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ABSTRACT

The theory of the three~dimensional rotational flow of an in-
compressible and inviscid fluid through an axial turbomachine is
described and the hydrodynamical equations are simplified by consid-
ering an infinite number of blades in each row., The forces of the
blades on the fluid are treated as non-conservative body forces dis-
tributed uniformly about the axis.

Formilation of the mathemetical problem leads to one non-linear
partial differential equation and two integral equations for the
three velocity components, A linearized solution of these simulten-
eous equations for any prescribed blade loading is based on the
consideration that the vorticity generated by the blades is trans-
ported downstream by the mean axial velocity. An iteration process
which leads to solutions of greater accuracy is developed by consid-
ering for each iteration that the vorticity is transported by the
velocities found by the previous iteration.

The Bessel's functions which occur in the Green's function solu-~
tion are replaced by their asymptotic values and the infinite series
is summed to express the solution in closed form, The iteration
process is then adapted to mechsnical calculations by dividing the
region of vorticity into smell rings of rectangular cross-section and
determining the influence on the velocity of a unit change of vortic-
ity in each of these rings. Once this influence is established it
is relatively easy to calculate the velocities in any axial flow

machine with any prescribed blade loading.
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INTRODUCTION

The development of turbomachinery until recent years has resulted

primarily from empirical methods, both in design and analysis. Recently

theoretical methods have led to the advancement of axial flow compressors

and tarbines even though, because of the complicated mathematical problem,

many simplifying assumptions were necessarily made and solutions were

approximate.

In analogy with the three dimensional wing theory, problems of

flow in turbomachines may be classified as:

(1)

The Direct Problem: The direct problem of calculating the flow

in turbomachinery is that of determining the velocity field,
the blade forces, and the distribution of energy in the fluid
when the blade shape, the blade speed, and the appropriate

boundary conditions are prescribed.

(2) The Inverse Problem: The inverse problem of calculating the

(3)

flow in turbomachinery is that of determining the velocity
field, the blade shape, and the distribution of energy in the
fluid when the blade loading, the blade speed, and the boundary

conditions are prescribed,

The Intermediate Problem: An intermediate problem which ap-

pears to be of interest is that of determining the velocity
field, the magnitude of the remaining forces, and the distrib-
ution of energy in the fluid when one blade force is prescribed

and the blade shape is partially prescribed.
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The direct problem arises when it is desired to investigate a
given machine "off the design pointt,

The inverse problem may be solved for the initial design but
usually, because of the structural limitation on blade shape (see
appendix), it will be more practical to formulate and solve the in-
termediate problem.

In order to simplify the mathematical problem the fluid will be
agsumed to be inviscid and incompressible and the blade forces will
be treated as body forces, uniformly distributed through the fluid,

8o that the flow is symmetrical about the axis of rotation =nd the
vorticity is no longer shed in sheets behind each blade but is contin-
uously distributed over the region downstream of the blade row,

An axial flow machine for which the inner and outer boundaries con-
sist of concentric circular cylinders extending to infinity in the di-
rection of the flow will be considered.

The mathematical problem is formulated by considering the time
rate of change, along a streamsurface, of the tangential component of
the vorticity vector. The difficulty of this problem lies in the
solution of the non-linear partial differential equations thet describe
rotational fluid motion. In order %o overcome this difficulty a method
of iteration is developed whereby solutions of any required degree of
accuracy may be cbiained.

The first step of this iteration process provides a linearized
solution (ef. Marblel) baged on the assumption, analogous to the
Prandtl three dimensional wing theory, that the vorticity is "trans-

ported" downstream by the mean axial velocity and is not influenced
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by 1ts own induced velocities., This linearized solution is not as ac-
cuorate as might be expected from the above analogy, one reason being
that the vorticity is shed in three dimensional space instead of in
a two dimensional sheet so that the induced velocities are likely to
be very large.

For the second step of the iteration process the vorticity is
considered transported by the velccities found by the linearized so-
lution of the first step. The succeeding approximations are obtained
in the same way, in each case using the velocities of the preceding
approximztion.

The solution is obtained by finding the appropriate Green's func-
tion - that is, a function G (r, 2; <, B) which gives the velocity,
consistent with the boundary conditions, induced at any point of a
circle r, z by a unit change in tangential vorticity of a vortex ring
at radius «at an axial coordinate B8, The Bessel functions which
arise in this solution are replaced by their asymptotic values and the
Green's function, which would occur as an infinite sum of Bessel func-
tions, is by this means expressed in closed form,

The resulting expression for the radisl velocity, a double inte-

gral, is modified and adopted for mechanical calculation.
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I, Notation and Symbols

The flow is deseribed (Fige. 1) in a cylindrical coordinate system

e S o 2, by the velocity components

u, Vv, wo respectivelys The corres-

ponding rsdial, tangential, end exial

velocity components are

oy
& = - 2z N N N - -~
Qu . Idw
= 3z or Ma. 1
e
s = _,/_-D—D;/r'n//

Coordinate System and Desig-
nation of Velocity and Vortice
ity Components

In addition we will use the following symbolse.

O = angular velocity of rotor

P = pressure

v = absclute velccity vector

Zi==vorticity vector

F = force vector (force of blades on fluid)
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II. Hydrodynamie Equetions
The following equations are simplified for this case of am invisecid

and incompressible fluid in steady, adiabatic, axially symmetrical flowe

Equations of Motion:

T-v7 = Fowvp tF (1)
e _ v° du - LD
w 2 p 2 =
 or /{—W«D; Fo
_ Lz
w FE pow Y = Tpie
—_ e =
Fx2 = FeprzrV o8 (2)
Continuity Equation:
7.7:0 (3)
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II1. Formulation of the Mathematical Problem
a) Development of the Basic Equations
Because of the axisl symmetiry only the tangential vorticity is

associated with the radial and axial velocities, while the radisl and
axial vorticity components are only associated with the tangential
velocitye The temngentiel vorticity constitutes an annular vortex ring
and by considering the deformation of this ring information concerning
the radial and exial velocities can be gainede It is well known (cfe
Mbyer2. Mhrblel) that the circulation about & deforming vortex ring is
constent in a conservative force fielde Only e radial stretching can
occur since the flow is symmetrical sbout the axis so that the constancy

of eirculetion requires that in a conservative field

4 M-
@ = o )

In the presence of non-conservative blade forces or if r-lial
vorticity is present the circulation, and hence the quantity gﬁ will
not remain constente The law governing its variation can be derived

from the equations of motion. The equations of motion in vector form

caen be written

Fa2 = Frp rZ 00V —F (2)
If we take the curl of both sides and use the equation of continuity,

. T -0 (3)
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there results

V-p 5 = _C -9V + oxF

The tangential component of this vector equation is

vf dv Y aun IFr  DF
T Sy 85z F T sz 57

on 27
LL—-——QM_ + WTZ +

which, using the definitions of vorticity, can be simplified to

21) = F[%(£) - 32 -3 Q

Since the circulation is directly proportiocnal to the quantity-;%,
this equation expresses the law governing the time change of circula-
tion around the tangential vorticity ring. The first term on the right
is the change in the axial direction of the centrifugal force, the sec~
ond term is the change of the radial blade force in the axial direction,
and the third term is the change of the axial blade force in the radial
direction. A little thought will show that these terms, in each case,
represent moments tending to cause rotation of a particle about a ten-
gential axis. It is in this msnner that a non-~conservative force field
tends to effect a change in the tangential vortex ring.

The time derivative on the left is teken along a streamline and

is written

L (L) = wgp(F) w3 () ©)
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In order to compare the reletive megnitude of the terms on the right

we use the definition of tangential velocity and write

2 (L) = &« T a 2w 4w Jw
“orlF) = 5 Droz T 7 DrE rz oz rz 2
z 2.
ey - w24 W
rriiva 9z r o9rdz

Remembering that for the axial flow machine the redial velocity is
small compared to the axial velocity and expecting from physical con-
siderations that the velocity distribution will be smooth, it appears

that

() << w Sz (F)

This inequality will be useful for the first approximations but must be
more closely investigated for the final approximations. It is conceiv-
able that for flow that differs greatly from vortex flow the radial
change of tangential vorticity would be of such magnitude that this
inequality is not justified. It will however be useful to group the

smaller terms separately, that is, to write
2 r 2y L o _ OF D /I« __—~J/
-Q-Zi:;/;z/r/"‘jzc‘z;é““arraz ) (7)

Using the definition of vorticity we can write an equation for the

radial vslocity as follows

ECUN YA 922~W/9z(r Y 0 42 ifie 2e)/ (8)

ar?
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80 that the left side, if set equal to zero, would be a linear partial
differential equation for which a solution is knowne
Since the fluid is inviscid the force of the blade on the fluid
will act normal to the blade and hence normal to the relative velocity

80 that

“Fr+/V—uJP)/C’19-+WFZ:O (9)

The radial velocity and the radial force are both small compared to the
other force and velocity components so that with very good approxims-

tion

V-0

Foo= - =20 gy (10)

w

Using this relation in the squations for radiasl velocity we have one of

the final equations of the iteration process
«w ~ Pl 2 1 fdu w
/«Z +9r/ ) " ozE T W/;z( / aFy= war ~ ,)zr “or zzd ary (11)

For determining a relation between the tangential velocity and the

tangential force we have the second equation of motion

ﬁ;/rw/ = wurv) +w(rv) = rks

which states that the variation along a streamline of the moment of
momentum is equal to the moment of the tangential force about the axis
of rotation. Then since we will prescribe the tangential force we

can express the tangential velocity as an integral along a cylinder,
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J/s%"/rpﬂoéz /////kfzg —-ﬁé—f%(?ﬂd) oz

p=z (12)
v=uv, +f —;“;N(WJ/ 7

The continuity equation, when integrated, provides an equation for

the axial velocity in terms of the radial velocity

AB=
/ L 2 (ra) dp (13)
3g=-

We have developed three basic equations, Eqs. 11, 12, 13, to be
used in formulating the linearized problem, for the first approximation,
and in the construction of an iteration procedure whereby more exact

approximations may be obtained.
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b) The Linearized Problem

In order to linearize the basic equations derived in the previous
section we shall consider exial flow, where the radial velocity is very

small compared to the axial velocity,
u<<w

end will assume that the vorticity is trapmitted axially downstream

with the mean axial velocity w, so that
o /7 - P 7
_,2/7) - WOQZ/’F)

Purthermore, if the radial force is small, we have for calculating the

radial velocity the expression

2
T 1 28] ¢ T = i [ (5 + F (s ()

For calculating the linearized tangential velocity Eq. 12 becomes

- Wo

a=Z
vev v [ L2 s (15)

ﬁ:—ao
and the linearized exial velocity is, from Eg. 13,
R=z

wo=w, - FEH(radp (16)

(5o oo
We are now able to outline a solution to the linsarized problems.

We will consider here the inverse problem ard will specify the two

force components F,, and Fg e We will prescribe Fno<< Fg and Fg= F (rez)»

and will specify the boundary conditions applicable to axial flow.



First the tangential velocity is determined by
ﬂ— — o0
Knowing the tangential velocity we can determine the radial velocity

from BEq. 14
2 =4
M,L.D__%}_/.M £(r z)

2,2 " or D78

i

Lor 2 f@/ (1)

2z
with the boundary condition that

5 r =, 2, and z= £ 0

We have here an elliptic partial differentiasl equation for the radial
velocity. Since we know the right hend side, the unhomogeneous part,
and have complete boundary valuess we can solve this equation for the
radial velocity. This equation was solved by Marblel in terms of a
Green's function G(r,z; o, ) which gives the velocity induced at any
point of a circle r,z by a unit change in tangential vorticity of a
vortex ring of radius <« at an axial coordinate /2. By Marble's solu-

tion the radial velocity is expressed as

- I
cc=[o [, [/of/ﬂ} G(r z;,= 8 o= dS (16)
where
fl e = 7'/7[537‘/7'/2/ ;-foroar o -, (17)
-GU/Z—,@/

Greim g = > XLl O lend) € (18)
7=/ Z é/y 7
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Ul(@,r) is the linear combination of Bessel functions of order one

(/;(6,,/*/ = l/,(én/“/ ){[6,7/‘} - /é,,/‘/ )///éﬂ/‘) (19}

and the characteristic values e, are chosen for these particular bound-
ary conditions. The gquentity J, is the norm of Uj(e.r) over the in-

terval rj, r5.

2 -4
2)- 1 U 2
\)HZ _ /= U; (En: ) r; a(éﬁfj (20)
=

Knowing now the radisl and tangential velocities we have from

Eq. 16 the linearized axial velocity

Rz
v g o e

— oo

We have formulated sbove the linearized solution as developed by
Marblel. It should be noted that the Green's function as derived is
independent of the manner of linearization provided, of course, that
the unhomogeneous part f(«,8) is known. If then we have another value
of £(=<,/~2 ), more exact than the above linearized value, we can use the
same integral (Bq. 16) to determine a more exact radial velocity dis-
tribation,

This integral, involving an infinite sum of Bessel functions, is
extremely difficult to calculate. A solution for a particular blade
loading was obtained by Marblel. For the axial flow machine where the
boundaries exclude the rezion near the axis, i.e., the small values of
the arguments of the Bessel function, we can use the asymptotic values
of the Bessel function with good accuracy. This makes it possible to
sam the infinite series so that the Green's funciion can Deé expressed

in closed forn.
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¢) Asymptotic Value of Green's Funetion

An asymptotic approximation, in closed form,is desired for the

Green's function

=0 - Gh/z'ﬁ/
v, ’” U/ e <
Gr,2; s, 0) = 5 SLleatlbfen] (18)
=1 €’7 )'I
where
U,(enr) =Ji(€nr) ¥ (enr,) - Sy (nry) Vi(Enr) (19)

U, lenr) = o (enr) Kile,r,) =S (€nr)) Yo (enr)

pa
Yy = 7 Yotenrz) = 1) Uolénr,)
n Z (20)

and €, is found from the boundary condition that
Uilenrz) =, (€, 72) V1 (€ns) = S (€ 1) V] (€pre) = © (21)

For “large® (e,r) asymptotic values of the Bessel functions are

found in J ahnke-Ende6-

cos(€,r-%)
SFre,r

cosle,r-%)
Ve

sin(e,r- )

)///é,,/‘) = /é'—rre,,/"
r
ol Vi mre,r

k// (é»r’“} =

L/o (€,r) <
(22)




The corresponding characteristic values €, are found from the

solution of Eg. 21, with the Bessel functions replaced by their asymp=
totic values, Eqe 226

»n 7

= . = 7 3. - -
€n Z-r / 77 R

(23)

Using these characteristic values in Ege. 22 we find the camplete asymp-

totic value of the Bessel functions, compatible with the boundary con-

ditions of the problem.

e zj_f)
CcCoOS )r‘z,r— P4
S, (e,r) = -

7VEnr

Cos/rvrr/“_ )
So (€Enr) = i

</ nml 34%7_) (24)
—_~ rz-"
’; (€,r) = Ny ey

<in nrf}" 77/
5/5/7/’) =

77 zl»ﬂ/'

The asymptotic value of Uo' Ul' and D,, follow easily and the asymptotic

value of the Green's function can be written as the infinite sum

Jz-r/
S
G[r,z,;%,8) = Z// L osin mr L sy oo 2l e 2N

2=

N
\X

This series can be summed and expressed in closed forme

L z-£ caslf{r‘n“{d-m

/ < - —

G//",Z}'o&,ﬁ}&.‘ ”[ //’) 05, r'zr e F - (25)
cosh m 2L —cosyLLLlZElL
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d) The Iteration Procedure

Using the asymptotic value of the Green's function as derived in
the previous section three general equations can be written for the
iteration proceduree.

We will use the velocities resulting from a solution of the lin-
earized problem to obtain the second approximation and will obtain
subsequent approximations using velocities of the preceding epproxima-
tion. Here we are, in effect, assuming that the vorticity is, in each
case, transported by the velocities of the preceding approximatiocne

The radial and tangential force components are prescribed and we
start with

u, = 0

W, = mean axial velocity
If the velocities which are to be obtained by the ~»th approximation are
denoted by the subseript ~ the equations for the »th approximation vel-

oczities are

- Fo(rP) _ “nlDF) 1
Vn = Ve *4_00 Wy (1] T W, 15,6) af/dﬂ (26)
ﬂ_—oo ‘7(;/"2
u, = / A (8 G(rz e, B) d= o (27)
pB=- o =47

where




a2 ) # e -17)
/S 605477’7,_—_7-60577—/"——’:;/—2—_—,—47—
Clreip)-ib/F I g =3
cosh 22 _ cos; (rr)-(==0)
20, z-1
=<
- — D
B oo

(28)

These three equations, 26, 27, 28, are the basis of the iteration

process which is adapted to mechanical calculations in the next sectione

We will meke use of the important fact that G(r,z; = 2) is the same

for each iteratione
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IV, Adaptation of the Iteration Process to

Mecherical Calculestion Methods

The integrsnds of the expressions for the tengentisl and axial
velccity components, Egqs. 26 and 28, ere regular over the regions con-
sidered and can be integrated by asny numerical method with relatively
little difficulty. Mechanical calculations cen be performed using the
equations in their present form.

The integration of the equation for the radial velocity Eqe 27
beccmes rather invelved by any method, end for mechanical calculz-
tions the form of the equation must be redically chengede An inves=
tigation of the Greemn's function, G{(r,z; =<,B ) will reveal a logar-
ithmie singulerity at «=r,f = ze To determine the radiel velccity
at any point r,z the integration must be cerried out over the entire
region. The logerithmic singulerity of the integration represente
the influence at r,z of an exisl change of vortieity at reze

It will be advantegeous to perform the integration in three
parts, one part being over the regular region, away from the ainguler-
ity, esnd the other two parts beirg over & small region which includes
the singularity. Integration over the latter region conteining the
singuler point consists of eveluating a regular part and evaluating
a part conteining a purely logarithmic singularity. With this in

mind we write the radisl velocity as the sum of three integralse.

u= u'+uf's+ u't (29)



roo  f
;// Fley@) G(rz;= 6 o= dp (27)
“' = // // // // £ G deop (30)
rr z-er, ze n z-e r+d§
ZAE PAS s ) )
o cosh ”‘;.;%;‘-; —cosrfi;_L;_{;‘_;ﬁ_
z‘_/[ e / Co.fbﬂ%% -~cos ;r_(f’;I ;« 7l do{ol/a (31)

(a-f */;'(Z%?CZ

2re r+d

// — /’7 r r,) [‘:( r))d"dﬁ (32)

2-¢ r-&

Obviously the integrand for u' is finite but we need tc show that

the integrend of u'' is regular. It is easily shown that

(r-r.,) +(=-r)

Jinmit ARYACY cosh? G —cos T 7
°<=,.) ﬂ:_ z 4‘” r Cosﬁﬂﬁ__z'—cos 7 (I‘-/‘;{“(d-r,l
/ﬂ {o(—c
=

- Vs / S~ oS Z7 A
/7

7E 2
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There is a singulerity in this integrand, however, but it does not

occur near /- reze. The distance from rez to the singulerity, meas-

ured radielly, is given by

=< —r r=r /
- __2 __._) Yy -7 < =
2-r, Ve -7, ;7 © = =
r-7r r-+
= 2//— - L 2L </
rz"’/ 4 2 2=

From these equations this singularity is seen to lie outside of any
region whose center is at r,z. The integration for u'' therefore does

not involve a singularitye.

The integrand for u''® obviously possesses a purely logarithmic

singulsrity at o( F = IyZe
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a) Eveluation of the Integrel for u'

Using the notation that

/1,

zre rd zre

TLT T T 0

z-& rfd

I

we have

(35)

TR /é Fr=m) Glr,z; £,8) Jdtdf

The function f («,8) will be different for each iteration but the

Green's function, G{r,z; =,/2 ) will be the same.

r, <

Fig. 2

Subdivision of Flow Field
Intc Small Rectangles
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If we divide the region into smsall rectangles as indicated in

Fige 2 we can assume with good accuracy that £(o(,/ ) can be repre~

sented in one of these sufficiently amall regions n by the second

degree surface

7{7/"‘//67 = C,, + CozA+ Ca33 + Chna <X~

(36)

where four values of f(=,/7 ) in the region n are necessary to eval-

uate the constents C.

Suppose the four values of £{=<,/ ) are

£4 === f nh* Substituting these velues in Eq. 36 we have four equae-

tions frop which the constents C can be evaluated.

#1s
Fnz
3
Fra

from which

Chy
Chr

Cor

rn/

* Chz Fupy +F Cus Brns  * Cra =<, By
* Cho Ky, * Cuz fn2 + Cra LnzBre
* Cpz~$,s +Cns By + Chna<<,, Bns
* Cozo(ne  +Che By * CheXpng Pne
Frrr Sy =9y Sy s
Frnz nz Prz  HApz Baz
fnzs Fas PBrs Sz Pas
Fna At ne Bre < pa Png
/ < pry By Xy By
/ HApz PBrz H o Pz
/ Shz a3z FHpz B3
/ “ne ﬂrnt o /91,4
= c/c.

(37)

(38)



Four constents Cpg ==~ ol must be determined for each rectanglee.
It will be convenient to use £(<, /3 ) evaluated at the corners of the

rectangle for thise Using the asbove notation we cen write
uo= Z// [Cos # Crz +Crf+ Cmﬂ”‘/éj Gfryz; =) d=dp (39)
7?7
R

and cen further define

/,, = ///e G, o= a2

[/72 = //2 =< Gr/ of O’ﬁ
(40
[/73 = //g g G, J5dAE
Ly = [) 48 G, o/%dp
80 that
U/ = ﬂZ/C”/./,;/ fC/?Z jﬂZ +C,73J,73 'f'Cﬂ4 J‘”.;) (A‘l)

Here the C nl depend only on the function f(=%, 3 ) and must be deter-
mined for each iteration. The I’ni depend only on the Green's function
and can be determined once and for alle It should be noted however
that the I,; ere different for each r,z; that is, we must have a cer=
tain set of Ini tc use in determinipng the velccity at each pointe.

If we denote by u’m the velocity at the center of the mth rectangle
and use the superseript m to denote the corresponding Ini’ then the

velocity u' at the center of the mth rectangle is

Z /Cﬂl ﬂ,/’v*cﬂz./,: #‘C,,_—,]”s +Cn¢ / (1&2)

2 Fr77
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The Igi are numercus and are quite difficult to calculate. Howe
ever since the Green's function was derived by considering only the
fundamental equations and the boundary condition ané hence is complete=
ly independent of the prescribed blade loading or the blede shape,
these values I;; can be used for any axial flow woblem for which
the hub-tip ratio is the seme as that for which the I;E are calcu=~
latede.
Considerable simplification of the problem of caleulating the
I;; is possd ble because of the symmetry of the Green's functione This
function is symmetrical about s - 2, a fact which reduces the number of
I;; by almost one~halfe PFurthermore it possesses another sort of sym-
metry in 4 and 2z in that the influence of the vorticity at 8 on the
velocity at 2z is the same as the influence o the vorticity at 2z on the
velocity at 2 « This condition sgain reduces the number of Iég by al-
most one-halfe This latter "reciprocal® relation can be used with the
radial distences < and r for further simplification, but the relation
is slightly different because of the factor y@% in the Green's function.

m
The Ini

will of eourse depend on the number and size of the rec-
tangles into which the region is dividede The rectangles should be
small in the vicinity of the region where the blade forces act and

can be lerger away from the blades. According to the linearized results
given by Marblel it appears that in most cases it is not necessary to
cerry the integrestion more then asbout five blede span lengths (rpe-ry)

upstream and downstreem of the blades, but this range may not te suf=

ficient for the higher spproximations and it is believed advisable to

calculate the I} for a scmewhat greater range.
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The expression for u'm is best expressed in matrix form for mech-

enical calculationse. We define
w'’
/Z
ud
X (.L’m} = oL’ 3 (AB}
Cs¢ "
Czi
G } B T PR (44)
L :
Ly / ;]
[/6 [2[ [3é
1, L Lo )
. 3 3 o 45
[ [/n' } = Z/c Lz )
L | .

Using this notetion we can write

[wm] = 2 [ef [17]

= /;2,3,4'

(46)

The four column matrices [Gnﬂ must be evaluated for each iter-

ations The four sguare matrices [Ig;_] can be determined once and for
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all as soon as the subdivision of the field into small rectangles

is decided upone
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b) Evaluation of the Integral for u''
The integral u'' is the regular part of the integration over
the amall region containing the pcint at which the velocity is to be

caleulated

J
Z+£E IF /I”‘)/,)"L("(—,:)

B-z
cosh T —cos T —"rb—"0
/////'5/447/, / co;hﬂ'g_z (ﬁi}__._(i:—,z) O/D(O/ﬂ (31)

r, — Ccosnm o

fr)"( )

z-& rr-d

We have from Ege 33 the value of the integrand at the center

point of the region, ieee,at «£=r,z, as

/- cos 2‘77_;:—;(:; (b?)

//"(J/G)Z};L:/” i

It can be shown that this point is a saddle point of the logarithmic
function in the integrand since it represents a maximum with respect
to =< and a minimum with respect to S .

It follows then that if the region is sufficiently amall and if
the function f(<<,03) is amooth we can use the velue of the logar-
ithmic term at the center as an approximate mean vaelue (constant) so

that an approximate value for uw'' is

zre r+d
L = /,7_1;5;725,&_—_,// £ty ) ot 3 (48)

Since this integral u'* represents the effect of only one small
region the asbove expression is sufficiently accurate unless the
change of vorticity in this region is much greater than anywhere else

in the flow field.



«28=

We cen write the integral above for the mth rectangle as

o e TP (49)
where
r—27,
m /- RoS R m—n

is evaluated at the mth point and

zre I'rd

Dm = // //a()ﬂ/ o of B (51)

z-& r-F
is taken over the mth rectangles
The Jm are determined once and for all as soon as the subdivisions

of the field sre decided upone The D® must be determined for esch

iteratione
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c¢) Evaluation of the Integral for u''‘
The integral u''’ is the singular part of the integration over
the amall region containing the pcint at which the velocity is being

calculatede.

2F€ r+d”

w” = / / 7[‘/ / //7 /r_ ng}z) O/Oﬂ C)//S (32)
We define a new function momentarily as

g(= e 0] = Fl=8i7 /5 (52)

and write the integral as

z+e r+d

- _// g (=, 7) //7/ /“’)o/o«o/ﬁ (53)

z-€¢ &

The function g{ =<, /~;ir) is regular and possesses higher order

derivatives sc that it can be expanded sbout the center of the rectangle

in a Msclaurin®s series in the two varisbles <<, /2 »
b D _
= 9079 + (32] ) (55l

L [/o%
*ZZ/Z/‘9d’)Az

(22) () + - (5)

If we substitute this expansion of g(=,F ) in the integral u'’

and neglect terms of fourth and higher orders we have

(55)

w = g(nz K, +z‘/9f) Ka + 232 / A
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where

2re ref

K, = —// //7//7?__5)2+ rr/}a’o(a/ﬁ
z-& r-§

2+& r+d

Ko = o) | e 5] 5] e

ZFE rr+d

Hs = //(ﬂ -z)° /n/(ﬂ‘L /,Ei;';}yo/vcdﬂ

z-¢ I~&

The integrals involving the odd powers of (oCer) or (B =z)
vanish because of the symmetry of the logarithmic terme. The above

integrals can be evaluated by straightforward integration by parts

to give
K, = ~/Fe/n ijf}z —12 5 + 45 far T 4 4 far'd (56)
Kz = 3/45é//7/e*§2 +Xe/2e2—5552} #

& §% b S 2 an ’;/ (57)
K3=’3/—/ /ﬂé*‘;2+cfe/2cfz 2£ &%) +

6 c*far'L-25 * fo "f’/ (58)
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The three constants, Kj, Ky KB’ are determined once and for all
as socon as the subdivisions of the field are decided upone

By straightforward differentiation we can express the deriva-
tives of g(( 42 ,r) in terms of £f(< , 2 ) and we can write the integral

u''! for the velocity at the rectangle m as

w'” = ETKRT LKL - ES K (59)
where Ki' K2, K3 are defined above and wherg
El = (g),, = im Flr2l
£ =F /jj) 5z F(ne) +3= (EF
& [3:5),.
£ = 23E),, = a3,



d) The Complete Integral for u
We heve evaluated the integrel for the radial veloecity in three
parts as given by Egse 42, 49, and 59 Combining these results we
can write a2 complete expression for the redial velocity at the center

rs2z of the rectangular subdivision m.

m ”» 7 m Vel
u = Z— [Cﬂ/ In) # Cozlyz + Chs Zys + Chy [mc]
/7) nEr7

£ pmyn 1= FIkT (60)
{=1,2,3

The constants Cy D and E are evaluated from the unhomogeneous
part £( o(48) of the differential equation for the radial veloecity
(Eqse 11 and 27) and are to be determined in the manner described
in the preceding sectionse. These constants must be determined for
each iteration.

The constants I, J and K depend only on the Green's function,
(1+ee, the boundary conditions), the hub=tip ratio, and the size of the
subdivisions and can therefore be evaluated once and for alle They are

used in the same manner in each iteration stepe.
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V. DISCUSSION

A method of solving the hydrodynamic equations for the incom-
pressible flow of an inviseid fluid through an axial flow turbomachine
has been developed as an iteration procedure. The next logical step
of this approach to the problem is the evaluation of the invariant
terms of the iteration expression for the radial velocity., Once this
is done for the several likely bhub-tip ratios it will be relatively
easy to calculate, by mechanical means, solutions for any axial flow
machine with any prescribed blade loading.

In determining the degree of accuracy that will be required the
restrictions (incompressibility, etec.) which were imposed to simplify
the mathematical problem must be considered end evaluated, The solu~
tion should be consistent wita these restrictions and of sufficient
accuracy to indicate the proper trends of the variables. It is not
certain that the linearized solution meets these requirements in all
cases. The iteration procedure can be used tc determine the accuracy
of the linearized solution and if necessary to obtzin solutions of

greater accuracy.
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VI APPENDIX

a) A Brief Comparigon of the Axial Flow and Mixed Flow Problems

The extension of the more recent axial flow solutions to apply
to mixed flow machines would be extremely difficult and would require
consideration of several points, not significant in axial flow, which
are of utmost importance in mixed flow, Three essential differences
between the two problems are pointed out here in order to indicate
which of the assumptions used in the axial flow analysis would not
be applicable to s mixed flow analysis.

(1) The mixed flow machine contains continuous vanes as con-
trasted with the rotor and stator blade rows in an axial
flow machine., The vanes therefore cannot be "twisted!
without introducing excessive tilt awsy from radial so
that the centrifugal forces cause largze bending moments
in the vane and prevent operation of the machine at ex-
tremely high speeds. A geometric relation must hold be-
tween the relative velocity, the vane forces on the
fluid and the shespe of the vanes throughout the region
where the vanes are present, whersas for blade rows as
in axial flow this relation holds only in the region of
the narrow blade and, in fact, may be concentrated in a
"1ifting line® for a good approximstion,

(2) The larger radial velocities which naturslly occur in

mixed flow prohibit the simplifying assumption used
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for axial flow that the radial velocity is very small
compared %o the axial velocity.

(3) The boundary conditions of the mathemetical prodlem

of the mixed flow compressor are much more complicated
than those for axial flow and greatly increase the dif-
ficulty of obtaining a solution. The veriables are not
separable in this case. It should be noted too that
the boundaries will probably be very different for each
mixed flow problem whereas they are always essentially
the same for axial flow.

Several types of vanes are possible but two special vane shapes
are likely to be of interest,

The first of these might be called "radial vanes®, These vanes
are generated by radial lines through the axis of rotation. Here the
radial force is zero, BHadial vanes are necessary in & high speed
machine because of the high centrifugsl forces., If radial velocities
and (or) pitch angles are large as in mixed flow then the angles be-
tween the vanes and the hub or shroud will be acute, thus increasing
boundary layer effects.

The second type might be called “normal vanes', These vanes are
generated by lines through the axis but tilted in a meridional plane
S0 as to be normal to the meridional trace of the streamline at all
points, Here the vane force has two components, one acting slong the
meridional trace of the streamsurface and one acting tangentially.

This vane is not structurally adequate for exiremely high speed rotors
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but does have the good feature that angles between the vane and the
hub or ghroud are right angles, a fact which may minimize boundary
layer effects. It is interesting to note that one force component
accelerates the fluid in its path in a meridional plane and the other
component accelerates it tangentially so that it appears that no
Ywasted” forces are present, For the axial flow machine radial venes
and normal vanes are about the same,

The selection of either radial or normal vanes will lead to

great simplification of the mathematical problem,
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b) Some Conseguences of the Hydrodynamic Bguations as Applied to

Turbomachines

The Euler equations of motion are written in vector form and in
cylindrical component form for the isentropic flow of an inviseid

and incompressible fluid acted upon by non-conservative body forces.

The flow is symmetrical about the axis,

V.-vly = ,_}é. v p ~F (1)
da _ 7 da _ _ 1 28
“ o P WsE T T s S T
w 2r¥ s w2 = Fs (2)
r or z
dw dw - L2 F
%3;— +Wa——— 7 oz + Tz

By use of a vector identity these equations may be written in

terms of the vorticity

— — 2 —_
vxi2 = v(Z]-F (3)
where, since the flow is isentropic and adiabatic,

,
r(E) =g r2 VY

is the gradient of the total energy of the fluid.
Eq. (3) is

In component form

vy —wo = > {;?/ - Fr
wé—ul = —Fs (4)

wyp —vs§ = %(‘f‘}"Fg
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Several interesting relations between velocity, vorticity, total
energy, vane shape, etc., can be derived from these equations if we
consider the flow between two concentric bounding surfaces acted upon
by venes or bdlades rotating with an angular velocity «0 . We will
assume an infinite number of vanes (or blades) so that the forces of
the vane on the fluid may be represented by body forces symmetrical
about the axis, Furthermore since the fluid is inviscid these forces

are normal to the vane and hence to the relative velocity so that
(V- ar) - F = o (5)

If we take the scalar product of the velocity and both sides

of Eq., 3 these results

o
VvlE) =V F = F-dr) s wrfe

52 4

From the second equation of motion
Z(rv] = rFs (7)
From Egs. 6 and 7 we see that
g /P) . sd e where rotating veanes act
df//’/ B “’5«7/ / '

- O , Where no rotating vanes act
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If we consider the case where the fluid has constant energy
far upstream and is free of vorticity far upstream and make the stip-
ulation that the total energy of the fluid is changed only by the
action of the moving vanes {i.e., adiabatic flow) then Eq. 8 can be

integrated along each streamsurface with the result that

7 7 _
//‘7 ZZ- //’ /far upstream B /a)rV/Cz B /wr‘/)fai' upstrean

P
For this case of uniform energy and no vorticity far upstream, -/;"
and sy are constant far upstream so that:
V/—;) = O : upstream of the vanes
(9)

b

in regions of and downstream of the
vanes if no forces such as stationary
vane forces occur

“e

V/u)rv/

If any forces, such as those resulting from stationary vanes or
gstators, have tancential components then we can only say that g—;/;} =0
along the streamsurface since in tnis case W ilf/ry/ = 0, but %_/rr/;é o

Combining Bgs. 3 and 9 we have

7,(_@- = p(Prv) — F

and if we multiply both sides by the vorticity

we see that

/75 . [V/cary)——;] =0 (10)
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Using only the definition of vorticity it is easily shown that

2 - rlworv) =o (11)

and hence

7/75‘/ =o (12)

and further from Eq. 10
S F =0 (13)
Using the definition of vorticity and Eq. 9 it is seen that
WO7r x = V/P/ (14)

Combining Eq., 14 and Eq. 3

(7-&r) x 23 = -F (15)

For this special case we can draw the following interesting con-

clusions:

Upstream of the Vanes:
l. The vortieity is zero.
2. The total energy of the fluid is wnifomm.
In the Region Where Vane Forces Act:
1, The vorticity vector is tangent to the vane surface. (Egs. 5
and 13).
2. The vorticity vector is tangent to a surface of constant

total energy. (BEgq., 12)
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3. The bound vorticity is tangent to the line of intersection
of a vane and a concentric surface of constant total energy.
Downstream of the Vanes:
1. The vorticity vector is tangent to the relative velocity
vector (relative to the rotating rotor).
2. The vorticity vector is tangent to a surface of constant

total energy, this surface being the streamsurface,
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