arrive simultaneously at 

a given station due to either multipathing of a single 

signal or can result from the addition of several seismic 
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signals, multisourcing, or some combination of these two 

effects. In this study, we want to eliminate as best we 

can from our observed spectra that modulation which is due 

to any multipathing effects and retain any modulations 

which may arise from the addition of multiple sources. The 

spectra which have been de-modulated from multipathing 

effects can then be examined by this method to try to 

determine the existence of whether the source is a single 

or multiple event. 

Cohen (1970) and Flinn et al. (1973) have used the 

technique to detect the separation of the body phases P and 

pP for very shallow events, while Linville (1971) and Tsai 

(1972) have applied the method to surface waves. In the 

cepstrum technique, a homomorphic deconvolution is applied 

to separate the components of a convolution of a seismic 

signal and a multipath operator. Basically, the method 

acts like a filter applied to the amplitude spectra where 

the interference effect appears as a scalloping of the 

spectra over a wide frequency range. When a long pass 

filter is applied, the spectrum modulating effects are re­

moved. This filtering is done by applying the appropriate 

bandpass to the cepstrum. Tsai (1972) and Linville (1971) 

give a summary of the technique involved and the appro­

priate filter bands to use in correcting spectra in the 
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Figure 5.6. Example of cepstral filtering at two 
stations. Original spectra are shown by dashed line; 
the refined, or filtered, spectra are shown by the 
solid line. 
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bandwidth which is involved in this study. Such a long 

pass filter was applied to the observed spectra. This 

spectral filtering had little effect except to smooth the 

spectra. A typical example of the removal of the spectral 

modulations is shown in Figure 5.6. The spectra are pre­

sented as a function of frequency to show how the modula­

tions are frequency distributed. In this figure, the 

original spectra are shown by the dashed line, and the 

spectra after the application of the cepstrum technique 

are shown as a solid line. 

We saw in the last chapter from the static dislocation 

models of the San Fernando earthquake that there appeared 

to be two areas of large dislocation -- one in the hypo­

central region and one near the surface. If the disloca­

tions from these two areas acted like two separate sources, 

separated spatially and temporally, then the interference 

of these two sources should appear in the complex cepstrurn. 

The cepstrawere calculated at several of the stations cho­

sen in the opposite direction of the apparent rupture. 

This was done to maximize the effect of the final separate­

ness of the sources. At station COL, there appeared to be 

some signal interference at a delay time of about 8 sec 

and at 11.5 sec. This might be interpreted as the inter­

ference of the signal excited at the hypocenter by another 
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signal which was excited when the fault became near or 

broke the surface. This effect was not as apparent at 

station NOR, so we feel that no firm conclusions should be 

drawn from this particular analysis. 

Corrected Data. All of the above corrections were applied 

to the measured amplitude spectra at the WWSSN stations. 

These spectra are shown in Figure 5.7. The upper part of 

this figure shows the location and azimuthal distribution 

of the stations used. The lower part of the figure gives 

the corrected amplitude spectra at each of the stations. 

The spectra are arranged by columns with geodetic azimuth 

increasing from top to bottom. The spectral values indi­

cated by a dashed line in the figure are the values for 

which the total correction exceeded a factor of 10. These 

data will have to be considered less reliable than the 

longer period data because of the uncertainties in the 

corrections. Samples of the spectral values were chosen at 

ten discrete periods: 60, 50, 40, 34, 30, 26, 22, 20, 18, 

and 16 sec. It was felt that this sampling interval was 

adequate to reflect the spectra shape at the individual 

stations. Periods shorter than 16 sec were not included 

into the inversion data set because of the larger uncer­

tainty in the corrections at these periods, particularly 

in the attenuation factor. 
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Estimated Errors in the Data. Errors to the spectra which 

we have measured for this event arise from two sources: 

1) errors in measuring the spectra at the different sta-

tions and 2) errors in applying the corrections to the 

spectra. 

Errors from actually measuring the spectra could arise 

from digitizing errors and from taking too short a signal 

to get all the spectral information at certain frequencies. 

One station, KIP, was redigitized to include a much larger 

signal and the spectral amplitudes recomputed. The recal­

culated amplitudes were found to be at most 3-4% different 

on the average than that originally computed. A value of 

3% error was taken as the estimate for this error. 

By far, the largest error involved in the application 

of the spectral corrections arises from the attenuation 

correction. If we assume that we know the attenuation 

values to only 25% of the values given in the figure, then 

the estimated error for this correction would be 

= e 
y ~ 
4 

We next can assume that we know the crustal corrections to 

only 25%. This turns out to be a small error, except at 

very short periods, because the original correction is 

small. 
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Distribution of Data Information. In Appendix 3, we have 

derived an operator, J, which tells how the information in 

the data set are distributed. The use of this operator has 

been demonstrated by Minster et al. (1974), and these 

authors give a lucid description of its properties. The 

importance of a particular datum, which is a spectral am­

plitude at a particular frequency measured at a particular 

spatial location, depends on both the location and the 

accuracy of the datum. If we consider each WWSSN station 

to be a subset of the entire data set, then the relative 

importance of that station is simply the sum of the impor­

tances of the data in that subset. Figure 5.8 shows how 

the information in the chosen data set is distributed. In 

this figure, we have summed the relative importances of the 

frequencies at the individual stations and plotted this 

importance as a function of the geodetic azimuth of those 

stations. The results of this plot are somewhat surpris­

ing. We see that two stations, COL and KTG, contain a 

total of 30% of the total information in the data set. In 

fact, the data set could be reduced by half and only 25% of 

the total information which constrains the model variables 

would be lost. 

From Appendix 3, we see that the importance of a 

datum does not depend on the actual value of the datum 
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itself but rather the estimated error in the datum and the 

model response operator, A. The importance values are 

dependent on the source model only in the sense that A is 

model dependent. Although not done in this case, this type 

of calculation could be carried out before the data set is 

gathered to determine an optimum distribution of stations 

to use. 

5.6 Inversion Results. 

Fault Model. The ten model parameters which describe the 

source syst~m were found by the least-squares fit to the 

observed spectral data measured at the 18 WWSSN stations. 

The best fit model parameters as determined from the in-

version procedure are as follows: 

Source # Depth Moment Slip Angle 

1 

2 

3 

4 

(km) 

14.5 

10.5 

6.25 

2.0 

(lo26dyne-cm) 

0.62 

0.20 

0.51 

0.39 

propagation direction (AR) = 99° 

propagation velocity= 2,95 km/sec. 

(A.) 
l 

66° 

78° 

82° 

70° 

Figure 5.9 illustrates the degree of fit to the data 

that this model exhibits. The dashed straight line in the 

center of each radiation pattern indicates the orientation 
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T=60 sec 1.o T=40 sec l.O 

T=30 sec 1.o 

T=l6 sec l.O 

• • 
Figure 5.9. Calculated and observed radiation patterns. 
Orientation of the fault plane (N70°W) is shown by the 
dashed line in the center of each pattern. The ampli­
tudes of the patterns are in units of cm-sec. 
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of the strike of the fault system, taken to be in the 

direction of N70°W. Rupture initiates at a depth of 14.5 

km and propagates in the direction of Sll 0 W. The fit to 

the long period data (40-60 sec) shows that the radiation 

pattern is a symmetric dipole pattern. These two patterns 

show very little, if any, signs of fault finiteness. The 

finiteness of the fault starts to become apparent in the 

middle two figures. For these periods (26-30 sec), the 

patterns are symmetric in a direction perpendicular to the 

direction of propagation but not in the direction of prop-

agation. For the shorter periods (16-20 sec), the effects 

of the rupture length and non-uniform excitation become 

very important in shaping the radiation patterns. 

Uncertainty in Model. We would now like to estimate the 

uncertainties in these best fit model parameters. As done 

in Chapter 2 for the stochastic inverse case, we will cal-
' culate these uncertainties at a particular confidence level 

by mapping the estimated errors in the data into errors in 

the model. The least-squares solution matrix for unweighted 

model parameters which performs this mapping is the matrix 

given by Mathews and Walker (1964, p. 366-367) 

Q = KC -lA 
nn (5.10) 

We note here that this solutioD does not take into account 
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the possible weighting of the different model parameters. 

This is no problem in this case, or in any other case, 

since the problem can be non-dimensionalized as we have 

done here. The non-dimensional form of this operator has 

the same form as that given above. 

The bilinear product of the matrix, Q, and some model 

perturbation, q , yields a confidence region of resolvabil-

ity. That is, 

(5.11) 

This equation defines the hyperellipsoid of uncertainty for 

a particular model perturbation at a confidence interval, 

k(c). 

By fixing k(c) to a particular value, taken to be 1.96 

in this problem, we calculate possible model perturbations 

for which the equation of the ellipsoid is solved. Any 

model perturbation vector which lies inside this ellipsoid 

is unresolvable at the confidence interval, k(c), while any 

model perturbation vector which protrudes this ellipsoid is 

resolvable at that confidence level. In the example con-

sidered here, we will limit the analysis to two dimensions. 
' 

With this limitation, we can define an ellipse of uncer-

tainty for combinations of model parameter pairs. As we 

will see in the examples below, this analysis also allows 
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the consideration of the coupling between the various 

model parameters. 

The ellipse of uncertainty is shown for various fault 

model parameter pairs in Figure 5.10. In Figure 5.10, the 

26 moments are given in units of 10 dyne-cm, and the angles 

are expressed in degrees. In Figure 5.lOa, we have con-

sidered the area of uncertainty when the moments of the two 

deepest source double couples are allowed to vary. We see 

that M has an uncertainty of only .05 x 1026 dyne-cm when 
01 

it is allowed to vary alone. Perturbations larger than 

this value would be resolvable by the data unless the 

magnitude of the moment on the adjacent double couple 

(M
0 

) was also allowed to vary. The maximum uncertainty 
2 

that M can take in this coupled system is shown by the 
01 

projection of the maximum excursion of the ellipse onto the 

M axis. 
01 

calculated. 

The maximum uncertainty of M is similarly 
02 

The ratio of the uncertainty measured at the point 

where the ellipse crosses the axis of a model variable and 

the maximum uncertainty of that variable defines a coeffi-

cient which reflects the coupling of the two variables. 
' We will call this ratio the model co-variance coefficient 

(MCVC). For a co-variance coefficient equal to 1.0, there 

is no coupling between parameters. That is, the maximum 
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Mo2 (a) (d) 

To.2 -----

~Mo2 

1 Mo, 

15° 
A.1 

( e) 
15° 

0.2 

(c) 150 A.1 

Figure 5.10 (a-e). Uncertainty ellipses for various 
fault model parameter pairs. Combinations of pertur­
bations which fall inside the ellipses are not detect­
able by the data at the 95% confidence level. Moments 
are given in units of 1025 dyne-cm; angles are 
expressed in degrees. 
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( f) (g) 
15° 

0.2 

(h) ( i) 
15° 15° 

0.2 0.2 

Figure 5.10 (f-i). Uncertainty ellipses for various 
fault model parameter pairs. Combinations of pertur­
bations which fall inside the ellipses are not detect­
able by the data at the 95% confidence level. Moments 
are given in units of 1025 dyne-cm; angles are 
expressed in degrees. 
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uncertainty of one variable is not dependent on the uncer-

tainty of the other variable. For coefficient values less 

than 1.0, the coupling increases with decreasing values. 

Figures 5.lOa-c .show how the coupling between the indivi-

dual sources decreases with increasing distance between the 

sources. We see that there is strong coupling between M 
01 

and M 
02 

(MCVC=.30) but very little coupling between M 
01 

and M 
04 

(MCVC=.85). In part a of the figure, we see that 

coupling is in a positive sense between M and M , 
01 02 

the 

i.e., an increase in one moment is traded-off with an in-

crease in the other. Between M and M , 
01 03 

in the opposite sense, and between M and 
01 

the coupling is 

M the coupling 
04 

that exists is in a positive direction. Figures 5.lOd-e 

show that adjacent slip angles are slightly coupled, but 

much less so than their respective moment values. The MCVC 

for the A1-A 2 pair is .75. As the distance increases be­

tween sources, the relative coupling between the slip 

angles of the sources decreases rapidly. Figures 5.lOf-i 

show how the moment and slip angle for the individual 

sources are related. These results are somewhat surprising 

in that the slip angle and moment for individual sources 

are almost completely decoupled. The MCVCs for these param-

eter pairs range from .90 to .95. 

In these figures, we observe that the maximum coupled 
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uncertainty a particular variable can acquire is constant 

from comparison to comparison. This uncertainty is the 

standard error for that variable. Mathews and Walker 

(1964) show that this standard error is given by 

= 

Generalizing this expression, we can say that the values 

of the model parameters are known at a confidence level c 

when the errors are expressed as 

= (5.12) 

This is the uncertainty which we will assume for the model 

variables. These uncertainties at the 95% confidence level 

are given below: 

tiM 
01 

= 0.15 x 1026 dyne-cm 

tiM = 
02 

0.21 x 1026 dyne-cm 

tiM = 0.13 x 1026 dyne-cm 
03 

tiM = O.J,.l x 1026 dyne-cm 
04 

ti>. 1 = 13° 

f':,).2 = 18° 
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6A
3 = 10° 

6A 4 = 90 

6AR = 50 

6VR = 0.2 km/sec. 

Comparison with Static Solution. We would now like to com­

pare the solution for the fault model of the San Fernando 

earthquake derived with surface data to that obtained with 

the static displacements. To do this, we will sum the 

moments of the individual static fault elements for the 

elements that fall within a depth range around the location 

of the double couple sources. We will assume that the 

actual static moment distribution will be bracketed by the 

acceptable dislocation models which gave the maximum and 

minimum moments. The moments for the two models are shown 

in Figure 5.11. We see here that for the upper 10 km of 

the fault system there is very good agreement in the static 

and dynamical solutions. The only significant difference 

between the two solutions is the moment in the hypocentral 

region. The surface wave study indicates a moment which is 

a factor of 2-3 times greater than that predicted by the 

static data. We recall from the previous chapter that the 

uncertainties in this area were larger than for the more 

shallow areas. In the surface wave study, this was not the 

case. The uncertainty in the hypocentral region was not 
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Surface ---- .. 
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Depth, km 

15 

Figure 5.11. Comparison of the moment-depth distri­
bution function found from the static study and the 
surface wave study. Static moments are averaged over 
the indicated depth ranges. The static moment dis­
tribution from the dislocation model shown in Figure 
4.5 and 4.10 is shown as a solid and dashed line 
respectively. 
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substantially different from the other areas. If we assume 

that the fault geometry used in the last chapter is correct, 

then the surface wave study indicates 5,5 m of displacement 

over an area of .. 36 km2 in the hypocentral region. This 

compares favorably with that derived by Hanks (1974) of 

7,5 mover about the same area. This last calculation was 

based on still another data set of this event, namely 

near-field strong motion records. 

5.7 Conclusions. 

In this chapter, we have seen how theoretical spectral 

values of surface waves can be calculated numerically for 

an approximation to a finite source. We have shown that 

when non-uniform excitation of energy occurs during fault-

ing over some depth-distributed fault surface, the result-

ing spectral amplitudes can be far different from that of 

a non-depth-distributed source at the same depth of ini-

tiation. 

Rayleigh wave data were calculated from a set of 18 

WWSSN stations and normalized by correcting for the various 

source to receiver paths. An inversion scheme was used to 

find the set of fault model parameters which fit the ob-

served spectra~ data in a least-squares sense. The best 

fit solution gave a distributed moment of 1.7 x 1026 dyne-

cm, and it was found that both the moment and slip angle 

for this event varied along the down-dip width of the fault. 
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The slip angle varied in such a way that the displacements 

became more predominantly dip slip as the dislocation 

propagated upward from the point of initial rupture at 

about 3.0 km/sec. Also indicated by the surface wave data 

is that the propagation proceeded in a direction 5°-10° 

away from the normal of the strike of the fault. The fault 

model solution obtained by the surface wave inversion com-

pares very favorably with that given by the inversion of 

the static displacement data with the exception of the 

initial dislocation in the hypocentral region where the 

static data field gives poor resolution. 

Wyss (1971) obtains an average moment from the long 

period surface waves at two European stations (which were 

26 not included in this data set) of 1.9 x 10 dyne-cm. 

Canitez and Toksoz (1972) fit the surface wave spectra at 

6 stations in the northeast and southeast geodetic azimuths 

with a single point source at a depth of 14 km. These 

authors obtain a moment of 0.75 x 1026 dyne-cm and a rake 

angle of 45°. Obvious reasons for obtaining different 

values of moment and slip angle by these authors and the 

present study are 1) the non-depth-distributed source gives 

rise to a different radiation pattern than a depth­

distributed source, and 2) the azimuthal coverage of sta­

tions was more limited in the Canitez-Toksoz data set than 
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in the data set used here. Comparing their data set· to 

that used here, we find that, if the spectra at the sta­

tions used in those authors' study were discretized in the 

same manner as in this chapter, then their data set would 

have only approximately 40% of the total information which 

constrains the model variables as was used in this study. 

Finally, we feel that the technique of the hybridiza­

tion of the numerical approximation of a finite fault and 

the least-squares inversion formalism allows the maximum 

derivation of information about the source from a set of 

corrected surface wave observations. Use of the operators 

associated with the inversion methods provides a powerful 

tool to determine a priori which data would be most bene­

ficial in determining the source parameters and to estimate 

the uncertainties in the calculated model parameters and to 

determine the relative coupling between various parameters. 

It is hoped that these techniques can be extended to the 

inversion of other seismic data. The simplest extension 

would be the inversion of Rayleigh/Love spectral ratios. 

This type of data would yield far better results than when 

each is analyzed separately because of the cancellation of 

error inducing path effects. 
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Appendix 1 

Strain Fields From an Inclined Fault 
in a Homogenous Half-Space 

The static displacement field um at some point 

Q(x1 ,x2 ,x
3

) due to an arbitrary dislocation at some point P 

on the fault surface ~ is given by Maruyama (1964) to be 

(Al.l) 

where 

L'.1uk(P) = dislocation components on the fault surface 

vi(P) =direction cosines 

m Wki = the Green's function solution for the super-

position of strain nuclei on the fault 

surface which satisfies the surface boundary 

conditions. 

Maruyama (1964) gives the expressions for the Green's func-

tion solution for a homogeneous half-space. The components 

of the strain field given by 

E(Q) = (Al. 2) 
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can be found directly from equation (Al.l) by performing a 

differentiation of the integrand of (A2 .1) and integrating 

the resulting expression over the fault surface. If we 

consider that the dislocation is constant across the fault 

surface, then the strain components can be found by cal-

culating 

mn 
where wk.Q.. 

(Al. 3) 

In practice the expressions for the Green's function solu-

tiens are easily differentiated, but the resulting expres-

sions are very cumbersome to integrate analytically over 

arbitrarily oriented fault surfaces. Numerical integration 

techniques, however, can be employed to obtain satisfactory 

solutions of the strain field components given by (Al.3). 

Unfortunately, these numerical integration techniques are 

rather slow and expensive when the calculation is carried 

out to the desired accuracy for problems involving a 

mapping of the strain field. 

The second way to calculate the strain field response 

to a dislocation in a half-space is to analytically 

evaluate equation Al.l for an arbitrarily oriented fault, 

then apply equation Al.2 to the result. Mansinha and 
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Smylie (1971) give analytic expressions for the displace-

ment fields from an inclined fault of arbitrary orientation 

and depth which are the result of evaluating directly 

equation Al.l. Their expressions assume that the shear 

dislocation is constant across the fault surface and that 

the Lame constants for the homogenous half-space are equal. 

The integration is carried out over the coordinates P(s1 ,s) 

on the dislocation surface, l. s
1 

is in the direction of 

the strike of the plane of discontinuity and s is normal to 

this direction in the direction of dip as seen in Figure 

Al.l. The fault coordinate s may be resolved into s2 and 

s3 by the following transformation 

s2 = s cos(c) 

s = s sin(c) 
3 

The choice of the direction of s
1 

is made such that the 

coordinate system Cs1 ,s2 ,s
3

) is right-handed. 

The strain field components, as calculated by differ-

entiating these expressions, are presented below in in-

definite integral form. The notation of Chinnery (1961) is 

adopted for evaluation of these indefinite integrals. 

(Al.4) 
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Figure Al.l. Fault model geometry and definition 
of symbols. 



-243-

where Lis the half-length of the dislocation surface, d 

is the distance to the top of the fault, D is the distance 

to the bottom of the fault as measured along the dip angle. 

The following definitions are used in the expressions for 

the components of the strain fields below: 

X1 = (xl s1) 

X2 = (x2 s2) 

X3 = (x3 s3) 

R2 2 2 2 = X1 + X2 + X3 

Q2 2 2 
(x3 + s ) 2 = X1 + X2 + 3 

r2 = x
2
sino x

3
coso 

r3 = x 2coso + x
3
sino 

q2 = x2sino + x
3
coso 

q3 = -x
2

coso + x
3
sino 

h2 = q2 + (q3 + 02 
2 

K2 x2 + 2 = q2 1 
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STRIKE SLIP 

~u 2 = 12TI { Flll - 6 tan oF112 + 3F113 } 

3 2 . 2 2 = 2r2[R +R Cr3-s) - 2Rx1 - x1 Cr 3-s)J 

R3 [R + r
3 

- sJ 2 

3 2 2 (4q 2-2x
3
coso)[Q +Q (q

3
+s)-x1 (2Q+q 3+s)J 

Q3CQ+q3+s)2 

-4q2q3x 3sin0 {Q2[2Q 2+3Q(q
3
+,)+2(q 3+,) 2] 

Q5CQ+q3+s)3 
- xi[4Q 2+7QCq 3+s)+3Cq 3+s) 2 J 

- 2QXi(2Q+q3+•)} 

{ 
2 1 K F112= x1 Cq 3+s)coso·K[(Q-K)+(K-q 2coso)(Q-l)+(q

3
+s)sin6J 

-(q
3
+s)coso[(K-q 2coso)(Q-K)+(q

3
+s)KsinoJ}I 



-245-
2 r2 

r 2R(r
3
-s) - X1 (r

3
-s) R 

r~R2 
+ x~cr 3 -s)

2 

2 q2 
q2QCq3+s) - x1Cq3+s) Q 

q~Q2 + xicq3+02 

4Q2 (Q+q
3

+s)X1sino-(4q2-2x
3

coso)X1 [x 2(2Q+q
3
+s)-Q2coso] 

Q3(Q+q3+02 

4sinox 3 x 1 (2Q+q 3+s)(q 3sino-q2 coso)+4~ 3x 3 sinox 1 c2x 2 -Qcoso) 
Q 3 ( Q+q 3 + s) 2 

+ 4q 2q 3x3sinoX1 (2Q+q
3

+s)[3X 2(Q+q
3
+s)+2Q(X 2-Qcoso)J 

Q5 (Q+q3+S) 3 
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F
212 

= X
1

(q
3
+,)cos0 {(Q~K) (q 2s1n0-Kcos0sin0) 

(K-q2coso) 
+ QK [KX 2-Qq2sino] - Ksinocoso 

3tanosecox1 = Q(Q+x3+~3J 

= -2r~X1 (2R+r 3 -~)sino 
R3(R+r -~) 2 

3 

(l-3tan2o)X1 
Q ( Q+q3+~) 

_ 2sino[2x 3 Cq 2coso-q 3sino)+q2 (q 2+x2 sino)JX1 (2Q+q 3+~) 
Q3(Q+q3+~)2 
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2 x1 Cq2coso-q
3
sino-x

3
sin2o) 

Q3 

3tanosecox2 = Q ( Q+x3 +s 3) 

x2+Rcoso 
- R(R+r

3
-s)-

2 (1+3tan o)(X2-Qcoso) 

QCQ+q3+s) 

r 
= 4r2 R(R+r 3-s)sin

2 o+2r2 (~)sino[X2 (2R+r 3-s)+R
2 coso] 

R2 (R+r -s) 2 
3 

2Q(Q+q
3
+s)sin6[4x

3
sinocoso+3q2sino+x2sin2oJ 

Q 2 ( Q+ q 3 + s ) 2 



Fl31 

Fl32 

F133 
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+ 3q2X2 [X2+q 3coscS] + q2sincS(2Q+q
3
+l;)[q2coscS-2q

3
sincS] 

Q2 (Q+q3+~) 

_ q~q 3sino{(Q+q 3+s)(2QX 2-Q2 coscS)+A1 }} 
Q2(Q+q3+s)3 

where: 

A1 = (2Q+q
3
+s)[3X2 (Q+q

3
+s)+2QX 2-2Q2coscSJ 

= Xl l R(R+~3-~) + (1+3tan2o) - 3tancSseccS ( 
Q c Q+q 3 +s) Q(Q+x3+s3) 

l r 2sin0 
+ 

( q 2 +x 2 sin 0 ) s in 0 ( 
= -2Xl 3 3 . 

R Q 

2 . 

= 
2r2x1 (2R+r

3
-s)coscS 

R3(R+r
3
-s) 2 
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[4q2x3sin26-2 (q2+x2sin6) ( x3+q3sin6) JX1 ( 2Q+q3+s) 

Q 3 ( Q+q 3 + s) 2 

= -8q2x3x1[(x3+s 3)-q
3
sin6] 

Q5 

+ 4q~q 3 x 3 cos6sin6X1 [BQ2+9Q(q 3+s)+3Cq 3+s)
2 J 

Q5(Q+q3+S)3 

(Rcos6+X2 ) (1+3tan26)(X2-Qcos6) 

= R(R+r
3
-s) + Q(Q+q

3
+s) 

3tan6sec6X2 
Q(Q+x3+s3) 

= 
2R2sin26-2r2X2sin6 

R3 

= -2R2 r 2 (R+r 3-s)sin6cos6+2r~X 2 (2R+r 3 -s)cos6 
R3 (R+r 

3
-s) 2 

+ 4x
3
sin26-4(x

3
+q

3
sin6)sin6+2(q2+x2sin6)cos6sin6 

QCQ+q3+s) 

x 2 [4q 2 x 3s~n
2 6-2(q2 +x 2 sin6)(x3 +q 3sin6)][2Q+q 3+s-

2 
Q cos6] 

x ') 
{, ---·-·---

Q3CQ+q3+s)2 
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= 4x 3 sin
2 o(x 3+~ 3-q 3 sino)+4q2 x 3sin

2 ocoso 
Q3 

12q2 x 3sino(x3+~ 3-q 3 sino)X 2 
Q5 

2 2 X2 
+ 4q2 q 3x 3cososino(2Q+q 3+~)[3X2 (Q+q 3+~)+2Q (~ - coso)J 

Q5(Q+q3+~)3 
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DIP SLIP 

Ell = ti.u [G111x2sino-G112 coso+G113 
3 + 6x3Gll4] 121T co so 

Glll 
12s 3x

3
x1 3x1 2X1 4x1 = 5 + - R3 - Q3 Q(Q+x3+s3)2 Q 

Gll2 
3X1 2x

3
x1 4x

3
x1 12s

3
x

3
cx

3
+s;

3
)x1 = Q(Q+x3+s3) R3 Q3 Q5 

Gll3 
x1 x1sino 

= Q(Q+x3+s3) - Q(Q+q3+s) 

Gll4 
q2x1 (2Q+q

3
+s)sino x1coso 

= 
Q3CQ+q3+s)2 Q3 

-2X 4X2 22s;
3

x
3

x2 3X 2 
G211 = 2 -+ + 7- Q3 Q5 Q(Q+x3+s3)2 

G212 ~ + 4 4s
3

x
3 3 = (Q+x3+s3) R Q Q3 

G213 = 
3x2 2x

3
x2 4x

3
x2 i2s;

3
x

3
cx

3+s
3

)x2 
Q(Q+x3+s3) R3 Q3 Q5 
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x2sino 
Q(Q+q3+s) 

sin2o + q2x2(2Q+q3+s)sino 

- QCQ+q3+s) Q3(Q+q3+s)2 

i2s 3x
3

x2<x 3+s 3) 

Q5 

= (q
3
+s)xi B1 [(K-q2coso)(Q-K)+(q

3
+s)KsinoJ 

2 2 2 2 QRK[x1 Cq
3
+s) cos o+ B2 J 



E22 
Liu = 
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+ x 3sin2o[Q2(Q+q 3+s)-xiC2Q+q
3
+s)J 

Q3CQ+q3+s)2 

where B1 = K(R-Q)(K-q 2coso)+QR[Q-K+(q
3
+s)sino] 

12'IT (sino a221 - coso G222 + 6G223) 

G221 = 
3x2 + 

9x2 i2s
3

x
3
x2(2Q+x1 ) 

R(R+x1 ) Q(Q+x1) Q3(Q+x1)2 

2x~(2R+x 1 ) 4x~C2Q+x1 ) 
R3(R+xl)2 Q3(Q+x1)2 

3 2 2 
+ 

4s 3x
3

x2 C8Q +9Qx1+3x1 ) 

Q5(Q+x )3 
1 

G222 = 
2x 3 + 

4x3 
+ 

4s
3

x
3

cx
3
+s 3)(2Q+x1) 

R(R+x1 ) Q(Q+x1) Q3(Q.+x1)2 
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+ 
6

x { (h+x 3+s 3)CQ+h)-B 3-B 4x2Ch+x3+s 3)} 

1 [(h+x3+s3)2(Q+h)2+xix~J 

where: B
3 

= x2 (Q~h) [q2sino-(q
3
+s)coso] 

= x2 + [q 2sino-(q3+s)coso] 
B4 Q h 

+ x1cos 2o[(K-q2coso)(Q-K)+(q
3
+s)Ksino] 

xicq
3
+s) 2cos 2o+[(K-q2coso)(Q-K)+(q

3
+s)KsinoJ 2 

-x
3

{Q(Q+x1 )coso(sin2o-cos 2o)-2cos 2osin2o·Q(Q+x1 )} 
2 Q (Q+x1) 

-x
3

x2 (2Q+x1 )[(q
3
+s)(sin2ocos2o)+2q 2cososino] 

Q3(Q+x1) 



-X3X1X2(2Q+q3+~) 

Q3(Q+q3+02 

where: 
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4x2~3x3Cx3+~3) 
Q5 

= -2cososino(q 3+~)+cososino[Q
2 CQ+q 3+~)-xiCq 3+~)] 

Q3 Q3(Q+q3+~)2 
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1 J } 
R(R+x1 ) 

x2 2X~X2 (2R+X 1 ) 
--- + ___,,.____ __ _ 
Q(Q+Xl) R3(R+Xl)2 
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= -2X 2 Cq 3+~)(2Q+x 1 )cososino 
Q3(Q+X )2 

1 

_ Q2coso] 
x 1x 2 cososino[2Q+q 3+~ x

2 

Q3(Q+q3+02 

(sin2 o-cos 2 o)[Q(Q+X 1 )sino+q 2~(2Q+X 1 )J 
Q2(Q+X )2 

1 
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Appendix 2 

Observed Gravity Changes Associated with Deformation 
Accompanying the 1971 San Fernando Earthquake 

A2.l Introduction 

In the past there have been a limit·ed number of stud-

ies of gravity changes which accompany earthquakes. The 

earliest of these studies were in Japan. Tsuboi et al. 

(1953) attempted to compare changes in gravity and precise 

line leveling changes following the Nankaido earthquake of 

1946. However, a significant comparison could not be made 

due to the imprecise gravity values. Extensive gravity 

surveys in the area of the Matsushiro earthquake swarms of 

1965-1968 were carried out by Harada (1968). A comparison 

of this data to the leveling resurvey associated with the 

earthquake swarms by Tsubokawa et al. (1967) has been re­

ported by Kasahara (1970) and Hagiwara and Tajima (1973). 

In this study, the relation between the gravity change and 

the vertical upward displacement associated with the tee-

tonic deformation of the earthquake swarms nearly coincided 

with a Bouguer gradient with a density taken to be 1.0 

gram/cm3. The maximum displacements that were observed 

where the gravity field was being monitored were just over 

30 cm and the maximum gravity changes were about 0.06 mgal 

with an accuracy Df + 0.02 mgal. However, during the 
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period of ground subsidence the changes in the gravity 

field appeared to fall along the free-air gradient. As a 

whole the swarm process left no effective gravity change, 

even though the residual displacement was about 20 cm. 

Barnes (1966) and Rice (1969) conducted remeasurements 

of gravity in an area affected by the deformation of the 

Alaska, 1964, earthquake. The changes in gravity were com­

pared with changes in elevation determined by a post­

earthquake releveling of a 1923 first-order geodetic line 

coincident with the gravity traverse. Because the area in 

which the traverse was located had a maximum elevation 

change of only 0.6 m, the relationship between gravity and 

elevation changes could not be determined accurately. How­

ever, the largest gravity differences indicated that the 

slope of the ~g-~E relationship was closer to the Bouguer 

gradient with a density of 2.67 gram/cm3 than to the free 

air gradient. 

Hunt (1970) has observed a relation between changes in 

the gravity field and elevation changes for the 1968 

Anangahua earthquake. Al though his data are meager, the 

gradient of ~g-~E relation between -0.15 and -0.20 mgal/m 

is much less than the free air gradient -0.309 mgal/m. 

In each of these cited studies, the conclusions 

reached by the researchers were limited by either the in­

ability to accurately measure the vertical component of 
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displacement or accurately determine changes in the gravity 

field at points where elevation changes are known. Thus 

in order to establish a meaningful correlation of deforma­

tion and accompanying gravity changes, the vertical dis­

placements need to be large and accurately known, and 

reliable gravity stations need to have been established in 

the area prior to the earthquake. The calibration, stabil­

ity and sensitivity of gravity meters are sufficient now 

to make gravity measurements for reliable studies. Once 

the correlation between ~E and ~g has been established then 

the gravity meter could be used as a reconnaissance tool 

to map the extent of deformation rapidly following a large 

earthquake if previous gravity stations have been estab­

lished. 

Much of the tectonic deformation due to the 1971, 

San Fernando, California, earthquake fortunately occurred 

in an area in which there was a dense leveling net and 

enough reoccupiable gravity stations that a study could be 

carried out. The gravity stations in the San Fernando 

Valley were installed as part of a survey by Corbato (1963) 

using a Worden gravimeter (W88) and very tight control on 

the observed gravity values. Most of the stations de­

scribed by Corbat6 were actually installed in 1958. These 

stations were reoccupied and the results are reported here. 

A compilation of all the observed gravity changes in the 
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area affected by this earthquake is given by Oliver et al. 

(1973). This study includes data in both the San Fernando 

Valey and the San Gabriel Mountains, both south and east of 

the epicenter and northwest of the earthquake area. 

A2.2 Gravimeter Characteristics 

All gravity measurements employed in this study were 

made with a Worden Master (W533) gravimeter. The small 

dial constant of this meter as determined from the tilt 

table method at the manufacturer (Texas Instruments) in 

1968 was 0.33181 mgals per large scale division when the 

instrument is operating at 87°F. Most of the measurements 

taken in this study were taken when the internal tempera­

ture of the meter was between 70°F and 72°F. Since the 

response of the instrument is linear in this temperature 

range, a simple extrapolation gives the dial constant at 

72°F to be 0.33145 mgals per large scale division. In 

addition, the meter was checked on a previously established 

seven station calibration loop between a station located 

at the University of California at Los Angeles (UCLA) and 

Mt. Wilson. The gravity station at the California Institute 

of Technology (Caltech) is the second station in this loop 

denoted MW2. This calibration loop was established by 

Harrison and Corbat6 (1965) using a LaCoste and Romberg 

geodetic gravimeter. Further discussions and descriptions 

of this loop can be found in Biehler (1964) and Robbins 
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et al. (1973). The total gravity change from MW2 to the 

station at Mt. Wilson is 323.80 mgals. Successive checks 

of the instrument over this loop yielded a calibration 

value of 0.3315 ~ 0.0002 mgals per large scale division. 

With careful measurements and averaging values, instrument 

readings at individual stations are reproducible to within 

0.1 large scale division, or 0.03 mgals. In the actual 

survey, readings at individual stations were tied to the 

base station by closed loops, with several readings being 

made at each of the individual stations. 

The instrument drift due to tides, small temperature 

changes~ internal fatigue, etc. varied somewhat but never 

seemed to exceed 0.15 mgals per hour. The instrument 

drift was linearly interpolated in time throughout the 

closure of each individual loop. 

A2.3 Base Station Ties 

All the reoccupation readings were based on ties to 

the base station at Caltech. The gravity station at 

Caltech, MW2, used here should not be confused with another 

close-by station described by Chapman (1966, p. 25, No. 

309). A description of the location of this and all other 

stations referred to in this chapter is given by Robbins 

et al. (1973). Individual reoccupation stations were tied 

to the base station on at least four to five separate 

occasions, and it is thought that the maximum error of each 
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tied station is about + 0.03 mgals based on the standard 

deviations of the scatter in the data about the mean values. 

Two of the reoccupation stations tied to the base station 

were checked with a LaCoste-Romberg gravimeter, with a 

calibration constant of about 0.1 mgals per large scale 

division, and the differences in the gravity readings be-

tween the two stations and the base station determined with 

this instrument agreed to within + 0.01 mgal (Oliver, per­

sonal communication, 1971). 

Since the original gravity stations installed by 

Corbato were based on direct ties to the gravity station at 

UCLA and the reoccupation of these stations were based on 

ties to Caltech, the question arises as to whether or not 

there was a relative change between Caltech and UCLA caused 

by the earthquake, or whether or not the absolute gravity 

changed at both of these stations. Oliver et al. (1973) 

reported that there was indeed no gravity change at Caltech 

within the reliability of 5 pre-earthquake and 6 post-

earthquake measurements made relative to UCLA or to a sta-

tion at Menlo Park, California. Supplementary evidence for 

this conclusion comes from the fact that a continuously 

recording tidal gravimeter operating at UCLA at this time 

of the earthquake indicated no perceptible change in the 

gravity field at that point relative to the accuracy of 

that instrument (+0.001 mgal). In addition, the Mt. Wilson 
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calibration loop was rechecked relative to a distant cali­

bration loop, and no changes in the gravity values could be 

observed. Thus, we feel relatively comfortable in basing 

our reoccupation readings on ties to the gravity station 

at Caltech. 

A2.4 Gravity Station Reoccupation. 

Figure A2.l shows the location and distribution of the 

reoccupied gravity stations in the San Fernando Valley. 

The stations are identified with a number corresponding to 

that given by Corbat6 (1963). The stations numbered 1-14 

were the sub-base stations of Corbato's net and are well 

scattered througnout the San Fernando Valley. These sub­

ba§e stations were the first to be reoccupied, since imme­

diately following the earthquake, before any precision 

leveling could be done, the areal extent of the tectonic 

deformation was sought. It was assumed that the deforma­

tion, if any, would be reflected into changes in gravity. 

The absolute gravity at these sub-base stations was more 

accurately determined than at the other stations, with the 

values generally known to within~ 0.03 mgals. Of the 

fourteen stations originally comprising the sub-base net, 

eleven could be recovered in 1971, although there was some 

slight uncertainty as to the exact location of three of the 

stations. These uncertain stations are marked with an 

asterisk in Table A2.l. At these uncertain stations, an 
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attempt was made to take the readings at about the same 

altitude as reported by Corbato (1963). The gravity values 

for all the stations for both the pre-earthquake and post-

earthquake measurements are listed here. The absolute 

gravity values are the values listed plus 979.0 gals. The 

values given by Corbat6 (1963, Appendix B) are the pre-

earthquake values rounded to the nearest 0.1 mgal. However, 

the values were actually calculated to the nearest 0.01 mgal 

(Corbat6, personal communication, 1971). The uncertainties, 

a , a , are based on standard deviations about the mean 
gl g2 

values. The uncertainty of the resulting change in gravity, 

a , is given by the square root of the sum of the squares 
g 

of~the standard deviations of the two measurements. The 

change in gravity, ~g, is defined to be the post-earthquake 

measurement minus the pre-earthquake measurement. 

In the last two columns, the changes in elevation, 

~E, and their respective standard deviations for the sta-

tions, crE, are given when available. These values were 

obtained principally from the City of Los Angeles, Bureau 

of Engineering, Van Nuys Office. The measurements of eleva-

tion both before and after the earthquake are made relative 

to the mean tidal level i~ the City of San Pedro, California. 

Since most of the Corbat6 gravity stations were located on, 

or very near, city engineering monuments, these data were 

very useful. Supplementary leveling information from 
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Burford et al. (1971) was used. The estimated variance in 

the leveling data is from these sources. With the exception 

of two points, the changes in the leveling data are rela-

tive to the elevation determined in 1960. These two excep-

tions are Station 2 and Station 12 which are relative to 

measurements in 1970 and 19~3 respectively. Station 12 is 

especially anomalous in that in the period 1963-1970 the 

elevation increased by 0.06 m, but between 1970 and post-

earthquake 1971, the elevation decreased by 0.06 m. 

From the upper part of this table, it is seen that the 

only significant changes in gravity occurred to the north 

of the observed surface ruptures, with the exception of 

Station 12, which is discussed below. Twelve more stations 

all concentrated above, or slightly below, the rupture zone 

were then reoccupied. The gravity values measured at these 

stations are listed in the lower half of Table A2.l. 

A2.5 Relation of Gravity Differences to Observed 
~eformation. 

The gravity stations listed in the lower half of 

Table A2.l form a profile from the southeast to the north-

west cutting across the main surface ruptures. The location 

of this profile in relation to the surface deformation can 

be seen in Figure A2.4. Figure A2.2 shows the results of 

the reoccupation of the stations along this profile. The 

top part of the figure gives the observed elev~tion change 

from 1960 to 1971 showing the sharp scarp where the profile 
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crosses the Sylmar segment of the surface breaks. The 

profile crosses just at the western end of the Tujunga seg­

ment of the surface breaks. The lower part of the figure 

indicates the corresponding observed gravity change for 

this profile. It is clear that a good relationship exists 

between the observed elevation change and the observed 

gravity change. Now if we plot the significant changes in 

gravity versus their respective changes in elevation, we 

see that the relation is quite linear. Figure A2.3 shows 

this plot. The line fit to the data is a least squares 

relation given by 

t:,,g = - 0.215 6E + 0.026 (A2.l) 

where 6E is the elevation change in meters and 6g is the 

gravity ~hange in mgals. The gradient of this relation 

implies a Bouguer reduction density of 2.2 gram/cm3, or 

about the density of the unsaturated surficial layers in the 

area, which are late Cenezoic sediments. If a Bouguer 

reduction density of 0.2 gram/cm3 higher or lower than this 

value is chosen, the fit is only slightly degraded, with 

the standard error being increased. As an example, a 

gradient of - 0.224 mgals per meter is found when a Bouguer 

reduction density of 2.0 gram/cm3 is used. The gradient 

for the relation for the interval of acceptable Bouguer 
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reduction density values is still significantly less than 

the free air gradient of - 0.309 mgals per meter. 

If the deformation as measured along this profile had 

occurred as the result of merely a vertical expansion over 

some depth, then the gravity changes would have fallen along 

the free air gradient. However, the fact that the values 

fall along a reasonable Bouguer reduction gradient indicate 

that by some means mass was added beneath the gravity sta-

tions. Within the resolving power of the ·gravity measure-

ments, one can conclude that the overriding thrust block 

appeared to move as a unit. For the regions of uplift, it 

is clear that these areas of negative gravity change are 

no~ slightly heavier than before the earthquake due to the 

added mass from the stacking of the surficial layers on 

the pre-earthquake surface. 

Equation A2.l can be inverted to give the estimated 

elevation change for a known gravity change. This relation 

is 

6E = -4.65 (6g + a ) . g (A2.2) 

Equation A2.2 implies that if the gravity changes at the 

stations reoccupied can be determined to~ 0.05 mgals, then 

the accompanying change in elevation is determined to 

+ 0.23 m. 



-273-

The gravity change data accumulated in this study have 

been added to that obtained by the other authors in Oliver 

et al. (1973) to give a contour map of the gravity changes 

associated with this earthquake (Figures A2.4). Releveling 

data from both that obtained from the City of Los Angeles 

Engineering Bureau and that obtained by the U. S. Geological 

Survey, as reported in Burford et al. (1971) have been con­

verted into changes in gravity and included into the gravity 

contours shown in this figure. The gravity changes that 

are obtained by conversion of leveling data are shown in 

parentheses along side the bench mark location and the year 

that the original elevation was obtained. Gravity data 

obtained directly are similarly shown without the paren­

theses. Examination of the two sets of data show that they 

are remarkably compatible within the uncertainties of each 

of the data sets. Of particular interest is a comparison 

of the gravity values from both data sets in the area just 

east of the Pacoima Reservoir. The gravity change from the 

converted elevation change (-0.15 mgals) is based on a 

1929 elevation determination, where the direct gravity 

changes are based on measurements obtained in 1964 and 

1970, yet the change based on the 1929 observation is about 

the same size as those based on much later observations. 

Savage et al. (1973) have postulated that this particular 

releveling datum might contain some pre-earthquake secular 
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uplift, however, the gravity measurements here suggest that 

most of the uplift in this area probably took place at the 

time of the earthquake and was not distributed in the 42 

years preceding the earthquake. 

Also indicated in Figure A2.4 are areas of positive 

gravity changes, indicating subsidence. These areas were 

not delineatad by the leveling surveys because of lack of 

data. Although tha data indicating these positive changes 

are less accurate than in this study, the majority of the 

points defining the positive change do have positive values 

when the maximum error is subtracted. If these gravity 

changes obey a similar Bouguer relationship with changes in 

elevation, then this is an indication that mass was removed 
B 

from this area. No attempt has been made to balance the 

mass involved because of the poor nature of some of the 

data. However, the recognizance of this area of subsidence 

shows the usefulness and facility of making gravity measure-

ments in tectonic areas whether or not they can be done 

in conjunction with leveling surveys. It is interesting to 

note that this area roughly forms an inverted 11 U" and 

corresponds to about the aftershock zone near the epicentral 

area (Allen et al., 1971). 
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A2.6 Bouguer Residuals. 

Figure A2.5 shows the residual Bouguer anomaly for the 

profile A-A'. This residual was calculated from the for-

mu la, 

8 = 6g - 0.215 6E • 
gBA 

(A2.3) 

The residuals are plotted in the upper part of Figure A2.5. 

Although the residuals are fairly small when compared to 

the estimated errors for each observation, the calculated 

anomalies are systematic in the sense that the residuals 

are negative south of the surface ruptures and positive to 

th~ north of the surface ruptures. Although barely signif-

icant, these anomalies represent some rearrangement of the 

subsurface mass from 1958 to 1971. One obvious rearrange-

ment of the subsurface mass is that which can be caused by 

the raising or lowering of the areal water table in the 

time interval between gravity measurements. Oliver et al. 

(1973) have considered this in some detail. They report 

that for the limited water tab le leve 1 data that are avail-

able for this area, the water table level changed in the 

short interval about the time of the earthquake only by the 

amount the surface was deformed. Thus the entire sedimen-

tary unit sampled by the water wells moved as a unit during 

the earthquake. However, in the 13-year interval, 1958 to 
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Figure A2.5. Upper--Observed Bouguer residuals for 
the gravity profile A-A'. Lower--Calculated 
gravity effects from the fluctuation in the water­
table level, 1958-1971, for this profile. 
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1971, the total water table level, after seasonal effects 

are removed, was lowered in the area north of the surface 

ruptures and actually raised in the area to the south of 

the surface ruptures. Oliver (1972, personal communication) 

has calculated the gravitational effects of this net change 

in the water table level and his results for the profile 

A-A' are plotted in the lower half of Figure A2.5. 

It is seen here that the water table effects give rise 

to about the size gravity anomaly as that observed, however, 

it is in the opposite direction. That is, the water table 

effect must be subtracted from the observed Bouguer anomaly 

to get the corrected total Bouguer anomaly. The errors in 

the gravity changes associated with the water table fluc­

tuations are at least as large as the errors in the upper 

part of Figure A2.5 based on the uncertainty and paucity of 

the input data. It is not wished to emphasize this anomaly 

too much, other than perhaps the general form of the 

anomaly. No attempt was made in this study to model the 

anomaly, since not much is known about the original de_nsi ty 

distribution of the subsurface. 

A2;7 Discussion. 

The reoccupqtion of gravity stations after a major 

earthquake is shown to be a rapid and relatively inexpen­

sive method of delineating the areas of deformation caused 

by the earthquake, provided a detailed gravity net is 
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established prior to the occurrence of such an event. 

The occurrence of the San Fernando earthquake in an 

area where there was such good control on the elevation and 

gravity changes has presented the best opportunity to 

establish an accurate relation between these two variables 

for this particular type of faulting. A gravity station 

reoccupation traverse across the zone of the maximum thrust 

fault surface ruptures yielded a proportionality between 
I 

the observed gravity changes and changes in elevation. The 

slope of the relationship shows rather convincingly that 

the elevation changes and the gravity changes are not re-

lated simply by the free air correction, but rather along 

a Bouguer gradient. The Bouguer reduction density found by 

a least-squares fit to the data indicates that the greatest 

portion of the gravity change could be explained by the 

stacking of the surficial layers on the pre-earthquake 

surface. In retrospect, this is exactly what would be ex-

pected from reverse thrust faulting. The Bouguer anomalies 

derived for this profile, although statistically barely 

significant, are systematic in that they are generally 

positive to the north of the rupture zone and negative to 

the south of the rupture zone. 
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Appendix 3 

Derivation of Least-Squares Inversion Operators 

In this appendix, we will derive the least-squares 

inverse and the associated operators for three cases. For 

convenience with respect to manuscript preparation, matrices 

will be given here in regular typed form, not boldface as 

in the rest of this thesis. This practice should cause no 

confusion in_ this case. 

Case I: Least-Squares Inverse with no weighting of the 

model components and no inclusion of the data 

variances. 

We define the forward problem to be 

A om = od
0 

, (A3.l) 

where od is the observed data vector, om is the true 
0 

model, and A is the operator which maps a function from 

the model space to the data space. We define the vector 

b=om to be the best estimate of the model, om, that we can 

obtain. 

In this case, we wish to minimize the fit to the data 

such that 

(A3.2) 
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is minimized. Here we have I 1z11 2 = z*z, and od is the 

calculated fit to the data given by 

A b ~ od (A3.3) 

Substituting (A3.3) into (A3.2) and expanding,~we get 

od *od -od *A b-b*A*od +b*A*A b . 
0 0 0 0 

(A3.4) 

Now performing a first order perturbation in ob of (A3.4) 

and setting to zero implies 

(A3.5) 

which is the result we are seeking. 

Case II: Least-Squares Inverse with no weighting of model 

components and with the inclusion of the data 

variance. 

Here we have the same forward problem as before, however, 

each datum, d , has associated with it some variance, a~. oi i 

If we assume that the data are unbiased and are statisti-

cally independent, then we can write the variances in 

diagonal form 
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• • 
= 

0 

We want to minimize the fit to the data in a least-squares 

sense such that 

(A3.6) 

is minimized. This weighted norm, I I· I le , is defined by 
nn 

11z11 ~ 
nn 

= z*c -1z 
nn 

Substituting (A3.3) into (A3.6) and expanding, we get 

s 2 (b)=od *c - 1od -od *c -lA b-(Ab)*c - 1od 
1 o nn o o nn nn o 

Performing the first order perturbation of ob on this last 

equation and setting the result to zero, we obtain 

~ * -1 t * -1 b = om = (A Cnn A) A Cnn od0 • (A3.7) 
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Case III: Least-Squares Inverse with weighting of the 

model components and with the inclusion of the 

data variance. 

For some problems, it might be useful to consider a set of 

non-zero positive weights for the model components. These 

weighting, or model correlation coefficients, can be 

defined in the following manner, 

c = 
SS 

0 

0 

The error induced through the use of these correlation 

coefficients is given as the following, 

(A3.8) 

The error of the fit to the data is still given by 

equation (A3.6). For this case, we want to minimize some 

quadratic sum of these two errors. 
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This minimization of E
2 (b) proceeds as before giving 

(A3.9) 

where Qt(8) = 

Substitution of (A3.9) into (A3.3) enables us to write 

J is called the data importance matrix and is given by 

' 
The data importance matrix tells how the information 

in the data set is distributed (Wiggins, 1972). This 

operator serves the same role in the least-squares inverse 

as does the model response operator (equation 2.29) in the 

stochastic inverse. The data importance matrix gives us 

information as to how the model components as a whole 

"see" how.large an effect individual data values have on 

the estimation of a model. Minster et al. (1974) show 

that the trace of this operator is invariant and given to 

be the number of independent linear combinations of the 
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data. For the inversion problem to be determinant, this 

sum must equal the number of independent model parameters. 

In both the inversion procedures discussed in this 

thesis, we have neglected an obvious operator. We will 

call this operator the perturbation relaxation operator. 

These operators are defined below. 

(Stochastic inverse) 

om= PL.S.om (Least-squares inverse) 

where 

These operators show simply that in the stochastic inverse 

case, when Cnn has large values for certain data, these 

data will be essentially neglected in the fit for the sake 

of fitting other better determined data. In the least-

squares inverse case, when Css has a very small value for 

certain model components, the model will try to fit the 

data by ignoring the contributions from these particular 

model components. Also, we see that for C and C fixed, nn ss 
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the point along the trade-off curve influences the per­

turbation sizes in the iterative inversion scheme. 
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Appendix 4 

Spectral Summation of Two Sources 
in the Frequency Domain 

Consider the addition of two seismic sources by 

spectral summation. The first source is represente,d by an 
icp

1
(w) 

amplitude and a phase spectrum of the form A1 (w) e . 

The phase spectrum ¢1 (w) contains information about both 

the source and the propagation path. To this spectrum we 

wish to add an additional source represented by 
i[cp 2 (w) + ~¢ 2 (w)] A2 (w) e , where A2 (w) is the amplitude 

spectrum of the secondary source, ¢ 2 (w) is the phase spectrum 

of the secondary source, and ~<P 2 (w) is the additional phase 

of "the secondary source caused by a spatial or temporal 

offset of the second source from the first source. Propa-

gation effects for traveling a slightly different path 

from origin to receiver are taken into account with this 

term. If we let z be the total of the two sources, then 

we can write, 

iljJ(w) 
z = Z ( w) e = A

1 
(w) 

i[cp
2

(w) + ~¢ 2 (w)] e 

(A4.l) 



Thus, 

Z(w) 

and 

ijJ(w) = tan-l 
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A1(w)sin[¢1 (w)]+A2 (w)sin[¢ 2 (w)+6¢ 2 (w)] 

A1 (w)cos[¢1 (w)]+A2 (w)cos[¢ 2 (w)+6¢ 2 (w)] 

( A4 . 2 ) 

(A4.3) 

The phase delay of the single original source is 

given by 

= ' Ill 

and the new phase delay of the summed signal is 

= 

The group delay of the summed signal is given by 

8ijJ( w) 

dW 

(A4.4) 

(A4.5) 

(A4.6) 

In practice in order to avoid as much as possible the 
--~ 

difficulties encountered by the multivaluedness of the 
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trigonometric functions, we wish to compute only the addi-

tional group delay the additional source has over the 

group delay of the single original source. If we define 

this additional group delay by OT , then 
g 

(A4.7) 

where Tg is the group delay of the original signal. By 
1 a¢ 2 Cw) all¢ 2 (w) 

defining = T and = T ' we have by 
aw g2 aw g2s 

equation (A4.6) 

(A4.8) 

where 

a "" ¢2 + ll¢2 - ¢1 

I'+ = Tg + T + T 

1 g2 g2s 

r = T + T - T 
g2 g2s gl 

Substituting this expression into equation (A4.7) we get~ 

OT -g 

2 A
2

(w) f _ + A1 (w)A 2 (w) cos(a) r_ 

2 2 A1 (w)+A 2 (w)+2A
1

(w)A
2

(w)cos(a) 
(A4.9) 
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The additional phase delay caused by the spatial and 

temporal offset of the secondary source is given by 

A 

= = R-R 
C(W) (A4.10) 

Here R is the distance from the hypocenter of the first 
A 

signal to the observer and R is the distance from the hypo-

center of the second signal to the observer. C(w) is the 

phase velocity of the medium. Td is the delay in time 
2 

after the initiation of the first source before the origin 

of the second source. This time delay can be expressed as 
R s an apparent rupture velocity given by Td = ~ , where R3 2 VR 

is~the separation distance for the two events. 

Differentiation of (L w) with respect to w yields 
P2s 

the secondary group delay, L given by 
g2s 

A 

= R-R 
U(W) + (A4.ll) 

where U(w) is the group velocity of the medium. 

It is seen that calculation of the group delay does 

not involve any inverse trigonometric functions so that the 

multivaluedness of the functions is not important. However, 

this is not the case for the calculation of ~(w). In 

practice, the values of ~(w) are numerically differenced 
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to obtain an approximate expressiqn for the group delay. 

If this approximate group delay is more than one period 

different from the exact calculated group delay, then a 

period is added to the phase delay, T , and the approxi­
Pz 

mate group delay is recalculated. By starting with the 

phase and group delays of the long period end of the spec-

trum, the true phase can be unwound from that calculated 

numerically. 

For the addition of many different sources, each off-

set in time and space with respect to one another, the 

above calculations are repeated for each source, with the 

original amplitude and phase spectra replaced by the 

partial sum spectra after each individual summation. 
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Appendix 5' 

Velocity-Density Models for Local Crustal Corrections 

This appendix lists the multi-layered velocity-density 

models of the crust and upper mantle used in the computa­

tion of the local crustal corrections for the WWSSN sta­

tions used in ~he surface wave study in Chapter 5. 

The following symbols are employed in the tables: 

D = layer thickness in km 

Alpha = compressional velocity in km/sec 

Beta = shear velocity in km/sec 

Rho = density in gram/cm3. 

References for the origin of the data used in the 

models are given below each table. 
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San Fernando Crust over Gutenberg Continent 

D Alpha Beta Rho 

0.50 2.50 1. 20 2.10 

3.00 3.80 2.50 2.50 

2.00 5.50 3.20 2.60 

14.50 6.06 3.40 3.00 

15.00 6.70 3.80 3.00 

13.00 7,96 4.60 3,37 

25.00 7,85 4.50 3,39 

50.00 7,37 4.21 3.40 

75.00 8.00 4.41 3,45 

50.00 8.20 4.50 3.47 

100.00 8.40 4.60 3.50 

100.00 9.00 4.95 3.63 

100.00 9.63 5.31 3.89 

Source: Jungels (1973), Gutenberg (1944), Wood and 

Richter (1933), Harkrider et al. (1963). 
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Greenlandic Shield with Ice Cap 

D Alpha Beta Rho -

2.50 3,93 1. 94 0.91 

16.50 6.25 3,74 2.80 

23.70 6.60 3.85 2.85 

37,30 8.05 4.67 3.30 

25.00 8.10 4.72 3,30 

100.00 8.20 4.54 3.44 

100.00 8.30 4.51 3,53 

80.00 8.70 4.76 3.60 

100.00 9.30 5.12 3,76 

Source: Gregersen (1970), Brune and Dorman (1963). 
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Iceland 

D Alpha Beta Rho -

4.50 4.70 2.70 2.60 

3,50 6.30 3.60 2.80 

10.00 6.71 3,90 3,08 

10.00 7,38 4.30 3,15 

50.00 8.00 4.68 3,30 

160.00 7,90 4.40 3,35 

100.00 8.20 4.58 3.40 

200.00 8.20 4.68 3.40 

Source: Tryggvason (1962), B£th (1960), Tryggvason and 

B£th (1961), Tryggvason (1973). 
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Irish Continental Shelf 

D Alpha Beta Rho 

0.50 1. 52 0.00 1. 03 

1. 50 2.20 1. 57 2.55 

2.00 5.40 3.18 2.70 

20.00 6.10 3,55 2.82 

6.00 7,30 4.21 3.10 

50.00 8.10 4.61 3.30 

100.00 8.10 4.40 3.40 

100.00 8.10 4.60 3,55 

200.00 8.10 4.89 3.60 

Source: Blundell and Parks (1969), Bamford (1971). 
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Iberian Shield 

D Alpha Beta Rho -

2.00 3.40 2.00 2.30 

18.00 5.90 3,50 2.80 

10.00 6.60 3,70 2.90 

20.00 7.60 4.50 3.30 

30.00 8.10 4.70 3,35 

100.00 8.15 4.20 3.40 

100.00 8.49 4.77 3.53 

100.00 8.81 4.89 3.60 

200.00 8.81 4.89 3.60 

Source: Payo (1970), Payo (1964). 
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Mid-Atlantic Ocean 

D Alpha Beta Rho -

4.50 1. 51 0.00 1. 03 

0.05 1. 52 0.15 1. 65 

0.10 1. 60 0.19 1. 70 

0.10 1. 71 0.37 1. 79 

0.10 1. 80 0.53 1. 86 

2.00 5.00 2.85 2.66 

4.50 6.69 3,90 3.06 

50.00 8.00 4.68 3.30 

160.00 7.90 4.60 3.35 

200.00 8.20 4.68 3.40 

Source: Ewing (1969), Talwani et al. (1965), Ewing et al. 

(1966), Katz and Ewing (1956), Officer et al. 

(1952). 
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Western America Tectonic 

D Alpha Beta Rho 

2.50 3.00 1. 73 2.40 

24.50 6.20 3.58 2.83 

13.00 6.80 3.87 2.99 

45.00 7.80 4.25 3,30 

50.00 8.20 4.38 3.43 

100.00 8.20 4.38 3,52 

100.00 8.20 4.50 3.57 

100.00 8.20 4.70 3.62 

Source: Kanamori (1970), Bucher and Smith (1971), 

Alexander (1963), Ewing and Press (1959), 

Heezen (1972). 
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Pacific Ocean East 

D Alpha Beta Rho 

3.80 1. 51 0.00 1. 03 

0.01 1. 52 0.15 1. 65 

0.10 1. 60 0.19 1. 70 

0.10 1. 71 0.37 1. 79 

0.10 1.80 0.53 1.86 

1. 30 5.07 2.88 2.67 

5.00 7.20 3,98 2.90 

50.00 8.00 4.68 3.30 

60.00 7,90 4.60 3.35 

100.00 7.90 4.60 3,35 

200.00 8.20 4.68 3.40 

Source: Piermattei and Nowroozi (1969), Santo (1963), 

Saito and Takeuchi (1966), Dorman et al. (1960), 

Raitt (1956), Ewing et al. (1969), Latham and 

Nowroozi (1968), Kovach and Press (1961). 
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Pacific Ocean West 

D Alpha Beta Rho 

5.50 1. 51 0.00 1. 03 

0.10 1. 60 0.30 1. 65 

0.70 5.07 2.88 2.67 

4.50 7.20 3.98 2.90 

50.00 8.20 4.72 3.30 

60.00 7.90 4.40 3,35 

100.00 7.90 4.40 3.35 

200.00 8.50 4.74 3.40 

Source: Piermattei and Nowroozi (1969), Santo (1963), 

Saito and Takeuchi (1966), Dorman et al. (1960), 

Raitt (1956), Ewing et al. (1969), Latham and 

Nowroozi (1968). 
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Andean 

D - Alpha Beta Rho 

5.00 5.00 2.88 2.67 

15.00 6.00 3.46 2.87 

25.00 6.60 3,58 2.99 

100.00 7.90 4.45 3.30 

100.00 8.00 4.40 3.32 

100.00 8.oo 4.40 3,32 

100.00 8.20 4.67 3.38 

100.00 8.20 4.68 3,38 

Source: James (1971), Fisher and Raitt (1962), Cisternas 

(1961). 
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Central Japan 

D Alpha Beta Rho 

1. 00 2.50 1.47 2.50 

5.00 5.50 3.18 2.70 

16.oo 6.00 3.40 2.80 

10.00 6.50 3.70 3.00 

30.00 7.70 4.37 3.20 

100.00 8.00 4.50 3.30 

200.00 8.00 4.50 3.30 

Source: Kaminuma (1966), Mikumo (1966), Asada and Asano 

(1972), Kurita (1971). 


