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Abstract

The biological significance of DNA is primarily attributed to its sequence information. On the

other hand, the mechanical properties of DNA can play a critical role in a wide variety of biologi-

cal processes. One prime example is DNA looping in the context of transcriptional regulation. The

emergence of single molecule tracking techniques in the last two decades presents an unprecedented

opportunity for studying looping kinetics. One such powerful technique, tethered particle motion

(TPM), harnesses the Brownian motion of a microsphere as a means of reporting on the excursion

of its tethered molecule, such as DNA. The present work focuses on a looping system found in

Escherichia coli, which is mediated by the Lac repressor (LacI) protein. TPM is used to measure

individual, real-time looping/unlooping events in DNA of various length and sequence character-

istics. By monitoring the magnitude, frequency, and time interval of these features while tuning

different parameters, such as LacI concentration, DNA length and DNA sequence, one can survey

a host of important information about looping kinetics. A measurement of the LacI concentration

dependence of looping probability was found to be in quantitative agreement with a simple ther-

modynamic model, which also led to the measurement of free energy of LacI-mediated looping,

the first such measurement in a single molecule, in vitro setting. A quantitative characterization of

free energy was obtained under conditions of different inter-operator spacing, systematically var-

ied from 300 to 310 base pairs in one-base-pair increments. An important conclusion from this

study is that free energy is modulated by DNA’s helical structure, yet the energy difference between

the aligned and unaligned operator configurations is small compared to expectation from simple

polymer physics. TPM measurements also revealed an additional looped state, lending support to

the hypothesis that two distinct conformations of LacI, the closed and open forms, can coexist.

This study also confirmed that the presence of certain DNA sequences, particularly TA pairs in the

minor groove of the nucleosomal positioning sequence, makes DNA substantially softer than a cor-

responding random sequence. This provides direct support for the notion of sequence-dependent

DNA elasticity. Finally, a surprising result is that loops as short as 100 base pairs-only two-thirds
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the persistence length of DNA-can form by LacI-DNA binding. Classical elasticity theory almost

forbids this, suggesting that LacI itself plays a more direct role in the bending process, or classical

understanding of DNA elasticity breaks down at length scales comparable to its persistence length.
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Chapter 1

Introduction

1.1 Tightly Bent DNA is a Fact of Life

Since DNA’s double helical structure was revealed by Watson and Crick (1953), most studies of this

molecule center on its genetic information content. On the other hand, many of the mechanisms

by which genetic information is stored and used and regulated involve mechanical deformation of

DNA. Indeed, the tight bending of DNA has farreaching consequences for a multitude of biological

processes. Figure 1.1 shows three distinct examples of the way in which genomic DNA is subject to

tight bending. Figure 1.1 (a) shows DNA looping by Lac repressor: a ubiquitous motif involved in

transcriptional regulation. Figure 1.1 (b) and (c) respectively illustrate how DNA packs in the nucle-

osome and bacterial viruses. Remarkably, genomic packing often involves bending DNA molecules

on scales that are small in comparison with their persistence length. Just as any deformable objects,

such as the trunk of a palm tree, has a characteristic length over which it is hard to bend, so do

polymers like DNA. This length scale, which for microscopic polymers is defined as

ξp = κ/kBT ,

is characterized by a competition between the material’s intrinsic flexural rigidity κ (Boal 2002),

and thermal fluctuations. For a polymer in solution, the persistence length is the scale over which

the thermal energy bends DNA. For DNA, this value is ≈50 nm , which is equivalent to ≈ 150 base

pairs (bp) (Rivetti et al. 1996). When DNA is bent on a scale shorter than ξp, we refer to it as highly

or tightly bent, implying a significant energy cost required to induce such bending. Interestingly, in

many of its most important roles, DNA adopts exactly these forms of tightly bent configurations.

In the setting of transcriptional regulation, there are a host of regulatory architectures both in
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Figure 1.1: Biological examples of tightly bent DNA. (a) Transcription factor mediated DNA loop-
ing, (b) DNA packing in the nucleosome, (b) DNA packing in bacterial viruses. Adopted from
Garcia et al. (2007).

prokaryotes and eukaryotes that require the interaction of sequences on the DNA which are not adja-

cent (Adhya 1989; Schleif 1992; Matthews 1992). These interactions are mediated by DNA-binding

proteins that deform the DNA. Recently, it has become possible to perform genome-wide surveys

to determine the entirety of looped configurations induced by a given protein (Loh et al. 2006; Wei

et al. 2006). One of the most transparent examples of DNA looping is in bacteria where some re-

pressors and activators can bind at two sites simultaneously resulting in a DNA loop. This effect

was first elucidated in the context of the arabinose operon (Dunn et al. 1984). It is an amusing twist

of history that the two regulatory motifs considered by Jacob and Monod, namely, the switch that

makes the decision between the lytic and lysogenic pathways after phage infection (Ptashne 2004)

and the decision making apparatus associated with lactose digestion in bacteria (Schleif 1992), both

involve DNA looping as well. Table 1.1 shows some examples of regulatory processes that involve

looping. It is worth remarking that in the majority of cases, the length of the resulting loop is

comparable to or smaller than the persistence length ( ≈ 150bp).

The lac system has been a classic model for investigation both in vivo and in vitro to understand

the role of tightly bent DNA in gene regulation. The lac operon refers to the genes responsible for

lactose transport and metabolism in bacteria (Müller-Hill 1996). As shown in figure ??(a), it con-

sists of three adjacent structural genes, LacZ, LacY and LacA, which are under the control of the

same promoter. This promoter is the site where RNA polymerase binds and initiates transcription.

The lac operon is regulated by several factors, including the presence of glucose and lactose. The

regulatory response to lactose requires the regulatory protein Lac repressor (LacI) which is encoded

by LacI nearby. In particular, in the absence of lactose, as illustrated in figure 1.2 (b), LacI binds

to the operator site which overlaps with the promoter site. The bound LacI prevents RNA poly-
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(a)

(b)

(c)

Figure 1.2: Gene regulation in lac Operon. (a) Three structural genes, lac Z (which codes for β-
galactosidase), lac Y(which codes for lactose permease), and lac A (which codes for transacetylase),
are under the control of the same promoter where RNA polymerase binds and starts transcription.
The gene encoded for the regulatory protein, Lac repressor, is located Upstream of the lac operon.
The operators O1, O2 and O3 are the binding sites for Lac repressor. Locations of the primary
operator O1 and the two auxiliary operators O2 and O3 with respect to the CAP binding site and
promotor region for RNA polymerase. The ends of the LacI and lacZ genes are also provided
as reference. (b)The operon is ” off ”. In the absence of lactose, LacI binds to the operator and
prevents RNA polymerase initiating the gene transcription. (c) The operon is ” on”. In the presence
of lactose, the inducer, LacI no longer binds to the operator, and transcription starts. Adopted online
from http://www.blc.arizona.edu/Marty/411/Lectures/Figures/
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Table 1.1: DNA looping in prokaryotic and eukaryotic transcriptional regulation. Loop lengths and
mechanisms of action of some of the best known looping systems in bacteria and eukaryotes. Note
that these loop lengths suggest tightly bent configurations since the in vitro measured persistence
length is 150 bp. Adopted from Garcia et al. (2007)

Molecule Mode Wild type
Referencesor of loop lengths

locus action (bp)
Lac repressor Repression 92, 401 Müller-Hill (1996)

AraC Repression, activation 210 Schleif (1992)
Gal repressor Repression 115 Schleif (1992)
Deo repressor Repression 270, 599, 869 Schleif (1992)
Nag repressor Repression 93 Plumbridge and Kolb (1998)

NtrC Activation 110 ∼ 140 Matthews (1992)
λ repressor Repression, activation ∼ 2, 400 Ptashne (2004); Dodd et al. (2004)

XylR Activation ∼ 150 Inouye et al. (1990)
PapI Activation ∼ 100 Matthews (1992); Nou et al. (1995)
RXR Activation 30− 500 Yasmin et al. (2004)

merase from transcribing, either by inhibiting the binding of RNA polymerase (Majors 1975; Nick

and Gilbert 1985; Friedman et al. 1995) or stopping its entry into the processive elongation phase

(Chen et al. 1971; Straney and Crothers 1987). Therefore, under lactose-free conditions, the operon

is ”off ”. When faced with an absence of glucose and the presence of lactose, the LacI undergoes a

conformational change which in turn dramatically decreases the affinity of LacI to operator. As long

as no repressor binds to the operators, RNA polymerase that recognizes the promoter can transcribe

the operon’s structural genes into mRNA and the operon is ”on” (Figure 1.2 (b)). The efficiency

of repression of the lactose operon in Escherichia coli is modulated by the Lac repressor’s loop-

forming effect on DNA. The lac operon consists of three recognition sites for LacI in a stretch of

500 bp, as illustrated in figure 1.2 (a). The primary operator O1 is located at position 11 relative to

the promoter. Two auxiliary operators, O2 and O3, lie within the LacI and lac Z gene, respectively.

O2 is 93 bp upstream of O1 while O3 is 401 bp downstream of O1. The affinity of LacI to these

three operators in decreasing order is: O1> O2> O3. Maximally efficient repression is achieved

via DNA looping by the simultaneous binding of LacI protein to two operators (Muller et al. 1996;

Mehta and Kahn 1999). This is because DNA looping can significantly enhance protein association

to the lower-affinity site due to the tethering effect of DNA looping (Schleif 1992; Zhang et al.

2006).
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1.2 DNA Looping Studies In vivo and In vitro

To understand the physical mechanism of the biological action at a distance revealed by DNA loop-

ing it is necessary to bring both in vitro and in vivo experiments as well as theoretical analyses to

bear on this important problem. Over the last few decades there have been a series of impressive and

beautiful experiments from many quarters. In the in vivo context, it is especially the work of Müller-

Hill and coworkers that demonstrates the intriguing quantitative implications of DNA looping for

regulation (Muller et al. 1996). In their experiments, they tuned the length of the DNA loop in one-

base-pair increments and measured the resulting repression of a reporter gene. More recently, these

experiments have been performed with mutant bacterial strains which were deficient in architectural

proteins such as HU (Becker et al. 2005). The observation of such experiments is that the amplitude

of gene repression oscillates with length of the loop with a periodicity of≈11bp, which is consistent

with the DNA helical repeat (Dunn et al. 1984; Lee and Schleif 1989; Becker et al. 2005; Muller

et al. 1996). The characteristic oscillations in gene repression amplitude in lac operon is shown

in figure 1.3(a). This experiment underscores quantitatively the importance of DNA mechanics in

gene regulation, even at the single base-pair level. An important parameter that can be extracted

from this type of study, using thermodynamic models (Buchler et al. 2003; Bintu et al. 2005c), is

the free energy of looping, which measures the energy involved in forming the looped configuration

as a function of the inter-operator distance (Law et al. 1993; Bintu et al. 2005a; Vilar and Saiz 2005;

Saiz et al. 2005). As illustrated in figure 1.3(b), the minimum in looping free energy is located at

around 70bp, which is about half the persistence length of DNA. This rather unexpected result has

been suggested to arise from the greater effective flexibility of in vivo versus in vitro DNA. The

mechanics of DNA inside of living cells is considerably more complicated than the in vitro descrip-

tion. In particular, besides the free energy of DNA looping itself, it is also necessary to consider a

number of other factors including (i) the geometry and flexibility of the looping protein (Friedman

et al. 1995; Allemand et al. 2006), (ii) the fact that DNA is negatively supercoiled inside the cell

(Vologodskii and Cozzarelli 1996) and (iii) the presence of structural proteins such as HU, IHF and

H-NS (Becker et al. 2005). The contributions and importance of each factor needs to be decoupled

in order to analyze the role of tightly bent DNA in transcriptional regulation. In order to tackle each

factor separately, in vitro approaches using the tools of solution biochemistry and single molecule

biophysics, have been employed.

Bulk binding assays, such as filter binding assays and electrophoretic mobility shift assays, are



6

Figure 1.3: In vivo DNA looping by Lac repressor. (a) Data from Müller-Hill et al. (Muller et al.
1996) showing repression as a function of distance between operators. (b) Extracted looping free
energy based on equilibrium statistical mechanics (Garcia et al. 2007; Bintu et al. 2005a). Adopted
from Garcia et al. (2007).
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used to measure the affinity of proteins to their DNA targets. These techniques offer the opportunity

for systematically varying parameters, such as DNA length, the degree of supercoiling, or presence

of structural proteins, thereby decoupling the various effects contributing to looping processes in

vivo. Using the electrophoretic mobility shift assay, Müller-Hill et al. found that the looping prob-

ability qualitatively decreases as the inter-operator spacing is reduced from 210bp to 60bp (Krämer

et al. 1987), which agrees with the quantitative observations of Matthews et al. using the filter bind-

ing assay (Hsieh et al. 1987). Hence there is an obvious disparity between the preferred length of

DNA looping in vivo and in vitro. The same concepts have been applied to supercoiled plasmids to

examine the role of supercoiling (Krämer et al. 1988; Whitson et al. 1987; Borowiec et al. 1987),

and demonstrated an increase in the affinity of LacI binding to a single operator site. Their results

suggest that negative supercoiling favors the association of LacI and its target DNA sites, resulting

in an increase in looping probability and looping stability. Furthermore, this probability is found

to remain relatively constant over the distance between 100 and 500 bp (Whitson et al. 1987). It is

also found that supercoiling could shift the optimal spacing for loop stabilization depending on the

degree of supercoiling, suggesting the helical repeat is changing (Krämer et al. 1988). Although

such studies demonstrate the role of supercoiling and inter-operator spacing in DNA looping, they

lack either quantitative kinetic information or systematic investigation.

Another important class of experiments that have shed light on the mechanics of DNA loop-

ing in vitro are single-molecule measurements using the Tethered Particle Motion (TPM) method

(Schafer et al. 1991). Finzi and Gelles were the first to apply TPM to detect Lac repressor mediated

loop formation and breakdown, and to elucidate the kinetic information of such processes (Finzi

and Gelles 1995). In this method, a DNA molecule is tethered between a microscope slide and a

microsphere which is large enough to be imaged with conventional optical microscopy. The Brow-

nian motion of the bead serves as a reporter of the underlying DNA dynamics. In particular, when

the molecule is unlooped, the tether has its full length, and the excursions of the bead are large.

When the DNA is looped, the tether is shortened and the excursions are reduced (Yin et al. 1994;

Tolic-Norrelykke et al. 2004a; Blumberg et al. 2005; Pouget et al. 2004; Segall et al. 2006a; Nelson

et al. 2006a; Zurla et al. 2006; Broek et al. 2006; Zurla et al. 2007). Thus, modulations in motion

reflect conformational changes in the tethered molecule. This method has recently revealed (Wong

et al. 2007) the presence of two-looped states which is consistent with the presence of multiple con-

figurations observed using FRET (Edelman et al. 2003; Morgan et al. 2005), electron microscopy

studies (Ruben and Roos 1997) and suggested by x-ray crystallography studies (Friedman et al.



8

1995). All of these experiments suggest an important role for protein flexibility.

Structual proteins, such as HU and IHF, have been known to alter the effective flexibility of DNA

(Noort et al. 2004). Recent TPM and AFM studies have demonstrated the influence of specifically-

bound IHF protein on Lac-mediated DNA looping (Zurla et al. 2007). These results suggest that a

sharp bend on DNA occurs upon IHF protein binding. Moreover, looping could either be enhanced

or attenuated depending on where this bend is located as well as the relative phasing of the two LacI

binding sites. Though this study successfully investigated the effect of specific, sharp bending or

non- specific compaction by IHF affected on DNA looping, no systematic data are available to draw

conclusions on the influence of such proteins on DNA looping with inter-operator distance varying

in one base pair increments.

As stated above, significant effort has been devoted in the past two decades to understanding

the role of tightly bent DNA in gene regulation. In vitro investigations have qualitatively shown that

a variety of different players in vivo , such as DNA supercoiling, DNA length, or the presence of

structural proteins, significantly alter looping efficiency and stability. However, such studies lack

the single-base pair resolution that would enable the distinction of whether individual contributions

are sufficient to explain the observed dependence of repression on inter-operator spacing in living

biological systems.

1.3 Sequence Dependence of DNA Flexibility

So far we have reviewed how length is a key parameter in the study of DNA mechanics. Nucleotide

sequence is another important way in which the energetics of tightly bent DNA can be tuned. For

example, sequence dependence has been shown to influence nucleosome formation, where≈ 147bp

long DNA has to be wrapped into loops of only≈80 bp per superhelical turn. Remarkably, some se-

quences wrapping onto nuclesomes are favored over others by more than a factor of 5000 (Cloutier

and Widom 2004, 2005). This preferred affinity is not due to any particularly favorable site-specific

interaction between DNA and nuclesomal proteins (Luger et al. 1997). Instead it is a consequence

of indirect readout (Gromiha et al. 2004), where different DNA sequences have varying abilities

to adopt particular conformations required by nucleosomes. As illustrated in figure 1.4, the direct

correlation between the free energy cost of DNA cyclization and the free energy of nucleosome for-

mation demonstrated the important role of flexibility of DNA sequences in nucloesomes formation

(Roychoudhury et al. 2000; Cloutier and Widom 2005). Unlike the DNA-nucleosome wrapping
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Figure 1.4: Correlation between the flexibility of DNA and the stability of the DNA-histon complex.
The free energy of DNA wrapping on the histone H32H42 tetramer Is strongly correlated with the
free energy of cyclization.

system, sequence dependence has not yet been demonstrated in DNA looping systems, such as the

ones listed in table 1.1.

1.4 Structure of the Thesis

The goal of this thesis is to exam the role of DNA mechanics in transcriptional regulation. In partic-

ular, we use DNA looping in the lac operon as a window on the elastic properties of DNA fragments.

Single-molecule biophysics makes it possible to perform systematic and quantitative studies on how

the DNA looping process responds to parameter changes, such as operator distance, DNA sequences

and the concentration of repressor proteins.

Chapter 2 introduces the basic concept of the Tethered Particle Motion (TPM) method, followed

by establishment of a well-characterized calibration of TPM for a ranges of parameters, such as bead

size and the tethered length. TPM experiments often employ a measure of the particle’s Brownian

motion in order to probe biological dynamics associated with conformational change of the tether.

Often a relative change in the Brownian motion is deemed sufficient for TPM analysis. However, a

complete understanding of how the motion is dependent on the physical properties of the tethered
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particle complex would permit more quantitative and accurate evaluation of TPM data. In order to

better characterize the measurement capabilities of TPM experiments involving DNA tethers, we

have carried out a detailed calibration of TPM on magnitude of Brownian motion as a function of

DNA length, particle size, and ionic strength of buffer. We also explore how experimental parame-

ters such as acquisition time and exposure time affect the apparent motion of the tethered particle.

We vary the DNA length from 200 bp to 2.6 kbp and consider particle diameters of 200, 490, and

970 nm.

Figure 1.5: (a) Illustration of TPM method. Schematics of both the unlooped and looped states
which show how the effective tether length is a reporter of the state of looping. Left: Motion of the
tethered bead in the absence of the DNA binding protein. Right: Reduced motion of the tethered
bead due to the change in the effective tether length by DNA binding protein. Typical tethers have
a length of 1000 bp and typical bead sizes are 200 to 1000 nm in diameters. (b) Calibration curves
of Brownian motion versus DNA tethered length with different bead sizes.

Chapter 3 demonstrates how to extract kinetic information of looping processes from the direct

experimental outcome, i.e. ,the record of movements of the beads. Positions can be tracked in each

frame, from which important rates can be evaluated. Two methods shown in figure 1.6 can be used

to obtain such kinetic information. One is the conventional thresholding method, and the other one

is based on the Hidden Markov Model.

Chapter 4 quantitatively characterize the dependence of looping on the concentration of Lac re-

pressor. At very low concentrations, we expect that there will be negligible looping. At intermediate
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Figure 1.6: Two methods of TPM data analysis to obtain the kinetic information. (a) Basic concept
of thresholding method. 1 Windowing data to reduce noise. 2 Setting up a threshold through which
transition events are identified and durations of such events are quantified. 3 Histogram of all the
durations and fit it to obtain the life time τ . (b) Basic concept of Diffusive-HMM method. 1
Choose an observable variable suitable for HMM application. 2 Set up probability distribution of
the observable variable ~ri at time i for each hidden state qi with unknown parameter: rate constants
ks. 3 Calculate the total probability of all possible trajectories. 4 Maximize the likelihood and
extract the unknown parameters: rate constants.
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Figure 1.7: RMS motion distribution averaged over 4s at different concentration of Lac repressor.
Experimental data are in diamonds (blue: Di-operator DNA; red: Mono-operator DNA) and three-
Gaussian fit is in green. Looping is optimized at a certain repressor concentration, above which it is
less favored as the repressor concentration goes up. Two gray dashed lines represent the expected
motion, based on our calibration measurements (data not shown), for 901bp DNA and the same
DNA when 306 bp (the interoperator spacing) are subtracted off of the full length 901bp tether.

concentrations, the equilibrium situation will be dominated by states in which a single repressor

molecule is bound to the DNA at the strong operator, punctuated by transient looping events. In the

very high concentration limit, each operator will be occupied by a repressor making the formation

of a loop nearly impossible. This progression of qualitative behavior revealed in figure 1.7 is then

further modeled using thermodynamic model to obtain the important parameters, such as binding

energy and looping free energy.

Chapter 5 systematically examine how one single base pair change can alter the looping process.

Oscillation in looping probability is observed as the distance between two binding sites changes
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Figure 1.8: Histogram of the Brownian motion for DNAs with two LacI binding sites spaced from
300 to 310 bp. Experimental data are in blue diamonds and three-Gaussian fit is in red. Two gray
lines represent the expected motion, based on our calibration measurements (data not shown), for
901bp DNA and the same DNA when 305 bp (the interoperator spacing) are subtracted off of the
full length 901bp tether.

from 300 to 310 bp in one-base pair increments. Over the distances used here, looping is rather

robust, which is consistent with early in vivo studies of the gene repression on the similar distances

(Muller et al. 1996). Moreover, two different looped configurations are detected with different re-

sponse to the twist effect. When two binding sites are on the same side of DNA, i.e., in-phase, two

looped states experience nearly equally probability; however, when they are on the opposite side of

DNA, i.e., out-of-phase, one looped configuration is favored.

Chapter 6 illustrates how sequences with different bendability can enhance and stabilize DNA

looping probability. Special nucleosome sequences that are thought to be highly bendable, when

placed between the operators of the lac operon, form much more stable in-phase loops than random
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Figure 1.9: Histogram of Brownian motion distribution of different sequences, including when
binding sites are in and out of phase. Gray dash lines are expected motion from calibration data.

sequences of the same length, However, for out-of-pahse loop formation, the difference between

them are relatively small. Moreover, the in-phase and out-of-loops seem to have different configu-

rations.

Appendies are included with detailed protocols that may be followed to replicate the experi-

ments and the DNA sequences used in the experiments.
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Chapter 2

Calibration of Tethered Particle Motion
method

The Tethered Particle Motion (TPM) method has been used to observe and characterize a variety

of protein-DNA interactions including DNA looping and transcription. TPM experiments exploit

the Brownian motion of a DNA-tethered bead to probe biological dynamics associated with con-

formational change of the tether. In these experiments, a relative change in the excursion of the

bead is used as a reporter of the underlying macromolecular dynamics and is often deemed suf-

ficient for TPM analysis. However, a complete understanding of how the motion depends on the

physical properties of the tethered particle complex would permit more quantitative and accurate

evaluation of TPM data. For instance, such understanding can help extract details about a looped

complex geometry (or multiple coexisting geometries) from TPM data. In order to better character-

ize the measurement capabilities of TPM experiments involving DNA tethers, we have carried out

a detailed calibration of TPM magnitude and intrinsic time constant as a function of DNA length,

particle size and ionic strength of the buffer. We also explore how experimental parameters such as

acquisition time, exposure time and tracking algorithm affect the apparent motion of the tethered

particle. We vary the DNA length from 200 bp to 2.6 kbp and consider particle diameters of 200,

490 and 970 nm. We also present a systematic comparison between measured particle excursions

and theoretical expectations, which helps clarify both the experiments and models of DNA dynam-

ics.
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2.1 Introduction

Single molecule studies are enriching our understanding of biological processes by providing a

unique window on the microtrajectories of individual molecules rather than on their ensemble-

averaged behavior. A large portion of these studies is devoted to exploring the intricacies of protein-

DNA interactions that are central to gene regulation, DNA replication and DNA repair. The reso-

lution of nm-scale distances involved in such interactions poses a significant challenge. The emer-

gence of the tethered particle motion (TPM) method offers a practical and relatively simple solution.

In this method, a biopolymer is tethered between a stationary substrate and a small particle which is

large enough to be imaged with conventional optical microscopy as shown in figure 2.1. The Brow-

nian motion of the bead serves as a reporter of the underlying macromolecular dynamics. Changes

in motion reflect conformational transformations of the tethered molecule. Such changes may be

caused by processive walking of RNA polymerase (Schafer et al. 1991; Yin et al. 1994), DNA

looping (Finzi and Gelles 1995; van den Broek et al. 2006; Zurla et al. 2006, 2007; Wong et al.

2007; Vanzi et al. 2006; Beausang et al. 2007), DNA hybridization (Singh-Zocchi et al. 2003),

DNA bending (Toli-Nrrelykke et al. 2006), Holliday junction formation (Pouget et al. 2004) or

RNA translation (Vanzi et al. 2003).

While TPM is simple in principle, its implementation suffers from a variety of challenges. Sam-

ple preparation can be compromised by multiple tethered microspheres, non-specific absorption,

transient sticking events and dissociation of the tether joints (Pouget et al. 2004; Vanzi et al. 2006;

van den Broek et al. 2006; Blumberg et al. 2005; Nelson et al. 2006a). In addition, image analysis

of TPM data is complicated by instrumental drift and the stochastic nature of the tethered particle’s

motion. The importance of these complications depends on the relationship between the net obser-

vation time, exposure time for a single position measurement and the intrinsic relaxation time of

the tethered particle (which depends upon the bead size). Thus, proper quantification of the spatial

and temporal resolution of TPM measurements requires an understanding of how particle motion

depends on tether length, particle size and other experimental parameters.

To facilitate quantitative TPM measurements we have conducted an extensive characterization

of the dynamics of DNA tethered microspheres. We focus exclusively on TPM behavior in the

absence of externally applied force (as might be applied via magnetic or optical tweezers). Our

aims are threefold. First, we would like to understand what features of sample preparation, data

acquisition and data analysis have a marked effect on the reproducibility and reliability of TPM
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Figure 2.1: Illustration of the tethered particle method. (a) Motion of the tethered bead in the
absence of the DNA binding protein. (b) Reduced motion of the tethered bead due to the change
in the effective tether length induced by a DNA binding protein that loops or bends the DNA. (c)
Simulated looping data with 4s variance filter. The green point is the 4s averaged RMS value at time
t = 800s. The inset shows the x-y positional data corresponding to the RMS trajectory.

measurements. Second, we want to calibrate the relationship between particle motion, tether length

and observation time so that subsequent TPM experiments can be quantitatively interpreted. Proper

calibration allows more precise predictions concerning the way a particular conformational change

of the tether affects TPM and these calibrations have been central to our attempts to understand

the complex dynamics of Lac repressor induced looping of DNA. Third, we want to understand the

physical processes that govern TPM so that we can assess the significance of our measurements.

This is especially timely in light of recent theoretical activity aimed at uncovering the role of bead

size, tether length and attachment flexibility in altering observed TPM trajectories.

2.2 Results and Discussion

For typical TPM experiments, once video images of the projected position of the bead have been

acquired, the first step in the analysis is to determine position traces for all tethered particles. In
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the standard DIC microscopy setup that we use, the particles are tracked in the image plane using a

cross-correlation method (Gelles et al. 1988), which amounts to a two-dimensional projection of the

full three-dimensional motion. Tracking of motion in all three dimensions has been accomplished

using evanescent fields or diffraction rings (Blumberg et al. 2005), but this involves additional

calibration and technical challenges. Thus we limit our analysis to two-dimensional tracking. The

positions of the bead are subject to a slow drift due to vibrations of the experimental apparatus,

which has been removed using a first order Butterworth filter at 0.05Hz cutoff frequency (Vanzi

et al. 2006). For our Brownian statistic, we choose the square root of the sum of the variances of

the drift corrected particle position (x, y) along two orthogonal image plane axes as defined by

RMSt =
√
〈(x− x̄)2 + (y − ȳ)2〉t, (2.1)

where t is the time interval over which the RMS motion is measured. equation 2.1 permits us to

capture the tether dynamics using a single scalar quantity as is shown in figure 2.1(c).

2.2.1 Data Selection Criteria

Though single-particle data often reveal detailed features of the dynamics of protein-DNA interac-

tions, in fact, often such data are plagued with artifacts. In the context of TPM experiments, for

example, a fair amount of the collected data is contaminated. In particular, we suspect that artifacts

arise mainly due to non-specific binding of the bead and DNA to each other and the surface and

multiple DNA attachments on the same bead. To get good calibration data, we want to get our

best possible handle on aberrant TPM behavior. For that reason, we utilize several selection criteria

to ensure that the particles we observe are ”typical” of those that are not sticking to the surface

or multiple DNA molecules. In order to root out the unsable trajectories, we have implemented a

series of objective criteria, such as ”minimum motion”, ”motion symmetry” and ”uniformity” to be

described below. Only RMS4s data of a tether is used to check whether tethers are qualified or not.

The first criterion, ”minimum motion” is applied to discard beads which cannot be differentiated

from beads stuck to the glass substrate. Due to imperfections of the glass surface and bead (Singh-

Zocchi et al. 2003), laboratory vibrations, as well as CCD and tracking algorithm resolution un-

certainties, a residual motion will persist even for beads stuck to the glass surface. To exemplify

this point and quantify the residual motion, a control experiment was carried out with beads but no

DNA present. An example of these kinds of trajectories is shown in figure 2.2. For stuck beads,
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the motions as characterized by RMS4s (in green in the figure) is substantially less than that for the

tethered bead (blue curve in the figure), but it is still non-zero. Based on these control experiments,

data sets exhibiting average excursions, RMS4s, lower than 30 nm cannot be differentiated from

stuck beads and are therefore rejected.

The second criterion we impose, ”motion symmetry”, requires that the motion of the bead must

reflect in-plane symmetry consistent with a single DNA tether. In particular, ideally, a tethered par-

ticle should exhibit symmetric in-plane motion about its anchor point. The motional symmetry is

determined from the covariance matrix (Blumberg et al. 2005; Nelson et al. 2006a), which is given

by

C =

σx1x1 σx1x2

σx2x1 σx2x2

 ,

where

σxixj =
1
N

N∑
k=1

xki x
k
j −

1
N2

(
N∑
k=1

xki )(
N∑
k=1

xkj )

are the second moments of the bead’s position. Here N is the number of frames for a given run and

xk1 , xk2 are the in-plane coordinates (i.e., the position x, y) of the microsphere for frame k as obtained

from the raw data. The eigenvalues (λ1, λ2) for the covariance matrix are proportional to the square

of the major and minor axis corresponding to the in-plane displacement of the bead. Given the

radial symmetry of the problem a necessary condition for a “good” tether is one in which the major

and minor axes are nearly equal. A measure of equality between the two axes is determined through

the symmetry factor s =
√

λ1
λ2

. In practice, symmetry factors with s ≤1.1 are deemed acceptable,

as they generate reproducible data. (Here we assume λ1 > λ2 without loss of generality.) Fig. 2.2

displays scatter plots for the in-plane motion of several beads to illustrate the distinction between

”good” and ”bad” tethers. The first plot passes the symmetry test and would serve as a qualified

tether while the second would be rejected on the grounds that it fails the symmetry test. A rationale

for the asymmetric scatter is that this bead may be attached to multiple DNA molecules (Pouget

et al. 2004). Such a geometry would be consistent with the observed asymmetric motion.

A third criterion, “uniformity”, qualifies tethers on the basis of the consistency of their motion

over time and is designed to eliminate unwanted non-specific binding events, such as non-specific

binding of DNA to the bead or glass surface for short periods of time. In order to rule out these

events, we first divide the whole time series into 10 subwindows and then calculate the average
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RMS4s motion, Ai, within each time window i, followed by:

u = σ(
A1

Atot
,
A2

Atot
, · · ·, Ai

Atot
, · · ·),

where Atot is the overall average RMS4s motion. Only data sets with standard deviations between 0

and 0.2 are accepted. The bottom figure of 2.2(c) displays what appears to be a non-specific binding

event, even though the motion of the bead meets the symmetry criterion.

The first two selection criteria discard tethers which are corrupt from the start, while the third

selection criterion eliminates unwanted interactions that occur during some part of the run. How-

ever, if the purpose of the experiment is to identify interesting molecular binding events such as

those leading to DNA looping or bending, then the last criterion cannot be applied since these bind-

ing events have the same signature as those rejected by the uniformity criterion. On the other hand,

it should be enforced in cases like ours, which are aimed at characterizing simple DNA tethers.

Filtering the data that fail the last criterion leaves tethers which experience a consistency in their

Brownian motion. Figure 2.2(f) displays a broad distribution in the measured RMS4s before se-

lection (in red). Upon applying our three slection criteria, around 50% of the data are qualified,

displaying a well-defined measure for the Brownian motion (in pink). This figure suggests that the

main source of the corruption comes from the asymmetric in-plane motion. The simplest fix for

suppressing these events is reducing the concentration of the DNA used in the experiments. Our

reason for showing the data is to illustrate some of the difficulties that arise in making careful TPM

measurements.

2.2.2 Acquisition Time

As noted above, the positional data are converted into the actual statistic we use to characterize

the motion by measuring the RMS motion over a particular time window (usually four seconds).

The choice of an optimal time interval is one of the questions that should concern anyone using

the tethered particle method. An excessively short time interval may not capture the full phase

space available to the tethers, while long-term measurements result in a loss of temporal resolution.

An additional consideration is that there is statistical error due to the stochastic nature of Brownian

motion. This means that even if there were no drift and our particle tracking algorithm was infinitely

precise, there would still be error in measuring the motion of a tethererd particle over a defined

acquisition time.
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Figure 2.2: Selection of qualified tethers. Displays of good and bad data, which inspire the selection
criteria. (a) Trajectory associated with a good data set. The green line corresponds to the 4-second
averaged RMS motion in a control experiment with a stuck bead. (b) Trajectory for a bead that failed
the motion symmetry test. (c) Trajectory associated with nonuniform motion caused by nonspecific
binding, seen as a downward spike between 0 and 50 seconds. (d) Scatter plot of in-plane motion.
This case reveals symmetric motion. (e) Scatter plot of in-plane motion. This case is asymmetric
and corresponds to data that are rejected. In all figures, the dots correspond to raw data and the blue
line to data after averaging over a four-second time window. The DNA used here is 1206 bp long
and the bead size is 490 nm in diameter. (f) Distribution of bead excursions with selection rules.
Three filters are applied progressively. Original data: red; after application of minimal motion filter:
cyan; after application of symmetry filter: blue; and after application of final filter: pink. The DNA
used here is 901bp long and bead size is 490nm in diameter.
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To obtain an intuitive feel for how acquisition time effects both the average value and averaged

standard deviation in motion measurements, we examined the statistics of bead motions for different

choices of such time interval as shown in figure 2.3. The average value in motion is calculated as

〈RMStime〉, which is averaged over entire population. The averaged standard deviation relates the

error in motion measurements, which is referred as Stdtime, where

Stdtime =
√
< RMS2

time > − < RMStime >2,

We consider several different statistics just to see how different statistical measures respond to

choice of the averaging time interval. Each point in the figure corresponds to quantities measured

over a defined time interval. The trajectories used to generate this data were 200 seconds long.

The graphs in the top row illustrate how the averaged RMS motion depends upon acquisition time.

DNA lengths range from 200 to almost 3000 bp and we report data for beads with three different

diameters: 200, 490 and 970 nm.

We find that the amplitude of the RMS motion first increases with the number of successive

images used for its calculation, before saturating at the equilibrium value. To understand this better,

imagine a bead in a harmonic well. There is a characteristic timescale over which the bead remem-

bers its previous positions. This timescale is given by τ0 = γ
keff

, where γ is the drag coefficient

and keff is the spring constant. If the time interval is smaller than τ0, the measured motion will

have a big variation. If the time interval is a lot larger than τ0, the measured motion will represent

the equilibrium motion. When bead size is fixed, as the tether length increases, both the motion

and the time required for the bead to explore sufficient configurations increases. This is expected

due to the increased excursion range of the tether, and longer tethers tend to have smaller effective

spring constants. When the length of DNA is fixed, as bead size increases, both the equilibrium

motion and equilibration time increase. An intuitive explanation of the bead size effect is that the

radius of the bead is added on to the tether length itself. However, it is not quite so simple because

the particle does not have a persistence length. In addition, the effect of the bead’s presence is a

little more complicated because the particle can rotate around its attachment point and because of

excluded volume effects between the particle and the surface (Segall et al. 2006b). Both of these

latter effects reduce the measured motion. The increase in equilibration time results from the vis-

cous drag of larger beads since the drag, γ, is linearly related to the bead’s radius, and the time

constant is linearly related to the viscous drag (for a quadratic potential). The graphs in the bottom
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Figure 2.3: Amplitude of Brownian motion and the average standard deviation as a function of the
averaging time for different length DNA tether lengths. The length of the DNA varies from 199 to
2625 bp. The top row shows the averaged RMS motion as a function of time interval, and the lower
row shows the standard deviation as a function of time interval. Black dotted lines indicate the time
over which the system reaches equilibrium. Red lines made by hand suggest the motion reaches
saturation.
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row demonstrate how the statistical error, Stdtime, is related to such time interval. As the number

of the successive images used for the RMS calculation increases, the error decreases. Larger beads

can introduce larger fluctuation, because of their slow diffusion.

2.2.3 Calibration of Motion

TPM experiments are generally designed for detection of a discrete conformational change of

biopolymers. It is necessary to see how the Brownian motion changes as a function of tethered

DNA length. A further benefit of calibration data is that we can get a sense of how big of a change

we will be able to measure. For example, can the TPM technique resolve 100 bp looping? What

about 90-degree bending? Can we distinguish two looped configurations that only differ by the

angle the DNA makes upon leaving the loop? Lastly, we can compare our calibration data to theo-

retical models of TPM motion. This helps to identify relevant physical principles that might affect

the rate of biomolecular interactions and increases our confidence in both the experimental protocol,

and in the mathematical models themselves.

As discussed before, the measured amplitude of RMS motion depends on the time interval over

which it is calculated (figure 2.3). To unequivocally determine the relation between the measured

excursion and the tethered DNA length, we choose the timescale that guarantees that we will attain

saturation motion for the longest DNA molecules. As indicated in figure 2.3, we systematically

used 5, 10 and 20 seconds for beads with diameters of 200, 490 and 970 nm, respectively.

The concept of the experiments is to carry out a series of TPM measurements at each tether

length and for each bead size. The point is to quantify the expected motion for different choices of

the tether length and the bead size since both of these geometric parameters are reflected in the mea-

sured bead excursions. These data are shown in figure 2.4. Each point in that figure is the average

of RMS motion of 20 to 200 qualified beads. To characterize the relationship of equilibrium RMS

motion to the actual tethered DNA length, a second-order polynomial was fitted to the experimental

data. The fitting parameters are listed in Table 2.1. The fits are valid only over a limited range of

tether lengths, but serve as a useful scheme for interpolating when performing real DNA looping

measurements, for example. For very short and long tether lengths, these fits are no longer valid

and result in spurious artifacts. Black dashed curves represent motion averaged over 4 seconds for

the three bead sizes covered, demonstrating the measured motion of larger beads or longer DNA

doesn’t reach the saturation for very short acquisition times.

Intuitively, the slope of these curves can be interpreted as the sensitivity of the TPM, i.e., the
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Figure 2.4: Brownian motion of bead as a function of the tether length for different sized micro-
spheres. Each red point in the figure is the average of equilibrium amplitude of RMS motion over
20 to 200 qualified beads, which is calculated using equation 2.1 with t = 5 seconds for R = 100
nm (bottom data set), t = 10 seconds for R = 245 nm (middle data set) and t = 20 seconds for R =
485 nm (top data set). Points in green represents the RMS motion averaged over 4s for the same
data sets. Points: experimental data for different sized beads. The blue and black dashed curves are
second-order polynomial fits to the datasets obtained by using the different averaging times.
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Table 2.1: Parameters of quadratic funtion ax2 + bx + c obtained for fitting both the equilibrium
motion data and 4 seconds interval data

Time [s] Diameter a×10−5 b c
5 200 nm -2.58 ± 0.68 0.17 ± 0.02 -4.5±14.8
10 490 nm -3.37 ± 0.47 0.19 ± 0.01 57.3± 7.2
20 970 nm –3.49 ±0.46 0.20 ± 0.01 109.5 ± 8.7
4 200 nm -2.60 ±0.69 0.17 ±0.02 -4.75±14.7
4 490 nm -3.17 ± 0.41 0.18± 0.01 58.05± 6.6
4 970 nm –3.31 ±0.48 0.18 ± 0.01 107.7 ± 8.7

ability of TPM to resolve different tether lengths. However caution must be used in this analysis,

because the accompanying statistical noise is not constant. More explicitly, a comparison of the

slopes reveals that larger beads provide better spatial resolution, however, their slower diffusion

also implies more statistical noise in an a measurement. Thus in each experiment, a compromise

must be sought between good spatial (large beads) and temporal (small beads) resolution.

To gain more confidence in our understanding of the apparatus and analysis, we compared

our experimental calibration curve to one we generated from a mathematical model of the system,

following Nelson et al. (2006b). The root-mean-square excursion of the projected bead location

away from its tether point is controlled by various competing effects: (i) In the absence of any bead

or wall, the chain’s endpoint would execute 3D Brownian motion subject to a restoring force from

the tether. (ii) But the bead’s rotatory Brownian motion implies that its center, which is what we

observe, lies a considerable distance away from the chain endpoint. (iii) The bead–wall exclusion

pushes the bead upward, reducing its transverse excursions.

To account for all these effects, we modified the Gaussian sampling method previously used

in (Segall et al. 2006b; Nelson et al. 2006b; Czapla et al. 2006) (see smearing section). Our code

generated many simulated DNA chains and bead orientations, applied the steric constraints (Segall

et al. 2006b), and reported the RMS deviation of the bead center from the attachment point. We

applied a correction to this theoretical result, to account for the bead’s motion during the rather long

shutter time (about 31 msec, see smearing section). Figure 2.5 shows that an a priori calculation of

the expected motion matches the data fairly well with no fitting at all. The remaining discrepancy

with our data may reflect unremoved instrumental drift, for example high-frequency motion that our

Butterworth filter cannot distinguish from true Brownian motion. The variance of such noise would

add in quadrature with the true Brownian motion, shifting the entire curve up by a constant.
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Figure 2.5: Experimental values for RMS motion of bead center, projected to the plane of the
surface, averaged over 5, 10, and 20 seconds of observation for bead size in radius 100, 245 and
485nm, respectively. Each dot represents the average of approximately 20 to 200 different observed
beads with the given tether length. Curve: theoretically predicted RMS motion, corrected for the
blurring effect of our long shutter time. The curve is a zero parameter prediction based on the
known value of DNA persistence length in solvent conditions like ours, ξ = 45 nm Strick et al.
(1998), and the manufacturer’s specification for the bead radius.
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2.2.4 Time Constant as a Function of Tether Length and Bead Size

Having explored the dependency of the spatial resolution of the tethered particle method on param-

eters such as bead size and contour length, we now explore the dependency of these parameters on

temporal resolution. A measure of the temporal resolution in the TPM is the time constant τ of the

bead associated with its motion. The time constant of the bead gives a measure of how long it takes

the bead to return to its equilibrium position and hence equilibrate. The larger the time constant,

the longer the bead takes to equilibrate and the longer it takes to reduce thermal noise. Ideally, time

constants should be ”short” compared to the time scale governing the dynamics of the biomolecular

interactions of interest.

To determine the time constants from the data we compute the auto-correlation function

〈δr⊥(n∆t) · δr⊥(0)〉exp =
1
N

N∑
i

r⊥((i+ n)∆t) · r⊥(i∆t)−

(
1
N

N∑
i

r2
⊥(i∆t)

)
, (2.2)

where ∆t is the inverse of the frame rate and N is the number of frames taken. Given the experi-

mental auto-correlation function we make the assumption that it decays as a single exponential

〈δr⊥(n∆t) · δr⊥(0)〉exp ≈ Ae−t/τ . (2.3)

Applying a least-squares fit of Eq. 2.3 to the experimental results we obtain the associated time

constant for in-plane motion.

Figure 2.6 displays a sample of the experimentally computed autocorrelation function and the

single exponential fit for a given tether length and three-bead radii. Figure 2.7 displays a histogram

of all of the time constants computed for that given tether length.

In figure 2.8 we display the experimentally determined time constants as a function of tether

length for various bead sizes. The time constants increase as a function of tether length and bead

size. The increase in time constants with respect to both parameters is expected. Larger beads have

a stronger drag force and therefore take a longer time to return to equilibrium; longer tethers are

floppier molecules which take a longer time to equilibrate.

2.2.5 Ionic Effect

TPM is often used to detect the conformational change of DNA due to protein binding. Most of

these binding interactions depend strongly on ionic conditions. Here we investigate whether ion
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Figure 2.6: Autocorrelation function for a single measurement. Top: bead radius 100 nm and 1338
base pairs. Middle: bead radius of 245 nm and 1323 base pairs. Bottom: bead radius of 485 nm and
1338 basepairs

Figure 2.7: Histogram of time constants calculated. Left: bead radius 100 nm and 1338 base pairs.
Center: bead radius of 245 nm and 1323 base pairs. Right: bead radius of 485 nm and 1338
basepairs
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Figure 2.8: Time constant as a function of contour length and bead radius.

conditions also play a role in simple tethered particle motion. Figure 2.9 plot the Brownian motion

at different KCl and MgCl2 concentration, respectively. We find that the motion appears to increase

by 20 nm for KCl concentration larger 100 mM, but then levels off. This is a surprising result

because prior research has shown that the persistence length of DNA does not change much over this

range of ionic strength (Baumann et al. 1997) and that the change is such that the persistence length

increases at low salt (due to removal of ionic screening). One possible explanation is that there are

some interaction between the glass surface and the beads. At relative low salt concentration, such

attractive interaction is not all screened off.

With MgCl2, the motion barely changes. This is also surprising because DNA is thought to

compact at this concentration of Mg (Baumann et al. 1997). It could be that our buffer ingredients

have a shielding effect that Bustamante et al. did not see. Although we do not understand the trends

with ionic concentration, for our current purposes it is useful to note that around 130 mM KCl and

4 mM Mg, there is little effect of ion concentration. Thus, it is not a significant source of error in

our calibration curves.

2.2.6 Smearing Effect

The smearing effect refers to the time averaging due to the finite exposure time of the camera

detector. In order to study such an effect on the RMS motion of the tethered particle, an experiment

was performed with 901bp DNA and a 490 nm diameter bead. Signals of such tethered beads were

detected at different camera exposure times. The movies were captured at 1, 5,10, 30, 50, 100, 200,
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Figure 2.9: The RMS4s motion of 901bp DNA tethered beads in different concentrations of KCl
and MgCl2.
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Figure 2.10: The RMS4s motion as a function of camera exposure time. The effect of camera
exposure time was studied by examining the bead’s RMS motion for different choices of exposure
time. Each data point corresponds to a different camera setting.

300 and 500 ms exposure durations. The effects of averaging over the camera’s exposure time were

apparent. Figure 2.10 shows the RMS motion at different exposure times. It reaches saturation

when the exposure time is smaller than 30ms, and decreases sharply above this value.
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These effects can be considered from a theoretical perspective. Here we describe the correction

to the theoretical calibration curve in figure 2.5 to account for bead motion during a single frame

exposure. The image of a static bead is a 2D distribution of intensity, Is(r − r0), where r is the

projected position in the focal plane. It reflects the ”actual” bead image, the miscroscope pointspread

function, uncertainties from finite pixel size, etc.

Finite shutter time blurs the image of a diffusing particle. As an extreme example, suppose

the shutter were open for a time much longer than the bead’s time to diffuse through its range of

motion; then we would observe a blurred image centered on zero, and larger than the static image

of the bead. In fact, some TPM implementations study this enlarged apparent bead image (Finzi

and Gelles 1995). The bead-tracking method, which we use, discards the apparent image size and

instead studies the apparent bead center position as a function of time. We now ask, how is this

apparent bead center related to the true instantaneous bead position?

If we leave the shutter open only for a very short time, say 1 msec out of the total video frame

time, then we may expect there would be very little blurring (Nelson et al. 2006b). But in the present

work, the shutter is open for almost the entire 33 msec video frame; we need a correction to account

for this fact.

Suppose we knew that at some time t the bead’s true position is r0. This is the quantity we

want but can not observe directly. At a later time t+ δτ , we only know the probability distribution

function (pdf) of the bead’s possible positions: It is centered on a new point rδτ . For tethered 2D

Brownian motion, and infinitesimal δτ , the new distribution P (r; δτ) is a Gaussian of width
√

2Dδτ

centered on rδτ = r0 + (f/ζ)δτ , where f is the restoring force of the tether, ζ = kBT/D = 6πη is

the Stokes drag constant, and η is the viscosity of water. We can estimate the force by the Gaussian

chain approximation, f = −kBTr0/(Lξ) where ξ is the persistence length. The average expected

image at time t+δτ is then the convolution of the static image Is with P . This intensity distribution

is centered at rδτ .

We can find the average blurred image by dividing the finite shutter time δt into small slices δτ ,

finding the expected average image at each δτ , and adding them all together. The average blurred

image will be stretched relative to the static image, and its center will just be the average of the

various rδτ . This center will be shifted radially inward relative to the initial r0, so call it S(ρ0)r0,

where ρ0 = |r0|. S(ρ0) < 1 is a scale factor function that we wish to find.
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In the framework of the above approximations, the center ρδτ obeys

dρ

dδτ
= v(ρ) = − 1

6πηRb

kBT

Lξ
ρ, (2.4)

Let Ts = 6πηRbLξ/kBT . So ρ(δτ) = ρ0e−δτ/Ts . The average of this center position over a finite

shutter time δt is S(ρ0)ρ0 where

S(ρ0) =
Ts
δt

[1− e−δt/T ], (2.5)

Notice S is actually independent of ρ0. For very small δt we get S → 1 − 1
2(δt/Ts). For large δt,

we have S → 0.

We conclude that every report of r is systematically too small by a factor of S, which depends

on the shutter time δt = 31 msec and the tether length L (and other fixed quantities). If we want to

predict the experimental data we should take the theoretical prediction, e.g., for
√
〈ρ2〉, and correct

it, here by a factor of S. This correction is trivial to apply (comes out of the averaging sign), because

S is independent of ρ0.

The preceding discussion made some poor approximations. For example the drag constant is

much bigger than the Stokes-law formula used above, due to wall effects. Nor is the tether end-end

distance equal to ρ (there is also the distance from bead attachment to bead center, plus foreshort-

ening due to projection to x − y plane). Nor is the tether’s entropic elasticity well represented by

the Gaussian-chain formula. For all these reasons, we replaced Eqs. 2.4–2.5 by a phenomenolog-

ical formula obtained from our data. We computed the average shift in the apparent r from video

frame N to N + 2, separated by ∆t = 66 msec, and noted it was of the radially symmetric form

〈ρ′〉ρ/ρ ≈ 0.55. We then replaced Eq. 2.4 by

dρ

dδτ
= v(ρ) = −V∗

L
ρ, (2.6)

where V∗ is a constant determined from the observed frame-to-frame shifts via Eq. 2.6, that is,

e−(V∗/L)∆t = 〈ρ′〉ρ/ρ, or V∗δt = 87 nm/msec. Then Eq. 2.5 becomes

S =
L

V∗δt
[1− e−δtV∗/L], (2.7)

The corrected curve in figure 2.5 was obtained from the Monte Carlo simulation described in (Segall
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et al. 2006b; Nelson et al. 2006b) by multiplying by S.

2.3 Applications to DNA Looping

One of the signal achievements of the tethered particle method has been its use in studying DNA

looping. Many transcriptional regulatory motifs involve the binding of transcription factors that bind

at more than one site simultaneously forming a loop of the intervening DNA. The TPM technique

has been used to explore these problems. The calibration analysis performed here can serve as the

basis of a more careful evaluation of DNA looping and bending by DNA-binding proteins.

The tethered particle motion (TPM) has proved to be a valuable technique for studying confor-

mational changes of DNA molecules via looping and bending processes. Going one step further, a

proper, systematic calibration of TPM measurements provides information relating the bead’s ob-

served motion to the actual tethered length of DNA. This can be used to optimize the design of

subsequent DNA looping experiments; for example, what is the optimal total DNA length and bead

size needed to detect a 305 bp loop with a good signal-to-noise ratio? TPM sensitivity is influenced

by the reporter bead size: smaller beads give better temporal resolution, but at the expense of poorer

spatial resolution. Thus if the aim of the experiment is just to obtain information on conformational

change, a large bead ought to be used, because for a given length of DNA, a larger bead translates

to more change in its motion. Conversely, if time resolution is the most important factor, smaller

beads should be used. Once the bead size has been determined by the experimental objectives, our

aim is to find a good length of DNA that will maximize the measurable response to conformational

changes. In principle, one should use tethers such that the difference between the two states of in-

terest corresponds to a region over which the calibration curve has the largest slope since the motion

is not in a linear relationship with actual tethered DNA length. For example, suppose that the bead’s

diameter is fixed at 490 nm and the loop that we would like to detect is 325 bp (distance between

two binding sites). Choosing DNA length around 2500 bp would be a bad idea, because the relative

change will be too small to be differentiated from fluctuation. How about 1100 and 900 bp? The

calibration curve tells us a total length of 1100 bp will be worse than 900 bp for detecting a 325 bp

loop, because the change in motion is smaller. As illustrated in figure 2.11, 900 bp long DNA indeed

offers a better sensitivity, resulting in differentiating all possible states nicely. In comparison, when

DNA is 1128 bp in total length, the looping signal is not as well resolved as the one in 900 bp.

Another benefit derived from the calibration curve, as illustrated in figure 2.12, is a better un-



36

Figure 2.11: Comparison of typical trajectories averaged over 4 seconds in the presence of Lac
repressor showing loop formation and breakdown between DNAs with different tether lengths. (a)
Total length of DNA is 901 bp. (b) Total length of DNA is 1128 bp. Operator center to center
distance is 325.5 bp, which is the same for both DNAs.
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Figure 2.12: Calibration curve for 490nm size bead and its application in looping experiments. Blue:
calibration curve for RMS4s motion as a function of tethered DNA length. Red: RMS4s motion in
the presence of 100pM LacI. DNA is 901bp long with operator center to center distance of 325.5 bp.
Green: RMS4s motion in the presence of 100 pM LacI. DNA is 450 bp long with operator center
to center distance of 114.5 bp. Each pair of black dashed lines represent the expected motion for
actual total length and the length subtracts off the operator center to center distance, respectively.

derstanding of the geometry of the conformational changes we have studied. For example, there are

three clearly separated states shown in the red line in figure 2.12, where the total length of DNA is

901bp and the loop size is about 325 bp. The first two black dashed lines from the top represent

the expected motion for 901bp long DNA, and 901 minus 325 bp, respectively. By comparing the

effective tether length upon loop formation to them, we might gain insight into what the two looped

species are.
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2.4 Conclusions

The tethered particle motion method is one of the simplest tools for performing single-molecule

experiments on DNA-protein complexes. The central idea is to use the Brownian motion of a small

particle tethered to a DNA molecule as a reporter of the underlying macromolecular dynamics of the

DNA in its complexes with DNA-binding proteins. The point of this chapter has been to examine

the challenges that are inherent in making useful quantitative measurements using this method. One

of the main outcomes of that effort has been the development of calibration curves which illustrate

how tethered-particle excursions depend upon both bead size and tether length. Our own recent

calculations argued that the presence of a bead at the end of a tethered DNA molecule will lead to

excluded-volume forces that will tend to elongate the DNA. This effect depends upon the bead size.

The work presented here largely corroborates this picture.
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Chapter 3

Data Analysis

In our Tethered Particle Motion (TPM) experiments, DNA is anchored on a coverslide with a mi-

crosphere attached to the other end. By measuring the range of diffusion of a tethered bead, we can

detect the conformational change of single DNA molecules due to Lac repressor (LacI) mediated

DNA looping at the single molecule level. Furthermore, The kinetics of the looping and unlooping

processes can also be obtained. The goal of this chapter is to show the progressive of ideas uading

from raw images of beads to looping trajectories.

3.1 Particle Tracking

The motion of the bead is recorded through a Differential Interference Contrast (DIC) microscope

at 30 frames per second. Figure 3.1 (a) shows an image of the bead and its corresponding intensity

plot. Note that under DIC observing conditions the bead appears to contain an equal amount of

bright and dark shaded regions. The position of the bead is tracked in the x− y plane and recorded

as raw data for further analysis. We take advantage of the good contrast of the bright/dark shades

on the bead to track its position using a cross-correlation method (Gelles et al. 1988). The cross-

correlation between two images is calculated as

C0(x, y) =
a/2∑

i=−a/2

b/2∑
j=−b/2

I1(x+ i, y + j)I2(i, j),

which can be normalized to give

C(x, y) =
C0(x, y)

max(C0(x, y))
,
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where a and b are the dimensions in the x and y directions, respectively. I1 and I2 are the intensity

of two different images. I2 represents the template intensity. The effect of the above calculation

is to find the position in one frame for which the surrounding intensity distribution most closely

matches the template frame, whose center is taken to be the point (0, 0). The cross-correlation cal-

culation yields sharp peaks in regions where the intensity distribution in the frame closely matches

the template intensity distribution, as shown in figure 3.1 (b). To get rid of the background match-

ing, a threshold value T is subtracted from each point in the cross-correlation, and points where the

difference is negative are discarded, as illustrated in figure 3.1 (c). From the remaining points the

coordinates of the centroid (xc, yc) are computed as:

xc =
∑

x x[C(x, y)− T ]∑
x,y[C(x, y)− T ],

yc =

∑
y y[C(x, y)− T ]∑
x,y[C(x, y)− T ].

The point(xc, yc) is taken as the position of the bead in the image I1. The set of calculated coordi-

nates (xc, yc) reflect the translational movement of the bead with sub-pixel resolution. Depending

on the signal-to-noise characteristics, this cross-correlation tracking algorithm can at times yield

spatial resolutions better than a tenth of a pixel (Huang et al. 1997). When a sequence of consec-

utive video frames is analyzed, a single template derived from the first frame is used to analyze all

subsequent frames. An alternative is to compare images to the preceding frame’s image, however,

it will lead to a small but artificial drift in the positional data due to accumulation of the tracking

errors. Therefore, one single template matching scheme is selected for all subsequent analysis.

3.2 Drift Correction

The positions of the bead are corrupted by a slow drift due to vibrations of the experimental appara-

tus, as shown in a raw data plot in figure 3.2 (a). Note that the time scale of this drift is slower than

the LacI-mediated dynamics of the bead, making the signal amenable to filtering. The following

sections include the basic concept of digital filtering and the details of the Butherworth filter used

for drift correction.
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Figure 3.1: Cross-correlation algorithm used in particle tracking. (a) A typical image of the bead ob-
served using DIC microscope and its corresponding intensity plot on the right. (b) Cross-correlation
between two images with the same bead. (c) Calculation of the centroid of the peak in the cross-
correlation.
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Figure 3.2: The drift in the raw position data and the data after drift correction. (a) The raw x
position, the position after drift correction and the drift estimation. (b) The x − y scatter plot
showing that the motion in x− y plane is radial symmetric.
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Figure 3.3: A diagram with one simple example explaining how to use a filter to recover a signal
corrupted with random noise. (a) Noise corrupted signal (in orange) and the true signal (in blue).
(b) A power spectrum showing different frequency components. By identifying and locating the
dominant frequencies, a reasonable filter shown in (c) is selected to recover the true signal. (c)
The selected band-pass filter B(f), in which only the dominant frequencies get to pass and other
frequencies due to noise are blocked. (d) Comparison between the recovered signal (in red) and the
true signal (in blue).
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3.2.0.1 Introduction to Digital Filters

A data signal normally contains a mixture of different frequency components. Signal filtering is

often used to eliminate unwanted frequencies from the data signal. While the correct filter settings

can significantly improve the signal to noise (S/N), incorrect settings can distort the signal presen-

tation and even eliminate the signal completely. Therefore, it is important to understand the concept

of signal filtering. Filtering can be performed either in the time domain by the operation of convo-

lution, or in the frequency domain by multiplication of the frequency response. Frequency filtering

is based on the Fourier Transform, through which frequency spectral contents of the signal can be

obtained. A filter can emphasize some frequency components and attenuate some others and it can

also operate on the phases of the spectral components, by delaying them by different amounts. To

apply a filter, as illustrated in a simple example in figure 3.3, the original signal x(t) (in this case a

noise corrupted sine signal generated by superposing sine signal and Gaussian noise together) has to

be first transformed into the frequency domain X̃(f), then multiplied with the filter function B(f)

in a frequency-by-frequency fashion. The product has to be retransformed using the Inverse Fourier

Transform to obtain the filtered signal x′(t) in the time domain. To recover the true signal, a band-

pass filter is employed in this case with cutoff frequencies selected based on the power spectrum of

the raw signal shown in figure 3.3 (b). Such filter allows the main signal to pass while blocking the

other frequencies, as shown in figure 3.3 (c).

3.2.0.2 Butterworth Filter: Drift Correction

This section is focused on the details of how the Butterworth filter is used to correct positional data

corrupted by slow drift. The Butterworth filter is a modified step function with a smooth bandpass

response and more gradual out-of-band attenuation and is defined as:

B(f) =
1√

1 + ( ffc
)2n

,

where fc is the cutoff frequency and n is the order of the filter indicating the sharpness of the

filter around the cutoff. It can be seen that as n approaches infinity, it becomes a step function and

frequencies below cutoff will be fully passed, while frequencies above cutoff will be suppressed.

For smaller values of n, the cutoff will be less sharp. Figure 3.4 shows the frequency response of

different orders of Butterworth filter. Any motion with frequencies larger than the cutoff frequency
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Figure 3.4: The frequency response of the Butterworth filter with different orders. The higher the
order, the steeper the attenuation.

Figure 3.5: Power spectrum of both tethered and stuck bead. Three beads’ power spectrum are
plotted here, including two tethered beads and one stuck bead selected from the same field of view.
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is gradually attenuated. In the TPM sample preparation, there are always some particles that are

stuck to the surface nonspecifically without a DNA linked in between, which we refer to as stuck

particles. As a results, motions of the stuck particles can be used to explore the slow drift in our

experiment. To find a reasonable cutoff frequency for correcting the drift, the power spectra of

both tethered particles and the stuck particle are inspected in figure 3.5. These three particles are

selected from the same field of view, which suggests they should experience similar drift in their

positional data. As shown in figure 3.5, by comparing the three power spectra, the frequencies

below 0.02Hz are believed to be due to drift in this case. Because drift is different from sample to

sample or day to day, a cutoff frequency of 0.1Hz (a little higher than 0.02) is chosen from here

on to tolerate the variations. To determine the efficiency of our drift-correcting filter, we first test

it on the stuck bead position data. Figure 3.6 (a) superposes the raw position data and the drift

characterized using Butterworth filter together, showing indeed the drift in our TPM experiments

can be estimated by such filter. Figure 3.6 (b) illustrates that the drift-corrected position data have

fluctuations in the range of 30 nm, which is reasonable. Figure 3.2 shows how effective this drift

correction is when we apply it to the tethered bead positions. In figure 3.2 (a) we show raw position

data, drift-corrected position data and drift estimation using the first order low pass Butterworth

filter at fc=0.1 Hz. Figure 3.2 (b) shows that drift corrected positions have a good radial symmetry.

So far, we accomplished the first step in the data analysis, which is obtaining the drift-free po-

sitions of tethered beads. The ultimate aim of the analysis is to obtain kinetic information for both

looping and unlooping processes. Two strategies are used here to get the rate constants. One is

the conventional thresholding method, which uses the variance of the bead position as the experi-

mental variable reflecting the effective tethered DNA length. In this method, a threshold is chosen

to determine individual loop formation and breakdown events, and then quantitative analyses of the

durations of such events are performed and histogrammed to obtain the rates. An alternative method

based on the Hidden Markov Model is developed to obtain the rate constants directly from the po-

sitional data. In the following sections, these methods are described in detail, and the disadvantages

and advantages associated with each method are discussed.

3.3 Thresholding

The thresholding method is used to identify individual loop formation and breakdown events medi-

ated by LacI. The microsphere exhibits a restricted Brownian diffusion due to the DNA tethers with
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Figure 3.6: Drift correction for a struck bead using first order Butterworth filter with cutoff fre-
quency 0.1 Hz . (a) The raw x position of the stuck bead (in blue) and the drift detected using
Butterworth filter (in red). (b) The drift-corrected x position due to vibration.
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an amplitude reflecting the effective tethered DNA length itself. The whole procedure is illustrated

in figure 3.7 (a). We first have to find an experimental output to represent the motion of the bead.

The radius of mobility of the bead, Rt at time t, is calculated as:

Rt =
√
x2
t + y2

t ,

where x and y are drift-corrected positions. Such data, as shown in blue dots in figure 3.7(a-

1) and (b-1), are so noisy that it is impossible to determine the loop formation and breakdown

events directly though there is a discernable pattern in the data. Therefore, the first step in the

thresholding method requires smoothing these data to increase the signal-to-noise ratio to acceptable

levels. A threshold in the second step is then applied to such filtered data, as shown in green in figure

3.7(a-1), to determine individual loop formation and breakdown events. Quantitative analyses of

the durations of such looping and unlooping events are performed. In the final step, the kinetic

information is derived from population statistics of the lifetimes.

3.3.0.3 Gaussian Filter: Reducing Noise

In the thresholding method, the signal of transition events is buried in the thermal fluctuations, as

shown in blue dots in figure 3.7. To reduce the background noise sufficiently to allow looping

events to be detected and characterized, some filtering on the data is required. From the radius of

mobility of the bead, the RMS of the mobility of the bead in a given interval of time is obtained

by applying a Gaussian filter to
√
< R2

t >. A Gaussian filter is a kind of moving average filter

and it can be used to reduce random noise while retaining a sharp step response and increasing the

signal-to-noise ratio (SNR). This step requires a choice of cutoff frequency. Basically, we want to

find a good frequency cutoff to reduce statistical fluctuations enough in the running average, so that

when a threshold is applied, we rarely mistake a fluctuation for a looping event. Different cutoff

frequencies result in different time resolution and signal-to-noise ratio. These two factors require a

compromise. Filtering with a low frequency cutoff makes higher signal-to-noise ratio and increases

the confidence in the discrimination between different states, but decreases the time resolution. On

the other hand, filtering with a high frequency cutoff maintains higher time resolution but makes

lower signal-to-noise ratio, resulting in increasing the number of false events. Understanding the

concept of the Gaussian filter will provide us useful insights into how to choose the cutoff. The
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Figure 3.7: Two methods of TPM data analysis to obtain the kinetic information. (a) Basic concept
of thresholding method. 1 Windowing data to reduce noise. 2 Setting up a threshold through
which transition events are identified and durations of such events are quantified. 3 Histogram of
all the durations and fit it to obtain the lifetime τ . (b) Basic concept of Diffusive-HMM method. 1
Choose an observable variable suitable for HMM application. 2 Set up probability distribution of
the observable variable ~ri at time i for each hidden state qi with unknown parameter: rate constants
ks. 3 Calculate the total probability of all possible trajectories. 4 Maximize the likelihood and
extract the unknown parameters: rate constants.
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Gaussian filter has a frequency response function defined as (Colquhoun and Sigworth 1995):

G(f) = exp(−0.3466
f2

f2
c

), (3.1)

where the constant 0.3466 is chosen to give 3dB of attenuation at the cutoff frequency fc. The

impulse response of the Gaussian filter in the time domain can be obtained through Inverse Fourier

transform of equation 3.1 and can be written in the same form as a Gaussian probability distribution:

g(t) =
1

(2π)1/2σg
exp

(
− t2

2σ2
g

)
(3.2)

where the standard deviation of the impulse is characterized by σg. It corresponds to the window

size of the filter with value inversely proportional to fc:

σg =
(ln 2)1/2

2πfc
. (3.3)

To see how this window size relates to the moving average, we have to understand how this filter

works in the time domain. As mentioned before, applying a filter to a signal s can also be obtained

by a convolution operation in the time domain and it can be expressed mathematically as:

y(i) = s ∗ g =
∑
j

g(j) · s(i− j),

where ∗ denotes the convolution operation and y(i) is the final convolution product. From the above

expression and considering g(j) being a Gaussian distribution, the number of points contributing

to the final convolution product for each point i is about σg, since Gaussian distribution is around

zero at other points. In another word, for any y(i), a Gaussian filter takes about a window size σg of

points with the ith point in the middle and ”blend” them all together according to the filter function

and generates an output at i. The bigger this window size, the more averaging effect, which results

in a better signal-to-noise ratio, but poorer time resolution.

Figure 3.8 illustrates the effect of different window size resulting in different signal-to-noise ra-

tio. The pink and green represent data filtered with cutoff frequencies 0.0326 and 0.1304 Hz, which

correspond to window size of 1 and 4 seconds, respectively. When the window size is small, filter-

ing is limited resulting in residual noise which is indistinguishable from the short looping events.

When the window size is big enough, the filtered data shows a clear discrimination between different
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Figure 3.8: Raw data and filtered data. Typical data set filtered at 0.0326 Hz (pink) and 0.1304
Hz (green) resulting in different signal-to-niose ratios. The blue dots represent the unfiltered data
before.

Figure 3.9: Typical two state data set filtered at 0.0326 Hz showing Brownian motion as function
of time. The red curve is a double Gaussian fit to the two peaks and the midpoint between them
is taken as the dividing line between the two states. The two-state’s system was observed in the
presence of both LacI and IPTG when the bead was tethered with 901 bp long DNA (Later on, no
such data can be repeated).
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states. The cutoff frequency of 0.0326 Hz is finally chosen to obtain not only a good signal-to-noise

ratio but also a reasonable time resolution. A typical data set is shown in figure 3.9. The next step is

to set a threshold and to determine when transitions between different states take place and to obtain

other quantitative parameters, such as rate constants.

3.3.0.4 The Threshold Detector

Figure 3.10: Transitions detected using thresholding methods. The green lines represents the states
the system is in. (a) The Gaussian filtered bead’s motion. (b) Transitions detected by single-
threshold method.

The threshold is a boundary between different states and is used to differentiate between dif-

ferent states. Every crossing of the threshold is interpreted as a transition between different states.

This method is the most widely used method for TPM data analysis (Finzi and Gelles 1995; Vanzi

et al. 2006). The threshold needs to be set high enough to avoid including a significant number of

spurious peaks caused by noise but low enough to capture as many true events as possible. In order

to find this critical threshold, a double Gaussian was fitted to the
√
< R2

t > distribution shown in

the right plot of Figure 3.9 and the middle point between the two Gaussian peaks is then taken as

the threshold. Figure 3.10 shows the transitions revealed by the thresholding method. Transitions
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detected in the region enclosed by the red circle remained uncertain, and it is hard to distinguish

short pulses from random noise fluctuations. That raises another question: What is the detection

limit for a given cutoff frequency and threshold?

3.3.0.5 Effect of Window Size

During the convolution process, points within the size σg will be averaged according to the the filter

function. In our case, it is a Gaussian distribution. Short pulses will be smeared due to this averaging

and will become indistinguishable from fluctuations. To find the shortest pulse after filtering can be

detected, we have to understand how a Gaussian filter responds to pulses of different width. First,

let us consider the response for a step function f(t) :

f(t) =


1 for t > 0,

0 for t < 0.

The response is given as a convolution product F (t) of the signal f(t) and the Gaussian filter

Figure 3.11: The step response of the Gaussian filter. The original step function is plotted using the
blue dashed curve and the filtered signal is given by the red curve.
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response g(t), and based on the definition of convolution, we have:

F (t) = f(t) ∗ g(t) =
∫ ∞
−∞

f(s)g(t− s)ds.

We then split the integral into two parts:

F (t) =
∫ t

−∞
g(s)f(t− s)ds+

∫ ∞
t

g(s)f(t− s)ds.

When s is greater than t, we have f(t − s) = 0. Only one part is left to contribute to the final

convolution product:

F (t) =
∫ t

−∞
g(s)f(t− s)ds.

Now plug in the expression for Gaussian response g(t) in equation 3.2 and f(t−s) = 1 when s < t,

and the result of this analysis is:

F (t) =
∫ t

−∞
1 · 1

(2π)1/2σg
exp

(
− s2

2σ2
g

)
ds

=
1

(2π)1/2σg

∫ 0

−∞
exp

(
− s2

2σ2
g

)
ds+

1
(2π)1/2σg

∫ t

0
exp

(
− s2

2σ2
g

)
ds.

The first term is half of the Gaussian integral and the second one can be written in terms of an error

function:

F (t) =
1
2

+
1
2

erf

(
t√
2σg

)
.

This is our final convolution product of the step response. This step response, important in time

domain applications, shows how quickly the filter responds to an abrupt change in the input signal,

which is illustrated as the red curve in figure 3.11. To represent the amount of averaging, a parameter

Tr is defined to correspond to the minimum length of a pulse to which the filter gives a nearly full-

amplitude response. One common definition for a risetime is the time between the 10 % and 90 %

amplitude points of the transition in the output of the filter, as indicated in figure 3.11. To find out

if a pulse after filtering can be detected, we have to know what the peak value of the output signal

is and then compare it to the threshold. Now consider a rectangular pulse b(t) of length w and unit
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amplitude:

b(t) =


1 for 0 6 t 6 w,

0 otherwise.

This rectangular signal b(t) can be written as a linear combination of the step function f(t):

b(t) = f(t)− f(t− w).

The distributivity property of convolution gives the pulse response B(t):

B(t) = F (t)− F (t− w)

Substituting the step response F (t) into the equation above, we get:

B(t) =
1
2

erf

(
t√
2σg

)
− 1

2
erf

(
t− w√

2σg

)
.

Next, we need to find the maximum of the pulse response B(t), which tells us the magnitude of the

peak of Gaussian filtered rectangular pulse. It is worthy noting that the function B(t) is symmetric

about t = w
2 , which is where the peak value should be located. Then the maximum of B(t) can be

simply obtained by using the value of B(w2 ):

Bmax = B(
w

2
)

= erf

(
w

2
√

2σg

)
. (3.4)

If σg is plugged in using equation 3.3, we have the relationship between peak value and cutoff

frequency:

Bmax = erf(2.668fcw). (3.5)

The risetime is then calculated as:

Tr = T10−90 = 23/2σgerf−1(0.8) = 0.3396/fc. (3.6)
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The expression of Tr shows how fast the filter responds to a step function for a given cutoff fre-

quency. Figure 3.12 demonstrates the relationship between filtered output and the input noise free

pulse width with the unit of Tr. The short pulses narrower than the dead time Td are missed alto-

gether, because they never reach the threshold after filtering. We can calculate the exact value of Td

by finding the pulse width that gives a half-amplitude response. According to equation 3.4, we have

erf
(

Td
23/2σg

)
= 0.5. (3.7)

If we solve equation 3.7, we find the dead time:

Td = 23/2erf−1(0.5)σg = 1.349σg. (3.8)

Using equation 3.6 and Equtation 3.3, we have the relationship between Td and Tr or fc:

Td = 0.538Tr = 0.179/fc.

Figure 3.12: Pulses with different width and their corresponding filtered output. (a) Original pulses
(in blue), the output of the filter (in red) and the half-amplitude threshold (in green). (b) Transitions
detected with duration measured.

Equation 3.8 illustrates that a wide window has a longer dead time, which would smear out

some genuine short-lived events and mistakenly lump them together and report them as false long

lived events. To see how the choice of window size affects our system, a few cutoff frequencies:

0.1304, 0.0652, 0.04346, 0.0326 and 0.0163 Hz are used, corresponding to the window size of 1,
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1.3, 2, 4 and 8 seconds. Figure 3.13 shows when the window size is small, the signal is noisier

and it is more likely to mistake the fluctuation as a transition resulting in lots of short-lived events.

When the window size is very big, the number of short-lived events is small due to the substantial

dead time of the filter. In conclusion, the thresholding methods described here require windowing

the data to smear out the fluctuations in the system, however, in the meantime, not only is the time

resolution limited, but also some true events get mistakenly destroyed or ignored. Therefore, the

rate constants obtained by histogramming the time distribution are seriously biased by the choice

of the filter size. Some further correction for missed and false events could be done based on the

properties of the Gaussian filter (Vanzi et al. 2006). However, it requires that we understand the

complete kinetics of the system very well. Unlike the simple looping and unlooping condition

shown in (Vanzi et al. 2006), our system is much more complex. It does not just have one looped

state, it contains two looped states. A simplified kinetic scheme is shown in figure 3.14. To simplify

the whole process, one of the two states in which only one LacI binds to one of the two binding

sites shown in (2) is considered and the other state shown in the shadow is ignored. To understand

this complex system is hard and to correct for missed and false events for this system is even more

challenging. Therefore, the thresholding method is not very reliable for analyzing our data to obtain

the unbiasedf rate constants.
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Figure 3.13: Looped and unlooped time distribution from data filtered with different cutoff frequen-
cies.
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Figure 3.14: Simplified kinetic scheme in the three-state-system. (0): The state in which No LacI
binds. (1): The state where LacI only binds to one of the two binding sites. The state in the shadow
is ignored for simplification. (2): Open-looped configuration where LacI is extended when binds
to the two binding sites at the same time. (3): Closed-looped configuration where LacI is in a V-
shape when binding to the two binding sites at the same time. (4): Two LacI present resulting in
occupancy of both binding sites.
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3.4 Diffusion-Hidden Markov Model Method

The Hidden Markov Model (HMM) is widely used in analyzing patch-clamp measurements of ion

channels. In a typical patch-clamp experiment, the opening and closing of the channel is directly

monitored by measuring the alternation between a higher and lower current signal flowing through

the patch. This gating behavior of ion channels can be modeled as a Markov chain, in which

each state of the model represents a physical conformation of the channel. Similar to ion channel

measurements, a typical TPM experiment gives the position of the tethered bead in time, as shown

in figure 3.2, which suggests the range of the diffusion alternates due to the conformational change

of the tether. We are therefore tempted to apply the HMM method to our data to obtain quantitative

information such as looping and unlooping rates. Compared to conventional thresholding method,

the HMM method does not require data to be windowed, which is an advantage in terms of temporal

resolution.

Figure 3.15: State transitions in a hidden Markov model. Circles represent the hidden states q in the
system, transitions among which are governed by a set of probabilities called transition probabilities.
In a particular state an observable output, presented as hexagons, can be generated, according to the
associated probability distribution P. It is only the output, not the state visible to an external observer
and therefore states are ”hidden” to the outside.
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Figure 3.16: A 2-state urn and ball model which illustrates the general case of a discrete symbol
HMM. Two steps are involved in finding the best Markov model that describes the behavior of the
system. (a) Specification of the general topology of the model including five basic elements: 1)
Number of hidden states. 2) The number of distinct observation symbols per state. 3) Output prob-
ability distribution. 4) State transition probability. 5) The initial state distribution. (b) Optimization
of Markov model parameters. Knowing the probability distribution of each observable output in
each hidden state and the transition probability containing the transition rates we are interested
in, the total probability of the observation can be calculated and then optimized to get the hidden
parameters of the model using maximum-likelihood techniques.
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3.4.1 Basic Concept of Hidden Markov Model

In the hidden Markov model, the state is not directly visible, but variables influenced by the state are

visible. Each state has a probability distribution over the possible observable outputs. Therefore the

sequence of outputs generated by an HMM gives some information about the sequence of states.

More precisely, standard HMM supposes that an observed signal reflects two processes (Rabiner

1989): a hidden process that generates a time series using variable qt according to a Markov process

with some transition probability distribution D(qt+1|qt), and an observed signal rt at each instant

t, which is drawn from a probability distribution P (rt|qt) as shown in figure 3.15. In a Markov

process, the value of the hidden variable qt+1 (at time t+1) only depends on the value of the hidden

variable qt (at time t). Similarly, the value of the observed variable rt only depends on the value of

the hidden variable qt (both at time t). Two steps are involved in finding the best Markov model that

describes the behavior of the system, which is illustrated in figure 3.16. First, the general topology

of the model must be specified with the number of states and the connectivity allowing transitions

among states. In the case of urn-and-ball model in figure 3.16 (a), two hidden states are urn No. 1

and urn No. 2 and the output variables are colored balls. The state transition probability is governed

by the matrix of transition rates, which are what we are interested in. The second step is the opti-

mization of Markov model parameters, as shown in figure 3.16 (b). Once we know the probability

distribution of each observable output in each hidden state and the transition matrix among different

states, the total probability of the observation can be calculated over all possible trajectories and

then optimized to get the hidden parameters of the model using maximum-likelihood techniques. In

the ion channel analysis, the hidden states could be the open or closed channel with different cur-

rent amplitude output as the observable. Channel opening and closing are random and the current

amplitude flowing through the channel only depends on which state the channel is in. These two

properties of the ion channel reach the standard qualifications of HMM application. We might be

tempted to apply it to our system. Let qt denote the state that our DNA tether is in and output ob-

servable rt =(xt, yt) to be the position of the bead. However, our TPM output is not a pure Markov

process as explained next. The ability to form a loop depends on where the bead is: for example,

if the bead is too far from the tethering point, then loop formation is forbidden until the bead has

diffused closer and bring the two binding sites closer to each other. This is against the assumption

made in standard HMM. Moreover, the bead location rt+1 at time t depends not only on the state qt

at time t, but also on the bead location rt at time t under the acquisition condition here, as explained
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in detail in the following section. Both of these reasons prevent applying HMM directly to our TPM

data, modification of the usual formulation is required.

3.4.1.1 Diffusion of a Tethered Particle

As mentioned above, the standard HMM requires that the output variable only depends on the

hidden state, not on anything else. When we try to apply HMM to our TPM data with the bead’s

position as observable output, we need to find out if it satisfies this criterion. The goal of this section

is to verify the second point made above that the bead’s location is coupled from one frame to the

next through the autocorrelation function of the bead position. The tethered particle can be thought

of as a particle in a harmonic well with spring constant keff. The motion of a tethered particle subject

to Brownian motion as well as viscous and the spring force due to the tethered DNA is governed by

a momentum balance. In one dimension, this can be expressed as:

m
d2x

dt2
= γ

dx

dt
+ keffx− f(t), (3.9)

where x(t) is the position of sphere center, γ is the drag coefficient and m is the mass of the tethered

bead. In our case, m = 6.2 × 10−23g, which is so small that we can ignore the acceleration term.

The simplified equation is:

γ
dx

dt
+ keffx = f(t) (3.10)

The condition

x(0) = 0. (3.11)

fixes the starting point for the trajectory. And the condition

dx

dt
= 0 at t = −∞

assures sufficient time to reach thermodynamic equilibrium by t=0 and therefore eliminates any

effect of the initial velocity.

To solve equation 3.10, multiply it on both sides by e
keff
γ
t, and organize in the way below:

d

dt

(
x · e

keff
γ
t
)

=
1
γ
e
keff
γ
t
f(t).
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Then integrate from −∞ to t to obtain the position of the bead at time t given by

x(t) =
1
γ

∫ t

−∞
e
− keff

γ
(t−s)

f(s)ds. (3.12)

Two assumptions are used here to characterize the Brownian force. First, these forces are taken to

be random both in direction and magnitude, and they are uncorrelated on the time scale of particle

motion. These conditions can be expressed mathematically through the ensemble average: for

random in directions and magnitude, we have

< f(t) >= 0.

The fact that Brownian force is uncorrected from time t to time t+ 1 can be expressed mathemati-

cally by

< f(t)f(t+ τ)) >= Fδ(τ), (3.13)

where F can be determined from the second assumption: at equilibrium, the kinetic energy is

partitioned equally among the three translational modes of the particle. From energy conservation,

we have:

1
2
keffx

2 =
1
2
kBT. (3.14)

Using the expression of x(t) in equation 3.12, the position autocorrelation function can be expressed

as:

R(τ) = < x(t)x(t+ τ) >

= <
1
γ

∫ t

−∞
e
− keff

γ
(t−s)

f(s)ds · 1
γ

∫ t+τ

−∞
e
− keff

γ
(t+τ−q)

f(q)dq >

=
1
γ2
e
− keff

γ
τ
<

∫ t

−∞
e
− keff

γ
(t−s)

f(s)ds ·
∫ t+τ

−∞
e
− keff

γ
(t−q)

f(q)dq >

=
1
γ2
e
− keff

γ
τ
<

∫ t

−∞
e
− keff

γ
(t−s)

f(s)ds ·
[∫ t

−∞
e
− keff

γ
(t−q)

f(q)dq +
∫ τ

0
e
− keff

γ
(t−q)

f(q)dq
]
> .
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According to equation 3.13, the above equation can be simplified as:

R(τ) =
1
γ2
e
− keff

γ
τ
∫ t

−∞
e
− keff

γ
2(t−s)

f(s)ds,

R(τ) =
F

2keffγ
e
− keff

γ
τ
. (3.15)

From equation 3.14 and equation 3.15, we can obtain F = 2kBTγ. The autocorrelation can be

written as:

R(τ) =
kBT

keff
e
− keff

γ
τ
.

The logarithm of the autocorrelation of positions from experimental data is shown in figure 3.17.

The spring constant keff and the drag coefficient γ can be extracted from the linear fit of the ex-

perimental data. We find keff = 2.8 × 10−4pN/nm, diffusion constant D = 3.0 × 105nm2/s and

the characteristic decay time constant τ = 50ms. The diffusion coefficient for the bead used here,

exhibiting free Brownian motion (i.e., no tethering effects) can be calculated as:

D0 =
kBT

6πηa
= 8.9× 105nm2/s,

where a is the radius of the bead and η is the fluid viscosity. This value is more than a factor of

four larger than the one obtained from experimental data. This discrepancy may be due to the fact

that the bead is very close to the surface when it is tethered by DNA. If we consider this effect,

according to Dufresne et al. (2000), the first-order-corrected diffusion coefficient near the wall Dw

can be written as:

Dw = (1− 9
16
a

h
)D0 = 4.9× 105nm2/s.

In the equation above, we use the DNA contour length as the distance h from particle to the wall,

which underestimates the wall effect and results in a larger Dw. By considering this wall effect, we

bring closer the diffusion constant estimated from the simple calculation above and the one extracted

from the experimental data.

The characteristic decay time τ obtained from fitting the experimental data supports the observation

that the Brownian motion of the tethered bead has an intrinsic time scale of 50 ms. This time scale

is slow compared with the sampling frequency (30 Hz), which prevents the direct implementation
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Figure 3.17: Autocorrelation of experimental positional data. (a) Autocorrelation showing expo-
nential decay. Green line: exponential fit. (b) Autocorrelation in logarithm. Red line represents the
linear fit from which the spring constant keff and drag coefficient γ are extracted.
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of the traditional hidden Markov model to TPM data.

3.4.2 Diffusive-HMM

Beausang. et al. developed a method, namely diffusive HMM, for analyzing TPM data (Beausang

et al. 2007). The goal of this method is trying to employ the concept of HMM and customize it for

TPM data, through which the rate constants are directly derived from the positional data obtained

in the TPM experiments. Based on standard HMM, we first have to choose an observable variable,

which is only dependent on the hidden state that the system is in. In the absence of LacI protein, the

Figure 3.18: Construction of probability distribution for the next position. (a) Histogram displace-
ments δx and δy at t+1 when the distance to anchor point is ρt. (b) Mean of δx and δy as function
of ρ and its corresponding second-order polynomial fit. (c) Standard deviations of δx and δy as
function of ρ and its corresponding first-order polynomial fit. Markers with different colors in plot
(b) and (c) represent different data sets.

bead executes tethered Brownian motion, and this motion is itself a Markov process, i.e., the beads

displacement δ~rt+1 depends only on ~rt , not on earlier positions. Therefore, this displacement could

be used as the observed variable in the HMM. The next step, as shown in figure 3.7, is to obtain the
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probability for a given point at time t to be in each state p(~rt, qt). To find the required modification

for applying HMM to our TPM data, we first need to get the probability distribution for the next

position p(~rt+1|~rt) for each state using the observed variable δ~rt+1. To avoid modeling the com-

plicated dynamical details of tethered particle Brownian motion near the surface, this information

for each state is extracted phenomenologically from the control experimental data. Such control

experiments carrying similar dynamical information of the beads, are performed in the following

ways: (i). To obtain the information for the unlooped state, the bead’s motion is observed in the

absence of the DNA looping protein LacI. (ii). For the looped state, we monitor the bead’s motion

in the presence of a LacI mutant V52C instead of LacI itself. This mutant is designed to permit

disulfide bond formation, which makes important contacts that are critical to DNA binding. As a

result, V52C has increased affinity for DNA operators (Falcon et al. 1997), leading to a measure-

ment of primarily looped states. Such data containing only one type of looped state are selected to

obtain the information that serves as input to the HMM model. An alternative way to obtain the

information for looped state is using a shorter tethered DNA which has similar effective tethered

length to the one when the loop forms. However, to obtain such similar effective tethered length

is tricky because the resolution in our motion-vs-length calibration data is poor. From data ob-

tained in the control experiments, we first calculate the displacements between two adjacent frames

throughout the entire time-series data, and then histogram δx and δy as function of distance from

the anchor point ρt, where ρt =
√
x2
t + y2

t . Figure 3.18 (a) shows that the probability distributions

for the next point ~rt+1 are both roughly 2D Gaussians centered around a point that depends on ~rt,

with widths σ reflecting the random excursions of Brownian motion between two adjacent frames.

Mathematically, it can be expressed as:

P (~rt+1|~rt) =
1√

2πσ2
δx(rt)

exp[−(δx − µδx(ρt))2/2σ2
δx(ρt)]×

1√
2πσ2

δy(ρt)
exp[−δ2

y/2σ
2
δy(ρt)],(3.16)

where µδx , σδx and σδy denote the mean displacement in the x direction, and the standard deviation

in the x and y directions, respectively. These three values are functions of r, which are shown in

figure 3.18 (b) and (c). The lines are from the polynomial fit to the control experimental data: the

red line represents the fitting for mean displacement in the x direction and black lines represent the

fitting for standard deviation of the displacement in either x or y directions. This expression above

gives the distribution of the next point location ~rt+1 given the current location ~rt. In order to incor-

porate the hidden state dependence, we construct a joint distribution function D(qt+1, ~rt+1|qt, ~rt),



69

the probability of observing (qt+1,rt+1) given (qt,rt) as follows. Let us first consider the simple two

state (i.e., looped and unlooped) system,

Unlooped
kon−⇀↽−
koff

Looped,

and let ”1” and ”2” denote the unlooped and looped states, respectively.

D(1, ~rt+1|1, ~rt) = (1− konT ) p1(~rt+1|~rt) if ρt+1 allows looping,

= p1(~rt+1|~rt) otherwise,

D(1, ~rt+1|2, ~rt) = (koffT ) p2(~rt+1|~rt) if ρt+1 allows looping,

= 0 otherwise,

D(2, ~rt+1|2, ~rt) = (1− koffT ) p2(~rt+1|~rt, )

D(2, ~rt+1|1, ~rt) = koffT p2(~rt+1|~rt),

where kon and koff are the loop-formation and loop-breakdown rate constants, and T is the time

interval between two adjacent frames. If the system is initially in the unlooped state (qt = 1) and ρt

is too large to permit loop formation, then at time t+1, the system must remain in the unlooped state

(qt+1 = 1). However, if qt = 1 and ρt is less than the maximum excursion observed for beads with

a permanently looped tether in the control experiments, then both final states are allowed. When

the initial state is looped, the state of the system at t+1 could be at either of the two states without

restriction on the location of the bead. To simplify the expressions with matrix notation, let the rows

denote the state at time t and columns denote the state at t+1:

D(qt+1, ~rt+1|qt, ~rt) =

 1− θ kon T θ kon T

koff T 1− koff T

 p1(~rt+1|~rt) 0

0 p2(~rt+1|~rt)


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, where θ =1 if looping is allowed and 0 otherwise. For a three state system, as illustrated in figure

3.14, we have:

D(qt+1, ~rt+1|qt, ~rt) =
1− θ1 k12 T − θ3 k13 T θ1 k12 T θ3 k13 T

k21 T 1− k21 T − θ2 k23 T θ2 k23 T

k31 T k32 T 1− k31 T − k32 T

 ,

×


p1 0 0

0 p2 0

0 0 p3


where θ1, θ2 and θ3 =1 if certain looping configurations are permitted, and zero otherwise. From

this expression, we can obtain the probability of the system being at each state at time t+1 if we

know the bead’s displacement from time t to t+1. So far, we achieve the second step of the HMM

application by following the above procedure, which is outlined in figure 3.7 (b). To obtain the total

probability for the observed sequence P (O) for the next step, the above calculation is repeated for

all pairs of points in the data and summed over all possible sets of the hidden states qt, which results

in:

P (O) = P (~rN , ~rN−1, · · · , ~rt, · · · , ~r1)

=
∑
{qi}

D(qN , ~rN |qN−1, ~rN−1)×D(qN−1, ~rN−1|qN−2, ~rN−2)×

· · · ×D(qt+1, ~rt+1|qt, ~rt)× · · · ×D(q2, ~r2|q1, ~r1).

In this expression, the rate constants k’s are unknown. The number of parameters depends on

the number of the states the system has. The rate constants can be determined by maximizing

P (O). The best single trajectory for the observed sequence can also be obtained once we have all

the parameters in the model. Figure 3.19 shows the transitions obtained with the DHMM method.

In plot(a), the detected transition is superposed on the Gaussian-filtered bead motion used in the

thresholding method. In a large number of cases the thresholding method appears to be as efficient

as the DHMM method at capturing transitions. However, narrow transitions are not captured by

the thresholding method because of window averaging, as explained in the previous section. Plot

(c) zooms to one of these narrow regions and clearly shows the different results resolved by these
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Figure 3.19: Transition detected using 3-state DHMM method. (a) Transitions detected (in
green) with Gaussian filtered

√
< R2 >4s motion superposed. (b) Corresponding histogram of√

< R2 >4s. (c) An enlarged plot showing the region circled in red in (a). Orange represents
the threshold value and pink arrows point at the corresponding positional data points in the pulse
regions.
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methods. To gain further insight about what happens during these short pulses, drift-free positional

data is inspected. In the bottom plot in (c), as the pink arrows point out, a few spikes take place

during that period, which demonstrates the higher temporal resolution of the DHMM compared to

threshold method.

3.4.2.1 Apply DHMM to TPM Data

Our measurements pose some additional challenges when we try to apply this method to our TPM

data. First, besides long term drift, which is effectively removed by filtering, the positional data

can be further corrupted by transient sticking events or transient erroneous tracking of position due

to free-floating particles. Dealing with these issues is a great challenge for data analysis. One

obvious solution is to remove points believed to be the corrupted. However, this creates another

bias by artificially merging two adjacent events, or omitting real events. To overcome this problem

we assign the corrupted points an equal probability of occupying each state; therefore, what might

be happening during the corrupted sequence is determined by the maximum likelihood technique.

The second broad challenge involves dealing with variability of the calculated rate constants across

beads. One possible solution is inspired by the conventional thresholding method. For each data set

from one bead, the best possible trajectory can be obtained from the DHMM method, and durations

for each state can be determined. We might be tempted to simply collect all the individual durations

for each state resolved by the DHMM method and obtain the time constant from the combined

histogram of all durations, as was done for the thresholding method. However, if we use such

parameters to the DHMM model, it might not result in the most likelihood rate constants for all

the trajectories. An alternative, more elegant solution is to obtain the rate constants by maximizing

the probability for entire data sets. The advantage of this approach over the previous one is that

ambiguous events in one bead might be resolved because of the additional information provided by

other beads.

We have described two different methods for extracting the rate constants describing the LacI-DNA

interaction. First, the conventional thresholding method uses an amplitude threshold to distinguish

the different looped and unlooped states. This approach requires window averaging of data to

boost signal-to-noise, which inevitably leads to loss of some information. Moreover, the final result

depends strongly on the window size. The second method, based on the Diffusive Hidden Markov

Model, does not rely on window averaging, thus temporal resolution is not sacrificed for the sake

of better signal-to-noise. Furthermore, it is easy to extend this method to a higher number of states
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system. For these reasons, we ultimately decide to exclusively employ the DHMM method in our

analysis.
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Chapter 4

Lac Repressor Concentration
Dependence of DNA Looping

4.1 Introduction

The biological significance of DNA is primarily attributed to its sequence information. On the other

hand, there are a wide range of processes for which DNA’s physical basis as a stiff polymer also mat-

ters (Garcia et al. 2007). For example, the packaging of DNA into nucleosomes appears to select for

sequence motifs that are particularly flexible (Segal et al. 2006; Cloutier and Widom 2004). In the

setting of transcriptional regulation, there are a host of regulatory architectures both in prokaryotes

and eukaryotes which require the interaction of sequences on the DNA which are not adjacent (Ad-

hya 1989; Schleif 1992; Matthews 1992). These interactions are mediated by DNA-binding proteins

which have to deform the DNA. Of late, it has become possible to perform genome-wide surveys

to determine the entirety of looped configurations induced by a given protein (Loh et al. 2006; Wei

et al. 2006). One of the most transparent examples of DNA looping is in bacteria where some repres-

sors and activators can bind at two sites simultaneously resulting in a DNA loop. This effect was first

elucidated in the context of the arabinose operon (Dunn et al. 1984). It is an amusing twist of his-

tory that the two regulatory motifs considered by Jacob and Monod, namely, the switch that makes

the decision between the lytic and lysogenic pathways after phage infection (Ptashne 2004) and the

decision making apparatus associated with lactose digestion in bacteria (Schleif 1992; Müller-Hill

1996), both involve DNA looping as well.

To understand the physical mechanism of the biological action at a distance revealed by DNA

looping it is necessary to bring both in vitro and in vivo experiments as well as theoretical analyses

to bear on this important problem. Over the last few decades there have been a series of impressive
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and beautiful experiments from many quarters that inspired our own work. In the in vivo context,

it is especially the work of Muller-Hill and coworkers that demonstrates the intriguing quantitative

implications of DNA looping for regulation (Muller et al. 1996). In their experiments, they tuned

the length of the DNA loop in one base pair increments and measured the resulting repression. More

recently, these experiments have been performed with mutant bacterial strains which were deficient

in architectural proteins such as HU (Becker et al. 2005). On the in vitro side, single molecule

experiments using the tethered-particle method have also contributed significantly (Finzi and Gelles

1995; van den Broek et al. 2006; Vanzi et al. 2006; Zurla et al. 2006). The idea of these experiments

is to tether a piece of DNA to a microscope cover slip with a bead attached to the end. The DNA

construct has the relevant binding sites (operators) for the protein of interest along the DNA and

when one of these proteins binds, it shortens the length of the tether. As a result of the shorter

tether, the Brownian motion of the bead is reduced. Hence, the size of the random excursions of the

bead serves as a reporter for the status of the DNA molecule (i.e., looped or unlooped, DNA-binding

protein present or not).

In addition to single-molecule studies, in vitro biochemical assays have also shed important light

on the interactions between transcription factors and their DNA targets. Both filter binding assays

and electrophoretic mobility shift assays have been widely used to study how variables dictating

DNA mechanics such as length and degree of supercoiling, alter the looping process (Krämer et al.

1987; Hsieh et al. 1987; Krämer et al. 1988; Whitson et al. 1987; Borowiec et al. 1987). One of

the missing links in the experimental elucidation of these problems is systematic, single-molecule

experiments which probe both the length and sequence dependence of DNA looping. Our view is

that such systematic experiments which complement the corresponding systematic in vivo studies

will help clarify the way in which both length and sequence contribute to the probability of DNA

looping. To that end, we have carried out experiments which probe the DNA looping process over

a range of concentrations of repressor protein and for a series of different loop lengths. In addition,

intrigued by the sequence preferences observed in nucleosomal DNA, we have made looping con-

structs in which these nucleosomal sequences are taken out of their natural eukaryotic context and

are inserted between the operators that serve as binding sites for the Lac repressor. The point of

this exercise is to see how the looping dynamics depends upon these tunable parameters, namely,

repressor concentration (Chapter 4), length (Chapter 5), and sequence (Chapter 6).
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4.2 Results

A typical experimental trace resulting from these experiments is shown in figure 4.1. As seen in

the figure, as with recent work from Gelles and co-workers (Wong et al. 2007), there are clearly

two distinct looped states as seen both in the trajectory and the histogram. Our working hypothe-

sis is that these two looped states correspond to two different configurations of the Lac repressor

molecule and its attendant DNA which we call the ”open” and ”closed” configurations. Control

experiments (figure 4.2) with one of the two binding sites removed show no looping events, which

further supports the idea that the two lower states are indeed looped configurations. Direct inter-

conversion between the two looped species suggested these two looped configurations are due to the

different conformations of Lac repressor protein (Wong et al. 2007) rather than two different DNA

topologies (Friedman et al. 1995; Mehta and Kahn 1999; Semsey et al. 2004).

In order to extract quantities such as the free energy of looping associated with repressor bind-

ing, we require looping data at a number of different concentrations. The experiments described

here use DNA constructs harboring two different operators, Oid and O1 as Lac repressor binding

sites and the inter-operator spacing is 306 bp, as shown in figure 4.3(a). Representative single-

molecule trajectories at each concentration tested here are presented in figure 4.3 (b). At very low

concentrations, we expect that there will be negligible looping. At intermediate concentrations, the

equilibrium situation will be dominated by states in which a single repressor molecule is bound

to the DNA at the strong operator, Oid, punctuated by transient looping events. In the very high

concentration limit, each operator will be occupied by a repressor making the formation of a loop

nearly impossible. This progression of qualitative behavior is revealed in figure 4.4 which shows

data from eight distinct concentrations of Lac repressor, as well as a single operator control in which

the DNA lacks a secondary operator for Lac repressor to bind to. These curves are generated by

summing the histograms from all of the individual trajectories for each concentration. One of the

intriguing features of this data is the way in which the two looped states are turned off as a function

of the concentration of Lac repressor is increased to very high levels. This phenomenon is expected

since the Lac repressor exists always as tetramers under the conditions used here (Levandoski et al.

1996; Barry and Matthews 1999) and competition for binding at the second operator between loose

Lac repressor and Lac repressor bound to the other operator is stronger as the concentration of Lac

repressor increases. However, the two different looped species have slightly different response at

high repressor concentrations. For example, at 1 nM concentrations, the intermediate looped state
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Figure 4.1: Different representations of TPM data. (a) Scatter plot of drift-corrected positional data.
Each dot corresponds to the instantaneous projected position of the bead at a given instant in time.
(b) Running average of RMS motion over 4s. R is the distance from the bead center (dots in panel
(a)) to the tether attachment point (centroid of all dots in panel (a)). Red and green lines represent
the expected motion, based on our calibration measurements (data not shown), for 901bp DNA and
the same DNA when 305 bp (the interoperator spacing) are subtracted off of the full length 901bp
tether. (c) RMS distribution. DNA used here is pUC305L1 with 100pM Lac repressor.
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Figure 4.2: Typical trajectories with mono-operator DNA. (a) Oid is removed. (b) O1 is removed.



79

Figure 4.3: Typical Brownian motion traces of the DNA tethered beads in the presence of different
concentrations of Lac repressor varying from 1pM to 100nM. DNA is 901bp in total length with
306bp inter-operator spacing.
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Table 4.1: Gaussian fit parameters in the Lac repressor concentration titration experiment. Bin size
is 2 nm. N is total number of beads.

[LacI] a1 b1 c1 a2 b2 c2 a3 b3 c3 N
1pM 0.067 145.72 7.05 0.056 168.44 7.51 0.030 197.15 7.96 13

10pM 0.079 144.80 7.03 0.059 167.20 8.55 0.0075 197.03 10.41 26
100pM 0.062 146.79 7.50 0.061 168.28 8.16 0.018 198.57 8.63 57
1nM 0.070 143.03 6.81 0.0170 165.22 8.21 0.061 196.96 8.35 12

10nM 0.040 142.64 6.25 0.0055 169.34 19.83 0.096 197.74 8.04 17
100nM 0.014 141.79 6.10 0.0042 178.65 19.38 0.12 197.15 8.31 16
200nM 0.020 141.23 6.27 0.0061 171.41 11.52 0.11 195.73 8.10 8

has become very infrequent while the shortest looped state remains competitive. No concentra-

tions below 1 pM are tested for technical reasons, such as non-specific adsorption of the surface

and tetramer dissociation into dimers. Similar concentration dependence on LacI mediated DNA

looping was studied before (Vanzi et al. 2006). However, only three concentrations, 4, 20 and 100

pM, were examined. Their result showed looping is suppressed as the concentration goes up, but

not when the concentration is very low.

As mentioned above, figure 4.4 is a result of summing all the trajectories of multiple DNA

molecules to gain a better statistic. If the system is ergodic, it should ideally be equivalent to

accumulation of a long trajectory of a single DNA molecule. We accumulated 1 hour or more

trajectories of 10 to 70 different beads for DNA molecules under the same condition. Figure 4.5

revealed the improvement of the statistic as the number of beads for accumulating goes up.

One way to characterize the looping probability as a function of concentration is shown in

figure 4.6. There are several different ways to obtain such a plot. First, by examining the trajectories,

we can simply compute the fraction of time that the DNA spends in each of the different states, with

the looping probability given by the ratio of the time spent in either of the looped states to the total

elapsed time (blue points in figure 4.6). A second way of obtaining this same quantity is to use

figure 4.4 and to compute the areas under the different peaks and to use the ratios of areas as a

measure of looping probability (brown points in figure 4.6).

These results can also be explored from a theoretical perspective using the tools of statistical

mechanics (Bintu et al. 2005b; Saiz and Vilar 2006a). The goal of such a model is to compute the

probability of the various microstates available to the repressor-DNA system as shown in figure 4.7.

The simplest model posits 5 distinct states (Wong et al. 2007; Finzi and Gelles 1995; Vanzi et al.

2006): both operators empty, Oid occupied by repressor without looping, O1 occupied by repressor
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Figure 4.4: Concentration dependence of looping probability. The histograms show the distribution
of RMS motions averaged over 4s at different concentrations of Lac repressor. Experimental data
are represented by diamonds (blue: di-operator DNA; red: mssssssssssssssssono-operator DNA)
and a fit to the data using a sum of three Gaussians is shown in green. The fit parameters are
displayed in table 4.1. The two gray dashed lines represent the expected motion, based on our
calibration measurements (data not shown), for 901 bp DNA and the same DNA when 306 bp (the
interoperator spacing) are subtracted off of the full length 901 bp tether. The short tether loop has
smaller motion than expected by simple subtraction of the inter-operator spacing, which is expected
due to the imperfect exiting angle of DNA from the loop structure. The bottom and top curves
show control experiments: bottom, no Lac repressor; top, no second operator. The widths of the
distributions for the two control experiments are slightly different. One possible explanation is that
there are two possible configurations for the DNA construct without the second operator, empty
or bound by Lac repressor. Crystal studies shows that a sharp bend in operators occurs upon Lac
repressor binding (Lewis et al. 1996), which would result in a slightly reduced effective tether
length.
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Figure 4.5: Averaging effect among the data set. Data obtained with pUC306L1 DNA in the pres-
ence of 10 pM Lac repressor.

without looping, Oid and O1 separately occupied by single repressors and the looped state (which

we treat in the simplest model as having only one looped configuration). The model does not take

into account of the effect of nonspecific binding of LacI to non-operator DNA. Such effect could be

negligible because the equilibrium association constant of LacI to non-operator DNA at conditions

similar to ours is around 104 M−1(Revzin and von Hippel 1977), which is around 7 magnitudes less

than specific binding. Given such association constant, the ratio between nonspecific bound LacI

and the free LacI in solution can be calculated as:

[RD]
[R]

= Knon
a × [D]

≈ 1.8× 10−5,

where [RD] is the concentration of non-specifly bound LacI, [R] is the ceoncentration of LacI in

solution, and [D] is the DNA concentration, which is around 2 pM in our experiment. For [R] = 200

nM, we have [RD] ≈ 3.6 pM, which is much less than the free LacI in solution.

The key parameters that show up in this model are the binding energies of repressor for the

two operators, ∆εid and ∆ε1, the looping free energy ∆Gloop and the concentration of repressor
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Figure 4.6: Looping probability at different concentration of Lac repressor. The DNA used in these
experiments is 901 bp long and the inter-operator spacing is 306 bp. The vertical axis gives looping
probability (fraction of time spent in either of the two looped states). The points were obtained
using two different methods: The blue points were obtained by calculating the fraction of time that
the system spends in one of the two looped states, using a transition detection algorithm based on
a Hidden Markov Model (HMM) (Beausang et al. 2007; Beausang and Nelson 2007). The yellow
points are derived from the histogram distribution by integrating the area under the two looped states
over total area. The red curve is a fit to the experimental data using the statistical mechanics model
described in the text.
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[R]. The binding energy here contains two components. One is the standard positional free energy

required for bringing one Lac repressor molecule to its DNA binding site at 1 M concentration of

Lac repressor. The other is the interaction free energy due to the physical contact upon protein bind-

ing (Saiz and Vilar 2006b). The associated free energy with each configuration gives the statistical

weights of the equilibrium probability (listed in the right column of figure 4.7). For example, to

obtain the probability of the looped state, we construct the ratio of state (v) in the figure to the sum

over all five states, as shown in equation 4.1:

Ploop =
[R] exp [−(∆εid + ∆ε1 + ∆Gloop)/kBT ]

Ztot
, (4.1)

where Ztot is the normalization factor (the partition function) obtained by summing over all the

states available to the system and given by

Ztot = 1 + [R] exp [−(∆εid)/kBT ] + [R] exp [−(∆ε1)/kBT ] (4.2)

+ [R] exp [−(∆εid + ∆ε1 + ∆Gloop)/kBT ] + [R]2 exp [−(∆εid + ∆ε1)/kBT ].

Using the data of figure 4.6, we can actually obtain the looping free energy, as well as the binding

energies by fitting the data to equation 4.1 with the result: ∆εid = −28.0±7.3 kBT , ∆ε1 = −21.3±

2.8 kBT and ∆Gloop = 19.5 ± 1.4 kBT . The two binding energies are in good agreement with

previous studies, where they measured either the equilibrium association or dissociation constant of

Lac repressor binding to symmetric operator sequence Oid or wild type operator O1. Conversion of

the results of previous studies into binding energies gives : ∆εid = −28.5±0.2 kBT in 200 mM KCl

(the same salt conditions used in our experiments) (Levandoski et al. 1996) and ∆ε1 = −24.8±0.1

kBT in 150 mM KCl (Zhang and Gottlieb 1993). Though similar in magnitude, our higher energy

for ∆ε1 likely arises because we used higher ionic strength conditions and higher ionic strength

increases the binding energy, i.e. binding is less favored.

Once the parameters that characterize the model are in hand, we can plot the probability of all

five possible states as a function of the Lac repressor concentration as shown in figure 4.8. What

this figure reveals is that at the concentrations we normally work, the system is dominated by the

looped state and the state with single occupancy of Oid. However, previous studies (Finzi and

Gelles 1995; Vanzi et al. 2006) have demonstrated that more than one species are dominated in the

unlooped states using a similar setup, where two identical operators O1 were used, and the inter-
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Figure 4.7: States and weights for the Lac repressor-DNA system (Bintu et al. 2005b). Each of the
five state classes shown in the left column has a corresponding statistical weight. All of the weights
have been normalized by the state in which the DNA is unoccupied. State (v) is treated as a single
looped state, even though there are multiple distinct looped configurations.
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Figure 4.8: Measured and computed probabilities for different states of Lac repressor and operator
DNA. The curves are all the results from the statistical mechanical model using parameters obtained
from the measured data points. Blue curve: the probability of empty DNA with no Lac repressor
bound. Red curve: the probability of the looped state. Green curve: the probability of the state
with two Lac repressor molecules bound, one associated with each of the operators. Pink curve: the
probability of the state where one Lac repressor is bound to the Oid site. Cyan curve: the probability
of the state where one Lac repressor is bound to the O1 site. The blue circles are the data points
for the probability of the looped state obtained using the Hidden Markov Model based transition
detection method (Beausang et al. 2007) and computing the fraction of the overall trajectory when
the DNA is looped, with no reference to which looped state. The orange squares show the fractional
equilibrium population obtained by calculating the area under the Gaussian curve in the looping
region in the histogram. The black dashed line indicates the Lac repressor concentration used in the
phasing experiments.
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Figure 4.9: Computed probabilities for different states of Lac repressor and operator DNA for DNA
with two identical operators O1. The curves are all the results from the statistical mechanical model
using parameters ∆ε1 and ∆Gloop obtained from our experiments. Blue curve: the probability of
empty DNA with no Lac repressor bound. Red curve: the probability of the looped state. Green
curve: the probability of the state with two Lac repressor molecules bound, one associated with
each of the operators. Pink curve: the probability of the state where one Lac repressor is bound to
the Oid site. Cyan curve: the probability of the state where one Lac repressor is bound to the O1
site. The black d lines indicate the Lac repressor concentration used in the previous experiments.

operator spacing is 21 bp less. In order to see if this little difference in the setup might lead to

such big variations, we plot the probability of each state for their system using the binding energy

∆ε1 = −21.3 ± 2.8 and ∆Gloop = 19.5 ± 1.4 kBT obtained from our model. As illustrated in

figure 4.9, when the [LacI] is 100pM (used by Vanzi et al. (2006)), there are three main species in

the unlooped state: two types of single LacI bound DNAs and empty DNAs. When the [LacI] is 1

nM (used by Finzi and Gelles (1995)), four species coexist in the unlooped state and they are: two

types of single LacI bound DNAs, empty DNAs and double-bound DNAs. The results revealed by

our model could explain the phenomenon observed in the previous work.
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4.3 Conclusions

Using tethered particle motion method, we are able to observe the Lac repressor concentration de-

pendence of DNA looping. Lac repressor is a tetramer capable of simultaneously binding to two

sites, thereby looping the intervening DNA. At very low concentrations, we expect that there will

be negligible looping. At intermediate concentrations, the equilibrium situation will be dominated

by states in which a single repressor molecule is bound to the DNA at the higher affinity operator,

Oid in our case, punctuated by transient looping events. In the very high concentration limit, both

operators will be occupied by a separate repressor, making the formation of a loop nearly impos-

sible. We observe this type of concentration dependence in our experiments, and find it to be in

quantitative agreement with a simple statistical mechanics model of looping probability. We were

able to calculate the free energy associated with looping, having first subtracted the contribution

of LacI-DNA binding, obtaining its first experimental measurement in a single molecule, in vitro,

setting. Further more, we obtained unambiguous experimental evidence for the existence of an ad-

ditional looped state, which is in agreement with theoretical predictions (Zhang et al. 2006; Swigon

et al. 2006; Geanacopoulos et al. 2001; Balaeff et al. 2006) and other recent experiments (Gelles et

al., unpublished). The two looped configurations are expected to be the consequence of two distinct

conformations of LacI, namely, the closed (V-shaped), and open form.
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Chapter 5

Length Dependence of DNA looping

In the last chapter we characterized the concentration dependence of DNA looping dynamics. Here

we study the effect of varying another parameter, DNA length. To make it possible to carry out a

thorough analysis of the interplay between theories of transcriptional regulation (and DNA looping)

and experiment, we have carried out a series of DNA looping experiments using the tethered-particle

method for lengths ranging from 300 to 310 bp in one bp increments. The experiments described

here use DNA constructs harboring two different operators, Oid and O1 as Lac repressor binding

sites.

5.1 Length Dependence: 1 bp Resolution for a Whole Helical Turn

The beautiful in vivo repression experiments of Muller et al. (1996) demonstrate that the length of

the DNA loop formed by Lac repressor strongly affects the probability of loop formation (especially

for loop lengths less than 150 bp). In particular, they (and others) have observed phasing in which

the relative orientations of the two operators changes the ease with which repressor can bind. Similar

phasing effects have been observed in in vitro cyclization assays (Cloutier and Widom 2004, 2005).

What has not been clear is how to concretely relate these seemingly disparate results on DNA

mechanics from the in vivo and in vitro settings. Our idea was to systematically examine the same

progression of DNA lengths that have been observed in vivo using TPM experiments. To that

end, we have measured TPM trajectories for a series of interoperator spacings measured in 1 bp

increments. Representative single-molecule trajectories at each inter-operater distance tested here

are presented in figure 5.1.

The results of this systematic series of measurements are shown in figure 5.2. Each plot shows

the probability of the three states for a particular interoperator spacing. What is particularly striking
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Figure 5.1: Typical Brownian motion traces of the DNA tethered beads with inter-operator spacing
from 300 to 310 bp in 1 bp increment. Lac repressor concentration is 100 pM.
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Table 5.1: Gaussian fit parameters in the phasing experiment. Bin size is 2 nm. N is total number
of beads.

Spacing a1 b1 c1 a2 b2 c2 a3 b3 c3 N
300 bp 0.046 149.54 6.46 0.048 162.70 12.12 0.026 197.48 9.45 47
301 bp 0.032 145.44 6.69 0.037 157.62 13.79 0.048 194.18 8.65 48
302 bp 0.043 146.89 9.39 0.020 161.03 15.74 0.047 194.25 8.61 31
303 bp 0.063 144.45 8.07 0.044 166.60 7.68 0.035 194.47 7.99 18
304 bp 0.076 148.38 9.17 0.034 167.12 7.92 0.018 194.17 9.24 63
305 bp 0.067 147.78 7.69 0.044 168.26 8.05 0.029 196.59 8.45 45
306 bp 0.062 146.79 7.50 0.061 168.28 8.16 0.018 198.55 8.66 57
307 bp 0.052 143.77 8.13 0.045 165.76 8.45 0.035 196.46 8.87 20
308 bp 0.057 140.01 8.23 0.033 160.45 9.47 0.037 194.53 9.40 23
309 bp 0.062 145.30 6.80 0.039 164.37 10.57 0.035 200.53 8.52 14
310 bp 0.027 146.50 5.79 0.033 158.57 15.01 0.050 199.89 9.53 19

about the data is that the intermediate looped state has a stronger dependence on the phasing than

does the shorter looped state.

To obtain the probability of the system being in each state, we can examine the trajectories and

detect any possible transitions between each state using DHMM (Beausang et al. 2007; Beausang

and Nelson 2007). We then simply compute the fraction of time that the DNA spends in each of

the different states, with the probability in one state is given by the ratio of the time spent in that

states to the total elapsed time. The results are listed in table 5.2. Figure 5.3 shows a series of

plots of the relative likelihood of the looped and unlooped states as a function of the DNA length

between the two operators. Our result on looping probability (the insert figure in Figure 5.3) shows

a periodic behavior with helical phasing. The maximum looping is achieved when two binding sites

are 306 bp apart suggesting that at this distance, the two sites are on the same side of DNA. i.e.,

in-phase. The ability to form stable out-of-phase (two binding sites are on the opposite side of the

DNA) loops with only a small reduction in stability is consistent with previous studies (Krämer

et al. 1987; Wong et al. 2007). The relatively stable looping through the entire helical repeat is also

consistent with relative constant repression level in vivo for similar inter-operator spacing (Muller

et al. 1996). Looping probability (the inset figure in Figure 5.3) can be converted into the looping

free energy based on the thermodynamic model described in chapter 4. One might expect when

two operators on the opposite sites of the DNA, more energy is required to make the DNA in good

registry in order for Lac repressor binding.

The shorter looped configuration turns out to be more robust than the middle one in terms of
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Figure 5.2: Histogram of the Brownian motion for DNAs with two Lac repressor binding sites
spaced from 300 to 310 bp. Experimental data are in blue diamonds and three-Gaussian fit is in
red. The fit parameters are displayed in tab. 5.1. The two gray dashed lines represent the expected
motion, based on our calibration measurements (data not shown), for 901 bp DNA and the same
DNA when 305 bp (the interoperator spacing) are subtracted off of the full length 901 bp tether.
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Figure 5.3: Total looping free energies with the corresponding looping probability for each of the
inter-operator spacings from 300 to 310 bp. A periodic behavior over the entire helical repeat is
observed for looping probability, and its maximum occurs at inter-opertor spacing of 306 bp.
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Table 5.2: Fraction of time spent in each state and the looping free energy. U: unlooped state. M:
long tether looped state. B: short tether looped state. Lac repressor concentration is 100 pM

Spacing U M B ∆Gloop (kBT )
300 bp 0.24 0.33 0.43 20.03 ± 0.12
301 bp 0.42 0.16 0.42 20.84 ± 0.12
302 bp 0.41 0.14 0.45 20.81± 0.12
303 bp 0.29 0.30 0.41 20.26 ± 0.16
304 bp 0.22 0.29 0.49 19.90 ± 0.11
305 bp 0.24 0.30 0.46 19.99 ± 0.12
306 bp 0.16 0.40 0.44 19.53 ± 0.13
307 bp 0.32 0.31 0.37 20.42 ± 0.20
308 bp 0.38 0.16 0.46 20.66 ± 0.17
309 bp 0.32 0.22 0.46 20.42± 0.19
310 bp 0.43 0.22 0.35 20.89 ± 0.19

responding to the twist effect. The relative stabilities of the two looped states are compared in Figure

5.4, where the ratio of time spent on each looped state and time in unlooped state is calculated. As

shown here, when it is in phase, two looped configurations have nearly equally probability. When

it is out of phase, the bottom looped state is dominant.

The two looped structures, as explained before, are suspected to be due to the two different

conformations of Lac repressor protein (Wong et al. 2007). However, the question of which looped

state corresponds to which conformations of Lac repressor is still unclear. Based on our experiments

of tuning both Lac repressor concentration and distance between binding sites, we see that the

middle looped state is more sensitive to both concentration and twist change. To gain more insight

into this problem, we examined the effective tether length upon loop formation. As illustrated in

Figure 5.5, the effective tether length of the unlooped state (blue line) is in good agreement with

the actual tether length (red line). For the looped state, the effective tether length of the bottom

looped state is close to the length one would expect when the DNA between the two binding sites

has been removed (Pink line), surprisingly however, the one for middle looped state is around 100

bp longer than the length represented by the pink line. It is hard to imagine what sort of looped

configuration will reduce the tether length by an increment smaller than the actual distance between

the two binding sites. Even if we consider the protein size, which is about 17.2 nm long when it is

in open conformation (Ruben and Roos 1997), it does not account for this 100 bp difference.
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Figure 5.4: Stability of the two looped states as a function of inter-operator spacing.

Figure 5.5: Effective tether length as a function of inter-operator spacing. Blue: unlooped state.
Green: middle state. Cyan: bottom state. Red: actual tether DNA length. Pink: DNA length
subtracts inter-operator spacing.
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5.2 Kinetic Analysis

Our thermodynamic model in chapter 4 demonstrates that at LacI concentration of 100 pM, which

is we used in this experiment, the unlooped state is only dominate by one specie (single bound

LacI at Oid). Under this condition, it is reasonable to assume our system is a three-state system,

i.e., unlooped state, short tethered looped state, long tethered loop state. We then apply three-state

DHMM (Beausang et al. 2007; Beausang and Nelson 2007) to extract the rate constants (listed

in table 5.3) and most likely trajectories. Figure 5.6(a) shows formation of one type of looped

configuration is more sensitive to phasing than the other one and when two operators are 306 bp

apart, looping is most likely to occur. Figure 5.6(b) displays the inter-conversion rate between two

looped states and shows loop conversion from long tethered loop state to short tethered loop state is

easier than the other way around.
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Figure 5.6: Rate constants as a function of inter-operator spacing. (a) Looping rates. (b) Inter-
conversion rates between two looped states. (c) Unlooping rates.
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Table 5.3: Rate constants. ”1” denotes the unlooped state, ”2” denotes the middle looped state and
”3” denotes the bottom looped state. ”kij” is the rate constant from state i to state j.

(bp) (10−3/s) (10−3/s) (10−3/s) (10−3/s) (10−3/s) (10−3/s)
Spacing k12 k12 low k12 high k13 k13 low k13 high

300 10.2412 0.6287 0.7880 16.1840 0.6981 0.9758
301 3.4270 0.3024 0.3571 7.5260 0.3708 0.4994
302 3.2154 0.3647 0.4190 8.2534 0.4851 0.6292
303 2.8115 0.4641 0.5172 8.9411 0.7504 0.9167
304 4.0633 0.4738 0.5520 14.6099 0.7600 1.0379
305 2.8659 0.3620 0.4120 9.6457 0.5913 0.7653
306 6.1641 0.4639 0.5740 23.4976 0.7464 1.1896
307 5.7658 0.6177 0.7260 14.9100 0.8925 1.1795
308 1.4481 0.2848 0.3091 4.0669 0.4087 0.4844
309 3.5038 0.5570 0.6197 6.2936 0.7137 0.8289
310 3.5675 0.4239 0.4857 6.6399 0.5334 0.6463

Spacing k23 k23 low k23 high k32 k32 low k32 high
300 26.7661 0.8235 1.2852 19.2905 0.5781 0.9144
301 34.8989 1.3365 1.9508 14.6422 0.5591 0.8180
302 30.5626 1.6879 2.2266 10.5507 0.6040 0.7782
303 5.1984 0.6034 0.7058 4.1944 0.4680 0.5415
304 10.8594 0.6384 0.8300 6.3154 0.3896 0.4904
305 7.2086 0.4843 0.6081 5.1586 0.3323 0.4271
306 4.8728 0.2557 0.3446 4.7786 0.2350 0.3201
307 5.3517 0.6543 0.7493 4.0464 0.5107 0.5785
308 18.0152 1.3277 1.6547 6.9280 0.5045 0.6312
309 15.7047 1.3449 1.6321 8.2158 0.7007 0.8473
310 22.1994 1.5958 1.9873 11.8713 0.8446 1.0413

Spacing k21 k21 low k21 high k31 k31 low k31 high
300 8.8315 0.5084 0.6457 8.6915 0.3947 0.5317
301 8.1579 0.7172 0.8402 7.7957 0.3758 0.5081
302 8.8724 1.0078 1.1393 7.7828 0.4498 0.5933
303 3.3829 0.4882 0.5481 6.0632 0.5229 0.6360
304 2.7096 0.3519 0.3937 6.6328 0.3453 0.4689
305 2.7370 0.3089 0.3565 4.5805 0.2986 0.3806
306 3.1763 0.2168 0.2694 8.7296 0.2882 0.4464
307 6.1880 0.6731 0.7814 12.7686 0.7621 1.0034
308 3.7811 0.6552 0.7173 3.1261 0.3272 0.3835
309 5.0592 0.7725 0.8714 4.4649 0.5040 0.5860
310 7.5472 0.9245 1.0532 7.9434 0.6262 0.7607
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Chapter 6

Sequence Dependence of DNA Looping

Complexes of DNA and associated DNA-binding proteins are central to the mechanisms of tran-

scriptional regulation in all organisms. Interestingly, the mechanical properties of DNA can play a

critical role in dictating how such complexes are formed and on what time scale. One prime exam-

ple is DNA looping in the context of transcriptional regulation. Recently, there has been a flurry

of activity aimed at determining whether or not the short-length scale (i.e., smaller than the per-

sistence length) mechanical properties of DNA are different than demanded by the wormlike chain

model. To explore the connection between looping, transcriptional regulation and DNA mechanics,

we have carried out measurements and calculations of the looping of short (<100 bp) DNA frag-

ments in the lac operon. In this case, the Lac repressor molecule binds at two sites on the DNA

and loops the intervening DNA. Using single-molecule techniques (tethered-particle motion) we

have considered several different sequences with loop lengths less than 100 bp and find that these

constructs are easily looped by Lac repressor and spend a much larger fraction of their time in the

looped state than would be expected on the basis of the wormlike chain-type models of DNA elas-

ticity. In particular, we find that no auxiliary DNA-bending proteins, nor supercoiling, are required

to assist loop formation. In addition, we show that special nucleosome sequences that are thought

to be highly bendable, loop more easily than random sequences of the same length when they are

placed between the Lac repressor operators.

6.1 Introduction

There has been a surge of recent interest from many quarters concerning the length- and sequence-

dependence of DNA mechanics and how it affects the ways in which organisms manage their

genomes during DNA packing, repair and regulation. From a biological perspective, the mechan-
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ics of DNA is one of the factors that governs the mechanism whereby complexes of transcription

factors assemble on DNA and on what time scales. Indeed, assembly of complexes of activators,

repressors and other helper molecules on DNA is one of the primary ways that cells “decide” when,

where and how much to express specific genes.

DNA mechanics arises in a diverse array of important biological problems such as the loop-

ing of DNA in transcriptional regulation and the packing of DNA into nucleosomes (Garcia et al.

2007). One of the time-honored ideas in the physics of DNA is that of the persistence length. The

persistence length is the length scale over which DNA is mechanically stiff and is roughly 150 bp

in length (Rivetti et al. 1996). Stated differently, for DNA fragments shorter than 150 bp, there is a

large energetic cost associated with bending the DNA. To the extent that this physical picture is cor-

rect, it raises interesting biological questions about how DNA-binding proteins such as transcription

factors and repair enzymes are able to bring regions on the DNA with small genomic distances into

close physical proximity.

Many biological processes involve bending DNA precisely at these short scales. For example,

DNA looping by transcription factors in the lac operon involves loop formation with a loop length

of 92 bp (Schleif 1992; Müller-Hill 1996). Similarly, the macromolecular assembly associated with

packing DNA in the eukaryotic nucleus, the nucleosome, involves bending 147 bp 13
4 times around

an octamer of proteins known as the histone octamer. In both of these cases, the typical sizes of

the resulting structures are sufficiently small that the conventional view of DNA elasticity holds

that there is a high elastic energy cost associated with their formation. In this chapter we unite

two seemingly disparate biological problems as seen through the prism of their similar physical

features. In particular, we use DNA looping in the lac operon as a window onto the mechanics

of short DNA fragments of different sequences. Single-molecule biophysics makes it possible to

perform systematic and controlled studies of the response of short DNAs which are induced to loop

by DNA-binding proteins such as the Lac repressor used here (Yin et al. 1994; Tolic-Norrelykke

et al. 2004b; Blumberg et al. 2005; Pouget et al. 2004; Segall et al. 2006b; Nelson et al. 2006a;

Zurla et al. 2006; Broek et al. 2006; Zurla et al. 2007).

The idea of the experiment is that a single molecule of DNA is anchored to a microscope cover

slip with a large (i.e.,≈0.25 µm) bead attached to the opposite end. The bead serves as a reporter of

the dynamics of the underlying DNA molecule. In particular, when the DNA is looped through the

binding of the DNA-binding protein, the tether length is reduced and the excursion of the bead is

correspondingly reduced. By examining the trajectories of the bead over extended periods (i.e., >
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1000 s), it is possible to monitor the dynamics of the looping process. The goal of our experiments

was to examine two intriguing questions concerning the interplay between the formation of repres-

sion complexes and DNA mechanics: (i) are short DNA fragments more easily bent than expected

on the basis of conventional wormlike chain-type models of DNA elasticity physics and does this

aid in the formation of repression complexes and (ii) does DNA sequence strongly influence the

likelihood of DNA looping, e.g., by reducing the mechanical stiffness of the DNA molecule? The

answers to these questions matter both physically and biologically. For example, though there is

a growing understanding of the combinatorial logic of cis-regulatory regions in transcription, the

mechanisms by which transcription factors bind and bend DNA to form regulatory complexes re-

main largely unknown.

From a physical perspective, recent work on both experimental and theoretical fronts has sug-

gested that short DNA is more flexible than expected on the basis of the wormlike chain model

(Cloutier and Widom 2004; Yan and Marko 2004; Cloutier and Widom 2005; Yan et al. 2005; Wig-

gins and Nelson 2006; Shroff et al. 2005; Wiggins et al. 2006). From a biological perspective, the

question of mechanical stiffness of DNA arises from studies of nucleosomes which demonstrate se-

quence preferences for which parts of a given DNA molecule will wrap around the histone octamer.

Further, in vitro cyclization measurements (Cloutier and Widom 2004, 2005), in vitro nucleosome

assembly experiments and systematic studies of sequence preferences in nucleosomes in yeast and

other organisms suggest that these preferences are a reflection of the enhanced bendability of cer-

tain special sequences. Nevertheless, some of these ideas remain controversial, in part because of

experimental complexities inherent to cyclization measurements. The aim of our experiments and

associated calculations is to employ a completely different approach from those used so far (in par-

ticular, a single-molecule experiment) to tackle the question of the short-length scale mechanical

properties of DNA and how they relate to protein-DNA complexes.

In this chapter we employ the tethered particle motion technique to systematically explore the

differences between the mechanical properties of nucleosomal and random DNAs. We also show

that Lac repressor can loop 92 bp worth of DNA from the wild type lac operon without any other

proteins involved (e.g., without the assistance of CAP or another DNA-bending protein). We then

demonstrate that nucleosomal DNAs are even more readily looped than their random counterparts.
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6.2 Results

6.2.1 Formation of the Wild-type Loop

There are three binding sites for Lac repressor in the wild type lac operon: O1, O2 and O3. These

three binding sites give rise to two different loops that are relevant for transcriptional regulation, both

of them including O1. Operators O1 and O2 are separated by 401 bp whereas the operators O1 and

O3 are only separated by 92 bp (Müller-Hill 1996), much shorter than the DNA persistence length.

As part of the suite of experiments we have done to probe the length- and sequence-dependence of

DNA mechanics, we have examined looping of DNA by Lac repressor for the wild-type interopera-

tor spacing of 92 bp. Our rationale for examining this case was to see if in vitro looping experiments

might shed some light on the question of whether the maximum in looping probability observed

in in vivo studies (i.e., < 80 bp) is surprising or not. It has been speculated, for example, that the

ability to form short-length loops in vivo is dependent on the presence of accessory proteins or su-

percoiling (Garcia et al. 2007). The results of our TPM experiments on the wild-type interoperator

spacing are shown in figure 6.1. In particular, figure 6.1(a) shows several TPM trajectories for

this construct in the presence of Lac repressor. This figure reveals trajectories characterized by a

number of transitions between the unlooped and looped states. Several controls were run as part of

an attempt to make sure that these putative looping states are indeed due to looping. For example,

figure 6.1(b) shows the results of a no-protein control in which the excursions of the bead were

monitored in the absence of Lac repressor protein. A second reassuring control involves the inducer

IPTG which has the effect of significantly reducing the affinity of Lac repressor for DNA as shown

in figure 6.1(c).

To probe the meaning of these results, it is important to extract their quantitative implications.

Fig. 6.2 shows a histogram from the result of many trajectories with the wild-type interoperator

spacing. By fitting this histogram to two Gaussians corresponding to the excursions of the bead

when in the looped and unlooped states, it is possible to reckon the looping probability itself, and

from that, the looping energy. The basis of the calculation of the looping free energy is to use a

statistical mechanics model in which the various allowed states of the system are each assigned

their appropriate Boltzmann weight. These weights involve binding energies and, for the looped

state, the looping free energy as well.
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Figure 6.1: Typical TPM recording for wild type interoperator spacing found in the lac operon.
(a) In the presence of Lac repressor, looping occurs as indicated both by the trajectories and the
histograms. (b) Control experiment in which there is no Lac repressor present. (c) Control experi-
ment using both IPTG and Lac repressor. The red lines correspond to the expected excursions for
the unlooped state and the green line corresponds to the “expected” excursion for a DNA fragment
from which the DNA fragment between the two operators has been removed. The DNA construct
is 351 bp in length with wild type inter-operator DNA between binding sites Oid and O1.
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Figure 6.2: Histogram of Brownian motion distribution for wild-type interoperator spacing. The
histogram is fit to a sum of two Gaussians. The looping free energy can be calculated based on the
thermodynamic model.

6.2.2 Sequence Dependence

There is evidence from many different fronts that DNA sequence plays a key role in determining the

stability of nucleosomes. The favorability of some sequences relative to others has been ascribed

to the fact that the more favorable sequences are elastically softer, making the energy cost to bend

the DNA around the histone octamer less severe (Cloutier and Widom 2004). To test the flexibility

of such sequences in a totally different context, we have taken nucleosomal positioning sequences

and installed them in the lac operon, i.e. between the two operator sites. Our reasoning was that if

these special sequences are more easily bent, this should be revealed by looping of these sequences

by the Lac repressor.

The random sequences E8 and nucleosomal positioning sequences TA used here are the same

in both sequence and length as those used in previous DNA cyclization experiments (Cloutier and

Widom 2004, 2005). In the cyclization experiment, the J factor was measured for DNA with length

varying from 89 bp to 105 bp. These results showed 94 bp gives the local optimal length for both

random and special sequences. In addition, 89 bp and 100 bp corresponds to the local minimum in

the cyclization free energy. As a result, we postulated that when such DNAs are inserted between

the two binding sites for Lac repressor, the two operators are either in-phase (94 bp) or out-of-phase
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Figure 6.3: Typical TPM recordings for different sequences and different lengths. The sequences
labeled E8 are random sequences and those labeled TA are nucleosomal positioning sequences. The
integer after the label refers to the length of the fragment between the two binding sites. For each
sequence and length, two recordings are shown.

(89 bp, 100 bp). An example of the kind of data that we have collected for a random and nucleosomal

sequence for several different interoperator spacings is shown in figure 6.3. As is clear both from

the trajectories and the histograms, the TA sequence (i.e., the nucleosomal sequence) loops more

easily, at least for the case when the binding sites are in-phase,

A second way to examine the character of these short DNA loops is to compare the histograms

from the different lengths and sequences as shown in figure 6.4. The three sets of histograms

correspond to three different interoperator spacings which permit an exploration of the phasing

effect as the operators go in an out of helical registry. Interestingly, the 94 bp loop reveals that the

nucleosomal positioning sequences are much more inclined to loop than random sequences of the

same length. Another interesting observation that results from this figure is that the favored loop

state is different depending upon the phasing. The presence of two different looped configurations

jibes with earlier experiments. Two different looped configurations induced by Lac repressor have

been observed in TPM experiments like those described here (Wong et al. 2007; Han et al. 2007).
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Further, multiple looped configurations have been argued to arise as the consequence of the large

scale conformational change of the Lac repressor protein, i.e., V shaped to Extended form (Ruben

and Roos 1997).

6.2.3 Theoretical Analysis

Both the observed length and sequence dependence of the formation of a repression complex are

intriguing from the perspective of DNA mechanics. To better understand these results, we have

appealed to two classes of models: i) statistical mechanics models of the probability of DNA-

repressor complexes which depend upon the looping free energy and ii) Monte Carlo simulations

of the TPM experiment itself which include the energetics of the bent DNA and excluded volume

interactions of the bead with the cover slip. The statistical mechanics models are described briefly

in the Supplementary Material and have been worked out in detail elsewhere. The exciting outcome

of these models in conjunction with the experimental results presented here is that they permit a

direct calculation of the length and sequence dependence of the looping free energies.

The looping free energy difference, ∆∆Gloop, for a 94 bp loop between a random sequence

and a nucleosomal positioning sequence is comparable to that found in cyclization experiments

(Cloutier and Widom 2004, 2005) (table 6.1). The decrease of this quantity by 1 kBT compared to

the cyclization results can be attributed to the size of the protein bridge (Douarche and Cocco 2005).

Additionally, the magnitude of the motion upon looping corresponds to the effective tether length.

This suggests that the favored in-phase loop is a closed loop where the Lac repressor protein adopts

a V-shape.

When half a helical repeat is added to the system, the difference in looping energy between

the two sequences becomes much smaller than the difference found in cyclization experiments.

Given the same loop geometry as in the in-phase case a similar difference between the two se-

quences would be expected. However, this does not have to hold true if there is a different favored

configuration. Both figure 6.4 and figure 6.3 clearly show that the favored out-of-phase looped

configuration is different from the in-phase looped configuration. Together with the implication that

random sequence and nucleosomal sequence have similar twist flexibilities (Cloutier and Widom

2005), it suggests that bendability does not play a significant role in the favored out-phase loop.

We then conclude that this favored loop is induced by an extended conformation of Lac repressor

where DNA is much less bent than the one induced by V-shaped Lac repressor. Although favored

looped configurations are dependent on phasing, the unfavored type of looped configurations is also
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Figure 6.4: Histogram of Brownian motion distribution of different sequences, as well as when
binding sites are in and out of phase. Grey dash lines are expected motion from calibration data.

occasionally observed. The nucleosomal positioning sequence DNAs spend relatively more time on

the unfavored looped state than the random sequence when it is out of phase. On the other side,

the random sequence DNAs spend relatively more time on the unfavored looped state when it is in

phase. This result suggests the flexibility of Lac repressor protein turn to adopt the low-energy cost

looped structure by a large conformational change.

One of the puzzles that has so far been unresolved concerning DNA mechanics at these short

scales is whether or not in vivo and in vitro experiments tell a different story. In particular, in

vivo DNA mechanics experiments in which repression of a given gene is measured as a function of

the interoperator spacing (Muller et al. 1996; Becker et al. 2005) have the provocative feature that

the maximum in repression (corresponding to the minimum in looping free energy) correspond to

interoperator spacings that are shorter than the persistence length. Some speculate that this in vivo

behavior results from the binding of helper proteins such as the architectural protein HU (Becker
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et al. 2005; Garcia et al. 2007) or the control of DNA topology through the accumulation of twist.

In the TPM measurements reported here, there are neither architectural proteins nor proteins that

control the twist of the DNA. As a result, these experimental results serve as a jumping off point

for a quantitative investigation of whether DNA at length scales shorter than the persistence length

behaves more flexibly than expected on the basis of the wormlike chain model. To address this

question, we performed a series of simulations of the probability of DNA looping for short, tethered

DNAs like those described here using a variant of the wormlike chain model to investigate the

looping probability.

The fraction of time spent in the looped configuration is controlled by several competing effects.

For example, suppose that a repressor tetramer is bound to the stronger operator,Oid. Shortening the

interoperator spacing reduces the volume over which the other operator(O1) wanders relative to the

second binding site on the repressor, increases the apparent local ”concentration” of free operator in

the neighborhood of that binding site, and hence enhances looping. But decreasing the interoperator

spacing also has the opposite effect of discouraging looping, due to the larger elastic energy cost

of forming a shorter loop. Moreover, a shorter overall DNA construct increases the entropic force

exerted by bead–wall avoidance, again discouraging looping (Segall et al. 2006b). To see what our

measurement of this looping equilibrium tells us, we therefore needed to calculate in some detail the

expected local concentration of operator (the ”looping J factor”) based on a particular mathematical

model of DNA elasticity. We chose a harmonic-elasticity model (a generalization of the traditional

wormlike chain model), to see if it could adequately explain our results, or if, on the contrary, some

non-harmonic model (for example the one proposed in (Yan and Marko 2004; Wiggins et al. 2005))

might be indicated.

To perform the required calculation, we modified the Gaussian sampling method previously

used in (Segall et al. 2006b; Nelson et al. 2006a; Czapla et al. 2006). Our code generated many

simulated DNA chains, applied steric constraints (Segall et al. 2006b), and reported what fraction

of accepted chain/bead configurations had the two operator sites separated by 7 nm, the distance

between operator centers as .jpgn in PDB structure 1LBG (Lewis et al. 1996). The standard elastic

model as an isotropic rod is inadequate for the description of DNA loops only a few helical repeats

in length (see, for instance Czapla et al. (2006)), so we modified the elasticity to account for bend

anisotropy and bend–roll coupling. We did not account for sequence dependence, however, so we

can only make comparisons to our experimental results with random-sequence DNA. We adjusted

the overall magnitude of our DNA elasticity matrix to yield a value of overall persistence length
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ξ = 45 nm appropriate for our experiment’s buffer conditions (Strick et al. 1998). The chain

generation accounted for bead–wall, bead–chain, and wall–chain avoidance, but not chain–chain;

nor did we consider any interactions involving the repressor tetramer other than binding.

The result of the simulation was that the looping J factor for short loops was 0.015 times as

great for the constructs with interoperator spacing around 100 bp as for those with spacing around

300 bp; this ratio was about a hundred times smaller than the experimentally determined ratio of

J(100 bp)/J(300 bp) ≈ 1.7 at optimum helical phasing (Han et al. 2007).

We conclude that the hypotheses of harmonic elasticity, plus a rigid V-shaped protein coupler,

cannot explain our experimental results. One possible explanation, for which other support has

been growing, is the hypothesis of DNA elastic breakdown at high curvature (Yan and Marko 2004;

Wiggins et al. 2005). Alternatively, the LacI tetramer may spend an appreciable fraction of its time

in an alternate (”open”) conformation, where the operator binding sites are separated by more than

7 nm. To determine which of these mechanisms (or both) is at work would require a detailed un-

derstanding of the free energy change of LacI opening, or new experiments using a coupler known

to be inflexible. We note, however, that in our measurements we can often discern a separation of

the looped-state histogram peak into two distinct subpeaks, as we and others have already found

with longer interoperator spacings (Wong et al. 2007; Han et al. 2007). This preliminary obser-

vation suggests that both the ”open” and the ”closed” conformations are appreciably populated, in

contradiction with our theoretical calculation based on harmonic DNA elasticity.
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Table 6.1: Looping free energy. ∆∆Gloop is the looping free energy difference between nucleo-
somal positioning sequence and random sequence. Looping free energy ∆Gloop is calculated from
equation 6.1, where Ztot is the normalization factor (the partition function) and given by equa-
tion 6.3, binding energy ∆εid = −28.0 ± 7.3 kBT , ∆ε1 = −21.3 ± 2.8 kBT (Han et al. 2007).
The minimum between the two Gaussian peaks is chosen to be the threshold between unlooped and
unlooped states. Ploop is then calculated by dividing the area belonging to looped states by the total
area under the Gaussian curve. ”*” indicates the numbers are obtained from Widom’s experiments.

Molecule Looping free energy ∆Gloop kBT
Spacing (bp) 89 94 100

E8 21.69 20.45 20.83
TA 21.55 18.57 20.67

∆∆Gloop 0.15 1.90 0.16
∆∆Gloop∗ 2.30 2.99 1.97

Ploop =
[R] exp [−(∆εid + ∆ε1 + ∆Gloop)/kBT ]

Ztot
, (6.1)

Ztot = 1 + [R] exp [−(∆εid)/kBT ] + [R] exp [−(∆ε1)/kBT ] (6.2)

+ [R] exp [−(∆εid + ∆ε1 + ∆Gloop)/kBT ] + [R]2 exp [−(∆εid + ∆ε1)/kBT ].

Figure 6.5: Looping free energy as a function of inter-operator spacing. Distance between the two
binding sites is referred as inter-operator spacing rather than the operator center to center distance.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

The motivation for this thesis has been to systematically explore the role of sharply bent DNA in

gene regulation. We choose as our model system, Lac repressor (LacI)-mediated loop formation.

LacI is a widely studied protein found in Escherichia coli, although looping is a ubiquitous motif in

gene regulation. The workhorse of our experimental effort has been a single DNA molecule tracking

method called tethered particle motion (TPM), in which one end is attached to a glass coverslip and

the other to a polystyrene microsphere reporter particle. Brownian motion of the particle reveals the

underlying conformational changes of DNA. This technique is sensitive enough to detect nanometer-

scale displacement changes accompanying looping/unlooping events, which register as ”jumps” in

Brownian motion. By monitoring parameters such as the amplitude, frequency, and time interval of

these features one can survey a host of important information about looping kinetics.

The main accomplishments and conclusions of this work are summarized as follows.

(i) In our constant struggle against unwanted measurement noise, we have obtained a calibration

curve to optimize our ability to detect different sized loops. Contrary to what one might naively ex-

pect, the Brownian motion magnitude is not linearly proportional to DNA length. Thus by referring

to the calibration curve we can reliably translate between the looping-mediated jumps in observed

motion and corresponding change in effective tether length. Moreover, we have gone one step fur-

ther and repeated the calibration for a total of three different sized polystyrene beads. Ultimately

we used the intermediate (490 nm) beads, as these were a reasonable compromise between spatial

and temporal resolution.

(ii) LacI is a tetramer capable of simultaneously binding to two sites, thereby looping the in-

tervening DNA. At very low concentrations, we expect that there will be negligible looping. At
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intermediate concentrations, the equilibrium situation will be dominated by states in which a single

repressor molecule is bound to the DNA at the higher affinity operator, Oid in our case, punctuated

by transient looping events. In the very high concentration limit, both operators will be occupied

by a separate repressor, making the formation of a loop nearly impossible. We observe this type

of concentration dependence in our experiments, and find it to be in quantitative agreement with a

simple statistical mechanics model of looping probability. We were able to calculate the free energy

associated with looping, having first subtracted the contribution of LacI-DNA binding, obtaining its

first experimental measurement in a single molecule, in vitro, setting.

(iii) We carried out the first systematic and quantitative characterization of the free energy of

looping in a single molecule in vitro environment. The interoperator spacing was varied from 300

to 310 bp in 1 bp steps. Our results show that free energy is modulated by DNA’s helical structure,

and are consistent with analogous in vitro work on cyclization (Cloutier and Widom 2004, 2005),

and in vivo work on repression (Muller et al. 1996; Becker et al. 2005). In a striking departure from

classical elasticity theory, we find that the looping energy difference between the case of aligned

operators (i.e. they face the same side of the helical structure) and unaligned operators is quite

small.

(iv) DNA looping is usually considered to be a two step (i.e., ”on/off”) process. However, we

obtained unambiguous experimental evidence for the existence of an additional looped state, which

is in agreement with theoretical predictions (Zhang et al. 2006; Swigon et al. 2006; Geanacopoulos

et al. 2001; Balaeff et al. 2006) and other recent experiments (Wong et al. 2007), The two looped

configurations are expected to be the consequence of two distinct conformations of LacI, namely,

the closed (V-shaped), and open form.

(v) Certain DNA sequences are more flexible than others, directly supporting the increasing

amount of evidence that DNA elasticity is sequence-dependent. In particular, we confirmed that the

periodic presence of TA pairs in the minor groove of the nucleosome positioning sequence makes

this substantially softer than random sequences: we measured a difference of ≈2kBT in the free

energy of looping.

(vi) DNA in vitro spontaneously forms loops as short as 100 base pairs, mediated by LacI. This

value is remarkable for two reasons: first, it is only two thirds the peristence length of DNA, which

is almost forbidden by classical elasticity theory; second, it contradicts previous speculation that

such sized loops can only form in vivo with the aid of structural proteins or supercoiling properties.

This result allows us to hypothesize that either LacI can undergo large conformational changes to
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adopt different DNA topologies, or that our classical understanding of DNA elasticity breaks down

at length scales comparable to its persistence length.

7.2 Future Directions

I would like to close with my thoughts on what are the next important questions we can ask, after

having obtained some interesting results about Lac repressor mediated DNA looping. First, the LacI

looping system definitely deserves to be studied further. Our results have hit upon several fascinat-

ing effects that I would love to spend another five years of my life investigating (but I am generous

so I will leave the opportunity to others). I am especially curious about the two looped structures

we observed, the closed and open forms, and feel that it would be worth probing further. For in-

stance, one can imagine performing a mutation that will strengthen the interaction between the two

LacI dimers. This should lock the LacI into the V-shaped form. If this prediction is correct, then

we can further hypothesize that a TPM experiment will reveal only one looped state. Furthermore,

by systematically increasing the rigidity of LacI we can investigate the role of protein flexibility in

loop formation, particularly small loops comparable to the persistence length. Another possibility

for future research that follows up on what we have already done is to explore the effect of adding

structural proteins such as HU, IHF to the TPM measurement, and observing changes in looping

kinetics. It would also be interesting to consider supercoiled DNA in the context of looping. Fur-

thermore, we can measure looping in the presence of another popular protein, AraC, which only

forms loops with supercoiled DNA. A systematic study of these factors might help us gain a better

understanding of DNA mechanics in vivo.

Perhaps the ultimate mystery of looping lies in its operation in eukaryotic organisms. This would

involve studying a more complex set of interactions between DNA with multiple binding sites and

transcription factors. To give a sense of this complexity, consider that a 2000 bp DNA contains

more than 10 binding sites for a single protein that mediates looping (?). All sites do not need to

be occupied at the same time, and in fact gene expression is regulated by loop formation between a

particular pair of these sites. The sheer number of conformational states makes experiments on this

system a daunting challenge.
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Appendix A

Materials and Methods

A.1 Construction of Plasmids with Two LacI Binding Sites for Length

Dependence Measurements

DNA used in the looping project requires two Lac repressor (LacI) binding sites spaced a certain

distance apart. To do so, point mutations are applied using QuickChange site-direct mutagenesis

kits (Stratagene). The basic procedure utilizes a supercoiled dsDNA template plasmid with an

insert of interest and two synthetic oligonucleotide primers containing desired mutations. The two

primers, complementary to opposite strands of the vector plasmid, are extend in a PCR similar

reaction. The primers are designed in such way that mutations are located in the middle of the

primers and around 15bp complementary to the template plasmid at each side. Incorporation of the

primers generates a mutated plasmid containing stagered nicks. Then DpnI restriction reaction is

followed to digest the parent template DNA which is mentholated and select for mutation-containing

synthesized DNA. Plasmid pUC19 was chosen here as a starting template because it is not only a

high copy plasmid but also contains two LacI binding sites: O1 and O3. We first mutate a few

basepairs in the O3 site such that it will eliminate the binding affinity for this site. The resulting

plasmid is called pUC19O1 indicating it only has one single O1 site. To construct another binding

site on the pUC19O1 plasmid, we replace 20bp with the LacI binding sequence Oid at a series of

locations separated by 1bp with desired distance from O1 using the mutagenesis method again. For

some of the secondary site construction, we have to use either deletion or addtion from already

made plasmids with two designed binding sites. The details on primers and templates used in this

process are listed in figure A.2. The final product contains two binding sites O1 and Oid spaced at

designed distance. figure A.1 lists all the operator sequences involved in the experiments. Figure
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Table A.1: Operator sequences. O3∗ is the mutation fromO3, who doesn’t have any infinity to LacI.

Operator Sequence
Oid AATTGTGAGCGCTCACAATT
O1 AATTGTTATCCGCTCACAATT
O3 AATTGCGTTGCGCTCACTGCC
O3∗ AATTGCGTTGAGCTCGAGGTT

A.1 (a) illustrates the procedure for creating two binding sites separated by the desired spacing.

A.2 Construction of Plasmids with Two LacI Binding Sites for Se-

quence Dependence Measurements

Plasmid pZS22-YFP was kindly provided by Michael Elowitz. The main features of the pZ plasmids

are located between unique restriction sites (Lutz and Bujard 1997). The YFP gene comes from

plasmid pDH5 (University of Washington Yeast Resource Center (Rosenfeld et al. 2005)).

A variant of the lacUV5 promoter (Müller-Hill 1996) was created by annealing complimentary

oligos and placing the resulting molecule between the EcoRI and XhoI sites of pZS22-YFP in order

to create pZS25-YFP. This promoter included the -35 and -10 regions of the lacUV5 promoter, an

AseI site between the two signals and an O1 operator at position -45 as shown in figure A.2a.

Sequences E8-89 and TA-89 (Cloutier and Widom 2004, 2005) were obtained by PCR using

primers with a flanking AatII site and Oid operator upstream and with a flanking O1 operator, -35

region and AseI site downstream. A plasmid where any DNA sequence can be integrated between

a Oid and O1 operators was then created by replacing the AatII-AseI region of pZS25-YFP with

the PCR product as seen in figure A.2b. For the two 89 base pair sequences this gave raise to

pZS25.E89-YFP and pZS25.T89-YFP.

Finally, the different lengths used by Cloutier and Widom were generated from these templates

using site directed mutagenesis (Quikchange II, Stratagene).

A.3 Construction of Labeled DNAs

In TPM experiments, DNA is linked between the subtract and a bead. Two pairs of linkers: biotin-

streptavidin and digoxigenine-anti-digoxigenine, are chosen to permit specific linkage of the DNA
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Figure A.1: Synthesis of DNA construct. (a) The procedure of construction of the plasmid with two
LacI binding sites. (b) The basic idea of producing labeled DNA using PCR reaction.
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Figure A.2: Promoter regions of the different constructs. (a) Promoter region of pZS25-YFP which
has a variant of the lacUV5 promoter and an O1 operator upstream overlapping the -35 region. (b)
Final construct that allows to insert arbitrary DNA sequences between a Oid and O1 operators.

to a polystrene microsphere and glass coverslip, respectively. Polymerase Chain Reaction (PCR)

was used to amplify such labeled DNA with two modified primers. Each primer is designed to be

about 20bp in length and linked with either biotin or digoxigenine at 5’ end (MWG). To optimize the

PCR reaction, the linearized plasmids with Aat II cut are used as the templates. Detailed information

of PCR is listed in table A.3. The PCR products were then purified by gel extraction (QIAquick

Gel Extraction Kit, QIAGEN) and the concentration of the DNA were measured using quantitative

DNA electrophoresis. Construction of labeled DNA is shown in figure A.1 (b).

A.4 TPM Sample Preparation

TPM sample preparation involves the construction of the relevant DNA tethers with their associated

reporter beads. Streptavidin (Bangs lab) or neutravidin (Molecular Probes) coated microspheres of

diameter 200, 490 and 970 nm served as our tethered particle. In contrast to the 490 and 970 nm

microspheres, the 200 nm microspheres were fluorescent. Prior to the incubation with DNA, the

beads were sonicated for about 5 minutes to avoid agegation. Then a buffer exchange on the beads

was performed by three cycles of centrifugation and resuspension in TPB buffer. TPB consisted of

20 mM Tris-acetate, pH=8.0, 130 mM KCl, 4 mM MgCl2, 0.1 mM DTT, 0.1 mM EDTA, 20 µg/ml

acetylated BSA (Sigma-Aldrich), 80 µg/ml heparin(Sigma-Aldrich)) and 3 mg/ml casein (Sigma)

, filtered with 300 kD MWCO polysulfone membrane (Milipore). This combination of reagents
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Figure A.3: Illustration of TPM sample preparation. (a) Sketch of the flow cell. (b) Two schemes
of making DNA tethers.
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was chosen in an attempt to maximize sample yield and longevity, while minimizing non-specific

adsorption of DNA and microspheres onto the coverslip.

Tethered particle samples were created inside a 20-30 ul flow cell made out of a glass slide with

one hole near each end, glass coverslip, double-sided tape and tygon tubing. The coverslip and glass

slide were cleaned either with 4N HCl for 24 hours or with plasma cleaning for 5 minutes and then

the flow cell was constructed in a way shown in the figure A.3 (a). Two tygon tubings served as an

input and output were inserted into the holes on the glass slide and sealed with epoxy. A reaction

chamber was created by cutting a channel on the double sided tape, which glues the coverslide and

glassslide together. Making the end of the channel round and as close to the holes of the glass slide

as possible is important to avoid generating bubbles. The flow cell was then heated for about 20

seconds to seal securely.

We used two different schemes for DNA tether assembly. One requires to attach the bead to the

DNA first, then anchores into the glass substrate. The other one fixes the DNA on the glass slide

first, then attaches bead onto it. The experimental results showed there is no significant difference in

terms of tether dynamics. The whole procedure of this DNA tether assembly processes is shown in

the figure A.3 (b). First the flow chamber was incubated with 20 µg/mg polyclonal anti-digoxigenin

(Roche) in PBS buffer for about 25 minutes, and then rinsed with 400 µl wash buffer (TPB buffer

with no casein) followed by 400 µl of TPB buffer. For the first scheme, microsphere-DNA com-

plexes were created by incubating approximately 100 pM microspheres with 10 pM labeled DNA

in TPB buffer for at least an hour. The 10:1 ratio of beads to DNA was designed to minimize the

occurrence of multiple DNA strands attached to a single microsphere. The tethering procedure was

completed by introducing 50 µl of the microsphere-DNA complexes into the flow cell for four to

ten minutes. Additional tethering yield could be accomplished by another round of incubation with

fresh microsphere-DNA complexes. For the second scheme, 500 µl of labeled DNA in TPB buffer

with about 2pM concentration was flushed into the chamber and incubated for around 1 hour. Then

about 10 pM of beads was introduced into the chamber and incubate for 20 minutes after washing

with 750 µl TPB buffer to remove the unbound DNAs. Finally, for both schemes, unbound micro-

spheres were removed by flushing the chamber with 1 mL TPB buffer. Once microspheres were

introduced into the flow cell, tether integrity was improved by taking care to minimize flow rates

within the sample chamber.

For experiments that investigated the effect of KCl, TPB was replaced with 10 mM Tris-Hcl,

pH 7.4, 10 mM KCl, 0.1 mM EDTA, 0.2 mM DTT, 5% DMSO and 1 mg/mL casein. A smilar TPB
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Table A.2: Materials used in the mutagenesis process for creating plasmids with two LacI binding
sites. The capital letters in the primer sequences indicate the mutations. ’()’ indicates the deletion
and ’[ ]’ indicates addition.

Molecule Primer Template Action Resulting
pUC19O1 Mut0 pUC19 Replace pUC19 with O1 only
pUC300 Mut1 pUC19O1 Replace O1-300bp- Oid

pUC301 Mut2 pUC301 Delete 1bp O1-301bp- Oid

pUC302 Mut3 pUC19O1 Replace O1-302bp- Oid

pUC303 Mut4 pUC19O1 Replace O1-303bp- Oid

pUC304 Mut5 pUC19O1 Replace O1-304bp- Oid

pUC305 Mut6 pUC19O1 Replace O1-305bp- Oid

pUC306 Mut7 pUC19O1 Replace O1-306bp- Oid

pUC307 Mut8 pUC19O1 Replace O1-307bp- Oid

pUC308 Mut9 pUC19O1 Replace O1-308bp- Oid

pUC309 Mut10 pUC308 Add 1bp O1-309bp- Oid

pUC310 Mut11 pUC308 Add 2bp O1-310bp- Oid

pUC71 Mut12 pUC19O1 Replace O1-71bp- Oid

Primer sequences(5’− >3’):
Mut0:ctaactcacattaattgcgttg AgctcGAGgTT cgctttccagtc Mut1: catacgagccggaa (G) cataaagtgtaaagc
Mut2: ctcggaaagaaca AATTGTGAGCGCTCACAATT aaggccaggaacc
Mut3: ctcggaaagaacat AATTGTGAGCGCTCACAATT aggccaggaaccg
Mut4: cggaaagaacatg AATTGTGAGCGCTCACAATT ggccaggaaccgt
Mut5: ggaaagaacatgt AATTGTGAGCGCTCACAATT gccaggaaccgta
Mut6: gaaagaacatgtg AATTGTGAGCGCTCACAATT ccaggaaccgtaa
Mut7: cggaaagaacatgtga AATTGTGAGCGCTCACAATT caggaaccgtaaaaag
Mut8: ggaaagaacatgtgag AATTGTGAGCGCTCACAATT aggaaccgtaaaaagg
Mut9: gaaagaacatgtgagc AATTGTGAGCGCTCACAATT ggaaccgtaaaaaggc
Mut10: catacgagccggaag [C] cataaagtgtaaagc
Mut11: catacgagccggaag [CG] cataaagtgtaaagc
Mut12: ctaactcacattaattg TgAG(G)cgctcacAATT cgctttccagtc

buffer was used to make sample for our Mg2+ dependence experiments, except the KCl concentra-

tion was 200 mM KCl. The experiment on exploring how the exposure time of the camera affects

the magnitude of the tethered particle motion, samples were made identically to the calibration

samples.
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Table A.3: Materials used in amplifying labeled DNA for looping project using PCR.
For Looping Project: Length Dependence:

Molecule Template Length(bp) Resulting
pUC300L1 pUC300 900 Dig - 427bp-O1-300bp- Oid-132bp - Bio
pUC301L1 pUC301 901 Dig - 427bp-O1-301bp- Oid-132bp - Bio
pUC302L1 pUC302 901 Dig - 427bp-O1-302bp- Oid-131bp - Bio
pUC303L1 pUC303 901 Dig - 427bp-O1-303bp- Oid-130bp - Bio
pUC304L1 pUC304 901 Dig - 427bp-O1-304bp- Oid-129bp - Bio
pUC305L1 pUC305 901 Dig - 427bp-O1-305bp- Oid-128bp - Bio
pUC306L1 pUC306 901 Dig - 427bp-O1-306bp- Oid-127bp - Bio
pUC307L1 pUC307 901 Dig - 427bp-O1-307bp- Oid-126bp - Bio
pUC308L1 pUC308 901 Dig - 427bp-O1-308bp- Oid-125bp - Bio
pUC309L1 pUC309 902 Dig - 427bp-O1-309bp- Oid-125bp - Bio
pUC310L1 pUC310 903 Dig - 427bp-O1-310bp- Oid-125bp - Bio
pUC71L1 * pUC71 351 Dig - 427bp-O1-310bp- Oid-125bp - Bio

Primer sequences(5’− >3’):
Plen901F: Dig - ACAGCTTGTCTGTAAGCGGATG
Plen901R: Bio - CGCCTGGTATCTTTATAGTCCTGTC
71F: DIG-AAAACGACGGCCAGTGAATTCG
71R: BIO-AGCCGAACGACCGAGCGCAG
For Looping Project: Sequence dependence:

Molecule Template Length(bp) Resulting
pTA89L1 pTA89 445 Dig - 144bp- Oid-TA89bp-O1-171bp - Bio
pTA94L1 pTA94 450 Dig - 144bp- Oid-TA94bp-O1-171bp - Bio
pTA100L1 pTA100 456 Dig - 144bp- Oid-TA100bp-O1-171bp - Bio
pE889L1 pE889 445 Dig - 144bp- Oid-E889bp-O1-171bp - Bio
pE894L1 pE894 450 Dig - 144bp- Oid-E894bp-O1-171bp - Bio

pE8100L1 pE8100 456 Dig - 144bp- Oid-E8100bp-O1-171bp - Bio

Primer sequences(5’− > 3’):
Pseq450F: Dig - ATGCGAAACGATCCTCATCC
Pseq450R: Bio - GCATCACCTTCACCCTCTCC
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Table A.4: Materials used in amplifying labeled DNA for calibration using PCR.
For TPM calibration:

Molecule Primers(5’− > 3’) Length(bp)
λ 82 CAGTAAACGTCTGTTGAGCA 82

GGGAATAACACCATGAAAAA
λ 199 GGTTATCGAAATCAGCCACAGCGCC 199

GGATACGTCTGAACTGGTCAC
λ 298 ATTTGGTTGATCGTGGTG 298

TCGTATTCGTCAAAGGGA
λ 522 GCCACCTGTTACTGGTCGAT 522

ACGGTGGAAACGATACTTGC
λ 766 GGTGAACGATGCGTAATGTG 766

TCAGCTGAATGGTGCAGTTC
λ 997 CAAAGGCGGTTAAGGTGGTA 997

GGCTGTACCGGACAATGAGT
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Appendix B

Sequences

B.1 Sequences Between the Two Operators for Phasing Experiments

(300-310 bp)

300:

ccacacaacatacgagccggaacataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttcgc

tttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcct

cgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcagggga

taacgcaggaaagaaca

301:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttc

gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttc

ctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggg

gataacgcaggaaagaaca

302:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttc

gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttc

ctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggg

gataacgcaggaaagaacat
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303:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttc

gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcc

tcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcagggg

ataacgcaggaaagaacatg

304:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttc

gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttc

ctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcagg

ggataacgcaggaaagaacatgt

305:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttc

gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttc

ctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggg

gataacgcaggaaagaacatgtg

306:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttc

gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttc

ctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggg

gataacgcaggaaagaacatgtga

307:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggttc

gctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgcttcc

tcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacanaatcagggg

ataacgcangaaagaacatgtgag
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308:

ccacacaacatacgagccggaagcataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggtt

cgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgctt

cctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacanaatcag

gggataacgcangaaagaacatgtgagc

309:

ccacacaacatacgagccggaagccataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgagg

ttcgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgc

ttcctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcag

gggataacgcaggaaagaacatgtgagc

310:

ccacacaacatacgagccggaagccataaagtgtaaagcctggggtgcctaatgagtgagctaactcacattaattgcgttgagctcgaggt

tcgctttccagtcgggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggtttgcgtattgggcgctcttccgctt

cctcgctcactgactcgctgcgctcggtcgttcggctgcggcgagcggtatcagctcactcaaaggcggtaaatacggttatccacagaatcag

gggataacgcaggaaagaacatgtgagc

B.2 Sequences Between the Two Operators for Sequence-Dependence

Experiments

E8100:

ggccggaggctgctgcgtagaactacttttatttatcgcctccacggtgctgatccc ctgtgctgttggccgtgttatctcgagttagtacgacgtc-

cgc

E894:

ggccgtgcgtagaactacttttatttatcgcctccacggtgctgatcccctg tgctgttggccgtgttatctcgagttagtacgacgtccgccc

E889:

ggccggctgcgtagaactacttttatttatcgcctccacggtg ctgatcccctgtgctgttggccgtgttatctcgagttagtacgacc
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TA100:

ggccgtaattggtcgtagcaagctctagcaccgcttaaacgca cgtacgcgctgtctaccgcgttttaaccgccaataggattacttactagtctc-

tagc

TA94:

ggccgggtcgtagcaagctctagcaccgcttaaacgcacgta cgcgctgtctaccgcgttttaaccgccaataggattacttactagtctctac

TA89:

ggccgggtcgtagcaagctctagcaccgcttaaacgcacgtacgcg ctgtctaccgcgttttaaccgccaataggattacttactagtc
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