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Chapter 3: Hox Network

It turns out to be remarkably difficult for mathematicians and computer

scientists who are enthusiastic about biology to learn enough biology not

to be dangerous, and vice versa.  After all, many of us became biologists

because we didn't like math.  For biologists to learn the mathematics turns

out to be challenging in quite a different way.  And there is a huge amount

of non-understanding—I would not go so far as to say

misunderstanding—that results.  But getting these disciplines together has

turned out to be a much easier thing to say than to do…We have to do a

much better job of teaching at the interfaces of the disciplines.

- David Botstein, 2002

Introduction

The problem under investigation is a study of the Hox regulatory mechanism in

the developing hindbrain using a mathematical model based on a stochastic simulation

algorithm (SSA) presented in Chapter 2.  Much of this chapter is based on my paper

published in the journal Developmental Biology (Kastner et al., 2002).

Developmental Biology Introduction

In developmental biology, the establishment of asymmetry early in

embryogenesis sets the stage for the formation of the body proper.  The first axis formed
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is along the anterior-posterior (or rostral-caudal) axis of the embryo.  Cells are endowed

with positional information that allows the proper formation of structures that correspond

to their position along the axis.  In other words, head structures form from the anterior

part of the newly formed axis, and tail structures form from the posterior part of the axis.

The beginnings of the central nervous system in vertebrates occur early in

development with the formation of the neural plate.  The neural plate then folds into the

neural tube.  There are variations in how this occurs in different species, but in general

the process is fairly similar: the tube begins as a groove down the midline of an embryo,

and eventually closes from the joining of the flaps on either side (Gallera, 1971).  This is

a crucial process in development, and if the neural tube fails to close properly it can lead

to defects like Spina bifida or Anencephaly (Van Allen et al., 1993).

Although initially straight, the upper section of the neural tube nearest the head

forms a variety of bulges and constrictions that compartmentalize brain and spinal cord

into distinct sections.  The anterior most bulges will give rise to cells that make the

prosencephalon (forebrain) and structures such as the olfactory lobes, the cerebrum, and

the retina.  Just posterior to that, the mesencephalon (midbrain) will give rise to structures

like the optic lobes and the tectum. The most posterior bulges are the developing

rhombencephalon (hindbrain) which gives rise to the cerebellum and the brain stem

(Gilbert, 1997).   Shortly after the closure of the neural tube, the vertebrate hindbrain

further develops a series of axial bulges called rhombomeres that effectively

compartmentalize the rhombencephalon into 8 smaller segments.  The rhombomeres have

been shown to be cell lineage restricted in that cells from one rhombomere do not cross

over into another (Fraser et al., 1990). The segmentation of the hindbrain into
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rhombomeres is a crucial process in the proper specification of the developing structures

of the hindbrain (Guthrie and Lumsden, 1991).  In a series of closely aged chick embryos,

Figure 3.1 shows the closing of the neural tube and the rhombomeres.

Figure 3.1 Neural tube closure and rhombomere emergence. These five embryos

are stained for the segmentally expressed gene EphA4 (previously called Sek2, the

probe is courtesy of C. Tabin). The embryos are oriented with the head at the top of

the page and the tail at the bottom.  The somites (examples marked by S in 4 and 8

above) are block-like collections of cells that form in pairs along the rostral-caudal

axis of the embryo.  They appear in a regular fashion, a new pair appearing every 90
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minutes or so.  Because of this, the somites are commonly used for a staging

mechanism and the numbers below the embryos are the pairs of somites in each

embryo.  The outlined areas in 4, 5 and 7 show the gap between the neural folds

before the neural tube is fully closed in the mid and hindbrain.  Notice that in 4 the

tube is wide open, in 7 the tube is almost completely closed, and in 8 and 9 the tube is

closed.  In 8 rhombomeres 2 through 5 are marked, with rhombomere 3 being the

most prominent due to its strong expression of EphA4.  Rhombomere 3 is also clearly

visible in 7.  A slightly different version of this figure will be appearing in the 7th

edition of the book Developmental Biology by S. Gilbert.

The rhombomeres are transitory structures that appear for about 15% of the

development time of the embryo.  In the chick, they appear after about 25 hours of

development, and disappear by the100 hour mark.  In a cartoon adapted from Lumsden

(1990), Figure 3.2 shows the order and approximate timing of the formation of

rhombomere boundaries.  The Hox gene network under investigation is expressed in

rhombomeres 4 and 5.
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Figure 3.2 Rhombomere emergence. The first boundaries noticeable are the

boundary between the midbrain and hindbrain (M/H), and the boundary between

rhombomeres 5 and 6 (r5 and r6), both visible by 28 hours of development. The first

fully formed rhombomere is r3 at 31 hours of development, followed by r4 and r5 at

32.5 hours, r2 at 39 hours, then r6, r7, r8 and r1 by 46 hours.  The existence of

rhombomere 0 is under debate, and there is no discernable boundary between

rhombomere 8 and the developing spinal cord. The initial formation of the 5/6

boundary is actually very dependent on incubation conditions, and the initial start

time may vary significantly.
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Introduction to the Control and Expression of Genes

This section contains a short introduction to the molecular biology behind the

control and expression of genes.  It is not intended to be all encompassing, and for more

details, the reader is directed to Alberts et al. (1994).  However, it is intended to give the

reader enough information to follow the construction of the model presented below.

The problem of tissue differentiation mentioned above also needs to be addressed

at a different level: that of the cell.  The different cells in a multicellular organism contain

the same DNA yet they differentiate from each other by creating and accumulating

different messenger RNA (mRNA) and different proteins.  The process by which a cell

creates protein can be broken down into two major pieces: transcription and translation.

Transcription is the process by which mRNA is created from the DNA, while

translation is the process by which the mRNA is turned into protein.  Collectively, this

process is called the Central Dogma.  Obviously this is a simplified view as many other

steps can occur.  These include RNA splicing in which parts of the RNA are excised from

the original strand.  But while these steps are important in understanding the biology of

the problem, they are not crucial to include from a modeling standpoint.  This is because

each of these steps is part of a cascade that affects the timing of the end result, but not

what the end result is.

Transcriptional activators are the major building blocks of the model and it is this

process that garners the most attention.  Transcriptional factors are proteins that

recognize a defined DNA sequence in the regulatory control region of a particular gene.

Factors can be activators, which means that they contribute to the making of mRNA, or
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repressors that prevent the mRNA for that gene being made.  When even one molecule of

a transcription factor is available for binding to the regulatory region of a gene, the

probability that transcriptional will occur is significantly increased.  Transcriptional

control is a very complicated process and it can take multiple transcription factors acting

in tandem to switch the gene on and allow the transcription of mRNA.  This work focuses

on the cis-regulation of genes: regulation that is controlled by sequences close to the start

site for transcription.  Cis-regulatory factors are generally the most important elements in

transcription initiation.

Hox Genes

Discovering regulatory genes, genes that control the major aspects of a biological

system, has been the focus of biological research ever since molecular tools have become

available.  While no single master regulator gene has appeared, there have been some

remarkable discoveries in developmental biology in the past few decades.  In particular

the homeotic genes have been identified as a family of genes that control genetic aspects

of development (Duboule, 1994).  First identified in the fruit fly Drosophila

melanogaster, an evolutionary study showed that the homeobox—a set of 60 amino acids

found in several different genes in Drosophila and encoding a DNA binding

domain—also appeared in beetles, earthworms, chicken, mouse, and human (McGinnis et

al., 1984).  Mutation studies have been carried out in Drosophila, and they show that if a

homeobox gene is mutated, the axial organization of the body is altered, leading

researches to conclude that the homeobox genes are critical in the proper formation of the

body plan (McGinnis and Krumlauf, 1992).  In addition, it now appears that the



60

homeobox genes might indeed be the master regulatory genes of the body axis.  It has

recently been shown that natural alterations in the homeobox protein Ubx are likely to be

the critical event that led to the evolution of hexapod insects from multilegged crustacean

ancestors (Ronshaugen, 2002).

The 39 Hox (homeobox containing) genes found in higher vertebrates—like

human and mouse—are organized into four chromosomal clusters located on different

chromosomes.  A Hox related family is found in invertebrates as well, but in this instance

the genes can be found in a single cluster on one chromosome.  Using information about

their amino acid makeup, the genes can be aligned to one another using the Drosophila

genes as a reference.  They are easily grouped into13 paralog groups, or subfamilies.  The

Hox genes are collinear: the order they appear on the chromosome is the same as the

order in which they appear in the body axis.  Not only that, they have a temporal

expression that is related to the order on the chromosome as well; the lower numbered

families appear earlier in development than the higher number families.  Finally, they

also have a response to retinoic acid (RA), both in sensitivity and in the efficiency of the

binding, that can be correlated to their order on the chromosome; the lower number

families are very sensitive to RA and bind it tightly (when there is a retinoic acid

response element in the control region of the gene), and the higher numbered families are

less sensitive to RA and bind it more weakly.  This information is summarized

graphically in Figure 3.3 below.
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Figure 3.3 Hox Paralog families Alignment of the Drosophila HOM-C complex,

the four mouse Hox chromosomal clusters, and their deduced common ancestor.

After (Lufkin, 1997), with additional information from (Neuteboom and Murre,

1997; Pellerin et al., 1994).

The Hox gene family is a set of transcription factors that has been shown to be

crucial in helping to confer rhombomere identity (Wilkinson, 1993).  This can be shown

dramatically by altering the expression of just a single gene: it was shown that

misexpression of Hoxb1 was able to transform rhombomere identity (Bell et al., 1999).

The Hox genes exhibit rhombomere-restricted patterns of expression and the expression

of several major rhombomere restricted genes (including the Hox genes) is shown below

in Figure 3.4A.
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But Figure 3.4A is very idealized. While the Hox genes certainly display

rhombomere restricted patterns of expression, the expression does not stop cleanly at the

boundaries.  This is best shown in Figures 3.3B, a 10x magnification picture of

rhombomeres 3 through 7 (r3-r7) of a chick embryo stained for Hoxb1.

  

Figure 3.4 Rhombomere restricted expression of several genes (A) Expression

patterns for several genes with rhombomere restricted boundaries. The lighter

colors signify transient expression, and the darker colors correspond to continued

levels of expression.  After (Lumsden and Krumlauf, 1996). (B) A10x picture of

r3 (top) through r7 (bottom) of a chick hindbrain that has been stained for the

gene Hoxb1 (probe courtesy of R. Krumlauf).  The rostral and caudal boundaries

of r4, as exemplified by the bulge in the tissue, have been marked with arrows.

Notice that the gene expression is essentially restricted to r4, but the boundary is

not a sharp one and there is some expression of the gene in the adjacent

rhombomeres, most notably r3.
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Retinoic Acid

It has been long known that elevated levels of the retinoid vitamin A disturbs

axial formation in vertebrates (Kalter and Warkany, 1959) and recently it has been shown

that sufficient levels are necessary for proper development (Niederreither et al., 1999).

Retinoic acid (RA) is the biological active derivative of vitamin A, and it acts through

two classes of receptors, the RA receptors (RAR) α, β, and γ and the retinoid X receptors

(RXR) α, β, and γ.  RA also plays an important part in the this process as it is able to

directly regulate the expression of Hox family members, and alterations in the RA

response elements in the cis-regulatory domain of reporter genes significantly change the

expression patterns (Gavalas and Krumlauf, 2000).

Modeling

Network Creation

Stochastic investigations in biology models have so far been focused on

intracellular systems.  The goal of this thesis was to explore the utility of a SSA approach

to modeling a gene network involving many cells.  The direct coupling of the SSA

implementation of a network and individual molecular events would seem to lend itself to

both the analysis and logical organization of the ever growing data on the control of Hox

genes in the developing hindbrain.  The analysis presented here shows that the approach

captures the timing, patterning, and variation in Hox gene expression without the need for

artificially injected noise.  The tests against some of the available experimental
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perturbations suggest that the SSA will have predictive value and allow researchers in the

laboratory to identify and focus attention on the most fruitful experiments.

Several of these predictions are noted, and two experiments were designed to

clarify and test aspects of the model.  One of the experiments (found in Chapter 4)

suggested that a design decision made during the creation of the model was incorrect.

The novel biological data resulted in a refinement of the model, thus closing the loop

between modeling and experiments.

The SSA investigation into the Hox network focused on an investigation of the

interaction of Hoxa1, Hoxb1, Hoxb2, Krox20 and RA in rhombomeres 4 and 5 (r4 and

r5).  Krox20 is not a homeobox gene, but it regulates Hox genes and is important for

proper segmentation (Schneider-Maunoury et al., 1993).  As mentioned previously, this

system was chosen for a variety of reasons including the amount of information that is

known: the molecular studies of the hindbrain have offered sufficient details to assemble

a model for the interactions important in regional control of gene expression.  In addition,

the accessibility of the chick hindbrain early in development made this an attractive

system in which hypothesis could be tested.

The following discussion will be enhanced by a brief comment on nomenclature.

Names in italics  (Hoxa1) refer to the genes or the mRNA for the gene, while names in

normal font (Hoxa1) refer to the protein product of the mRNA.  Hoxa1 is the first of the

Hox genes to be expressed in the hindbrain (Murphy and Hill, 1991) and its expression

appears to be directly regulated by a retinoic acid response element (RARE) (Frasch et

al., 1995; Langston and Gudas, 1992).  Hoxb1 expression also appears to depend on
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RAREs, an element on the 3’ end of the gene (the end of the DNA without a phosphate)

the which helps establish early expression (Marshall et al., 1994),  and a repressor

element on the 5’ end of the gene (the end of the DNA with a phosphate) which acts in r3

and r5 (Studer et al., 1994) and which appears to start altering gene expression around 8.0

days post coitus (dpc) in the mouse (R. Krumlauf, personal communication).  The early

expression of Hoxb1 is also dependent on Hoxa1 (Studer et al., 1998) with the cofactor

pbx (Green et al., 1998; Phelan et al., 1995), but continued expression in r4 is controlled

by a strong auto regulatory loop with the cofactors exd/pbx (Popperl et al., 1995) and

prep1 (Berthelsen et al., 1998a).  Hoxa1 is expressed to a rostral limit in the developing

neural tube to the presumptive r3/r4 boundary at 7.75-8.0 dpc, but the expression then

regresses, vanishing from the hindbrain by 8.5 dpc.  The expression of Hoxb1 is very

similar, except for the continued autoregulatory maintenance in r4 (Maconochie et al.,

1996).  Hoxb1, pbx, and prep1 all have a hand in up-regulating Hoxb2 in r4 (Ferretti et

al., 2000; Maconochie et al., 1997), while the later r5 expression of Hoxb2 is regulated by

Krox20 (Nonchev et al., 1996a; Nonchev et al., 1996b; Sham et al., 1993).  In r5 Krox20

appears to be repressed by Hoxa1 and Hoxb1, and expression of Krox20 occurs in r5 after

they retreat from the hindbrain around 8 dpc.  By 8.5 dpc expression of Krox20 and

Hoxb2 can be detected in r5 (Barrow et al., 2000; Wilkinson et al., 1989).  Thus, the

mouse cis-regulatory network can be drawn as in Figure 3.5 below.

The synthesis of this data into Figure 3.5 is a new result and has been received

favorably by one of the leaders in the field (R. Krumlauf, personal communication).  The

organization of the figure itself draws upon ideas presented in the literature, but several

features of the diagram are novel and go beyond current representations.  For instance,
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the activation and repression binding sites are correctly drawn in their relative positions

on the chromosome, with the exception of Krox20 (as it is still unclear how the Hoxa1

and Hoxb1 repression mechanism works and where the components are).  The horizontal

orientation of Hoxb1 and Hoxb2 highlights the fact that they appear on the same

chromosome, while the vertical orientation of Hoxa1 and Hoxb1 highlights the fact that

they are paralogs.  Krox20 is offset both vertically and horizontally, from all the other

genes, thus showing that it is not connected.  This presentation brings a new depth to the

standard representations (cf. Davidson, 2001).

The figure also shows the complexity of the situation.  Even though this system

was chosen because there was a readily identifiable network that had a minimum number

of inputs, the network is still very complicated and includes a nonlinear feedback term for

the autoregulation of Hoxb1.
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Figure 3.5 Hox cis-regulatory network in r4 (A) and r5 (B) The network is drawn in

a way to emphasize that (1) each cell contains the entire biochemical network, and (2)

certain interactions dominate in a particular rhombomere.  Inactive elements are

denoted in gray.  The numbers near each intersection refer to the references for the

interaction.  (A) Starting with retinoic acid (RA) in the middle of the diagram, the RA

binds with RAR (1: (Petkovich et al., 1987) and RXR (2:(Leid et al., 1992a), which

can then form a dimer (3: (Leid et al., 1992b).  The dimer can bind as a transcriptional

activator to Hoxa1 (4: (Frasch et al., 1995; Langston and Gudas, 1992) or Hoxb1 in r4

(9: (Marshall et al., 1994).  The Hoxa1 protein, after binding with the pbx/prep1

complex (5: (Berthelsen et al., 1998b), can then bind as a transcriptional activator to

Hoxb1 (6: (Studer et al., 1998). The Hoxb1 protein, in conjunction with pbx/prep1

can bind to Hoxb1, which provides an auto-regulatory mechanism (7,8: (Popperl et

al., 1995).  The Hoxb1/pbx/prep1 complex can also bind as a transcriptional activator

to Hoxb2 (10,11: (Maconochie et al., 1997). (B) The RAR/RXR dimer can bind as a

transcriptional activator to Hoxa1 (4: (Frasch et al., 1995; Langston and Gudas, 1992)

or Hoxb1 (9: (Marshall et al., 1994) in r5, and it can also bind as a transcriptional

repressor to Hoxb1 (12: (Studer et al., 1994). Hoxa1 and Hoxb1 are hypothesized to

be transcriptional repressors of Krox20 (14: (Barrow et al., 2000), while Krox20 is a

transcriptional activator of Hoxb2 (13: (Sham et al., 1993).

While most of the cis-regulatory studies have been carried out in mice, chick has

proven to be a useful system for investigation of RA distribution.  RA has long been
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thought to be a diffusible morphogen that is able to pattern the hindbrain (Gavalas and

Krumlauf, 2000; Maden, 1999) and recent studies of RALDH-2 and CYP26, enzymes

important in RA synthesis and degradation, reveal expression patterns that continue to

support this view (Berggren et al., 1999; Swindell et al., 1999).  In addition, a RALDH-2

knockout shows effects similar to vitamin A deficiency (Niederreither et al., 1999).  More

direct tests of sensing this gradient in mouse or chick have been challenging; there has

been no conclusive evidence (Gavalas and Krumlauf, 2000).  Despite this lack of direct

evidence for a gradient, circumstantial evidence for it continues to accumulate.  Most

recently a study of RAR blocking by an antagonist has suggested that the establishment

of hindbrain boundaries is dependent on RA concentration (Dupe and Lumsden, 2001).

The work also suggested that the cells in the mid- and hindbrain are still responsive to

RA through stage10.  Therefore, RA cannot still be present in the midbrain and anterior

part of the hindbrain, otherwise genes that respond to RA—including Hoxa1 and

Hoxb1—would be expressed in this region.  Thus, even if there is not an actual RA

gradient, there may be a graded response to retinoids, possibly involving other factors in

the system that help modulate the ability of the cell to respond to RA.  Taken together,

the evidence is suggestive that a differential of some sort, perhaps through RA

concentration, or through the temporally modulated ability to respond to RA, helps

establish the Hox gene patterns.

Because the SSA model is built on, and driven by, the underlying biochemistry of

the system, the reactions can be translated directly into the discrete events of the

simulations.  In this investigation, some of the steps of the system were deliberately

omitted.  For example, instead of creating explicit reactions for the transcription of
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nuclear RNA, the splicing into mRNA, and the exporting of the mRNA to the cytoplasm,

the simulation instead creates mRNA as a primary transcript.  This is not unreasonable as

long as the rate parameters cµ  are adjusted to reflect the subsequent delay, and as more

data that describes these reactions is collected, these pieces can be easily incorporated at

a later date.

Using Figure 3.5 as the network of interest, an SSA that described the Hox

network system has been created using the C programming language.  The source code

for the model can be found in Appendix C and on the accompanying CD-ROM.  The

model contains 59 chemical events that can occur in each cell.  They can be classified

into 5 main categories: binding (including activation, repression, dimerization, and

Hox/pbx/prep1 complex formation), unbinding, transcription, translation, and decay (of

mRNA, dimers, complexes, proteins, and receptors). The two remaining events that do

not fall into these categories are diffusion and division.

Of the 59 chemical events, most of them are first-order reactions.  First-order

reactions are ones with a single reactant, and so the rate of the reaction is proportional to

the number of molecules.  Therefore, the probabilistic rate for the stochastic simulation is

of the form aµ = cµs1 , where s1 can be the number of mRNA available to be turned into

proteins, or the number of molecules (including RA, mRNA, proteins, complexes, and

receptors) available for decay.  This is, of course, a simplified view of the true state of

affairs in the cell.  For instance, the mRNA cannot be translated into protein without the

presence of a ribosome and the necessary amino acids, but these are assumed to be

available in excess.
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Zeroth-order reactions are ones that reactions that occur “spontaneously” and are

not linked to any of the expressed genes in the simulation.  Instead, they are considered as

a stochastic event that can occur with some constant (low) probability and are governed

by equations of the form aµ = cµ . One example of a zeroth-order reaction is the cell

division function.  The typical simulation encompasses 18 hours of developmental time

and so the model includes a rudimentary mechanism for cell division and this is why the

presumptive boundary sometimes shifts in the movies.  When the division occurs, the

resources in the cell are divided subject to a normal distribution between the daughter

cells.  The other zeroth-order reactions describe the creation of the RAR and RXR

receptors and the pbx protein complex.

Second-order reactions involve two species of the simulation that combine and

are of the form aµ = cµ fg , where f is the number of molecules of the first species, and g is

the number of molecules of the second species.  The four second-order reactions in the

simulation describe RA binding to RAR, the binding of RA to RXR, the dimerization of

the bound RAR and RXR forms, and the formation of the Hox/pbx/prep complexes.

Because the species in these second-order reactions are different, there is no need to

introduce a combinatorial factor as in Table 2.1.

There are a variety of ways to implement activation functions.  These include

binary activation, sequential activation, proportional activation, and Hill functions.  A

binary activation would be when a single transcription factor binds to the gene, thus

creating an “activated” form of the gene.  This activated form is then primed for the

transcription of mRNA.  Because of the large binding coefficients that accompany
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transcription factors and DNA, even a small number of molecules of a transcription factor

are enough to enable transcription.  However, they must be present in sufficient numbers

to establish a steady state in the binding/dissociation reactions.

Yet another way of implementing a transcription function is to assume that the

probability of transcription is proportional to the number of transcription factor

molecules.  In other words, aµ = cµ fg  but in this case g is either 1 if a gene is available

for transcription or 0 if the gene is not available for transcription, and f is the number of

transcription factor molecules present.  This form doesn’t assume an explicit notion of an

activated gene.

In the first incarnation of the model, the activation and repression functions are

implemented using a Hill function (Hill, 1910), a typical way to represent cooperative

binding.  This takes the general form aµ = cµ
f h

κ µ + f h
f ⋅ g , where f is the number of

molecules of a particular transcription factor, κ µ  is a threshold factor, and g is the

number of molecules of a gene available.  Similar to the proportional case, if a gene is

currently unbound, the value of g is 1, while if it is bound by a transcriptional factor the

value of g is 0.  The exponent h is called the Hill coefficient and it affects the steepness of

the response.  The Hill function is an empirically derived expression, used in differential

equation models, that yields the observed kinetics in these situations.  Thus, in the

stochastic reaction approach the complete Hill function expression is treated as simply

another rate coefficient for the purposes of converting it to the appropriate probability of

occurrence of the corresponding reaction.  Others have used a similar method in their

stochastic description of gene transcription (Arkin et al., 1998).
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When it comes to the activation of Hoxb1 in r4, there are actually two

transcription factors that can bind to the gene. This is implemented using a variety of

gene states controlled by a combination of Hill functions and sequential activations.

Hoxb1 is initially up-regulated by the RA dimers and the cross activation by Hoxa1.

Therefore if one of those two factors is bound, the gene is marked as in an activated state,

but if both are bound, the gene is marked as “superactivated.”  Each of those two

activated states carries its own probability of transcription, with the superactivated form

much higher.  Maintenance is controlled by the Hoxb1 auto-regulatory loop, and once the

Hoxb1 protein is present in sufficient numbers, auto activation can occur, again with an

associated probability of transcription.

Diffusion is yet another first order reaction, and more molecules of RA means that

there is greater chance of a diffusion event occurring.  But the diffusion is secondary to

the actual creation of the RA, and that needs to be treated with some care.

Retinoic Acid Source

In the course of considering different ways that RA might pattern the hindbrain, a

paper appeared that provided additional insight (Dupe and Lumsden, 2001).  This work

suggested that cells in the hindbrain are less able to respond to RA over time.  This is not

inconsistent with the previously mentioned investigations that suggest a physical

variation in RA patterns the hindbrain (Gavalas and Krumlauf, 2000; Maden, 1999), but

it does make modeling the system more challenging.  Taken together, these studies

propose that a variation of some sort (either temporal or spatial or possibly both) is an
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important component in patterning the hindbrain, and provided support of some of the

hypotheses used to construct the model.

There are two main ways that this variation can be implemented. The first is to

create cells that are less responsive to RA over time, and the second is to create a

variation in the RA.  The model was built to allow for both of these possibilities.  There is

more evidence for a physical variation however, and the modeling efforts reflect this fact.

There are a variety of possible functions that can be used for modeling a physical

variation of RA and many forms were considered.  In Equations 3.1 are a set of

differential equations derived from the Law of Mass Action that captures part of the

network.  While this formulation is problematic in general, especially for situations such

as these with the low levels of the transcription factors, it was useful in quantifying the

effects on the Hoxa1, Hoxb1 and Hoxb2 due to different RA source terms.  Briefly, the

rate of change of Hoxa1 A1( ) is dependent upon the creation effects of RA, and the

depletion effects −φA1( ) caused by normal decay or use as an up-regulator for Hoxb1 B1( ).

Positive effects for Hoxb1 include RA, the up-regulation by Hoxa1 αA1( )  and the Hill

auto-regulatory loop, while the depletion effects −βB1( )  are caused by normal decay or its

use as an up-regulation for Hoxb2 B2( ) .  The rate of change of Hoxb2 is up-regulated by

the amount of Hoxb1 δB1( ) , and depleted by decay processes −εB2( ).

dA1 t( )
dt

= RA t( ) − φA1 t( )

dB1 t( )
dt

= RA t( ) + αA1 t( ) − βB1 t( ) + γ
B1
2 t( )

1+ B1
2 t( )

dB2 t( )
dt

= δB1 t( ) −εB2 t( )

(3.1)
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Equations 3.1 A simplified set of equations describing the behavior of the

rhombomere 4 gene network.  Note that in this description there is only one cell,

and this cell contains only 4 products and 6 reactions.  This is a dramatic

simplification from the full simulation of the 40 cells, each containing 30 products

and 59 chemical reactions.  But because the full simulation contains these basic

reactions as well, this reduced set provided insight into the possible effects of

different RA source terms.

A variety of different functions were considered for the RA source, and Figure 3.6

shows the trajectories of the solutions.  The x-axis is time, and the y-axis is concentration.

It is important to keep in mind that the experimental results in rhombomere 4 show that

the Hoxa1 mRNA increases then decreases, while the Hoxb1 and Hoxb2 mRNA reach a

steady state.  Therefore, the solutions that exhibit this behavior are the most interesting.
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Figure 3.6 A-H Response curves for various RA functions.  A variety of functions

were investigated for the RA source term using the simplified network described in

Equation 3.1.  The legends for the plots (B-H) are the same as in (A): RA in red,

Hoxa1 in green, Hoxb1 in blue, and Hoxb2 in magenta. The response curves were

qualitatively the same for a wide range of the parameters.  The parameters used to

generate these particular plots were ϕ = α = β = δ =1, γ = 2,ε =1 2. (A) The source



77

term RA t( ) = .001 causes the cell to create a constant amount of RA over time.  This

causes the Hoxa1 to increase to the same level as the RA source and is therefore not

an appropriate model for the RA source. (B) A linearly increasing RA source term

(RA t( ) = .001t ) results in all the Hox genes to increase linearly over time, while (C) a

linearly decreasing source term (RA t( ) =1− .05t ) results in the Hox genes to decrease

over time after an initial surge in Hoxb1 and Hoxb2 because of the auto-regulatory

loop.  Both of these are expected, and neither is appropriate. (D) The investigation

took an interesting turn when the RA was modeled with the step

functionRA t( ) =UnitStep[2 − t].  This resulted in the right type of qualitative

behavior, namely, a surge or Hoxa1 and steady state levels of Hoxb1 and Hoxb2.

Two of the problems with this include the square non-biological source term and the

sharp response from the Hoxa1.  But two other functions (E) RA t( ) = e− t , a decaying

exponential, and (F) a quadratic decayRA t( ) =
1

1+ t2
, produced very nice qualitative

results.  The Hoxa1 increased then decreased, and the Hoxb1 and Hoxb2 reached a

steady state due to the Hoxb1 auto-regulatory loop.  In addition, both of these have a

RA source that diminishes smoothly over time.  The only problem with using a

source term from one of these families is that they both start at t = 0  with a large

amount of RA immediately.  This is not possible biologically, but the following two

functions do exhibit behavior that can occur biologically as they both exhibit a

smooth ramp-up as well as a smoothly diminishing tail. (G) A Gaussian curve of the

general formRA t( ) = e− t−π( )2 2  or a Rayleigh function like (H) RA t( ) = te−t  meet all the

desired criteria.  Ultimately, the Rayleigh function was chosen because of the
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connection to other biological sources like insulin, which has a biphasic response

with a strong initial response and a longer continuing source (Rorsman et al., 2000).

A Rayleigh function was ultimately chosen to model the diffusion source term for

RA from the posterior of the embryo.  This is implemented by having the first cell create

the RA according to the probabilistic rate a0 = c0 ⋅ RA0τe−ατ 2  where RAo  is the initial

amount of RA in the system, and α  controls the decay time of the source.

Parameters

Using appropriate values for the model parameters is an important component in

modeling the system behavior.  Fortunately, several key parameters are known, but many

of the important parameters for the model have not been assayed directly in experiments

on the developing hindbrain.  Estimates of many of their values can be made from data

obtained in other systems, and were used in selecting parameters here (Table 3.1).

Event Kd Reference

RA binding to RAR 0.5 nM (Allegretto et al., 1993)

RA binding to RXR 2 nM (Allegretto et al., 1993)

RAR/RXR dimerization 17 nM (Depoix et al., 2001)

Dimer binding to Hoxa1 3.8 nM (Mader et al., 1993)

Dimer binding to Hoxb1 5.3 nM (Mader et al., 1993)

Hox/pbx/prep binding to DNA 2 nM (Pellerin et al., 1994)
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Table 3.1 Various measured binding coefficients for the interactions of the

components of the model.  The measured values are not measured in the systems

under investigation, namely mouse and chick, but in cell culture systems.  For

example, the Kd value for RAR/RXR dimerization has been determined in HeLa

cells.  Because the Kd value is the rate (in M) at which these complexes come

apart, this is a first order reaction and so the stochastic “probabilistic rate”

parameter cd is equal to Kd (Gillespie, 1977).  Note that these values are the ratio

of the backwards to forward binding rate constants cb and cf .  This is a typical

state of affairs: the values cb and cf  are very difficult to measure.  This allows a

bit of leeway in picking the forward and backwards binding, but the literature

provides some typical forward values which adds credence to the values used and

listed in Table 3.2 (Lauffenburger and Linderman, 1993).

It is not expected that the model results will be significantly different when newly

measured parameters are incorporated in place of the estimated values.  A sensitivity

analysis, in which the model is re-run with systematically varied parameters, shows that

the model remain qualitatively unchanged for moderate changes in the parameters.  This

is encouraging, as biological systems are generally robust, and it would be unusual that

the overall biological system would be overly sensitive to moderate changes in the

concentrations or rates.

The half-lives for mRNA can range from minutes to hours and values for the Hox

mRNA have not been measured.  In this model the values of around 15-20 minutes were

chosen as a typical half-life, numbers that are in line with other values in early
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embryogenesis (Davidson, 1986).  The half-lives of the proteins in the network have not

been measured and the values chosen were between 15 and 30 minutes.  These numbers

are again in an acceptable range for transcription factors (A. Varshavsky, personal

communication).  Similar values were used for the turnover of the receptors and

complexes.  With respect to the number of RARs and RXRs, values of around one

thousand of each type were chosen (Lauffenburger and Linderman, 1993).   No

distinction is made between the α, β, and γ forms.  The cofactors pbx and prep1 are

treated as a single molecule, which the Hox proteins can bind with on the DNA.

Parameter Value used Description Equation Type
c0 4.0 Create RA Rayleigh
c1 10000000.0 Bind RA to RAR Second-order
c2 0.00006 Decay RA First-order
c3 0.0001 Create RAR Zeroth-order
c4 0.00006 Decay RAR First-order
c5 0.005 Unbind RA from RAR First-order
c6 0.0004 Decay BRAR First-order
c7 1000000000 Bind dimer to Hoxa1 DNA Hill
c8 3.0 Unbind dimer from Hoxa1 DNA First-order
c9 0.02 Transcribe Hoxa1 mRNA First-order
c10 0.0007 Decay Hoxa1 mRNA First-order
c11 0.005 Translate Hoxa1 protein First-order
c12 0.001 Decay Hoxa1 protein First-order
c13 100000000.0 Bind dimer to Hoxb1 DNA Hill
c14 0.5 Unbind dimer from Hoxb1 DNA First-order
c15 0.02 Transcribe Hoxb1 First-order
c16 0.001 Decay Hoxb1 mRNA First-order
c17 0.02 Translate Hoxb1 protein First-order
c18 100000000.0 Bind Hoxa1 complex to Hoxb1 DNA Hill
c19 0.3 Unbind Hoxa1 complex from Hoxb1 DNA First-order
c20 .02 Transcribe Hoxb1 protein First-order
c21 1000000.0 Bind dimer to Hoxb1 repression site Hill
c22 0.00003 Unbind dimer from Hoxb1 repression site First-order
c23 1000000000 Bind Hoxb1 complex to Hoxb1 DNA Hill
c24 0.3 Unbind Hoxb1 complex from Hoxb1 DNA First-order
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c25 0.02 Transcribe Hoxb1 protein First-order
c26 0.004 Decay Hoxb1 protein First-order
c27 1000000.0 Bind Hoxb1 complex to Hoxb2 DNA Hill
c28 0.03 Unbind Hoxb1 complex from Hoxb2 DNA First-order
c29 0.02 Transcribe Hoxb2 mRNA First-order
c30 0.00001 Decay Hoxb2 mRNA First-order
c31 0.002 Transcribe Hoxb2 mRNA First-order
c32 0.004 Decay Hoxb2 protein First-order
c33 0.00000015 Cell division Zeroth-order
c34 100000.0 Activate Krox20 First-order
c35 0.002 Unactivate Krox20 First-order
c36 0.2 Transcribe Krox20 mRNA First-order
c37 0.0003 Decay Hoxa1 mRNA First-order
c38 12000.0 Bind Hox complex to Krox20 repression site Hill
c39 0.003 Unbind complex from Krox20 repression site First-order
c40 0.0001 Translate Krox20 protein First-order
c41 0.00001 Decay Krox20 protein First-order
c42 10000000.0 Bind RA to RXR First-order
c43 0.0001 Create RXR Zeroth-order
c44 0.00006 Decay RXR First-order
c45 0.02 Unbind RA from RXR First-order
c46 0.002 Decay bound RXR First-order
c47 5000.0 Bind BRXR to BRAR Second-order
c48 0.0001 Unbind BRXR from BRAR First-order
c49 10.0 Decay BRAR/BRXR dimer First-order
c50 10000000.0 Bind Hoxa1 protein to PBX complex Second-order
c51 0.02 Unbind Hoxa1/PBX protein complex First-order
c52 0.009 Decay Hoxa1/PBX protein complex First-order
c53 10000000.0 Bind Hoxb1 protein to PBX complex Second-order
c54 0.02 Unbind Hoxb1/PBX protein complex First-order
c55 0.01 Decay Hoxb1/PBX protein complex First-order
c56 0.01 Create bare PBX complex Zeroth-order
c57 0.005 Decay bare PBX complex First-order
K1 1000 Threshold for ActivateA1 Hill function N/A
K2 1000 Threshold for ActivateB1 Hill function N/A
K3 1000 Threshold for SuperActivateB1 Hill function N/A
K4 10000 Threshold for AutoActivateB1 Hill function N/A
K5 1000 Threshold for ActivateB2 Hill function N/A
K6 100 Threshold for repression functions N/A
a1hill 4.0 Hill coefficient for ActivateA1 Hill function N/A
b1hill 4.0 Hill coefficient for ActivateB1 Hill function N/A
b1auto 6.0 Hill coefficient for AutoActivateB1 Hill

function
N/A

b2hill 2.0 Hill coefficient for ActivateB2 Hill function N/A
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rephill 4.0 Hill coefficient for repression functions N/A

Table 3.2 Parameters used in the simulation. The type of reaction and the

associated value used is listed.  As examples, the function for binding RA to the

retinoic acid Receptor RAR is a1 =1×107 RA{ } RAR{ } where { } denotes the number

of molecules of each type.  The first order reaction of the Hoxa1 mRNA decaying is

given by a10 = 7 ×10−4 mHoxa1{ }, and the Hill activation of Hoxb2 is given by

a27 =1×106 Hoxb1pbx complex{ }2

1×106 + Hoxb1pbx complex{ }2( )
* Hoxb1pbx complex{ }* Hoxb2 DNA{ }

In implementing the repression of Hoxb1, the simulation started this mechanism

around 8.0 dpc because of the current understanding that the repression starts later than

the activation (R. Krumlauf, personal communication).  The Hoxa1 and Hoxb1 repression

for Krox20 is also started at around 8.0 dpc to ensure the establishment of Hoxa1 and

Hoxb1 before the Krox20 expression.

Results

The early Hox genes first appear around 7.75 dpc (headfold) and the patterns of

Hoxa1, Hoxb1, Hoxb2 and Krox20 stabilize by 8.5 dpc (~10 somites).  Using the network

shown in Figure 3.5, the goal was to capture this wild-type expression.  Accordingly, the

model was run for a simulated time of 18 hours.  The model is one dimensional along the

rostral-caudal axis of the embryo.  Running the simulation with different random number

seeds show that the model is not overly sensitive to the initial seed values.  In the figures,
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a number of these independent runs are assembled side-by-side to construct a two-

dimensional sheet of cells that resemble the tissue (with a medio-lateral dimension).  This

offers insights into the expected two-dimensional pattern of gene expression in the

hindbrain and displays the variability in the results.

A custom built notebook in Mathematica (found in Appendix D) was used to

display the results of the simulations.  The raw data (the number of molecules of each

type in each cell) has been scaled to numbers between 0 and 1 by dividing by the

maximum value in that data set.  This allows the creation of a color shading so that

differences in levels of molecules are clear.  The results are displayed in an easy to

understand format: a virtual dynamic in situ.  Because the maximum value used to scale

the data is on the order of tens to a couple hundred molecules, the color variations that are

seen in the figures and the movie may in fact be too small to distinguish in a laboratory

setting using conventional in situ staining.

Wild Type

Figure 3.7 presents the dynamics of the model concerning the emergence of

Hoxa1, Hoxb1, Hoxb2 and Krox20, over time from approximately 7.75 dpc to 8.5 dpc.

The figure presents single frames from the movie wt.mov. Along with all the other

movies referenced in this thesis, wt.mov can be found on the included CD-ROM.   The

movie offers a dynamic view of the mRNA and RA in the developing hindbrain.  Each

rhombomere starts out with 20 cells, and the presumptive boundary is clearly marked.

Even though the movies and figures show the mRNA levels, the model also tracks the
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amount of protein, bound and unbound complexes, and bound and unbound receptors,

and any of these data can be displayed in a similar manner.

The low levels of Hoxa1, Hoxb1 and Hoxb2 mRNA in r4 and r5 are first seen

soon after the simulation starts when the RA sweeps across the cells (Figure 3.7A).  After

the mRNA is translated into protein and subsequently forms a complex with pbx and

prep1, it can then bind to the DNA.  The effects of the Hoxa1 binding site on Hoxb1 and

the Hoxb1 auto-regulatory loop are seen next, namely the higher levels of Hoxb1 in r4

(Figure 3.7B).   By 8 dpc the RA has long since vanished from the hindbrain and

consequently the RAR/RXR dimers are no longer being created.  This is the main reason

that Hoxa1 starts to vanish from the hindbrain.  The lack of available dimers also

contributes to Hoxb1 vanishing from r5, as does the late repression mechanism (Figure

3.7C).  Now that Hoxa1 and Hoxb1 no longer repress Krox20 in r5, its expression rises

and subsequently brings up Hoxb2 in r5.  At about this time, Hoxb2 has appeared in r4

due to the up-regulation by Hoxb1 (Figure 3.7D).  The ending expression pattern of the

five genes at 8.5 dpc (Figure 3.7E) is very similar to reported patterns (Lumsden and

Krumlauf, 1996).

It is clear from laboratory data that cells sometimes “misfire,” and using this

simulation it is possible to see the consequences of such misfirings.  In Figure 3.7, (A, B,

D, E) the cell marked with an arrow deviates from its normal fate and ends up not

expressing any genes.  At the same time, there are other cells that appear to misfire early,

exemplified by low levels of expression, but later recover.  This is exemplified by the

lone white cell in the r4 Hoxb1 data at 8.15 dpc.  For whatever reason, it was not

expressing Hoxb1 at this timepoint, but it recovers by 8.5 dpc.  Both of these events are
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known to happen in biological systems, and it is encouraging to see this behavior in the

model, as these events are not captured with conventional modeling methods.  This result

suggests that fluctuations are a factor in the network under investigation.

Figure 3.7 Simulated wildtype mRNA and RA patterns from 7.75 dpc to 8.5

dpc (A-E) Selected frames from the computer generated time-lapse movie

wt.mov. Four runs of the simulation were required to create this picture, with each

run contributing a row of RA, Hoxa1, Hoxb1, Hoxb2 and Krox20 data for each

timepoint.  Notice that sometime between 8 dpc and 8.15 dpc there is a cell

division in r5 in the first and fourth data sets.  This can be seen most clearly in the

Hoxb2 and Krox20 data at 8.5 dpc.  When a cell divides, its resources are

normally distributed between the daughter cells.  The data for the marked cell was

generated during one of the simulations, and the consequences of this cell

misfiring can clearly be seen (A) At 7.75 dpc there is an abundance of RA and

low levels of both Hoxa1 and Hoxb1 expression are evident in the marked cell.

(B) The expression of Hoxa1 and Hoxb1 fades in this cell by 7.90 dpc, a bit

earlier than some of its neighbors. (E) By 8.5 dpc the cell has failed to initiate its



86

proper expression of Krox20 and Hoxb2.  This result suggests that fluctuations are

important in the network under investigation.

In Silico Experiments

The versatility of the computer simulation also allows for the possibility of

performing in silico experiments.  The results of two experiments are reported here and

the simulation output shows that the results are similar to their corresponding in vivo

experiments.  In addition, the simulation suggests results that have not been reported in

the laboratory, and these predictions warrant further investigation in vivo.

Hoxb1 Mutant

In the investigation of the cross-regulation of Hoxb2 by Hoxb1 in r4 (Maconochie

et al., 1997), the authors showed that the up-regulation of Hoxb2 in r4 is lost in Hoxb1

mutants.  Duplicating this experiment in silico requires a minimum number of changes to

the model, and is accomplished by not allowing any transcription factors to bind to the

Hoxb1 DNA.  The input parameters used were the same as in the wild type (Table 3.2).

In stills taken from the movie Hoxb1mutant.mov, it starts as in the wild type: the RA

comes through the hindbrain at 7.75 dpc and induces the expression of Hoxa1.  However,

because the Hoxb1 gene is “turned off,” there is no Hoxb1 expression (Figure 3.8A).

Later on, as reported in the literature, Hoxb2 is absent from r4.  It is also clear that

Krox20 fails to be well repressed in r4 (Figure 3.8B).  By 8.5 dpc, Hoxb1 expression is

still absent and high levels of Krox20 are firmly established in r4 (Figure 3.7C).  This last

result has yet to be thoroughly investigated, but there are two ways that this could be

tested in the laboratory.  The first is to acquire the mice used in the study and check the
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Krox20 expression, while the second is to create a DNA construct that mimics this type

of behavior in chick.  Acquiring the mutant mice is not an easy, quick, or inexpensive

task, and so the second approach was taken.  The attempt to perform this perturbation

experiment is fully described in Appendix A.

Figure 3.8 Simulated Hoxb1 mutant mRNA expression patterns. (A-C)

Selected frames from the computer generated time-lapse movie

Hoxb1mutant.mov.  This data set shows cell division having occurred in both r4

and r5.  Besides affecting the Hoxb2 expression in r4, the Hoxb1 mutant also has

an effect on Hoxb2 and Krox20 in r5. (B) The levels of Krox20 are lower at 8.15

dpc than in the wild-type (Figure 3.6D). (C) By 8.5 dpc, the levels of Krox20 and
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Hoxb2 are noticeably lower than the wild type (Figure 3.6E).  The observation on

the level of Krox20 expression is a prediction that can be tested in the laboratory.

5’ RARE Mutant

The effects of a selected deletion in the Hoxb1 5’ RARE showed that the RARE

plays a role in the r4 restricted expression of Hoxb1 (Studer et al., 1994).  In this work the

authors showed that if the construct lacked the 5’ RARE, the reporter expression spread

to r3 and r5.  Further study suggests that the r3/r5 repressor region that contains the

RARE is activated later than the 3’ enhancer element  (R. Krumlauf, personal

communication).  Duplicating this experiment using the model is again a simple matter,

and is accomplished by not turning on the repressor.  As in the Hoxb1 mutant experiment

described above, the parameters used were the same as in the wild type (Table 3.2).  The

stills from the movie RAREmutant.mov show that the expression pattern looks normal at

7.75 dpc (Figure 3.9A).  However, at 8.0 dpc the repression mechanism is not turned off,

and by 8.15 dpc the expression of Hoxb1 in r5 is still strong (Figure 3.9B).  By 8.5 dpc,

the Hoxb1 expression has faded in r4 somewhat due to the lack of available RAR/RXR

dimers, but is still noticeable (Figure 3.9C).  In addition, there is once again a change in

the pattern of Krox20, but this time there are lower expression levels in r5 (Figure 3.9C).

This is due to the continued repression effects of Hoxa1 and Hoxb1.  This result has yet

to be fully investigated in the laboratory.
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Figure 3.9 Simulated expression patterns after inactivation of the 5’ Hoxb1

RARE (A-C) Selected frames from the computer generated time-lapse movie

RAREmutant.mov.   By turning off the 5’ RARE, there is a change in the levels

of Hoxa1 expression in r5.  This occurs because the 3’ and 5’ RAREs are in effect

fighting for the RAR/RXR dimers.  This intriguing result needs to be more fully

investigated.  As in the wild type, it is easy to see downstream effects from cells

that have misfired, most notably the patches where Hoxa1 or Hoxb1 are

continuing to repress Krox20.  (A) The behavior of the system mimics the wild-

type at 7.75 dpc because the 5’ RARE does not kick in until 8 dpc. (B) By 8.15

dpc, the expression of Hoxb1 is still noticeable in r5, but the levels are low

enough to allow Krox20 expression to take hold.  (C) The levels of Krox20 in r5

are higher than in the wild type (Figure 3.7E). The effects of the Hoxb1 RAREs
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not having to compete for the dimers is clear by 8.5 dpc as evidenced by the

higher levels of Hoxa1 as compared to the wild type (Figure 3.7E).

Sensitivity Analysis

A model that is presented with no analysis leaves something to be desired, and

this section presents the results of a sensitivity analysis.  There are two categories of

conventional analysis possible: local and global sensitivity analysis.  Local analysis is

based upon evaluating the derivative of some output function with respect to any of the

input variables at some fixed point in the space of the input variables.  However, this

approach is only really practical for linear models, and a local analysis is unable to gauge

the impact of possible differences in the scales of the variations of the input variables.  It

has been recognized for several decades that when the model is nonlinear and the various

input values are affected by uncertainties of different orders of magnitude, a global

sensitivity analysis should be used (Cukier, 1973).

Recall that the simulation consists of over 75 input parameters, and the output

consists of the quantities of 19 different molecular species for each of forty cells cell at

each of the1080 time points, or over 800,000 outputs.  Doing a sensitivity analysis over

all these parameters would prove intractable.  Because of this, the data was compacted

before the analysis was run.

First of all, each of the 40 cells is assigned either an r4 or an r5 identity, and so

the cells were grouped by their rhombomeric identity and the number of molecules for

each species was averaged over all the cells.  Next, since the movies and the experiments



91

are primarily concerned with the amount of messenger RNA that is in these cells, special

attention was focused on the mRNA and how the variation in the parameters affected

these quantities.  Finally, instead of looking at 1080 time points, the data was

downsampled to 54 time points (one for every 20 minutes instead of every minute).

Measure of Importance

The global analysis initially tried is one that is based on a “measure of

importance” called S.  In this type of approach, all the parameters are varied

simultaneously and the sensitivity of the output variables is measured over the entire

range of each input parameter. It allows the output variance to be broken up into

contributions due to individual parameters or combinations of parameters (Homma,

1996).  As an illustrating example, let y = f (x)  be the black box of the simulation to be

evaluated, where x = (x1,x2, x3 ) , and y is an output vector of size m.  Suppose the total

variance of f (x)  is V.  It is possible to write V as a sum of the variances that contribute

to the total

V = V1 +V2 +V3 +V12 + V23 +V13 + V123 (3.2)

Then S1 = V1 /V  is the fraction of the total variance due to the parameter x1

averaged over all the parameters and it is called the first order term for the parameter x1.

In a similar vein, S12 = V12 /V  is the fraction of the total variance due to the coupling of

the parameters x1 and x2  and is called the second order term for the parameters x1 and

x2 . These variables can be combined to produce the sensitivity indices for each of the

input variables by computing
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ST ,1 = S1 + S12 + S13 + S123 (3.3)

Calculating these variables is a straightforward, albeit time-consuming exercise.

Notice that the Si  are all positive and sum to one, with the most important factors having

the largest contribution.

This analysis was performed on the model and the results were not surprising.  In

Table 3.3 are several sensitivity indices computed for the mRNA in each of the

rhombomeres.

Si value for mRNA for

Parameter Rhombomere Hoxa1 Hoxb1 Hoxb2 Krox20 Sum

4 0.25390 0.06763 0.04099 0.10119 4.18192

K1 5 0.04755 -0.02082 0.01945 0.00594 -0.04203

4 -0.33742 -0.47741 -0.47995 -0.40615 -5.43707

c1 5 -0.37504 -0.37020 -0.49049 -0.47657 -6.16916

4 0.34952 0.06243 0.04217 0.07847 4.78133

c13 5 0.36623 -0.09437 0.02032 0.00078 1.03525

4 0.11857 0.12154 0.06911 0.07454 3.90804

c26 5 -0.03849 1.13157 0.02944 0.09681 1.58401

Table 3.3 Sensitivity Analysis using the Measure of Importance. This analysis

does not appear to be one that can be employed for a simulation that is subject to

stochastic variations.
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In direct defiance of the theoretical analysis, the Si  values are not all positive and

they do not sum to one.  The result of this analysis confirmed an important aspect of the

model: the inherent fluctuations of the system can at times have stronger effects than a

change in a parameter, and the stochasticity of the simulation plays a synergistic role with

the change of the parameters.  Accordingly, this type of analysis does not seem to address

the question at hand, and it another type of analysis was used to examine the effects of

changing the parameters.

Excess Variance

Because the simulation is fundamentally subject to fluctuations, it is challenging

to determine the effect on the output due to a change in a parameter.  But this can be

addressed using an excess variance based analysis.  Let v j x,t( )  denote an output of

interest from the simulation at time t with input vector x and random number seed j.  Let

v x; xi,t( ) , denote the output from the simulation at time t with the input value xi  perturbed

but all other inputs the same, and the default random number seed.  Computing the mean

of the squared difference of these values,

E
j
v j x,t( ) −v x;xi ,t( )( )

2[ ] (3.4)

yields a response curve.  This value is a consistent estimator (i.e., the probability of the

estimated value and the true value of the population parameter not lying within any

arbitrary positive constant c units of each other approaches zero as the sample size tends
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to infinity), and identifies the parameters that have an important effect in contributing to

the output values of interest.

This calculation was performed for the levels of mRNA for Hoxa1, Hoxb1, Hoxb2

and Krox20.  The analysis was only performed for the cµ  values because previous

investigations while building the model had shown that these were the most important in

determining the system behavior.  The analysis was performed for each of the 4 target

variables, for each of the rhombomeres, and to allow for legibility of the plots, the cµ

values were examined 10 at a time.  This resulted in a total of 48 figures, but in the

interest of space, not all of the plots are shown.  Typical plots of these results are shown

in Figures 3.10, 3.11 and 3.12 below, and the results of the entire investigation are

summarized in Table 3.4.

Figure 3.10 shows the normal state of affairs; none of the   cµ (µ = 40K49)  values

plays a significant role in the expression of the messenger RNA for Hoxb1 in

rhombomere 4.  But compare this plot to Figure 3.11.  In this figure it is clear that c53

plays a noticeable role on the level of mRNA for Hoxb1 in rhombomere 4.
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Figure 3.10 Effects of cµ values on mRNA for Hoxb1 expression in rhombomere

4.  The legend denotes the color of the response for a particular parameter, and in

this instance none of the parameters has a significant effect. The x axis is time

(dpc), and the y axis is the response value (computed in 3.4).
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Figure 3.11: Effects of cµ  variables on the amount of mRNA for Hoxb1 in

rhombomere 4. The parameter c53 , which is part of the auto-regulatory loop, is by

far the dominant parameter in this set. The x axis is time, and the y axis is the

mean response values (computed in 3.4).

Looking at the list of values, c53  is the stochastic rate coefficient for the formation

of the Hoxb1 protein/pbx/end complex, i.e., c53  is part of the auto-regulatory loop for

Hoxb1, and it is no surprise that this parameter makes a difference in the expression of

mRNA for Hoxb1.   Compare this to Figure 3.12, which shows the effects of the same cµ

values on the mRNA for Hoxb1, but this time in rhombomere 5 in which there is no auto-
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regulatory loop for Hoxb1. The contributions of the values are lower overall, and the

repression mechanisms that turns on at day 8.0 makes a noticeable difference.

Figure 3.12: Effects of cµ  variables on the amount of mRNA for Hoxb1 in

rhombomere 5.  Notice that none of the parameters has a major effect on the

mRNA levels, and when the repression mechanisms start at 8 dpc, all of the

effects virtually vanish. The x axis is time, and the y axis is the mean response

values (computed in 3.4).

The cµ  values that play a role on the levels of the target variable are not

surprising.  For instance, the transcription of mRNA for Hoxa1 from the activated form

of the gene is important in both rhombomeres.
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Target Rhombomere Significant
cµ  value

Related
Function

c7 ActivateA1
c9 TranscribeA14
c10 DecaymA1
c7 ActivateA1
c9 TranscribeA1

Hoxa1

5
c49 DecayDimer
c16 DecaymB1
c25 TranscribeAutoB14
c53 Complexb1
c15 TranscribeB1

Hoxb1

5
c16 DecaymB1
c12 Decaya1
c29 TranscribeB2
c30 DecaymB2

4

c53 Complexb1
c16 DecaymB1
c29 TranscribeB2

Hoxb2

5
c30 DecaymB2
c17 Translate SuperB14
c53 Complexb1
c25 TranscribeAutoB1

Krox20

5 c37 DecaymKrox

Table 3.4: Effects of cµ  variables on the mRNA. None of these variables is a

great surprise.  For instance, the parameters that change the mRNA for Hoxb1 in

r4 more than 20% above the baseline are the ones that affect the rate of decay of

the mRNA for Hoxb1, the strength of the auto-regulatory loop, and the rate of

Hoxb1/Prep complex formation.  This last one might seem a little odd at first,

until it is noted that the formed complex is required for the triggering of the auto-

regulatory loop.
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Summary

The stochastic simulation model captures the timing of several Hox gene

expression patterns in wild-type animals, and in silico simulations performed as a check

of key interactions produced results similar to in vivo experiments.  In addition, the in

silico experiments yield intriguing results that bear further investigation in the laboratory.

The model simulations suggest that a transitory early release of RA may be

sufficient to initiate the Hox genes.  During the investigation of functions for modeling

the RA source, it became clear that initiation of the network only required the RA source

to stay on for as few as 3 minutes.  All that was needed was enough RA to bind the

receptors in r4 and r5 and proper expression of the target genes was the result.  This

refinement of the RA gradient hypothesis fits well with recent work on blocking RAR

with a chemical antagonist in which the authors made a careful study of concentration

and time dependent effects of the blocking agent using morphology and gene expression

as assays.  Chick embryos treated with the agent at HH stage 6 (Hamburger and

Hamilton, 1951) do not express Krox20 in r5, but treatment at HH stage 7 permits r5

expression (Dupe and Lumsden, 2001).  Thus, the Krox20 insensitivity to a later change

in RA fits well with our model predictions: once the network was established early on

proper r5 expression of Krox20 was evident.
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