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Abstract

The Hox genes show a striking segment specific pattern of expression in a variety

of vertebrate embryos, and have been the topic of many experimental analyses.  There are

now sufficient data to construct a higher-level model for the interaction and regulation of

the Hox genes.  This thesis presents the results of an investigation into a regulatory

network for the early Hox genes.   Instead of using conventional differential equation

approaches for analyzing the system, a stochastic simulation algorithm has been

employed to model the network.  The model can track the behavior of each component of

a biochemical pathway and produce computerized movies of the time evolution of the

system that is a result of the dynamic interplay of these various components.  The

simulation is able to reproduce key features of the wild-type pattern of gene expression,

and in silico experiments yield results similar to their corresponding in vivo experiments.

This work shows the utility of using stochastic methods to model biochemical networks

and expands the stochastic simulation algorithm methodology to work in multi-cellular

systems.  In addition, the model has suggested several predictions that can be tested in

vivo.

A tight connection was also created between the modeling and laboratory

experiments.  To investigate a connection between two components of the network,

retinoic acid (RA) and Hoxa1, a novel laboratory experiment was performed to perturb

the system.  An RA soaked bead was implanted into the neural tube of a developing chick

embryo and the effect of the exogenous RA was assayed with an in situ hybridization for

the gene Hoxa1.  The resulting expression patterns suggested that one aspect of the model



v
design was not accurate, and based on these results the model was modified to encompass

the new data, without losing the fit to the original data sets.  The thesis work was

therefore brought full circle, thus showing the utility of an interconnected effort: the act

of constructing and using the model identified interesting biology questions, and the

answer to one of those questions was used to enhance the model.
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Chapter 1: Overview

Every attempt to employ mathematical methods in the study of biological

questions must be considered profoundly irrational and contrary to the

spirit of biology.

If mathematical analysis should ever hold a prominent place in

biology—an aberration which is happily almost impossible—it would

occasion a rapid and widespread degeneration of that science.

- Auguste Comte, 1871

Introduction

Every applied and computational mathematics thesis should start with a physical

problem, and in that respect this thesis is true to form.  Instead of culling a problem from

physics however–the traditional inspiration for much of applied mathematics–the

problem under investigation in this work was drawn from developmental biology.  The

goal of this thesis was to investigate a relevant and interesting biological problem from

both the modeling and experimental arenas, and show the efficacy of an interconnected

effort.   This thesis presents the results of an investigation into a regulatory network for a

set of genes expressed in the developing brain, the Hox genes.  The network was created

through integrating the results of numerous biology papers and constructing a higher-

level model for the interaction and regulation of the Hox genes in a multicellular context.

Instead of using conventional differential equation approaches for modeling the

resulting system, a stochastic simulation algorithm (SSA) has been employed to model



2

the network.  This work improves on previous SSA investigations that had been limited

to intracellular systems by expanding the SSA to work in an intercellular arena.  One of

the troublesome problems with modeling a multi-cellular system involved cell

synchronization, and this was solved with the use of a priority queue to time-order the

cells.  The model tracks the behavior of each component of a biochemical pathway and

captures the dynamic interplay of the various components in the multi-cellular system.

The data can be rendered as computerized movies of the time evolution of the system.

The simulation is able to reproduce key features of the wild-type pattern of gene

expression, and in silico experiments yield results similar to their corresponding in vivo

experiments.  In addition, the model has suggested several predictions that can be tested

in vivo.

An important goal of this thesis was a tight connection between the modeling and

experimental work, and two novel perturbation experiments aimed at testing components

of the model network were designed.  The first investigation addressed the connection

between two genes in the network, Hoxb1 and Krox20, and the published hypothesis that

Krox20 is repressed by Hoxb1 expression (Barrow et al., 2000).  A specially constructed

piece of DNA designed to repress Hoxb1 was introduced into young chick embryos, and

the effect on Krox20 expression was assayed.  The DNA did not, however, appear to

work as intended.  The second experiment explored the connection between retinoic acid

and Hoxa1 by altering the normal retinoic acid distribution in the embryo.  This was

accomplished by implanting a retinoic acid soaked bead into the midbrain of a

developing chick and assaying the expression of Hoxa1.  This experiment yielded

intriguing results, and the resulting data suggested that one aspect of the model design
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was not accurate.  Based on these results the model was modified to encompass the new

data, without losing the fit to the original data set.  The thesis work was therefore brought

full circle, thus showing the utility of an interconnected effort: the act of constructing the

model identified interesting biology questions, and the answer to one of those questions

was used to enhance the model.

Interdisciplinary Work

With such a strong focus on interdisciplinary research, this work presented a

number of challenges that are not typically found in a conventional thesis.  They started

with the need to learn the vocabulary of a new field.  This was accomplished by sitting in

on biology courses, reading the biology literature, and interacting with people working in

a biology laboratory.  At the same time, a search to identify a tractable yet interesting

problem was undertaken.  The prospect of modeling a gene network appeared fairly early

in the research process, yet it took a great deal of time to identify a particular network.

The molecular studies of the hindbrain have offered sufficient details to assemble

a model for the interactions important in regional control of gene expression.  These

factors helped identify a system in which to work; the interconnection of the early Hox

genes and their connection to retinoic acid.  The direct coupling of the stochastic

simulation algorithm implementation of a network and individual molecular events would

seem to lend itself to both the analysis and logical organization of the ever growing data

on the control of Hox genes in the developing hindbrain.

One of the important features of the Hox system is that the amount of molecular

information that has been gathered about the regulatory mechanisms allows for a
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synthesis and construction of a higher-level system of interaction.  At the same time, the

data is far from complete, thus leading to questions that can be investigated through

simulation.  These include investigations of hypothesized interactions, mechanisms of

interaction, and perturbations of the system.

Another key feature of the Hox network was an animal model, the chick

hindbrain, which allowed for experimental perturbation of the system in vivo.  A

carefully designed experiment could be connected back to the model, and the data

gathered from the experiments would offer support for, or evidence against, model

hypotheses.

Finally, research into the Hox genes is relevant because of their strong connection

to diseases.  There is evidence linking Hox family members to leukemia (Thorsteinsdottir

et al., 2001) and breast cancer (Lewis, 2000), and connections to genetic diseases include

obsessive-compulsive disorder (Greer, 2002) and autism (Ingram et al., 2000; Rodier,

2000).

The laboratory work was designed from the outset to be a crucial part of this

research.  The experiments are intimately related to the Hox network, and early on in the

work it was necessary to move beyond the literature and start work in a laboratory.  The

literature and consultations with experimentalists provided the initial guidance in

perturbation techniques—the bead implantation (Chapter 4) and electroporation

(Appendix A)—but the refinement of the methods came through trial and error.  To do

these experiments, it was necessary to learn an array of supporting techniques.  These

included early chick embryology and development, tissue culture, microscopy, and a
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number of molecular biology techniques including antibody staining, cloning, and in situ

hybridization.  Many of these techniques are described in the thesis.  During the course of

working in the laboratory, numerous problems that are never mentioned in the literature

or classes appeared on an almost daily basis.  The Vital Stain experiment in Chapter 4 is

an illustrative example.

To present this interdisciplinary work in the proper context, the thesis is broken

into the following 5 chapters: Chapter 1 provides an overview of modeling biological

problems, an introduction to modeling gene networks, as well as some comments about

the goals of modeling in general.  Chapter 2 focuses on the modeling of enzyme kinetics

by presenting stochastic and deterministic implementations of the basic enzyme reaction

and a comparison of the two.  Chapter 3 includes an introduction to both developmental

biology and the specific biology of the system under investigation.  It goes on to present

the model itself, and a sensitivity analysis of the model.  Chapter 4 is devoted to

experimental results, and how the experiments described tie back into the model.

Chapter 5 contains the summary and a discussion of the work.  The Appendices contain

more experimental results, the source code for the simulations, and the laboratory

protocols used to perform the experiments.

Biological Modeling

Over 170 years after Comte made his thoughts concerning the role of mathematics

in biology known, his sentiments are perhaps too widely shared in the biology

community.  D'arcy Wentworth Thompson echoed Comte’s sentiment when he remarked



6

that “The introduction of mathematical concepts into natural science has seemed to many

men no mere stumbling-block, but a very parting of ways” (Thompson, 1942).

Practically speaking, the reasons for the schism between math and biology are

many.  They start with the language barrier, a common obstacle between many fields.

Unlike math and physics, which are inextricably linked by their vocabulary, math and

biology each have a vocabulary that is very difficult for the outsider to understand.  This

has created a climate that does not encourage true interdisciplinary work and there are

numerous instances of mathematics used to solve problems that are supposedly biological

in nature, but in truth have little connection.  The language barrier also presents problems

when communicating the results of the work, but it has been shown that publishing the

research in a journal relevant to the new field is an effective form of interdisciplinary

information transfer (Pierce, 1999).  Therefore, the fact that a portion of this work has

been published in the journal Developmental Biology (Kastner et al., 2002) is a notable

achievement.

Another problem is that modeling biological processes is inherently difficult;

there are relatively few “toy problems” that can be easily identified, extracted, and

solved.  This often leaves an investigator in the difficult position of trying to model a

system before it is well characterized.  It is sometimes suggested that all the parts of the

system must be known before a model can be created, or that any potential modeling

approach must be proved on the simplest system before trying to apply it to something

more complex.  These objections are sometimes put forth as reasons not to start work on

a problem, but they are shortsighted and in truth much can be accomplished by trying to

model even poorly characterized biological problems.  Indeed, a central reason for
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modeling biology using mathematics and computers is precisely because the biological

systems are so incredibly complex.  The facts of the matter are simply these: all the parts

of any real biological system are likely to never be known, and even the simplest

biological systems are more complex than can be handled by any supercomputer.  To

quote an oft-repeated sentiment during many biology lectures: “but it’s more complicated

than that.”   Not only is it more complicated than that, it is more complicated than we can

begin to imagine.  Therefore, a major part of the problem with biological modeling is

finding tractable yet interesting problems.

Finally, the scientific community is still trying to develop a mathematical

framework for biological problems. There is no F = ma  for biology, and a variety of

techniques can often be employed for each problem that appears.  The closest biology has

come to a universal law is the Central Dogma which states that genetic information is

carried on DNA, then transcribed to RNA and subsequently translated to proteins.

Adding to this problem is that data arising from biology experiments, especially in

developmental biology, are often qualitative and don’t always lend themselves to a

rigorous mathematical analysis.

Despite these objections, it is important to try to bring communities together as

there is much they can offer each other.  For the mathematicians, biology affords a

relatively untapped spring of interesting problems, and the opportunity to shape the future

direction of investigations.  For the biologists, mathematics can provide a framework for

the biology problems, especially considering the sheer amount of biology data being

generated.  It can also be used to quantify results and suggest experiments to test

hypotheses, ultimately adding to the understanding of how the biology may work.
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Gene Networks

One focus of traditional biology examines single genes or proteins in isolation.

While this provides vital information, it is the interaction of these pieces that provides

biological results.  The logical next step is therefore combining the data from various

sources to build a hierarchal picture of the true interactions of the pieces of the pathways.

Because of the deluge of information, computer models are the key to the future of the

information integration and to the understanding of how the systems work.  Not only that,

but by a thoughtful investigation into a system, it is even possible to determine the part of

the model which may be missing or is not well understood.  An excellent example of this

has recently appeared with the use of a model to discover a missing control module for a

sea urchin gene (Yuh et al., 2001).

Biological networks are the collection of biochemical entities (including

messenger RNA, proteins, DNA, ions, or other molecules, like hormones), which interact

to produce biological results.  An analysis of these systems seeks to elucidate information

about the interactions between the genes and their derivatives, and also hopes to provide

predictive results about the overall behavior of the system.  This type of work is

commonly called systems biology because it seeks to simultaneously study the complex

interaction of many levels of biological information.

Genetic networks currently lie in the forefront of biological research, and are in

the border area where computer simulations and molecular biology meet.  The most

successful efforts have tightly coupled the modeling and experimental efforts (cf. Yuh et

al., 1998; Yuh et al., 2001).  They are also an area of increasing interest, evidenced by the
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growth in the literature.  Five years ago a literature search on the term “gene network”

returned only 3 references, and none of the works involved modeling.  In the first nine

months of 2002 however, the same search produced nine times as many results, and a

dozen of them clearly involve modeling of some sort.

Various methods have been employed to model biological networks including

Bayesian networks (Friedman et al., 2000), rule based formalisms (Meyers and Friedland,

1984), true Boolean systems (Kauffman, 1993) and Boolean/continuous hybrids (Yuh et

al., 1998; Yuh et al., 2001) but ordinary differential equations have been the preferred

method to construct and analyze biochemical network models.  Using the Law of Mass

Action, which states that the rate of the reaction is proportional to the concentration of the

reactants, it is possible to write down a set of coupled differential equations that hope to

describe the time evolution of the system.  The reasons for the prevalence of mass action

based kinetic analysis are many, but by far the most important one is that the approaches

based on differential equations produce results that are in general in good agreement with

the data (cf. Hynne et al., 2001; Poolman et al., 2001).  In addition, differential equations

come with a wide range of analysis tools that allow for a detailed investigation of the

model properties.  But as will be addressed in Chapter 2, differential equations may not

be appropriate for modeling biological processes in the small volumes inherent in single

living cells.

Compared to differential equations, and despite their prevalence in modeling pure

chemical processes, stochastic approaches in biology are still in a relative infancy.  This

is currently changing, and generalized tools for constructing and analyzing stochastic

simulations are now starting to appear (Bray et al., 2001; Kierzek, 2002).  A stochastic
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process is one governed by a random process, and in a biological context this means that

the system is subject to fluctuations.  These fluctuations could be in the number of

molecules present, the time it takes for a molecular creation or decay process, or the

length of time molecules are bound together.  More attention has been focused lately on

stochastic effects in biology, especially as evidence shows that stochastic effects play

major roles in gene expression (Greenwald, 1998; Ko, 1992; Zlokarnik et al., 1998).

Instead of treating these factors explicitly, some differential equation approaches attempt

to capture stochastic effects by adding a “noise” term to their otherwise deterministic

treatment (cf. Meinhardt and de Boer, 2001).  The resulting “ordinary” differential

equation is called the Langevin equation and is of the form

dX t( )
dt

= −aX t( ) + f t( ) (1.1)

where the noise function f t( ) is assumed to be Gaussian and delta-correlated.  But in

effect this makes the noise term just another parameter instead of capturing it in a

physical meaningful way.  This may be a somewhat misguided approach: if there are

fluctuations in the system that need to be accounted for, it might be preferable to

incorporate those effects at the beginning in a way that is physically intuitive and

physically based.

Stochastic Simulation

As opposed to the deterministic view in which the reaction constants are the rates,

reaction constants in the stochastic approach are considered to describe the probability

(per unit time) that a reaction occurs.  With this formulation, the chemical system can be
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thought of a Markovian random walk in the space of the reacting molecular species.  The

time evolution of the system is described by the solution of a single differential difference

equation, often called the master equation.  The independent variables of the master

equation are time and the populations of the reacting species.  The master equation can be

transformed into a partial differential equation by the use of a generating function.

From a mathematical point of view, the set of equations resulting from the Law of

Mass Action is usually easier to solve than the corresponding master equation or the

associated partial differential equation.  In reality, it turns out that if the system involves

more than a few reactants and chemical reactions, an analytic solution is out of reach for

either method, and it is necessary to use a numerical scheme (McQuarrie, 1967).  Of

course numerical methods for solving even a single partial differential equation can be a

research topic in and of itself; instead what was really needed was a general method for

attacking the master equation.  This came in 1976 when Dan Gillespie introduced the

stochastic simulation algorithm, described in the next chapter (Gillespie, 1976).

Adam Arkin appears to be the first to use Gillespie’s method in a biological

context with a study of the growth of phage λ, a virus that infects the bacteria E. coli

(Arkin et al., 1998; McAdams and Arkin, 1998).  This thesis shows that stochastic

simulation has a much wider range of applications by applying the methodology to a

larger system, namely a collection of cells, each with a much more complicated network

containing more molecular species than phage λ.
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A Caveat Concerning Modeling

With all these attempts to model a biological system, it is important to keep track

of the goals and the pitfalls of modeling in general.  This is most succinctly put in an

article concerning the nature of numerical modeling in the earth sciences, but the nature

of the arguments apply to any field in which models are created.

Verification and validation of numerical models of natural systems is impossible.
This is because natural systems are never closed and because model results are
always nonunique. Models can be confirmed by the demonstration of agreement
between observation and prediction, but confirmation is inherently partial.
Complete confirmation is logically precluded by the fallacy of affirming the
consequent and by incomplete access to natural phenomena. Models can only be
evaluated in relative terms, and their predictive value is always open to question.
The primary value of models is heuristic. (Oreskes et al., 1994)

This situation is clearly illustrated in this thesis.  The Hox network model was

constructed using the relevant biochemistry and biology, and the model results were in

good agreement with the published laboratory experiments.  When a new experiment was

performed to test an implementation decision of the model, it turned out that the model

was not in agreement with the new experimental results.  This resulted in a change to the

model to fit the new experimental data, but the new simulation results were essentially

indistinguishable from the original results.  So while the new model must now be seen as

better, in so far as it is consistent with more of the real data, there is unfortunately no

guarantee that future predictions will match laboratory observations more closely.  This is

especially true given the incredibly dynamic nature of the system and the model.

Of course, these criticisms are valid for any model that seeks to describe a natural

system, and so it is important to remember what models actually can do: they are useful

in identifying parts of a problem that are in need of further study, and in identifying the



13

data that is relevant to the problem at hand.  Furthermore, the very act of constructing a

model can stimulate questions about how the natural system behaves.  In this instance,

the questions lead to the retinoic acid soaked bead experiment described in Chapter 4.

The resulting data adds to the understanding of the connection between retinoic acid and

the gene Hoxa1, in particular, and the network of genes patterning the brain in general.
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Chapter 2: Modeling Enzyme Kinetics

From a mathematical point of view, the art of good modeling relies on: (i) a sound

understanding and appreciation of the biological problem; (ii) a realistic

mathematical representation of the important biological phenomena; (iii) finding

useful solutions, preferably quantitative; and most crucially important, (iv) a

biological interpretation of the mathematical results in terms of insights and

predictions.  The mathematics is dictated by the biology and not vice versa.

Sometimes the mathematics can be very simple.  Useful mathematical biology

research is not judged by mathematical standards but by different and no less

demanding ones.

- Jim Murray, 1993

Introduction

When investigating a novel method, it is often very useful to use a small example,

or “toy problem,” to examine its workings before jumping into a larger problem.  As

mentioned previously, these simplified problems are hard to come by in biology but there

is a toy problem at the heart of the simulation, namely, enzymatic reactions.  This chapter

contains a description of the basic enzyme reaction first described by Michaelis and

Menten in 1913, as well as a comparison between the results of the deterministic solution

and the stochastic solution.  This problem was chosen for a variety of reasons.  Firstly,

this problem contains much of the basics of enzymatic biology in its midst.  Secondly,
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this is one of the few problems for which a detailed solution can be constructed.  Finally,

it affords a readily understandable introduction to the stochastic simulation.

In the case of the deterministic solution, perturbation theory will be used to

provide an approximate solution, but because any modern computer algebra system will

be able to easily provide a numerical solution to the resulting differential equations, that

will be included as well.  To solve this problem using a stochastic solution, a short

program using the Mathematica programming language has been developed.  This will

allow a detailed example of the stochastic simulation algorithm.  By comparing the

solutions from the deterministic methods to the stochastic simulation solutions, it will be

shown that they are good agreement with each other in a global sense.  However, it will

also be shown that there are situations in which the deterministic solution may not

capture the true state of the system.

Deterministic Solution

The theory for chemical kinetics in a large volume is well grounded in

experiments.  Early forms of the Law of Mass Action, which states that the rate of the

reaction is proportional to the concentration of the reactants, appeared at least as early as

1802 with Berthollet’s nearly correct formulations.  The final correct formulation came

from extensive experiments that Waage and Gulberg published in 1864 (Waage, 1986).

But an important piece of the puzzle was still missing, and it was another 25 years before

the discovery of the process that allowed some molecules to react while others remained

inactive.
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In1889, while investigating an offshoot of his work on ionic solutions (work that

would eventually win him a Nobel Prize), Svante Arrhenius studied the effects

temperature has on the rate of a reaction.  His data led him to conclude that in a reaction

system only a certain number of molecules are able to react at any given time.  He

proposed that some sort of chemical catalyst must have activated the molecules that are

able to react.  His theory said that the catalyst (C) would first form an intermediate

compound (CS) with the substrate (S), and the resulting compounds are then able to enter

a transition state that lowers the amount of energy that is needed to perform a chemical

reaction.  The compound then decomposes into a product (P) and the catalyst (C), and the

catalyst is then free to participate in another reaction:

C + S ⇒ CS,CS ⇒ P + C (2.1)

Thus, the notion of activation energy for a chemical reaction was born (Teich, 1992).

Two decades later, Michaelis and Menten published a seminal piece of work on

how this type of system behaves.  In their paper, they focused on a biological system that

has come to be known as the basic enzyme reaction (Michaelis and Menten, 1913).  It

was very similar to Arrhenius system but with the addition of a backwards reaction

(disassociation) of the complex (ES).  There was also a terminology change from catalyst

(C) to enzyme (E).  This was just a minor change as an enzyme is defined to be an

organic catalyst.  Schematically, this can be represented by

E + S⇔
k−1

k1 ES, ES⇒
k 2 P + E . (2.2)

In words, one molecule of the enzyme combines with one molecule of the substrate to

form one molecule of the complex.  The complex can disassociate into one molecule of
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each of the enzyme and substrate, or it can produce a product and a recycled enzyme.  In

this formulation k1 is the rate parameter for the forward substrate/enzyme (catalyst), k−1

is the rate parameter for the backwards reactions, and k2  is the rate parameter for the

creation of the product.  There is no backwards reaction forming the complex from the

product and the enzyme, as it is assumed that this reaction is energetically unfavorable

and the enzyme is much more likely to participate with the substrate in the formation of

the complex.  Given an initial amount (or concentrations) of the reactants and the rate

parameters, the question is to determine the amount of product at some later time.

Using the Law of Mass Action, it is possible to write down the change in the

amount of each of the reactants, leading to one differential equation for each of the

reactants.  The fact that it may not adequately capture the true state of small systems is a

problem that will be addressed shortly.  The presentation of the basic enzyme reaction

that follows draws from the conventional approaches (Edelstein-Keshet, 1998; Murray,

1993).

Denoting the concentrations in (2.2) by

e = E[ ], s = S[ ], c = ES[ ], p = P[ ] (2.3)

the Law of Mass Action applied to this system leads to the following four differential

equations that describe the kinetics of the basic enzyme reaction:

ds
dt

= −k1es + k−1c,
de
dt

= −k1es + (k−1 + k2)c

dc
dt

= k1es − (k−1 + k2)c,
dp
dt

= k2c
. (2.4)

As the system starts with only the substrate and enzymes, the initial conditions are then
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e 0( ) = e0, s 0( ) = s0, c 0( ) = 0, p 0( ) = 0 . (2.5)

Before solving this system, it is important to note that the equations are not all

independent.  First of all, given a fixed amount of enzyme, it is possible to write down a

conservation law by noting that the amount of free enzyme and bound enzyme must be

constant:

e(t)+ c( t) = e0  . (2.6)

Combining this back into the first three differential equations, it is possible to eliminate

one to end up with

ds
dt

= −k1e0s + (k1s + k−1c),
dc
dt

= k1e0s− (k1s + k−1 + k2 )c , (2.7)

with the initial conditions

s(0) = s0, c(0) = 0 . (2.8)

Finally, the equation for the product can be uncoupled from the others, and integration

leads to

p( t) = k2 c(u)du
0

t
∫ , (2.9)

which provides the solution for the product once the solution for the complex is known.

The end result is a reduction of the set of four differential equations into two coupled

ones.

As the situation under consideration is one where there are a small number of

enzymes compared to the number of substrate molecules available, let

ε =
e0
s0
, (2.10)
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which leads to using the following variables to nondimensionalize the equations

τ = k1e0t, u(τ ) =
s( t)
s0

, v(τ) =
c(t)
e0

, λ =
k2
k1s0

, K =
k−1 + k2
k1s0

. (2.11)

Then the system in (2.7) becomes

du
dτ

= −u + (u + K − λ)v, ε
dv
dτ

= u − (u + K)v , (2.12)

with the initial conditions

u(0) =1, v(0) = 0 . (2.13)

In looking for a solution for this problem, the appearance of the small parameter ε

in front of a derivative in (2.12) suggests that this is a singular perturbation problem, and

looking for a single regular Taylor series expansion solution in terms of the variables u,v

and ε will not be fruitful.  Because of this, it is necessary to create a multiscale solution

from matching inner and outer solutions.  This can be accomplished by first looking for

the regular Taylor expansion solution in the form

u τ;ε( ) = εnun
n= 0
∑ τ( ), v τ;ε( ) = εnvn

n= 0
∑ τ( ) . (2.14)

Substituting this into (2.12) and equating like powers of ε yields for the O 1( )  system

du0
dτ

= −u0 + (u0 + K − λ)v0, 0 = u0 − (u0 + K)v0 , (2.15)

with the initial conditions

u0 (0) =1, v0(0) = 0 . (2.16)

At this point the problem with this type of solution is clear; the second equation does not

satisfy the initial condition.  This will be taken care of later when the outer and inner

solutions to the system are matched.  Plunging ahead and solving this system leads to
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v =
u0

u0 + K
, du0
dτ

= −λ
u0

u0 + K
, (2.17)

and therefore

u0 τ( ) + K ln u0 τ( )( ) = A − λτ, v0 τ( ) =
u0 τ( )

u0 τ( ) + K
. (2.18)

In searching for an inner solution, define

σ =
τ
ε
,U σ;ε( ) = u τ;ε( ),V σ;ε( ) = v τ;ε( ) , (2.19)

then with these transformations the system in (2.12) becomes

dU
dσ

= −εU + ε(U + K − λ)V, dV
dσ

=U − (U + K)V , (2.20)

with the initial conditions

U(0) =1, V (0) = 0 . (2.21)

The system no longer has the small parameter ε multiplying a derivative term, and

therefore it is possible to look for a solution in terms of a regular perturbation expansion

U σ;ε( ) = εnUn
n= 0
∑ σ( ),V σ;ε( ) = εnVn

n= 0
∑ σ( ) . (2.22)

Substituting this expansion into (2.20) and setting ε = 0  yields the O 1( )  system

dU0

dσ
= 0, dV

dσ
=U0 − (U0 + K)V0 , (2.23)

with the initial conditions

U0(0) =1, V0 (0) = 0 . (2.24)

The solutions of this inner system are then found to be
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U0 σ( ) = B,V0 τ( ) =
B

B+ K
+ C exp −τ K + B( )[ ] . (2.25)

At this point, all that is left is to match the solutions. Using the initial conditions and

requiring that

lim
σ →∞

U 0 σ( ) = lim
τ →0

u0 τ( )  and lim
σ →∞

V0 σ( ) = lim
τ →0

v0 τ( ) (2.26)

results in A =1, B =1,C =
−1
1+ K

. The resulting multiscale solution then correctly matches

as the respective limits are

lim
σ →∞

U 0 σ( ) = lim
τ →0

u0 τ( ) =1 and lim
σ →∞

V0 σ( ) = lim
τ →0

v0 τ( ) =
1

1+ K
. (2.27)

The O 1( )  solution to the inner system is

U0 σ( ) =1,V0 τ( ) =
1− exp − 1+ K( )σ[ ]

1+ K
, (2.28)

while the O 1( )  solution to the outer system is

u0 τ( ) + K ln u0 τ( )( ) =1− λτ , v0 τ( ) =
u0 τ( )

u0 τ( ) + K
. (2.29)

In practice it is extremely difficult, if not impossible, to construct even

approximate solutions to a system that contains any more reactions than the Michaelis-

Menten problem and numerical methods must be used (McQuarrie, 1967).

As shown above, the Law of Mass Action applied to the basic enzyme reaction

leads to a set of coupled differential equations that can be approximated using

perturbation theory, and the differential equations are easily solved numerically as well.

Because the Law of Mass Action is not only well grounded in experiments but also leads

to equations that can be readily solved.  But while differential equations are a natural way
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to model chemical reactions in a vat, they might not adequately represent the true state of

the system in a cell.

Implicit in using the Law of Mass Action are two key assumptions that should be

mentioned: continuity and determinism.  With regards to the continuity assumption, it is

important to note that the individual genes are often only present in one or two copies per

cell.  Therefore, there are only one or two regulatory regions to which the regulatory

molecules can bind.  In addition, the regulatory molecules that bind to these regions are

typically produced in low quantities: there may be only a few tens of molecules of a

transcription factor in the cell nucleus.  This has been shown explicitly in bacterial cells,

but there is ample evidence supporting this fact in eukaryotic cells as well (Davidson,

1986; Guptasarma, 1995).   The low number of molecules may compromise the notion of

continuity.

As for determinism, the rates of some of these reactions are so slow that many

minutes may pass before, for instance, the start of mRNA transcription after the

necessary molecules are present, or between the start and finish of mRNA creation

(Davidson, 1986).  This may call into question the notion of the deterministic change

presupposed by the use of the differential operator due to the fluctuations in the timing of

cellular events.  As a consequence, two regulatory systems having the same initial

conditions might ultimately settle into different states, a phenomenon strengthened by the

small numbers of molecules involved.

There have been some recent experimental results that strongly suggest that cells

do in fact behave stochastically.  A review can be found in a recent article by the pioneers
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of modeling stochastic processes in biology, and they drive home the point that

regulatory molecules are present in very low concentrations in cells, with a few hundred

being an upper limit, and dozens being a normal phenomenon (McAdams and Arkin,

1999).  A study of these systems has shown that the stochastic fluctuations in such a

system can produce erratic distributions in protein levels between the same type of cell in

a population (McAdams and Arkin, 1997).  This is especially true when the molecule

under investigation is part of the regulatory mechanism of the cell (Arkin et al., 1998).

Most recently, a study in yeast has produced intriguing data concerning the noise in a

biological system due to the intrinsic fluctuations (Elowitz et al., 2002).

When the fluctuations in the system are small, it is possible to use a reaction rate

equation approach.  But when fluctuations are not negligibly small, the reaction rate

equations will give results that are at best misleading (showing only the mean behavior),

and possibly very wrong if the fluctuations can give rise to important effects.  The real

problem arises in that it is not always known beforehand whether fluctuations are

important.  The only way to find out is to use a stochastic simulation:  If several

stochastic trajectories give results that appear to be identical, then reaction rate equations

could indeed have been used.  But if the differences in the trajectories were noticeable,

then reaction rate equations probably would not have been appropriate.  It is possible to

forge ahead, and the result is usually a mathematical model that describes the

phenomena, but fails to capture the fluctuations present in the system.

Some of the concerns about fluctuations in a system have been around for a long

time, if only in theory.  With regards to the number of molecules in a cell, this was first

mentioned in the English literature by the biochemist J. B. S. Haldane when he
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mentioned that critical processes might be carried out by one of a few enzymes per cell

(Haldane, 1930).  Fifteen years later, this was repeated as a known fact in Nature

(McIlwain, 1946).  More recently there appeared a paper on the question of whether the

laws of chemistry apply to living cells (Halling, 1989).  It isn’t quite as elegant as

Purcell’s paper on life at low Reynolds numbers (Purcell, 1977), but like this famous talk,

the paper points out that it is a very different world inside a cell.

Consequently, the fluctuations in the system may actually be an important part of

the system. With these concerns in mind, it seems only natural to investigate an approach

that incorporates the small volumes and small number of molecular species (and the

inherent fluctuations that are present in a system) and may actually play an important

part.  These investigations are still relatively new, but in recent years the stochastic

simulation algorithm has been used to model phage λ infected E. coli cells (Arkin et al.,

1998), and calcium wave propagation in rat hepatocytes (Gracheva et al., 2001).

Stochastic Solution 

The first mention of using stochastic methods to model chemical reactions

appeared in 1940 (Delbruck, 1940; Kramers, 1940).  But it wasn’t until the early 1950s

that it became clear that in small systems the Law of Mass Action breaks down (Renyi,

1954) and even small fluctuations in the number of molecules may be a significant factor

in the behavior of the system (Singer, 1953).  Soon after, it became evident that some

processes in biological cells fell into this category and that a proper mathematical

formulation of the chemical reactions in the cells will most likely be based on stochastics

(Bartholomay, 1958).
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The stochastic approach considers the sets of possible reactions and examines the

possible transitions of the system.  As an example, consider the following irreversible

unimolecular reaction

A →
k B , (2.30)

which is common in radioactive decay processes.  In words, the molecule A is converted

to B with rate parameter k.  The stochastic description of the system is characterized in

the following manner.  Let X t( )  be a random variable that denotes the number of A

molecules at time t.  Then

1) The probability of a transition from x +1( ) molecules to x( ) molecules in the

interval t,t + ∆t( )  is k x +1( )∆t + o ∆t( ).  k is the rate constant and o ∆t( )  takes the

usual meaning that o ∆t( ) ∆t→ 0 as ∆t→ 0 .

2) The probability of a transition from x( )  to x − j( ), j >1 in the interval t,t + ∆t( )  is

o ∆t( ) .

3) The probability of a transition from x( )  to x + j( ), j ≥1  in the interval t,t + ∆t( )  is

zero.

Denoting the probability of X t( ) = x  by Px t( ) , a balance of the terms yields

Px t + ∆t( ) = k x +1( )∆tPx+1 t( ) + 1− kx∆t( )Px t( ) + o ∆t( ) . (2.31)

Simplifying and taking the limit ∆t→ 0  yields the differential-difference equation

dPx t( ) dt = k x +1( )Px+1 t( ) − kPx t( ) , (2.32)

which is also called the chemical master equation for the system.

The solution of the chemical master equation can be thought of as a Markovian

random walk in the space of the reacting variables.  It measures the probability of finding
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the system in a particular state at any given time, and it can be rigorously derived from a

microphysical standpoint (Gillespie, 1992).  Analytic solutions of master equations are

difficult to come by, but in this example it is possible to transform the differential-

difference equation into a partial differential equation through the use of the probability

generating function

F(s,t) = Px
x=0

∞

∑ t( )sx . (2.33)

Substituting (2.33) into (2.32) and simplifying leads to

∂F
∂t

= k 1− s( )
∂F
∂s

. (2.34)

Given the initial condition F(s,0) = sx0 , the solution is then

F s,t( ) = 1+ s−1( )e−kt[ ]
x 0 . (2.35)

Recall that if X t( )  is a random variable, then E X t( )[ ] , the expected value, is defined as

xPt x( )∑  which is, conveniently enough, 
∂F
ds s=1

.  Computing this value leads to

E X t( ){ } = x0e
−kt , (2.36)

which is the solution of the Mass Action formulation for the system:

dA
dt

= −kA . (2.37)

Thus, the two representations are consistent.  However, this is only true in general for

unimolecular reactions (McQuarrie, 1967).

Historically, numerical methods were used to construct solutions to the master

equations, but the solutions constructed in this manner have some pitfalls.  These include
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the need to approximate higher-order moments as a product of lower moments, and

convergence issues (McQuarrie, 1967).  What was needed was a general method that

would solve these sorts of problems and this came with the stochastic simulation

algorithm.

Stochastic Simulation Algorithm

Given a set of molecular species Sµ{ }
µ =1

N
 and a set of reactions in which they can

participate Rµ{ }
µ =1

N
, the Gillespie algorithm, as it has come to be known, is an exact

method for numerically computing the time evolution of a chemical system.  By exact it

is meant that the results are provably equivalent to the chemical master equation, but at

no time is it necessary for the master equation to be written down, much less solved.

The fundamental hypothesis of the method is that the reaction parameter cµ

associated with the reaction Rµ  can be defined in the following manner:

cµδt ≡ the average probability, to the first order in δt , that a particular
combination Rµ  of reactant molecules will react in the next time
interval δt .

In his original work, Gillespie shows that this definition does in fact have a valid physical

basis and in fact the reaction parameter cµ  can be easily connected to the traditional

reaction rate constant kµ (Gillespie, 1976).

The method is based on the joint probability density function P(τ,µ) , defined by

P τ,µ( )dτ ≡  the probability at time t that the next reaction will occur in the
differential time interval t + τ,t+ τ + dτ( )  and will be of type Rµ .
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This is a departure from the usual stochastic approach that starts from the

probability function  P(X1,X2,K,XN ;t) , defined as the probability that at time t there will

be X1 molecules of S1, X2  molecules of S2, …, and XN  molecules of SN .  By using

P(τ,µ)  as the basis of the approach, it is possible to create a tractable method to compute

the time evolution of the system.  To construct a formula for this quantity, Gillespie starts

by defining the quantity hµ  as the number of distinct molecular reactant combinations for

the reaction Rµ .  This is nothing more than a combinatorial factor and Table 2.1 lists

some example values.

Reaction hµ Reaction order
*→ S j 1 Zeroth
S j → Sk X j First

S j + Sk → Sl X j ⋅ Xk Second
S j + S j → Sk X j X j −1( ) 2 Second

Si + S j + S j → Sk XiX j X j −1( ) 2 Third

Table 2.1 Appropriate combinatorial factors for various reactions.  In

actuality, everything can be thought of as a zeroth-, first-, or second-order

reaction, or a sequential combination of these, and there is no need for the higher-

order reactions.

Combining this definition of hµwith the previous definition for the reaction

parameter cµ , leads to the conclusion that the probability, to the first order in δt , that aRµ

reaction will occur in the next time interval time δt  is therefore
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hµcµδt . (2.38)

Now P τ,µ( )dτ can be computed as the product of P0 τ( ) , the probability that no

reaction occurs in the time interval t,t + τ( ) , and hµcµδt , the probability that the specific

reaction Rµ  occurs in the next time interval t + τ,t+ τ + dτ( ) :

P τ,µ( )dτ = P0 τ( )hµcµdτ . (2.39)

All that is now required is to calculate the term P0 τ( ) .  To construct an expression for this

term, divide the interval t,t + τ( )  into K subintervals, each of length ε = τ K . The

probability that none of the reactions Rµ{ }
µ =1

N
 occurs in the time interval t + jε,t + jε +1( )

(for any arbitrary j) is

1− hiciε + o ε( )[ ]
i=1

M

∏ =1− hiciε
i=1

M

∑ + o ε( ) . (2.40)

Since there are K subintervals and the probabilities are mutually exclusive,

P0 τ( ) = 1− hici
τ
K

+ o τ
K

 

 
 

 

 
 

i=1

M

∑
 

 
 

 

 
 

K

. (2.41)

But as this expression is valid for any K, even infinitely large ones, the expression can

also be written as

P0 τ( ) = lim
K→∞

1− hiciτ + o K−1( ) K−1

i=1

M

∑
 

 
 

 

 
 K

 

 
 

 

 
 

K

. (2.42)

However, this is nothing more than one of the limit formulas for the exponential function,

and thus

P0 τ( ) = exp − hici
i=1

M

∑ τ
 

 
 

 

 
 . (2.43)
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Therefore, after defining

aµ ≡ hµ ⋅ cµ , ao ≡ hi ⋅ ci
i=1

M

∑ , (2.44)

the result is an expression for P(τ,µ) :

P τ,µ( ) = aµ exp −a0τ[ ] . (2.45)

Implementation

This algorithm can easily be implemented in an efficient modularized form to

accommodate quite large reaction sets of considerable complexity.

For an easy implementation, the joint distribution can be broken into two disjoint

probabilities using Bayes’ rule:

P(τ,µ) = P(τ) ⋅P(µ τ) . (2.46)

But note that the addition property for probabilities can be used to calculate an alternate

form for P(τ) :

P(τ ) = P(τ,µ)
µ =1

M

∑ , (2.47)

and substituting this into (2.45) leads to values for its component parts:

P(τ ) = a0 exp −a0τ( ) , (2.48)

P(µ τ) =
aµ

a0
. (2.49)

Given these fundamental probability density functions, the following algorithm can

be used to carry out the reaction set simulation:

1) Initialization
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a. Set values for the cµ .

b. Set the initial number of the Sµ  reactants.

c. Set t = 0 , and select a value for tmax , the maximum simulation time.

2) Loop

a. Compute aµ ≡ hµ ⋅ cµ , ao ≡ hi ⋅ ci
i=1

M

∑ .

b. Generate two random numbers r1 and r2  from a uniform distribution on

0,1[ ] .

c. Compute the next time interval τ =
1
a0
ln 1

r1

 

 
 

 

 
  (Draw from the probability

density function of (2.48)).

d. Select the reaction to be run by computing µ  such that aν
ν =1

µ −1

∑ < r2a0 ≤ aν
ν =1

µ

∑

(Draw from the probability density function of (2.49)).

e. Adjust  t = t + τ  and update the Sµ  values according to the Rµ  reaction that

just occurred.

f. If t > tmax , then terminate. Otherwise, goto a.

Because the speed of the SSA is linear with respect to the number of reactions,

adding new reaction channels will not greatly increase the runtime of the simulation i.e.,

doubling either the number of reactions or the number of reactant species doubles

(approximately) the total runtime of the algorithm.  The speed of the SSA depends more

on the number of molecules.  This is seen by noting that the computation of the next time
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interval in (2c) above depends on the reciprocal of a0, a term comprised of, among other

things, the number of molecules in the simulation.  If the reaction set contains at least one

second-order reaction, then a0 will contain at least one product of species population.  In

this case the speed of the simulation will fall off like the reciprocal of the square of the

population.  However, the runtime can be reduced by noting that not all of the aµ  values

will need to be recalculated after each pass, but only the ones for which Sµ  appears as a

reactant in the Rµ  reaction.  An efficient implementation will take advantage of this fact.

Recent improvements to the algorithm, including a method that does not require

the probabilities to be updated after every reaction, are helping to keep the runtime in

check (Gibson and Bruck, 2000; Gillespie, 2001).  As currently implemented, a typical

run of the Hox simulation presented in Chapter 3 (without the aforementioned speedups)

consists of over 23 million events, and takes less than 6 minutes on a computer with a

2GHz Pentium 4 processor.

Two important points should be noted about the SSA: the solution of a system of

coupled chemical reactions by this method is entirely equivalent to the solution of the

corresponding stochastic master equations (Gillespie, 1976; Gillespie, 1977c; McQuarrie,

1967),  and in the limit of large numbers of reactant molecules, the results of this method

are entirely equivalent to the solution of the traditional kinetic differential equations

derived from the Law of Mass Action (Gillespie, 1977a).

One added benefit of the SSA is the formalism that is forces on the user.  Each

reaction in the set must be dealt with explicitly, and the connection between the reacting

species (and the roles that they play in other reactions) must be clearly specified.  The
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fact that this algorithm generates its own (nonuniform) time sample should also be noted.

Thus, as the simulation proceeds it generates time samples based on the probability

density function of (2.43), i.e., simulation time steps are based on draws from an

exponential distribution.  This of course is one of the reasons why this algorithm is so

robust.

Extensions

In order to apply the concepts involved in Gillespie's algorithm to a collection of

cells, the original algorithm must be extended to accommodate the introduction of spatial

dependencies of the concentration variables.  Work has been done which extends the

stochastic simulation algorithm to reaction-diffusion processes, and the modification to

the method is straightforward.  Diffusion is considered to be just another possible

chemical event with an associated probability (Stundzia and Lumsden, 1996).  As with all

the other chemical events, the diffusion is assumed to be intracellular and the basic idea

behind this approach is incorporated into the simulation.  But one of the important

molecules in the simulation is retinoic acid, an intercellular molecule that acts through

cell surface receptors, and so the diffusion must be treated in a larger context.

Introducing a spatial context into the SSA is done by creating an interacting cell

population represented as a rectangular array of square cells with nearest neighbor only

cell-cell interactions.  In this model of interacting cells, it is assumed that each cell is

running its own internal program of biochemical reactions.

The fact that simulation of any given reaction generates its own “local” simulation

time steps poses something of a problem for a model consisting of more than one cell,
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each of which is running a reaction simulation independent of all the other cells.  This

problem arises when an intercellular event must be accounted for, since the internal

simulation times of the two partner cells involved will not in general be the same.  When

implementing such simulations in serial code on a single-processor machine, converting

the algorithm from what is essentially a spatial-scanning method to a temporal-scanning

method can solve this problem.  This is accomplished by first making an initial spatial

scan through all of the cells in the array, and inserting the cells into a priority queue that

is ordered from shortest to longest local cell time.  All succeeding iterations are then

based on the temporal order of the cells in the priority queue.  In other words, a cell is

drawn from the queue, calculations are performed on the reaction set for that cell, and

then the cell is placed back on the queue in its new temporal-ordered position.  By doing

this there is no need to worry about synchronizing reaction simulations between any pair

of neighboring cells.

Each reaction that occurs changes the quantity of at least one reactant. When this

happens, the combinatorial factors hµ  change and it is necessary to recalculate the aµ

values.  This is one of the drawbacks of the approach: if it weren’t for having to

recalculate the probabilities at every time step, the system is a Markov process with a

fixed transition matrix and all standard analysis tools can be brought to bear.  In general,

only a small number of the aµ  will actually have to be updated and an efficient

implementation needs to take advantage of this fact.  After the aµ  values are updated, all

cells that changed are reordered into their appropriate new position in the priority queue.
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Because cells are stored as C-language structures, all of the information required

to define the state of any given cell is readily available.  The use of a priority queue to

order the cells was a unique innovation, and solves the synchronizing problem inherent in

a multicellular situation.  Not only does this allow an easy mechanism for intercellular

signaling, but this methodology can also readily accommodate local inhomogeneities in

the molecular populations.

Comparison of the Approaches

The programming language Mathematica was used to construct a numerical

solution to the original set of differential equations in (2.4) and (2.5).  Mathematica uses

an Adams Predictor-Corrector method for non-stiff differential equations and backward

difference formulas (Gear method) for stiff differential equations.  It switches between

the two methods using heuristics based on the adaptively selected step size.  It starts with

the non-stiff method, and checks for the advisability of switching methods every 10 or 20

steps. The result is an interpolating function that can be used to construct graphs of the

solution for any time interval of interest.

Mathematica was also used to implement the stochastic simulation algorithm for

the Michaelis-Menten basic enzyme reaction. This boiled down to a very short piece (less

than 25 lines) of code and is included in Appendix D.

Plots of the trajectories of these two methods can be seen in Figure 2.1 below and

the reader can easily see the differences between the stochastic and differential equation

solutions to the basic enzyme reaction.
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Figure 2.1 Typical solutions of the Michaelis-Menten basic enzyme reaction,

low numbers. Both stochastic solution and differential equation solutions to the

basic enzyme reaction are shown.  The vertical axis is number of molecules and

the horizontal axis is time in seconds.  Notice that the fluctuations around the

differential equations can range up to 50% of the solution when there are low

quantities of molecules.  The parameters used were s0=100, e0=50, c0=p0=0,

k1 = .005, k-1 = 5.0, k2 = 1.0.

“On average,” the solutions are the same, but the stochastic approach captures the

fluctuations in the system.  Notice that there are some marked differences in these

solutions.  For instance, in the differential equation solution there are always fewer

molecules of the complex than there are of the enzyme, but this is not true for the

stochastic solution: at about .6 seconds the lines numbers coalesce.  Another difference
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can be seen in a comparison of the numbers of the substrate and the enzyme.  Both the

stochastic solution and the differential equation solution meet at about 3.2 seconds, but in

the stochastic solution these quantities are very closely matched for the next .5 seconds

while the differential equations solution quickly diverge.

But compare Figure 2.1 with Figure 2.2.  The rate parameters have not been

changed for this figure, only the starting numbers of substrate and enzyme.  In this

instance the reaction rate method and the stochastic method are in close agreement, both

qualitatively and quantitatively.

Figure 2.2 Typical solutions of the Michaelis-Menten basic enzyme reaction,

high numbers. When there are a large number of molecules, the fluctuations are

much less noticeable.  The parameters used were s0=1000, e0=500, c0=p0=0, k1 =

.005, k-1 = 5.0, k2 = 1.0.
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In comparing Figures 2.1 and 2.2, it is clear that when the number of molecules is

large, the fluctuations might take the appearance of noise.  But when there are small

numbers of molecules, the fluctuations are may in fact no longer be just noise and may in

fact be a significant part of the signal.  Whether these fluctuations make a difference in

the basic behavior of the system depends on the characteristics of that particular system.

In the basic enzyme reaction the fluctuations do not matter, while in the Notch-Delta

system described below they do.  It may also be the case that the system moves between

situations in which the fluctuations do and do not matter.  Automatically detecting the

need for a transition between these situations is part of an ongoing investigation (D.

Gillespie, personal communication).  However, when it is known that the system contains

small numbers of molecules and the network is nonlinear—both of which are true for the

Hox network—the stochastic approach appears to be a more appropriate method, because

both of these situations will magnify any fluctuations that already exist in the system.

Notch-Delta Lateral Inhibition

As previously mentioned, the SSA is an exact method (i.e., the results are

provably equivalent to the chemical master equation) for numerically computing the time

evolution of a chemical system.  It was also proved that in the limit of large numbers of

reactant molecules, the results of the SSA method are consistent with the solution of the

traditional kinetic differential equations derived from the Law of Mass Action (Gillespie,

1976; Gillespie, 1977c; McQuarrie, 1967).  This is not surprising, because the first

moment solution to the master equation describes the mean behavior of the system, just

as the ODE solution does.  But an interesting question concerns the practical connection
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of these two methods: in practice, do the two different approaches yield similar results in

a system that is sensitive to fluctuations?  A related question is what exactly constitutes a

large number of molecules.

These questions were explored by modeling lateral inhibition, the process by

which a cell adopting a particular fate is able to prevent its neighbors from adopting the

same fate.  The Notch-Delta receptor-ligand pair is found to be involved in lateral

inhibition in the cell fate specification in the developing nervous systems (Artavanis-

Tsakonas et al., 1995; Chitnis, 1995).  A simplified view of this process is shown in

Figure 2.3 below.

Figure 2.3 Notch-Delta lateral inhibition. When a Delta ligand in cell A binds

(denoted by the plus inside the oval) to a Notch receptor in cell B, the Notch
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undergoes a modification into an activated form.  The activated Notch up-

regulates Notch and down-regulates Delta in that cell.  On the other hand, the

down-regulation of Delta in cell B results in fewer Notch bindings in cell A.

Because of this, activated Notch is not formed, and so Notch is not up-regulated

and Delta is not down-regulated in cell A.  The collection of events results in cell

A becoming Notch dominant, and cell B becoming Delta dominant.

A study of the Notch-Delta lateral inhibition network using ODEs to model the

network was undertaken a few years (Collier et al., 1996).  The authors of the work

examined three situations: a two-cell system, an infinite line, and a two-dimensional grid

of cells.  The former case was examined using phase plane analysis, while the latter cases

were examined numerically using a Runge-Kutta-Merson method.  In the two-cell

system, they authors proved that if the feedback is sufficiently strong, one cell becomes

Notch dominant and the other Delta dominant.  The infinite line case was modeled using

periodic boundary conditions, and the results were as expected; alternating Notch and

Delta dominant cells

The two dimensional set of cells was much more interesting.  Again there was a

regular spatial periodicity to the cells, but they found that the results were very dependant

on the boundary conditions.  In particular, the default “checkerboard” solutions appeared

only when the boundary conditions were compatible with the pattern, but not if the

boundary conditions were not compatible with the pattern.  This is one of the concerns

with the ODE approach: The boundary conditions exert a very strong effect on the
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system.  Another concern is that the results are not nearly so regular in biological systems

and it is known any cell can adopt the default fate (Greenwald, 1998).  Finally, the model

was heavily non-dimensionalized and caricatured, and the outputs of the model cannot be

readily connected to number of molecules or concentrations (N. Monk, personal

communication).  Therefore, it seemed that a stochastic simulation of the system

evolution might be enlightening.

A SSA model was built using the C programming language, and the complete

source code can be found in Appendix D and the accompanying CD-ROM.  The

simulation consisted of 5 types of reactions (creation of Notch and Delta, decay of Notch

and Delta and binding) and 5 species of molecules (Notch and Delta Protein, Notch and

Delta mRNA and Activated Notch).  The investigation was carried out in a 16-by-16

collection of rectangular cells with nearest neighbor communication.  The binding

between Notch and Delta required the use of a priority queue to efficiently synchronize

the intercellular events.  An example of a typical result is seen in Figure 2.4.

Figure 2.4 Notch-Delta lateral inhibition typical results.  The white cells are

Notch dominant, the black cells are Delta dominant.  Each cell started with 500
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molecules each of Notch and Delta protein, and the simulation was run until

equilibrium was reached.  Notice that while the cells show general pattern of

alternating dominance, there is not strict compliance.  This is reflective of the

actual pattern of cells as seen in the Drosophila (Greenwald, 1998) and so the

SSA seems to more accurately predict the observed behavior of cell fate

determination then the deterministic approach.

While the stochastic model of Notch-Delta lateral inhibition seemed to show

results that were consistent with the real cell fate, it was unclear if in the limit of large

molecules the stochastic simulation would produce a more regular checkerboard, similar

to the deterministic approach.  It was also not clear what constitutes a large number of

molecules in this case.  Therefore, the number of proteins in each cell was increased from

the default values of 500 molecules per cell, and results of these simulations are shown in

the figures below.  Figure 2.5 shows the results when binding does not go beyond the

edge of the grid, while Figure 2.6 allows binding to wrap around the edge or the array.
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                   A                                         B

  

  
                   C                                        D

Figure 2.5 Notch-Delta larger number results, hard boundary. The white cells

are Notch dominant, the black cells are Delta dominant, and gray cells are ones in

which neither is dominant.  All input parameters except the starting number of

molecules were as in (A) the default case of 500 molecules of Notch and Delta

per cell  (B) 1000 molecules per cell (C) 2500 molecules per cell (D) 5000

molecules per cell.
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               A                                         B

  

  
               C                                        D

Figure 2.6 Notch-Delta larger number results, wrap around binding.  Because

the cells only communicate using nearest neighbor connections, the wrap around

binding results in a torus of cells. (A) 500 molecules of Notch and Delta per cell

(B) 1000 molecules per cell (C) 2500 molecules per cell (D) 5000 molecules per

cell.

Just like in Figure 2.4, all of these results in Figures 2.5 and 2.6 show a general

pattern of alternating cell dominance.  In Figure 2.5, the number of molecules does not

appear to play a role in the regularity of the pattern, but this may be related to the strong

role the boundary plays: most of the cells on the edge are Delta dominant.  Figure 2.6 is
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much more interesting.  In the larger number cases, the figures appear more regular.  To

quantify this, the following metric was calculated

m =
#  of adjacent Delta cells

4Notch cells
∑ ,

and the results are listed in Table 2.2.

Figure 2.5 Figure 2.6

A 79 91

B 75.25 106.25

C 73 107

D 76 99.5

Table 2.2 Regularity metric values. The regularity metric quantifies the

similarity to a perfect checkerboard.  The maximum value possible is 128.

The larger numbers do not lead to a more regular pattern for the hard boundary

case, while the metric for the torus (Figure 2.6) suggests that the larger numbers of

molecules leads to a more regular pattern.  For both of these cases however, it should be

noted that 5000 molecules per cell is only 1250 of each type per face, and it is not clear

that this is yet a “large” number of molecules.   Unfortunately, with regards to the Notch-

Delta simulation 5000 molecules per cell is approaching the practical upper limit of the

capabilities of the stochastic simulation.  Because one of the reactions is a binding

between two different species of molecules, the a0 value for this reaction contains a
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product of terms, and so the speed of the SSA scales quadratically.  In addition, the larger

number of molecules means that the simulation takes longer to reach equilibrium.  So

while the results of Figure 2.5A took a little over an hour to generate, Figure 2.5D and

Figure 2.6D each took over two days to generate.  The deterministic approach is not

subject to these sorts of runtime issues, and though the stochastic implementation is exact

– even for large number of molecules – this example shows that it is not practical to use

in all situations, and deterministic methods will often be a better choice.  The stochastic

framework appears to be much more at home with small numbers of molecules.  Not only

does it appear to be on a firmer physical basis than the deterministic approach in this

realm (Gillespie, 1976; Gillespie, 1977b; Gillespie, 1992), but the runtime is more likely

to be reasonable.
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Chapter 3: Hox Network

It turns out to be remarkably difficult for mathematicians and

computer scientists who are enthusiastic about biology to learn enough

biology not to be dangerous, and vice versa.  After all, many of us became

biologists because we didn't like math.  For biologists to learn the

mathematics turns out to be challenging in quite a different way.  And

there is a huge amount of non-understanding—I would not go so far as to

say misunderstanding—that results.  But getting these disciplines together

has turned out to be a much easier thing to say than to do…We have to do

a much better job of teaching at the interfaces of the disciplines.

- David Botstein, 2002

Introduction

The problem under investigation is a study of the Hox regulatory mechanism in

the developing hindbrain using a mathematical model based on a stochastic simulation

algorithm (SSA) presented in Chapter 2.  Much of this chapter is based on my paper

published in the journal Developmental Biology (Kastner et al., 2002).

Developmental Biology Introduction

In developmental biology, the establishment of asymmetry early in

embryogenesis sets the stage for the formation of the body proper.  The first axis formed

is along the anterior-posterior (or rostral-caudal) axis of the embryo.  Cells are endowed
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with positional information that allows the proper formation of structures that correspond

to their position along the axis.  In other words, head structures form from the anterior

part of the newly formed axis, and tail structures form from the posterior part of the axis.

The beginnings of the central nervous system in vertebrates occur early in

development with the formation of the neural plate.  The neural plate then folds into the

neural tube.  There are variations in how this occurs in different species, but in general

the process is fairly similar: the tube begins as a groove down the midline of an embryo,

and eventually closes from the joining of the flaps on either side (Gallera, 1971).  This is

a crucial process in development, and if the neural tube fails to close properly it can lead

to defects like Spina bifida or Anencephaly (Van Allen et al., 1993).

Although initially straight, the upper section of the neural tube nearest the head

forms a variety of bulges and constrictions that compartmentalize brain and spinal cord

into distinct sections.  The anterior most bulges will give rise to cells that make the

prosencephalon (forebrain) and structures such as the olfactory lobes, the cerebrum, and

the retina.  Just posterior to that, the mesencephalon (midbrain) will give rise to structures

like the optic lobes and the tectum. The most posterior bulges are the developing

rhombencephalon (hindbrain) which gives rise to the cerebellum and the brain stem

(Gilbert, 1997).   Shortly after the closure of the neural tube, the vertebrate hindbrain

further develops a series of axial bulges called rhombomeres that effectively

compartmentalize the rhombencephalon into 8 smaller segments.  The rhombomeres have

been shown to be cell lineage restricted in that cells from one rhombomere do not cross

over into another (Fraser et al., 1990). The segmentation of the hindbrain into

rhombomeres is a crucial process in the proper specification of the developing structures
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of the hindbrain (Guthrie and Lumsden, 1991).  In a series of closely aged chick embryos,

Figure 3.1 shows the closing of the neural tube and the rhombomeres.

Figure 3.1 Neural tube closure and rhombomere emergence. These five embryos

are stained for the segmentally expressed gene EphA4 (previously called Sek2, the

probe is courtesy of C. Tabin). The embryos are oriented with the head at the top of

the page and the tail at the bottom.  The somites (examples marked by S in 4 and 8

above) are block-like collections of cells that form in pairs along the rostral-caudal

axis of the embryo.  They appear in a regular fashion, a new pair appearing every 90

minutes or so.  Because of this, the somites are commonly used for a staging
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mechanism and the numbers below the embryos are the pairs of somites in each

embryo.  The outlined areas in 4, 5 and 7 show the gap between the neural folds

before the neural tube is fully closed in the mid and hindbrain.  Notice that in 4 the

tube is wide open, in 7 the tube is almost completely closed, and in 8 and 9 the tube is

closed.  In 8 rhombomeres 2 through 5 are marked, with rhombomere 3 being the

most prominent due to its strong expression of EphA4.  Rhombomere 3 is also clearly

visible in 7.  A slightly different version of this figure will be appearing in the 7th

edition of the book Developmental Biology by S. Gilbert.

The rhombomeres are transitory structures that appear for about 15% of the

development time of the embryo.  In the chick, they appear after about 25 hours of

development, and disappear by the100 hour mark.  In a cartoon adapted from Lumsden

(1990), Figure 3.2 shows the order and approximate timing of the formation of

rhombomere boundaries.  The Hox gene network under investigation is expressed in

rhombomeres 4 and 5.
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Figure 3.2 Rhombomere emergence. The first boundaries noticeable are the

boundary between the midbrain and hindbrain (M/H), and the boundary between

rhombomeres 5 and 6 (r5 and r6), both visible by 28 hours of development. The

first fully formed rhombomere is r3 at 31 hours of development, followed by r4

and r5 at 32.5 hours, r2 at 39 hours, then r6, r7, r8 and r1 by 46 hours.  The

existence of rhombomere 0 is under debate, and there is no discernable boundary

between rhombomere 8 and the developing spinal cord. The initial formation of

the 5/6 boundary is actually very dependent on incubation conditions, and the

initial start time may vary significantly.
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Introduction to the Control and Expression of Genes

This section contains a short introduction to the molecular biology behind the

control and expression of genes.  It is not intended to be all encompassing, and for more

details, the reader is directed to Alberts et al. (1994).  However, it is intended to give the

reader enough information to follow the construction of the model presented below.

The problem of tissue differentiation mentioned above also needs to be addressed

at a different level: that of the cell.  The different cells in a multicellular organism contain

the same DNA yet they differentiate from each other by creating and accumulating

different messenger RNA (mRNA) and different proteins.  The process by which a cell

creates protein can be broken down into two major pieces: transcription and translation.

Transcription is the process by which mRNA is created from the DNA, while

translation is the process by which the mRNA is turned into protein.  Collectively, this

process is called the Central Dogma.  Obviously this is a simplified view as many other

steps can occur.  These include RNA splicing in which parts of the RNA are excised from

the original strand.  But while these steps are important in understanding the biology of

the problem, they are not crucial to include from a modeling standpoint.  This is because

each of these steps is part of a cascade that affects the timing of the end result, but not

what the end result is.

Transcriptional activators are the major building blocks of the model and it is this

process that garners the most attention.  Transcriptional factors are proteins that

recognize a defined DNA sequence in the regulatory control region of a particular gene.

Factors can be activators, which means that they contribute to the making of mRNA, or
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repressors that prevent the mRNA for that gene being made.  When even one molecule of

a transcription factor is available for binding to the regulatory region of a gene, the

probability that transcriptional will occur is significantly increased.  Transcriptional

control is a very complicated process and it can take multiple transcription factors acting

in tandem to switch the gene on and allow the transcription of mRNA.  This work focuses

on the cis-regulation of genes: regulation that is controlled by sequences close to the start

site for transcription.  Cis-regulatory factors are generally the most important elements in

transcription initiation.

Hox Genes

Discovering regulatory genes, genes that control the major aspects of a biological

system, has been the focus of biological research ever since molecular tools have become

available.  While no single master regulator gene has appeared, there have been some

remarkable discoveries in developmental biology in the past few decades.  In particular

the homeotic genes have been identified as a family of genes that control genetic aspects

of development (Duboule, 1994).  First identified in the fruit fly Drosophila

melanogaster, an evolutionary study showed that the homeobox—a set of 60 amino acids

found in several different genes in Drosophila and encoding a DNA binding

domain—also appeared in beetles, earthworms, chicken, mouse, and human (McGinnis et

al., 1984).  Mutation studies have been carried out in Drosophila, and they show that if a

homeobox gene is mutated, the axial organization of the body is altered, leading

researches to conclude that the homeobox genes are critical in the proper formation of the

body plan (McGinnis and Krumlauf, 1992).  In addition, it now appears that the
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homeobox genes might indeed be the master regulatory genes of the body axis.  It has

recently been shown that natural alterations in the homeobox protein Ubx are likely to be

the critical event that led to the evolution of hexapod insects from multilegged crustacean

ancestors (Ronshaugen, 2002).

The 39 Hox (homeobox containing) genes found in higher vertebrates—like

human and mouse—are organized into four chromosomal clusters located on different

chromosomes.  A Hox related family is found in invertebrates as well, but in this instance

the genes can be found in a single cluster on one chromosome.  Using information about

their amino acid makeup, the genes can be aligned to one another using the Drosophila

genes as a reference.  They are easily grouped into13 paralog groups, or subfamilies.  The

Hox genes are collinear: the order they appear on the chromosome is the same as the

order in which they appear in the body axis.  Not only that, they have a temporal

expression that is related to the order on the chromosome as well; the lower numbered

families appear earlier in development than the higher number families.  Finally, they

also have a response to retinoic acid (RA), both in sensitivity and in the efficiency of the

binding, that can be correlated to their order on the chromosome; the lower number

families are very sensitive to RA and bind it tightly (when there is a retinoic acid

response element in the control region of the gene), and the higher numbered families are

less sensitive to RA and bind it more weakly.  This information is summarized

graphically in Figure 3.3 below.
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Figure 3.3 Hox Paralog families Alignment of the Drosophila HOM-C complex,

the four mouse Hox chromosomal clusters, and their deduced common ancestor.

After (Lufkin, 1997), with additional information from (Neuteboom and Murre,

1997; Pellerin et al., 1994).

The Hox gene family is a set of transcription factors that has been shown to be

crucial in helping to confer rhombomere identity (Wilkinson, 1993).  This can be shown

dramatically by altering the expression of just a single gene: it was shown that

misexpression of Hoxb1 was able to transform rhombomere identity (Bell et al., 1999).

The Hox genes exhibit rhombomere-restricted patterns of expression and the expression

of several major rhombomere restricted genes (including the Hox genes) is shown below

in Figure 3.4A.



62

But Figure 3.4A is very idealized. While the Hox genes certainly display

rhombomere restricted patterns of expression, the expression does not stop cleanly at the

boundaries.  This is best shown in Figures 3.3B, a 10x magnification picture of

rhombomeres 3 through 7 (r3-r7) of a chick embryo stained for Hoxb1.

  

Figure 3.4 Rhombomere restricted expression of several genes (A) Expression

patterns for several genes with rhombomere restricted boundaries. The lighter

colors signify transient expression, and the darker colors correspond to continued

levels of expression.  After (Lumsden and Krumlauf, 1996). (B) A10x picture of

r3 (top) through r7 (bottom) of a chick hindbrain that has been stained for the

gene Hoxb1 (probe courtesy of R. Krumlauf).  The rostral and caudal boundaries

of r4, as exemplified by the bulge in the tissue, have been marked with arrows.

Notice that the gene expression is essentially restricted to r4, but the boundary is

not a sharp one and there is some expression of the gene in the adjacent

rhombomeres, most notably r3.



63

Retinoic Acid

It has been long known that elevated levels of the retinoid vitamin A disturbs

axial formation in vertebrates (Kalter and Warkany, 1959) and recently it has been shown

that sufficient levels are necessary for proper development (Niederreither et al., 1999).

Retinoic acid (RA) is the biological active derivative of vitamin A, and it acts through

two classes of receptors, the RA receptors (RAR) α, β, and γ and the retinoid X receptors

(RXR) α, β, and γ.  RA also plays an important part in the this process as it is able to

directly regulate the expression of Hox family members, and alterations in the RA

response elements in the cis-regulatory domain of reporter genes significantly change the

expression patterns (Gavalas and Krumlauf, 2000).

Modeling

Network Creation

Stochastic investigations in biology models have so far been focused on

intracellular systems.  The goal of this thesis was to explore the utility of a SSA approach

to modeling a gene network involving many cells.  The direct coupling of the SSA

implementation of a network and individual molecular events would seem to lend itself to

both the analysis and logical organization of the ever growing data on the control of Hox

genes in the developing hindbrain.  The analysis presented here shows that the approach

captures the timing, patterning, and variation in Hox gene expression without the need for

artificially injected noise.  The tests against some of the available experimental
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perturbations suggest that the SSA will have predictive value and allow researchers in the

laboratory to identify and focus attention on the most fruitful experiments.

Several of these predictions are noted, and two experiments were designed to

clarify and test aspects of the model.  One of the experiments (found in Chapter 4)

suggested that a design decision made during the creation of the model was incorrect.

The novel biological data resulted in a refinement of the model, thus closing the loop

between modeling and experiments.

The SSA investigation into the Hox network focused on an investigation of the

interaction of Hoxa1, Hoxb1, Hoxb2, Krox20 and RA in rhombomeres 4 and 5 (r4 and

r5).  Krox20 is not a homeobox gene, but it regulates Hox genes and is important for

proper segmentation (Schneider-Maunoury et al., 1993).  As mentioned previously, this

system was chosen for a variety of reasons including the amount of information that is

known: the molecular studies of the hindbrain have offered sufficient details to assemble

a model for the interactions important in regional control of gene expression.  In addition,

the accessibility of the chick hindbrain early in development made this an attractive

system in which hypothesis could be tested.

The following discussion will be enhanced by a brief comment on nomenclature.

Names in italics  (Hoxa1) refer to the genes or the mRNA for the gene, while names in

normal font (Hoxa1) refer to the protein product of the mRNA.  Hoxa1 is the first of the

Hox genes to be expressed in the hindbrain (Murphy and Hill, 1991) and its expression

appears to be directly regulated by a retinoic acid response element (RARE) (Frasch et

al., 1995; Langston and Gudas, 1992).  Hoxb1 expression also appears to depend on
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RAREs, an element on the 3’ end of the gene (the end of the DNA without a phosphate)

the which helps establish early expression (Marshall et al., 1994),  and a repressor

element on the 5’ end of the gene (the end of the DNA with a phosphate) which acts in r3

and r5 (Studer et al., 1994) and which appears to start altering gene expression around 8.0

days post coitus (dpc) in the mouse (R. Krumlauf, personal communication).  The early

expression of Hoxb1 is also dependent on Hoxa1 (Studer et al., 1998) with the cofactor

pbx (Green et al., 1998; Phelan et al., 1995), but continued expression in r4 is controlled

by a strong auto regulatory loop with the cofactors exd/pbx (Popperl et al., 1995) and

prep1 (Berthelsen et al., 1998a).  Hoxa1 is expressed to a rostral limit in the developing

neural tube to the presumptive r3/r4 boundary at 7.75-8.0 dpc, but the expression then

regresses, vanishing from the hindbrain by 8.5 dpc.  The expression of Hoxb1 is very

similar, except for the continued autoregulatory maintenance in r4 (Maconochie et al.,

1996).  Hoxb1, pbx, and prep1 all have a hand in up-regulating Hoxb2 in r4 (Ferretti et

al., 2000; Maconochie et al., 1997), while the later r5 expression of Hoxb2 is regulated by

Krox20 (Nonchev et al., 1996a; Nonchev et al., 1996b; Sham et al., 1993).  In r5 Krox20

appears to be repressed by Hoxa1 and Hoxb1, and expression of Krox20 occurs in r5 after

they retreat from the hindbrain around 8 dpc.  By 8.5 dpc expression of Krox20 and

Hoxb2 can be detected in r5 (Barrow et al., 2000; Wilkinson et al., 1989).  Thus, the

mouse cis-regulatory network can be drawn as in Figure 3.5 below.

The synthesis of this data into Figure 3.5 is a new result and has been received

favorably by one of the leaders in the field (R. Krumlauf, personal communication).  The

organization of the figure itself draws upon ideas presented in the literature, but several

features of the diagram are novel and go beyond current representations.  For instance,
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the activation and repression binding sites are correctly drawn in their relative positions

on the chromosome, with the exception of Krox20 (as it is still unclear how the Hoxa1

and Hoxb1 repression mechanism works and where the components are).  The horizontal

orientation of Hoxb1 and Hoxb2 highlights the fact that they appear on the same

chromosome, while the vertical orientation of Hoxa1 and Hoxb1 highlights the fact that

they are paralogs.  Krox20 is offset both vertically and horizontally, from all the other

genes, thus showing that it is not connected.  This presentation brings a new depth to the

standard representations (cf. Davidson, 2001).

The figure also shows the complexity of the situation.  Even though this system

was chosen because there was a readily identifiable network that had a minimum number

of inputs, the network is still very complicated and includes a nonlinear feedback term for

the autoregulation of Hoxb1.
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Figure 3.5 Hox cis-regulatory network in r4 (A) and r5 (B) The network is

drawn in a way to emphasize that (1) each cell contains the entire biochemical

network, and (2) certain interactions dominate in a particular rhombomere.

Inactive elements are denoted in gray.  The numbers near each intersection refer

to the references for the interaction.  (A) Starting with retinoic acid (RA) in the

middle of the diagram, the RA binds with RAR (1: Petkovich et al., 1987) and

RXR (2: Leid et al., 1992a), which can then form a dimer (3: Leid et al., 1992b).

The dimer can bind as a transcriptional activator to Hoxa1 (4: Frasch et al., 1995;

Langston and Gudas, 1992) or Hoxb1 in r4 (9: Marshall et al., 1994).  The Hoxa1

protein, after binding with the pbx/prep1 complex (5: Berthelsen et al., 1998b),

can then bind as a transcriptional activator to Hoxb1 (6: Studer et al., 1998). The

Hoxb1 protein, in conjunction with pbx/prep1 can bind to Hoxb1, which provides

an auto-regulatory mechanism (7,8: Popperl et al., 1995).  The Hoxb1/pbx/prep1

complex can also bind as a transcriptional activator to Hoxb2 (10,11: Maconochie

et al., 1997). (B) The RAR/RXR dimer can bind as a transcriptional activator to

Hoxa1 (4: Frasch et al., 1995; Langston and Gudas, 1992) or Hoxb1 (9: Marshall

et al., 1994) in r5, and it can also bind as a transcriptional repressor to Hoxb1 (12:

Studer et al., 1994). Hoxa1 and Hoxb1 are hypothesized to be transcriptional

repressors of Krox20 (14: Barrow et al., 2000), while Krox20 is a transcriptional

activator of Hoxb2 (13: Sham et al., 1993).
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While most of the cis-regulatory studies have been carried out in mice, chick has

proven to be a useful system for investigation of RA distribution.  RA has long been

thought to be a diffusible morphogen that is able to pattern the hindbrain (Gavalas and

Krumlauf, 2000; Maden, 1999) and recent studies of RALDH-2 and CYP26, enzymes

important in RA synthesis and degradation, reveal expression patterns that continue to

support this view (Berggren et al., 1999; Swindell et al., 1999).  In addition, a RALDH-2

knockout shows effects similar to vitamin A deficiency (Niederreither et al., 1999).  More

direct tests of sensing this gradient in mouse or chick have been challenging; there has

been no conclusive evidence (Gavalas and Krumlauf, 2000).  Despite this lack of direct

evidence for a gradient, circumstantial evidence for it continues to accumulate.  Most

recently a study of RAR blocking by an antagonist has suggested that the establishment

of hindbrain boundaries is dependent on RA concentration (Dupe and Lumsden, 2001).

The work also suggested that the cells in the mid- and hindbrain are still responsive to

RA through stage10.  Therefore, RA cannot still be present in the midbrain and anterior

part of the hindbrain, otherwise genes that respond to RA—including Hoxa1 and

Hoxb1—would be expressed in this region.  Thus, even if there is not an actual RA

gradient, there may be a graded response to retinoids, possibly involving other factors in

the system that help modulate the ability of the cell to respond to RA.  Taken together,

the evidence is suggestive that a differential of some sort, perhaps through RA

concentration, or through the temporally modulated ability to respond to RA, helps

establish the Hox gene patterns.

Because the SSA model is built on, and driven by, the underlying biochemistry of

the system, the reactions can be translated directly into the discrete events of the
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simulations.  In this investigation, some of the steps of the system were deliberately

omitted.  For example, instead of creating explicit reactions for the transcription of

nuclear RNA, the splicing into mRNA, and the exporting of the mRNA to the cytoplasm,

the simulation instead creates mRNA as a primary transcript.  This is not unreasonable as

long as the rate parameters cµ  are adjusted to reflect the subsequent delay, and as more

data that describes these reactions is collected, these pieces can be easily incorporated at

a later date.

Using Figure 3.5 as the network of interest, an SSA that described the Hox

network system has been created using the C programming language.  The source code

for the model can be found in Appendix C and on the accompanying CD-ROM.  The

model contains 59 chemical events that can occur in each cell.  They can be classified

into 5 main categories: binding (including activation, repression, dimerization, and

Hox/pbx/prep1 complex formation), unbinding, transcription, translation, and decay (of

mRNA, dimers, complexes, proteins, and receptors). The two remaining events that do

not fall into these categories are diffusion and division.

Of the 59 chemical events, most of them are first-order reactions.  First-order

reactions are ones with a single reactant, and so the rate of the reaction is proportional to

the number of molecules.  Therefore, the probabilistic rate for the stochastic simulation is

of the form aµ = cµs1 , where s1 can be the number of mRNA available to be turned into

proteins, or the number of molecules (including RA, mRNA, proteins, complexes, and

receptors) available for decay.  This is, of course, a simplified view of the true state of

affairs in the cell.  For instance, the mRNA cannot be translated into protein without the



71

presence of a ribosome and the necessary amino acids, but these are assumed to be

available in excess.

Zeroth-order reactions are ones that reactions that occur “spontaneously” and are

not linked to any of the expressed genes in the simulation.  Instead, they are considered as

a stochastic event that can occur with some constant (low) probability and are governed

by equations of the form aµ = cµ . One example of a zeroth-order reaction is the cell

division function.  The typical simulation encompasses 18 hours of developmental time

and so the model includes a rudimentary mechanism for cell division and this is why the

presumptive boundary sometimes shifts in the movies.  When the division occurs, the

resources in the cell are divided subject to a normal distribution between the daughter

cells.  The other zeroth-order reactions describe the creation of the RAR and RXR

receptors and the pbx protein complex.

Second-order reactions involve two species of the simulation that combine and

are of the form aµ = cµ fg , where f is the number of molecules of the first species, and g is

the number of molecules of the second species.  The four second-order reactions in the

simulation describe RA binding to RAR, the binding of RA to RXR, the dimerization of

the bound RAR and RXR forms, and the formation of the Hox/pbx/prep complexes.

Because the species in these second-order reactions are different, there is no need to

introduce a combinatorial factor as in Table 2.1.

There are a variety of ways to implement activation functions.  These include

binary activation, sequential activation, proportional activation, and Hill functions.  A

binary activation would be when a single transcription factor binds to the gene, thus
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creating an “activated” form of the gene.  This activated form is then primed for the

transcription of mRNA.  Because of the large binding coefficients that accompany

transcription factors and DNA, even a small number of molecules of a transcription factor

are enough to enable transcription.  However, they must be present in sufficient numbers

to establish a steady state in the binding/dissociation reactions.

Yet another way of implementing a transcription function is to assume that the

probability of transcription is proportional to the number of transcription factor

molecules.  In other words, aµ = cµ fg  but in this case g is either 1 if a gene is available

for transcription or 0 if the gene is not available for transcription, and f is the number of

transcription factor molecules present.  This form doesn’t assume an explicit notion of an

activated gene.

In the first incarnation of the model, the activation and repression functions are

implemented using a Hill function (Hill, 1910), a typical way to represent cooperative

binding.  This takes the general form aµ = cµ
f h

κ µ + f h
f ⋅ g , where f is the number of

molecules of a particular transcription factor, κ µ  is a threshold factor, and g is the

number of molecules of a gene available.  Similar to the proportional case, if a gene is

currently unbound, the value of g is 1, while if it is bound by a transcriptional factor the

value of g is 0.  The exponent h is called the Hill coefficient and it affects the steepness of

the response.  The Hill function is an empirically derived expression, used in differential

equation models, that yields the observed kinetics in these situations.  Thus, in the

stochastic reaction approach the complete Hill function expression is treated as simply

another rate coefficient for the purposes of converting it to the appropriate probability of
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occurrence of the corresponding reaction.  Others have used a similar method in their

stochastic description of gene transcription (Arkin et al., 1998).

When it comes to the activation of Hoxb1 in r4, there are actually two

transcription factors that can bind to the gene. This is implemented using a variety of

gene states controlled by a combination of Hill functions and sequential activations.

Hoxb1 is initially up-regulated by the RA dimers and the cross activation by Hoxa1.

Therefore if one of those two factors is bound, the gene is marked as in an activated state,

but if both are bound, the gene is marked as “superactivated.”  Each of those two

activated states carries its own probability of transcription, with the superactivated form

much higher.  Maintenance is controlled by the Hoxb1 auto-regulatory loop, and once the

Hoxb1 protein is present in sufficient numbers, auto activation can occur, again with an

associated probability of transcription.

Diffusion is yet another first order reaction, and more molecules of RA means that

there is greater chance of a diffusion event occurring.  But the diffusion is secondary to

the actual creation of the RA, and that needs to be treated with some care.

Retinoic Acid Source

In the course of considering different ways that RA might pattern the hindbrain, a

paper appeared that provided additional insight (Dupe and Lumsden, 2001).  This work

suggested that cells in the hindbrain are less able to respond to RA over time.  This is not

inconsistent with the previously mentioned investigations that suggest a physical

variation in RA patterns the hindbrain (Gavalas and Krumlauf, 2000; Maden, 1999), but

it does make modeling the system more challenging.  Taken together, these studies
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propose that a variation of some sort (either temporal or spatial or possibly both) is an

important component in patterning the hindbrain, and provided support of some of the

hypotheses used to construct the model.

There are two main ways that this variation can be implemented. The first is to

create cells that are less responsive to RA over time, and the second is to create a

variation in the RA.  The model was built to allow for both of these possibilities.  There is

more evidence for a physical variation however, and the modeling efforts reflect this fact.

There are a variety of possible functions that can be used for modeling a physical

variation of RA and many forms were considered.  In Equations 3.1 are a set of

differential equations derived from the Law of Mass Action that captures part of the

network.  While this formulation is problematic in general, especially for situations such

as these with the low levels of the transcription factors, it was useful in quantifying the

effects on the Hoxa1, Hoxb1 and Hoxb2 due to different RA source terms.  Briefly, the

rate of change of Hoxa1 A1( ) is dependent upon the creation effects of RA, and the

depletion effects −φA1( ) caused by normal decay or use as an up-regulator for Hoxb1 B1( ).

Positive effects for Hoxb1 include RA, the up-regulation by Hoxa1 αA1( )  and the Hill

auto-regulatory loop, while the depletion effects −βB1( )  are caused by normal decay or its

use as an up-regulation for Hoxb2 B2( ) .  The rate of change of Hoxb2 is up-regulated by

the amount of Hoxb1 δB1( ) , and depleted by decay processes −εB2( ).
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dA1 t( )
dt

= RA t( ) − φA1 t( )

dB1 t( )
dt

= RA t( ) + αA1 t( ) − βB1 t( ) + γ
B1

2 t( )
1+ B1

2 t( )
dB2 t( )
dt

= δB1 t( ) −εB2 t( )

(3.50)

Equations 3.1 A simplified set of equations describing the behavior of the

rhombomere 4 gene network.  Note that in this description there is only one cell,

and this cell contains only 4 products and 6 reactions.  This is a dramatic

simplification from the full simulation of the 40 cells, each containing 30 products

and 59 chemical reactions.  But because the full simulation contains these basic

reactions as well, this reduced set provided insight into the possible effects of

different RA source terms.

A variety of different functions were considered for the RA source, and Figure 3.6

shows the trajectories of the solutions.  The x-axis is time, and the y-axis is concentration.

It is important to keep in mind that the experimental results in rhombomere 4 show that

the Hoxa1 mRNA increases then decreases, while the Hoxb1 and Hoxb2 mRNA reach a

steady state.  Therefore, the solutions that exhibit this behavior are the most interesting.
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Figure 3.6 A-H Response curves for various RA functions.  A variety of

functions were investigated for the RA source term using the simplified network

described in Equation 3.1.  The legends for the plots (B-H) are the same as in (A):

RA in red, Hoxa1 in green, Hoxb1 in blue, and Hoxb2 in magenta. The response

curves were qualitatively the same for a wide range of the parameters.  The

parameters used to generate these particular plots were

ϕ = α = β = δ =1, γ = 2,ε =1 2. (A) The source termRA t( ) = .001 causes the cell to

create a constant amount of RA over time.  This causes the Hoxa1 to increase to

the same level as the RA source and is therefore not an appropriate model for the

RA source. (B) A linearly increasing RA source term (RA t( ) = .001t ) results in all

the Hox genes to increase linearly over time, while (C) a linearly decreasing

source term (RA t( ) =1− .05t ) results in the Hox genes to decrease over time after

an initial surge in Hoxb1 and Hoxb2 because of the auto-regulatory loop.  Both of

these are expected, and neither is appropriate. (D) The investigation took an

interesting turn when the RA was modeled with the step

functionRA t( ) =UnitStep[2 − t].  This resulted in the right type of qualitative

behavior, namely, a surge or Hoxa1 and steady state levels of Hoxb1 and Hoxb2.

Two of the problems with this include the square non-biological source term and

the sharp response from the Hoxa1.  But two other functions (E) RA t( ) = e− t , a

decaying exponential, and (F) a quadratic decayRA t( ) =
1

1+ t2
, produced very nice

qualitative results.  The Hoxa1 increased then decreased, and the Hoxb1 and

Hoxb2 reached a steady state due to the Hoxb1 auto-regulatory loop.  In addition,
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both of these have a RA source that diminishes smoothly over time.  The only

problem with using a source term from one of these families is that they both start

at t = 0  with a large amount of RA immediately.  This is not possible biologically,

but the following two functions do exhibit behavior that can occur biologically as

they both exhibit a smooth ramp-up as well as a smoothly diminishing tail. (G) A

Gaussian curve of the general formRA t( ) = e− t−π( )2 2  or a Rayleigh function like

(H) RA t( ) = te−t  meet all the desired criteria.  Ultimately, the Rayleigh function

was chosen because of the connection to other biological sources like insulin,

which has a biphasic response with a strong initial response and a longer

continuing source (Rorsman et al., 2000).

A Rayleigh function was ultimately chosen to model the diffusion source term for

RA from the posterior of the embryo.  This is implemented by having the first cell create

the RA according to the probabilistic rate a0 = c0 ⋅ RA0τe
−ατ 2  where RAo  is the initial

amount of RA in the system, and α  controls the decay time of the source.

Parameters

Using appropriate values for the model parameters is an important component in

modeling the system behavior.  Fortunately, several key parameters are known, but many

of the important parameters for the model have not been assayed directly in experiments

on the developing hindbrain.  Estimates of many of their values can be made from data

obtained in other systems, and were used in selecting parameters here (Table 3.1).
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Event Kd Reference

RA binding to RAR 0.5 nM (Allegretto et al., 1993)

RA binding to RXR 2 nM (Allegretto et al., 1993)

RAR/RXR dimerization 17 nM (Depoix et al., 2001)

Dimer binding to Hoxa1 3.8 nM (Mader et al., 1993)

Dimer binding to Hoxb1 5.3 nM (Mader et al., 1993)

Hox/pbx/prep binding to DNA 2 nM (Pellerin et al., 1994)

Table 3.1 Various measured binding coefficients for the interactions of the

components of the model.  The measured values are not measured in the systems

under investigation, namely mouse and chick, but in cell culture systems.  For

example, the Kd value for RAR/RXR dimerization has been determined in HeLa

cells.  Because the Kd value is the rate (in M) at which these complexes come

apart, this is a first order reaction and so the stochastic “probabilistic rate”

parameter cd is equal to Kd (Gillespie, 1977).  Note that these values are the ratio

of the backwards to forward binding rate constants cb and cf .  This is a typical

state of affairs: the values cb and cf  are very difficult to measure.  This allows a

bit of leeway in picking the forward and backwards binding, but the literature

provides some typical forward values which adds credence to the values used and

listed in Table 3.2 (Lauffenburger and Linderman, 1993).

It is not expected that the model results will be significantly different when newly

measured parameters are incorporated in place of the estimated values.  A sensitivity
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analysis, in which the model is re-run with systematically varied parameters, shows that

the model remain qualitatively unchanged for moderate changes in the parameters.  This

is encouraging, as biological systems are generally robust, and it would be unusual that

the overall biological system would be overly sensitive to moderate changes in the

concentrations or rates.

The half-lives for mRNA can range from minutes to hours and values for the Hox

mRNA have not been measured.  In this model the values of around 15-20 minutes were

chosen as a typical half-life, numbers that are in line with other values in early

embryogenesis (Davidson, 1986).  The half-lives of the proteins in the network have not

been measured and the values chosen were between 15 and 30 minutes.  These numbers

are again in an acceptable range for transcription factors (A. Varshavsky, personal

communication).  Similar values were used for the turnover of the receptors and

complexes.  With respect to the number of RARs and RXRs, values of around one

thousand of each type were chosen (Lauffenburger and Linderman, 1993).   No

distinction is made between the α, β, and γ forms.  The cofactors pbx and prep1 are

treated as a single molecule, which the Hox proteins can bind with on the DNA.

Parameter Value used Description Equation Type
c0 4.0 Create RA Rayleigh
c1 10000000.0 Bind RA to RAR Second-order

c2 0.00006 Decay RA First-order
c3 0.0001 Create RAR Zeroth-order
c4 0.00006 Decay RAR First-order
c5 0.005 Unbind RA from RAR First-order
c6 0.0004 Decay BRAR First-order
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c7 1000000000 Bind dimer to Hoxa1 DNA Hill
c8 3.0 Unbind dimer from Hoxa1 DNA First-order
c9 0.02 Transcribe Hoxa1 mRNA First-order
c10 0.0007 Decay Hoxa1 mRNA First-order
c11 0.005 Translate Hoxa1 protein First-order
c12 0.001 Decay Hoxa1 protein First-order
c13 100000000.0 Bind dimer to Hoxb1 DNA Hill
c14 0.5 Unbind dimer from Hoxb1 DNA First-order
c15 0.02 Transcribe Hoxb1 First-order
c16 0.001 Decay Hoxb1 mRNA First-order
c17 0.02 Translate Hoxb1 protein First-order

c18 100000000.0 Bind Hoxa1 complex to Hoxb1 DNA Hill
c19 0.3 Unbind Hoxa1 complex from Hoxb1 DNA First-order

c20 .02 Transcribe Hoxb1 protein First-order
c21 1000000.0 Bind dimer to Hoxb1 repression site Hill
c22 0.00003 Unbind dimer from Hoxb1 repression site First-order
c23 1000000000 Bind Hoxb1 complex to Hoxb1 DNA Hill
c24 0.3 Unbind Hoxb1 complex from Hoxb1 DNA First-order
c25 0.02 Transcribe Hoxb1 protein First-order
c26 0.004 Decay Hoxb1 protein First-order
c27 1000000.0 Bind Hoxb1 complex to Hoxb2 DNA Hill
c28 0.03 Unbind Hoxb1 complex from Hoxb2 DNA First-order
c29 0.02 Transcribe Hoxb2 mRNA First-order
c30 0.00001 Decay Hoxb2 mRNA First-order
c31 0.002 Transcribe Hoxb2 mRNA First-order
c32 0.004 Decay Hoxb2 protein First-order
c33 0.00000015 Cell division Zeroth-order
c34 100000.0 Activate Krox20 First-order
c35 0.002 Unactivate Krox20 First-order
c36 0.2 Transcribe Krox20 mRNA First-order
c37 0.0003 Decay Hoxa1 mRNA First-order

c38 12000.0 Bind Hox complex to Krox20 repression site Hill
c39 0.003 Unbind complex from Krox20 repression site First-order

c40 0.0001 Translate Krox20 protein First-order
c41 0.00001 Decay Krox20 protein First-order
c42 10000000.0 Bind RA to RXR First-order
c43 0.0001 Create RXR Zeroth-order
c44 0.00006 Decay RXR First-order
c45 0.02 Unbind RA from RXR First-order
c46 0.002 Decay bound RXR First-order
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c47 5000.0 Bind BRXR to BRAR Second-order

c48 0.0001 Unbind BRXR from BRAR First-order
c49 10.0 Decay BRAR/BRXR dimer First-order
c50 10000000.0 Bind Hoxa1 protein to PBX complex Second-order
c51 0.02 Unbind Hoxa1/PBX protein complex First-order
c52 0.009 Decay Hoxa1/PBX protein complex First-order
c53 10000000.0 Bind Hoxb1 protein to PBX complex Second-order
c54 0.02 Unbind Hoxb1/PBX protein complex First-order
c55 0.01 Decay Hoxb1/PBX protein complex First-order
c56 0.01 Create bare PBX complex Zeroth-order
c57 0.005 Decay bare PBX complex First-order
K1 1000 Threshold for ActivateA1 Hill function N/A

K2 1000 Threshold for ActivateB1 Hill function N/A
K3 1000 Threshold for SuperActivateB1 Hill function N/A
K4 10000 Threshold for AutoActivateB1 Hill function N/A
K5 1000 Threshold for ActivateB2 Hill function N/A
K6 100 Threshold for repression functions N/A
a1hill 4.0 Hill coefficient for ActivateA1 Hill function N/A
b1hill 4.0 Hill coefficient for ActivateB1 Hill function N/A
b1auto 6.0 Hill coefficient for AutoActivateB1 Hill

function

N/A

b2hill 2.0 Hill coefficient for ActivateB2 Hill function N/A

rephill 4.0 Hill coefficient for repression functions N/A

Table 3.2 Parameters used in the simulation. The type of reaction and the

associated value used is listed.  As examples, the function for binding RA to the

retinoic acid Receptor RAR is a1 =1×107 RA{ } RAR{ } where { } denotes the

number of molecules of each type.  The first order reaction of the Hoxa1 mRNA

decaying is given by a10 = 7 ×10−4 mHoxa1{ }, and the Hill activation of Hoxb2 is

given by
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a27 =1×106 Hoxb1pbx complex{ }2

1×106 + Hoxb1pbx complex{ }2( )
* Hoxb1pbx complex{ }* Hoxb2 DNA{ }

In implementing the repression of Hoxb1, the simulation started this mechanism

around 8.0 dpc because of the current understanding that the repression starts later than

the activation (R. Krumlauf, personal communication).  The Hoxa1 and Hoxb1 repression

for Krox20 is also started at around 8.0 dpc to ensure the establishment of Hoxa1 and

Hoxb1 before the Krox20 expression.

Results

The early Hox genes first appear around 7.75 dpc (headfold) and the patterns of

Hoxa1, Hoxb1, Hoxb2 and Krox20 stabilize by 8.5 dpc (~10 somites).  Using the network

shown in Figure 3.5, the goal was to capture this wild-type expression.  Accordingly, the

model was run for a simulated time of 18 hours.  The model is one dimensional along the

rostral-caudal axis of the embryo.  Running the simulation with different random number

seeds show that the model is not overly sensitive to the initial seed values.  In the figures,

a number of these independent runs are assembled side-by-side to construct a two-

dimensional sheet of cells that resemble the tissue (with a medio-lateral dimension).  This

offers insights into the expected two-dimensional pattern of gene expression in the

hindbrain and displays the variability in the results.

A custom built notebook in Mathematica (found in Appendix D) was used to

display the results of the simulations.  The raw data (the number of molecules of each
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type in each cell) has been scaled to numbers between 0 and 1 by dividing by the

maximum value in that data set.  This allows the creation of a color shading so that

differences in levels of molecules are clear.  The results are displayed in an easy to

understand format: a virtual dynamic in situ.  Because the maximum value used to scale

the data is on the order of tens to a couple hundred molecules, the color variations that are

seen in the figures and the movie may in fact be too small to distinguish in a laboratory

setting using conventional in situ staining.

Wild Type

Figure 3.7 presents the dynamics of the model concerning the emergence of

Hoxa1, Hoxb1, Hoxb2 and Krox20, over time from approximately 7.75 dpc to 8.5 dpc.

The figure presents single frames from the movie wt.mov. Along with all the other

movies referenced in this thesis, wt.mov can be found on the included CD-ROM.   The

movie offers a dynamic view of the mRNA and RA in the developing hindbrain.  Each

rhombomere starts out with 20 cells, and the presumptive boundary is clearly marked.

Even though the movies and figures show the mRNA levels, the model also tracks the

amount of protein, bound and unbound complexes, and bound and unbound receptors,

and any of these data can be displayed in a similar manner.

The low levels of Hoxa1, Hoxb1 and Hoxb2 mRNA in r4 and r5 are first seen

soon after the simulation starts when the RA sweeps across the cells (Figure 3.7A).  After

the mRNA is translated into protein and subsequently forms a complex with pbx and

prep1, it can then bind to the DNA.  The effects of the Hoxa1 binding site on Hoxb1 and

the Hoxb1 auto-regulatory loop are seen next, namely the higher levels of Hoxb1 in r4
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(Figure 3.7B).   By 8 dpc the RA has long since vanished from the hindbrain and

consequently the RAR/RXR dimers are no longer being created.  This is the main reason

that Hoxa1 starts to vanish from the hindbrain.  The lack of available dimers also

contributes to Hoxb1 vanishing from r5, as does the late repression mechanism (Figure

3.7C).  Now that Hoxa1 and Hoxb1 no longer repress Krox20 in r5, its expression rises

and subsequently brings up Hoxb2 in r5.  At about this time, Hoxb2 has appeared in r4

due to the up-regulation by Hoxb1 (Figure 3.7D).  The ending expression pattern of the

five genes at 8.5 dpc (Figure 3.7E) is very similar to reported patterns (Lumsden and

Krumlauf, 1996).

It is clear from laboratory data that cells sometimes “misfire,” and using this

simulation it is possible to see the consequences of such misfirings.  In Figure 3.7, (A, B,

D, E) the cell marked with an arrow deviates from its normal fate and ends up not

expressing any genes.  At the same time, there are other cells that appear to misfire early,

exemplified by low levels of expression, but later recover.  This is exemplified by the

lone white cell in the r4 Hoxb1 data at 8.15 dpc.  For whatever reason, it was not

expressing Hoxb1 at this timepoint, but it recovers by 8.5 dpc.  Both of these events are

known to happen in biological systems, and it is encouraging to see this behavior in the

model, as these events are not captured with conventional modeling methods.  This result

suggests that fluctuations are a factor in the network under investigation.
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Figure 3.7 Simulated wildtype mRNA and RA patterns from 7.75 dpc to 8.5

dpc (A-E) Selected frames from the computer generated time-lapse movie

wt.mov. Four runs of the simulation were required to create this picture, with each

run contributing a row of RA, Hoxa1, Hoxb1, Hoxb2 and Krox20 data for each

timepoint.  Notice that sometime between 8 dpc and 8.15 dpc there is a cell

division in r5 in the first and fourth data sets.  This can be seen most clearly in the

Hoxb2 and Krox20 data at 8.5 dpc.  When a cell divides, its resources are

normally distributed between the daughter cells.  The data for the marked cell was

generated during one of the simulations, and the consequences of this cell

misfiring can clearly be seen (A) At 7.75 dpc there is an abundance of RA and

low levels of both Hoxa1 and Hoxb1 expression are evident in the marked cell.

(B) The expression of Hoxa1 and Hoxb1 fades in this cell by 7.90 dpc, a bit

earlier than some of its neighbors. (E) By 8.5 dpc the cell has failed to initiate its

proper expression of Krox20 and Hoxb2.  This result suggests that fluctuations are

important in the network under investigation.
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In Silico Experiments

The versatility of the computer simulation also allows for the possibility of

performing in silico experiments.  The results of two experiments are reported here and

the simulation output shows that the results are similar to their corresponding in vivo

experiments.  In addition, the simulation suggests results that have not been reported in

the laboratory, and these predictions warrant further investigation in vivo.

Hoxb1 Mutant

In the investigation of the cross-regulation of Hoxb2 by Hoxb1 in r4 (Maconochie

et al., 1997), the authors showed that the up-regulation of Hoxb2 in r4 is lost in Hoxb1

mutants.  Duplicating this experiment in silico requires a minimum number of changes to

the model, and is accomplished by not allowing any transcription factors to bind to the

Hoxb1 DNA.  The input parameters used were the same as in the wild type (Table 3.2).

In stills taken from the movie Hoxb1mutant.mov, it starts as in the wild type: the RA

comes through the hindbrain at 7.75 dpc and induces the expression of Hoxa1.  However,

because the Hoxb1 gene is “turned off,” there is no Hoxb1 expression (Figure 3.8A).

Later on, as reported in the literature, Hoxb2 is absent from r4.  It is also clear that

Krox20 fails to be well repressed in r4 (Figure 3.8B).  By 8.5 dpc, Hoxb1 expression is

still absent and high levels of Krox20 are firmly established in r4 (Figure 3.7C).  This last

result has yet to be thoroughly investigated, but there are two ways that this could be

tested in the laboratory.  The first is to acquire the mice used in the study and check the

Krox20 expression, while the second is to create a DNA construct that mimics this type

of behavior in chick.  Acquiring the mutant mice is not an easy, quick, or inexpensive



88

task, and so the second approach was taken.  The attempt to perform this perturbation

experiment is fully described in Appendix A.

Figure 3.8 Simulated Hoxb1 mutant mRNA expression patterns. (A-C)

Selected frames from the computer generated time-lapse movie

Hoxb1mutant.mov.  This data set shows cell division having occurred in both r4

and r5.  Besides affecting the Hoxb2 expression in r4, the Hoxb1 mutant also has

an effect on Hoxb2 and Krox20 in r5. (B) The levels of Krox20 are lower at 8.15

dpc than in the wild-type (Figure 3.6D). (C) By 8.5 dpc, the levels of Krox20 and

Hoxb2 are noticeably lower than the wild type (Figure 3.6E).  The observation on

the level of Krox20 expression is a prediction that can be tested in the laboratory.
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5’ RARE Mutant

The effects of a selected deletion in the Hoxb1 5’ RARE showed that the RARE

plays a role in the r4 restricted expression of Hoxb1 (Studer et al., 1994).  In this work the

authors showed that if the construct lacked the 5’ RARE, the reporter expression spread

to r3 and r5.  Further study suggests that the r3/r5 repressor region that contains the

RARE is activated later than the 3’ enhancer element  (R. Krumlauf, personal

communication).  Duplicating this experiment using the model is again a simple matter,

and is accomplished by not turning on the repressor.  As in the Hoxb1 mutant experiment

described above, the parameters used were the same as in the wild type (Table 3.2).  The

stills from the movie RAREmutant.mov show that the expression pattern looks normal at

7.75 dpc (Figure 3.9A).  However, at 8.0 dpc the repression mechanism is not turned off,

and by 8.15 dpc the expression of Hoxb1 in r5 is still strong (Figure 3.9B).  By 8.5 dpc,

the Hoxb1 expression has faded in r4 somewhat due to the lack of available RAR/RXR

dimers, but is still noticeable (Figure 3.9C).  In addition, there is once again a change in

the pattern of Krox20, but this time there are lower expression levels in r5 (Figure 3.9C).

This is due to the continued repression effects of Hoxa1 and Hoxb1.  This result has yet

to be fully investigated in the laboratory.
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Figure 3.9 Simulated expression patterns after inactivation of the 5’ Hoxb1

RARE (A-C) Selected frames from the computer generated time-lapse movie

RAREmutant.mov.   By turning off the 5’ RARE, there is a change in the levels

of Hoxa1 expression in r5.  This occurs because the 3’ and 5’ RAREs are in effect

fighting for the RAR/RXR dimers.  This intriguing result needs to be more fully

investigated.  As in the wild type, it is easy to see downstream effects from cells

that have misfired, most notably the patches where Hoxa1 or Hoxb1 are

continuing to repress Krox20.  (A) The behavior of the system mimics the wild-

type at 7.75 dpc because the 5’ RARE does not kick in until 8 dpc. (B) By 8.15

dpc, the expression of Hoxb1 is still noticeable in r5, but the levels are low

enough to allow Krox20 expression to take hold.  (C) The levels of Krox20 in r5

are higher than in the wild type (Figure 3.7E). The effects of the Hoxb1 RAREs



91

not having to compete for the dimers is clear by 8.5 dpc as evidenced by the

higher levels of Hoxa1 as compared to the wild type (Figure 3.7E).

Sensitivity Analysis

A model that is presented with no analysis leaves something to be desired, and

this section presents the results of a sensitivity analysis.  There are two categories of

conventional analysis possible: local and global sensitivity analysis.  Local analysis is

based upon evaluating the derivative of some output function with respect to any of the

input variables at some fixed point in the space of the input variables.  However, this

approach is only really practical for linear models, and a local analysis is unable to gauge

the impact of possible differences in the scales of the variations of the input variables.  It

has been recognized for several decades that when the model is nonlinear and the various

input values are affected by uncertainties of different orders of magnitude, a global

sensitivity analysis should be used (Cukier, 1973).

Recall that the simulation consists of over 75 input parameters, and the output

consists of the quantities of 19 different molecular species for each of forty cells cell at

each of the1080 time points, or over 800,000 outputs.  Doing a sensitivity analysis over

all these parameters would prove intractable.  Because of this, the data was compacted

before the analysis was run.

First of all, each of the 40 cells is assigned either an r4 or an r5 identity, and so

the cells were grouped by their rhombomeric identity and the number of molecules for

each species was averaged over all the cells.  Next, since the movies and the experiments
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are primarily concerned with the amount of messenger RNA that is in these cells, special

attention was focused on the mRNA and how the variation in the parameters affected

these quantities.  Finally, instead of looking at 1080 time points, the data was

downsampled to 54 time points (one for every 20 minutes instead of every minute).

Measure of Importance

The global analysis initially tried is one that is based on a “measure of

importance” called S.  In this type of approach, all the parameters are varied

simultaneously and the sensitivity of the output variables is measured over the entire

range of each input parameter. It allows the output variance to be broken up into

contributions due to individual parameters or combinations of parameters (Homma,

1996).  As an illustrating example, let y = f (x)  be the black box of the simulation to be

evaluated, where x = (x1,x2, x3 ) , and y is an output vector of size m.  Suppose the total

variance of f (x)  is V.  It is possible to write V as a sum of the variances that contribute

to the total

V = V1 +V2 +V3 +V12 + V23 +V13 + V123 (3.51)

Then S1 = V1 /V  is the fraction of the total variance due to the parameter x1

averaged over all the parameters and it is called the first order term for the parameter x1.

In a similar vein, S12 = V12 /V  is the fraction of the total variance due to the coupling of

the parameters x1 and x2  and is called the second order term for the parameters x1 and

x2 . These variables can be combined to produce the sensitivity indices for each of the

input variables by computing
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ST ,1 = S1 + S12 + S13 + S123 (3.52)

Calculating these variables is a straightforward, albeit time-consuming exercise.

Notice that the Si  are all positive and sum to one, with the most important factors having

the largest contribution.

This analysis was performed on the model and the results were not surprising.  In

Table 3.3 are several sensitivity indices computed for the mRNA in each of the

rhombomeres.

Si value for mRNA for

Parameter Rhombomere Hoxa1 Hoxb1 Hoxb2 Krox20 Sum

4 0.25390 0.06763 0.04099 0.10119 4.18192
K1

5 0.04755 -0.02082 0.01945 0.00594 -0.04203

4 -0.33742 -0.47741 -0.47995 -0.40615 -5.43707
c1

5 -0.37504 -0.37020 -0.49049 -0.47657 -6.16916

4 0.34952 0.06243 0.04217 0.07847 4.78133
c13

5 0.36623 -0.09437 0.02032 0.00078 1.03525

4 0.11857 0.12154 0.06911 0.07454 3.90804
c26

5 -0.03849 1.13157 0.02944 0.09681 1.58401

Table 3.3 Sensitivity Analysis using the Measure of Importance. This analysis

does not appear to be one that can be employed for a simulation that is subject to

stochastic variations.
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In direct defiance of the theoretical analysis, the Si  values are not all positive and

they do not sum to one.  The result of this analysis confirmed an important aspect of the

model: the inherent fluctuations of the system can at times have stronger effects than a

change in a parameter, and the stochasticity of the simulation plays a synergistic role with

the change of the parameters.  Accordingly, this type of analysis does not seem to address

the question at hand, and it another type of analysis was used to examine the effects of

changing the parameters.

Excess Variance

Because the simulation is fundamentally subject to fluctuations, it is challenging

to determine the effect on the output due to a change in a parameter.  But this can be

addressed using an excess variance based analysis.  Let v j x,t( )  denote an output of

interest from the simulation at time t with input vector x and random number seed j.  Let

v x; xi,t( ) , denote the output from the simulation at time t with the input value xi  perturbed

but all other inputs the same, and the default random number seed.  Computing the mean

of the squared difference of these values,

E
j
v j x,t( ) −v x;xi ,t( )( )

2[ ] (3.53)

yields a response curve.  This value is a consistent estimator (i.e., the probability of the

estimated value and the true value of the population parameter not lying within any

arbitrary positive constant c units of each other approaches zero as the sample size tends
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to infinity), and identifies the parameters that have an important effect in contributing to

the output values of interest.

This calculation was performed for the levels of mRNA for Hoxa1, Hoxb1, Hoxb2

and Krox20.  The analysis was only performed for the cµ  values because previous

investigations while building the model had shown that these were the most important in

determining the system behavior.  The analysis was performed for each of the 4 target

variables, for each of the rhombomeres, and to allow for legibility of the plots, the cµ

values were examined 10 at a time.  This resulted in a total of 48 figures, but in the

interest of space, not all of the plots are shown.  Typical plots of these results are shown

in Figures 3.10, 3.11 and 3.12 below, and the results of the entire investigation are

summarized in Table 3.4.

Figure 3.10 shows the normal state of affairs; none of the   cµ (µ = 40K49)  values

plays a significant role in the expression of the messenger RNA for Hoxb1 in

rhombomere 4.  But compare this plot to Figure 3.11.  In this figure it is clear that c53

plays a noticeable role on the level of mRNA for Hoxb1 in rhombomere 4.
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Figure 3.10 Effects of cµ values on mRNA for Hoxb1 expression in rhombomere

4.  The legend denotes the color of the response for a particular parameter, and in

this instance none of the parameters has a significant effect. The x axis is time

(dpc), and the y axis is the response value (computed in 3.4).
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Figure 3.11: Effects of cµ  variables on the amount of mRNA for Hoxb1 in

rhombomere 4. The parameter c53 , which is part of the auto-regulatory loop, is by

far the dominant parameter in this set. The x axis is time, and the y axis is the

mean response values (computed in 3.4).

Looking at the list of values, c53  is the stochastic rate coefficient for the formation

of the Hoxb1 protein/pbx/end complex, i.e., c53  is part of the auto-regulatory loop for

Hoxb1, and it is no surprise that this parameter makes a difference in the expression of

mRNA for Hoxb1.   Compare this to Figure 3.12, which shows the effects of the same cµ

values on the mRNA for Hoxb1, but this time in rhombomere 5 in which there is no auto-
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regulatory loop for Hoxb1. The contributions of the values are lower overall, and the

repression mechanisms that turns on at day 8.0 makes a noticeable difference.

Figure 3.12: Effects of cµ  variables on the amount of mRNA for Hoxb1 in

rhombomere 5.  Notice that none of the parameters has a major effect on the

mRNA levels, and when the repression mechanisms start at 8 dpc, all of the

effects virtually vanish. The x axis is time, and the y axis is the mean response

values (computed in 3.4).

The cµ  values that play a role on the levels of the target variable are not

surprising.  For instance, the transcription of mRNA for Hoxa1 from the activated form

of the gene is important in both rhombomeres.



99

Target Rhombomere Significant
cµ  value

Related
Function

c7 ActivateA1
c9 TranscribeA14
c10 DecaymA1
c7 ActivateA1
c9 TranscribeA1

Hoxa1

5
c49 DecayDimer
c16 DecaymB1
c25 TranscribeAutoB14
c53 Complexb1
c15 TranscribeB1

Hoxb1

5
c16 DecaymB1
c12 Decaya1
c29 TranscribeB2
c30 DecaymB2

4

c53 Complexb1
c16 DecaymB1
c29 TranscribeB2

Hoxb2

5
c30 DecaymB2
c17 Translate SuperB14
c53 Complexb1
c25 TranscribeAutoB1

Krox20

5 c37 DecaymKrox

Table 3.4: Effects of cµ  variables on the mRNA. None of these variables is a

great surprise.  For instance, the parameters that change the mRNA for Hoxb1 in

r4 more than 20% above the baseline are the ones that affect the rate of decay of

the mRNA for Hoxb1, the strength of the auto-regulatory loop, and the rate of

Hoxb1/Prep complex formation.  This last one might seem a little odd at first,

until it is noted that the formed complex is required for the triggering of the auto-

regulatory loop.
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Summary

The stochastic simulation model captures the timing of several Hox gene

expression patterns in wild-type animals, and in silico simulations performed as a check

of key interactions produced results similar to in vivo experiments.  In addition, the in

silico experiments yield intriguing results that bear further investigation in the laboratory.

The model simulations suggest that a transitory early release of RA may be

sufficient to initiate the Hox genes.  During the investigation of functions for modeling

the RA source, it became clear that initiation of the network only required the RA source

to stay on for as few as 3 minutes.  All that was needed was enough RA to bind the

receptors in r4 and r5 and proper expression of the target genes was the result.  This

refinement of the RA gradient hypothesis fits well with recent work on blocking RAR

with a chemical antagonist in which the authors made a careful study of concentration

and time dependent effects of the blocking agent using morphology and gene expression

as assays.  Chick embryos treated with the agent at HH stage 6 (Hamburger and

Hamilton, 1951) do not express Krox20 in r5, but treatment at HH stage 7 permits r5

expression (Dupe and Lumsden, 2001).  Thus, the Krox20 insensitivity to a later change

in RA fits well with our model predictions: once the network was established early on

proper r5 expression of Krox20 was evident.
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Chapter 4: Experiments

Our real teacher has been and still is the embryo who is, incidentally, the

only teacher who is always right.

- Viktor Hamburger, 1968

Introduction

When it comes to modeling biological systems, it is hardly ever the case that the

modeler and the experimentalist are the same person.  Instead, the work is usually done in

collaboration.  This leads to difficulties in that the modeler and the experimentalist don’t

always understand the intricacies and sticking points of the other discipline.  Another

problem is that the data used to build the model is not always the data ideally desired.

For example, the binding coefficients listed in Table 3.1 were measured in cell cultures

and not in chick or mouse.  These facts lead the author to design and perform

experiments relevant to the Hox system under investigation.  Not only would the

experiments be focused on testing and clarifying elements of the Hox model, they would

also allow for better understanding of the problems and pitfalls in performing

experiments in the biology lab.

In order to build the model it was necessary to make several assumptions.  This

chapter highlights one of those assumptions and describes an experiment that was

performed to investigate and clarify an aspect of the model, namely the response of

Hoxa1 to retinoic acid (RA).  This was accomplished by introducing a perturbation to the

normal distribution of RA in the embryo.
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The experiment described in this chapter was not the only model related

experiment designed and pursued.  In Appendix A, the reader will find the description of

another experiment that was pursed.  However, it turned out to be much more difficult

than initially thought.  This is not a rare occurrence in biology, and was one of the most

important lessons about lab work that the author learned.  While it is not possible to draw

any definitive conclusions from the experiment in Appendix A, a great deal of work was

done in paving the way for a continued investigation.

Before describing the retinoic acid perturbation experiment, there is a brief

digression into the development of a method that made the experiments easier to perform.

Vital Stain

Any sort of work on early chick and quail embryos is complicated by the fact that

they are nearly transparent and very difficult to see against the yellow yolk.  By HH stage

9 (Figure 3.1 7) there are enough signs in the surrounding tissue (the position of the area

opaca for instance) to enable harvesting, but in order to easily perform other work

including electroporation (described in Appendix A) or bead implantation (described

below), something needs to be done in order to see the embryo.

A typical solution is to use a mixture of 10% of India ink in a balanced salt buffer,

and when this is injected beneath the embryo there is enough contrast to easily see the

embryo.  The problem with this mixture is that India ink is known to be toxic, especially

to younger embryos.  If it is used in situations where the eggs are placed back into the

incubator for more than a few hours, there will always be a decrease in viability.  This is

especially true after manipulation that is hard on the embryo, like electroporation (in
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which electricity is delivered to the embryo) or bead implantation (in which the egg is

open for a long time and the neural tube is ripped).  Despite these known problems, there

were no readily identifiable solutions presented in the literature, but an inquiry of other

laboratory members suggested a possible solution.  It came in the form of an ancient stash

of pale blue food coloring.  Using this as a vital stain increased the survival dramatically,

but the contrast was poor and it was still very difficult to see the embryo.  Nonetheless,

this suggested that food coloring might be a good solution.  Two different sources of food

coloring were acquired; powder from Spectra Colors Corp, and liquid from the local

supermarket.  Along with India ink, these were used in an experiment to compare the

resulting contrast and subsequent embryo viability.

Fertile chicken eggs from a local supplier (AA Laboratories) were incubated at

38° C until stages 4-6, usually between 36 and 40 hours.  After removal from the

incubator, the eggs were rinsed with 75% alcohol and 3 ml of albumin was removed.  The

egg was windowed and a few drops of Hanks’ Buffered Salt Solution (HBSS) were added

to the embryo to keep it moist.  Approximately 100 mL of vital stain was injected under

the embryo, and the resulting contrast was noted.  The egg was then resealed with

packing tape and replaced into the incubator. The embryos were harvested after 24 hours

and assayed for viability.  The results of this experiment are summarized in Table 4.1

below.  It should be mentioned that eggs are not always resealed successfully, and some

of the morphology problems and deaths are certainly due to the embryo drying out.  This

was a problem that applied to all of the experiments equally, and so these numbers were

not separated out.
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Solution used # Injected Viable % Viable
10% India ink in HBSS 9 7 78 %

Dec-a-Cake 7 1 14%
10% Dec-a-Cake in HBSS 7 5 71%

Stock pale blue 8 8 100%
10% Spectra Red #40 In HBSS 6 5 83%
10% Spectra Blue #1 in HBSS 5 5 100%

10% Spectra Blue and Red in HBSS 8 7 88%

Table 4.1 Vital stain results. Viable is defined as embryos that are alive and look

to have normal morphology.  All of the solutions were diluted or mixed with

HBSS.  India ink actually faired better than expected.  This was probably helped

by the use of a freshly opened bottle: there is anecdotal evidence that using old

ink decreases viability.  The India ink solution also affected the surrounding tissue

of an embryo, and there were often clumps of ink globules visible beneath the

embryo.  The Dec-a-Cake solution was the worst of the bunch, almost certainly

due to the preservatives included, and while the diluted mix was much better than

straight, it is still on the same level as India Ink.  The stock pale blue provided

excellent viability, but the contrast was very poor.  The different mixes of the

Spectra F.D&C. food coloring all resulted in good viability, and the contrast from

the Blue and Red combination was very strong.

Since this experiment, the author has used food coloring exclusively for all

experiments and the viability has been much better.  In addition, the use of food coloring

as a vital stain has collected a steady following in the Fraser and Bronner-Fraser

laboratories and a half dozen people use it regularly.  It has also been used at the Stowers

Institute for Medical Research, and a member of the House Ear Institute used it to
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successfully perform an experiment that was otherwise unsuccessful using India ink (A.

Collazo, personal communication).

Having to solve the problem with the vital stain was just one of the many

examples of the issues that need to be resolved before the experiment of interest can be

performed.

Retinoic Acid Bead

As mentioned in Chapter 3, the act of building the model caused a shift in

thinking about how the system might become initiated.  It became clear that a constant

source of RA is not needed, and in fact a constant source leads to simulation results that

are in disagreement with laboratory results.  To better understand the connection between

RA and Hoxa1, an experiment was undertaken to introduce RA into the system and

determine the effects on Hoxa1 expression.  Hoxa1 was picked as the assay because it is

the first Hox gene to appear and unpublished work has shown that culturing embryos in

the presence of RA causes a broad pattern of expression (R. Krumlauf, personal

communication).  In addition, RA appears to be the sole input to Hoxa1, as opposed to

Hoxb1 which also has a retinoic acid response element, but is also cross regulated by

Hoxa1 and auto-regulated.

There are a variety of methods for introducing RA into a biological system.

These include oral administration (Pasqualetti et al., 2001), bathing an embryo in a

culture medium containing RA (Godsave et al., 1998), or using a bead soaked in RA

(Eichele et al., 1984).  Using a bead is particularly attractive as it provides an effective

way to deliver a local release.  But the most important aspect of the bead is the local
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delivery helps create an artificial gradient that can be used to test the connection between

Hoxa1 and RA, and, in particular, whether the implementation chosen for the

transcription of Hoxa1 is supported.

Embryos

Instead of using eggs from the local supplier, fertile pathogen free chicken eggs

were acquired from Charles River Laboratories.   The change in egg supplier occurred

because eggs from the local supplier were unreliable: many were unfertilized, and the

development was inconsistent.  Before the change, a great deal of time was spent dealing

with eggs that were substandard.  On a typical day only 2 dozen of 5 dozen eggs pulled

from the incubator would be usable.  The River Laboratories eggs were significantly

more expensive (~$20 a dozen vs. $3.50 a dozen for AA Laboratory eggs), but they were

consistently reliable, both in fertility and development time.  This was yet another object

lesson on the difficulty of laboratory work.

The eggs were incubated at 38°C until the proper stage of development, usually

between 30 and 40 hours.  The eggs were rinsed with 75% alcohol and 3 ml of albumin

was removed.  The eggs were windowed and a solution of .1% food coloring (equal

amounts of FD&C Red #40 and FD&C Blue #1 from Spectra Colors Corp.) in HBSS was

injected beneath the blastoderm to provide contrast.

Bead Preparation and Implantation

AG1-X2 ion-exchange resin beads (mesh size 200-400, for an effective size

between 50 and 150 µm) were purchased in chloride form from BioRad.  They were
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rederivatized to formate form by inserting them into a column and rinsing with three bed

volumes of1M formic acid.  They were then rinsed with water until the wash was

approximately pH 5.   All-trans RA was purchased from Sigma corporation and a 10−2  M

solution of RA in DMSO was made fresh each day.  This was subsequently diluted to the

working concentration of 10−3  M.  It was learned through the course of these experiments

that RA degrades very quickly, even when stored under argon in a -20°C freezer.  The

formate beads were soaked in a 10 µ L drop of RA solution for 20-40 minutes, then

rinsed in a 10 µ L drop of tissue culture media 3 times for 5 minutes each.  This final step

helps remove the DMSO from the beads, and the red dye in the tissue culture media

stains the beads, which in turn helps make placement easier.  The beads were then

implanted into the hindbrain or midbrain of an embryo using the technique described in

the caption of Figure 4.1 below.
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Figure 4.1 Bead implantation. (A) A 4x view of a stage 9 embryo with a bead

(marked by 1) implanted into the midbrain of the embryo. To place the bead, a

hole was torn in the vitelline membrane (marked by 2) using an electrolytically

sharpened tungsten needle.  The needle is then used to incise a small section of
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the (potentially) closed neural tube at the mid and hindbrain level (see Figures

3.1.7 through 3.1.9).  The bead is plucked from a dish with a pair of #5 forceps

and placed into the hole then pushed under the vitelline membrane.  After that, the

bead is pushed from above the vitelline membrane into the neural tube and

maneuvered into the desired position.  Due to the surface tensions of the fluid, it

is not possible to actually place the bead into the right position and expect it to

stay there, especially if the vitelline membrane is completely removed.  The white

speck just anterior to the bead is a piece of eggshell that fell into the work area.

(B) This 5x picture of a different embryo was taken 8 hours after bead

implantation.  The embryo is now at HH stage 12 and is starting to turn, but the

bead (marked by 3) is still clearly visible in the midbrain.

After the bead implantation, the eggs were returned to the incubator for 6-8 hours.

The embryos were then harvested and fixed in 4% paraformaldehyde solution either

overnight at 4°C or for 1 hour at room temperature.  After the paraformaldehyde

treatment and a rinse in phosphate buffer saline (PBS), the embryos were dehydrated

through a series of methanol/PBS washes, and were placed in a –20° C freezer for

storage.  Embryos stored in this manner can be kept in a freezer for upwards of a year,

but in this case they were not in the freezer for more than a couple weeks.  After storage,

the embryos were re-hydrated with through a series methanol/PBS washes and subjected

to in situ hybridization.

In situ hybridization is a molecular biology technique that allows the

identification and localization of a particular nucleic acid sequence, in this case a specific
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strand of messenger RNA.  Recall that the Central Dogma of Molecular Biology states

that mRNA is the ribonucleic acid transcribed from DNA and is the template from which

a protein is translated.  One method of detecting the mRNA for a particular protein in the

organism is to create a probe: a complementary mRNA strand with specially modified

nucleic acids.  If the mRNA of interest is present in an organism, the probe will stick to

it.  The excess probe is then washed away, and an antibody to the modified nucleic acids

is added to the mix.  Finally, a dye that reacts to the antibody is added and the result is a

visual readout on the location of the mRNA of interest.

Despite the brevity of the description, this process takes 4 days to complete, and

so only one experiment can be performed a week.  The complete protocol used can be

found in Appendix C, and is a modified version of one described in the literature

(Wilkinson, 1992).

The probe used for the assay was Hoxa1, and typical results are shown in Figure

4.2. The most striking feature of the expression pattern in Figure 4.2B is that there

appears to be a gradient of expression in section of the neural folds marked by the arrows.

This is, in fact, a real measurable gradient as seen in Figure 4.3.
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Figure 4.2 Hoxa1 expression patterns. (A) 6.3x picture of a stage 11 embryo

stained for Hoxa1.  The purple/blue stain marks the localization of the gene, and

the deeper the color, the stronger the expression.  A control bead soaked in only

DMSO was implanted into the midbrain of a stage 9 embryo and collected at

stage 11. This picture is a bit unique in that the bead remained in place through

the entire in situ protocol.  This is not often the case, as the bead usually becomes

dislodged during one of the many washes. Hoxa1 is clearly expressed (as
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evidenced by the purple color) in the neural tube posterior to the point marked by

the arrow.  As expected, there is no Hoxa1 expression near the bead (B) 5x

picture of a stage 11 embryo stained for Hoxa1. An RA coated bead was

implanted into the midbrain at stage 9.  Notice the strong purple expression of

Hoxa1 in the area between the black arrows.  This picture is typical of the results,

but is particularly nice in that the bead stayed in place and the expression of

Hoxa1 near the bead is so prominent.  If the bead is implanted at ages older than

stage 10, there is a reduced chance that there will be any change in the expression

of Hoxa1.  This is compared to earlier stages when the hind and midbrain are still

able to respond to the RA, and is consistent with other reports of RA perturbation

experiments (Dupe and Lumsden, 2001; Gale et al., 1996).

 

Figure 4.3 Hoxa1 expression near the RA bead.  This closeup of Figure 4.2

focuses on the expression of Hoxa1 near the RA coated bead.  There is an area of
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expression just posterior to the bead that extends nearly 50 microns from the bead,

and the expression in the neural tube is evident, especially on the right side. Using

the 510LSM image analysis software from Zeiss, the change in intensity was

measured along the red trajectory, and the results are show in the chart above.

The ordinate is pixel intensity, and the abscissa is the microns along the path.

Recall that lower intensities correspond to darker colors.  Along the120 micron

path the intensity pixels changes about 20%, with the first 40 microns holding

relatively steady, followed by a gradual change starting before the bend in the red

arrow.  After a gradual change along the next 40 microns of the path, the intensity

values level off to background intensity.

Determining the number of RA molecules on the bead can only be done in an

indirect way.  A study showed using radioactive RA that after about 30 minutes,

approximately 25% of the radioactivity in the solution had been depleted (Eichele et al.,

1984).  Therefore, assuming a concentration of 10−3  M for the solution a theoretical

maximum uptake by the bead is approximately 2.4 ×1012  molecules.  As for the

depletion, approximately 40% of the RA is released by the bead in the next 8 hours

(Eichele et al., 1984; Langer and Peppas, 1981).  This means that the bead is, in effect, a

saturating source with over 9.6 ×1011 molecules released from the bead into the

surrounding tissue during the 8 hours it is in the embryo.
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Bead Model

Modeling the effects of the RA soaked bead proceeded concurrently with the

laboratory work.  The simulation was modified to provide a constant saturating source of

RA diffusing laterally into the tissue.  At each time step anywhere from 20 to 2000

molecules of RA were introduced into each cell.  This effectively provides a saturating

source, because each of the cells contains approximately 2000 free receptors for the RA.

The source is not symmetric, as it appears from the position of the bead that it is able to

provide more RA to the anterior cells as compared to the posterior cells.  Recall that the

Hoxa1 mRNA transcription was implemented used a combination of a Hill function and

first order reaction.  The accumulation of transcription factors (in this case the bound

RAR/RXR dimers), would lead to the activation of the Hoxa1 gene, and once this

occurred the gene was activated and mRNA could be transcribed.  But with the large

accumulation of bound dimers provided by the constant source of RA, there was little

chance that the gene would become unactivated.  If a bound dimer dissociated from the

gene, another was present to take its place.  This implementation does not allow for a

differential in Hoxa1 expression due to varying amounts of RA.  This results in an

indiscriminate up-regulation of Hoxa1 as shown in Figure 4.4A below.

Because the results did not accurately capture the new data, the model required a

change to incorporate the data gathered from the embryo.  This is in accordance with the

quote from Hamburger at the beginning of the chapter.  Therefore, the model was

changed so that the Hoxa1 mRNA was transcribed using a proportionality function (i.e.,

the probability of transcription of Hoxa1 mRNA proportional to the number of bound

RAR/RXR dimers present) instead of the sequential Hill equation to activate the gene,
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and a first-order reaction transcription from the activated gene.  The other change to the

model was the deletion of the parameters for the activation/unactivation of the Hoxa1

gene.  After making these changes, the model was able to capture the results that were

gathered in the laboratory, as seen in Figure 4.4B.

Figure 4.4 Hoxa1 expression from a constant RA source. (A) Notice that there

is no visible change in the levels of mRNA for Hoxa1 due to the differing levels

of RA.  Increasing the number of free receptors by an order of magnitude does not

affect the qualitative results.  Because the bead was kept in the embryo for only 6-

8 hours, the model was stopped after 8.1 dpc. (B) After making a change that ties

the transcription of Hoxa1 to the number of transcription factors present, the

model now captures the type of behavior seen in the lab, namely more RA leads,

in general, to a stronger expression of Hoxa1 mRNA.  There is still moderate
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expression in the anterior (top) end of the figure however, maybe more than one

would hope.  This is not terribly surprising however, given that 200 molecules of

RA are introduced at each time step and they have a cumulative effect.  But in the

posterior (bottom) section of the figure, in which there are 10 times fewer RA

molecules introduced at each time step than in the anterior end, the expression is

lower in general.  Most importantly, the strongest expression of Hoxa1 mRNA in

Figure 4.4B is nearest the largest collection of RA, i.e., the center of the figure.

This is not true in Figure 4.4A: More RA does not in general lead to a stronger

expression of Hoxa1 mRNA.

The changes to the function for the transcription of Hoxa1 were made to the

baseline model, and the wild-type scenario was run again.  The results of the simulation

are shown in Figure 4.5 below.



124

Figure 4.5 Wild type.  This time slices in this picture are exactly the same as in

Figure 3.7.  Notice that the results are qualitatively the same.  The only changes to

the parameters were the deletion of the cell division, and a change in the

transcription rate of Hoxa1.  It might be tempting to make a comment about the

number of blank cells in the second column of the Hoxb1 and Hoxb2, but any

conclusions would be erroneous; the only difference between that column and the

first column is the random number seed used.  This results shows that the model

was insensitive to this change in the implementation of Hoxa1 transcription.

An experiment that was relevant to the model under investigation provided a test

of one of the key interactions of the model.  The resulting data led to a change in the

implementation of the RA and Hoxa1 connection.  The gradient of expression resulting

from an RA coated bead has not been reported in the literature, and this novel result

continues to support the view that RA concentration plays a role in the patterning of the

hindbrain.
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Chapter 5: Summary

Simple interactions can have consequences that are not predictable by

intuition based on biological experience alone.

- Lee Segel, 1980

The stochastic simulation algorithm model captures the timing of several Hox

gene expression patterns in wild-type animals, and in silico simulations performed as a

check of key interactions produced results similar to in vivo experiments.  During the

course of building the model, the in silico investigations suggested that an experiment

concerning the connection of retinoic acid and Hoxa1 would be enlightening.  A new

experiment was designed to investigate the interaction of these elements in vivo, and the

corresponding experiment was performed in the model.  The resulting data suggested that

an implementation decision was incorrect.  Based on these results the model was

modified to encompass the new data, without losing the fit to the original data set.

In addition, the in silico experiments yield intriguing predictions that have yet to

be thoroughly examined biologically.   For example, the mutation experiments in which

5’ RARE is mutated predicts that Krox20 expression is down-regulated in rhombomere 5

(Figure 3.9C).  The simulation also suggests that when Hoxb1 is mutated, there is an up-

regulation of Krox20 in rhombomere 4, and a down-regulation of Hoxb2 and Krox20 in

r5 (Figure 3.8C).  The formal nature of the model calls attention to these simple test
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experiments, and checking predictions will lead to valuable insight into the regulatory

network.

If the model predictions are correct, the tool will allow a deeper investigation into

the nature of the components and allow researchers to ask more complicated questions

about the nature of the interactions.  On the other hand, if the model predictions turn out

to be incorrect (as was the case in Chapter 4), the experimental data leads to a refinement

of the model that incorporates the new results.  The revision will then offer different

predicted relationships that will stimulate further experiments.  This investigation will

ultimately lead to a better predictive tool for the next round of experiments.  Indeed, this

is one of the great strengths of the simulation:  as the components of the model are given

greater support, it can be used to perform in silico experiments to identify the in vivo

experiments that will be the most enlightening.

In addition to serving as an organizational tool for presenting newly established

interactions, the model can also be used to investigate hypothesized molecular

interactions.  This was the case for the Krox20/Hoxb1 connection that was the basis for

the experiment described in Appendix A.  Using it for this purpose will allow researchers

to explore the consequences on the network as molecular connections are added or

removed.  The simulation itself is designed in a way to make modifications easily, and

adding new pieces is a modular process.  This will inevitably need to occur as new data

are presented which require updating the regulatory network (Figure 3.5) accordingly.

An example of this is work currently in progress that seems to suggest Krox20 contains

an auto-regulatory element (P. Charnay, personal communication).
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It should also be possible to extend this model in ways that are not only spatial

and temporal, but which incorporate more of the known biochemistry of the system.  For

example, extending the model to include the next segment anteriorly, rhombomere 3,

would allow an investigation into the early r3 expression of Krox20 (Schneider-

Maunoury et al., 1993).  On the temporal front, it would be instructive to include the

proper mechanisms to capture later events such as the progressive down-regulation of

Hoxb2 in r3 by 10.5 dpc (Maconochie et al., 1997).

Biochemical improvements could include adding more genes, implementation of

the mRNA modification and transport steps, and a better characterization of the genes or

cofactors.  Adding Hoxa2 is an obvious choice because of the connection to the genes

already in the network: it has been shown that Krox20 is directly involved in the

transcriptional activation of Hoxa2 (Schneider-Maunoury et al., 1997).  New information

concerning these genes appears on a regular basis and that provides the information for a

better characterization.  For instance, it has recently been observed an early low level of

Hoxb2 expression in rhombomere 5 appears to be due to a retinoic acid response element

on the Hoxb1 3’ RARE (R. Krumlauf, personal communication). All of these

improvements will allow for a better understanding of the interaction and timing of the

events.

There is also reason to believe that the model also can play an important role in

explaining differences between species; for example Hoxb2 expression in r3 and r5 is

much lower in chick than in mouse (Vesque et al., 1996).  The differences may be due to

regulatory sequences that have yet to be fully characterized, and which can be easily

updated in the model once they are known.  It has also been suggested that this may be
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influenced by different basal transcription rates between the species  (R. Krumlauf,

personal communication).  Once the mechanisms for Hoxb2 regulation are in place, it

would be possible to use the model to explore this issue.  An investigation addressing this

would include changing the basal transcription rates, the binding affinity parameters, and

experimenting with different transcription factors configurations.

Conclusion

This thesis has shown that a tight coupling of modeling and experimental work

provides a valuable framework for investigating biological problems; a framework that

will become even more valuable as the amount of data increases.  The act of constructing

the model identified interesting biology questions, and the answer to one of those

questions was used to enhance the model.  Once the model was complete, the in silico

experiments continued to identify potentially interesting biological questions.

The investigation into the early Hox genes also shows the success of using a

stochastic simulation algorithm to model a gene regulatory network.  This is especially

important in situations where the fluctuations in the system appear to be a factor, because

the stochastic approach is able to incorporate them in a physically intuitive and

meaningful way.  This investigation has also demonstrated that the SSA methodology has

a wider applicability than the previous intracellular investigations.  It can be adapted to

encompass intercellular interactions, and the use of a priority queue to time order the

multi-cellular system is an important addition to the method.  The laboratory work

stimulated by the model has yielded important biological results.  The repression

experiment in Appendix A shows that, as it stands, the construct does not successfully
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repress Hoxb1.  The RA perturbation experiment in Chapter 4 suggests that the response

of Hoxa1 to RA is concentration dependant.

It is expected that continued efforts in refining and using these sorts of models

will result in a greater understanding of how computer simulations can be used to

produce new biological insights.  It is hoped that the success of this model will encourage

more biologists to investigate the benefits of computer modeling in general, and

stochastic simulation in particular.  There is evidence that this work is already being

noticed in the biology community: the author recently discovered that an article destined

for the journal Developmental Biology referenced this work.

In a lesson for the mathematicians, this work also demonstrates a common

problem with working in biology, one that was addressed in the general comments about

modeling in the first chapter.  There are too many “right” models, and the available

laboratory data does not always allow for the ability to distinguish between them.  This

was the case with the first incarnation of the model: using a Hill function to produce an

activated form of Hoxa1 was reasonable choice given the information in the literature.

Also supporting this choice were the results of the model: the simulation reproduced the

wild type expression pattern, and computer perturbations yielded results similar to their

laboratory counterparts.  When new data were generated that tested this component, it

was shown that the original implementation was not correct, and the model was changed

to capture the dependence of Hoxa1 transcription the quantity of transcription factors in a

more explicit way.  The new model is therefore better in so far as it captures more of the

laboratory data.  However, as is seen in the similarity between Figures 3.6 and 4.5, the

models cannot be distinguished from each other on the basis of the output alone.  This
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shows the importance of the laboratory work in generating data that clarifies aspects of

the model.

Finally, the systems biologists should see this work as a successful example of

what they have been preaching: an integrative approach to biology problems will provide

insight into how the systems behave.  Insight that is not possible from approaching the

problem using modeling or laboratory experiments alone.  As more such successful

interconnected effort appear, it is hoped that both biologists and mathematicians will look

beyond the difficulties of interdisciplinary work that is mentioned in the quote from

David Botstein at the beginning of Chapter 3, and instead focus on its enormous benefits

to both fields.
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Appendix A: Hoxb1 perturbation

Perturbation experiments have been well worked out in some systems (most

notably yeast and Drosophila), but they are harder to do in higher organisms.  This is not

to say that they are impossible, and the following section describes an experiment that

was designed to investigate a component of the Hox network.

As mentioned previously, a group has presented a model that asserts that Hoxa1

and Hoxb1 are involved with the repression of Krox20 (Barrow et al., 2000).  This

supposition was implemented in the baseline model presented in Chapter 3.  However,

there are reasons to believe that their model might not be accurate. In the Hoxb1null

mutant there are no changes in the level of Krox20, and in the Hoxa1null/Hoxb1null double

mutant embryos there is no sign of Krox20 in rhombomere 3 and reduced expression

rhombomere 5.  In addition, the Hoxa1null mutant mouse shows reduced levels of Krox20

in rhombomere 5 (Gavalas et al., 1998; Studer et al., 1998).  Part of the difficultly in

interpreting these results is that the rhombomeres in these mutants are often altered.  For

instance, in the Hoxa1null/Hoxb13’RAREnull mutant, a territory with new characteristics

forms in the place of rhombomere 4 (Gavalas et al., 2001).  But the rhombomere

alteration does not always occur; rhombomere 3 appears to be normal (using both visual

and in situ assays) in the Hoxa1null/Hoxb1null double mutant (Studer et al., 1998).  Taken

together, the evidence does not seem to support the model of Hoxb1 and Hoxa1 playing a

role in repressing Krox20.  In an effort to test this conjecture, an experiment was

designed to perturb the system using a specially designed piece of DNA.  This
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experiment would directly address the predicted changes in Krox20 expression due to the

knockout of Hoxb1

A detailed study of the Drosophila protein Engrailed showed that it was able to

repress transcription activity (Han and Manley, 1993), and it has been fused to other

proteins to provide a dominant negative like activity in a system.  However, this fusion

has been done primarily in Xenopus and fish (cf. LaBonne and Bronner-Fraser, 2000;

Vignali et al., 2000).

Starting with the CS2+ vector (R. Rupp and D. Turner), Heather Marshall from

the Stowers Institute for Medical Research inserted the cDNA for Hoxb1 into the

polylinker between the BamH1 and Xho1 sites.  Into this construct she inserted the

Engrailed repressor in frame at the unique XmaIII site of Hoxb1.  The modified protein

with the Engrailed repressor would attach to the Hoxb1 binding domain and would in turn

repress the expression of Hoxb1 due to the auto regulatory loop.  In addition, it would

repress any gene that Hoxb1 could attach to.

 Her original plan for this construct was to use the construct for mRNA fish

injections.  This is a relatively easy procedure for a variety of reasons, not the least of

which is that one cell fish embryos are easily harvest and manipulated.  But, after making

this construct, Dr. Marshal did not ever use it in fish and she provided it to the author for

use in a chick perturbation experiment.

Introducing this DNA in a way that it becomes active would be a fantastic test of

the model.  If the DNA could in fact repress Hoxb1 expression, then assaying for Krox20

would allow for another piece of evidence concerning the supposed Hoxb1-Krox20

connection.
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On the modeling side, the results of the Hoxb1/Eng construct produces results that

are very similar to those of the Hoxb1 mutant in Chapter 3.  This is evident in the results

shown in Fig A.1 below.

Figure A.1 Hoxb1/Eng model results. These results are very similar to the

Hoxb1 mutant presented in Chapter 3 (Figure 3.5). There is a near total down-

regulation of Hoxb1 which, combined with the normal fading of Hoxa1, allows

for the up-regulation of Krox20 in rhombomere 4. Hoxb2 does appear in r5 due to

the Krox20 up-regulation, but is absent in r4 because of the lack of Hoxb1.   These

simulations were run before making the change to the mechanism for transcribing

Hoxa1 brought about by the work described in Chapter 4.

The similarities between the Hoxb1 mutant in Chapter 3 and the Hoxb1/Eng

construct are not unexpected at all.  In both cases the dominant effect is the repression of



136

Hoxb1.  However, in the Hoxb1/Eng construct, there is an occasional low level of the

Hoxb1 product still as not all of the system would be bound.  Therefore, the lack of

Hoxb1 and Hoxa1 would result in an expansion of Krox20.  It is this expansion of Krox20

that the experiment was designed to test.

Electroporation

Introducing the Hoxb1/Eng construct cannot be accomplished in the same manner

as a 1-cell fish injection, but a different technique that accomplishes the same result,

namely having the foreign DNA incorporated into the organism, can be undertaken.

Electroporation is a technique for introducing foreign DNA into cells.  The method

involves breaking down the membrane of cell walls through the use of an electric pulse.

In addition to creating holes in the membrane, the electrical gradient drives the negatively

charged DNA into the holes in the membrane.  There are a variety of variables that

contribute to the effectiveness of the electroporation including the size and placement of

the electrodes, but by far the most important component is the duration and voltage of the

pulse.  In general, 3-5 pulses of 50 microsecond duration and between 7 and 25 volts

works well.  Excellent technical reviews can be found in (Itasaki et al., 1999; Swartz et

al., 2001).  One very nice benefit of the electroporation is that because of the electrical

gradient, only cells on the positive side of the neural tube have their cell walls broken

down, and only one half of the embryo is exposed to the DNA.  This provides an

excellent internal control, as one side of the embryo is experiment, and the other side is

normal.
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Electroporation can be a tricky procedure, and in order to check that the

electroporation worked correctly, an additional control was required.  To this end, an

IRES GFP construct was purchased from Clontech.  The internal ribosome entry site

(IRES) is a sequence of DNA that a ribosome recognizes and will attach to.  This leads to

the creation of green fluorescent protein (GFP) mRNA, and when it is translated into

proteins, a cell that has incorporated this DNA will glow when excited with the proper

wavelength of light.

To create this construct, the Clontech IRES-GFP module was removed using the

restriction enzymes XhoI and XbaI then cloned into the Hoxb1 Engrailed construct just

after the stop codon for the Hoxb1.  The result is a bi-cistronic message: one that has two

gene products (in this case the Hoxb1/Eng repressor and the GFP) from adjacent stretches

of the same mRNA.  In general the message from the second coding region will be

weaker than the first.  If the electroporation is successful, the GFP will be glowing and

that also signifies that the Hoxb1/Eng fusion protein has been created.  It is important to

remember that it does not provide any information about if the Hoxb1/Eng repressor

message is working correctly.

Embryos

Fertile pathogen free chicken eggs were acquired from Charles River Laboratories

and incubated at 38°C until the proper stage of development, usually between 28-34

hours.  The eggs were rinsed with 75% alcohol and 3 mL of albumin was removed.  The

eggs were windowed and a solution of .1% food coloring (equal amounts of FD&C Red
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40 and FD&C Blue 1 from Spectra Colors Corp.) in Hanks’ Balanced Salt Solution

(HBSS) was injected beneath the blastoderm to provide contrast.

After windowing the eggshell and injecting the dye, a small amount of HBSS was

added to the top of the embryos to keep it moist.  A tungsten needle was then used to cut

a hole in the vitelline membrane near the hindbrain of the embryo.  A solution of ~1ug/ul

of the Hoxb1/Eng/IRES GFP construct (with a small amount of Fast Green dye included

to make the injection easier to see) was injected using a quartz micropipette into the

lumen of the neural tube.  Electrodes made from platinum wire were laid flat on the area

opaca, parallel and lateral to the embryo.  About 1-2 mm of contact was made with the

area opaca, and the electrodes were approximately 5 mm apart. 3-5 current pulses of 20-

40 V and 50-100 ms duration were applied.  More HBSS or Ringer was added to the top

of the embryo, the egg was resealed with packing take and placed back into the incubator

for 8 hours.  The embryos were then screened for fluorescence using a Leica microscope.

Positive embryos (Figure A.2) were harvested and fixed in 4% paraformaldehyde (PFA)

solution overnight at 4°C.  The next day they were dehydrated through a series of

methanol washes, and were placed in a –20°C freezer for storage.  Embryos stored in this

manner can be kept in a freezer for upwards of a year, but in this case they were not in

the freezer for more than a couple months.  After storage, the embryos were re-hydrated

into phosphate buffer saline (PBS) and whole mount in situ hybridization was performed.
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Figure A.2 Glowing hindbrain. This picture shows a 6.3x magnification of the

hindbrain of a stage 11 embryo after electroporation at stage 7.  This picture was

taken in ovo during the screening process for embryos in which the

Hoxb1/Eng/GFP construct was successfully incorporated into the cells during
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electroporation. The midbrain/hindbrain boundary is marked by (A), and the

boundary between the third and fourth rhombomeres is marked by (B).  Despite

the name of GFP, the cells in this instance were colored cyan in Photoshop to

provide contrast to the anatomy of the embryo.

This experiment was performed using the embryos that fluoresced strongly (as in

Figure A.2) and after performing the in situ for Hoxb1, the gene that would be affected if

the construct were working correctly, there was no visible difference between the control

and the experimental embryos.

With the negative results from this experiment, it became clear that something

wasn’t working right, but it could be a variety of things.  First of all, the construct may

not be working at all, or it may not have been introduced into the embryo at an early

enough time point.  If this occurred, the Hoxb1/Eng construct would not be able to shut

down the system that was already adequately initiated.  The later problem was the logical

one to test, and it was initially presumed to be easier. It turns out that it was anything but.

In an experiment initially performed by Kristen Correia at the Stowers Institute,

the original construct with the CMV enhancer was electroporated into chicks at HH stage

4 (Hamburger and Hamilton, 1951).  This experiment is very different than the one

described earlier as there is no neural tube to hold the DNA solution.  The entire

procedure is described below.

After performing a dozen of these electroporations, it was reported that there was

only very low level of fluorescence.  Further investigation into this led to the conclusion

that the CMV enhancer doesn’t work very well at these early stages of development, and
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the CS enhancer should be used instead.  CS is a combination of the CMV enhancer and

the Chick Beta actin promoter.

The backbone of his LZRS-CA-H2B-YFP construct (originally used for the

creation of a retrovirus for infection of quail) was the basis for the new Hoxb1/Eng

repressor (courtesy R. Lansford). The cloning was done in two stages. The H2B-YFP

module was removed using the NotI and XhoI enzymes, and the Clontech IRES GFP

module was inserted into the LZRS-CA backbone after the band was isolated using a

double digestion with XhoI and Not1.  At this point the Hoxb1/Eng module was removed

from the CS2+ construct using BamH1 and XhoI, commercially available Xho linkers

(NE Biolabs) were added, and the resulting DNA fragment was cloned into the Xho site

of the LZRS-CA-IRES-GFP.  In yet another example of the difficulty in laboratory work,

the work described in this paragraph took over six weeks to perform.

The construct (hereafter called CS-Hoxb1/Eng) was tested by transfection into

two different cell lines and the results are shown in Figure A.3.
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Figure A.3 Transfected cells. 63x magnification pictures of (A) Chinese hamster

ovary and (B) 293 GPG cells transfected with the CA-Hoxb1/Eng construct. The

cells were transfected using a 1 µ gram/µ liter DNA solution combined with

Superfect (Qiagen).  Superfect is a specially designed dendrimer that forms a

complex with the DNA of interest and enters the cell using negatively charged

receptors (Qiagen, 2000; Tang et al., 1996).  Both these images were acquired on

a Zeiss 410 inverted microscope.

The successful glow to the cells was promising, and the author visited the Stowers

Institute for medical research to learn how to electroporate chick embryos at a young age.

As mentioned previously, the procedure for this type of electroporation is much more

difficult since there is no neural tube to contain the DNA.  Instead, the DNA must be

injected between the vitelline membrane and the embryo directly over the node.  If the
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DNA spreads beyond the translucent border of the embryo, it was injected on top of the

vitelline membrane. If the DNA is localized in a small area, the yolk was injected.

 The electroporation must be done with electrodes oriented such that the positive

terminal is inserted into the yolk beneath the embryo, and the negative terminal is on top

of the grove containing the DNA.  Figure A.4A shows the major landmarks in a stage 4

embryo which provides an orientation for this process, and Figure A.4 B is a picture of

the custom electrodes that were created for the electroporation.
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Figure A.4 Stage 4+ embryo. (A) This embryo, stained for the gene Fringe

(probe courtesy of C. Tabin), highlights the important landmarks of a late stage 4

embryo. Anterior is towards the top of the page, posterior is toward the bottom.

The primitive groove extends along the anterior/posterior axis between the

arrows.  Hensen’s node (which is strongly expressing Fringe, as evidenced by the

dark blue color) is clearly marked, and the neural folds (which eventually fold

over and join together to become the neural tube) are on either side of the neural

grove and are also expressing Fringe toward the anterior part of the embryo (B)

Electrodes that were used for the electroporation experiments.  These were built

using 24 gauge platinum wire from a Caltech supply room, and others parts from

a local electronic supply (MarVac).  The electrodes are designed in such a way to

make the configuration easily changeable for the proper application.  The

electrodes at the top are for stage 4/5 electroporation in which the electrodes need

to be above and below the embryo, while the electrodes in the middle of the

picture are for later stages in which the neural tube is more fully formed.

A construct containing CA driving GFP was used as a control for testing the

efficacy of the technique using the equipment in the lab. An example of a control embryo

is shown in Figure A.5.
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Figure A.5 CA-GFP embryo. This embryo was electroporated with CA driving

GFP at stage 4 and collected at stage 12+.  The early electroporation was done in

the primitive streak and the node and the neural cells are strongly labeled.  This

picture is a 6.3x view of taken under a long pass GFP filter that allows both the

fluorescent and white light to pass. The otic vesicle (OV) is clearly highlighted, as

are streams of neural crest cells populating the head (A).  A collection of vertical

cells at B rings three somites.  Note that the expression is much stronger than the

hindbrain in Figure A.2.

Over 70 embryos were electroporated with the CS-Hoxb1/Eng construct at the

Stowers Institute, but none of them glowed under the fluorescent scope. This was

problematic, especially considering the results of the tissue culture tests, but there are

several possible reasons why they didn’t glow.  The most likely one is that the second
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message from the bi-cistronic structure wasn’t effective.  Despite the lack of

fluorescence, the embryos were harvested and prepared for in situ hybridization as

described in Chapter 4.

The probe used was Hoxb1 (courtesy of Robb Krumlauf), and the initial results

were potentially promising as they looked very different from wild type, both seen in

Figure A.6.

 

Figure A.6 Hoxb1 expression in wild-type (A) and CS-Hoxb1/Eng (B) These

embryos, stained for the gene Hoxb1 shows a potential difference in the control

and experimental embryos. In the wild-type embryo, the r4 (marked by the black
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arrow) and neural tube expression is clearly seen. In addition, there is no

expression in the mid or forebrain which is as expected. In the experimental

embryo in (B) there is no expression in r4 (marked by the black arrow), no

expression in the neural tube, but there appears to be expression in the mid and

forebrain.

This pattern seen in Figure A.6 was visible in a half dozen embryos, but there

were some concerns that the pattern was not real and was, in fact, an artifact brought

about by a staining condensate that collected in the neural tube. To check this concern, an

antibody treatment was performed on the embryos.  The antibodies used would probe for

GFP and Krox20.  The GFP antibody (courtesy of H. McBride) was used to test if the

electroporation of the construct worked, as it might be the case that the level of

expression of the GFP was just too low to visualize with light microscopy.  The Krox20

antibody  (purchased from Covance) was used as the experimental assay, as it would test

the connection between the Hoxb1 and Krox20.

For the antibody procedure, the embryos were rinsed in PBS 3 times for 5 minutes

each.  The PBS was then replaced with a 1:50 concentration of primary antibody in PBS

and rocked at room temperature for 2 hours.  Another set of 3 PBS rinses followed,

followed by a 1:50 concentration of secondary antibody in PBS. After two hours of room

temperature rocking with the secondary, the embryos are given their final set of PBS

rinses. The secondary antibody contained the fluorescent tag CY-3, so the embryos were

screened under a fluorescent microscope.
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The GFP antibody worked well against the control embryos that had been

electroporated with CA-GFP, and there was clear co-localization between the different

colors.  However, there was no sign of fluorescence from the experimental embryos that

were electroporated with CA-Hoxb1/Eng.  In addition, the Krox20 antibody didn’t work

in any of the embryos, control or experiment.  This could be for a variety of reasons, but

the first line of investigation should be the fixation process. For instance, when using

HNK-1, an antibody which stains migratory neural crest cells, it has been determined that

anything more than a 10-minute fix in 4% PFA solution will cause the staining to fail, as

will using Bouins’ fixation (H. McBride, personal communication).  This is unlike in situ

hybridization in which the amount of fixation time or the fixative used is not an issue.

Indeed, leaving embryos in 4% PFA for 2 days at room temperature does not noticeably

affect the in situ hybridization (data not shown).

While considering the next step to take in this investigation, caveats to this

experiment appeared from Andy Groves, a former post-doc at Caltech who is now at the

House Ear Institute.  Using a construct that is very similar to the CS-Hoxb1/Eng

repressor, Dr. Groves used a Dlx engrailed repressor construct to look at ear formation.

After electroporating this construct in at stage 4, they observed a very clear phenotype:

the failure to form a proper ear.  As a control they created a variation of their Dlx-

engrailed-repressor construct that cannot bind DNA due to point mutations in their

homeobox.  It was a surprise and a disappointment to discover that the same phenotype

appeared.  Dr. Groves is still investigating this phenomenon, and has been provided the

CS-Hoxb1/Eng construct to use in his experiments.
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This means that a rigorous control for the CS-Hoxb1/Eng experiment would

require the electroporation of a construct with a point mutation in the homeobox. This

fact, combined with the numerous issues that still required troubleshooting, forced this

experiment to be put on hold.  It should certainly not be considered a failure, as

significant steps have been accomplished in making this new construct to test this

connection between Krox20 and Hoxb1.

Appendix B: Protocols

Whole Mount In Situ Hybridization

This protocol is designed for young (<20 somites) chick embryos that do not need

to be treated with Proteinase K.  It is based on a protocol supplied by Helen McBride who

also drew upon information from Reinhard Koester, Andy Groves,  and David Wilkinson

(Wilkinson, 1992).  All solution volumes (except the pre-hyb solution) are the amount

needed for each vial being processed, assuming that no more than 10 ml will be used for

each wash.  Multiply accordingly if necessary.

General Comments

For performing in situs, there are a few ways to handle the samples.  Doing

everything with 15 ml Falcon tubes is possible, but defiantly the archaic way to go. 12

well culture chambers are nice in that it is much easier to transfer liquids in and out. In

addition, empty wells can be used to discard your waste liquids so you can rescue any

embryos that may have inadvertently been sucked up.  Another way is to use Reactivials
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with the cover insert replaced by a fine nylon mesh (Shandon biopsy bags), a method

developed by the author.  This fluid can then be poured out without losing the embryos.

In addition, a suction device can be used, but be warned, it is still possible to suck up the

embryos through the mesh. Forcing liquid back in with a pipet is easy.  The embryos can

stick to the bag, but if this happens, they can be pushed back into the tube with fluid

pressure.

Day 1 Rehydration and Hybridization

Solutions

PBT

Tween 20 .1% 500ul

1x PBS 500ml

Final Volume 500.5ml
Use PBT the same week as you add the Tween.

Pre-hybridization solution

Formamide 50% 25 ml
Depc SSC 5x 12.5 ml 20x Depc SSC

yeast RNA 50ug/ml 125 ul of 20 mg/ml tRNA

SDS 1% .5 g

Heparin 50 ug/ml .0025 g
Depc H2O 12.375 ml

Final Volume  50 ml
Pre-hyb mix can be stored for several weeks at -20°C. Make sure to use SSC made with

Depc H2O.



151

Hybridization solution

Pre-hybridization buffer with probe added.  A final volume of 1 ug probe per ml is

typical. My probes are washed off a Qiagen column with 50 ul water and added to 150 ul

of pre-hyb. I then add 2 ul of this to 100 ul of pre-hyb to make the hybridization solution.

Protocol

1) Re-hydrate embryos through a Methanol series (75%; 50%; 25% Methanol/PBT)

for 5-20 minutes each and wash 2x 5 minutes in PBT.

2) Add .5 ml pre-warmed pre-hyb buffer and swirl embryos around.

3) Replace with 1 ml warmed pre-hyb buffer and let rock at 65°C for 1-2 hours.

4) Replace with .5 ml of hyb solution and rock overnight at 65°C.

Day 2 Post-hybridization Washes and Antibody Incubation

Solutions

Wash Solution 1

Formamide 50% 15 ml

SSC, pH 4.5 5x 7.5 ml 20x SSC
SDS 1% 3 ml 10% SDS

ddH20 4.5 ml

Final volume 30 ml

Wash Solution 2

Formamide 50% 15 ml
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SSC, pH 4.5 2x 3 ml 20x SSC

SDS .2% 600 ul 10% SDS
ddH20 11.4 ml

Final volume 30 ml

Mab+Lev; Tween

Maleic Acid disodium salt 100 mM 2.4 g

NaCl 150 mM 1.315 g

Tween 20 .1% 150 ul
Levamisole 2 mM .07224 g

ddH20 150 ml

Final volume 150 ml

Add the Levamisole and Tween 20 on the day of use and filter. Levamisole is a

phosphatase inhibitor that should inhibit the native alkaline phosphatase and thus reduce

the background, but opinions vary as to the effectivenes of this treatment. In general, it

won't hurt, but it you forget to add it, you may not even notice the difference.  The Mab

solution can be used the next day.

Antibody (Ab) block solution

Blocking Powder 2% .16 g

Sheep serum 10% 800 ul
Mab+Lev; Tween 8 ml

Final volume 8.8 ml

Heat at 65°C with frequent mixing. After the powder dissolves, cool at 4°C until needed.

Antibody solution
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Anti-dig Ab .1% 2.5 ul

Blocking Solution 2.5 ml
Final volume 2.5 ml
Use chilled blocking buffer. Store at 4°C until needed. Pre-absorb Ab in block solution

for 1 hour before placing with embryos.

Protocol

Be careful during these washes. The embryos seem to be especially transparent and they

are prone to float and stick.

1) Wash 3x 20 minutes with pre-warmed solution 1 at 65°C with rocking.

2) Wash 3x 20 minutes with pre-warmed solution 2 at 65°C with rocking.

3) Wash embryos 3x 5 minutes in Mab+Lev;Tween at room temperature with

rocking.

4) Pre-block embryos in 5 ml Ab block solution for 2 hours at room temperature

with   rocking.

5) Replace with 2.5 ml Ab mixture. Rock gently overnight at 4° C.

Day 3 Post Antibody Washes

Solutions

Mab+Lev; Tween

Maleic Acid disodium salt 100 mM 2.4 g

NaCl 150 mM 1.315 g

Tween 20 .1% 150 ul
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Levamisole 2 mM .07224 g

ddH20 150 ml
Final volume 150 ml

Protocol

By Day 3 and the Mab washes, the embryos tend to sink and not stick to the sides of the

vials.

1) Wash 3 x 5 minutes in Mab+Lev; Tween at room temp with rocking.

2) Wash 5 x 30-60 minutes in Mab+Lev; Tween at room temp with rocking.

3) Wash overnight in Mab+Lev; Tween at 4° C with rocking. Note, you can also

wash at room temp for 2 hours with rocking and continue onto day 4.

Day 4 Alkaline Phosphatase Detection

Solutions

NTMT

NaCl 100 mM 600 ul 5M NaCL

Tris, pH 9.5 100 mM 3 ml 1M Tris

MgCl2 50 mM 1.5 ml 1M MgCl2
Tween 20 .1% 30 ul

Levamisole 2 mM .0144 g

ddH2O 24.87 ml

Final volume 30 ml

Add the Levamisole and Tween 20 on the day of use.

Staining solution
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Tween 20 .1% 2 ul

Levamisole 2 mM .000996 g
BMPurple 2 ml

Final volume 2 ml

Protocol

1) Wash 3 x 10 minutes in NTMT at room temperature with rocking.

2) Replace NTMT with 1 ml of Staining solution.

3) Cover with aluminum foil and let stain for at room temperature with rocking.

4) Check for staining completion. In can be difficult to determine when the stains are

done.  As a rule of thumb, staining will take at least two hours, but you can

continue staining until the background starts to come up.  In general, a dissection

microscope should be used to judge the staining intensity.  With most probes,

stain can proceed overnight at 4C with no problems. To speed the reaction, the

solution can be replaces several times when you see a precipitate forming.

Samples that will be sectioned will need to be over stained.

5) Rinse 2 x 5 minutes in PBT when staining is judged complete.

6) Post-fix in 4% paraformaldehyde for 1 hour at room temperature or overnight at

4°C.

7) Wash 2 x in PBT. If proceeding to gelatin embedding, proceed as normal. For

storage or paraffin section, dehydrate in methanol series and store.
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Stock Solutions

The following stock solutions are all computed for a final volume of 100 ml.

Depc H20

Depc .1 100 ul

ddH20 100 ml

Final volume 100.1 ml
Add Depc and let the solution sit overnight. Autoclave the next day.

5M NaCl

NaCl 5 M 29.22 g

ddH20 100 ml

Final volume 100 ml
Mix well and autoclave.

1M Tris, pH 9.5

Tris (base) 1 M 12.11 g

ddH20 100 ml

Final volume 100 ml
Mix well. The pH will initially be around 11. Add hydrochloric acid to reduce pH to 9.5.

1M MgCl2

MgCl2 1 M 20.33 g

DdH20 100 ml

Final volume 100 ml
Mix well and autoclave.
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20x SSC pH 4.5

NaCl 3 M 17.5 g

NaCitrate 300 mM 8.82 g

DdH20 100 ml
OR

Depc-H20 100 ml

Final volume 100 ml

pH with Citric acid to pH 4.5. If this is to be used for the Pre-hyb mix, use Depc-H$_2$0.

10% SDS

SDS 10% 10 g

ddH20 100 ml

Final volume 100 ml

Mix well and autoclave.

Chemicals

Anti-dig Ab Boehringer BM 1093 274

Blocking Solution Boehringer BM 1096 176

Formamide Fisher BP227-500

Heparin Sigma H8514
Maleic Acid disodium salt Sigma M9009

yeast RNA Boehringer 109 495

Electrode Construction

Strip both ends of the 16 gauge wire and solder on banana plugs.  Thread the

other end of the 16 gauge wire though a holder. Put the platinum wire into the middle of



158

the copper strands and solder.  The 16 gauge wire works well since the plastic coating

forces the electrodes to be about 4 mm apart. Use a continuity meter to check that the

connection is solid and that there isn't cross talk between the red and black sides. Apply

non-conducting epoxy to the end of the electrodes. Make sure that there is enough to

cover the joint between the platinum wire and the speaker wire.

Appendix C: Model Source Code

What follows below is the complete C source code for the model.  The source code can

be found on the CD-ROM as well.

main.c

/**********************************************************************
This stochastic reaction-diffusion code is designed to study the
problem of the binding of Retinoic acid binds to the retinoic acid

        receptors and the subsequent creation of the early members of the
        hox family: HoxA1, HoxA2, HoxB1 and Krox20

Retinoic acid is assumed to be produced at a "point-source"
located at the caudal section of the hindbrain and its distribution
is determined by diffusion.

        This code requires Hox.h as its header file. 'Hox.c' furnishes
all the routines that implement the physical effects of the reactions

        used as well as the diffusion code for RA,

        These functions are accessed by the Reaction[]() and Diffusion[]()
        functions, which are implemented as function arrays; this makes the
        bookeeping quite simple.

Usage: a.out seed [val] stop [val] write [val]

********************************************************************/
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#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include <sys/stat.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/times.h>
#include <time.h>
#include "Hox.h"
#include "header.h"
#include "UpdateAmu.h"
#include "ranlib.h"

char reactiontypes[NUM_FUNCS][25] = {
"MakeRA", /* 0 */

  "BindRA", /* 1 */
   "DecayRA", /* 2 */
   "MakeRAR", /* 3 */
   "DecayRAR", /* 4 */
   "UnbindBRAR", /* 5 */
   "DecayBRAR", /* 6 */
   "ActivateA1", /* 7 */
   "UnActivateA1", /* 8 */
   "TranscribeA1", /* 9 */
   "DecaymA1", /* 10 */
   "TranslateA1", /* 11 */
   "Decaya1", /* 12 */
   "ActivateB1", /* 13 */
   "UnActivateB1", /* 14 */
   "TranscribeB1", /* 15 */
   "DecaymB1", /* 16 */
   "TranslateB1", /* 17 */
   "SuperActivateB1", /* 18 */
   "UnSuperActivateB1", /* 19 */
   "TranscribeSuperB1", /* 20 */
   "RepressB1", /* 21 */
   "UnRepressB1", /* 22 */
   "AutoActivateB1", /* 23 */
   "UnAutoActivateB1",  /* 24 */
   "TranscribeAutoB1",  /* 25 */
   "Decayb1", /* 26 */
   "ActivateB2", /* 27 */
   "UnActivatedB2", /* 28 */
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   "TranscribeB2", /* 29 */
   "DecaymB2", /* 30 */
   "TranslateB2", /* 31 */
   "Decayb2", /* 32 */
   "Divide", /* 33 */

"ActivateKrox", /* 34 */
"UnActivateKrox", /* 35 */
"TranscribeKrox", /* 36 */
"DecaymKrox", /* 37 */
"RepressKrox", /* 38 */
"UnRepressKrox", /* 39 */
"TranslateKrox", /* 40 */
"Decaykrox", /* 41 */
"BindRXR",            /* 42 */

    "MakeRXR",            /* 43 */
    "DecayRXR",           /* 44 */
    "UnbindBRXR",         /* 45 */
    "DecayBRXR",          /* 46 */
    "Dimerize",           /* 47 */
    "UnDimerize",         /* 48 */
    "DecayDimer",        /* 49 */

"Complexa1",          /* 50 */
"Uncomplexa1",        /* 51 */
"Decaya1Complex",     /* 52 */
"Complexb1",          /* 53 */
"Uncomplexb1",        /* 54 */
"Decayb1Complex",    /* 55 */
"MakeComplex", /* 56 */
"DecayComplex"}; /* 57 */

int
main(int argc,char * argv[])
{

extern int DEBUG;
void srand48();
double drand48();
int i,k,mu,x_i,switch_flag;
struct stat buf;
int write_flag,count;
int diff_count,reac_count, result;
int     diffusions, reactions, failures;
long seedval;
float a_summ,T,delta_t,t_stop,t_write;
float a0,r2a0;
double  r1,r2;
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float   *image,*dummy;
float prob;
int a,b;
char    name_buff[80];
clock_t time;
long double  d_time;
CELL * voxel;
int     channels[NUM_FUNCS];
int border;
int     counter;
char * input;
char * output;
float tmp;
float ktmp;
FILE    *COUNT;
FILE    *BORDER;
FILE *fp;

time = clock();
seedval = 13;
t_stop = 5000.0;
t_write = 1.0;
delta_t = 10.0;
result = 0;
x_i = 0;
DEBUG = 0;
input = (char *) NULL;

/******************** Get setup data from command line *********************/

output = strdup("output");
switch (argc) {

case 1:
break;

case 2:
input = strdup(argv[1]);
fp = fopen(input,"r");

 seedval = (long) getValue(fp,"seed:");
t_stop = (float) getValue(fp,"stop:");
delta_t = (float) getValue(fp,"delta_t:");
fclose(fp);
break;

case 3:
input = strdup(argv[1]);
output = strdup(argv[2]);
fp = fopen(input,"r");
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 seedval = (long) getValue(fp,"seed:");
t_stop = (float) getValue(fp,"stop:");
delta_t = (float) getValue(fp,"delta_t:");
fclose(fp);
break;

case 7:
if (strcmp(argv[1],"seed") == 0) {

seedval = (double)atof(argv[2]);
t_stop = atof(argv[4]);
delta_t = atof(argv[6]);

}
else {

printf("Syntax error....\n");
exit (1);

}
break;

default:
printf("Syntax error...\n");
exit (1);
break;

}

/********************* Setup Initial Conditions ***************************/

/* Check that the output directory exists */
sprintf(name_buff,"%s.%li/",output,seedval);
if(stat(name_buff,&buf) == -1) {

printf("Directory %s doesn't exist\n",name_buff);
mkdir(name_buff,511);

}
else {

printf("Directory %s exists\n",name_buff);
}

if ((COUNT = fopen("count","w")) == NULL) {
printf("Cannot open data file count\n");
exit (1);

}

sprintf(name_buff,"%s.%li/border",output,seedval);
if ((BORDER = fopen(name_buff,"w")) == NULL) {

printf("Cannot open data file count\n");
exit (1);

}

srand48(seedval);
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/*      Setup Initial Conditions for "Concentrations"        */

NX = 40;
dummy = (float *) malloc(2*NX*sizeof(float));
image = (float *) malloc(2*NX*sizeof(float));
voxel = init(2*NX);
read_inputs(input, &initial_ra, &initial_rar, &D_ra,

                   &a1hill, &b1hill, &b1auto,&rephill,&b2hill,C_mu,K);
/* Zero out some of the late events */

tmp = C_mu[repressB1];
ktmp = C_mu[activateKrox];
C_mu[activateKrox] = 0.0;
C_mu[repressB1] = 0.0;

border = 19;
prob = .01;
for (i = 0; i < NX; i++) {

a = (int) ignbin((long) initial_rar,prob);
b = (int) ignbin((long) 10,.5);
if(b <= 5)

voxel[i].rar = initial_rar+a;
else

voxel[i].rar = initial_rar-a;
a = (int) ignbin((long) initial_rar,prob);
b = (int) ignbin((long) 10,.5);
if(b <= 5)

voxel[i].rxr = initial_rar+a;
else

voxel[i].rxr = initial_rar-a;

voxel[i].plex = initial_rar/4;

/* genes */
voxel[i].A1 = voxel[i].B2 = voxel[i].B1 = voxel[i].Krox = 1;
dummy[i] = (float)i;

/* initial rhombomere identities */
if(i < 20) {

voxel[i].id = R5;
}
else if ((i >= 20) && (i < 40)) {

voxel[i].id = R4;
}
else {

voxel[i].id = R3;
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}

for (k = 0; k < NUM_FUNCS; k++) {
voxel[i].a_mu[k] = 0.0;

 }

/* Divide */
        voxel[i].a_mu[divide] = C_mu[divide];
        voxel[i].a_mu[makeRAR] = C_mu[makeRAR];
        voxel[i].a_mu[makeRXR] = C_mu[makeRXR];
        voxel[i].a_mu[decayRAR] = C_mu[decayRAR]*initial_rar;
        voxel[i].a_mu[makeComplex] = C_mu[makeComplex];
        voxel[i].a_mu[decayComplex] = C_mu[decayComplex];

}
for (k = 0; k < NUM_FUNCS; k++) {

channels[k] = 0;
}

/* Setup RA Source */

counter = 0;
voxel[0].ra = initial_ra;
voxel[0].d_ra = voxel[0].ra*D_ra;
update_cmu0(voxel,0.0);
Update[bindRAR](voxel);
Update[bindRXR](voxel);
Update[decayRA](voxel);

voxel[0].a_mu[divide] = 0.0;

/*******************************************************************/

T = 0.0;
write_flag = 0;
count = 0;
diff_count = 0;
reac_count = 0;
reactions = diffusions = failures = 0;

while (T < t_stop) {                  /* start main loop */
a0 = 0.0;
for (i = 0; i < NX; i++) {   /* compute sum of react/diff params */

for (k = 0; k < NUM_FUNCS; k++) {
a0 += (voxel+i)->a_mu[k];    /* reaction values */



165

}
a0 += (voxel+i)->d_ra;

}
if (a0 == 0) {

printf("Unknown Error: a0 = 0...\n");
exit(1);

}
r1 = drand48();
r2 = drand48();
T += -log(r1)/a0;

/****            Check T to see if it is time to write data files       ****/
if (T >= t_write) {

/* Start the late events  */
if(T >= 21000.5 && T <= 21500.5) {
 C_mu[repressB1] = tmp;
C_mu[activateKrox] = ktmp;
}

printf("Write Image Data.  Sim Time = %4.2e secs\n",T);
sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"ra",count);
for (i = 0; i < NX; i++) {

image[i] = voxel[i].ra;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"brar",count);
for (i = 0; i < NX; i++) {

image[i] = voxel[i].brar;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"brxr",count);
for (i = 0; i < NX; i++) {

image[i] = voxel[i].brxr;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"hoxa1",count);
for (i = 0; i < NX; i++) {

image[i] = voxel[i].a1;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);
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sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"thoxa1",count);
for (i = 0; i < NX; i++) {

image[i] = voxel[i].a1 + voxel[i].a1plex;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"rar",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].rar;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"rxr",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].rxr;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"dimer",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].dimer;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"hoxb1",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].b1;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"plex",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].plex;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"a1plex",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].a1plex;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"b1plex",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].b1plex;
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}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"thoxb1",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].b1plex + voxel[i].b1;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"hoxb2",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].b2;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"krox20",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].krox;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"mhoxa1",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].mA1;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"mhoxb1",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].mB1;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"mhoxb2",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].mB2;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);

sprintf(name_buff,"%s.%li/%s.%d.dat",output,seedval,"mkrox20",count);
for (i = 0; i < NX; i++) {

            image[i] = voxel[i].mKrox;
}
write_gnu_data_file(image,dummy,NX,name_buff,2);
t_write += delta_t;
d_time = (clock()-time)/CLOCKS_PER_SEC;
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printf("Reac Count = %d  Diff Count =
%d\n",reac_count,diff_count);

printf("Incremental CPU Time = %4.2Le secs \n\n",d_time);
count++;
if(reac_count > 400000) {

printf("I'm stuck! Bailing out\n");
exit(1);

}
reac_count = 0;
diff_count = 0;
time = d_time;
for (k = 0; k < NUM_FUNCS; k++) {

fprintf(COUNT,"a_mu[%s (%d)] called %d times\n",
reactiontypes[k],k,channels[k]);

}
fprintf(COUNT,

"\nReac Count = %d Diff Count = %d  Fail Count =
%d\n",

reactions,diffusions,failures);
fflush(COUNT);

fprintf(BORDER,"%d\n",border);
fflush(BORDER);

}
r2a0 = r2*a0;
a_summ = 0;
mu = 0;
switch_flag = 0;
for (i = 0; i < NX; i++) {

x_i = i;
for (k = 0; k < NUM_FUNCS; k++) {

mu = k;
a_summ += voxel[i].a_mu[k];
if (a_summ >= r2a0) {

switch_flag = 1;
goto React;

}
}
a_summ += voxel[i].d_ra;
if (a_summ >= r2a0) {

switch_flag = 2;
mu = 0;
goto React;

}
}

React: if (switch_flag != 0) {
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switch (switch_flag) {
case 1:

if(DEBUG) {
                    printf("calling a_mu[%d] in cell %d\n",mu,x_i);
}

channels[mu] += 1;
if(mu == divide) {

 (voxel+x_i)->a_mu[divide] = 0.0;
printf("Cell %d is dividing!\n",x_i);
if(x_i <=  border)

border++;
NX++;
result = Reaction[mu](voxel+x_i,NX);

                    voxel[x_i].a_mu[divide] = 0.0;
                    voxel[x_i+1].a_mu[divide] = 0.0;

}
else {

result = Reaction[mu](voxel+x_i);
}
reac_count += 1;
reactions +=1;

break;
 case 2:

if(DEBUG) {
                    printf("calling diffusion in cell %d\n",x_i);
}

result = Diffusion[mu](voxel+x_i);
diff_count += 1;
diffusions +=1;
break;

}
update_cmu0(voxel,T);

}
if(!result) {

/* Back out the time */
T -= -log(r1)/a0;
if(switch_flag == 1) {

printf("Error: Called a_mu[%s (%d)] = %f in cell %d\n",
reactiontypes[mu],mu,voxel[x_i].a_mu[mu],x_i);

}
failures += 1;
exit(1);

}
}              /* End Main Loop */
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printf("Reac Count = %d  Diff Count = %d, Fail Count = %d\n",
reactions,diffusions,failures);
fclose(COUNT);
fclose(BORDER);
exit (0);

}

inputs.c

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include "header.h"

double
getValue(FILE * fp,char * tag) {
   char buf[80];
   char *ptr;
   char *res;
   double val;

   res = fgets(buf,80,fp);

/* Look for the line with the right tag */
   while(!(ptr = strstr(buf,tag)) && res) {
      res = fgets(buf,80,fp);
   }
   if(!res) {
     printf("The tag %s was not found\n",tag);
     exit(1);
   }

/* Now that we are on the right line, look for the colon */

   while(*ptr != ':') {
      ptr++;
   }

/* Move past the colon */
   ptr++;

/* the next thing is the value we want. */
   val = atof(ptr);

/* Rewind the stream to the beginning of the file */
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   rewind(fp);

   return val;
}

void
read_inputs(char * filename,int * init_ra, int * init_rar, float *D_ra, double *a1hill,
            double *b1hill, double *b1auto, double *rephill, double *b2hill, float c_mu[],
            float K[])
{

   FILE * fp;
   char buf[20];
   int i;

   fp = fopen(filename,"r");

   *init_ra = (int) getValue(fp,"initial_ra");
   *init_rar = (int) getValue(fp,"initial_rar");

   *D_ra   = (float) getValue(fp,"D_ra");
   *a1hill = (double) getValue(fp,"a1hill");
   *b1hill = (double) getValue(fp,"b1hill");
   *b1auto = (double) getValue(fp,"b1auto");
   *rephill = (double) getValue(fp,"rephill");
   *b2hill = (double) getValue(fp,"b2hill");

// read in the production rate values
   for(i = 0; i < NUM_FUNCS; i++) {
       sprintf(buf,"c_mu%d",i);
       c_mu[i] = (float) getValue(fp,buf);
   }
   for(i = 0; i < 7; i++) {
       sprintf(buf,"K%d",i);
       K[i] = (float) getValue(fp,buf);
   }
}

ll.c

#include <stdio.h>
#include <strings.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
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#include "ranlib.h"
#include "Hox.h"
#include "header.h"
#include "UpdateAmu.h"

void
update(CELL *c) {
    int i;
    for(i = 0; i < NUM_FUNCS; i++) {
        Update[i](c);
    }
}

void
print_cell(FILE * DATA,CELL * c) {

if(c->num == 0) {
fprintf(DATA,"num\tra\trar\trxr\tbrar\tbrxr\tdimer\t");
fprintf(DATA,"a1\tb1\tb2\tkrox\tmA1\tmB1\tmB2\t");
fprintf(DATA,"mKrox\tplex\ta1plex\tb1plex\n");

}
fprintf(DATA,"%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t%d\t

%d\t%d\t%d\t%d\n",c->num+1, c->ra, c->rar, c->rxr, c->brar, c->brxr, c->dimer,
c->a1, c->b1, c->b2, c->krox, c->mA1, c->mB1, c->mB2,
c->mKrox, c->plex, c->a1plex, c->b1plex);

}

void
divide_resources(CELL * mom, CELL * daughter) {
     int a;

     float prob = .5;
     a = (int) ignbin((long) mom->a1 ,prob);
     daughter->a1 -= a;
     mom->a1 = a;

     a = (int) ignbin((long) mom->mA1 ,prob);
     daughter->mA1 -= a;
     mom->mA1 = a;

     a = (int) ignbin((long) mom->b1 ,prob);
     daughter->b1 -= a;
     mom->b1 = a;

     a = (int) ignbin((long) mom->mB1 ,prob);
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     daughter->mB1 -= a;
     mom->mB1 = a;

     a = (int) ignbin((long) mom->b2 ,prob);
     daughter->b2 -= a;
     mom->b2 = a;

     a = (int) ignbin((long) mom->mB2 ,prob);
     daughter->mB2 -= a;
     mom->mB2 = a;

     a = (int) ignbin((long) mom->mKrox ,prob);
     daughter->mKrox -= a;
     mom->mKrox = a;

     a = (int) ignbin((long) mom->krox ,prob);
     daughter->krox -= a;
     mom->krox = a;

     a = (int) ignbin((long) mom->brar ,prob);
     daughter->brar -= a;
     mom->brar = a;

     a = (int) ignbin((long) mom->brxr ,prob);
     daughter->brxr -= a;
     mom->brxr = a;

     a = (int) ignbin((long) mom->dimer ,prob);
     daughter->dimer -= a;
     mom->dimer = a;

     a = (int) ignbin((long) mom->rar ,prob);
     daughter->rar -= a;
     mom->rar = a;

     a = (int) ignbin((long) mom->plex ,prob);
     daughter->plex -= a;
     mom->plex = a;

     a = (int) ignbin((long) mom->a1plex ,prob);
     daughter->a1plex -= a;
     mom->a1plex = a;

     a = (int) ignbin((long) mom->b1plex ,prob);
     daughter->b1plex -= a;
     mom->b1plex = a;
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     a = (int) ignbin((long) mom->rxr ,prob);
     daughter->rxr -= a;
     mom->rxr = a;
#ifdef DEBUG
     printf("mom has %d, daughter has %d rar\n",a,daughter->rar);
#endif
}

void
add(CELL *head, CELL *new)
{
    CELL *ptr;
    ptr = head;
    while((ptr->next != (CELL*) NULL) && (new->num > ptr->next->num)) {
          ptr = ptr->next;
    }
    if(ptr->next == (CELL*) NULL) {
       ptr->next = new;
       new->next =  (CELL *) NULL;
    }
    else {
       new->next = ptr->next;
       ptr->next = new;
    }
}

int
Divide(CELL *afterme, int NX)
{
    CELL *ptr;
    int i;
    int ncells;

    int flag = 0;
    ptr = afterme;
    ncells = NX-afterme->num;
    for(i = 0; i < ncells; i++) {
        (afterme+i)->num++;
    }
    memmove(afterme+1,afterme, ncells*sizeof(CELL));
    memcpy(afterme,afterme+1,sizeof(CELL));
    divide_resources(afterme,afterme+1);

    update(afterme);
    update(afterme+1);
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    afterme->num--;
    flag = 1;
    return flag;
}

CELL*
init(int size) {
    int i;
    CELL * head;
    head = (CELL*) calloc(size,sizeof(CELL));
    for(i = 0; i < size-1; i++) {
       (head+i)->num = i;
       (head+i)->next = (head+i+1);
    }
    (head+(size-1))->num = size-1;
    (head+(size-1))->next = (CELL *) NULL;
    return head;
}

write_gnu_data_file.c

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <malloc.h>

void
write_gnu_data_file(float *array,float *farray,int length,char*
fname,int d_flag)
{
        int     jj;
        float   norm_dist;
        FILE    *fpo;

        if ((fpo = fopen(fname,"w")) == NULL) {
          printf("Cannot open gnu data file %s\n",fname);
          exit (0);
        }

        for (jj = 0; jj < length; jj++) {
          if (d_flag == 1)
             norm_dist = (float)jj/(float)length;

  else if (d_flag == 2)
     norm_dist = (float)jj+1.0;

          else
             norm_dist = farray[jj];
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           fprintf(fpo,"%0.3f    %0.5f\n",norm_dist,array[jj]);
        }

fprintf(fpo,"\n");
fclose(fpo);

}

header.h

#ifndef __HEADER_H
#define __HEADER_H
#include "Hox.h"

void update();
void divide_resources();
void print_cell();
void add();
int Divide();
CELL* init();
double getValue();
void read_inputs();
void write_gnu_data_file();

#endif

Hox.h

/*
 * Header file for stochastic simulation of study of Retinoic Acid
 * diffusion and the production of the early members of the hox
 *  family using the extended Gillespie formulation for 1-dimensional
 * reaction-diffusion.
 *
 */

#ifndef __HOX_H_
#define __HOX_H_

#defineNUM_FUNCS 58
#define PERMS 0666

typedef enum { R3,R4,R5 } rhombomere;
typedef enum {A,B} Repressor;
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/* Note that the convention adopted is that the uppercase letters stand
 * for the DNA and the lowercase stand for proteins
 */

typedef struct cell {
        int  num; /* Cell number */
        rhombomere  id; /* The identity of the cell */
        int  ra; /* number of unbound RA molecules */
        int  rar; /* number of RA receptors */
        int  rxr; /* number of RA receptors */
        int  brar; /* number of bound RA molecules  */
        int  brxr; /* number of bound RA molecules  */
        int  dimer; /* number of rar/rxr dimers */
        int  A1; /* number of A1 genes */
        int  actA1; /* number of activated A1 genes */
        int  B1; /* number of B1 genes */
        int  actB1; /* number of activated B1 genes */
        int  superactB1; /* number of super activated B1 genes */
        int  repB1; /* number of repressed B1 genes */
        int  autoB1; /* number of auto activated B1 genes */
        int  B2; /* number of B2 genes */
        int  actB2; /* number of activated B2 genes */
        int  Krox; /* number of Krox20 genes */
        int  actKrox; /* number of activated Krox20 genes */
        int  repKrox; /* number of repressed Krox20 genes */
        Repressorkrep; /* what the current repressor for krox is */
        int  plex; /* number of complexes availble */
        int  mA1; /* number of A1 mRNA */
        int  mB1; /* number of B1 mRNA */
        int  mB2; /* number of B2 mRNA */
        int  mKrox; /* number of Krox20 mRNA */
        int  a1; /* number of a1 proteins */
        int  a1plex; /* number of a1+pbx+prep molecules */
        int  b1; /* number of b1 proteins */
        int  b1plex; /* number of a1+pbx+prep molecules */
        int  b2; /* number of b2 proteins */
        int  krox; /* number of krox20 proteins */
        float   d_ra; /* Retinoic acid diffusion coefficient */
        float   a_mu[NUM_FUNCS];/* Reaction probabilities */
        struct cell *next; /* Pointer to the next cell */
} CELL;

enum {makeRA, /* 0 */
    bindRAR, /* 1 */
    decayRA, /* 2 */
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    makeRAR, /* 3 */
    decayRAR, /* 4 */
    unbindBRAR, /* 5 */
    decayBRAR, /* 6 */
    activateA1, /* 7 */
    unActivateA1, /* 8 */
    transcribeA1, /* 9 */
    decaymA1, /* 10 */
    translateA1, /* 11 */
    decaya1, /* 12 */
    activateB1, /* 13 */
    unActivateB1, /* 14 */
    transcribeB1, /* 15 */
    decaymB1, /* 16 */
    translateB1, /* 17 */
    superActivateB1, /* 18 */
    unSuperActivateB1, /* 19 */
    transcribeSuperB1, /* 20 */
    repressB1, /* 21 */
    unRepressB1, /* 22 */
    autoActivateB1, /* 23 */
    unAutoActivateB1, /* 24 */
    transcribeAutoB1, /* 25 */
    decayb1, /* 26 */
    activateB2, /* 27 */
    unActivateB2, /* 28 */
    transcribeB2, /* 29 */
    decaymB2, /* 30 */
    translateB2, /* 31 */
    decayb2, /* 32 */
    divide, /* 33 */
    activateKrox, /* 34 */
    unActivateKrox, /* 35 */
    transcribeKrox, /* 36 */
    decaymKrox, /* 37 */
    repressKrox, /* 38 */
    unRepressKrox, /* 39 */
    translateKrox, /* 40 */
    decaykrox, /* 41 */
    bindRXR, /* 42 */
    makeRXR,      /* 43 */
    decayRXR, /* 44 */
    unbindBRXR,    /* 45 */
    decayBRXR, /* 46 */
    dimerize, /* 47 */
    unDimerize, /* 48 */
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    decayDimer, /* 49 */
    complexa1, /* 50 */
    unComplexa1, /* 51 */
    decaya1Complex, /* 52 */
    complexb1, /* 53 */
    unComplexb1, /* 54 */
    decayb1Complex, /* 55 */
    makeComplex, /* 56 */
    decayComplex}; /* 57 */

typedef int (*REACTION)();

/******************** Function Declarations ***************************/

int update_cmu0(CELL*,float);

int MakeRA(CELL *);      /* a_mu[0] */
int BindRAR(CELL *); /* a_mu[1] */
int DecayRA(CELL *); /* a_mu[2] */
int MakeRAR(CELL *);      /* a_mu[3] */
int DecayRAR(CELL *); /* a_mu[4] */
int UnbindBRAR(CELL *);    /* a_mu[5] */
int DecayBRAR(CELL *); /* a_mu[6] */
int ActivateA1(CELL *); /* a_mu[7] */
int UnActivateA1(CELL *);   /* a_mu[8] */
int TranscribeA1(CELL *);  /* a_mu[9] */
int DecaymA1(CELL *); /* a_mu[10] */
int TranslateA1(CELL *);  /* a_mu[11] */
int Decaya1(CELL *); /* a_mu[12] */
int ActivateB1(CELL *);  /* a_mu[13] */
int UnActivateB1(CELL *); /* a_mu[14] */
int TranscribeB1(CELL *);  /* a_mu[15] */
int DecaymB1(CELL *); /* a_mu[16] */
int TranslateB1(CELL *);  /* a_mu[17] */
int SuperActivateB1(CELL *); /* a_mu[18] */
int UnSuperActivateB1(CELL *);/* a_mu[19] */
int TranscribeSuperB1(CELL *);/* a_mu[20] */
int RepressB1(CELL *); /* a_mu[21] */
int UnRepressB1(CELL *); /* a_mu[22] */
int AutoActivateB1(CELL *); /* a_mu[23] */
int UnAutoActivateB1(CELL *);/* a_mu[24] */
int TranscribeAutoB1(CELL *);/* a_mu[25] */
int Decayb1(CELL *); /* a_mu[26] */
int ActivateB2(CELL *); /* a_mu[27] */
int UnActivateB2(CELL *); /* a_mu[28] */
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int TranscribeB2(CELL *); /* a_mu[29] */
int DecaymB2(CELL *); /* a_mu[30] */
int TranslateB2(CELL *); /* a_mu[31] */
int Decayb2(CELL *); /* a_mu[32] */
int Divide(CELL *, int);    /* a_mu[33] */
int ActivateKrox(CELL *); /* a_mu[34] */
int UnActivateKrox(CELL *); /* a_mu[35] */
int TranscribeKrox(CELL *); /* a_mu[36] */
int DecaymKrox(CELL *); /* a_mu[37] */
int RepressKrox(CELL *); /* a_mu[38] */
int UnRepressKrox(CELL *); /* a_mu[39] */
int TranslateKrox(CELL *); /* a_mu[40] */
int Decaykrox(CELL *); /* a_mu[41] */
int BindRXR(CELL *); /* a_mu[42] */
int MakeRXR(CELL *);      /* a_mu[43] */
int DecayRXR(CELL *); /* a_mu[44] */
int UnbindBRXR(CELL *);    /* a_mu[45] */
int DecayBRXR(CELL *); /* a_mu[46] */
int Dimerize(CELL *); /* a_mu[47] */
int UnDimerize(CELL *); /* a_mu[48] */
int DecayDimer(CELL *); /* a_mu[49] */
int Complexa1(CELL *); /* a_mu[50] */
int Uncomplexa1(CELL *); /* a_mu[51] */
int Decaya1Complex(CELL *); /* a_mu[52] */
int Complexb1(CELL *); /* a_mu[53] */
int Uncomplexb1(CELL *); /* a_mu[54] */
int Decayb1Complex(CELL *); /* a_mu[55] */
int MakeComplex(CELL *); /* a_mu[56] */
int DecayComplex(CELL *); /* a_mu[57] */

int RA_Diffusion(CELL *);
/*********************** Initializations *********************************/

static REACTION Reaction[] = {
MakeRA, /* 0 */

  BindRAR, /* 1 */
      DecayRA, /* 2 */
      MakeRAR, /* 3 */
      DecayRAR, /* 4 */
      UnbindBRAR, /* 5 */
      DecayBRAR, /* 6 */
      ActivateA1, /* 7 */
      UnActivateA1, /* 8 */
      TranscribeA1, /* 9 */
       DecaymA1, /* 10 */
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      TranslateA1, /* 11 */
      Decaya1, /* 12 */
      ActivateB1, /* 13 */
      UnActivateB1, /* 14 */
      TranscribeB1, /* 15 */
       DecaymB1, /* 16 */
      TranslateB1, /* 17 */
      SuperActivateB1, /* 18 */
      UnSuperActivateB1, /* 19 */
      TranscribeSuperB1, /* 20 */
      RepressB1, /* 21 */
             UnRepressB1, /* 22 */
      AutoActivateB1, /* 23 */
      UnAutoActivateB1, /* 24 */
      TranscribeAutoB1, /* 25 */
      Decayb1, /* 26 */
      ActivateB2, /* 27 */
      UnActivateB2, /* 28 */
      TranscribeB2, /* 29 */
       DecaymB2, /* 30 */
      TranslateB2, /* 31 */
      Decayb2, /* 32 */
      Divide, /* 33 */
      ActivateKrox, /* 34 */
      UnActivateKrox, /* 35 */
      TranscribeKrox, /* 36 */
      DecaymKrox, /* 37 */
      RepressKrox, /* 38 */
      UnRepressKrox, /* 39 */
      TranslateKrox, /* 40 */
      Decaykrox, /* 41 */

BindRXR, /* 42 */
MakeRXR,      /* 43 */
DecayRXR, /* 44 */
UnbindBRXR,    /* 45 */
DecayBRXR, /* 46 */
Dimerize, /* 47 */
UnDimerize, /* 48 */
DecayDimer, /* 49 */
Complexa1, /* 50 */
Uncomplexa1, /* 51 */
Decaya1Complex, /* 52 */
Complexb1, /* 53 */
Uncomplexb1, /* 54 */
Decayb1Complex, /* 55 */
MakeComplex, /* 56 */
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DecayComplex}; /* 57 */
      
      
static REACTION Diffusion[] = { RA_Diffusion };

float C_mu[NUM_FUNCS];
float K[7];

int initial_ra;
int initial_rar;
float D_ra;
float Kg;
double a1hill;
double b1hill;
double b1auto;
double  rephill;
double b2hill;
float G1;
float G2;
int NX;
int DEBUG;

#endif

Hox.c

/********************************************************************
This file contains the functions which implement the
reaction channels for the  RA/Hox study; it also contains
the function required to implement the diffusion components
of Retinoic Acid.

Note that the a_mu and d_mu values are updated during these
function calls.  No updating of these quantities is done in
the main program.

********************************************************************/
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "Hox.h"
#include "UpdateAmu.h"
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#include "ranlib.h"

int
update_cmu0(CELL *c, float T)
{

int flag = 0;

if(c->num != 0) {
fprintf(stderr,"Error in update_cmu0:");
fprintf(stderr," Trying to update in cell %d",c->num);
goto cleanup;

}
c->a_mu[makeRA] = C_mu[makeRA]*T*exp(-.005*T);
flag = 1;

cleanup:
return flag;

}

int
MakeRA(CELL * c) /*   *-> ra a_mu[0] */
{

int flag = 0;
int affected = 3;
int todo[3] = {bindRXR,bindRAR,decayRA};
int i;
c->ra += 1;
c->d_ra = D_ra*(c->ra);

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}
flag = 1;
return flag;

}

int
BindRAR(CELL *c)    /* ra + rar -> brar a_mu[1] */
{

int flag = 0;
int affected = 7;
int i;
int todo[7]= {bindRAR,decayRA,bindRXR,decayRAR,unbindBRAR,

decayBRAR,dimerize};

if(c->ra < 1 || c->rar < 1) {
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fprintf(stderr,"Error in BindRAR:");
fprintf(stderr," Cell %d has %d ra and %d rar\n",c->num,c->ra,c->rar);
goto cleanup;

}

/* Change the relevant quantities */
c->ra -= 1;
c->rar -= 1;
c->brar += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

c->d_ra = D_ra*(c->ra);
flag = 1;

cleanup:
return flag;

}

int
DecayRA(CELL * c) /*   ra->null  a_mu[2] */
{

int flag = 0;
int affected = 3;
int todo[3] = {bindRAR,bindRXR,decayRA};
int i;
if(c->ra < 1) {

fprintf(stderr,"Error in DecayRA:");
fprintf(stderr," Cell %d has %d RA\n", c->num,c->ra);
goto cleanup;

}
c->ra -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
c->d_ra = D_ra*(c->ra);
flag = 1;

cleanup:
return flag;

}

int
MakeRAR(CELL * c) /*   *-> rar a_mu[3] */
{
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int affected = 2;
int todo[2] = {bindRAR,decayRAR};
int flag = 0;
int i;
c->rar += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;
return flag;

}

int
DecayRAR(CELL * c) /*   rar->null a_mu[4]*/
{

int affected = 2;
int todo[2] = {bindRAR,decayRAR};
int flag = 0;
int i;
if(c->rar < 1) {

fprintf(stderr,"Error in DecayRAR:");
fprintf(stderr," Cell %d has %d RAR\n", c->num,c->rar);
goto cleanup;

}
c->rar -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;

cleanup:
return flag;

}

int
UnbindBRAR(CELL *c)    /* brar-> ra + rar -> a_mu[5] */
{

int flag = 0;
int affected = 7;
int i;
int todo[7] = {bindRAR,bindRXR,decayRA,decayRAR,unbindBRAR,

decayBRAR,dimerize};
if(c->brar < 1) {

fprintf(stderr,"Error in UnbindBRA:");
fprintf(stderr," Cell %d has %d brar.\n",c->num,c->brar);
goto cleanup;
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}
/* Change the relevant quantities */

c->ra += 1;
c->rar += 1;
c->brar -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}         

c->d_ra = D_ra*(c->ra);

flag = 1;
cleanup:

return flag;
}

int
DecayBRAR(CELL *c)    /* brar-> null  a_mu[6] */
{

int flag = 0;
int affected = 3;
int todo[3] = {unbindBRAR,decayBRAR,dimerize};
int i;
if(c->brar < 1) {

fprintf(stderr,"Error in DecayBRA:");
fprintf(stderr," Cell %d has %d brar.\n",c->num,c->brar);
goto cleanup;

}
/* Change the relevant quantities */

c->brar -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
ActivateA1(CELL * c) /*  brar + A1 -> actA1  a_mu[7];*/
{

int flag = 0;
int affected = 7;
int i;
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int todo[7] = {unDimerize,decayDimer,activateA1,transcribeA1,
           activateB1,unActivateA1,repressB1};

  
if(c->A1 < 1 || c->dimer < 1 || c->actA1 > 1) {

fprintf(stderr,"Error in ActivateA1:");
fprintf(stderr," Cell %d has %d A1, %d actA1 and %d dimer.\n",

        c->num,c->A1,c->actA1,c->dimer);
goto cleanup;

}
c->A1 = 0;
c->actA1 = 1;
c->dimer -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;

cleanup:
return flag;

}

int
UnActivateA1(CELL * c) /* actA1 -> A1,brar  a_mu[8]*/
{

int flag = 0;
int affected = 8;
int todo[8] = {unDimerize,decayDimer,decayBRAR,activateA1,unActivateA1,

   transcribeA1,activateB1,repressB1};
int i;
if(c->actA1 < 1) {

fprintf(stderr,"Error in UnActivateA1:");
fprintf(stderr," Cell %d has %d actA1\n", c->num,c->actA1);
goto cleanup;

}
c->A1 = 1;
c->actA1 = 0;
c->dimer += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:
return flag;
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}

int
TranscribeA1(CELL * c) /* actA1 -> mA1  a_mu[9]*/
{

int flag = 0;
int affected = 9;
int todo[9] = {unDimerize,decayDimer,activateA1,unActivateA1,

   transcribeA1,translateA1,activateB1,repressB1,
   decaymA1};

int i;
  

if(c->A1 < 1) {
fprintf(stderr,"Error in TranscribeA1:");
fprintf(stderr," Cell %d has %d A1\n", c->num,c->A1);
goto cleanup;

}

c->mA1 += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:
return flag;

}

int
DecaymA1(CELL * c) /* mA1 -> null  a_mu[10]*/
{

int flag = 0;
int affected = 3;
int todo[3] = {transcribeA1,translateA1,decaymA1};
int i;

if(c->mA1 < 1) {
fprintf(stderr,"Error in DecaymA1:");
fprintf(stderr," Cell %d has %d mA1\n", c->num,c->mA1);
goto cleanup;

}

c->mA1 -= 1;
for(i = 0; i < affected; i++) {
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(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
TranslateA1(CELL * c) /* mA1 -> a1 a_mu[11]*/
{

int flag = 0;
int affected = 4;
int todo[4] = {translateA1,decaya1,decaymA1,complexa1};
int i;
if(c->mA1 < 1) {

fprintf(stderr,"Error in TranslateA1:");
fprintf(stderr," Cell %d has %d mA1\n", c->num,c->mA1);
goto cleanup;

}

c->a1 += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
Decaya1(CELL *c) /* a1 -> null  a_mu[12]*/
{

int flag = 0;
int affected = 2;
int i;
int todo[2] = {decaya1,complexa1};
if(c->a1 < 1) {

fprintf(stderr,"Error in Decaya1:");
fprintf(stderr," Cell %d has %d a1.\n",c->num,c->a1);
goto cleanup;

}
c->a1 -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
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}

flag = 1;
cleanup:

return flag;
}

int
ActivateB1(CELL * c) /*  brar + B1 -> actB1 a_mu[13]*/
{

int i;
int flag = 0;
int affected = 11;
int todo[11] = {unDimerize,decayDimer,activateB1,unActivateB1,

activateA1,transcribeB1,superActivateB1,repressB1,
autoActivateB1,activateB2,unActivateB2};

if(c->B1 < 1 || c->dimer < 1) {
fprintf(stderr,"Error in ActivateB1:");
fprintf(stderr," Cell %d has %d B1 and %d dimer\n",

          c->num,c->B1,c->dimer);
goto cleanup;

}
c->B1 = 0;
c->dimer -= 1;
c->actB1 = 1;

/* Occasionally, activate the b2 gene */
i =  (int) ignbin((long) 10, .25);
if(c->B2 == 1 && i <= 2) {

c->actB2 = 1;
c->B2 = 0;

}
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;

cleanup:
return flag;

}

int
UnActivateB1(CELL * c) /*  actB1 -> B1,brar a_mu[14]*/
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{
int flag = 0;
int affected = 9;
int i;
int todo[9] = {unDimerize,decayDimer,activateB1,unActivateB1,
    transcribeB1,superActivateB1,repressB1,autoActivateB1,

activateA1};
if(c->actB1 < 1) {

fprintf(stderr,"Error in UnactivateB1:");
fprintf(stderr," Cell %d has %d actB1.\n",

          c->num,c->actB1);
goto cleanup;

}
c->B1 = 1;
c->dimer += 1;
c->actB1 = 0;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;

cleanup:
return flag;

}

int
TranscribeB1(CELL * c) /*  superactB1 -> mB1 a_mu[15]*/
{

int flag = 0;
int affected = 11;
int i;
int todo[11] = {unDimerize,decayDimer,activateB1,unActivateB1,

   transcribeB1,superActivateB1,translateB1,repressB1,
   autoActivateB1,decaymB1,activateA1};

if(c->actB1 < 1) {
fprintf(stderr,"Error in TranscribeB1:");
fprintf(stderr," Cell %d has %d actB1.\n", c->num,c->actB1);
goto cleanup;

}
c->mB1 += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}
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flag = 1;

cleanup:
return flag;
}

int
DecaymB1(CELL * c) /* mA1 -> null  a_mu[16]*/
{

int flag = 0;
int affected = 3;
int i;
int todo[3] = {transcribeB1,translateB1,decaymB1};

if(c->mB1 < 1) {
fprintf(stderr,"Error in DecaymB1:");
fprintf(stderr," Cell %d has %d mA1\n", c->num,c->mB1);
goto cleanup;

}

c->mB1 -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
TranslateB1(CELL * c) /*  mB1 -> b1 a_mu[17]*/
{

int flag = 0;
int affected = 5;
int i;
int todo[5] = {translateB1,complexb1,decaymB1,decayb1,repressKrox};
if(c->mB1 < 1) {

fprintf(stderr,"Error in TranslateB1:");
fprintf(stderr," Cell %d has %d mB1\n", c->num,c->mB1);
goto cleanup;

}
c->b1 += 1;
for(i = 0; i < affected; i++) {
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(Update)[todo[i]](c);
}

flag = 1;

cleanup:
return flag;

}

int
SuperActivateB1(CELL *c) /* actB1+a1 ->superactB1 a_mu[18] */
{

int flag = 0;
int affected = 9;
int i;
int todo[9] = {unActivateB1,decaya1,superActivateB1,transcribeB1,

  unSuperActivateB1,transcribeSuperB1,autoActivateB1,
decaya1Complex,unComplexa1};

if(c->actB1 < 1 || c->a1plex < 1) {
fprintf(stderr,"Error in SuperActivateB1:");
fprintf(stderr," Cell %d has %d actB1 and %d a1plex\n",

c->num,c->actB1,c->a1plex);
goto cleanup;

}
c->actB1 = 0;
c->superactB1 = 1;
c->a1plex -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;

cleanup:
return flag;

}

int
UnSuperActivateB1(CELL *c) /*  superactB1 -> actB1, a1 a_mu[19]*/
{

int flag = 0;
int affected = 13;
int i;
int todo[13] = {decaya1,unActivateB1,superActivateB1,transcribeB1,
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   unSuperActivateB1,transcribeSuperB1,activateA1,

decayDimer,unDimerize,repressB1,decaya1Complex,
unComplexa1,repressB1};

if(c->superactB1 < 1) {
fprintf(stderr,"Error in UnSuperActivateB1:");
fprintf(stderr," Cell %d has %d superactB1\n",c->num,c->superactB1);
goto cleanup;

}
// c->actB1 = 1;
// c->superactB1 = 0;
// c->a1plex += 1;

c->B1 = 1;
c->superactB1 = 0;
c->actB1 = 0;
c->a1plex += 1;
c->dimer += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;

}

int
TranscribeSuperB1(CELL * c) /*  superactB1 -> mB1 a_mu[20]*/
{

int flag = 0;
int affected = 14;
int i;
int todo[14] = {unDimerize,decayDimer,activateA1,activateB1,

  superActivateB1,unSuperActivateB1,transcribeSuperB1,
  translateB1,repressB1,autoActivateB1,decaymB1,

repressKrox,unComplexa1,decayb1};
if(c->superactB1 < 1) {

fprintf(stderr,"Error in TranscribeSuperB1:");
fprintf(stderr," Cell %d has %d actB1.\n", c->num,c->superactB1);
goto cleanup;

}
c->mB1 += 2; /* This should be changed to 5 or so */
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for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}
flag = 1;

cleanup:
return flag;

}

int
RepressB1(CELL * c) /*  B1+brar -> repB1 a_mu[21]*/
{

int flag = 0;
int affected = 7;
int i;
int todo[7] = {unDimerize,decayDimer,activateA1,activateB1,

       unRepressB1,autoActivateB1,repressB1};
if(c->B1 < 1 || c->dimer < 1) {

fprintf(stderr,"Error in RepressB1:");
fprintf(stderr," Cell %d has %d B1 and %d dimer\n",

c->num,c->B1,c->dimer);
goto cleanup;

}
c->repB1 = 1;
c->B1 = 0;
c->dimer -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

} 

flag = 1;

cleanup:
return flag;

}

int
UnRepressB1(CELL * c) /*  B1 -> repB1,brar  a_mu[22]*/
{

int flag = 0;
int affected = 7;
int i;
int todo[7] = {unDimerize,decayDimer,activateA1,activateB1,

   unRepressB1,autoActivateB1,repressB1};
if(c->repB1 < 1) {
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fprintf(stderr,"Error in UnRepressB1:");
fprintf(stderr," Cell %d has %d repB1\n",c->num,c->repB1);
goto cleanup;

}
c->repB1 = 0;
c->B1 = 1;
c->dimer += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;

cleanup:
return flag;

}

int
AutoActivateB1(CELL * c) /*  B1+b1 -> autoB1 a_mu[23]*/
{

int flag = 0;
int affected = 8;
int i;
int todo[8] = {activateB1,repressB1,transcribeAutoB1,unComplexb1,

decayb1Complex,autoActivateB1,unAutoActivateB1,activateB2};

if(c->B1 < 1 || c->b1plex < 1) {
    fprintf(stderr,"Error in AutoActivateB1:");
    fprintf(stderr," Cell %d has %d B1 and %d b1plex\n",

c->num,c->B1,c->b1plex);
    goto cleanup;
}
c->B1 = 0;
c->b1plex -= 1;
c->autoB1 = 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;

cleanup:
return flag;

}

int
UnAutoActivateB1(CELL *c) /*  autoB1 -> B1, b1 a_mu[24]*/
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{
int flag = 0;
int affected = 8;
int i;
int todo[8] = {activateB1,repressB1,transcribeAutoB1,unComplexb1,
          decayb1Complex,autoActivateB1,unAutoActivateB1,activateB2};

if(c->autoB1 < 1) {
fprintf(stderr,"Error in UnAutoActivateB1:");
fprintf(stderr," Cell %d has %d autoB1\n",c->num,c->autoB1);
goto cleanup;

}
c->B1 = 1;
c->b1plex += 1;
c->autoB1 = 0;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;

cleanup:
return flag;

}

int
TranscribeAutoB1(CELL * c) /*  autoB1 -> mB1 a_mu[25]*/
{

int flag = 0;
int affected = 8;
int i;
int todo[8] = {activateB1,superActivateB1,translateB1,

   unAutoActivateB1,repressB1,autoActivateB1,
      transcribeAutoB1,decaymB1};

if(c->autoB1 < 1) {
fprintf(stderr,"Error in TranscribeAutoSuperB1:");
fprintf(stderr," Cell %d has %d autoB1.\n", c->num,c->autoB1);
goto cleanup;

}
c->mB1 += 2; /* This should be changed to 5 or so */
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;

cleanup:
return flag;

}
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int
Decayb1(CELL *c) /*  b1 -> null a_mu[26]*/
{

int flag = 0;
int affected = 3;
int i;
int todo[3] = {decayb1,complexb1,repressKrox};
if(c->b1 < 1) {

fprintf(stderr,"Error in Decayb1:");
fprintf(stderr," Cell %d has %d b1.\n",c->num,c->b1);
goto cleanup;

}
c->b1 -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
ActivateB2(CELL *c) /* B2 + b1 -> actB2 a_mu[27]*/
{

int flag = 0;
int affected = 8;
int r4 = (c->id == R4);
int r5 = (c->id == R5);
int i;
int todo[8] = {autoActivateB1,decayb1,activateB2,unActivateB2,
   transcribeB2,decaykrox,unComplexb1,decayb1Complex};
if(r4) {

if(c->B2 < 1 || c->b1plex < 1) {
fprintf(stderr,"Error in ActivateB2:");
fprintf(stderr," Cell %d has %d B2 and %d b1plex\n",

c->num,c->B2,c->b1plex);
goto cleanup;

}
c->b1plex -= 1;

} else if(r5) {
if(c->B2 < 1 || c->krox < 1) {

fprintf(stderr,"Error in ActivateB2:");
fprintf(stderr," Cell %d has %d B2 and %d krox\n",

c->num,c->B2,c->krox);
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goto cleanup;
}
c->krox -= 1;

} else {
fprintf(stderr,"Error in ActivateB2: Called in R3\n");
//goto cleanup;

}

c->B2 = 0;
c->actB2 = 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
UnActivateB2(CELL *c) /* actB2-> B2 ,b1 a_mu[28]*/
{

int flag = 0;
int affected = 8;
int r4 = (c->id == R4);
int r5 = (c->id == R5);
int i;
int todo[8] = {autoActivateB1,decayb1,activateB2,unActivateB2,

transcribeB2,decaykrox,unComplexb1,decayb1Complex};

if(c->actB2 < 1) {
fprintf(stderr,"Error in UnActivateB2:");
fprintf(stderr," Cell %d has %d actB2 and %d b1plex\n",

         c->num,c->actB2,c->b1plex);
goto cleanup;

}
if(r4) {

c->b1plex += 1;
} else if (r5) {

c->krox += 1;
} else {

fprintf(stderr,"Error in UnActivateB2: Called in R3\n");
}
c->B2 = 1;
c->actB2 = 0;
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for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}

int
TranscribeB2(CELL * c) /*  actB2 -> mB2 a_mu[29]*/
{

int flag = 0;
int affected = 9;
int i;
int todo[9] = {activateB2,unActivateB2,transcribeB2,translateB2,

decaymB2,decaykrox,decayb1Complex,unComplexb1,
autoActivateB1};

if(c->actB2 < 1) {
fprintf(stderr,"Error in TranscribeB2:");
fprintf(stderr," Cell %d has %d actB2.\n", c->num,c->actB2);
goto cleanup;

}
c->mB2 += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;

cleanup:
return flag;

}

int
DecaymB2(CELL * c) /* mA1 -> null  a_mu[30]*/
{

int flag = 0;
int affected = 3;
int i;
int todo[3] = {transcribeB2,translateB2,decaymB2};
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if(c->mB2 < 1) {
fprintf(stderr,"Error in DecaymB2:");
fprintf(stderr," Cell %d has %d mA1\n", c->num,c->mB2);
goto cleanup;

}

c->mB2 -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
TranslateB2(CELL * c) /*  mB2 -> b2 a_mu[31]*/
{

int flag = 0;
int affected = 3;
int i;
int todo[3] = {translateB2,decayb2,decaymB2};
if(c->mB2 < 1) {

fprintf(stderr,"Error in TranslateB2:");
fprintf(stderr," Cell %d has %d mB2\n", c->num,c->mB2);
goto cleanup;

}
c->b2 += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;

cleanup:
return flag;

}

int
Decayb2(CELL *c) /*  b2 -> null a_mu[32]*/
{

int flag = 0;
int affected = 1;
int i;
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int todo[1] = {decayb2};
if(c->b2 < 1) {

fprintf(stderr,"Error in Decayb2:");
fprintf(stderr," Cell %d has %d b2.\n",c->num,c->b2);
goto cleanup;

}
c->b2 -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

/* a_mu[33] is Divide */

int
ActivateKrox(CELL *c) /* a1 + Krox -> actKrox a_mu[34] */
{

int flag = 0;
int affected = 4;
int i;
int todo[4] = {activateKrox,unActivateKrox,transcribeKrox,repressKrox};
if(c->Krox < 1) {

fprintf(stderr,"Error in ActivateKrox:");
fprintf(stderr," Cell %d has %d Krox.\n",

c->num,c->Krox);
goto cleanup;

}
c->Krox = 0;
c->actKrox = 1;
for(i = 0; i <  affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
UnActivateKrox(CELL *c)
{

int flag = 0;
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int affected = 4;
int i;
int todo[4] = {activateKrox,unActivateKrox,transcribeKrox,repressKrox};
if(c->actKrox < 1) {

fprintf(stderr,"Error in UnActivateKrox:");
fprintf(stderr," Cell %d has %d Krox\n", c->num,c->Krox);
goto cleanup;

}
c->Krox = 1;
c->actKrox = 0;
for(i = 0; i <  affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
TranscribeKrox(CELL *c)
{

int flag = 0;
int affected = 6;
int todo[6] = {activateKrox,unActivateKrox,transcribeKrox,repressKrox,

translateKrox,decaymKrox};
int i;

  
if(c->actKrox < 1) {

fprintf(stderr,"Error in TranscribeKrox:");
fprintf(stderr," Cell %d has %d actKrox\n", c->num,c->actKrox);
goto cleanup;

}
c->mKrox += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:
return flag;

}

int
DecaymKrox(CELL *c)
{
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int flag = 0;
int affected = 3;
int todo[3] = {transcribeKrox,translateKrox,decaymKrox};
int i;

if(c->mKrox < 1) {
fprintf(stderr,"Error in DecaymKrox:");
fprintf(stderr," Cell %d has %d mKrox\n", c->num,c->mKrox);
goto cleanup;

}

c->mKrox -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}

int
RepressKrox(CELL *c)
{

int flag = 0;
int affected = 10;
int todo[10] = {decaya1,superActivateB1,activateKrox,unRepressKrox,

unActivateKrox,transcribeKrox,repressKrox,complexb1,
complexa1,decayb1};

int i;

if(c->Krox < 1 || (c->b1 < 1 && c->a1 < 1)) {
fprintf(stderr,"Error in RepressKrox:");
fprintf(stderr," Cell %d (%d) has %d Krox,%d a1 and %d b1\n",

c->num,c->id+3,c->Krox,c->a1,c->b1);
goto cleanup;

}
c->repKrox = 1;
c->Krox = 0;

if(c->a1 > c->b1) {
c->a1 -= 1;

    c->krep = A;
} else {

c->b1 -= 1;
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    c->krep = B;
}

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

} 

flag = 1;

cleanup:
return flag;

}

int
UnRepressKrox(CELL *c)
{

int flag = 0;
int affected = 10;
int i;
int todo[10] = {decaya1,superActivateB1,activateKrox,unRepressKrox,

unActivateKrox,transcribeKrox,repressKrox,complexb1,
decayb1,complexa1};

if(c->repKrox < 1) {
fprintf(stderr,"Error in UnRepressKrox:");
fprintf(stderr," Cell %d has %d Krox and %d a1\n",

c->num,c->Krox,c->a1);
goto cleanup;

}
c->repKrox = 0;
c->Krox = 1;
if(c->krep == A) {

c->a1 += 1;
} else {

c->b1 += 1;
}

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

} 

flag = 1;

cleanup:
return flag;
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}

int
TranslateKrox(CELL *c)
{

int flag = 0;
int affected = 4;
int i;
int todo[4] = {translateKrox,decaykrox,decaymKrox,activateB2};
if(c->mKrox < 1) {

fprintf(stderr,"Error in TranslateKrox:");
fprintf(stderr," Cell %d has %d mKrox\n", c->num,c->mKrox);
goto cleanup;

}
c->krox += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;

cleanup:
return flag;

}

int
Decaykrox(CELL *c)
{

int flag = 0;
int affected = 2;
int i;
int todo[2] = {decaykrox,activateB2};
if(c->krox < 1) {

fprintf(stderr,"Error in DecayKrox:");
fprintf(stderr," Cell %d has %d krox.\n",c->num,c->krox);
goto cleanup;

}
c->krox -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;
}
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int
BindRXR(CELL *c)      /* a_mu[42] */
{

int flag = 0;
int affected = 7;
int i;
int todo[7]= {bindRAR,decayRA,decayRXR,bindRXR,unbindBRXR,

decayBRXR,dimerize};
if(c->ra < 1 || c->rxr < 1) {

fprintf(stderr,"Error in BindRXR:");
fprintf(stderr," Cell %d has %d ra and %d rxr\n",c->num,c->ra,c->rxr);
goto cleanup;

}

/* Change the relevant quantities */
c->ra -= 1;
c->rxr -= 1;
c->brxr += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

c->d_ra = D_ra*(c->ra);
flag = 1;

cleanup:
return flag;

}

int
MakeRXR(CELL *c)  /* a_mu[43] */
{

int affected = 2;
int todo[2] = {bindRXR,decayRXR};
int flag = 0;
int i;
c->rxr += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;
return flag;

}
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int
DecayRXR(CELL *c)     /* a_mu[44] */
{

int affected = 2;
int todo[2] = {bindRXR,decayRXR};
int flag = 0;
int i;
if(c->rxr < 1) {

fprintf(stderr,"Error in DecayRXR:");
fprintf(stderr," Cell %d has %d RXR\n", c->num,c->rxr);
goto cleanup;

}
c->rxr -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;

cleanup:
return flag;

}

int
UnbindBRXR(CELL *c)   /* a_mu[45] */
{

int flag = 0;
int affected = 7;
int i;
int todo[7]= {bindRAR,decayRA,decayRXR,bindRXR,unbindBRXR,

decayBRXR,dimerize};
if(c->brxr < 1) {

fprintf(stderr,"Error in UnbindBRXR:");
fprintf(stderr," Cell %d has %d brxr.\n",c->num,c->brxr);
goto cleanup;

}
/* Change the relevant quantities */

c->ra += 1;
c->rxr += 1;
c->brxr -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

c->d_ra = D_ra*(c->ra);



209

flag = 1;
cleanup:

return flag;

}

int
DecayBRXR(CELL *c)    /* a_mu[46] */
{

int affected = 3;
int todo[3] = {unbindBRXR,decayBRXR,dimerize};
int flag = 0;
int i;
if(c->brxr < 1) {

fprintf(stderr,"Error in DecayBRXR:");
fprintf(stderr," Cell %d has %d brxr.\n",c->num,c->brxr);
goto cleanup;

}
/* Change the relevant quantities */

c->brxr -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}

flag = 1;
cleanup:

return flag;

}

int
Dimerize(CELL *c)     /* a_mu[47] */
{

int flag = 0;
int affected = 11;
int i;
int todo[11]= {unbindBRAR,decayBRAR,unbindBRXR,decayBRXR,

activateA1,activateB1,repressB1,decayDimer,
dimerize,unDimerize,transcribeA1};

if(c->brar < 1 || c->brxr < 1) {
fprintf(stderr,"Error in Dimerize:");
fprintf(stderr," Cell %d has %d brar and %d brxr\n",

c->num,c->brar,c->brxr);
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goto cleanup;
}

/* Change the relevant quantities */
c->brar -= 1;
c->brxr -= 1;
c->dimer += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}

int
UnDimerize(CELL *c)   /* a_mu[48] */
{

int flag = 0;
int affected = 11;
int i;
int todo[11]= {unbindBRAR,decayBRAR,unbindBRXR,decayBRXR,dimerize,

 activateA1,activateB1,repressB1,decayDimer,
 unDimerize,transcribeA1};

if(c->dimer < 1) {
fprintf(stderr,"Error in UnDimerize:");
fprintf(stderr," Cell %d has %d dimers\n", c->num,c->dimer);
goto cleanup;

}

/* Change the relevant quantities */
c->brar += 1;
c->brxr += 1;
c->dimer -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
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}

int
DecayDimer(CELL *c)    /* a_mu[49] */
{

int flag = 0;
int affected = 6;
int todo[6]= {activateA1,activateB1,repressB1,decayDimer,unDimerize,

transcribeA1};
int i;

if(c->dimer < 1) {
fprintf(stderr,"Error in DecayDimer:");
fprintf(stderr," Cell %d has %d dimers\n", c->num,c->dimer);
goto cleanup;

}

/* Change the relevant quantities */
c->dimer -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;

}

int
Complexa1(CELL *c)       /* a_mu[50] */
{

int flag = 0;
int affected = 8;
int i;
int todo[8]= {complexb1,superActivateB1,decaya1Complex,

decayComplex,decaya1,complexa1,repressKrox,
unComplexa1};

if(c->a1 < 1 || c->plex < 1) {
fprintf(stderr,"Error in Complexa1:");
fprintf(stderr," Cell %d has %d a1 and %d complexes\n"

,c->num,c->a1,c->plex);
goto cleanup;
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}

/* Change the relevant quantities */
c->a1 -= 1;
c->plex -= 1;
c->a1plex += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}

int
Uncomplexa1(CELL *c)    /* a_mu[51] */
{

int flag = 0;
int affected = 8;
int i;
int todo[8]= {complexb1,superActivateB1,decaya1Complex,

decayComplex,decaya1,complexa1,repressKrox,
unComplexa1};

if(c->a1plex < 1) {
fprintf(stderr,"Error in UnComplexa1:");
fprintf(stderr," Cell %d has %d a1plex\n" ,c->num,c->a1plex);
goto cleanup;

}

/* Change the relevant quantities */
c->a1 += 1;
c->plex += 1;
c->a1plex -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}



213

int
Decaya1Complex(CELL *c) /* a_mu[52] */
{

int flag = 0;
int affected = 3;
int i;
int todo[3]= {superActivateB1,decaya1Complex,unComplexa1};

if(c->a1plex < 1) {
fprintf(stderr,"Error in Decaya1Complex:");
fprintf(stderr," Cell %d has %d a1plex\n" ,c->num,c->a1plex);
goto cleanup;

}

/* Change the relevant quantities */
c->a1plex -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}

int
Complexb1(CELL *c)       /* a_mu[53] */
{

int flag = 0;
int affected = 9;
int i;
int todo[9]= {complexb1,autoActivateB1,activateB2,complexa1,

unComplexb1,decayb1Complex,decayb1,decayComplex,
repressKrox};

if(c->b1 < 1 || c->plex < 1) {
fprintf(stderr,"Error in Complexb1:");
fprintf(stderr," Cell %d has %d b1 and %d complexes\n"

,c->num,c->b1,c->plex);
goto cleanup;

}

/* Change the relevant quantities */
c->b1 -= 1;
c->plex -= 1;
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c->b1plex += 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}

int
Uncomplexb1(CELL *c)     /* a_mu[54] */
{

int flag = 0;
int affected = 9;
int i;
int todo[9]= {complexb1,autoActivateB1,activateB2,complexa1,

unComplexb1,decayb1Complex,decayb1,decayComplex,
repressKrox};

if(c->b1plex < 1) {
fprintf(stderr,"Error in UnComplexb1:");
fprintf(stderr," Cell %d has %d b1\n",c->num,c->b1plex);
goto cleanup;

}

/* Change the relevant quantities */
c->b1 += 1;
c->plex += 1;
c->b1plex -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}

int
Decayb1Complex(CELL *c)  /* a_mu[55] */
{

int flag = 0;
int affected = 4;
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int i;
int todo[4]= {autoActivateB1,activateB2,unComplexb1,decayb1Complex};

if(c->b1plex < 1) {
fprintf(stderr,"Error in Decayb1Complex:");
fprintf(stderr," Cell %d has %d b1\n",c->num,c->b1plex);
goto cleanup;

}

/* Change the relevant quantities */
c->b1plex -= 1;

for(i = 0; i < affected; i++) {
(Update)[todo[i]](c);

}

flag = 1;
cleanup:

return flag;
}

int
MakeComplex(CELL *c)
{

int affected = 3;
int todo[3] = {complexa1,complexb1,decayComplex};
int flag = 0;
int i;
c->plex += 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
}
flag = 1;
return flag;

}

int
DecayComplex(CELL *c)
{

int affected = 3;
int todo[3] = {complexa1,complexb1,decayComplex};
int flag = 0;
int i;
c->plex -= 1;
for(i = 0; i < affected; i++) {

(Update)[todo[i]](c);
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}
flag = 1;
return flag;

}

int
RA_Diffusion(CELL * c)   /*  RA diffusion; Source located at xi = 0 */
{

int ra;
int flag = 0;

if((c->next != (CELL*) NULL) && (c->ra > 0)) {
ra = ((c+1)->ra += 1);
(c+1)->d_ra = D_ra*ra;
(c+1)->a_mu[bindRAR] = C_mu[bindRAR]*ra*(c+1)->rar;
(c+1)->a_mu[bindRXR] = C_mu[bindRXR]*ra*(c+1)->rxr;
(c+1)->a_mu[decayRA] = C_mu[decayRA]*ra;
ra = (c->ra -= 1);
c->d_ra = D_ra*ra;
c->a_mu[bindRAR] = C_mu[bindRAR]*ra*c->rar;
c->a_mu[bindRXR] = C_mu[bindRXR]*ra*c->rxr;
c->a_mu[decayRA] = C_mu[decayRA]*ra;
flag = 1;

}
else {

printf("Can't diffuse in cell %d, have %d ra.\n",c->num,c->ra);
}
return flag;

}

UpdateAmu.h

#include "Hox.h"

#ifndef __UPDATEAMU_H
#define __UPDATEAMU_H

void UpdateMakeRA(CELL *);
void UpdateBindRAR(CELL *);
void UpdateDecayRA(CELL *);
void UpdateMakeRAR(CELL *);
void UpdateDecayRAR(CELL *);
void UpdateUnBindBRAR(CELL *);
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void UpdateDecayBRAR(CELL *);
void UpdateActivateA1(CELL *);
void UpdateUnActivateA1(CELL *);
void UpdateTranscribeA1(CELL *);
void UpdateDecaymA1(CELL *);
void UpdateTranslateA1(CELL *);  
void UpdateDecaya1(CELL *);
void UpdateActivateB1(CELL *);
void UpdateUnActivateB1(CELL *);
void UpdateTranscribeB1(CELL *);
void UpdateDecaymB1(CELL *);
void UpdateTranslateB1(CELL *);
void UpdateSuperActivateB1(CELL *);
void UpdateUnSuperActivateB1(CELL *);
void UpdateTranscribeSuperB1(CELL *);
void UpdateRepressB1(CELL *);
void UpdateUnRepressB1(CELL *);
void UpdateAutoActivateB1(CELL *);
void UpdateUnAutoActivateB1(CELL *);
void UpdateTranscribeAutoB1(CELL *);
void UpdateDecayb1(CELL *);
void UpdateActivateB2(CELL *);
void UpdateUnActivatedB2(CELL *);
void UpdateTranscribeB2(CELL *);
void UpdateDecaymB2(CELL *);
void UpdateTranslateB2(CELL *);
void UpdateDecayb2(CELL *);
void UpdateDivide(CELL *);
void UpdateActivateKrox(CELL *);
void UpdateUnActivateKrox(CELL *);
void UpdateTranscribeKrox(CELL *);
void UpdateDecaymKrox(CELL *);
void UpdateRepressKrox(CELL *);
void UpdateUnRepressKrox(CELL *);
void UpdateTranslateKrox(CELL *);
void UpdateDecaykrox(CELL *);
void UpdateBindRXR(CELL *);
void UpdateMakeRXR(CELL *);
void UpdateDecayRXR(CELL *);
void UpdateUnbindBRXR(CELL *);
void UpdateDecayBRXR(CELL *);
void UpdateDimerize(CELL *);
void UpdateUnDimerize(CELL *);
void UpdateDecayDimer(CELL *);
void UpdateComplexa1(CELL *);
void UpdateUnComplexa1(CELL *);
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void UpdateDecaya1Complex(CELL *);
void UpdateComplexb1(CELL *);
void UpdateUnComplexb1(CELL *);
void UpdateDecayb1Complex(CELL *);
void UpdateMakeComplex(CELL *);
void UpdateDecayComplex(CELL *);

typedef  void (*UpdateAmu)();

static UpdateAmu Update[NUM_FUNCS] = {
UpdateMakeRA,
UpdateBindRAR,
UpdateDecayRA,
UpdateMakeRAR,
UpdateDecayRAR,
UpdateUnBindBRAR,
UpdateDecayBRAR,
UpdateActivateA1,
UpdateUnActivateA1,
UpdateTranscribeA1,
UpdateDecaymA1,
UpdateTranslateA1,  
UpdateDecaya1,
UpdateActivateB1,
UpdateUnActivateB1,
UpdateTranscribeB1,
UpdateDecaymB1,
UpdateTranslateB1,
UpdateSuperActivateB1,
UpdateUnSuperActivateB1,
UpdateTranscribeSuperB1,
UpdateRepressB1,
UpdateUnRepressB1,
UpdateAutoActivateB1,
UpdateUnAutoActivateB1,
UpdateTranscribeAutoB1,
UpdateDecayb1,
UpdateActivateB2,
UpdateUnActivatedB2,
UpdateTranscribeB2,
UpdateDecaymB2,
UpdateTranslateB2,
UpdateDecayb2,
UpdateDivide,
UpdateActivateKrox,
UpdateUnActivateKrox,
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UpdateTranscribeKrox,
UpdateDecaymKrox,
UpdateRepressKrox,
UpdateUnRepressKrox,
UpdateTranslateKrox,
UpdateDecaykrox,
UpdateBindRXR,
UpdateMakeRXR,
UpdateDecayRXR,
UpdateUnbindBRXR,
UpdateDecayBRXR,
UpdateDimerize,
UpdateUnDimerize,
UpdateDecayDimer,
UpdateComplexa1,
UpdateUnComplexa1,
UpdateDecaya1Complex,
UpdateComplexb1,
UpdateUnComplexb1,
UpdateDecayb1Complex,
UpdateMakeComplex,
UpdateDecayComplex};

#endif

UpdateAmu.c

#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "Hox.h"
#include "header.h"
#include "UpdateAmu.h"

void /* 0 */
UpdateMakeRA(CELL *c)
{

}

void /* 1 */
UpdateBindRAR(CELL *c)
{
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c->a_mu[bindRAR] = C_mu[bindRAR]*(c->ra)*(c->rar);
}

void /* 2 */
UpdateDecayRA(CELL *c)
{
   c->a_mu[decayRA]   = C_mu[decayRA]*(c->ra);
}

void /* 3 */
UpdateMakeRAR(CELL *c)
{

}

void
UpdateDecayRAR(CELL *c) /* 4 */
{
    c->a_mu[decayRAR]  = C_mu[decayRAR]*(c->rar);
}

void
UpdateUnBindBRAR(CELL *c) /* 5 */
{

c->a_mu[unbindBRAR]  = C_mu[unbindBRAR]*(c->brar);
}

void
UpdateDecayBRAR(CELL *c) /* 6 */
{

c->a_mu[decayBRAR]  = C_mu[decayBRAR]*(c->brar);
}

void
UpdateActivateA1(CELL *c) /* 7 */
{
//    int dimer = c->dimer;
//    c->a_mu[activateA1]  = C_mu[activateA1]*pow((double)dimer,a1hill)/
//                          (K[1]+pow((double)dimer,a1hill))*(dimer)*(c->A1);
}

void
UpdateUnActivateA1(CELL *c) /* 8 */
{
//    c->a_mu[unActivateA1] = C_mu[unActivateA1]*(c->actA1);
}
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void
UpdateTranscribeA1(CELL *c) /* 9 */
{
// c->a_mu[transcribeA1] = C_mu[transcribeA1]*(c->actA1);
/* This version is for the updated model */

c->a_mu[transcribeA1] = C_mu[transcribeA1]*(c->dimer);
}

void
UpdateDecaymA1(CELL *c) /* 10 */
{

c->a_mu[decaymA1] = C_mu[decaymA1]*(c->mA1);
}

void
UpdateTranslateA1(CELL *c) /* 11 */
{

c->a_mu[translateA1] = C_mu[translateA1]*(c->mA1);
}
      
void      
UpdateDecaya1(CELL *c) /* 12 */
{
    c->a_mu[decaya1]  = C_mu[decaya1]*(c->a1);
}

void
UpdateActivateB1(CELL *c) /* 13 */
{
    int dimer = c->dimer;
    c->a_mu[activateB1]  = C_mu[activateB1]*pow((double)dimer,b1hill)/
                           (K[2]+pow((double)dimer,b1hill))*dimer*c->B1;
}
      
void
UpdateUnActivateB1(CELL *c) /* 15 */
{
    c->a_mu[unActivateB1] = C_mu[unActivateB1]*(c->actB1);
}

void
UpdateTranscribeB1(CELL *c) /* 15 */
{
    c->a_mu[transcribeB1] = C_mu[transcribeB1]*(c->actB1);
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}

void
UpdateDecaymB1(CELL *c) /* 16 */
{

c->a_mu[decaymB1] = C_mu[decaymB1]*(c->mB1);
}

void
UpdateTranslateB1(CELL *c) /* 17 */
{
    c->a_mu[translateB1] = C_mu[translateB1]*(c->mB1);
}

void
UpdateSuperActivateB1(CELL *c) /* 18 */
{
    int a1plex = c->a1plex;
    int id = (c->id == R4);
    c->a_mu[superActivateB1]  = id*C_mu[superActivateB1]*
                                pow((double)a1plex,a1hill)/
                                (K[3]+pow((double)a1plex,a1hill))* a1plex*(c->actB1);
}

void
UpdateUnSuperActivateB1(CELL *c) /* 19 */
{
    c->a_mu[unSuperActivateB1] = C_mu[unSuperActivateB1]*(c->superactB1);
}

void
UpdateTranscribeSuperB1(CELL *c) /* 20 */
{
    c->a_mu[transcribeSuperB1] = C_mu[transcribeSuperB1]*(c->superactB1);
}

void
UpdateRepressB1(CELL *c) /* 21 */
{
    int dimer = c->dimer;
    c->a_mu[repressB1]  = C_mu[repressB1]*c->B1*dimer/
                           (K[6]+pow((double)dimer,rephill));
}

void
UpdateUnRepressB1(CELL *c) /* 22 */
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{
    c->a_mu[unRepressB1] = C_mu[unRepressB1]*(c->repB1);
}

void
UpdateAutoActivateB1(CELL *c) /* 23 */
{
    int b1plex = c->b1plex;
    int id = (c->id == R4);
    c->a_mu[autoActivateB1]  = id*C_mu[autoActivateB1]*

pow((double)b1plex,b1auto)/
(K[4]+pow((double)b1plex,b1auto))*
b1plex*(c->B1);

}

void
UpdateUnAutoActivateB1(CELL *c) /* 24 */
{
    c->a_mu[unAutoActivateB1] = C_mu[unAutoActivateB1]*(c->autoB1);
}

void
UpdateTranscribeAutoB1(CELL *c) /* 25 */
{
    c->a_mu[transcribeAutoB1] = C_mu[transcribeAutoB1]*(c->autoB1);
}
void
UpdateDecayb1(CELL *c) /* 26 */
{
    c->a_mu[decayb1]  = C_mu[decayb1]*(c->b1);
}

void
UpdateActivateB2(CELL *c) /* 27 */
{
    int act;
    int r3 = (c->id == R3);
    int r4 = (c->id == R4);
    int r5 = (c->id == R5);

if(r4) act = c->b1plex;
else if(r5) act = c->krox;
else act = c->krox;

    c->a_mu[activateB2]  = !r3*C_mu[activateB2]*pow((double)act,b2hill)/
                           (K[5]+pow((double)act,b2hill))*act*(c->B2);
}
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void
UpdateUnActivatedB2(CELL *c) /* 28 */
{
    c->a_mu[unActivateB2] = C_mu[unActivateB2]*(c->actB2);
}

void
UpdateTranscribeB2(CELL *c) /* 29 */
{
    c->a_mu[transcribeB2] = C_mu[transcribeB2]*(c->actB2);
}

void
UpdateDecaymB2(CELL *c) /* 30 */
{

c->a_mu[decaymB2] = C_mu[decaymB2]*(c->mB2);
}

void
UpdateTranslateB2(CELL *c) /* 31 */
{
    c->a_mu[translateB2] = C_mu[translateB2]*(c->mB2);
}

void
UpdateDecayb2(CELL *c) /* 32 */
{
    c->a_mu[decayb2]  = C_mu[decayb2]*(c->b2);
}

void
UpdateDivide(CELL *c) /* 33 */
{

/* no changes needed */
}

void
UpdateActivateKrox(CELL *c) /* 34 */
{
    int r3 = (c->id == R3);
    c->a_mu[activateKrox]  = !r3*C_mu[activateKrox]*(c->Krox);
}

void
UpdateUnActivateKrox(CELL *c) /* a_mu[35] */
{
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    c->a_mu[unActivateKrox] = C_mu[unActivateKrox]*(c->actKrox);
}

void 
UpdateTranscribeKrox(CELL *c) /* a_mu[36] */
{
    c->a_mu[transcribeKrox] = C_mu[transcribeKrox]*(c->actKrox);
}

void
UpdateDecaymKrox(CELL *c)     /* a_mu[37] */
{

c->a_mu[decaymKrox] = C_mu[decaymKrox]*(c->mKrox);
}

void
UpdateRepressKrox(CELL *c)    /* a_mu[38] */
{

    int b1 = c->b1;
    int a1 = c->a1;
    int max = (a1 > b1) ? a1 : b1;

    c->a_mu[repressKrox]  = C_mu[repressKrox]*c->Krox*(max)/
                           (K[6]+pow((double)(max),rephill));

}

void
UpdateUnRepressKrox(CELL *c)  /* a_mu[39] */
{
    int r3 = (c->id == R3);
    c->a_mu[unRepressKrox] = !r3*C_mu[unRepressKrox]*(c->repKrox);
}

void
UpdateTranslateKrox(CELL *c)  /* a_mu[40] */
{
    c->a_mu[translateKrox] = C_mu[translateKrox]*(c->mKrox);
}

void
UpdateDecaykrox(CELL *c)      /* a_mu[41] */
{
    c->a_mu[decaykrox]  = C_mu[decaykrox]*(c->krox);
}
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void
UpdateBindRXR(CELL *c) /* a_mu[42] */
{

c->a_mu[bindRXR] = C_mu[bindRXR]*(c->ra)*(c->rxr);
}

void
UpdateMakeRXR(CELL *c) /* a_mu[43] */
{

}

void
UpdateDecayRXR(CELL *c) /* a_mu[44] */
{
    c->a_mu[decayRXR]  = C_mu[decayRXR]*(c->rxr);
}

void
UpdateUnbindBRXR(CELL *c) /* a_mu[45] */
{

c->a_mu[unbindBRXR]  = C_mu[unbindBRXR]*(c->brxr);
}

void
UpdateDecayBRXR(CELL *c) /* a_mu[46] */
{

c->a_mu[decayBRXR]  = C_mu[decayBRXR]*(c->brxr);
}

void
UpdateDimerize(CELL *c) /* a_mu[47] */
{

c->a_mu[dimerize] = C_mu[dimerize]*(c->brar)*(c->brxr);

}

void
UpdateUnDimerize(CELL *c)   /* a_mu[48] */
{

c->a_mu[unDimerize] = C_mu[unDimerize]*(c->dimer);
}

void
UpdateDecayDimer(CELL *c) /* a_mu[49] */



227

{
c->a_mu[decayDimer] = C_mu[decayDimer]*(c->dimer);

}

void
UpdateComplexa1(CELL *c)
{

c->a_mu[complexa1] = C_mu[complexa1]*(c->a1)*(c->plex);
}

void
UpdateUnComplexa1(CELL *c)
{

c->a_mu[unComplexa1] = C_mu[unComplexa1]*(c->a1plex);
}

void
UpdateDecaya1Complex(CELL *c)
{

c->a_mu[decaya1Complex] = C_mu[decaya1Complex]*(c->a1plex);
}

void
UpdateComplexb1(CELL *c)
{

c->a_mu[complexb1] = C_mu[complexb1]*(c->b1)*(c->plex);
}

void
UpdateUnComplexb1(CELL *c)
{

c->a_mu[unComplexb1] = C_mu[unComplexb1]*(c->b1plex);
}

void
UpdateDecayb1Complex(CELL *c)
{

c->a_mu[decayb1Complex] = C_mu[decayb1Complex]*(c->b1plex);
}

void
UpdateMakeComplex(CELL *c)
{

}
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void
UpdateDecayComplex(CELL *c)
{

c->a_mu[decayComplex] = C_mu[decayComplex]*(c->plex);
}

ranlib

The ranlib routines used in this program are in the public domain and can be found at
http://www.netlib.org/random/ and are fully described in the literature (L'Ecuyer et al.,
1991).

Makefile

CC = gcc

CFLAGS = -O2 -Wall
TARGET = a.out

LIBS = -lm

SRCS = Hox.c main.c write_gnu_data_file.c inputs.c UpdateAmu.c ll.c ranlib.c com.c
OBJS = Hox.o main.o write_gnu_data_file.o inputs.o UpdateAmu.o ll.o ranlib.o com.o

$(TARGET): $(OBJS)
$(CC) -o $(TARGET) $(CFLAGS) $(LFLAGS) $(OBJS) $(LIBS)
chmod 755 $(TARGET)

main.o: main.c Hox.h header.h
$(CC) -c $(CFLAGS) $(LFLAGS) main.c

Hox.o: Hox.c Hox.h header.h
$(CC) -c $(CFLAGS) $(LFLAGS) Hox.c

UpdateAmu.o:UpdateAmu.c UpdateAmu.h header.h
$(CC) -c $(CFLAGS) $(LFLAGS) UpdateAmu.c

ranlib.o: ranlib.c ranlib.h
$(CC) -c $(CFLAGS) $(LFLAGS) ranlib.c

com.o: com.c ranlib.h
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$(CC) -c $(CFLAGS) $(LFLAGS) com.c

inputs.o: inputs.c Hox.h header.h
$(CC) -c $(CFLAGS) $(LFLAGS) inputs.c

ll.o: ll.c Hox.h header.h
$(CC) -c $(CFLAGS) $(LFLAGS) ll.c

write_gnu_data_file.o: write_gnu_data_file.c
$(CC) -c $(CFLAGS) $(LFLAGS) write_gnu_data_file.c

clean:
rm -f $(TARGET) $(OBJS) count

Appendix D: Mathematica Source Code

The Mathematica package that was used for making the movies is included below.  The

notebook can be found on the CD-ROM as well.

Basic Enzyme Reaction

The following source code was used to generate the data used for Figures 2.1 and 2.2.

MM[inputsub_, inputenz_, end_,k_List] :=
Module[{kf = k[[1]], kb = k[[2]], k2 = k[[3]], enz = inputenz,

sub = inputsub, com = 0, pro = 0, t = 0.0, tt = {},  dat = {}, s},
While[t < end && (sub > 0 || com > 0),

amu = {kf*sub*enz, kb*com, k2*com};
a0 = Plus @@ amu;
r1 = Random[ ];
t += - Log[r1]/a0;
r2 = Random[ ];
picker = r2*a0;
s = Drop[FoldList[Plus, 0, amu], 1];
Which[picker < s[[1]],

sub -= 1; enz -= 1; com += 1,
picker < s[[2]],

sub += 1; enz += 1; com -= 1,
picker < s[[3]],
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enz += 1; com -= 1; pro += 1
];
AppendTo[tt, t];
AppendTo[dat, {sub, enz, com, pro}]

];
{tt, dat}

]

Data Display Routines

Response Curves

For displaying how the levels in a particular cell of a certain specie changes over time.

Needs["Graphics`MultipleListPlot`"];

Response[files:{___String},rhom_] := Module[{data = {},name,i,j,m,l},
    clrs = {RGBColor[1,0,0],RGBColor[0,1,0],
        RGBColor[0,0,1],RGBColor[0,1,1],RGBColor[1,0,1],RGBColor[0,0,0],
        RGBColor[1,.5,0],
        RGBColor[0,.5,.5],RGBColor[.5,1,.5],RGBColor[1,.5,.5],
        RGBColor[.5,.5,.5]
        };
    l = Length[files];
    For[j = 1, j ≤ l, j++,
      d = ReadList[files[[j]],Real,RecordLists->True];
      If[rhom == 5,
        d = Map[Part[#,2]&,d],
                  d = Map[Part[#,4]&,d]
        ];
      AppendTo[data,d];
       ];
    m = Max[data];
    For[i=1, i<=l, i++,mx = Length[data[[1,i]]];
       a =
        Table[Text[
            StyleForm[files[[i]],FontColor->clrs[[i]]],{8,12-2*i}],{i,1,
            l}]
      ];
     MultipleListPlot[Apply[Sequence,data], SymbolStyle->clrs ,
      Prolog->a]
    ]
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Excess Variance

The routine that generates the Figures 3.10 and the like.

Needs["Graphics`MultipleListPlot`"];

ExcessVar[files:{___String}] := Module[{data = {},name,i,j,m,l},
    clrs = {RGBColor[1,0,0],RGBColor[0,1,0],
        RGBColor[0,0,1],RGBColor[0,1,1],RGBColor[1,0,1],RGBColor[0,0,0],
        RGBColor[1,.5,0],
        RGBColor[0,.5,.5],RGBColor[.5,1,.5],RGBColor[1,.5,.5],
        RGBColor[.5,.5,.5]
        };
    l = Length[files];
    For[j = 1, j ≤ l, j++,
      d = ReadList[files[[j]],Real,RecordLists->True];
      d = Map[Part[#,2]&,d];
      AppendTo[data,d];
       ];
    m = Max[data];
    For[i=1, i<=l, i++,mx = Length[data[[1,i]]];
       a =
        Table[Text[
            StyleForm[files[[i]],FontColor->clrs[[i]]],{8,12-2*i}],{i,1,
            l}]
      ];
     MultipleListPlot[Apply[Sequence,data], SymbolStyle->clrs , Prolog->a]
    ]

Level Initilaztion

The initial incarnation of the data display routines, these are still in use by J. Solomon

(personal communication).

Needs["Graphics`MultipleListPlot`"];

Movie[dir_,files:{___String}, num_Integer,opts___Rule] := Movie[dir,files,0,num,opts];

Options[Movie] = {Step->1};

Movie[dir_,files:{___String}, start_Integer,num_Integer,opts___Rule] :=
  Module[{data = {},name,numbers={},i,j,m,l},
    clrs = {RGBColor[1,0,0],RGBColor[0,1,0],
        RGBColor[0,0,1],RGBColor[0,1,1],RGBColor[1,0,1],RGBColor[0,0,0],
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        RGBColor[1,.5,0],
        RGBColor[0,.5,.5],RGBColor[.5,1,.5],RGBColor[1,.5,.5],
        RGBColor[.5,.5,.5]
        };
    mystep=Step/.{opts}/.Options[Movie];
    l = Length[files];
    For[j = 1, j ≤ l, j++,
      data = {};
         For[i = start, i ≤ num, i+=mystep,
        name =dir<>files[[j]]<>"."<>ToString[i]<>".dat";
        d = ReadList[name,Real,RecordLists->True];
        d = Map[Last,d];
        AppendTo[data,d];
         ];
      AppendTo[numbers,data];
      ];
    m = Max[numbers];
    Which[m < 2500, scale = 100,
                 m < 6000, scale = 300,
                m < 10000, scale = 500,
                True, scale = 1000];
    For[i=1, i≤(num-start)/mystep, i++,mx = Length[numbers[[1,i]]];
       a =
        Table[Text[
            StyleForm[files[[i]],FontColor->clrs[[i]]],{mx-2,
              m-i* scale}],{i,1,l}];
       MultipleListPlot[Map[Part[#,i]&,numbers],PlotRange->{-200,m},
        SymbolStyle->clrs ,
        Prolog->a]]
    ]

Stain Initilaztion

These routines produce the virtual dynamic in situ as in Figure 3.5.

Stain[direc_,files:{___String}, num_Integer,opts___Rule] :=
Stain[direc,files,0,num,opts];

Options[Stain] = {Step->1,FrameScale->False,Tiffs->False};

TimeSlice[data_,time_] := Module[{},
    Map[#[[time]]&,data]
];
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SpecieSlice[data_,specie_] := Module[{},
    Map[#[[specie]]&,data]
];

MakeBar[specie_,num_,name_,gmx_,border_,ndir_] :=
  Module[{bar={},i,mol,scale,color,tc,x,y,gmaxx},
    mx = 1+Max[specie];
    gmaxx = gmx  + 1;
    xoff = 6;
    s = specie/(mx+1);
    s = specie;
    numdirs = Length[specie];
    Which[num == 5,
      tc = CMYKColor[0,1,1,0],
      num== 4,
      tc = CMYKColor[1,0,1,0],
      num == 3,
      tc = CMYKColor[1,1,0,0],
      num == 2,
      tc = CMYKColor[0,1,0,0],
      num ==1,
      tc = CMYKColor[1,0,0,0],
      num ==6,
      tc = CMYKColor[0,0,1,0]
    ];
    bar = {bar,CMYKColor[0,0,0,0],
        Rectangle[{xoff,num+(y-1)/numdirs},{xoff+45,num+y/numdirs}]};
    For[y = 1, y ≤ numdirs,y++,
      numpoints = Length[specie[[y]]];
      For[x = 1, x≤ numpoints,x++,
        dat = s[[y,x]]/gmaxx[[y]];
        Which[num == 5,
          color =CMYKColor[0,0+dat,0+dat,0],
          num== 4,
          color =CMYKColor[0+dat,0,0+dat,0],
          num == 3,
          color = CMYKColor[0+dat,0+dat,0,0],
          num == 2,
          color =CMYKColor[0,0+dat,0,0],
          num == 1,
          color =CMYKColor[0+dat,0,0,0],
          num == 6,
          color =CMYKColor[0,0,0+dat,0]
          ];

        bar = { bar,
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            {color,
              Rectangle[{x+xoff,num+(y-1)/numdirs},{x+1+xoff,
                  num+y/numdirs}]} };
        ];
      l =
        Line[{{border[[y]]+2+xoff,num+(y-1)/numdirs},{border[[y]]+2+xoff,
              num+y/numdirs}}];
      bar = {bar,{CMYKColor[0,0,0,1],l}};
      ];
    (*bar = {bar,CMYKColor[0,0,0,1]} Text[
              "r5",{border[[1]]/2+xoff,ndir+2.5}],
        Text["r4",{border[[1]]+xoff+border[[1]]/2,ndir+2.5}]};
      bar = {bar,{tc,Text[name,{-4+xoff,num+1/numdirs}]}};*)

    bar = Flatten[bar];
    bar
    ]
MakeFrame[tslice_,name_,num_,border_,ndir_,mx_,tiffs_] :=
    Module[{i,l,b = {},counter,ss,x,y,dim,g,filename},
      l = Length[tslice[[1]]];
      xoff = 6;
      For[i = 1, i ≤ l,i++,
        b = {b,
            MakeBar[SpecieSlice[tslice,i],i,name[[i]],Transpose[mx][[i]],
              border,ndir]}
        ];
      time = 7.75+Floor[num/72]*.05;
      counter = ToString[time]<>" dpc";
      x =border[[1]];
      b = {b,Text[counter,{x+xoff+3,ndir+2.5}]};
      g = Graphics[b];
      Show[g,PlotRange->All];
      If[tiffs,
        filename = ToString[num]<>".tiff";
        Display["TIFF/"<>filename,g,"TIFF",ImageResolution->300];
      ]
];

Stain[dirs:{___String},files:{___String}, start_Integer,num_Integer,
    opts___Rule] :=
  Module[{data ,name,numbers,rundat,i,j,m,l,mx={},t,mystep,sf,f = files,
      border,ndir = Length[dirs]},
    mystep=Step/.{opts}/.Options[Stain];
    sf=FrameScale/.{opts}/.Options[Stain];
    tiffs = Tiffs/.{opts}/.Options[Stain];
    l = Length[f];
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    data  = {};
    border = {};
    mx = {};
    For[runs = 1, runs ≤ Length[dirs], runs++,
      AppendTo[border,ReadList[dirs[[runs]]<>"border",Real]];
      numbers = {};
       For[i = start, i ≤ num, i+=mystep,
        rundat = {};
          For[j = 1, j ≤ l, j++,
          name =dirs[[runs]]<>f[[j]]<>"."<>ToString[i]<>".dat";
         d = ReadList[name,Real,RecordLists->True];
          d = Map[Last,d];
          AppendTo[rundat,d];
          AppendTo[mx,Max[d]];
         ];
        AppendTo[numbers,rundat];
      ];
     AppendTo[data,numbers];
    ];
    mx = Partition[mx,Length[mx]/Length[dirs]];
    mx = Map[Partition[#,5]&,mx];
    maximums = {};
    For[i = 1, i≤ Length[mx], i++,
      AppendTo[maximums,Map[Max,Transpose[mx[[i]]]]];
      ];
    For[i = 1, i <=Length[numbers],i++,
      tslice = TimeSlice[data,i];
      MakeFrame[tslice,f,i,TimeSlice[border,i],ndir,maximums,tiffs];
      ]
    ]

Plots

The plots are then invoked with the following typical commands

Response[{"mhoxa1","mhoxa1.100","mhoxa1.20","mhoxa1.2000","mhoxa1.7500"},5]

Movie["output.13/",{"ra","hoxa1","hoxb1","hoxb2","rar","rxr","dimer","krox20",
    "brar","brxr"},898,Step->2]

Stain[{"wt/output.13/","wt/output.17/","wt/output.19/",
    "wt/output.23/"},{"mkrox20","mhoxb2","mhoxb1","mhoxa1","ra"},1081,
  Step->1,Tiffs->True]
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