# AN INVESTIGATION OF THE COMPOUND NUCLEI <sup>7</sup>Li AND <sup>7</sup>Be

Thesis by Robert John Spiger

In Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy

California Institute of Technology
Pasadena, California
1967
(Submitted October 27, 1966)

#### ACKNOWLEDGMENTS

It is a pleasure to acknowledge the generous assistance of the faculty, staff and students of the Kellogg Radiation Laboratory during the course of this work. Particularly appreciated was the assistance and guidance of my advisor, Professor Thomas A. Tombrello, who suggested the problem and was a constant source of help, advice and encouragement in both the experimental and theoretical portions of the work.

Credit for much of the design of the apparatus for the  $t+\alpha$  experiment goes to Mr. Vic Ehrgott. Also appreciated are the efforts of Mr. George Fastle, Mr. Don Woshnak and Mr. Harold Larson who constructed many pieces of this equipment.

Assistance in performing the experiments was received from Mr. Andrew D. Bacher, who also introduced the author to many of the experimental techniques, and from Mr. M. Dwarakanath who constructed our current integrator.

Many weeks of tedious data reduction were avoided through the use of a data display program developed by Mr. Michael Mahon. His efforts and the help of Mrs. Barbara Zimmerman in computer programming are greatly appreciated. To Mr. Reagan Moore, Mr. Martin Cooper and Mr. George Fox go credit for the many months of work spent helping me to plot and analyze the data.

To my wife, Pearl, goes much of the credit for preliminary typing and encouragement in the preparation of this thesis. The many others who have assisted in this work may be assured that their help is appreciated even though they remain unnamed.

I should also like to thank the National Science Foundation and the California Institute of Technology for financial aid in the form of fellowships during the course of the work and the Office of Naval Research for financial support of the experiment.

#### ABSTRACT

The differential elastic scattering cross section has been measured for the scattering of <sup>3</sup>He from <sup>4</sup>He and the scattering of <sup>4</sup>He from tritium. Incident particle energies of 5 to 18 MeV and 4 to 18 MeV, respectively, were used. Gas targets were used and solid state silicon detectors were employed to detect the scattered particles. Data were also obtained for the reactions <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li,  $^4$ He( $^3$ He,p $^1$ ) $^6$ Li\*,  $^3$ H( $\alpha$ ,n) $^6$ Li and  $^3$ H( $\alpha$ ,n $^1$ ) $^6$ Li\*. Levels are seen at 4.65, 6.64, 7.47 and 9.7 MeV in <sup>7</sup>Li and at 4.57, 6.73, 7.21 and  $9.3~{\rm MeV}$  in  ${}^7{\rm Be}$ . A phase shift analysis suggests assignments of  $\frac{7}{2}$  and  $\frac{5}{2}$  for the two lower levels in  $\frac{7}{2}$ Li, confirms the  $\frac{5}{2}$  assignment of the 7.47 level and suggests  $a_{\frac{7}{2}}$  assignment for the new level at 9.7 MeV. Similarly in  ${}^{7}$ Be, the assignment of  $\frac{7}{2}$  and  $\frac{5}{2}$  for the lower two levels is reconfirmed and an assignment of  $\frac{7}{2}$  is suggested for the new level at 9.3 MeV. The reduced widths for  $\alpha$  and nucleon emission were determined by fitting the phase shifts near each level with a single and/or double level formula from the R-matrix formalism of Lane and Thomas (1958). The results of the analysis are discussed and compared with predictions of some recent nuclear model calculations.

# TABLE OF CONTENTS

| PART     |     |                                                                                           | PAGE       |
|----------|-----|-------------------------------------------------------------------------------------------|------------|
| I.       | ľNI | TRODUCTION                                                                                | 1          |
| п.       | EX  | PERIMENTAL DISCUSSION                                                                     | 3          |
|          | A.  | The Elastic Scattering $^3$ H( $\alpha$ , $\alpha$ ) $^3$ H                               | 3          |
| •        |     | (1) Apparatus                                                                             | 3          |
|          |     | (a) The Chamber, Vacuum System and                                                        |            |
|          |     | Safety Devices                                                                            | <b>3</b> · |
|          |     | (b) The Gas Handling System and Gas Cell                                                  | 5          |
|          |     | (c) Collimation and Particle Detection                                                    | 6          |
|          |     | (2) Procedure                                                                             | 7          |
|          |     | (3) Results                                                                               | 8          |
|          | B.  | The Reaction <sup>3</sup> H(α, n) <sup>6</sup> Li                                         | 10         |
|          |     | (1) Apparatus                                                                             | 10         |
|          |     | (2) Procedure                                                                             | 10         |
|          |     | (3) Results                                                                               | 11         |
|          | C.  | The Reaction ${}^{3}\mathrm{H}(\alpha,\mathrm{n}^{1})^{6}\mathrm{Li}^{*}$                 | 11         |
|          |     | (1) Apparatus                                                                             | 11         |
|          |     | (2) Procedure                                                                             | 12         |
| <b>-</b> |     | (3) Results                                                                               | 12         |
|          | D.  | The Elastic Scattering <sup>4</sup> He( <sup>3</sup> He, <sup>3</sup> He) <sup>4</sup> He | 14         |
|          |     | (1) Apparatus                                                                             | 14         |
|          |     | (a) Chamber                                                                               | 14         |
|          |     | (b) Electronics                                                                           | 14         |
| ٠        |     | (c) Target and Beam Below 14.8 MeV                                                        | 14         |
|          |     | (d) Target and Beam from 14.8 - 18.0 MeV                                                  | 15         |
|          |     | (2) Procedure                                                                             | 15         |
|          |     |                                                                                           |            |

| PART |                                |                                                                                  | PAGE       |  |
|------|--------------------------------|----------------------------------------------------------------------------------|------------|--|
|      |                                | (3) Results                                                                      | 16         |  |
|      | E.                             | The Reaction $^4$ He( $^3$ He, p) $^6$ Li                                        | 17         |  |
|      |                                | (1) Apparatus                                                                    | 17         |  |
|      |                                | (2) Procedure                                                                    | 17         |  |
|      |                                | (3) Results                                                                      | 18         |  |
|      | F.                             | The Reaction <sup>4</sup> He( <sup>3</sup> He, p <sup>1</sup> ) <sup>6</sup> Li* | 18         |  |
| •    |                                | (1) Apparatus                                                                    | 18         |  |
|      |                                | (2) Procedure                                                                    | 19         |  |
|      |                                | (3) Results                                                                      | 19         |  |
| III. | тн                             | EORETICAL ANALYSIS OF THE DATA                                                   | 20         |  |
|      | A.                             | Introduction                                                                     | 20         |  |
|      | B.                             | The Phase Shift Analysis                                                         | 20         |  |
|      |                                | (1) Method                                                                       | 20         |  |
|      |                                | (2) The Analysis of the <sup>7</sup> Be Data                                     | 23         |  |
|      |                                | (3) The Analysis of the <sup>7</sup> Li Data                                     | 25         |  |
|      |                                | (4) Discussion of the Derived Phase Shifts                                       |            |  |
|      |                                | and Polarizations                                                                | <b>2</b> 8 |  |
| 2    | C.                             | Extraction of Level Parameters Using R-Matrix                                    | ζ          |  |
|      |                                | Theory                                                                           | 32         |  |
|      |                                | (1) Method                                                                       | 32         |  |
|      |                                | (2) Extraction of the <sup>7</sup> Be Level Parameters                           | 38         |  |
|      |                                | (3) Extraction of the <sup>7</sup> Li Level Parameters                           | 40         |  |
|      |                                | (4) Discussion of the Derived Level Parameter                                    | 's 42      |  |
| IV.  | COMPARISON WITH NUCLEAR MODELS |                                                                                  |            |  |
|      | A.                             | Introduction                                                                     | 46         |  |
|      | В.                             | Model Comparison                                                                 | 47         |  |

| PART |                          | PAGE |
|------|--------------------------|------|
|      | (1) The Cluster Model    | 47   |
|      | (2) The Rotational Model | 48   |
|      | (3) The Shell Model      | 50   |
| v.   | CONCLUSIONS              | 53   |
|      | APPENDICES               | 56   |
|      | REFERENCES               | 86   |
|      | TABLES                   | 88   |
|      | FIGURES                  | 199  |

#### I. INTRODUCTION

In the past few years, several experimental studies of the excited states of the compound nuclei <sup>7</sup>Li and <sup>7</sup>Be have been made. The work to be described was designed to complement and extend the range of these studies. The tandem Van de Graaff accelerator was used to produce <sup>4</sup>He and <sup>3</sup>He beams at energies exceeding 18 MeV. These energies allowed the compound nuclei to be investigated over a fairly large energy range.

The entrance channels employed in this investigation were  $t+\alpha$  for  ${}^{7}\text{Li}$  and  ${}^{3}\text{He} + {}^{4}\text{He}$  for  ${}^{7}\text{Be}$ . From an experimental point of view these entrance channels have the advantage of allowing the use of a gas target. This provided a target of uniform thickness for which the data obtained could easily be given an absolute normalization. The theoretical analysis was also made simpler by the fact that both entrance channels were cases of the scattering of a spin  $\frac{1}{2}$  particle from a spin 0 particle. In particular, the phase shift analysis to determine spins and parities of the various levels was considerably simplified.

The entrance channels used lead to several reactions. For  $^7\text{Li}$ , the reactions  $^3\text{H}(\alpha,\alpha)^3\text{H}$ ,  $^3\text{H}(\alpha,n)^6\text{Li}$  and  $^3\text{H}(\alpha,n^1)^6\text{Li}^*$  were investigated. For  $^7\text{Be}$  the analogous reactions  $^4\text{He}(^3\text{He},^3\text{He})^4\text{He}$ ,  $^4\text{He}(^3\text{He},p)^6\text{Li}$  and  $^4\text{He}(^3\text{He},p^1)^6\text{Li}^*$  were studied. An analysis of the data obtained made it possible to compare  $\alpha$ -widths and nucleon widths of various levels with predictions of nuclear models (for example, the calculations of Barker, (1966)). Several levels predicted by these calculations were investigated.

The experimental details of this work and the data obtained are discussed in Part II. The data are listed in the tables and shown

in the figures. In Part III, the theoretical analysis of the data is discussed. A phase shift analysis and R-matrix fitting are used to determine the level parameters. These are then compared with the predictions of nuclear models in Part IV.

Additional experimental details and a discussion of the computer programs which were used are contained in several appendices.

#### II. EXPERIMENTAL DISCUSSION

# A. The Elastic Scattering $^{3}$ H( $\alpha$ , $\alpha$ ) $^{3}$ H

### (1) Apparatus

# (a) The Chamber, Vacuum System and Safety Devices

The  $^3\text{H}(\alpha,\alpha)^3\text{H}$  elastic scattering experiment was done with a gaseous target of  $^3\text{H}_2$ . The problems involved in protecting the laboratory from contamination by this radioactive gas required the use of more elaborate safety precautions than were convenient with the available gas scattering chambers. To utilize the tritium target, a complete new beam tube and target station were added in the target room of the C. I. T. -ONR Tandem Van de Graaff accelerator.

The scattering chamber was constructed of a cylindrical steel pipe with top and bottom of aluminum. The walls were 1.9 cm. thick and the inner diameter of the chamber was 27.9 cm. The top and bottom formed 0-ring seals with the walls. The chamber was provided with four ports set at 90° intervals around the chamber walls. A diagram of the chamber is shown in Figure 1.

The beam enters through a collimator formed by a series of tantalum discs pierced with holes 1.5 or 2.0 mm. in diameter. These serve to collimate the beam and provide resistance to the passage of gas from the chamber in the event of a leak in the gas cell. The opposite port leads to the Faraday cup used to catch the beam after passage through the target. The port opposite that containing the gas cell assembly leads to the main pumping station. It is also fitted with an ionization gauge which is used to monitor

chamber pressure during the course of a run. The path to the pumping station is closed by a two inch butterfly valve when tritium is in the gas cell.

The gas cell assembly is mounted on a brass flange and inserted into the fourth port. The flange is drilled to provide a vacuum passage to the gas handling system and has a threaded recess to attach the gas manifold.

Upstream from the beam collimator is a small charcoal trap followed by a second group of tantalum discs, which further increase the resistance to gas flow from the chamber. A bypass connects this trap to the main pumping system through a Circle-Seal valve. Upstream from the second set of discs is an electrically operated safety valve which can shut the main pumping station and beam tube off from the chamber.

In operation with tritium in the gas cell, the following procedure is used. The small charcoal trap and a large trap in the bottom of the chamber are cooled with liquid nitrogen. The bypass valves are closed. This leaves open only the small passage through which the beam enters. The large charcoal trap then provides internal pumping of the chamber. If a leak from the gas cell develops, the rise in chamber pressure will be detected by the ionization gauge and the electric safety valve will be automatically shut. Most of the escaped gas will be pumped by the large charcoal trap in the chamber and most of that escaping through the beam collimator will be pumped by the small charcoal trap. These traps may then be sealed off under vacuum, detached from the station and disposed of. The large charcoal trap will normally hold the closed chamber at a pressure of about  $5 \cdot 10^{-6}$  mm. of Hg.

# (b) The Gas Handling System and Gas Cell

The gas handling system and gas cell were constructed of hydrogen-free material, where possible, in order to minimize the contamination of the tritium target gas by ordinary hydrogen. A schematic diagram of this system is shown in Figure 2.

The gas cell is 4.45 cm. in diameter and 1.9 cm. high. It is constructed of brass and has nickel foil windows. The foils are sealed to the brass with Carter's Epoxy. The beam entrance foil is 8125 Å thick. The three foils for the exit of beam and scattered particles are approximately 13,000 Å thick. They are arranged so that all laboratory angles from 12° to 90° can be reached by the counter collimators (see Figure 1). The cell is soldered to a hollow tube connected to the flange at the chamber port. This supports the cell and provides an entrance for the gas.

The manifold is a brass block which screws into the threaded recess on the flange. The manifold has five interconnected outlets. One leads to the gas cell and another leads to a Wallace and Tiernan differential pressure gauge (0 - 50 mm. of Hg) by means of a length of 3.2 mm. copper tubing. The other three outlets are fitted with all metal Nupro bellows valves (model B-4H). One valve leads to a gas bottle which allows testing of the foils or the use of another target gas. The second valve connects to the vacuum passage through the flange and provides for pumping out the gas cell, the manifold and the vacuum chamber surrounding the tritium reservoir. The third valve is connected to the tritium reservoir. All the passages were kept as small as possible to maximize the pressure obtainable with our limited amount of tritium. The joints in the system were sealed with Teflon tape or soldered.

The tritium reservoir is shown in Figure 3. To facilitate handling and storage, the tritium gas is stored in the reservoir in the form of uranium tritide. The gas is evolved into the cell by heating the uranium and is pumped from the cell by the cool uranium when the run is over (see Appendix C). The construction material is stainless steel with joints being silver soldered or sealed with Teflon. A nichrome wire coil is used to heat the uranium in the reservoir.

#### (c) Collimation and Particle Detection

Before performing the experiment, the chamber was optically aligned with the beam tube using a Brunson telescope. A bellows and support behind the Faraday cup are provided to keep the forces on the chamber in equilibrium when the system is under vacuum.

The collimation slits for the particle detectors and the gas cell were also aligned in this manner. The zero positions were reproducible to about 3 minutes of arc. The slits were mounted in aluminum blocks which were suspended from two ground stainless steel tubes 1.27 cm. in diameter. The rods were press fitted into two concentric hubs which pass through the top of the chamber. This allowed the two collimators to be positioned independently. The positions were read with protractors on the top of the chamber lid. Nylon-tipped set screws hold the aluminum blocks in place on the rods and the slits in place in the blocks.

The slits are made of brass and are approximately 1.0 mm. thick. The front slit is defined in width and the rear slit in both width and height. The center slit is a wider anti-scattering slit designed to prevent particles scattered from slit edges and walls

from reaching the detectors. The dimensions of the slits and their spacing in the chamber are given in Table 1 (see also Figure 1 and Appendix B).

The detectors were surface-barrier and Li-drifted silicon solid-state detectors. They were mounted in brass cans to shield them from electrical noise. The cans were held in place directly behind the slits in lucite blocks suspended from the stainless steel rods. Detector leads from one collimator were fed through the hollow rod and led out through the hub at the center of the chamber. The leads from the other collimator were led out near the side of the chamber top. A further discussion of the detectors and electronics is contained in Appendix A.

#### (2) Procedure

On a typical run the following procedure was used. Liquid nitrogen was used to cool the charcoal traps until they were cold enough to pump the chamber unaided. During this time the electronics were set up and checked. The beam was brought to a viewer just in front of the chamber. The valves to the diffusion pump were then closed and the safety valve in the beam line was coupled to the ion gauge. The tritium reservoir was opened to the rest of the chamber and the accumulated <sup>3</sup>He was pumped off by briefly opening the main bypass valve. This valve was then shut as was the Nupro valve connecting the manifold to the chamber vacuum. Tritium gas was then evolved from the uranium by passing current through the nichrome wire coil on the reservoir. When the desired tritium pressure (about 40 mm. of Hg) was reached the reservoir was shut off from the manifold and allowed to cool. The safety valve in the beam line was opened and the beam was focused on target.

Data were then taken in the form of excitation curves at a number of laboratory angles. A separate spectrum was taken for each energy and angle on a 400-channel Radiation Instrument Development Laboratories multi-channel analyzer. For each spectrum the time for the run, the analyzer live time, the actual time of day and the nominal beam energy were recorded. The temperature and pressure in the gas cell were also recorded at frequent intervals. Energy steps of 50, 100, or 250 keV were taken, depending on the rate of variation of the cross section. The integrator was calibrated at several times during the day.

Data were also taken in the same general manner in 500 keV steps for the elastic scattering  $^1\text{H}(\alpha,\alpha)^1\text{H}$ . These data provided a calibration to determine the hydrogen contamination in our tritium target gas.

The beam was obtained from the ONR-CIT tandem accelerator. For beam energies between 4.0 and 13.25 MeV the standard doubly charged <sup>4</sup>He<sup>++</sup> beam was used. For higher energies, a negative <sup>4</sup>He beam was extracted from the negative ion source. This beam was stripped to a double positive charge at the center terminal of the tandem and energies up to 18.25 MeV were obtained. Typical beam currents on target were 200 nano Amps for the standard beam and 5 - 15 nano Amps for the high energy beam.

#### (3) Results

A typical spectrum from the 400-channel analyzer is shown in Figure 6. The  $\alpha$  group is seen at channel 293, the triton group at channel 122 and the proton contaminant group at channel 80. The small group at channel 358 is composed of  $\alpha$  particles scattered from the walls and foils of the gas cell. This is also the source of

the low, continuous background in the spectrum. The shoulder at channel 40 marks the point at which the separation of charge one from charge two takes effect (see Appendix A).

The data obtained were reduced to differential cross sections (see Appendix B). Excitation curves at 17 center-of-mass angles from 39° to 146° were obtained in the region of 4 to 13 MeV. These data are tabulated in Table 3 and are shown in Figures 9 - 17. The open circles are the data points. The solid lines are fits to the data from the phase shift analysis, which will be discussed in Part III.

These data show clearly three resonances. The lowest is the resonance near 5 MeV corresponding to the level at 4.63 MeV excitation energy in  $^7\text{Li}$ . The broad resonance near 9.5 MeV corresponds to the  $\frac{5}{2}$  level at 6.6 MeV excitation in  $^7\text{Li}$ . Note that the  $\frac{5}{2}$  7.47 MeV level also appears in these curves as the weakly excited dispersion curve near 11.5 MeV. This is of interest since the corresponding level in  $^7\text{Be}$  is not seen in the elastic scattering  $^4\text{He}(^3\text{He}, ^3\text{He})^4\text{He}$  (Tombrello, 1963).

In the range from 13 to 18 MeV excitation curves were taken at 8 center-of-mass angles from 54° to 135°. These show a resonance near 16.8 MeV corresponding to an excitation of 9.7 MeV in <sup>7</sup>Li (see Figures 18 - 21). These data are tabulated in Table 4.

Figures 22 - 27 show angular distributions generated from these data. Once again, the solid line gives the phase shift analysis fit to the data. The angular distributions are shown at positions below, at and above each resonance energy.

A discussion of the experimental errors in the data is contained in Appendix D and the errors are tabulated in Table 5.

# B. The Reaction ${}^{3}H(\alpha, n)^{6}Li$

# (1) Apparatus

This experiment was done at  $0^{\circ}$  using a solid target of zirconium tritide on a .025 cm. thick platinum backing. The target contained about  $2 \cdot 10^{18}$  atoms of tritium per square centimeter in the form of a disc 2.54 cm. in diameter. This was placed in the center of a vertical quartz tube of approximately 3.75 cm. diameter. The target was oriented so that it was normal to the beam. A bias of 300 volts was used on the target for integration purposes. The tube was in the form of a T and was connected to the beam tube by its horizontal portion. A pressure of  $5 \cdot 10^{-7}$  mm. of Hg was maintained at the target.

The beam current was integrated with an Eldorado Model CI-110 current integrator. A charge of 18.0 micro Coulombs was collected for each run. The neutrons were detected by a "long counter" placed very close to the quartz tube. This geometry was used so that all the neutrons in the cone about 0° would be intercepted by the detector. Pulses from the counter were amplified with a Hamner amplifier and counted in an Eldorado scalar. A bias was set on the scalar so that only pulses higher than those induced by gamma rays were counted.

# (2) Procedure

The actual data for this reaction as well as for the reaction  ${}^3\mathrm{H}(\alpha,n^1)^6\mathrm{Li}^*$  were obtained by T. A. Tombrello. The neutron yield was taken at energy intervals of 40 keV except near threshold where steps of approximately 10 keV were taken. The beam energy, length of time of the run and number of counts on the scalar were recorded for each run.

### (3) Results

The results are tabulated in Table 6 and are shown in Figure 28. These data show an s-wave behavior near threshold, but the overall behavior is dominated by the effect of the  $\frac{5}{2}$  level at 7.47 MeV in <sup>7</sup>Li. These data were not used in the analysis, but do show good agreement with the data which were used.

# C. The Reaction ${}^{3}\text{H}(\alpha, n^{1})^{6}\text{Li}^{*}$

#### (1) Apparatus

The objective in this experiment was to obtain the total reaction cross section at beam energies between 12 and 18 MeV. Below 12.4 MeV, data were available from the inverse reaction  $^6\text{Li}(n,\alpha)^3\text{H}$  (Schwarz, 1965). Once again the negative helium beam from the ion source of the tandem was used.

The target was a disc cut from the previously mentioned zirconium tritide target. Its diameter was approximately 0.95 cm. Figure 30 shows a schematic diagram of the target assembly and detector. The target is held at the back of a cylindrical aluminum target chamber by a liner of coiled tantalum sheet. The target chamber slips onto a metal tube and seals with an O-ring. The metal tube is fitted to a lucite plate at the end of the beam tube. This provides the insulation necessary for beam integration. For integration, a wire is attached to the aluminum chamber and a 45-Volt bias is used between the chamber and integrator. The same El-dorado integrator is used.

The detection apparatus consisted of two parts. The first part was a large paraffin cylinder designed to thermalize the neutrons.

The forward end was drilled to receive the target chamber so that a maximum number of neutrons from the target would be thermalized. The diameter of the cylinder was approximately 30 cm. and its length 41 cm. At the rear of the cylinder and on the axis, a hole was drilled to receive the second component. This was an Ne 402 phosphor mounted on a phototube. A standard Kellogg preamp was used with the phototube. The wax block was insulated from the target chamber by wrapping the chamber with Teflon tape.

### (2) Procedure

An Eldorado scalar was used to count the pulses from the phototube. The pulse-height spectrum was a continuum and a bias was set at an arbitrary point in this spectrum. The scalar then counted pulses higher than the bias. Charge integrations of 2.7  $\mu$  Coulombs were taken. Runs were taken with beam energies from 11.0 to 18.0 MeV. Steps of 50 keV were used in the region of the resonance near 11.5 MeV. Near the 16.8 MeV resonance 100 keV steps were used, with 250 keV steps being used elsewhere. Runs were taken with the detector at the rear of the block and also with the detector on the side and near the front of the cylinder (see Figure 30). The side position was placed so that neutrons from this reaction could not reach the phosphor directly. Thus the neutrons from the reaction  $^3$ H( $\alpha$ , n) $^6$ Li are emphasized here if all the neutrons are not thermalized.

#### (3) Results

The number of counts on the scalar were recorded at each energy. Figure 31 shows the data recorded and reduced to

cross sections for the configuration with the phosphor at the back of the cylinder. The reduction was carried out in the following way. As was mentioned before, the cross section from 11.0 to 12.4 MeV was obtained from the inverse reaction. The neutron threshold for  ${}^3\text{H}(\alpha, n^1){}^6\text{Li}^*$  is approximately 16.3 MeV. Our data were normalized to the inverse reaction data (see Figure 29) in the 11.0 to 12.4 MeV region. The shape and normalization were consistent to about 5%. This normalization was then used to convert our data to cross sections at the higher energies.

To obtain the  ${}^3{\rm H}(\alpha,n^1)^6{\rm Li}^*$  cross sections a smooth background, representing the ground state neutron contribution, was subtracted from the data. The remainder was attributed to the contribution of the  ${}^3{\rm H}(\alpha,n^1)^6{\rm Li}^*$  reaction.

The method of reduction assumes a neutron detection efficiency which is constant over the range 11 to 18 MeV. Using this normalization for the first excited state neutrons is quite reasonable since they have approximately the same energy range as the ground state neutrons from 11.0 to 12.4 MeV. The problem lies in the normalization of the ground state neutrons at the higher energies. The difference in the excitation curves, obtained with the two phosphor positions, shows that this normalization is possibly quite inaccurate. As a result, the accuracy of the total reaction cross section above 16.0 MeV is probably no better than  $\pm$  30%. The behavior of the ground state neutrons does seem to be smooth in this region, however, and thus, when separated from the background, the contribution from the first excited state neutrons may be expected to have somewhat better accuracy.

# D. The Elastic Scattering <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He

# (1) Apparatus

### (a) Chamber

In this experiment, a <sup>4</sup>He gas target was contained in the gas scattering chamber described by Bacher (1967). To provide better angular resolution the slits in the moving counter telescope were replaced by a similar set with approximately one-half the width (see Table 1 for slit parameters). Beam collimation, charge collection, and the pumping system were not changed except for the addition of a liquid nitrogen trapped diffusion pump on the Faraday cup.

# (b) Electronics

As in the  $T(\alpha,\alpha)T$  experiment, a two-counter  $\frac{dE}{dx}$ , E telescope was used to detect the scattered particles. The same charge integrator was also used (see Appendix A).

# (c) Target and Beam Below 14.8 MeV

In the range of <sup>3</sup>He bombarding energies between 4.6 and 14.8 MeV the neutral beam injector was used with the CIT tandem to produce a doubly charged <sup>3</sup>He beam. Beams of approximately 200 n A. were obtained on target. The beam entrance was sealed with a 1000 Å Nickel foil and the entire chamber was filled with <sup>4</sup>He gas. A pressure of approximately 13 cm. of oil on the oil manometer was maintained.

# (d) Target and Beam from 14.8 to 18.0 MeV

In this range of bombarding energies we were no longer able to attain the desired energy using neutral beam injection. Here, the negative ion source was used to produce a beam of negative <sup>3</sup>He ions. These were then stripped to doubly charged positive ions at the center terminal of the tandem. This produced a doubly charged beam with three times the terminal voltage. After focusing, magnetic analysis and collimation, beams of 5 - 15 nano Amps. were obtained on target. Beams of this current range used with the low energy target configuration greatly increase the length of time needed to take the desired data. Therefore, the 1000 Å nickel foil was removed and the <sup>4</sup>He target gas was contained in a small gas cell at the center of the chamber. The cell (see Figure 32) was inserted through the top of the chamber and was fitted with connections to a gas handling system and to a Wallace and Tiernan differential pressure gauge (0 - 800 mm. of Hg.). The thicker foil windows on the gas cell enabled us to use a target pressure of 15 cm. of Hg. The scattered particle exit window was of 1/6 mil Mylar and the beam entrance and exit windows were of 6250 Å nickel foils. Temperature was monitored by a thermometer which was in contact with the gas cell.

# (2) Procedure

The general experimental procedures employed to gather the data are as follows. If the entire chamber is to be filled with <sup>4</sup>He, the chamber is sealed off, filled with the target gas and the outgassed charcoal trap is cooled with liquid nitrogen. If the gas cell is to be used, it is filled with target gas and the diffusion pump continues to pump on most of the chamber. Suppression and bias voltages are

applied to the Faraday cup and the electronics are checked for noise as the detectors are biased. The integrator is calibrated and the beam is maximized in the Faraday cup by magnetic focusing and deflection. The discriminators are then adjusted to give proper particle separation using the  $\frac{dE}{dx}$  counter signal and a pulser. The gains of the electronics for each counter are equalized.

Spectra are then taken at each angle desired for a given energy. The live time of the analyzer, the clock time for the run and the time of day are recorded for each run. The temperature and pressure of the target gas are recorded at frequent intervals. At the end of the day the integrator is recalibrated to check on possible drifts.

#### (3) Results

channels contain a proton group from the reaction channel  $^4$ He( $^3$ He, p) $^6$ Li in channel 84, a proton group from  $^4$ He( $^3$ He, p) $^6$ Li in channel 84, a proton group from  $^4$ He( $^3$ He, d) $^5$ Li below channel 38, and a broad deuteron group from  $^4$ He( $^3$ He, d) $^5$ Li below channel 45. The  $^3$ He and  $^4$ He groups are seen in the second 200 channels at channels 351 and 330. At forward angles the  $^3$ He yield is much larger than the  $\alpha$  yield while they are of more nearly equal size at the mid-range angles. The yields tend, in general, to drop off slowly with energy. The data reduction is discussed in Appendix B. The main portion of the data consists of angular distributions at  $^3$ He bombarding energies from 4.6 to 18.0 MeV.  $^3$ He and recoil  $^4$ He groups give elastic scattering information at 14 center-of-mass angles below 14.8 MeV and at 10 center-of-mass angles from 14.8 to 18.0 MeV.

The data are presented as excitation curves with angular distributions shown below, at and above each resonance (see Figures 34 - 45). The numerical values of the differential cross sections are tabulated in Table 8. The figures show the data points as open circles. The solid lines are the fits obtained with the phase shift analysis. They will be discussed later. The elastic scattering data clearly show the known  $\frac{7}{2}$  and  $\frac{5}{2}$  levels found at excitation energies in  $^7\text{Be}$  of 4.55 and 6.51 MeV, respectively. The  $\frac{5}{2}$  level at 7.19 MeV in  $^7\text{Be}$  is not seen in the clastic scattering data. It is seen, however, in the  $^4\text{He}(^3\text{He}, \text{p})^6\text{Li}$  data (see Figure 46). The broad resonance in the elastic scattering data at 13.25 MeV lab energy is a new level corresponding to an excitation energy of approximately 9.3 MeV in  $^7\text{Be}$ . It is also clearly seen in the  $^4\text{He}(^3\text{He}, \text{p}^1)^6\text{Li}^*$  data (see Figure 50). The  $\frac{3}{2}$  level seen by Harrison (1966), at 9.9 MeV in  $^7\text{Be}$  is not seen in our data. Experimental errors in the data are presented in Appendix D and Table 11.

# E. The Reaction <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li

# (1) Apparatus

The apparatus used in this experiment was the same as that used for the elastic scattering.

# (2) Procedure

The procedure was essentially the same as that used for the elastic scattering measurements. Below 14.8 MeV, the only changes were the use of 30 cm. of pressure on the oil manometer and the taking of data at more laboratory angles and at closer energies. Above 14.8 MeV, data were taken at the same time as for the elastic scattering. Here too, more laboratory angles were covered.

#### (3) Results

The data obtained are tabulated in Table 10. Data were obtained at 5 laboratory angles for most energies; these data form excitation curves. At several energies, more laboratory angles were used. These additional data allowed the formation of angular distributions. The data were reduced in the same manner as the elastic scattering data (see Appendix B).

Two of the excitation curves are shown in Figure 46. They clearly show the resonance (near 9.5 MeV) due to the 7.19 MeV level in <sup>7</sup>Be. The 45° curve shows a weaker effect near the 9.3 MeV level in <sup>7</sup>Be. In this curve, the blackened circles are data taken with the low energy configuration. The open circles are data taken with the high energy gas cell. (In all figures for this reaction and the reaction <sup>4</sup>He(<sup>3</sup>He, p<sup>1</sup>)<sup>6</sup>Li\* the lines shown serve only to connect the points.) Figure 47 and part of Figure 48 show angular distributions of the ground state protons. Experimental errors are discussed in Appendix D and shown in Table 11.

# F. The Reaction <sup>4</sup>He(<sup>3</sup>He, p<sup>1</sup>)<sup>6</sup>Li\*

# (1) Apparatus

The apparatus used in this experiment was the same as that used in the elastic scattering.

# (2) Procedure

The data were taken at the same time and in the same manner as the  ${}^4{\rm He}({}^3{\rm He},p){}^6{\rm Li}$  data.

### (3) Results

The data obtained are tabulated in Table 10. Angular distributions of the first excited state protons are shown in part of Figure 48 and in Figure 49. Figure 50 shows two of the excitation curves obtained. Both show the effect of the 9.3 MeV level in <sup>7</sup>Be and they are similar to each other in shape. Experimental errors are discussed in Appendix D and shown in Table 11.

#### III. THEORETICAL ANALYSIS OF THE DATA

#### A. Introduction

The experimental data obtained in this work combined with data from other sources (to be discussed later) give a considerable amount of information on the compound nuclei  $^7\mathrm{Be}$  and  $^7\mathrm{Li}$  over a wide energy range. This analysis is primarily concerned with the two-body properties of the nuclear levels involving the following open channels:  $^4\mathrm{He} + ^3\mathrm{He}$ ,  $^6\mathrm{Li} + \mathrm{p}$ , and  $^6\mathrm{Li}^* + \mathrm{p}^1$  for  $^7\mathrm{Be}$  and  $^4\mathrm{He} + ^3\mathrm{H}$ ,  $^6\mathrm{Li} + \mathrm{n}$ , and  $^6\mathrm{Li}^* + \mathrm{n}^1$  for  $^7\mathrm{Li}$ .

The analysis is divided into two parts. In the first, the elastic scattering and reaction data for each compound nucleus are subjected to a phase shift analysis which separates the influence of the various partial waves in the scattering. This then determines the  $\ell$  and J values pertinent to each of the levels seen.

In the second part, the R-matrix formalism described by Lane and Thomas (1958) is employed to express the nuclear phase shifts in terms of parameters such as the reduced widths for the open channels, excitation energies, and nuclear radii. The phase shifts derived from the first part are then fitted with these expressions. This determines a best value of these parameters for each level. These parameters may then be compared with predictions of nuclear models for these nuclei.

#### B. The Phase Shift Analysis

#### (1) Method

The first step in the analysis of the reduced data was the phase shift analysis of both the <sup>7</sup>Li and <sup>7</sup>Be results. Both cases

represent scattering of a spin 1/2 from a spin 0 particle. This greatly simplifies the analysis by allowing only one &-value for a given value of the total angular momentum and the parity. The formula for the differential elastic scattering cross section is given as (Critchfield, 1949):

$$\frac{d\sigma(\theta)}{d\Omega} = |f_c|^2 + |f_i|^2 \tag{1}$$

where

$$\begin{split} f_{c}\left(\theta\right) &= \frac{-\eta}{2k} \csc^{2}\left(\frac{\theta}{2}\right) \exp\left[i\eta \ln \csc^{2}\left(\frac{\theta}{2}\right)\right] \\ &+ \frac{1}{k} \sum_{\ell=0}^{\infty} e^{2i\alpha_{\ell}} P_{\ell}(\cos\theta) \left[(\ell+1)e^{i\delta_{\ell}^{+}} \sin\delta_{\ell}^{+} + \ell e^{i\delta_{\ell}^{-}} \sin\delta_{\ell}^{-}\right] \end{split}$$

and

$$f_{i}(\theta) = \frac{1}{k} \sum_{\ell=1}^{\infty} e^{2i\alpha_{\ell}} \sin \theta \frac{dP_{\ell}(\cos \theta)}{d(\cos \theta)} \left[ e^{i\delta_{\ell}} \sin \delta_{\ell} - e^{i\delta_{\ell}} \sin \delta_{\ell}^{+} \right]$$

# In these expressions:

 $\theta$   $\Xi$  the center-of-mass scattering angle,

k = the wave number,

 $\eta \equiv Z_1 Z_2 e^2 / \hbar v,$ 

v = the relative velocity of the two particles,

 $\delta_{\ell}^{\pm} = \delta_{J\pi} = \delta_{J}^{\pi} \equiv \text{ the phase shift for } j = \ell \pm 1/2, \pi = (-1)^{\ell}$ 

 $\alpha_{\ell} \equiv \sigma_{\ell} - \sigma_{0}$  where  $\sigma_{\ell}$  is the Coulomb phase shift, and

 $\mathbf{Z}_1$  and  $\mathbf{Z}_2$  are the charges of the bombarding particle and the target nucleus.

The spin polarization of the scattered particles is given by:

$$\overline{P}(\theta) = \frac{-2\operatorname{Im}(f_{c}f_{i}^{*})}{|f_{c}|^{2} + |f_{i}|^{2}} \text{ in the direction of } (\overline{k}_{in} \times \overline{k}_{out}) \text{ where } \overline{k}_{in} \text{ and}$$

 $\vec{k}_{out}$  are unit vectors in the direction of the incident and scattered beams.

In both <sup>7</sup>Be and <sup>7</sup>Li the treatment of the reaction channels involving <sup>6</sup>Li + a nucleon must be considered. This can be done by allowing the phase shifts to become complex. We have:

$$e^{2i\delta} \rightarrow \cos^2 Xe^{2i\delta}$$

then  $e^{i\delta} \sin \delta \to \cos^2 X e^{i\delta} \sin \delta + i \left(\frac{1-\cos^2 X}{2}\right)$ , and the total reaction cross section is given by:

$$\sigma_{R} = \frac{\pi}{k^{2}} \sum_{\ell=0}^{\infty} [(2\ell+1) - (\ell+1) (\cos^{4} X_{\ell}^{+}) - \ell \cos^{4} X_{\ell}^{-}] \qquad (2)$$

In our analysis, the real and imaginary part of the phase shifts from  $\ell=0$  to  $\ell=4$  were allowed to vary. This gives a total of 18 parameters, although these were not all varied at one time. The data were grouped into angular distributions at the various energies of the excitation curves. A program was written to fit the data of each angular distribution with a set of phase shifts from equation (1) (see Appendix E) by minimizing the quantity

$$\chi^{2} = \frac{1}{N_{\theta}} \sum_{i=1}^{N_{\theta}} \left( \frac{\frac{d\sigma}{d\Omega} \left(\theta_{i}\right)_{\exp} - \frac{d\sigma}{d\Omega} \left(\theta_{i}\right)_{\operatorname{calc}}}{V(\theta_{i})} \right)^{2}$$

Here  $N_{\theta}$  is the number of data points in the angular distribution and  $V(\theta_i)$  is the experimental error associated with each point.

No states of  $\ell=4$  have been found in  $^7\mathrm{Li}$  or  $^7\mathrm{Be}$ ; therefore, these phase shifts were not varied during the analysis. Upon completion of the analysis with phase shifts through  $\ell=3$ , the  $\ell=4$  phase shifts were allowed to vary. Their variation from  $0^{0}$  was very small  $(\pm\ 2^{0})$ , and we therefore felt justified in not considering them further.

# (2) The Analysis of the <sup>7</sup>Be Data

The phase shift analysis of <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He has been done from 2.5 to 5.7 MeV bombarding energy by Barnard (1964) and from 5.75 to 12.0 MeV by Tombrello and Parker (1963). Because the splitting of the p-waves of Tombrello and Parker differs in sign from those of Barnard, we obtained data and performed the analysis over both these lower regions. The results could then be accurately extrapolated into the region above 12.0 MeV as trial phase shifts.

Below the first proton threshold at 7.0 MeV all values of  $X_{J\pi}$  were held to zero and the real parts of the s, p, d, and f wave phase shifts were allowed to vary. The initial values of the phase shifts were determined from Barnard's data. The general procedure was to then use the computer program to search for a set of phase shifts for which only one would be resonant at the anomaly in the elastic scattering data. The selection of the  $f_{7/2}$  phase shift was quickly accomplished, both by supplying trial phase shifts

with a step in  $\delta_{7/2}$  and by letting the program generate phase shifts at an energy using the phase shifts at the next lower energy as starting values. Several orders of phase shift variation were tried with essentially the same result. The p and s wave phases were the most sensitive to the order of variation. Changing the order caused changes of  $\pm$  5° in the s and p waves. The phase shifts finally selected were those for which the variation with energy was smooth and the  $\chi^2$ 's were low.

Above 7 MeV bombarding energy the reaction channel  $^4\text{He}(^3\text{He}, \text{p})^6\text{Li}$  is open. Data on the inverse reaction  $^6\text{Li}(\text{p}, ^3\text{He})^4\text{He}$  were available and we used that of McCray (1962) and Marion (1956) to calculate the values of  $X_{J\pi}$  from the total reaction cross section. The analysis of McCray attributes the cross section to a  $\frac{5}{2}$  resonance and an s-wave background. We found that the background was too large to be accounted for by only the s-wave phase shift. Therefore, we set  $X_{1/2}^+ = X_{3/2}^+$  and used the sum of both terms for the non-resonant part of the reaction cross section. This choice gave slightly better fits but essentially the same phase shifts as were obtained by using  $X_{1/2}^+$  and  $X_{3/2}^-$ .

With the values of  $X_{J\pi}$  fixed, the real phase shifts were then varied. The initial values were obtained by extrapolation from the lower region. The s, p, d, and f waves were varied and the appropriate resonant phase shift proved to be  $\delta_{5/2}$ . As in the work of Tombrello and Parker, the state at 7.18 MeV excitation energy was not seen in the elastic scattering data or in the values found for the real part of the phase shift. Once again, several orders of variation of the phase shifts were tried. The f-wave phase shifts were stable to  $\pm$  2° and the s and p wave phase shifts to  $\pm$  5° under the different variations. The solutions with good  $\chi^2$ 's also provided good energy continuity.

Above 11 MeV both the <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li and the <sup>4</sup>He(<sup>3</sup>He, p<sup>1</sup>)<sup>6</sup>Li\* channels are open. Our data on the first channel were used in conjunction with Marion's to calculate values of  $X_{5/2}^{-}$ ,  $X_{3/2}^{+}$ , and  $X_{1/2}^{+}$  from 11 to 18 MeV. Data on the second reaction channel were limited to what we had obtained. These data were used to form angular distributions at several energies near the resonance. Smooth curves were then drawn through the data points. Our data extended only to 120° in the center-of-mass system; hence we were required to extrapolate the data to  $180^{\circ}$  and to  $0^{\circ}$  to obtain total cross sections from these angular distributions. This was done by assuming symmetry about 90° and by smoothly extending the curve to 0°. The resulting curves were then numerically integrated to obtain the total cross section. These values (and the fact that the excitation curves for first excited state protons all had a similar shape) were then used to generate the total reaction cross section as a function of the energy. An estimate was then made separating the curve into a resonant portion and a non-resonant background. The resulting resonance was too large to attribute to any one resonant  $\mathbf{X}_{J\pi}$  except  $X_{7/2}$ . The background was attributed to  $X_{3/2}$  because of the proximity of the state at 9.8 MeV excitation energy seen by Harrison (1966). Using these values of  $X_{J\pi}$  it was found that only a resonant  $f_{7/2}$  phase shift would provide a fit low in  $\chi^2$  and continuous in energy. The features of the various phase shifts will be discussed in section (4).

# (3) The Analysis of the <sup>7</sup>Li Data

The target in these experiments was the lighter particle. This required a higher bombarding energy to observe the same resonances. In the region of 3.6 to 11 MeV bombarding energy,

there are no open reaction channels. This allowed us to set all the  $x_{J\pi}$  = 0 in this region. As trial phase shifts, we started with values from the  $^7$ Be analysis taken below the first  $\frac{7}{2}$  resonance. We then allowed the s, p, d, and f wave phase shifts to vary and used the values obtained at a given energy as trial values for the next energy. The program selected  $\delta_{7/2}$  as the resonant phase shift for the lowest level. It also selected  $\delta_{5/2}$  as the resonant phase shift for the broad second level. Several orders of variation of all the phase shifts were used to obtain smoothness in the phase shifts and low values of  $\chi^2$ .

In the range from 10 to 11 MeV, some difficulty was encountered in obtaining good energy continuity in the  $p_{1/2}$  and  $f_{7/2}$  phase shifts. The  $p_{3/2}$  and  $f_{5/2}$  phase shifts were quite stable when different orders of variation were tried. These latter two phase shifts were finally fixed at their preferred values in this region and the other phase shifts were varied until a reasonably smooth set of phase shifts was obtained. Values of  $\chi^2$  were about 25% larger, in general, when the smooth set was used instead of a highly discontinuous set (i. e., jumps up to  $30^{\circ}$  in 250 keV for the  $p_{1/2}$  phase shift).

The range of bombarding energies from 11 to 13 MeV was of particular interest. In analogy with the <sup>7</sup>Be data, we did not expect to see the 7.47 MeV level (corresponding to the 7.18 MeV level in <sup>7</sup>Be) in the elastic scattering. However, the effect of this level is apparent in the data as a small dispersion shape in the excitation curves.

The reaction channel  $^3H(\alpha,n)^6Li$  is open in this region. The inverse reaction has been investigated by Schwarz (1965), and his data (see Figure 29 and Table 7) were converted to our system

and used to generate values of  $X_{J\pi}$ . His analysis indicated that the main effect was due to the  $\frac{5}{2}^-$  resonance, with the nonresonant background being due to s-wave scattering of channel spin 1/2. It was found that we could account for all of the background by the  $X_{1/2}^{\phantom{1}}$  parameter. Therefore, we did not use the  $X_{3/2}^{\phantom{3}}$  parameter as was done in  $^7$ Be. Using the values obtained for  $X_{1/2}^{\phantom{1}}$  and  $X_{5/2}^{\phantom{1}}$ , and extrapolating the real phase shifts from lower energy, we used the program to see if  $\delta_{5/2}^{\phantom{1}}$  would indicate a resonance behavior. No fit was obtained if we insisted on a step-type behavior such as is seen in the two lower resonances. It was found that a dispersion curve in the  $\frac{5}{2}^-$  phase shift gave the best fit. This result was similar to the high energy  $\frac{7}{2}^-$  resonance in  $^7$ Be. Attempts to fit the resonance with other phase shifts (such as  $\delta_{7/2}^{\phantom{1}}$ ) did not succeed.

The presence of the resonance in <sup>7</sup>Be near 13.5 MeV indicated that an analogous effect might be observed in <sup>7</sup>Li. Because the high energy beam was used, not as many data points were taken at each energy. All of the excitation curves indicated a more pronounced effect than was seen in <sup>7</sup>Be, however.

Data on  ${}^3{\rm H}(\alpha,n^1)^6{\rm Li}^*$ , other than our own, were not available. These data were decomposed into a smooth background and a resonance peak. From 13.5 to 18.7 MeV the data of Murray and Schmitt (1959) on the reaction  ${}^6{\rm Li}(n,\alpha)^3{\rm H}$  were used to determine values of  ${\rm X_{1/2}}^+$  and  ${\rm X_{3/2}}^+$ . The background in this region was too large to be accounted for by  ${\rm X_{1/2}}^+$  alone. The resonance peak which we separated from our  ${}^3{\rm H}(\alpha,n^1)^6{\rm Li}^*$  data was of such magnitude that it could only be accounted for by  ${\rm X_{7/2}}^-$ . This was the same result as for  ${}^7{\rm Be}$ . The background  ${}^3{\rm H}(\alpha,n^1)^6{\rm Li}^*$  contribution was attributed to the  ${\rm X_{3/2}}^-$  term.

Using these values of  $X_{J\pi}$ , the real phase shifts were varied. Below the second neutron threshold, the resulting phase shifts were continuous with the lower results. At 12.8 and 13.1 MeV bombarding energy, separate angular distributions were obtained using the high energy beam and the low energy beam, respectively. Their separate analyses gave similar results, even though somewhat different values of the background  $X_{J\pi}$  were used for each.

Above threshold, the resonant real phase shift was found to be  $\delta_{7/2}$ , as in the <sup>7</sup>Be case. However, it was not possible to obtain a good fit and maintain smooth behavior with energy of the supposedly non-resonant phase shifts. A variation of the  $X_{J\pi}$  was tried to accomplish this, but without success. The final values obtained for the phase shifts were a compromise between the best fit and the smoothest phase shifts, with good fit being the major consideration.

# (4) Discussion of the Phase Shifts and Polarizations

The phase shifts for  ${}^4\text{He}({}^3\text{He}, {}^3\text{He}){}^4\text{He}$  are listed in Table 13 and shown in Figures 52 - 54. Phase shifts for  ${}^3\text{H}(\alpha,\alpha){}^3\text{H}$  are listed in Table 12 and shown in Figures 56 - 58. In both cases the various symbols represent values obtained from the phase shift program and the lines show fits to these data using the R-matrix formalism.

#### S-wave Phase Shifts

The s-wave phase shifts appear in Figures 52 and 56.

The dashed lines are calculated hard sphere phase shifts for radii

2.8 Fermis ( $^3$ He +  $\alpha$ ) and 2.6 Fermis (t +  $\alpha$ ). There is a tendency in both cases for the phase shifts at higher energies to lie somewhat above the calculated curve. This effect has been noted previously in  $^4$ He( $^3$ He,  $^3$ He) $^4$ He by Barnard (1964) and by Tombrello and Parker (1963). McCray (1962) suggested a  $\frac{1}{2}^+$  level which might account for this behavior. Such a level has not been seen in this work, however. The choices of  $X_{J\pi}$  for the representation of the reaction cross section do have an effect and may account for the discrepancy.

#### P-wave Phase Shifts

The  $\frac{1}{2}$  phase shifts are shown in Figures 52 and 56. The  $\frac{3}{2}$  phase shifts appear in Figures 53 and 57. With the exception of the f-wave phase shifts, these were the most difficult to determine. In the case of  $^4\mathrm{He}(^3\mathrm{He}, ^3\mathrm{He})^4\mathrm{He}$  opposite splittings of the p-wave phase shifts were found by Barnard and by Tombrello and Parker. We therefore wished to investigate the sign of the splitting and to determine if there was a point at which the splitting reversed in sign. Both signs of the splitting were tried and that with  $^5\mathrm{3/2}$  >  $^5\mathrm{1/2}$  was preferred in both  $^3\mathrm{H}(\alpha,\alpha)^3\mathrm{H}$  and  $^4\mathrm{He}(^3\mathrm{He},^3\mathrm{He})^4\mathrm{He}$ . This result for  $^7\mathrm{Be}$  is in agreement with that of Barnard.

From the values in the tables, it is seen that these phase shifts have a very slight splitting at some energies. An example occurs near 11.5 MeV bombarding energy for  $^4\text{He}(^3\text{He}, ^3\text{He})^4\text{He}$ . Solutions with the opposite splitting were carefully investigated near these points and were found to be poorer than the solutions used.

Above 16 MeV bombarding energy in  $^3$ H( $\alpha$ ,  $\alpha$ ) $^3$ H, all the phase shifts, and the p-waves in particular are somewhat discontinuous with energy. This is an effect of the suggested  $\frac{7}{2}$  level and probably reflects our lack of knowledge of the proper values of

 $X_{J\pi}$  used to represent the reaction cross section. The general fluctuations of the p-waves elsewhere in both  $^3H(\alpha,\alpha)^3H$  and  $^4He(^3He,^3He)^4He$  are probably due in part to the fact that they and the f-waves are the only negative parity terms used in the analysis. Thus the p-waves probably absorb a fair amount of any inaccuracies in the data which would tend to make the f-wave behavior less smooth.

## D-wave Phase Shifts

There are no d-wave levels in this energy range. The d-wave phase shifts were allowed to vary, but remained small over the total energy range in both cases. They are shown in Figures 52 and 53 for  $^4\text{He}(^3\text{He}, ^3\text{He})^4\text{He}$  and in Figures 56 and 57 for  $^3\text{H}(\alpha,\alpha)^3\text{H}$ . Both the  $\frac{5}{2}^+$  and  $\frac{3}{2}^+$  phase shifts tend to remain near zero rather than decreasing at higher energy as for a hard sphere phase shift. The points which depart from a smooth line for these phase shifts occur near resonances and are still relatively small. These excursions probably are the result of inaccuracies in the data near the resonances.

#### F-wave Phase Shifts

The f-wave phase shifts for  ${}^4\text{He}({}^3\text{He}, {}^3\text{He}){}^4\text{He}$  appear in Figure 54 while these for  ${}^3\text{H}(\alpha,\alpha){}^3\text{H}$  are shown in Figure 58. The most obvious features are the sharp steps in the  $\frac{7}{2}$  phase shifts. These show the second excited states in  ${}^7\text{Be}$  and  ${}^7\text{Li}$ , thus indicating a  $\frac{7}{2}$  assignment for this level in  ${}^7\text{Li}$ .

The broad step in the  $\frac{5}{2}$  phase shifts indicates an assignment of  $\frac{5}{2}$  for the level at 6.6 MeV in <sup>7</sup>Li and reconfirms the  $\frac{5}{2}$  assignment of Tombrello and Parker (1963) for this level in <sup>7</sup>Be.

The upper  $\frac{5}{2}^-$  level was not seen in the  $^4\text{He}(^3\text{He}, ^3\text{He})^4\text{He}$  real phase shifts. It is seen in the parameter  $X_{5/2}^-$ , however. This result is not surprising since this level is also not seen in the elastic scattering data. Tombrello and Parker (1963) were also unable to see its effect in the elastic scattering. Note that this level does appear as a dispersion shape curve in  $^5\text{J}_2$  and as a peak in  $X_{5/2}^-$  for  $^3\text{H}(\alpha,\alpha)^3\text{H}$ . A similar behavior is seen in the elastic scattering.

The dispersion curve shape appears in the  $\frac{7}{2}$  phase shift for the level at 13.5 MeV bombarding energy in  ${}^4\text{He}({}^3\text{He}, {}^3\text{He})^4\text{He}$  and for the level at 16.8 MeV bombarding energy for  ${}^3\text{H}(\alpha,\alpha)^3\text{H}$ . The level in  ${}^7\text{Be}$  is much broader than that in  ${}^7\text{Li}$ . The  $\frac{5}{2}$  phase shift is fairly smooth through the region of this resonance for  ${}^7\text{Be}$ ; however, in  ${}^7\text{Li}$  it varies by about 30° from a smooth curve. This effect persisted in the phase shift analysis, despite efforts to eliminate it by adjusting other  $\delta$ 's or the  $X_{J\pi}$ 's. We have therefore concluded that it is probably due to our poor reaction data in this region. Another possibility is the presence of a nearby  $\frac{3}{2}$  state analogous to that seen by Harrison (1966) in  ${}^7\text{Be}$ . We have, however, no conclusive evidence on this possibility.

### G-wave Phase Shifts

No levels of  $\ell=4$  have been found in either <sup>7</sup>Be or <sup>7</sup>Li. We did not vary these phase shifts during the analysis. At the conclusion of the analysis, we allowed them to vary and found that they remained small ( $\leq \pm 2^{\circ}$ ). Consequently, we felt justified in having neglected them in the analysis.

The polarizations for the <sup>3</sup>He's and tritons were calculated from the derived phase shifts. The results are shown in

Figure 55 for  ${}^4\text{He}({}^3\text{He}, {}^3\text{He}){}^4\text{He}$  and in Figure 59 for  ${}^3\text{H}(\alpha, \alpha){}^3\text{H}$ . Polarization contours are shown vs. center-of-mass angle and bombarding energy. The effects of the lower  $\frac{7}{2}$  and  $\frac{5}{2}$  levels are seen in both figures. As in the elastic scattering the effect of the higher  $\frac{5}{2}$  level is not seen in the  ${}^3\text{He}$  polarizations while it is for the triton polarizations. The higher  $\frac{7}{2}$  level is seen in both figures although it has a weaker effect for the  ${}^3\text{He}$ 's than the tritons. This agrees with the relative effects in the elastic scattering reactions.

Of particular interest are the long regions of high negative polarization near 90°. These may be of use in polarization experiments as sources or analyzers of polarized particles.

## C. Extraction of Level Parameters Using R-Matrix Theory

### (1) Method

The elastic scattering and reaction cross sections for two particle interactions have been treated by Lane and Thomas (1958). This formalism connects the observed cross section for a reaction or elastic scattering with a set of internal wave functions of the compound nucleus.

Our phase shift analysis of the data provides the spins and parities of the states we have investigated in <sup>7</sup>Li and <sup>7</sup>Be. This knowledge and the Lane and Thomas formalism are used to determine excitation energies and some reduced widths for these states.

We will use the following definitions (from Lane and Thomas):

the cross section for formation of a particle

pair c<sup>1</sup> from the scattering of the particle

pair c. The symbol c denotes all information

concerning the quantum states of the two

particles, their spins, channel spin and relative

angular momentum.

U cc1 the collision matrix for this interaction.  $\sigma_{cc} | u_{cc}|^2. U_{cc} | u_{cc}|^2 \text{ is unitary and symmetric.}$ 

 $r_c$  = the distance between centers of a particle pair c.

 $a_c$  = the effective interaction distance between the centers of a particle pair c. For  $r_c > a_c$  only Coulomb forces are active.

E<sub>c</sub> = the center-of-mass energy of motion of the particle pair c.

 $\mathbf{M}_{c}$  = the reduced mass of a particle pair c.

k<sub>c</sub> = the relative wave number of the particle pair c. Also given as  $(2M_c|E_c|/\hbar^2)^{1/2}$ .

 $v_c$  = the relative velocity of the two particles.

 $\eta_c$  = a Coulomb parameter given as  $Z_{1c}Z_{2c}e^2/\hbar v_c$ where  $Z_{1c}$  and  $Z_{2c}$  are the two charges (in units of electronic charge) of the particles.

 $\sigma_c$  = the Coulomb phase shift.

$$\rho_{c} \equiv k_{c} r_{c}$$

Our analysis is concerned with two levels (at most) of the same spin and parity. We also consider an elastic channel and a reaction channel. Wave functions external to the nuclear surface are taken as the Coulomb wave functions. The following notations will apply:

- I the incoming Coulomb wave in the elastic channel for angular momentum  $\ell$ .
- $O_{e\ell}$  = the outgoing Coulomb wave in the elastic channel for angular momentum  $\ell$ .
- I the incoming Coulomb wave in the reaction channel for angular momentum  $\ell$ .
- O<sub>rl</sub> = the outgoing Coulomb wave in the reaction channel for angular momentum l.
- x the coefficient of the outgoing wave for a given channel.
- y<sub>c</sub> = the coefficient of the incoming wave for a given channel.

The collision matrix U is then defined by:

$$x_c 1 = - \sum_{c} U_{c} 1_{c} y_{c}$$

The R-matrix for our case has 4 components and is defined as:

$$\underline{R} = (\frac{R_{ee} R_{er}}{R_{re} R_{rr}}) = \begin{bmatrix}
\frac{\gamma_{1e}}{E_{1}-E} + \frac{\gamma_{2e}}{E_{2}-E}, & \frac{\gamma_{1e}\gamma_{1r}}{E_{1}-E} + \frac{\gamma_{2e}\gamma_{2r}}{E_{2}-E} \\
\frac{\gamma_{1e}\gamma_{1r}}{E_{1}-E} + \frac{\gamma_{2e}\gamma_{2r}}{E_{2}-E}, & \frac{\gamma_{1r}}{E_{1}-E} + \frac{\gamma_{2r}}{E_{2}-E}
\end{bmatrix}$$

Here r and e refer to the reaction and elastic channels.  $E_1$  and  $E_2$  are eigenenergies of the internal wave functions. E is the excitation energy of the nucleus. The  $\gamma$ 's are the reduced width amplitudes of the levels. For example,  $\gamma_{1e}^{2}$  is the elastic reduced width of level 1. Note that  $R_{er} = R_{re}$ . The general form of the R-matrix considers all the eigenenergies of the internal wave functions and has the form

$$R_{cc} 1 = \sum_{\lambda}^{\gamma} \frac{\sum_{\lambda c}^{\gamma} \gamma_{\lambda c}}{\sum_{\lambda} - \sum_{\lambda}} ,$$

but we are only concerned with two levels in our analysis. We now obtain from Lane and Thomas the general relation relating the R-matrix to the collision matrix. We have:

$$V_r = R_{re} (D_e - B_e V_e) + R_{rr} (D_r - B_r V_r)$$
 (1)

$$V_e = R_{ee} (D_e - B_e V_e) + R_{er} (D_r - B_r V_r)$$
 (2)

$$V_{c} = (\frac{\hbar^{2}}{2})^{1/2} (\rho_{c}^{-1/2} O_{c\ell} x_{c} + \rho_{c}^{-1/2} I_{c\ell} y_{c})$$

and 
$$D_c = (\frac{h^2}{2})^{1/2} (\rho_c^{1/2} O'_{c\ell} x_c + \rho_c^{+1/2} I'_{c\ell} y_c)$$

The primes indicate differentiation with respect to  $\rho_c$ .  $B_e$  and  $B_r$  are boundary values (taken as real in this work) for the elastic and reaction channels and are proportional to the logarithmic derivative of the internal wave functions at the nuclear radius  $a_c$ .

Using the relation of the x's and y's to the collision matrix and the fact that  $y_r = 0$  in our experiments, we can solve equations (1) and (2) for  $U_{ee}$ . We employ the following definitions:

$$\mathbf{L_c} = \left(\frac{\rho_c O_{c\ell}^{'}}{O_{c\ell}}\right)_{\mathbf{r_c} = \mathbf{a_c}} = \mathbf{S_{c\ell}} + i\mathbf{P_{c\ell}} \text{ where } \mathbf{S_{c\ell}} \text{ is the}$$

shift function and Pct is the penetration factor

$$\Omega_{c\ell} = \left(\frac{I_{c\ell}}{O_{c\ell}}\right)_{r_c} = a_c$$

The solution then becomes:

$$U_{ee} = \Omega_{e\ell}^{2} \left[ \frac{(1 - R_{rr}[L_{r} - B_{r}])(1 - R_{ee}[L_{e}^{*} - B_{e}]) - R_{re}^{2}(L_{e}^{*} - B_{e})(L_{r} - B_{r})}{(1 - R_{rr}[L_{r} - B_{r}])(1 - R_{ee}[L_{e} - B_{e}]) - R_{re}^{2}(L_{e} - B_{e})(L_{r} - B_{r})} \right] = \frac{z}{w}$$

Now  $\Omega^2_{\ e\ell} = e^{2i(\omega_{\ e\ell} - \phi_{\ e\ell})}$  where  $\omega_{\ e\ell}$  gives the Coulomb phase shift and  $\phi_{\ e\ell}$  gives the hard sphere phase shift. In our phase shift analysis we have separated the Coulomb phase shift. Therefore,

we define 
$$\Omega_{\text{elo}}^2 = e^{-2i\phi} e^{\ell}$$
 and  $U_{\text{eeo}} = \frac{\Omega_{\text{elo}}^2}{\Omega_{\text{el}}^2} U_{\text{ee}} = \cos^2 X_{\ell} e^{2i\delta_{\ell}}$ ,

where  $\boldsymbol{\delta}_{\ell}$  and  $\boldsymbol{X}_{\ell}$  are real. These definitions then give:

$$\delta_{\ell} = -\varphi_{e\ell} + \arctan\left(\frac{Im(zw^*)}{Re(zw^*)}\right) \tag{3}$$

$$X_{\ell} = \arccos(|U_{eeo}|^{1/2})$$

We thus wish to compare  $\delta_{\ell}$  and  $X_{\ell}$  with the  $\delta_{J_{\Pi}}$  and  $X_{J_{\Pi}}$  from the phase shift analysis.

The relations are for a two-level problem with two open channels. If we take the limiting case of one channel (elastic) and one level, then only R<sub>ee</sub> remains. R<sub>ee</sub> is then given by  $\gamma_e^2/(E_{\lambda}-E)$ . The relation for U<sub>eeo</sub> is then:

$$\begin{split} \mathbf{U}_{\text{eeo}} &= \mathrm{e}^{-2\mathrm{i}\phi} \mathrm{e}^{\ell} \left[ \frac{1 - \mathrm{R}_{\text{ee}} \left( \mathbf{L}_{\text{e}}^{*} - \mathrm{B}_{\text{e}} \right)}{1 - \mathrm{R}_{\text{ee}} \left( \mathbf{L}_{\text{e}}^{*} - \mathrm{B}_{\text{e}} \right)} \right] \\ &= \mathrm{e}^{-2\mathrm{i}\phi} \mathrm{e}^{\ell} \left[ \frac{\left( 1 - \mathrm{R}_{\text{ee}} \left( \mathbf{L}_{\text{e}}^{*} - \mathrm{B}_{\text{e}} \right) \right)^{2}}{\left[ 1 - \mathrm{R}_{\text{ee}} \left( \mathbf{L}_{\text{e}}^{*} - \mathrm{B}_{\text{e}} \right) \right]} \right] \\ &\text{and} \quad \delta_{\ell} = -\phi_{\text{e}\ell} + \arctan \left[ \frac{-\mathrm{R}_{\text{ee}} \left[ \mathrm{Im} \left( \mathbf{L}_{\text{e}}^{*} \right) \right]}{1 - \mathrm{R}_{\text{ee}} \left[ \mathrm{Re} \left( \mathbf{L}_{\text{e}}^{*} \right) \right] + \mathrm{R}_{\text{ee}} \mathrm{B}_{\text{e}}} \right] \\ &= -\phi_{\text{e}\ell} + \arctan \left[ \frac{\gamma_{\text{e}}^{2} \mathrm{P}_{\text{e}\ell}}{\mathrm{E}_{\lambda} - \mathrm{E} - \gamma_{\text{e}}^{2} \left( \mathrm{S}_{\text{e}\ell} - \mathrm{B}_{\text{e}} \right)} \right] \\ &= -\phi_{\text{e}\ell} + \arctan \left[ \frac{\gamma_{\text{e}}^{2} \mathrm{P}_{\text{e}\ell}}{\mathrm{E}_{\lambda} + \Delta_{\lambda} - \mathrm{E}} \right] \text{ where } \Delta_{\lambda} = -\gamma_{\text{e}}^{2} \left( \mathrm{S}_{\text{e}\ell} - \mathrm{B}_{\text{e}} \right) \end{split}$$

A fit of phase shifts to this single level formula can be approached as a linear least-squares fitting problem using  $\gamma_e^2$  and  $E_{\lambda}$  as variable parameters. This will be done in our analysis for the second and third excited states of  $^7\text{Li}$  and  $^7\text{Be}$ . The other levels are treated as double levels or as single levels with an open reaction channel.

# (2) Extraction of the <sup>7</sup>Be Level Parameters

The second excited state of  ${}^{7}\text{Be}$  ( $\frac{7}{2}$ ) is well below the threshold for  ${}^{4}\text{He}({}^{3}\text{He}, p)^{6}\text{Li}$ . Because of this, the single level formula (with only an elastic scattering channel open) was used to fit the  $\frac{7}{2}$  phase shift near this level. As was mentioned before, the problem can be approached as a linear-least squares fit for a given radius. Several values of radius were tried and 4.0 Fermis was chosen as a suitable value. Good fits were also obtained for higher values of radius, but 4.0 Fermis was more consistent with results for the other levels fitted in  ${}^{7}\text{Be}$ . For lower radii, the values of the eigenenergy and reduced width change very rapidly and fall outside reasonable limits. The values obtained are shown in Table 14 and the fits are shown in Figure 54.

The two  $\frac{5}{2}$  levels forming the third and fourth excited states in  $^7$ Be have previously been analyzed as single levels because of the small reaction width of the  $^2$ F $_{5/2}$  level and the small elastic width of the  $^4$ P $_{5/2}$  level. In our analysis we used the single level formula to fit the lower level and obtain an elastic reduced width and eigenenergy. We then used the reduced widths as given in Ajzenberg and Lauritsen (1965) for trial values for the higher state. The parameters obtained for the lower state from the single level formula and the trial parameters for the upper state were then used in the double level formula for both an elastic and reaction channel. The trial parameters were found to give a good fit to the data. Variations of the eigenenergy or reduced width for the lower state produced poorer fits. Once again 4.0 Fermis was used as a radius for both states and both channels. Other radii were tried but the fits were not as good. With the eigenenergies and reduced widths fairly well

determined, the reaction width for the lower level was varied from the assumed value of 0.0. The values obtained for the various parameters are shown in Table 14 and the fits are shown in Figure 54.

The boundary values used in the fitting ( $B_e$  and  $B_r$ ) were set equal to -1 (the relative angular momentum of the two particles for each channel). This is a choice which is often used in the literature. Another common choice is to choose values which make the level shift zero at the resonance energy. For a single level, with or without a reaction channel, the two choices will give the same fit by simply adjusting the eigenenergy. For the double level formula, this is no longer the case. For the two  $\frac{5}{2}$  levels in  $^{7}$ Be, it was found that the boundary value in the reaction channel still did not affect  $\gamma_{\underline{e}}$  , using a radius of 4.0 Fermis. However, to obtain a good fit when the elastic channel boundary value was changed from -\( \ell, \) it was necessary to change the elastic reduced width of the upper level. For example, the use of the zero level shift boundary value required  $\gamma_{\mathbf{e}}$  to be approximately 2.4 times as large as for the -1 case. lower level was not appreciably affected. Some choices of boundary value and the best value of  $\gamma_{\rho}$  are shown in Figure 60. The central region of  $B_{e}$  in this figure indicates no fit for  $\gamma_{e}$  up to 0.5. No fit appeared likely for values as high as 0.6 in this region.

In the other computations involving these two levels, we raised the elastic width of the upper level until we could see it in the elastic phase shift. This sets an upper limit of  $\gamma_e^2 = .09$  for the elastic width of the upper level.

The  $\frac{7}{2}$  level at 9.3 MeV in  $^7$ Be was first analyzed as a single level with a reaction channel and elastic channel open. A base line was determined from the  $\frac{7}{2}$  phase shifts below resonance. This corresponded to  $0^{\circ}$  in the analysis. The reduced widths for elastic

scattering and for the reaction leading to  $^6\text{Li*} + p^1$  were varied as was the eigenenergy of the state. A best fit was obtained for several radii and 4.0 Fermis was again found to give the best results. Changing the boundary condition resulted only in a change in the best eigenenergy. The values obtained for the various parameters are shown in Table 14 and the fits are shown in Figure 54.

As a final step, we attempted to fit the two  $\frac{7}{2}$  levels with the double-level formula. To obtain a similar fit, it was necessary to reduce the reaction width of the top level and increase the elastic width. Unfortunately, the phase shifts above the lower level drop off much like hard sphere phase shifts. At the energy of the upper level they were too low to give fits as good as the single level fits obtained previously.

# (3) Extraction of the <sup>7</sup>Li Level Parameters

The extraction of the parameters for  $^7\text{Li}$  was carried out in essentially the same manner as for  $^7\text{Be}$ . The second excited state  $(\frac{7}{2})$  is below the  $^3\text{H}(\alpha,n)^6\text{Li}$  threshold and was treated as a single channel single level problem. Again, a best fit to the  $\frac{7}{2}$  phase shift (for a given radius) was obtained. Here too, 4.0 Fermis was chosen as a suitable radius. The values of excitation energy and reduced width for this level are shown in Table 14 and the fit to the  $\frac{7}{2}$  phase shift is shown in Figure 58.

The two  $\frac{5}{2}$  levels forming the third and fourth excited states of <sup>7</sup>Li were analyzed as a double level. A single-level analysis of the broad lower level gave an eigenenergy and reduced elastic width. These and values of the reduced widths for the upper level (from Ajzenberg and Lauritsen, (1965)) were used as trial values in the double-level formula. From these starting values best

values of eigenenergies and reduced widths were found. Changing the elastic reduced width and eigenenergy of the lower level produced poorer fits. The radius chosen was again 4.0 Fermis. A variation of the reaction width of the lower level was also tried. The values obtained are shown in Table 14 and the fits to the  $\frac{5}{2}$  phase shifts are shown in Figure 58. The reduced  $\alpha$ -width is in good agreement with that obtained in the analysis of the  $^6$ Li(n,  $\alpha$ ) H data by Schwarz, (1965). However, his nucleon width is ~30% higher than ours.

The boundary values used in the fitting were again taken as  $-\ell$ . A variation of the reaction channel boundary value changed only the eigenenergy as in the  $^7$ Be case. A change in the elastic channel boundary value required both an eigenenergy change and a change in the value of the elastic reduced width for the upper level. Some cases are shown in Figure 61. The behavior for central values of B<sub>e</sub> is similar to that for  $^7$ Be.

As in the  ${}^{7}$ Be case, the  $\frac{7}{2}$  level near 9.7 MeV in  ${}^{7}$ Li was fitted using a single level with both an elastic and reaction channel. It was difficult to determine from the phase shift analysis whether this level was best represented by a dispersion-shape or step-shape in the phase shift curve. Slightly better results were obtained with a dispersion-shape in the phase shift analysis, but the R-matrix formalism gave a better fit using a step-shape. Once again 4.0 Fermis was obtained as the best radius. The fit is shown in Figure 58 and the values of the reduced widths are shown in Table 14. The vertical dashed line shows the point in energy above which  $180^{\circ}$  has been subtracted from the calculated phase shifts to compare them with the values obtained in the phase shift analysis.

## (4) Discussion of the Derived Level Parameters

The fitting of the s-wave phase shifts by hard sphere scattering phase shifts has been discussed in Part III B(4).

An attempt was made to determine the reduced widths of the ground state and first excited state in <sup>7</sup>Li and <sup>7</sup>Be by fitting the p-wave phase shifts. Reasonable fits were obtained at most radii used, but the values of the resonance parameters were not reasonable. Many of the reduced widths were negative and none predicted the proper location for the positions of the levels.

There are no known d-wave levels in the two nuclei and the d-wave phase shifts remain small and inactive in the analysis. Therefore, no attempt was made to fit these phase shifts with the R-matrix formalism.

Good fits to the second excited state  $(\frac{7}{2})$  of both <sup>7</sup>Be and <sup>7</sup>Li were obtained with the single-level, single-channel R-matrix formalism. The reduced widths agree quite well between the nuclei. In addition, the use of the same radius as that used by Barnard (1964) (4.4 Fermis) yields a reduced width in agreement with his results to within the expected errors. The reduced widths for the states tend to increase fairly rapidly as the radius is decreased from 4.4 Fermis.

The elastic reduced widths of the lower  $\frac{5}{2}$  level in both nuclei were also obtained using the single-channel, single-level formalism. Good fits were obtained except for the regions on the upper edge of the lower  $\frac{5}{2}$  levels. Here the phase shifts calculated from the R-matrix formalism lie below those obtained from the phase shift analysis. This difficulty was not (as was previously hoped) resolved by analyzing the two  $\frac{5}{2}$  levels in each nucleus with the two-channel, two-level R-matrix formalism. The nucleon

reduced widths of the lower  $\frac{5}{2}^{-}$  levels were determined from the double-level formula and were quite small in both cases. The errors for these reduced width amplitudes are quite large, but the fits to the phase shifts indicate that they have a negative sign in both  $^{7}$ Li and  $^{7}$ Be. The agreement of the reduced widths of the lower  $\frac{5}{2}^{-}$  levels between the nuclei is very good. However, for  $^{7}$ Be the reduced width obtained for this level is considerably larger than the value obtained by Tombrello and Parker (1963), even when the difference in radii is considered. This difference may be a result of the difference of sign in the p-wave splitting between the two analyses.

The analysis of the  $^4\mathrm{P}_{5/2}$  levels was done with the double-channel, double-level formula in both nuclei. Good fits were obtained for  $^7\mathrm{Be}$  using values in agreement with those found in Ajzenberg, Lauritsen (1965). The fits obtained for  $^7\mathrm{Li}$  were a compromise between a good fit to the elastic phase shift and a good fit to the  $\mathrm{X}_{5/2}$  parameter. The values obtained are in agreement with those given in Ajzenberg, Lauritsen (1965). There is also good agreement between the two nuclei.

The level at 9.3 MeV in  $^7\text{Be}~(\frac{7}{2}^-)$  was analyzed as a two-channel, single-level problem. The fits are least accurate on the high side of the resonance. This may well be a result of the possible errors in the reaction data used to fix the values of  $X_{7/2}^-$  for this level. The reduced width for  $^6\text{Li*} + \text{p}^1$  is seen to be much larger than that for  $^3\text{He} + \alpha$ . This feature is also apparent in the scattering data itself.

The decay of this level appears to proceed almost entirely by  $^6\text{Li*} + \text{p}^1$  as opposed to the channel  $^6\text{Li} + \text{p}$ . Recent work by Christensen and Cocke (1966) has shown the presence of a

small f-wave admixture in the configuration of the 2.43 MeV state in <sup>9</sup>Be. The decay of the 9.3 MeV level in <sup>7</sup>Be also offers an opportunity to determine such an f-wave admixture. The predominant mode is  ${}^{7}\text{Be} (9.3) \rightarrow {}^{6}\text{Li} (2.184, 3+) + p by a p-wave decay. The$ decay of this level to <sup>6</sup>Li (g. s.) + p requires the <sup>6</sup>Li and p to be in a relative f-state of angular momentum. Thus the ratio of the reduced widths for these two channels is a measure of the relative f-wave admixture in the level. A small amount of yield in the ground state protons was attributable to the decay of the 9.3 MeV level. The effect was seen at three angles. These data were used to form angular distributions from which the total cross section was crudely determined. The ratio of  $\gamma_{g. s.}^2/\gamma_{1st ex.}^2 = \gamma_{f-wave}^2/\gamma_{1st ex.}^2$  $\gamma_{p-\text{wave}}^2$  was determined by the relation  $\sigma_{g. s.} P_1/\sigma_{1st ex.} P_3 =$  $\gamma_{g. s.}^2/\gamma_{1st ex.}^2$  which applies at the resonance energy.  $P_{\ell}$  gives the penetration factor for each decay. The value obtained for the ratio of reduced widths was  $(16^{+5}_{-10})\%$ . The high errors reflect the small size of the effect and the small amount of data available. This figure represents a value of  $(1.3^{+0.4}_{-0.8})$  MeV for the ground state reduced width.

The upper  $\frac{7}{2}$  level in  $^7\text{Li}$  was treated in the same manner as the corresponding level in  $^7\text{Be}$ . Although the phase shift analysis was not as satisfactory, the values of reduced widths agree fairly well between the two levels. From our data, it was not possible to obtain an estimate of the f-wave admixture in this level.

The fits to the phase shifts were found to be consistently best for a radius of 4.0 Fermis. For the first  $\frac{7}{2}$  and first  $\frac{5}{2}$  in both nuclei, a higher choice of radius gave a similar fit and required a smaller reduced width. For the  $^4\mathrm{P}_{5/2}$  levels, a larger radius

(4.4 Fermi) produced a poorer fit. For example, the parameters  $X_{5/2}^-$  calculated for this level in  $^7\mathrm{Be}$  were too high below the level and too low above to fit the experimental parameters. The best results for the higher  $\frac{7}{2}^-$  levels also required a radius of 4.0 Fermis.

The behavior of the reduced width as a function of boundary value was of considerable interest. Figures 60 and 61 show the value of the elastic reduced width amplitude ( $\gamma_e$ ) as a function of the elastic boundary value  $B_e$ . The value of  $\gamma_e$  is that which best fits the phase shifts for that value of  $B_e$ . The regions of  $B_e$  near -1.6 are where the boundary value results in zero level shift. Note the region of very high  $\gamma_e$  between this region and Be = -3.0 or  $-\ell$ . We used  $Be = -\ell$  in extracting the reduced widths.

The effect is similar in both nuclei and only occurs where the double-channel, double-level program is used. For a radius of 4.0 Fermis, changing the value of the inelastic boundary value had the effect of changing only the eigenenergies. At other radii (such as 4.4 Fermis) the inelastic boundary value also had a similar effect on the best value of  $\gamma_e$ .

## IV. COMPARISON WITH NUCLEAR MODELS

#### A. Introduction

The development of more sophisticated nuclear models and the extension of experimental knowledge of nuclei have a reciprocal effect upon one another. The purpose of the model calculations is first to attempt to fit known experimental data with a number of parameters pertinent to the particular model. With these parameters determined, other quantities of interest may be calculated. These quantities can be compared with experiment or used to predict future experimental findings. Predictions of this sort then provide an incentive for the experimentalist to measure the quantities and thereby prove or disprove the model's predictions. These measurements provide, in turn, a basis for yet more complex models.

Our part in this process has been the determination of the excitation energies and reduced widths discussed previously and shown in Table 14. We now wish to compare (qualitatively, at least) these measurements with the predictions of some of the more recent nuclear models.

There are two major reasons for the qualitative nature of these comparisons. The first concerns the way in which the models are developed. It is customary to use, as a starting set of wave functions, those appropriate to a central potential such as an infinite depth harmonic oscillator potential well. The result is a series of bound levels. It has been pointed out that for low-lying levels of a nucleus, the difference between a finite and infinite depth makes only a small difference in the levels and wave functions. However, in our case, the models are used to predict properties

of the nucleus far above the threshold for two-particle breakup. It does not seem unreasonable that the predictions of the models in this region should differ quantitatively from the experimental values. In fact, the degree of qualitative agreement is surprisingly good.

The second reason for the qualitative comparison lies in the fact that the reduced widths for the various levels have not yet been calculated from the wave functions for the various configurations. The following discussion will compare our results with those of the cluster model, the rotational model and the shell model.

## B. Model Comparisons

## (1) The Cluster Model

Several calculations have been made in an attempt to treat  $^{7}$ Li and  $^{7}$ Be as two clusters of nucleons such as an  $\alpha$  particle and a triton (Tang. 1961). A variational procedure is used with trial wave functions to determine an upper bound to the energies of various levels. The wave functions consist of an internal wave function for each cluster and a wave function describing the relative motion of the clusters. The potential used is a finite depth central potential taken between each pair of particles. In the paper mentioned above a spin-orbit potential is also considered. The calculations were done for the <sup>2</sup>P and <sup>2</sup>F levels in <sup>7</sup>Be and <sup>7</sup>Li which should be well represented by the  $\alpha$  + mass 3 cluster scheme. The calculated energy levels agree fairly well with the first and second excited states. The  $^2$ F $_{5/2}$  level is predicted at a lower level than is found experimentally (as is the case in most of the model calculations) although it had not been identified at the time of these calculations. In a later paper (Khanna, 1961), a 6Li + n cluster calculation is made and an

approximate number is obtained for the position of the  $^4P_{5/2}$  level. At the same time, it is shown that a positive parity level near 6.5 MeV in  $^7Li$  is unlikely.

The cluster model calculations are of interest for several reasons. They show that the grouping of the nucleons into these clusters is a reasonable approach to the problem. The number of parameters which are varied to obtain the energy levels is smaller than in the usual shell model calculations. Also an attempt is made to use two-body central forces (derived from nucleon-nucleon scattering) between individual particles instead of placing the p-shell nucleons in a common potential well.

There are also some disadvantages. The calculations are mainly limited to the lowest levels of  $^7\mathrm{Li}$  and  $^7\mathrm{Be}$  and are rather approximate in that a spin-orbit potential is not used in part of the work. Because of this and an approximate choice for some of the trial wave functions, the higher energy levels tend to disagree with the experimental values. In addition, the wave functions are suitable for bound states and hence do not provide information on the particle scattering. It would be interesting to have these calculations done for the continuum energy range allowing several configurations such as  $^6\mathrm{Li}$  + nucleon,  $^6\mathrm{Li}^*$  + nucleon and  $^6\mathrm{Li}$  + mass 3.

## (2) The Rotational Model

Consideration has also been given to the rotational model as a description for the light nuclei. In particular, Chesterfield and Spicer (1962) have made calculations for <sup>7</sup>Li (and <sup>7</sup>Be) using this model. The model calculates the energy for a number of configurations using a Nilsson model potential. These energies are calculated as functions of a deformation parameter  $\epsilon$  which is a measure

of the non-sphericity of the harmonic oscillator well used in the potential. The energy minimum for each configuration is used to determine the best value of  $\varepsilon$ .

Each configuration is then used as a basis state for the formation of a rotational band. If the energy of a basis configuration is given by  $\mathbf{E_K}^0$  then the energy of the other levels of the band is given by:

$$E(I) = E_K^0 + A[I(I+1) + \delta_{K,1/2} a(-1)^{I+1/2}(I+1/2)]$$

where  $A = h^2/2I_i$  (I<sub>i</sub> is the nuclear moment of inertia), I is the total angular momentum of the nucleus, and a is a decoupling parameter defined by Nilsson (1955). K is the projection of I on the body z-axis. A is chosen to give a best fit to the data. Of the six bands considered in these calculations, three are of positive parity. Since no positive parity levels were found in this work, we will not consider them further. The band based on the  $\frac{1}{2}$  level at .48 MeV seems to represent the ground state and first three excited states quite well. The second band based on a  $\frac{3}{2}$  level at 5.62 MeV predicts the  ${}^{4}P_{5/2}$ level and has a  $\frac{7}{2}$  level near an energy appropriate to the position of the  ${}^{4}D_{7/2}$  level. The  $\frac{3}{2}$  state forming the basis for this band does not appear to exist and is thought to be a spurious representation of the ground state. The third band is based on a  $\frac{1}{2}$  level which also has not been observed. A  $\frac{3}{2}$  level in this band could represent the level seen by Harrison (1966) at 9.8 MeV in <sup>7</sup>Be. The other members of this band have not been identified. The calculated levels which fit our current level scheme are shown in Figure 62b.

This model reproduces the lowest five levels in  $^7\mathrm{Li}$  and  $^7\mathrm{Be}$  quite well (with the exception of the  $\frac{3}{2}^-$  basis of the second band).

It also gives good agreement with experiment for the ground state electromagnetic moments, the de-excitation of the first excited state and the decay of  $^7\mathrm{Be}$ . The use of this model to calculate the f-wave nucleon decay of the  $^4\mathrm{D}_{7/2}$  level gives values of  $^2\mathrm{f-wave}/^2\mathrm{from}$ . 06 to .22 for values of  $\varepsilon$  from 0.4 to 0.8, respectively. The energy minimum for the band occurs at  $\varepsilon$  = 0.4. The calculations are relatively uncomplicated and it is interesting to see them produce such satisfactory results.

The model has, of course, the problem of trying to represent a continuum situation with bound state wave functions. Thus the scattering of particles has not been considered, nor have reduced widths for various configurations for the levels been calculated. The basis states of the second and third bands are also a problem since they do not appear to exist. However, it appears that these levels can be eliminated from the predictions without changing the remainder of the calculations.

## (3) The Shell Model

Most of the calculations for <sup>7</sup>Li and <sup>7</sup>Be have made use of the shell model. The model normally considers negative (normal) parity levels formed by a  $(1s)^4(1p)^3$  configuration. Several surveys of the light nuclei (including <sup>7</sup>Be and <sup>7</sup>Li) have been made using the shell model (Inglis, 1953, Kurath, 1956). The most recent calculations are those of Barker (1966). We shall be primarily concerned with these calculations. The wave functions used are those of an infinite depth harmonic oscillator potential well.

The L-S coupling limit is used in forming the total wave function of the three 1p shell nucleons. A residual potential between each pair of p- shell nucleons is then assumed. The potential

contains a spin-orbit term, as well as space, spin, and charge exchange operators. The energy levels are then calculated and a best fit to the data is obtained by varying the parameters available. This determination of the various parameters then allows predictions of level positions and configurations to be made at higher energy.

The energy levels obtained by Barker are in good qualitative agreement with the schemes found by the earlier investigators mentioned at the beginning of the section. Data at higher energies have enabled him to extend his predictions with more accuracy than was possible before. These predictions for the energy level schemes for <sup>7</sup>Be and <sup>7</sup>Li are shown in Figure 62c. Also shown in Figure 62 are the rotational model predictions and the experimental results. The first four excited states of <sup>7</sup>Li and <sup>7</sup>Be show agreement in energy and configuration with experimental observations. We have identified our highest level with his  $\frac{7}{2}$  level which consists mainly of the  ${}^{4}D_{7/2}$  configuration. Our relative nucleon and a widths for this level are in good qualitative agreement with the predicted configuration. The energy level predicted for the  $^4$ D $_{7/2}$  level also fits our experimental data. The calculation predicts a  $\frac{3}{2}$  level below the  $\frac{7}{2}$  level, whereas the data on  $^7$ Be from our work and that of Harrison (1966) show the  $\frac{3}{2}$  level at a higher energy than the  $\frac{7}{2}$  level.

The model calculations predict  $\frac{1}{2}$ ,  $T=\frac{1}{2}$  and  $\frac{3}{2}$ ,  $T=\frac{3}{2}$  for the 7th and 8th excited states. The  $\frac{1}{2}$ ,  $T=\frac{1}{2}$  level has not been seen, but the  $\frac{3}{2}$ ,  $T=\frac{3}{2}$  level of Harrison's work is in agreement with the predictions.

The predictions of this nuclear model appear to be quite good even though the problem is not considered in the continuum. Since the only configuration considered is  $(1s)^4(1p)^3$ , the problem of the occurrence or non-occurrence of the positive parity levels does

2000

not come up. The ground state magnetic moment, log ft values for the <sup>7</sup>Be decay and the lifetime of the first excited state are also calculated and agree with the experimental values. Quantities such as the quadrupole moments depend sensitively on configuration mixing and since this was not considered, the calculated values do not give a good fit to the experimental values.

The models discussed all make fairly good predictions for the lower levels. It is to be expected that the more recent shell model calculations of Barker will give better high energy agreement. This results from a greater abundance of experimental data and also from a larger number of fitting parameters than were used in the rotational model. None of the models, however, has attempted to describe the various particle scattering processes. A description of this sort would certainly be of great interest.

#### V. CONCLUSIONS

The previous section has shown the good qualitative agreement between the predictions of nuclear models and the results of this work. It is also worthwhile to point out the high degree of agreement between the experimental results for the two nuclei. This is especially evident in the reduced widths for the various levels. The two  $\frac{5}{2}$  levels show excellent agreement between the two nuclei and the agreement for the two  $\frac{7}{2}$  levels is also quite good. It is particularly nice to see the close agreement as to the structure of the nucleus for these levels (that is, the relative widths for nucleon versus  $\alpha$  emission). One would expect this sort of agreement in mirror nuclei and it is gratifying to see it verified experimentally.

The agreement of the non-resonant phase shifts between the two nuclei is also very good. The p-wave phase shifts in particular show the same sign for the splitting and the same energy behavior in both nuclei. In our work, however, we were unable to account for the behavior of the p-waves in terms of the influence of the ground and first excited states in <sup>7</sup>Li and <sup>7</sup>Be. Whether this behavior can be explained by high energy p-wave levels remains open to question.

The existence of positive parity states in the range of this work has been a question for some time. For example, a paper by Lane (1960) uses configurations  $(1s)^4$   $(1p)^2$  2s,  $(1s)^4$   $(1p)^2$  1d and  $(1s)^3$   $(1p)^4$  to predict many low-lying, positive parity levels. On the experimental side, the  ${}^2F_{5/2}$  level in  ${}^7Be$  was thought to be a  $\frac{3}{2}^+$  level in some of the earlier work (e.g., see Marion (1957)).

Earlier experiments on <sup>7</sup>Be (Barnard, 1964), (Tombrello, 1963) as well as this work have found no evidence for a positive parity level within the energy range investigated.

The work which has been described examines a large energy range for both <sup>7</sup>Li and <sup>7</sup>Be. While good agreement between the two nuclei and with the nuclear shell model has been shown, there are still several experimental and theoretical problems of interest.

In the R-matrix analysis, the calculated phase shifts have a general tendency to lie below those obtained from the data on the high energy side of a resonance. It does not appear that one can account for this by errors in the phase shift analysis since the effect has the same sign for all the resonances.

The behavior of the reduced widths as a function of the boundary value in the R-matrix analysis is also a matter of some concern (see Figures 59 and 60). These results indicate that in the double-level analysis, it is possible to fit the data with a range of  $\gamma_e$ 's which vary by a factor greater than five. Although this problem did not occur for the single-level analyses, it is still rather disturbing and should be investigated further. Fortunately, most analyses of data are done using single-level formulas and are therefore safe from this trouble.

The subject of an f-wave admixture in the predominantly p-wave decay of the  $^4D_{7/2}$  level in  $^7Be$  is another matter of considerable interest. A better determination of the f-wave decay width for this level in both  $^7Be$  and  $^7Li$  is needed and will be attempted in the near future.

In analogy with the work of Harrison (1966), it would be of interest to investigate  $^{7}$ Li using  $^{6}$ Li + n as an entrance channel.

Plans are currently being made to conduct an investigation of this sort.

In general, one can say that our work on <sup>7</sup>Be and <sup>7</sup>Li has been quite rewarding, due to both the knowledge we have gained about the nuclei from our investigations and to the number of interesting side-tracks which it has suggested for future exploration.

## APPENDIX A ELECTRONICS

## (1) Beam Current Integration

The method of beam current integration was essentially the same in both experiments. Electric and magnetic suppression were used on a Faraday cup (see Figure 1) which collected the beam after passage through the gas target. The magnet was annular in form and the field was in the plane of the ring so that electrons from the chamber would be deflected and not allowed to reach the Faraday cup. Electric suppression was supplied by a 300 V. battery on the  ${}^3{\rm H}(\alpha,\alpha){}^3{\rm H}$  experiment and by a 300 V. bias supply in the  ${}^4{\rm He}({}^3{\rm He},{}^3{\rm He}){}^4{\rm He}$  experiment.

The collected charge was fed through a BNC cable to an integrator of the type described by E. J. Rogers (1963) at Brookhaven. Our integrator was constructed by M. Dwarakanath. It was used in our experiments because of its high accuracy in measuring small currents. The error indicated by our calibrations was less than 0.5%. Calibration was accomplished by carefully measuring the voltage across a precision resistor through which current was fed to the integrator. A current was used which approximated the beam current to avoid inaccuracies due to leakage.

Basically, the integrator works in the following manner. The input current is applied to a Miller integrator circuit which produces an output from -0.0 to -10.0 Volts. When this negative output voltage exceeds -1.5 V., an amplitude discriminator gates a charge pump which delivers negative charge pulses of a precise magnitude to the integrator until the output falls below -1.5 V. The circuit is designed so that one charge pulse raises the integrator

output by 1 V. Hence the integrator output voltage will lie between -0.5 and -1.5 V. at the completion of an integration.

The charge pump delivers charge pulses at a 500 cps rate determined by a continuously running multivibrator. An external scalar then simply counts the number of charge pulses delivered by the charge pump, thus determining the total integrated charge. In our work, integrations of 5000 to 10,000 charge pulses were used to minimize inaccuracies due to neglecting a fraction of a pulse.

## (2) Particle Detection and Charge Separation

In both experiments it was necessary to separate the charge 1 hydrogen isotopes from the charge 2 helium isotopes. To accomplish this a counter telescope was used. The telescope consisted of a thin ( $\Delta E$ ) counter and a thick (E) counter sandwiched together. The schematic diagram in Figure 5 shows the electronics configuration used in both experiments.

The  $\Delta E$  counter was a thin, silicon surface-barrier transmission detector. Detectors used were  $26\mu$  or  $39\mu$  in thickness. The energy loss in the thin  $\Delta E$  counter is roughly proportional to  $Z^2/v^2$  where Z is the charge of the particle and v is its velocity. For particles of the same energy passing through the  $\Delta E$  detector, the charge 1 particles will lose less energy than those of charge 2. A bias level was set in the spectrum from the  $\Delta E$  counter to make the desired separation.

The E counter was a silicon surface-barrier or lithium-drifted detector of sufficient thickness to stop the particles.

Detectors used ranged from 300µ to 3mm in thickness. The pulses from the counters were amplified by Tennelec preamplifiers

and then fed into a summing amplifier to obtain a total energy pulse. The signal from the  $\Delta E$  preamplifier was split for use in the charge separation. A bias level "b" was set in this spectrum. If the pulse from this counter was greater than "b", then the particle was charge 2 and the sum of the pulses E and  $\Delta E$  was routed to the second 200 channels of the 400-channel Radiation Instrument Development Laboratories multi-channel analyzer. If the pulse was less than "b", then the particle was charge 1 and the sum of the pulses was routed to the first 200 channels. In this way a separate spectrum is obtained for each charge.

The method works quite well down to the point where particles of both charges have the same energy and the charge 1 particles lose all their energy in the  $\Delta E$  counter (about 1.5 MeV for protons). This technique was especially valuable in the  $^3H(\alpha,\alpha)^3H$  experiment where the tritons and  $\alpha$ 's were often very close in energy.

## APPENDIX B DATA REDUCTION

Data obtained in the two elastic scattering experiments were very similar in form. The raw data consisted of spectra from the 400-channel analyzer. Figure 6 shows a typical spectrum for the  ${}^3\text{H}(\alpha,\alpha){}^3\text{H}$  experiment and Figure 33 shows a typical spectrum for the  ${}^4\text{He}({}^3\text{He},{}^3\text{He}){}^4\text{He}$  experiment. For each of these spectra data on length of time required for the integration (clock time), length of live time on the 400-channel analyzer and the time of day were taken. The gas temperature and pressure were also noted at intervals of one half to one hour.

The next step was to obtain the yield of particles (Y) in each group by integrating the peaks observed in the spectra. A great amount of time was saved in this process by the use of a computer program written by Mr. Michael Mahon. The program uses the Burrough's 220 computer to display the spectra from the analyzer on a cathode ray tube. In Figure 7(a) we see a photograph of such a display. The data may be displayed on any desired vertical or horizontal scale. In particular, a logarithmic vertical scale was often used. In Figure 7(b), we see the use of a light pen to draw in a background under a peak. Figure 7(c) shows the spectrum after the peak has been integrated between two points flagged by the light pen and the background subtracted. The channel numbers of the horizontal integration limits are shown as well as the counts in each of these channels. Figure 7(d) shows the values of the total counts between the two channels; the counts in the background and the difference between the two. This process can be continued for all the groups in the spectrum allowing one to extract yields for all the groups in about one to two minutes per spectrum. The quantities

displayed on the screen are also printed out on tape by the computer.

The yields (Y) for each group are then converted to differential cross sections in the center-of-mass system by the relation

$$\frac{\mathrm{d}\sigma(\theta_{\mathrm{cm}})}{\mathrm{d}\Omega} = \frac{Y(\frac{\mathrm{CT}}{\mathrm{LT}}) \left(\frac{\mathrm{P_o}}{\mathrm{P}}\right) \left(\frac{\mathrm{T}}{\mathrm{T_o}}\right) \left(\frac{\mathrm{CM}}{\mathrm{LAB}}\right) \sin\theta_{\mathrm{Lab}}}{Q_{\mathrm{m}} G_{\mathrm{o}} N_{\mathrm{o}}}$$

where:  $\frac{d\sigma}{d\Omega}$  is the differential cross section in the center-of-mass system.

Y = the yield of counts in a group on a spectrum.

T = the ratio of actual integration time (clock time) to the live time on the analyzer.

 $\frac{P_0}{P}$  = the ratio of standard pressure 76.0 cm. of Hg to the gas pressure used in the target.

 $\frac{T}{T_0}$  = the ratio of the target temperature to standard temperature (273. 18°K.).

CM LAB = the ratio of the center-of-mass cross section to the laboratory cross section.

 $\theta_{Lab}$  = the laboratory scattering angle.

 $\theta_{cm}$  = the center-of-mass scattering angle.

 $Q_{m}$  = the number of incident particles.

 $N_{\odot}$  = the number of target nuclei per cubic centimeter at  $T_{\odot}$  and  $P_{\odot}$ .

Go = Ar w/Rh where Ar is the area of the rear slit in the collimator, R is the distance from target center to the rear slit, h is the distance from front to rear slit, and w is the width of the front slit. This is essentially the target thickness at 90° in the laboratory multiplied by the solid angle subtended by the slit system.

This form for  $G_0/\sin\theta_{\rm Lab}$  is a first order approximation. A discussion of higher order terms is contained in the thesis by L. Senhouse (1964) and in articles by Breit, Thaxton and Eisenbud (1939) and by Silverstein (1959). See Figure 8 for a schematic of the geometry for  $G_0$ .

The following is a sample calculation for  $\frac{d\sigma}{d\Omega}$  at E<sub>Lab</sub> = 7.953 MeV,  $\theta_{Lab}$  = 31.6°  $\theta_{cm}$  = 54.7° in the  $^4\text{He}(^3\text{He}, ^3\text{He})^4\text{He}$  experiment.

$$\frac{d\sigma(54.7^{\circ})}{d\Omega} = \frac{(5833) \left(\frac{1.82}{1.81}\right) \left(\frac{76.0}{.8558}\right) \left(\frac{297.1}{273.18}\right) (.3774) (.52399)}{Q_{\rm m} \left(4.842 \cdot 10^{-4}\right) \left(2.687 \cdot 10^{19}\right)}$$

$$= \frac{8.6144 \cdot 10^{-2}}{Q_{\rm m}}$$

$$Q_{\rm m} = T \frac{V}{R} \frac{1}{Q_{\rm p}}$$

$$Q_{\rm m} = \frac{14300}{60} \cdot \frac{1.3551}{15.121 \cdot 10^{6}} \cdot \frac{1}{(1.602 \cdot 10^{-19} \cdot 2.0)} = 9.035 \cdot 10^{13}$$

Where T is the time in seconds to complete an integration using a current determined by a voltage V across a resistance R.  $Q_p$  is the charge per beam particle in Coulombs. Thus

$$\frac{d\sigma(54.7^{\circ})}{d\Omega} = \frac{8.614 \cdot 10^{-12}}{6.666 \cdot 10^{13}} = 129.1 \cdot 10^{-27} \quad \frac{cm^{2}}{sr} = 129.1 \quad \frac{mb}{sr}$$

Calculations on the  $^3$ H( $\alpha$ ,  $\alpha$ )  $^3$ H experiment are essentially the same. The only additional complication was in determining what fraction of the target gas was actually tritium, since the normal hydrogen contamination was of the order of 27%. To make this determination we made calibration runs using the reaction  $^1$ H( $\alpha$ ,  $\alpha$ )  $^1$ H at 0.5 MeV steps at the same angles as the  $^3$ H( $\alpha$ ,  $\alpha$ )  $^3$ H data. The values of  $\frac{d\sigma}{d\Omega}$  were computed as above. The proton groups in the  $^3$ H( $\alpha$ ,  $\alpha$ )  $^3$ H data were then used to determine the same  $\frac{d\sigma}{d\Omega}$  assuming that all the tritium was hydrogen. The ratio of these two  $\frac{d\sigma}{d\Omega}$  's was then used as a measure of the hydrogen fraction in the tritium gas.

Data on <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li was also reduced in the same manner as that on <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He) <sup>4</sup>He.

Corrections were applied to the nominal beam energies to correct for the energy loss in gas cell foils and target gas. These values were calculated from the stopping cross sections of Demirlioglu (1962) using our data on pressure and foil thickness. In the case of the  $^3$ H( $\alpha$ ,  $\alpha$ )  $^3$ H data the beam entrance foil was found to be considerably thicker (approximately 30%) than its nominal thickness. The thickness used in the energy corrections was determined by forcing the positions of the narrow  $\frac{7}{2}$  resonance near 5 MeV and the narrow  $\frac{5}{2}$  resonance near 11.5 MeV to agree with the known positions of these levels in  $^7$ Li. Values of the corrections for the several experimental configurations are shown in Table 2.

#### APPENDIX C

#### TRITIUM TARGET PREPARATION

Tritium, the mass 3 isotope of hydrogen, decays by  $\beta^-$  emission to  $^3$ He. The end point energy of this decay is approximately 18 keV. An 18 keV electron is stopped in the windows of most of the common radiation monitoring devices. For this reason, special precautions and monitoring devices are used with tritium. As an isotope of hydrogen, this gas readily exchanges with any hydrogen in a material to which it may be exposed. We have attempted to minimize this exchange by using hydrogen-free materials in our gas handling systems.

Tritium was obtained in 2 cc STP lots (5 curies of radioactivity) from Oak Ridge. It arrives in a small glass vial and may
or may not be mixed with a helium carrier (see Figure 4). To
avoid dangerous leaks of tritium into the vacuum system or atmosphere we store it in our apparatus in the form of uranium tritide.
At room temperature, properly prepared uranium acts as a good
pump for hydrogen isotopes. The reservoir was constructed of
stainless steel and silver soldered at the joints. A schematic
diagram is shown in Figure 3. Electrical feed-throughs carry
current to the nichrome wire coil which is used to heat the uranium
tritide and evolve the tritium gas. Asbestos cloth electrically
insulates the wires from the tube, and an outer cloth layer directs
more heat to the tube. Glass wool keeps the uranium chips in the
heated portion of the reservoir.

Uranium chips are cut from a rod on a lathe and cleaned with acetone. They are then deoxidized in a 30% solution of warm nitric acid, placed in the reservoir and heated to approximately

 $600^{\circ}$  C with the heating coil while being pumped on with a liquid nitrogen trapped diffusion pump. When the uranium is thoroughly outgassed, it is cooled in a hydrogen atmosphere approximately 40 psi.). Reheating and cooling in this atmosphere is repeated several times, until approximately 40 atmospheric cubic centimeters are absorbed and evolved with each cooling and heating. Heating and cooling in  $H_2$  causes the metal to powder and become porous, thus giving it a high effective surface area. Once this has been accomplished, the uranium is heated and pumped on while being agitated for approximately one day to evolve all the  $H_2$  so as to avoid contaminating the tritium.

The prepared reservoir and gas vial are placed in a transfer manifold and the system is checked with a helium leak detector. A schematic of the transfer manifold is shown in Figure 4. The reservoir is opened to the manifold and leak checked. The manifold is then closed off from the leak detector and the internal pressure is monitored with a Hasting's vacuum gauge. Nuts holding the sylphon in an expanded position are backed off and the sylphon compresses. This allows the brass plunger to move in and break the neck on the vial. The tritium is quickly absorbed by the uranium in the reservoir. The valve to the reservoir is then shut off and the reservoir and valve removed from the manifold. The whole operation is carried out in the hot laboratory under a hood. An open ended ionization chamber (sniffer) is used to monitor the tritium level in the area. The tritium reservoir is then put in place on the chamber gas handling system.

## APPENDIX D EXPERIMENTAL ERRORS

## (1) Types of Errors

Errors in both the  ${}^3\text{H}(\alpha,\alpha){}^3\text{H}$  and  ${}^4\text{He}({}^3\text{He},{}^3\text{He}){}^4\text{He}$  experiments were of two forms. Systematic errors are those involving inaccuracies in quantities related to the chambers and electronics. These errors are independent of the energy of the scattered particles. The second group of errors consist of relative errors such as those involved in subtracting background and statistics of counts in peaks. These errors are highly energy and angle dependent.

## (2) Systematic Errors

## (a) Target Particles

The error in the number of target particles per cubic centimeter depends on the accuracy of the pressure and temperature readings and on the partial pressure of the target gas. In the  $^4$ He( $^3$ He,  $^3$ He) $^4$ He experiment the target gas was not contaminated with other gases; however, in the  $^3$ H( $\alpha$ ,  $\alpha$ ) $^3$ H experiment the hydrogen contamination of the tritium rose to approximately 27%. The estimated error in the target particle density from this cause is 3%. The error in determining the temperature and pressure on both experiments is estimated at less than .5% with the exception of the high energy  $^4$ He( $^3$ He,  $^3$ He) $^4$ He experiment where it is less than 1%.

## (b) Incident Particles

The error in the charge collection is less than .5% as determined by integrator calibrations.

#### (c) Detector Geometry

The error due to approximating the differential cross section expression by the use of  $G_{O}$  is estimated at less than .1% using the calculations of Senhouse (1964). The errors in the measurement of the quantities involved in  $G_{O} = \frac{A_{x}W}{Rh}$  give errors of less than .5% for  $^{4}\text{He}(^{3}\text{He}, ^{3}\text{He})^{4}\text{He}$  and less than .25% for  $^{3}\text{H}(\alpha, \alpha)^{3}\text{H}$ . The only angular dependent parameter in the list of systematic errors is  $\sin\theta_{Lab}(\frac{C.M.}{Lab})$ . The error in both experiments for  $\theta_{Lab}$  is estimated at .1°. This leads to a maximum error in  $\sin\theta_{Lab}(\frac{C.M.}{Lab})$  of less than .8%.

#### (d) Resultant Systematic Errors

The resultant systematic error is then less than 3.2% for  ${}^3\text{H}(\alpha,\alpha){}^3\text{H}$  and less than 1.1% for  ${}^4\text{He}({}^3\text{He},{}^3\text{He}){}^4\text{He}$  below 14.8 MeV. For the high energy  ${}^4\text{He}({}^3\text{He},{}^3\text{He}){}^4\text{He}$  data, it is less than 1.5%.

#### (3) Relative Errors

## (a) Sources of Relative Errors

The relative errors are those involving the differences between the individual spectra and the judgement of the experimenter in reducing the data. They arise primarily through the background subtractions and the statistics of the peaks.

# (b) Relative Errors in the $^3\text{H}(\alpha,\alpha)^3\text{H}$ Experiment

In the  $^3$ H( $\alpha$ ,  $\alpha$ )  $^3$ H experiment, these difficulties appeared in several ways. At the lower energies, the background of particles

scattered from the walls and foils of the gas cell became far larger than the group of particles we were trying to separate from it. This resulted in a poor background subtraction with the relative inconsistency between neighboring points being quite high. The effect is most pronounced at low energies and/or at forward angles, where the Rutherford cross section is greatest.

The error in the setting of the laboratory angle is significant only at forward angles where  $\partial(\frac{d\sigma}{d\Omega})/\partial\theta$  is large. Maximum errors due to the term  $\Delta\theta(\partial(\frac{d\sigma}{d\Omega})/\partial\theta)$  are approximately 1.5%. Over most of the angles and energies this error is less than 0.5%.

At the backward laboratory angles (mid-range center-of-mass angles) the recoil triton groups were quite difficult to distinguish clearly from the recoil proton contamination groups. This tended to provide poor background subtraction in this region, especially at the lower energies.

The statistics of the counts in the groups begin to become relatively important at some of the low points in the excitation curves. All four of these sources of relative error are combined for each center-of-mass angle in Table 5.

(c) Relative Errors in the 
$${}^4\text{He}({}^3\text{He}, {}^3\text{He}){}^4\text{He}, {}^4\text{He}({}^3\text{He}, p){}^6\text{Li}$$
 and  ${}^4\text{He}({}^3\text{He}, p^1){}^6\text{Li}*$  Experiments

The background in these experiments was, in general, less than on the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  experiment. This results from the lower target pressures and thinner foils used for the low energy data. At the most forward angles the  $^3\text{He's}$  are somewhat difficult to separate from the  $\alpha$  particles in the spectra. The proton groups at the more

backward angles suffer from a lack of statistics and difficulties in separating the charge 1 particles from charge 2 at low energies. These errors are tabulated in Table 11.

#### (4) Beam Energy

The nominal energy of the beam from the tandem accelerator is accurate to approximately 20 keV. For the  $^3{\rm He} + \alpha$  work below 14.8 MeV, this number is a fair estimate of the total beam energy inaccuracy. For the  $^3{\rm He} + \alpha$  work at higher energies, the width of the resonances did not allow us to determine whether there was an inaccuracy in the nominal thickness of the entrance foil to the gas cell.

For the  $^3$ H +  $\alpha$  work, the entrance foil thickness for the gas cell was determined by positioning the low  $\frac{7}{2}$  level and the  $^4$ P $_{5/2}$  levels as near as possible to their known energies. The discrepancy in indicated foil thicknesses was about 50 keV. It seems reasonable to take 25 keV as a probable error due to the foil. This gives a total r.m.s. error of 32 keV.

#### APPENDIX E COMPUTER PROGRAMS

#### (1) Phase Shift Analysis Program

A Fortran IV program for the IBM 7094 was written to fit the elastic scattering data with the phase parameters of equation (1) (page 21). The fit was obtained by seeking a minimum value of  $\chi^2$  where

$$\chi^{2} = \sum_{i=1}^{N_{\theta}} \left( \frac{\frac{d\sigma}{d\Omega} (\theta_{i})_{exp} - \frac{d\sigma}{d\Omega} (\theta_{i})_{calc.}}{V(\theta_{i})} \right)^{2} \frac{1}{N_{\theta}}$$

The program is divided into a main program and a subroutine. The function of the subroutine is to calculate the differential cross sections, polarizations, and  $\chi^2$  for an input set of phase shifts. The basic normal operation of the main program is as follows.

- (a) Several data cards are read telling the program how many different energies, angles, and variations of phase shifts it is dealing with.
- (b) The laboratory energy, charges, masses involved in the scattering, trial phase shifts, experimental cross sections, center-of-mass angles and estimated errors in cross sections are read in.
- (c) From this information the required Legendre functions are generated and the Rutherford scattering amplitude is calculated.

- (d) The main program then calls the subroutine which uses the trial phase shifts to calculate  $\frac{d\sigma}{d\Omega}$  , polarizations, and  $\chi^2.$
- (e) The gradient of  $\chi^2$  with respect to those phase shifts being varied is then calculated, and a step in phase shifts is taken towards smaller  $\chi^2$  along this gradient vector. If the resulting values of  $\frac{d\sigma}{d\Omega}$  do give a lower  $\chi^2$ , the same procedure is repeated until a minimum is reached.
- (f) The cross sections, polarizations, and  $\chi^2$  are then printed out and the program proceeds to the next energy. A listing is given at the end of this appendix (IBFTC DEL and IBFTC BEL).

The following list defines or gives the equivalent of nonobvious parameters used in the phase shift program.

- KONG an integer giving the total number of angular distributions being analyzed.
- KING an integer code telling the program how it is to obtain trial phase shifts for an angular distribution.
- NUM an integer giving the number of code word cards to be considered.
- E laboratory energy in MeV of incident particle.
- ZI, ZT charges of incident and target particles.
- AI, AT masses of incident and target particles in atomic mass units.

NDEL - the number of phase shifts being considered.

MUT - a meaningless parameter to allow program expansion.

NTH - the number of points in the angular distribution.

DELT(I) - for I = 1-9, these are  $\delta_{1/2}^+$ ,  $\delta_{3/2}^-$ ,  $\delta_{1/2}^-$ ,  $\delta_{5/2}^+$ ,  $\delta_{3/2}^+$ ,  $\delta_{7/2}^-$ ,  $\delta_{5/2}^-$ ,  $\delta_{9/2}^+$ , and  $\delta_{7/2}^+$  in that order. For I = 10-18, DELT(I) gives the corresponding values of  $X_{J\pi}$ .

T(I) - these are the values of the center-of-mass angles.

S(I) - these are the experimental values of  $d\sigma(\theta_i)/d\Omega$ .

D(I) - these are the percentage errors in  $d\sigma(\theta_i)/d\Omega$  .

FINC(I) - these are step sizes to be taken along the gradient of  $\chi^2$ .

CAY - k.

CHI -  $\chi^2$ .

SIGR - the total reaction cross section  $\sigma_{\mathbf{R}}$ .

SIG(I) - the calculated values of  $d\sigma(\theta_i)/d\Omega$ .

POL(I) - the polarization values for  $\theta_i$ .

(2) Below the reaction thresholds the  $\ell=3$  phase shifts obtained were fitted using a single level R-matrix expression. (See equation (4), page 37.) A simple program was written to perform a least-squares fit to the phase shifts at a number of different energies. If the interaction radius is held constant, the problem can be expressed as a simple linear least-squares fit. This program uses the subroutine COOL to calculate the Coulomb functions and desired

combinations thereof, and then employs a standard least squaresfitting program to obtain the best values for the reduced width and eigenenergy at a given radius. A listing is given at the end of this appendix (IBFTC SIN).

(3) The data above the reaction thresholds was fitted with the more complicated two-channel R-matrix formalism (equations (3), page 36). A program was written to calculate the values of the phase shifts given the reduced widths, eigenenergies, boundary values, and interaction radii. A listing is given at the end of this appendix (IBFTC RMA).

```
SIBFTC DEL
               DECK
      PHASE SHIFT ANALYSIS OF SPIN HALF PLUS SPIN ZERO
     ODIMENSION DELT(18) oT(75) oV(75) oS(75) oFINC(3) oICW(18043) oDEL(18) o
     1POL(75), POL1(75), POL2(75), POL3(75), POL4(75), POLS(75), POLS1(75),
     2POLS2(75), POLS3(75), POLS4(75), RR(75), RI(75), DELTA(18), A(18),
     3SIG(75)
                     , D(75)
      DIMENSION APLOT(95), SHIFT(80,18), ENERG(80)
     OCOMMON DELTA, DEL , DELT, T, V, S, FINC, SIG, CHI, POL, SIGR, POL1, POL2,
     1POL3,POL4,POLS,POLS1,POLS2,POLS3,POLS4,CAY,RR,RI,CA1,CA2,CA3,CA4,
     2SA1,SA2,SA3,SA4,ICW,NUM,NTH
      DATA APLOT/ 95*1H / STAR/1H*/ BLANK/1H /
      READ(5.57) KONG
      JIT = 1
      READ(5,40)KING,NUM
   40 FORMAT(215)
      IF (NUM) 4,4,2
    2 READ (5,105) ((ICW(I,J),I=1,18),J=1,NUM)
    4 READ(5,103)(T(I),V(I),S(I),I=1,35)
    1 READ (5,101) E,ZI,ZT,AI,AT,NDEL,MUT,JTH
      NTH = JTH + 35
  101 FORMAT (F10.3,2F5.2,2F10.3/3I5)
   57 FORMAT(I5)
      IF (KING) 58,58,59
   58 CUNTINUE
      READ (5,102)(DELT(I), I=1,18)
  102 FURMAT(9F6.1/9F6.1)
   59 CONTINUE
      DC 1002 I=1,18
 1002 DEL(I)=DELT(I)/57.29578
      READ(5,103)(T(I),V(I),S(I),I=36 ,NTH)
 103 FORMAT(F10.2,F10.3,F10.5)
   56 CONTINUE
      READ (5,104)(FINC(I), I=1,3)
 104 FORMAT (3F5.2)
 105 FORMAT (1814)
   3 ASP =SQRT(E/AI)
      CAY = 0.06917*AI*AT*ASP/(AI+AT)
      ETA =0.15767*ZI*ZT/ASP
      BAY=ETA/(2.0*CAY)
      ALFA0=0.0
      ALFA1=ATAN(ETA)
      ALFA2=ALFA1+ATAN(ETA/2.0)
      ALFA3=ALFA2+ATAN(ETA/3.0)
      ALFA4=ALFA3+ATAN(ETA/4.0)
      CA1= COS(ALFA1*2.0)
      CA2= COS(ALFA2*2.0)
      CA3= COS(ALFA3*2.0)
      CA4= COS(ALFA4*2.0)
     SA1= SIN(ALFA1*2.0)
      SA2= SIN(ALFA2*2.0)
```

SA3= SIN(ALFA3\*2.0)

```
SA4= SIN(ALFA4*2.0)
     DO 21 I=1,NTH
     RAD =T(1)/57.29578
     POL1(I) = COS(RAD)
     POL2(I) =0.5*(3.0*(POL1(I)**2) -1.0)
     POL3(I) = 0.5*(5.0*(POL1(I)**3) -3.0*POL1(I))

POL4(I) = 0.125*(35.0*(POL1(I)**4) -30.0*(POL1(I)**2)+3.0)
     POLS(I) =SIN(RAD)
     POLS1(I) =SIN(RAD)
     POLS2(I) = 3.0*POLS(I)*POL1(I)
     POLS3(I) = 7.5*POLS(I)*(POLI(I)**2) -1.5*POLS(I)
     POLS4(I) = 0.125*(140.0*POLS(I)*(POL1(I)**3)-60.0*POLS(I)*POL1(I))
     BIN=SIN(RAD/2.0)
     BAN =1.0/(BIN**2)
     BUN = ALOG(BAN)
     RR(I) = -BAY*BAN*COS(ETA*BUN)
 21 RI(I) =-BAY*BAN*SIN(ETA*BUN)
     CALL SNAG(-1,-1)
     IF (NUM) 15,15,6
   6 DO 14 IKE #1.NUM
     DO 13 JACK =1.3
165 OCHI=CHI
    DO 7 I=1.18
  7 DELTA(I) =DEL(I)
     SUMP =0.0
     DO 9 K=1.18
     IF (ICW(K, IKE))9,9,8
  8 DEL(K) =DEL(K) +0.05/57.29578
    CALL SNAG(-1.K)
     A(K) = (OCHI-CHI)/0.05
     SUMP=SUMP +A(K)**2
    DEL(K) =DEL(K) -0.05/57.29578
  9 CONTINUE
     SUMPR=SQRT(SUMP)
     DO 11 K=1.18
     IF (ICW(K, IKE))11,11,10
 10 DEL(K) =DEL(K) + FINC(JACK)*A(K)/SUMPR
 11 CONTINUE
     CALL SNAG (-1.-1)
     IF (CHI -OCHI) 165,12,12
 12 DO 125 K=1.18
125 DEL(K) =DELTA(K)
     CALL SNAG (1,-1)
 13 CONTINUE
 14 CONTINUE
     DO 1001 I=1.18
1001 DELT(I) =DEL(I)*57.29578
 15 WRITE(6,111)
111 FORMAT(30H1SPIGER, PHASE SHIFT ANALYSIS )
     WRITE(6+106)E
106 FORMAT(//1X,F6.3//)
```

```
WRITE (6,107)AI,ZI,AT,ZT
107 FORMAT(1X,F6.3,5X,F4.1,5X,F6.3,5X,F4.1//)
   DO 54 I=1:18
   WRITE (6.108)
                 DELT(I)
108 FORMAT ( 3X.F8.3
    SHIFT(JIT,1) = DELT(1)
    ENERG(JIT) = E
54 CONTINUE
    WKITE (6.109) CHI, SIGR
109 FORMAT(//1X,E15.8//4X,F8.3//)
   WKITE(6,110) (T(I), V(I),S(I),SIG(I),POL(I),I=1,NTH)
110 FORMAT(1X,F6.2,5X,F5.2,5X,F9.3,5X,F9.3,5X,F9.6)
   PUNCH 102, (DELT(1), 1= 1,18)
    IF (KONG - JIT ) 53,53,55
55 CONTINUE
    TIL= TIL
   GO TO 1
53 DO 52
           I=1.18
   WRITE (6,45)
45 FORMAT(17H1 DELTA VS E PLOT)
   DO 51 K=1.KONG
   APLOT(1) = STAR
                           42,43,43
   IF( SHIFT(K+I))
42 SHIFT(K+1) = SHIFT(K+1) + 180.
43 IPLOT =SHIFT(K \cdot I)*(\cdot 5) + 1.
   APLOT(IPLOT) = STAR
   WRITE (6,46)ENERG(K), SHIFT(K,I),
                                        APLOT
46 FORMAT(2X,F6.3,4X,F7.3,95A1//)
51 APLOT(IPLOT) =BLANK
52 CONTINUE
   END
```

```
SIBFTC BEL
               DECK
      SUBROUTINE SNAG (IT, JAG)
     ODIMENSION DELT(18),T(75),V(75),S(75),FINC(3),ICW(18,43),DEL(18),
     1POL(75), POL1(75), POL2(75), POL3(75), POL4(75), POLS(75), POLS1(75),
     2POLS2(75), POLS3(75), POLS4(75), RR(75), RI(75), DELTA(18), A(18),
                  • D(75)
     35 IG(75)
     OCOMMON DELTA, DEL, DELT, T, V, S, FINC, SIG, CHI, POL, SIGR, POL1, POL2,
     1POL3, POL4, POLS, POLS1, POLS2, POLS3, POLS4, CAY, RR, RI, CA1, CA2, CA3, CA4,
     2SA1, SA2, SA3, SA4, ICW, NUM, NTH
 1000 CONTINUE
      IF (JAG) 202,202,60
   600GO TO (201,231,261,291,321,351,381,411,441,471,501,531,561,591,
     1621,651,681,711), JAG
  201 SSC0=SC0
      SSS0=SS0
  202 SS0=(SIN(DEL(1))**2)
      SCO=COS(DEL(1))*SIN(DEL(1))
      IF (JAG) 232,232,61
  203 SC0=SSC0
      SS0=SSS0
      GC TO 999
 231 SSC1=SC1
      SSS1=SS1
  232 SC1=(SA1*COS(DEL(2))+CA1*SIN(DEL(2)))*SIN(DEL(2))
      SS1=(CA1*COS(DEL(2))-SA1*SIN(DEL(2)))*SIN(DEL(2))
      IF (JAG) 262,262,61
  233 SC1=SSC1
      SS1=SSS1
      GO TO 999
 261 S5C2=SC2
      SSS2=SS2-
 262 SC2=(SA1*COS(DEL(3))+CA1*SIN(DEL(3)))*SIN(DEL(3))
      SS2=(CA1*COS(DEL(3))-SA1*SIN(DEL(3)))*SIN(DEL(3))
      IF (JAG) 292,292,61
 263 SC2=SSC2
      SS2=SSS2
      GO TO 999
 291 SSC3=SC3
      SSS3=SS3
  292 SC3=(SA2*COS(DEL(4))+CA2*SIN(DEL(4)))*SIN(DEL(4))
      SS3=(CA2*COS(DEL(4))-SA2*SIN(DEL(4)))*SIN(DEL(4))
      IF (JAG) 322,322,61
  293 SC3=SSC3
      SS3*SSS3
      GO TO 999
  321 SSC4=5C4
      SSS4=5S4
  322 SC4=(SA2*COS(DEL(5))+CA2*SIN(DEL(5)))*SIN(DEL(5))
      SS4=(CA2*COS(DEL(5))-SA2*SIN(DEL(5)))*SIN(DEL(5))
      IF (JAG)352,352,61
  323 SC4=SSC4
      SS4=SSS4
```

```
GO TO 999
351 SSC5=SC5
    $$$5=$$5
352 SC5=(SA3*COS(DEL(6))+CA3*SIN(DEL(6)))*SIN(DEL(6))
    SS5=(CA3+COS(DEL(6))-SA3+SIN(DEL(6)))+SIN(DEL(6))
    IF (JAG) 382,382,61
353 SC5=SSC5
    SS5=SSS5
    GO TO 999
381 SSC6=SC6
    SSS6=SS6
382 SC6=(SA3*COS(DEL(7))+CA3*SIN(DEL(7)))*SIN(DEL(7))
    SS6=(CA3*COS(DEL(7))-SA3*SIN(DEL(7)))*SIN(DEL(7))
    IF (JAG) 412,412,61
383 SC6=SSC6
    SS6=SSS6
    GO TO 999
411 SSC7=SC7
    SSS7=SS7
412 SC7=(SA4*COS(DEL(8))+CA4*SIN(DEL(8)))*SIN(DEL(8))
    SS7=(CA4*COS(DEL(8))-SA4*SIN(DEL(8)))*SIN(DEL(8))
    IF (JAG) 442,442,61
413 SC7=SSC7
    GO TO 999
441 SSC8=SC8
    SSS8=SS8
442 SC8=(SA4*COS(DEL(9))+CA4*SIN(DEL(9)))*SIN(DEL(9))
    SS8=(CA4*COS(DEL(9))-SA4*SIN(DEL(9)))*SIN(DEL(9))
    IF (JAG)
               472,472,61
443 SC8=SSC8
    $58=SSS8
    GO TO 999
471 SFITO=FITO
472 FITO=(COS(DEL(10)))**2
    IF (JAG)
             502,502,61
473 FITO=SFITO
    GO TO 999
501 SFIT1= FIT1
    SFIS1= FIS1
    SFIC1= FIC1
502 FIT1=(COS(DEL(11)))**2
   FIS1= FIT1*SA1
    FIC1= FIT1*CA1
    IF (JAG)
               532,532,61
503 FIT1= SFIT1
    FIS1= SFIS1
    FIC1=SFIC1
    GO TO 999
531 SFIT2= FIT2
    SFIS2= FIS2
    SFIC2= FIC2
```

```
532 FIT2=(COS(DEL(12)))**2
    FIS2= FIT2*SA1
    FIC2# FIT2#CA1
               562,562,61
    IF (JAG)
533 FIT2= SFIT2
F1S2= SFIS2
    FIC2=SFIC2
    GO TO 999
561 SFIT3= FIT3
    SFIS3= FIS3
    SFIC3= FIC3
562 FIT3=(COS(DEL(13)))**2
    FIS3= FIT3*SA2
    FIC3= FIT3*CA2
    IF (JAG)
              592,592,61
563 FIT3= SFIT3
    FIS3= SFIS3
    FIC3=SFIC3
    GO TO 999
591 SFIT4= FIT4
    SFIS4= FIS4
    SFIC4= FIC4
592 FIT4=(COS(DEL(14)))**2
    FIS4= FIT4*SA2
    FIC4= FIT4*CA2
    IF (JAG)
               622,622,61
593 FIT4= SFIT4
    FIS4= SFIS4
    FIC4=SFIC4
    GO TO 999
621 SFIT5= FIT5
    SFIS5= FIS5
    SFIC5= FIC5
622 FIT5=(COS(DEL(15)))**2
    FIS5= FIT5*SA3
    FIC5= FIT5*CA3
    IF (JAG) 652,652,61
623 FIT5= SFIT5
    FIS5= SFIS5
    FIC5=SFIC5
    GO TO 999
651 SFIT6= FIT6
    SFIS6= FIS6
    SFIC6= FIC6
652 FlT6=(COS(DEL(16)))**2
    FIS6= FIT6*SA3
    FIC6= FIT6*CA3
    IF (JAG) 682,682,61
653 FIT6= SFIT6
    FIS6= SFIS6
```

```
FIC6=SFIC6
    GO TO 999
681 SFIT7= FIT7
    SFIS7= FIS7
    SFIC7= FIC7
682 FIT7=(COS(DEL(17)))**2
    FIS7= FIT7*SA4
    FIC7=' FIT7*CA4
    IF (JAG)
               712,712,61
683 FIT7= SFIT7
    FIS7= SFIS7
    FIC7=SFIC7
    GO TO 999
711 SFIT8= FIT8
    SFIS8= FIS8
    SFIC8= FIC8
712 FIT8=(COS(DEL(18)))**2
    FIS8= FIT8*SA4
    FIC8= FIT8*CA4
    GU TO 61
713 FIT8= SFIT8
    FIS8= SFIS8
    FIC8=SFIC8
    GO TO 999
 61 CHI = 0.0
    DO 998 I=1,NTH
   OFCOR= RR(I)+ ((FITO*SCO)+ POL1(I)*(2.0*SS1*FIT1+ FIS1
   1-1.5*SA1 + 0.5*FIS2+FIT2*SS2) +(POL2(I))*(3.0*SS3*FIT3+1.5*FIS3
   2-2.5*SA2+ FIS4 +2.0*SS4*FIT4)+(POL3(1))*(4.0*SS5*FIT5+2.0*FIS5
   3-3.5*SA3 +1.5*FIS6+3.0*SS6*FIT6) + POL4(I)*(5.0*SS7*FIT7+2.5*FIS7
   4-4.5*SA4 +2.0*FIS8+4.0*SS8*FIT8))/CAY
   OFCOI=RI(I) +((FITO*SSO+.5*(1.0-FITO))+POL1(I)*(2.0*SC1*FIT1-FIC1
   1+1.5*CA1-0.5*FIC2+ SC2*FIT2) +POL2(I)*(3.0*SC3*FIT3 -1.5*FIC3
   2+2.5*CA2- FIC4 +2.0*SC4*FIT4) + POL3(I)*(4.0*SC5*FIT5 -2.0*FIC5
   3+3.5*CA3 -1.5*FIC6 +3.0*SC6*FIT6)+POL4(I)*(5.0*SC7*FIT7 -2.5*FIC7
   4+4.5*CA4 -2.0*FIC8 +4.0*SC8*FIT8))/CAY
   OFINR=(1.0/CAY)*(POLS1(I)*(SS2*FIT2 +0.5*FIS2 -0.5*FIS1
   1-SS1*FIT1) +POLS2(I)*(SS4*FIT4+.5*FIS4-0.5*FIS3-SS3*FIT3)
   2+POLS3(I)*(SS6*FIT6+0.5*FIS6-0.5*FIS5-SS5*FIT5)
   3+POLS4(1)*(SS8*FIT8+0.5*FIS8-0.5*FIS7-SS7*FIT7))
   OFINI=(1.0/CAY)*(POLS1(I)*(SC2*FIT2-0.5*FIC2+0.5*FIC1 -SC1*FIT1)
   1+POLS2(I)*(SC4*FIT4-0.5*FIC4+0.5*FIC3 -SC3*FIT3)
   2+POLS3(I)*(SC6*FIT6-0.5*FIC6+0.5*FIC5-SC5*FIT5)
   3+POLS4(I)*(SC8*FIT8-0.5*FIC8+0.5*FIC7-SC7*FIT7))
    SIG(I)=FCOR**2+FCO1**2+FINR**2+FINI**2
    GLOP = NTH
                                     V(I)))**2)/GLOP
    CHI = CHI + (((S(I)-SIG(I))/(
    IF(NUM) 777,777,345
345 IF (IT) 998,998,777
777 POL(I) =-2.0*(FCOI*FINR -FCOR*FINI)/SIG(I)
          =(3.14159/(CAY*CAY))*((1.0-FITO*FITO)+(3.0-2.0*FIT1*FIT1
   OSIGR
```

```
1-FIT2*FIT2)+(5.0-3.0*FIT3*FIT3-2.0*FIT4*FIT4)+(7.0-4.0*FIT5*FIT5
2-3.0*FIT6*FIT6)+(9.0-5.0*FIT7*FIT7-4.0*FIT8*FIT8))
998 CONTINUE
456 IF(JAG) 999,999,234
2340GO TO (203,233,263,293,323,353,383,413,443,473,503,533,563,593,
1623,653,683,713),JAG
999 CONTINUE
RETURN
END
```

```
DECK
SIBFTC SIN
      SINGLE LEVEL RESONANCE PARAMETERIZATION OF PHASE SHIFT
C
      PROGRAM BY SPIGER
      PROGRAM PERFORMS LEAST SQUARES FIT TO DATA
C
c
      COULOMB WAVE PROGRAM COOL REQUIRED
      DOUBLE PRECISION BET, ALP, ALPINV
        COMMON/ARR/C + D
      COMMON F, FP, G, GP, PHI, AS, P, S, SL, CP
      COMMON/LSQ/ X,CHI2, SIG,R, ITEST,IA,IALP,IALINV,ICOE,ICAL
      DIMENSION CHUNK(100)
                  ERR(100), DEL(100), DELPHI(100), B(100),
     ODIMENSION
                                                                CALCU(100)
     1.FSR(100).CALCUD(100).H(100)
      DIMENSION X(100)
      DIMENSION A(100,25),Z(100),ERROR(100),WT(100),ALP(25,25),BET(25)
      DIMENSION ALPINV(25,25), COE(25), DELCO (25), CAL(100), DELCAL(100)
     ODIMENSION T(4),E(100),DELT(100),FS(100), FGSQ(100),
     1PEN(100), SH(100), SANDL(100), COF(100), DELTA(100), DELTA(100),
          DIF(100), SHIFT(100)
                                         ,ECM(100)
     DIMENSION C(90), D(90)
      EXTERNAL ARRAY
     READ(5,1001) ND
1001 FORMAT (15)
     READ (5,101) ZI, ZT, AI, AT, L
 101 FORMAT (2F5.1,2F10.6/15)
     IA=5
     IALP=5
     IALINV=5
     ICOE=5
     ICAL=5
 889 FORMAT (F10.4)
     DO 1 I=1,99
   1 \times (I) = I
      WRITE(6,207)
 207 FORMAT(1H1)
     DO 199 I = 1, ND
     READ (5,888) E(I), DELT(I), ERR(I)
 199 CONTINUE
  17 READ (5,889) RD
     DO 200 I = 1, ND
 888 FORMAT(2F7.3,F7.3)
     ASP = SQRT(E(I)/AI)
     ETA
             = 0.15767*ZI*ZT/ASP
     CAY=0.06917*AI*AT*ASP/(AI + AT)
     RO = (CAY )*3.162278*RD
     ECM(I) = E(I)*(AT/(AI+AT))
     CALL COOL(ETA, RO, L)
     FS(I) = PHI
     FGSQ(I) = AS
    PEN(I) = P
     SH(I) = S
     SANDL(I) = SL
```

```
COF(I) = CP
     DEL(I) = DELT(I)/57.29578
     DELPHI(I) = DEL(I) + FS(I)
     B(I) = 1 \cdot / TAN (DELPHI(I))
     FAT = 1./(TAN(DELPHI(I) + ERR(I))
     CAT = 1 \cdot / (TAN(DELPHI(I) - ERR(I))
     ERROR(I) = ABS (FAT - CAT)
     C(I) = 1 \cdot / PEN(I)
     D(I) = -ECM(I)/PEN(I)
     H(I) = (-SANDL(I))/PEN(I)
     Z(I) = B(I) - H(I)
       WRITE(6,209)ETA,RO,CAY
 209 FORMAT(1H 3E15.5)
      WRITE(6,210)FS(I),PEN(I),C(I),D(I),Z(I),H(I),B(I)
 210 FORMAT(1H 7E15.5)
 200 CONTINUE
    WT(1) = 100 •
    O CALL LSTSQR(A,Z,ND,2,ERROR,WT,ALP,BET,ALPINV,COE,DELCO ,CAL,
    1 DELCAL, ARRAY)
     GAMSQ =1./COE(2)
    ELAM =GAMSQ*COE(1)
    DO 205 I=1.ND
     CALCU(I) = ATAN (1./(CAL(I)+H(I)))-FS(I)
     FSR(I) = FS(I)*57.29578
     IF(CALCU(I)) 31,32,32
 31 CALCU(I) = CALCU(I) + 3.14159
 32 CONTINUE
     CALCUD(I) = CALCU(I)*57.29578
     WRITE(6,1000) E(1), ECM(1), DELT(1), CALCUD(1), FSR(1)
10000FORMAT(7H ELAB= F7.3,4X,5HECM= F7.3,4X,6HDEXP= F7.3,4X6HDCAL= F7.
    13,4X,6HHDSP= F7.3)
205 CONTINUE
    WRITE (6,1002) ELAM, GAMSQ, RD, CHI2
10020FORMAT(7H ELAM= E14.7,5X,7HGAMSQ= E14.7,5X,8HRADIUS= E14.7,5X,6HCH
    112 = E14.7
    GO TO 17
    END
```

```
SIBFTC RMA
               DECK
      PROGRAM TO FIT A DOUBLE LEVEL PHASE SHIFT BY A 2 LEVEL R-MATRIX
      THEORY. PROGRAMMER - SPIGER. PROGRAM REQUIRES COOL.
      COMMON F,FP,G,GP,PHI,AS,P,S,SL,CP
      REAL KYEC
                   •KYE
                     EL, ELSTAR, ELR, ELRSTR, OMEGAE, OMEGAR, FEE, FER, X, Y, U,
     OCOMPLEX
     1V.W.Z .GUNK
     ODIMENSION EISUB(50), E2SUB(50), GAM1E(50), GAM1R(50), GAM2E(50),
     1GAM2R(50)
     ODIMENSION EL(50), ELSTAR(50), ELR(50), ELRSTR(50), OMEGAE(50),
     10MEGAR(50), FEE(50), UEE(50), X(50), Y(50), V(50), W(50), GUNK(50),
     2KYEC(50), DELTAC(50), E(50), EEX(50), DELTA(50), KYE(50), ICW(50),
     3DELTAR(50),DELTRC(50),FER(50)
      DIMENSION CAYE(50), ETAIN(50), ROIN(50), SCE(50), PENE(50), EN(50)
      DIMENSION ASPR(50), CAYR(50), ETAOUT(50), ROOUT(50), SCR(50), PENR(50)
      DIMENSION ASPE(50)
      READ (5,100) ZI, ZT, AI, AT, ZIO, ZTO, AIO, ATO
  100 FORMAT (2F5.2,2F10.5,2F5.2,2F10.5)
     OREAD (5,101) LIN,LOUT,BE,BR,RIN,ROUT,E1,E2,GAMEL1,GAMEL2,GAMR1,
     1GAMR2.NE.KING.QR.ED
  101 FORMAT (215/2F6.3/2F6.3/2F6.3/4F6.3/15/15/2F7.4)
      IF (KING) 17 . 17 . 2
    2 READ (5,102) (ICW(I), I=1,10)
  17 CONTINUE
 102 FORMAT (1014)
      WRITE(6,200)ZI,ZT,AI,AT
  200 FURMAT(5X,3HZI=F5.2,4X,3HZT=F5.2,4X,3HAI=F7.3,4X,3HAT=F7.3/)
      WRITE(6,201)ZIO,ZTO,AIO,ATO
 201 FORMAT(4X,4HZIO=F5.2,3X,4HZTO=F5.2,3X,4HAIO=F7.3,3X,4HATO=F7.3/)
     OWRITE(6,202)LIN,LOUT,BE,BR,RIN,ROUT,E1,E2,GAMEL1,GAMEL2,GAMR1,
     1GAMR2, QR, ED
 2020F0RMAT(5X,4HLIN=15,4X,5HLOUT=15/5X,3HBE=F6,3,4X,3HBR=F6,3/5X,4HRIN
     1=F6.3,4X,5HROUT=F6.3/5X,3HE1=F6.3,4X,3HE2=F6.3/5X,7HGAMEL1=F6.3,
     24X,7HGAMEL2=F6.3,4X,6HGAMR1=F6.3,4X,6HGAMR2=F6.3/5X,3HQR=F6.3,
    34X,3HED=F6.3)
    1 DO 3 I=1.NE
     READ (5,103) E(I), DELTA(I), KYE(I)
  103 FORMAT(3F10.4)
     DELTAR(I) = DELTA(I)/57.29578
     ASPE(I) = SQRT(E(I)/AI)
     CAYE(I) =0.06917*AI*AT*ASPE(I)/(AI + AT)
      ETAIN(I) =0.15767*ZI*ZT/ASPE(I)
     ROIN(I) = CAYE(I)*RIN*3.162278
     CALL COOL (ETAIN(I) ROIN(I) LIN)
     SCE(I) = S
     PENE(I) = P
     EL(I) =CMPLX(SCE(I),PENE(I))
     ELSTAR(I) = CONJG(EL(I))
    · FEE(I) =CMPLX(0.0.PHI)
     EN(I) = (E(I)*(AT/(AI +AT))-QR)/(ATO/(ATO +AIO))
     ASPR(I) = SQRT(ABS(EN(I))/AIO)
```

```
CAYR(I) = 0.06917*AIO*ATO*ASPR(I)/(AIO +ATO)
     ETAOUT(I) = 0.15767*ZIO*ZTO/ASPR(I)
     ROOUT(I) = CAYR(I)*ROUT*3.162278
     WRITE (6,304) ETAOUT(I),ROOUT(I),LOUT
     IF (ZIO) 40,40,41
  41 IF
        (EN(I)) 18,19,19
  18 PENR(I) =0.0
     PHI =0.0
     FLOUT = LOUT
     CSEE = SQRT((FLOUT+0.5)**2+2.*ROOUT(I)*ETAOUT(I)+ROOUT(I)**2)
     SCR(I)=-CSEE+0.5*(ROOUT(I)*ETAOUT(I)+(FLOUT+0.5)**2)/(CSEE*CSEE)
     GO TO 20
 304 FORMAT(2E15.8.120)
  40 IF (EN(I))39,38,38
  39 PENR(I) = 0.0
     SCR(I) = -(1.0+ROOUT(I)+ROOUT(I)**2.0)/(1.0+ROOUT(I))
     GO TO 20
  38 PENR(I) = (ROOUT(I) **3.0)/(1.0+ROOUT(I)**2.0
     SCR(I) = -(1.0/(1.0+ROOUT(I)**2.0))
     GO TO
           20
  19 CALL COOL(ETAOUT(I), ROOUT(I), LOUT)
     WRITE(6,303) S,P
 303 FORMAT(2E15.8)
     SCR(I) = S
     PENR(I) = P
  20 ELR(I) = CMPLX(SCR(I), PENR(I))
     ELRSTR(I) = CONJG(ELR(I))
     FER(I) =CMPLX(0.09PHI)
     EEX(I) = E(I)*(AT/(AI +AT)) + ED
     WRITE(6,203)E(1),DELTA(1),KYE(1),EL(1),ELSTAR(1),FEE(1)
 2030FORMAT(5X,5HE(I)=F7.3,4X,9HDELTA(I)=F7.3,4X,7HKYE(I)=F7.3/5X,6HEL(
    1I)=E15.8,4X,E15.8,4X,10HELSTAR(I)=E15.8,4X,E15.8/5X,7HFEE(I)=E15.8
    2,4X,E15.8)
     WRITE(6,204)EN(I), ELR(I), ELRSTR(I), FER(I), EEX(I)
 2040FORMAT(5X,6HEN(I)=F7.3/5X,7HELR(I)=E15.8,4X,E15.8,4X,10HELRSTR(I)=
    1E15.8,4X,E15.8/5X,7HFER(I)=E15.8,4X,E15.8/5X,7HEEX(I)=F7.3)
   3 CONTINUE
     READ(5,1202) NE1, NE2, NGE1, NGE2, NGR1, NGR2
1202 FURMAT(15/15/15/15/15)
     READ(5.1201)(E1SUB(I), I=1.NE1)
     READ(5,1201)(E2SUB(I), I=1,NE2)
     READ(5,1201)(GAM1E(I), I=1,NGE1)
     READ(5,1201)(GAM2E(I), I=1,NGE2)
    READ(5,1201)(GAM1R(I),I=1,NGR1)
    READ(5,1201)(GAM2R(I),I=1,NGR2
1201 FORMAT(F6.3)
    DO 1300 IK=1.NE1
    El=ElSUB(IK)
     DO 1301 J=1.NE2
     E2=E2SUB(J)
    DO 1302 .K=1.NGE1
```

```
GAMEL1=GAM1E(X)
      DO 1303 L=1.NGR1
      GAMR1=GAM1R(L)
      DO 1304 M=1 NGE2
      GAMEL2=GAM2E(M)
      DO 1305 N=1.NGR2
      GAMR2=GAM2R(N)
      WRITE(6,1505)E1,E2,GAMEL1,GAMEL2,GAMR1,GAMR2
 15050FORMAT(5X,3HE1=F7.3,4X,3HE2=F7.3,4X,7HGAMEL1=F7.3,4X,7HGAMEL2=F7.3
     1 ,4x,6HGAMR1=F7.3,4X,6HGAMR2=F7.3)
      WRITE(6,1401)
 14010FCRMAT(3X,4HE(I),8X,8HDELTA(I),6X,9HDELTAC(I),5X,6HKYE(I),8X,
     17HKYEC(I),8X,3HREE,10X,3HRRE,10X,3HRRR)
      DO 4 I=1.NE
      REE= ((GAMEL1*GAMEL1)/(E1-EEX(I))) +(GAMEL2*GAMEL2/(E2-EEX(I)))
      RRE= (GAMEL1*GAMR1/(E1-EEX(I))) + (GAMEL2*GAMR2/(E2-EEX(I)))
      RRR=(GAMR1*GAMR1/(E1-EEX(I))) + (GAMR2*GAMR2/(E2-EEX(I)))
      X(I)=(1.0 - RRR*(ELR(I)-BR))
      Y(I)=(1.0 - REE*(ELSTAR(I) - BE))
      V(I) = EL(I) - BE
      W(I) = RRE*RRE*(ELR(I) - BR)
     OGUNK(I) = (X(I)*Y(I) - W(I)*CONJG(V(I)))/(X(I)*CONJG(Y(I)) - W(I)*
     1V(I))
      KYEC(I) =(ACOS(SQRT(CABS(GUNK(I))))*57.29578
      HUNK = ATAN2 (AIMAG(GUNK(I)), REAL(GUNK(I)))
      IF (HUNK) 34,35,35
   34 HUNK = HUNK +2.*3.14159
   35 CONTINUE
      DELTRC(1)
               =-AIMAG(FEE(I)) + 0.5*HUNK
      DELTAC(I)
                    #57.29578*DELTRC(I)
      WRITE(6,1402)E(I), DELTA(I), DELTAC(I), KYE(I), KYE(I), REE, RRE, RRR
 1402 FORMAT(F8.3,7X,F8.3,6X,F9.3,5X,E10.4,4X,E11.4,4X,3(E10.4,3X))
    4 CONTINUE
 1305 CONTINUE
 1304 CONTINUE
 1303 CONTINUE
 1302 CONTINUE
 1301 CONTINUE
1300 CONTINUE
      END
```

#### REFERENCES

- 1. F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 78, 1 (1966).
- 2. A.D. Bacher, Ph.D. thesis, California Institute of Technology, in preparation (1967).
- 3. A.C. L. Barnard, C.M. Jones and G.C. Phillips, Nucl. Phys. 50, 629 (1964).
- 4. F.C. Barker, Nucl. Phys., to be published (1966).
- 5. G. Breit, H. M. Thaxton, and L. Eisenbud, Phys. Rev. <u>55</u>, 1018 (1939).
- 6. C. M. Chesterfield and B. M. Spicer, Nucl. Phys. <u>41</u>, 675 (1962).
- 7. P.R. Christensen and C.L. Cocke, Nucl. Phys., to be published (1966).
- 8. C. L. Critchfield and D. C. Dodder, Phys. Rev. <u>76</u>, 602 (1949).
- 9. D. Demirlioglu and W. Whaling, unpublished, (1962).
- 10. W.D. Harrison, Ph.D. thesis, California Institute of Technology (1966).
- 11. D. R. Inglis, Rev. Mod. Phys. 25, 390 (1953).
- 12. F. C. Khanna, Y. C. Tang, and K. Wildermuth, Phys. Rev. 124, 515 (1961).
- 13. D. Kurath, Phys. Rev. 101, 216 (1956).

- 14. A. M. Lane and R. G. Thomas, Rev. Mod. Phys. <u>30</u>, 257 (1958).
- 15. A.M. Lane, Rev. Mod. Phys. 32, 519 (1960).
- J. B. Marion, G. Weber, and F. S. Mozer, Phys. Rev. <u>104</u>, 1402 (1956).
- 17. J.B. Marion, Nucl. Phys. 4, 282 (1957).
- 18. J. A. McCray, Ph. D. thesis, California Institute of Technology (1962).
- 19. R.B. Murray and H.W. Schmitt, Phys. Rev. 115, 1707 (1959).
- 20. E. J. Rogers, Rev. Scientific Inst. 34, 660 (1963).
- 21. S. Schwarz, L.G. Strömberg and A. Bergström, Nucl. Phys. 63,593 (1965).
- 22. L.S. Senhouse, Ph.D. thesis, California Institute of Technology (1964).
- 23. E.A. Silverstein, Nucl. Inst. and Meth. 4, 53 (1959).
- 24. Y.C. Tang, K. Wildermuth, and L.D. Pearlstein, Phys. Rev. <u>123</u>, 548 (1961).
- 25. T. A. Tombrello and P.D. Parker, Phys. Rev. <u>130</u>, 1112 (1963).

### Table 1

## **Detection Geometry Parameters**

This table lists the parameters pertinent to the solid angle subtended by the detectors and the target thickness seen by the detectors. Parameters are given for both the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  and  $^4\text{He}(^3\text{He},^3\text{He})^4\text{He}$  experiments. (Pages 7, 14, 61)

 $\begin{array}{c} \text{Table 1} \\ \text{Parameters on Slit Size and Positioning} \\ \text{Used to Calculate } \mathbf{G}_{\mathbf{0}} \end{array}$ 

# $^3$ H( $\alpha$ , $\alpha$ ) $^3$ H Experiment

| ,                                    | •                                  |                              |
|--------------------------------------|------------------------------------|------------------------------|
| Collimator 1: (Used to take data for | $\theta_{\rm Lab} \geq 55^{\rm C}$ | 2)                           |
| Front Slit Width (w)                 | -                                  | . 1558 cm.                   |
| Rear Slit Width                      |                                    | .1577 cm.                    |
| Rear Slit Height                     | -                                  | .7179 cm.                    |
| Rear Slit Area (A <sub>r</sub> )     | -                                  | $1132 \text{ cm}^2$ .        |
| Distance from Front Slit to          | -                                  | 4.068 cm.                    |
| Rear Slit (h)                        |                                    |                              |
| Distance from Center of              |                                    | 8.518 cm.                    |
| Chamber to Rear Slit (R)             |                                    |                              |
| Go                                   | -                                  | $5.090 \cdot 10^{-4}$ cm.    |
| Collimator 2:                        |                                    |                              |
| w                                    | -                                  | . 1563 cm.                   |
| Rear Slit Width                      | -                                  | .1559 cm.                    |
| Rear Slit Height                     | -                                  | .7155 cm.                    |
| $\mathtt{A}_{\mathtt{r}}$            | -                                  | $1115 \text{ cm}^2$ .        |
| ' h                                  | -                                  | 4.085 cm.                    |
| R                                    | -                                  | 8.533 cm.                    |
| Go                                   | ; <b>-</b>                         | 5.000 · 10 <sup>-4</sup> cm. |

The half-angle seen by either collimator is  $2.2^{\circ}$ .

Table 1 (cont.)

# $^4\mathrm{He}(^3\mathrm{He}, ^3\mathrm{He})^4\mathrm{He}$ and $^4\mathrm{He}(^3\mathrm{He}, \mathrm{p})^6\mathrm{Li}$ Experiments

| W                | _   | . 1533 cm.                |
|------------------|-----|---------------------------|
| Rear Slit Width  | 100 | .1540 cm.                 |
| Rear Slit Height | -   | .7157 cm.                 |
| $A_{\mathbf{r}}$ | -   | .1102 cm <sup>2</sup> .   |
| h                | -   | 4.074 cm.                 |
| R                | -   | 8.567 cm.                 |
| $G_{0}$          | -   | $4.842 \cdot 10^{-4}$ cm. |

The half-angle seen by this collimator is 2.2°.

#### Table 2

## Foil Energy Losses

This table shows the incident particle losses due to passage of the beam through the various entrance foils to the target gases. The nominal beam energies, energy losses and corrected energies are shown for several values of nominal beam energy. A smooth curve was drawn through these points to obtain energy losses for other energies. (Page 62)

Table 2 Energy Loss of  $\alpha$  Particles in Tritium Gas and Entrance Foil (8125 Å) for  $^3{\rm H}(\alpha,\alpha)^3{\rm H}$  Experiment

| Nominal Beam<br>Energy (MeV) | Energy Loss<br>(keV) | Corrected Beam<br>Energy (MeV) |
|------------------------------|----------------------|--------------------------------|
| 4.0                          | 388                  | 3.612                          |
| 8.0                          | 261                  | 7.739                          |
| 12.0                         | 201                  | 11.799                         |
| 16.0                         | 166                  | 15.834                         |
| 20.0                         | 141                  | 19.859                         |

Energy Loss of <sup>3</sup>He Particles in Entrance Foil (6250 Å) and <sup>4</sup>He Gas of the High Energy Gas Cell for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

| 7.5  | 208 | 7. 292  |
|------|-----|---------|
| 9.0  | 184 | 8.816   |
| 10.5 | 165 | 10. 335 |
| 12.0 | 151 | 11.849  |
| 13.5 | 136 | 13.364  |
| 15.0 | 128 | 14.872  |
| 16.5 | 121 | 16.379  |
| 18.0 | 111 | 17.889  |
|      |     |         |

Table 2 (cont.)

Energy Loss of <sup>3</sup>He Particles in Entrance Foil (1000Å) and <sup>4</sup>He Gas of <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li Experiment

| Nominal Beam<br>Energy (MeV) | Energy Loss<br>(keV) | Corrected Beam<br>Energy (MeV) |
|------------------------------|----------------------|--------------------------------|
| 6.0                          | 102                  | 5.898                          |
| 9.0                          | 74                   | 8.926                          |
| 12.0                         | 57                   | 11.943                         |
| 15.0                         | 49                   | 14.951                         |
| 18.0                         | 43                   | 17.957                         |

Energy Loss of <sup>3</sup>He Particles in Entrance Foil (1000Å) and <sup>4</sup>He Gas of <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

| 6.0  | 58   | 5.942   |
|------|------|---------|
| 9.0  | 43   | 8.957   |
| 12.0 | . 34 | 11.966  |
| 15.0 | 29   | 14. 971 |
| 18.0 | 26   | 17.974  |

#### Table 3

# Data for the $^3\text{II}(\alpha,\alpha)^3\text{H}$ Experiment

This table shows the center-of-mass differential elastic cross sections (SIGMA), as a function of beam energy (LAB ENERGY). The energy range is from 4 to 13 MeV. The spaces marked by a series of asterisks are points for which data were not obtained. (Page 9)

TABLE 3

(TEXT 9 , FIGURE 9 )

CENTER OF MASS ANGLE = 39.23

| LAB ENERGY | SIGMA   | LAB ENERGY     | SIGMA   |
|------------|---------|----------------|---------|
| 3.612      | ****    | 8.249          | 291.000 |
| 3.717      | *****   | 8.504          | 303.000 |
| 3.822      | *****   | 8 <b>.7</b> 59 | 252.000 |
| 3.916      | ****    | 9.012          | 276.000 |
| 4.031      | ****    | 9.266          | 266.000 |
| 4.135      | ****    | 9.520          | 292.000 |
| 4.239      | ****    | 9.774          | 284.000 |
| 4.343      | ****    | 10.027         | 287.000 |
| 4.447      | 349.000 | 10.280         | 258.000 |
| 4.551      | 343.000 | 10.534         | 254.000 |
| 4.655      | 352.000 | 10.787         | 246.000 |
| 4.758      | 340.000 | 11.040         | 235.000 |
| 4.862      | 354.000 | 11.293         | 225.000 |
| 4.913      | 359,000 | 11.343         | 211.000 |
| 4.966      | 388.000 | 11.393         | 210.000 |
| 5.017      | 439.000 | 11.444         | 204.000 |
| 5.069      | 451.000 | 11.494         | 200.000 |
| 5.121      | 428.000 | 11.545         | 195.000 |
| 5.172      | 374.000 | 11.595         | 196.000 |
| 5.224      | 362.000 | 11.645         | 204.000 |
| 5.276      | 338.000 | 11.697         | 211.000 |
| 5.328      | 335.000 | 11.747         | 208.000 |
| 5.379      | 324.000 | 11.798         | 206.000 |
| 5.431      | 329.000 | 11.848         | 208.000 |
| 5.482      | 320.000 | 11.899         | 208.000 |
| 5.585      | 313.000 | 11.950         | 202.000 |
| 5.689      | 312.000 | 12.001         | 203.000 |
| 5.946      | 313.000 | 12.051         | 201.000 |
| 6.203      | 311.000 | 12.101         | 203.000 |
| 6.460      | 315.000 | 12.152         | 196.000 |
| 6.717      | 349.000 | 12.202         | 197.000 |
| 6.973      | 336.000 | 12.253         | 194.000 |
| 7.228      | 327.000 | 12.304         | 192.000 |
| 7.484      | 339.000 | 12.558         | 181.000 |
| 7.739      | 301.000 | 12.810         | 176.000 |
| 7.994      | 305.000 | 13.063         | 159.000 |

TABLE 3

(TEXT 9 , FIGURE 9 )

CENTER OF MASS ANGLE = 46.99

| LAB ENERGY         | SIGMA   | LAB ENERGY | SIGMA   |
|--------------------|---------|------------|---------|
| 3.612              | ****    | 8.249      | 251.000 |
| 3.717              | ****    | 8.504      | 248.000 |
| 3.822              | ****    | 8.759      | 242.000 |
| 3.916              | *****   | 9.012      | 233.000 |
| 4.031              | ****    | 9.266      | 225.000 |
| 4.135              | ****    | 9.520      | 205.000 |
| 4.239              | *****   | 9.774      | 189.000 |
| 4.343              | *****   | 10.027     | 171.000 |
| 4.447              | 333.000 | 10.280     | 164.000 |
| 4.551              | 338.000 | 10.534     | 151.000 |
| 4.655              | 340.000 | 10.787     | 144.000 |
| 4.758              | 325.000 | 11.040     | 134.000 |
| 4.862              | 329.000 | 11.293     | 154.000 |
| 4.913              | 346.000 | 11.343     | 156.000 |
| 4.966              | 334.000 | 11.393     | 156.000 |
| 5.017              | 320.000 | 11.444     | 154.000 |
| 5.069              | 261.000 | 11.494     | 153.000 |
| 5.121              | 224.000 | 11.545     | 155.000 |
| 5.172              | 211.000 | 11.595     | 153.000 |
| 5.224              | 226.000 | 11.645     | 148.000 |
| 5.276              | 227.000 | 11.697     | 132.000 |
| 5.328              | 233.000 | 11.747     | 142.000 |
| 5.379              | 233.000 | 11.798     | 144.000 |
| 5.431              | 248.000 | 11.848     | 144.000 |
| 5• <del>4</del> 82 | 240.000 | 11.899     | 145.000 |
| 5.585              | 257.000 | 11.950     | 144.000 |
| 5.689              | 258.000 | 12.001     | 141.000 |
| 5.946              | 264.000 | 12.051     | ****    |
| 6.203              | 260.000 | 12.101     | 145.000 |
| 6.460              | 262.000 | 12.152     | 145.000 |
| 6.717              | 268.000 | 12.202     | 140.000 |
| 6.973              | 275.000 | 12.253     | 141.000 |
| 7, 228             | 263.000 | 12.304     | 142.000 |
| 7.484              | 274.000 | 12.558     | 139.000 |
| 7.739              | 263.000 | 12.810     | 139.000 |
| 7.994              | 254.000 | 13.063     | 116.000 |

TABLE 3

(TEXT 9 , FIGURE 10 )

CENTER OF MASS ANGLE = 54.73

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA   |
|------------|---------|------------|---------|
| 3.612      | 144.000 | 8.249      | 155.000 |
| 3.717      | 165.000 | 8.504      | 160.000 |
| 3.822      | 175.000 | 8.759      | 137.000 |
| 3.916      | 154.000 | 9.012      | 132.000 |
| 4.031      | 178.000 | 9.266      | 104.000 |
| 4.135      | 188.000 | 9.520      | 84.100  |
| 4.239      | 184.000 | 9.774      | 60.300  |
| 4.343      | 188.000 | 10.027     | 53.300  |
| 4.447      | 193.000 | 10.280     | 57.100  |
| 4.551      | 214.000 | 10.534     | 57.400  |
| 4.655      | 214.000 | 10.787     | 65.300  |
| 4.758      | 220.000 | 11.040     | 75.000  |
| 4.862      | 233.000 | 11.293     | 79.200  |
| 4.913      | 229.000 | 11.343     | 81.200  |
| 4.966      | 212.000 | 11.393     | 83.400  |
| 5.017      | 165.000 | 11.444     | 88.000  |
| 5.069      | 77.300  | 11.494     | 90.400  |
| 5.121      | 57.500  | 11.545     | 92.000  |
| 5.172      | 84.500  | 11.595     | 86.600  |
| 5.224      | 107.000 | 11.645     | 71.800  |
| 5.276      | 122.000 | 11.697     | 68.700  |
| 5.328      | 139.000 | 11.747     | 68.600  |
| 5.379      | 142.000 | 11.798     | 70.500  |
| 5.431      | 147.000 | 11.848     | 74.000  |
| 5.482      | 146.000 | 11.899     | 73.300  |
| 5.585      | 162.000 | 11.950     | 76.000  |
| 5.689      | 173.000 | 12.001     | 74.000  |
| 5.946      | 170.000 | 12.051     | 74.500  |
| 6.203      | 159.000 | 12.101     | 75.700  |
| 6.460      | 166.000 | 12.152     | 78.300  |
| 6.717      | 185.000 | 12.202     | 79.900  |
| 6.973      | 164.000 | 12.253     | 76.900  |
| 7,•228     | 183.000 | 12.304     | 80.400  |
| 7.484      | 164.000 | 12.558     | 83.600  |
| 7.739      | 175.000 | 12.810     | 81.500  |
| 7.994      | 157.000 | 13.063     | 83.200  |

TABLE 3

(TEXT 9 , FIGURE 10 )

CENTER OF MASS ANGLE = 60.00

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA   |
|------------|---------|------------|---------|
| 3.612      | 230.000 | 8.249      | 125.000 |
| 3.717      | 229.000 | 8.504      | 119.000 |
| 3.822      | 228.000 | 8.759      | 106.000 |
| 3.916      | 227.000 | 9.012      | 89.800  |
| 4.031      | 219.000 | 9.266      | 70.500  |
| 4.135      | 206.000 | 9.520      | 45.300  |
| 4.239      | 211.000 | 9.774      | 29.800  |
| 4.343      | 199.000 | 10.027     | 24.600  |
| 4.447      | 187.000 | 10.280     | 25.500  |
| 4.551      | 194.000 | 10.534     | 33.700  |
| 4.655      | 194.000 | 10.787     | 41.000  |
| 4.758      | 193.000 | 11.040     | 50.000  |
| 4.862      | 191.000 | 11.293     | 56.000  |
| 4.913      | 186.000 | 11.343     | 58.600  |
| 4.966      | 166.000 | 11.393     | 59.900  |
| 5.017      | 115.000 | 11.444     | 64.600  |
| 5.069      | 45.900  | 11.494     | 67.600  |
| 5.121      | 32.400  | 11.545     | 70.000  |
| 5.172      | 38.300  | 11.595     | 59.900  |
| 5.224      | 57.500  | 11.645     | 48.800  |
| 5.276      | 86.100  | 11.697     | 43.600  |
| 5.328      | 103.700 | 11.747     | 44.700  |
| 5.379      | 112.000 | 11.798     | 45.000  |
| 5.431      | 115.000 | 11.848     | 47.900  |
| 5.482      | 120.000 | - 11.899   | 50.700  |
| 5.585      | 137.000 | 11.950     | 51.800  |
| 5.689      | 138.000 | 12.001     | 53.400. |
| 5.946      | 147.000 | 12.051     | 55.800  |
| 6.203      | 135.000 | 12.101     | 55.400  |
| 6.460      | 134.000 | 12.152     | 55.400  |
| 6.717      | 141.000 | 12.202     | 57.200  |
| 6.973      | 145.000 | 12.253     | 57.000  |
| 7. 228     | 139.000 | 12.304     | 57.900  |
| 7.484      | 145.000 | 12.558     | 60.200  |
| 7.739      | 138.000 | 12.810     | 60.900  |
| 7.994      | 132.000 | 13.063     | 63.200  |
|            |         |            |         |

TABLE 3

(TEXT 9 , FIGURE 11)

CENTER OF MASS ANGLE = 63.43

| LAB ENERGY      | SIGMA   | LAB ENERGY | SIGMA   |
|-----------------|---------|------------|---------|
| 3.612           | 149.000 | 8.249      | 120.000 |
| 3.717           | 164.000 | 8.504      | 107.000 |
| 3.822           | 165.000 | 8.759      | 97.600  |
| 3.916           | 154.000 | 9.012      | 77.100  |
| 4.031           | 157.000 | 9.266      | 53.700  |
| 4.135           | 163.000 | 9.520      | 33.700  |
| 4.239           | 155.000 | 9.774      | 18.800  |
| 4.343           | 160.000 | 10.027     | 15.200  |
| 4.447           | 155.000 | 10.280     | 17.600  |
| 4.551           | 155.000 | 10.534     | 26.200  |
| 4.655           | 166.000 | 10.787     | 34.000  |
| 4.758           | 186.000 | 11.040     | 43.900  |
| 4.862           | 178.000 | 11.293     | 51.500  |
| 4.913           | 171.000 | 11.343     | 55.200  |
| 4.966           | 142.000 | 11.393     | 56.700  |
| 5.017           | 94.100  | 11.444     | 60.100  |
| 5.069           | 27.600  | 11.494     | 63.500  |
| 5.121           | 10.100  | 11.545     | 61.100  |
| 5.172           | 25.200  | 11.595     | 49.400  |
| 5.224           | 47.800  | 11.645     | 38.500  |
| 5.276           | 69.800  | 11.697     | 37.400  |
| 5.328           | 79.600  | 11.747     | 38.800  |
| 5.379           | 90.700  | 11.798     | 40.300  |
| 5.431           | 101.000 | 11.848     | 42.500  |
| 5.482           | 100.000 | 11.899     | 47.700  |
| 5.585           | 110.000 | 11.950     | 46.000  |
| <b>5.</b> 689 · | 116.000 | 12.001     | 47.000  |
| 5.946           | 126.000 | 12.051     | 48.200  |
| 6.203           | 132.000 | 12.101     | 48.400  |
| 6.460           | ****    | 12.152     | 51.600  |
| 6.717           | ****    | 12.202     | 51.600  |
| 6.973           | ****    | 12.253     | 52.300  |
| 7.228           | 141.000 | 12.304     | 52.900  |
| 7.484           | 140.000 | 12.558     | 57.400  |
| 7.739           | 137.000 | 12.810     | 57.200  |
| 7.994           | 129.000 | 13.063     | 59.000  |

TABLE 3

(TEXT 9 , FIGURE 11 )

CENTER OF MASS ANGLE = 64.97

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA   |
|------------|---------|------------|---------|
| 3.612      | 122.000 | 8.249      | 100.000 |
| 3.717      | 143.000 | 8.504      | 97.100  |
| 3.822      | 146.000 | 8.759      | 80.700  |
| 3.916      | 149.000 | 9.012      | 61.900  |
| 4.031      | 144.000 | 9.266      | 44.300  |
| 4.135      | 132.000 | 9.520      | 27.200  |
| 4.239      | 141.000 | 9.774      | 14.200  |
| 4.343      | 150.000 | 10.027     | 12.600  |
| 4.447      | 148.000 | 10.280     | 14.600  |
| 4.551      | 152.000 | 10.534     | 21.700  |
| 4.655      | 149.000 | 10.787     | 27.300  |
| 4.758      | 153.000 | 11.040     | 34.000  |
| 4.862      | 152.000 | 11.293     | 39.900  |
| 4.913      | 151.000 | 11.343     | 40.500  |
| 4.966      | 126.000 | 11.393     | 42.800  |
| 5.017      | 72.900  | 11.444     | 44.500  |
| 5.069      | 23.500  | 11.494     | 47.000  |
| 5.121      | 10.600  | 11.545     | 46.800  |
| 5.172      | 33.000  | 11.595     | 38.100  |
| 5.224      | 49.200  | 11.645     | 29.400  |
| 5.276      | 65.300  | . 11.697   | 26.700  |
| 5.328      | 75.900  | 11.747     | 28.500  |
| 5.379      | 81.200  | 11.798     | 30.400  |
| 5.431      | 90.800  | 11.848     | 31.800  |
| 5.482      | 90.100  | 11.899     | 33.000  |
| 5.585      | 103.000 | 11.950     | 34.700  |
| 5.689      | 105.000 | 12.001     | 35.300  |
| 5.946      | 112.000 | 12.051     | 36.300  |
| 6.203      | 112.000 | 12.101     | 37.800  |
| 6.460      | 115.000 | 12.152     | 37.900  |
| 6.717      | 112.000 | 12.202     | 37.600  |
| 6.973      | 113.000 | 12.253     | 39.200  |
| 7,•228     | 114.000 | .12.304    | 39.300  |
| 7.484      | 108.000 | 12.558     | 40.900  |
| 7.739      | 106.000 | 12.810     | 42.300  |
| 7.994      | 103.000 | 13.063     | 43.800  |

TABLE 3

(TEXT 9 , FIGURE 12)

CENTER OF MASS ANGLE = 70.00

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 3.612      | 196.000 | 8.249      | 82.300 |
| 3.717      | 172.000 | 8.504      | 78.800 |
| 3.822      | 150.000 | 8.759      | 67.500 |
| 3.916      | 154.000 | 9.012      | 55.200 |
| 4.031      | 148.000 | 9.266      | 41.300 |
| 4.135      | 147.000 | 9.520      | 27.700 |
| 4.239      | 142.000 | 9.774      | 19.500 |
| 4.343      | 134.000 | 10.027     | 16.100 |
| 4.447      | 144.000 | 10.280     | 20.600 |
| 4.551      | 146.000 | 10.534     | 27.200 |
| 4.655      | 149.000 | 10.787     | 33.900 |
| 4.758      | 156.000 | 11.040     | 39.400 |
| 4.862      | 152.000 | 11.293     | 45.200 |
| 4.913      | 148.000 | 11.343     | 45.100 |
| 4.966      | 128.000 | 11.393     | 46.900 |
| 5.017      | 92.400  | 11.444     | 46.700 |
| 5.069      | 45.300  | 11-494     | 49.500 |
| 5.121      | 38.900  | 11.545     | 47.900 |
| 5.172      | 48.300  | 11.595     | 42.000 |
| 5.224      | 62.100  | 11.645     | 32.600 |
| 5.276      | 72.400  | 11.697     | 30.400 |
| 5.328      | 78.400  | 11.747     | 31.800 |
| 5.379      | 82.200  | 11.798     | 34.000 |
| 5.431      | 88,200  | 11.848     | 34.800 |
| 5.482      | 90.400  | 11.899     | 37.800 |
| 5.585      | 95.400  | 11.950     | 39.000 |
| 5.689      | 97.100  | 12.001     | 40.000 |
| 5.946      | 98.600  | 12.051     | 41.400 |
| 6.203      | 102.000 | 12.101     | 42.300 |
| 6.460      | 101.000 | 12.152     | 43.600 |
| 6.717      | 100.000 | 12.202     | 44.200 |
| 6.973      | 100.000 | 12.253     | 44.700 |
| 7,•228     | 97.400  | 12.304     | 44.700 |
| 7.484      | 95.500  | 12.558     | 46.200 |
| 7.739      | 94.400  | 12.810     | 47.800 |
| 7.994      | 88.900  | 13.063     | 48.900 |
|            |         |            |        |

TABLE 3

(TEXT 9, FIGURE 12)

CENTER OF MASS ANGLE = 75.95

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 3.612      | ****    | 8.249      | 68.100 |
| 3.717      | ****    | 8.504      | 64.500 |
| 3.822      | *****   | 8.759      | 59.200 |
| 3.916      | ****    | 9.012      | 50.500 |
| 4.031      | ****    | 9.266      | 44.600 |
| 4.135      | 94.400  | 9.520      | 37.500 |
| 4.239      | 101.000 | 9.774      | 33.000 |
| 4.343      | 94.300  | 10.027     | 32.000 |
| 4.447      | 103.000 | 10.280     | 33.500 |
| 4.551      | 96.600  | 10.534     | 36.600 |
| 4.655      | 99.400  | 10.787     | 40.900 |
| 4.758      | 103.000 | 11.040     | 41.900 |
| 4.862      | 104.000 | 11.293     | 44.400 |
| 4.913      | 106.000 | 11.343     | 44.700 |
| 4.966      | 102.600 | 11.393     | 43.700 |
| 5.017      | 91.900  | 11.444     | 45.300 |
| 5.069      | 75.800  | 11.494     | 44.100 |
| 5.121      | 65.300  | 11.545     | 42.000 |
| 5.172      | 58.700  | 11.595     | 34.700 |
| 5.224      | 66.400  | 11.645     | 31.200 |
| 5.276      | 70.200  | 11.697     | 32.300 |
| 5.328      | 72.000  | 11.747     | 33.700 |
| 5.379      | 72.600  | 11.798     | 35.900 |
| 5.431      | 76.500  | 11.848     | 37.100 |
| 5.482      | 78.400  | 11.899     | 38.600 |
| 5.585      | 82.000  | 11.950     | 39.200 |
| 5.689      | 80.100  | 12.001     | 39.400 |
| 5.946      | 81.300  | 12.051     | 40.400 |
| 6.203      | 80.000  | 12.101     | 40.800 |
| 6.460      | 78.100  | 12.152     | 41.600 |
| 6.717      | 81.900  | 12.202     | 41.000 |
| 6.973      | 78.300  | 12.253     | 41.400 |
| 7.228      | 76.900  | 12.304     | 41.900 |
| 7.484      | 71.200  | 12.558     | 43.300 |
| 7.739      | 70.300  | 12.810     | 43.300 |
| 7.994      | 71.000  | 13.063     | 43.100 |

TABLE 3

(TEXT 9 , FIGURE 13 )

CENTER OF MASS ANGLE = 84.75

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 3.612      | *****   | 8.249      | 60.700 |
| 3.717      | *****   | 8.504      | 61.200 |
| 3.822      | ****    | 8.759      | 64.700 |
| 3.916      | ****    | 9.012      | 67.000 |
| 4.031      | ****    | 9.266      | 69.700 |
| 4.135      | ****    | 9.520      | 72.300 |
| 4.239      | 55.800  | 9.774      | 72.600 |
| 4.343      | 57.200  | 10.027     | 70.600 |
| 4.447      | 61.000  | 10.280     | 64.700 |
| 4.551      | 60.900  | 10.534     | 64.700 |
| 4.655      | 60.300  | 10.787     | 60.300 |
| 4.758      | 64.400  | 11.040     | 56.600 |
| 4.862      | 69.400  | 11.293     | 51.400 |
| 4.913      | 77.200  | 11.343     | 50.300 |
| 4.966      | 87.600  | 11.393     | 48.200 |
| 5.017      | 112.000 | 11.444     | 45.800 |
| 5.069      | 124.000 | 11.494     | 42.600 |
| 5.121      | 119.000 | 11.545     | 38.500 |
| 5.172      | 95.300  | 11.595     | 35.900 |
| 5.224      | 81.300  | 11.645     | 39.900 |
| 5.276      | 77.000  | 11.697     | 44.900 |
| 5.328      | 72.700  | 11.747     | 46.300 |
| 5.379      | 71.700  | 11.798     | 46.800 |
| 5.431      | 67.400  | 11.848     | 47.900 |
| 5.482      | 65.100  | 11.899     | 47.700 |
| 5.585      | 64.500  | 11.950     | 47.400 |
| 5.689      | 61.900  | 12.001     | 47.300 |
| 5.946      | 62.400  | 12.051     | 47.600 |
| 6.203      | 61.300  | 12.101     | 46.200 |
| 6.460      | 60.500  | 12.152     | 46.900 |
| 6.717      | 61.100  | 12.202     | 46.300 |
| 6.973      | 59.800  | 12.253     | 46.500 |
| 7.228      | 59.400  | 12.304     | 45.000 |
| 7.484      | 58.900  | 12.558     | 44.400 |
| 7.739      | 59.400  | 12.810     | 43.500 |
| 7.994      | 59.500  | 13.063     | 42.000 |

TABLE 3

(TEXT 9 , FIGURE 13)

CENTER OF MASS ANGLE = 90.00

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 3.612      | 71.700  | 8.249      | 57.700 |
| 3.717      | 68.600  | 8.504      | 62.400 |
| 3.822      | 63.200  | 8.759      | 67.800 |
| 3.916      | 65.300  | 9.012      | 77.200 |
| 4.031      | 64.000  | 9.266      | 89.000 |
| 4.135      | 62.400  | 9.520      | 95.400 |
| 4.239      | 61.600  | 9.774      | 98.000 |
| 4.343      | 60.400  | 10.027     | 94.300 |
| 4.447      | 60.000  | 10.280     | 88.400 |
| 4.551      | 60.400  | 10.534     | 79.300 |
| 4.655      | 62.800  | 10.787     | 69.600 |
| 4.758      | 69.400  | 11.040     | 63.600 |
| 4.862      | 86.100  | 11.293     | 54.400 |
| 4.913      | 108.200 | 11.343     | 51.400 |
| 4.966      | 150.000 | 11.393     | 47.100 |
| 5.017      | 201.000 | 11.444     | 46.400 |
| 5.069      | 216.000 | 11.494     | 41.900 |
| 5.121      | 174.000 | 11.545     | 34.800 |
| 5.172      | 133.000 | 11.595     | 34.900 |
| 5.224      | 106.000 | 11.645     | 40.500 |
| 5.276      | 90.000  | 11.697     | 48.500 |
| 5.328      | 81.300  | 11.747     | 50.000 |
| 5.379      | 75.200  | 11.798     | 51.400 |
| 5.431      | 69.900  | 11.848     | 49.000 |
| 5.482      | 67.200  | 11.899     | 50.400 |
| 5.585      | 62.800  | 11.950     | 49.200 |
| 5.689      | 58.400  | 12.001     | 47.500 |
| 5.946      | 52.600  | 12.051     | 48.300 |
| 6.203      | 52.400  | 12.101     | 47.600 |
| 6.460      | 49.300  | 12.152     | 48.300 |
| 6.717      | 49.600  | 12.202     | 47.000 |
| 6.973      | 49.700  | 12.253     | 45.400 |
| 7228       | 48.700  | 12.304     | 44.300 |
| 7.484      | 49.600  | 12.558     | 42.500 |
| 7.739      | 52.400  | 12.810     | 38.400 |
| 7.994      | 54.500  | 13.063     | 39.200 |

TABLE 3

(TEXT 9 , FIGURE 14)

CENTER OF MASS ANGLE = 95.63

| LAB ENERGY | SIGMA  | LAB ENERGY | SIGMA  |
|------------|--------|------------|--------|
| 3.612      | ****   | 8.249      | 47.800 |
| 3.717      | ****   | 8.504      | 54.500 |
| 3.822      | ****   | 8.759      | 65.300 |
| 3.916      | ****   | 9.012      | 74.700 |
| 4.031      | ****   | 9.266      | 85.500 |
| 4.135      | *****  | 9.520      | 95.300 |
| 4.239      | ****   | 9.774      | 95.300 |
| 4.343      | ****   | 10.027     | 91.900 |
| 4.447      | ****   | 10.280     | 80.100 |
| 4.551      | *****  | 10.534     | 75.500 |
| 4.655      | ****   | 10.787     | 66.400 |
| 4.758      | *****  | 11.040     | 57.000 |
| 4.862      | *****  | 11.293     | 47.900 |
| 4.913      | ****   | 11.343     | 45.500 |
| 4.966      | ****   | 11.393     | 42.400 |
| 5.017      | ****   | 11.444     | 39.300 |
| 5.069      | ****   | 11.494     | 35.400 |
| 5.121      | ****   | 11.545     | 30.200 |
| 5.172      | *****  | 11.595     | 29.200 |
| 5.224      | *****  | 11.645     | 37.800 |
| 5.276      | 63.400 | 11.697     | 43.900 |
| 5.328      | 49.900 | 11.747     | 45.800 |
| 5.379      | 48.100 | 11.798     | 47.200 |
| 5.431      | 44.600 | 11.848     | 46.300 |
| 5.482      | 42.800 | 11.899     | 45.800 |
| 5.585      | 41.400 | 11.950     | 44.400 |
| 5.689      | 37.300 | 12.001     | 43.500 |
| 5.946      | 36.400 | 12.051     | 42.600 |
| 6.203      | 35.700 | 12.101     | 42.100 |
| 6.460      | 34.700 | 12.152     | 41.100 |
| 6.717      | 33.000 | 12.202     | 40.600 |
| 6.973      | 31.600 | 12.253     | 39.900 |
| 7,•228     | 35.600 | 12.304     | 32.900 |
| 7.484      | 37.200 | 12.558     | 34.400 |
| 7.739      | 40.200 | 12.810     | 36.200 |
| 7.994      | 42.700 | 13.063     | 39.400 |

TABLE 3

(TEXT 9, FIGURE 14)

CENTER OF MASS ANGLE = 102.00

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA   |
|------------|---------|------------|---------|
| 3.612      | *****   | 8.249      | 45.900  |
| 3.717      | ****    | 8.504      | 53.900  |
| 3.822      | *****   | 8.759      | 65.700  |
| 3.916      | 37.900  | 9.012      | 80.000  |
| 4.031      | 37.600  | 9.266      | 91.700  |
| 4.135      | 27.600  | 9.520      | 101.000 |
| 4.239      | 32.000  | 9.774      | 102.000 |
| 4.343      | 36.500  | 10.027     | 93.900  |
| 4.447      | 37.000  | 10.280     | 83.100  |
| 4.551      | 41.900  | 10.534     | 72.100  |
| 4.655      | 49.700  | 10.787     | 59.900  |
| 4.758      | 59.300  | 11.040     | 50.500  |
| 4.862      | 91.200  | 11.293     | 39.600  |
| 4.913      | 126.000 | 11.343     | 36.900  |
| 4.966      | 186.000 | 11.393     | 34.100  |
| 5.017      | 268.000 | 11.444     | 30.500  |
| 5.069      | 292.000 | 11.494     | 26.700  |
| 5.121      | 218.000 | 11.545     | 21.900  |
| 5.172      | 144.000 | 11.595     | 22.700  |
| 5.224      | 93.200  | 11.645     | 32.100  |
| 5.276      | 70.100  | 11.697     | 38.300  |
| 5.328      | 55.800  | 11.747     | 39.800  |
| 5.379      | 47.800  | 11.798     | 40.100  |
| 5.431      | 39.800  | 11.848     | 39.300  |
| 5•482      | 38.700  | 11.899     | 37.800  |
| 5.585      | 32.600  | 11.950     | 37.000  |
| 5.689      | 31.300  | 12.001     | 35.400  |
| 5.946      | 28.600  | 12.051     | 33.800  |
| 6.203      | 27.900  | 12.101     | 33.800  |
| 6.460      | 26.500  | 12.152     | 32.600  |
| 6.717      | 29.800  | 12.202     | 31.700  |
| 6.973      | 29.300  | 12.253     | 30.900  |
| 7. 228     | 29.400  | 12.304     | 22.800  |
| 7.484      | 30.700  | 12.558     | 25.200  |
| 7.739      | 34.900  | 12.810     | 27.800  |
| 7.994      | 39.600  | 13.063     | 29.800  |

TABLE 3

(TEXT 9, FIGURE 15)

CENTER OF MASS ANGLE = 109.87

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 3.612      | 8.300   | 8.249      | 43.700 |
| 3.717      | 12.100  | 8.504      | 52.100 |
| 3.822      | 15.700  | 8.759      | 63.300 |
| 3.916      | 19.200  | 9.012      | 74.500 |
| 4.031      | 22.800  | 9.266      | 84.800 |
| 4.135      | 27.700  | 9.520      | 90.600 |
| 4.239      | 29.800  | 9.774      | 88.200 |
| 4.343      | 35.300  | 10.027     | 79.600 |
| 4.447      | 39.800  | 10.280     | 65.700 |
| 4.551      | 44.900  | 10.534     | 55.000 |
| 4.655      | 54.700  | 10.787     | 44.400 |
| 4.758      | 73.100  | 11.040     | 34.600 |
| 4.862      | 111.000 | 11.293     | 24.400 |
| 4.913      | 154.000 | 11.343     | 22.400 |
| 4.966      | 220.000 | 11.393     | 19.600 |
| 5.017      | 297.000 | 11.444     | 16.600 |
| 5.069      | 301.000 | 11.494     | 13.300 |
| 5.121      | 216.000 | 11.545     | 12.400 |
| 5.172      | 126.500 | 11.595     | 16.500 |
| 5.224      | 78.000  | 11.645     | 24.300 |
| 5.276      | 53.400  | 11.697     | 26.900 |
| 5.328      | 39.600  | 11.747     | 26.000 |
| 5.379      | 31.600  | 11.798     | 25.100 |
| 5.431      | 26.400  | 11.848     | 23.900 |
| 5.482      | 23.400  | 11.899     | 22.900 |
| 5.585      | 20.600  | 11.950     | 21.700 |
| 5.689      | 18.500  | 12.001     | 21.700 |
| 5.946      | 17.700  | 12.051     | 20.500 |
| 6.203      | 18.600  | 12.101     | 19.500 |
| 6.460      | 19.700  | 12.152     | 19.000 |
| 6.717      | 20.800  | 12.202     | 18.300 |
| 6.973      | 21.900  | 12.253     | 17.600 |
| 7.228      | 24.400  | 12.304     | 17.100 |
| 7.484      | 27.100  | 12.558     | 14.500 |
| 7.739      | 31.500  | 12.810     | 13.200 |
| 7.994      | 35.900  | 13.063     | 11.600 |

TABLE 3

(TEXT 9 , FIGURE 15)

CENTER OF MASS ANGLE = 116.57

| LAB ENERGY | STGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 3.612      | 24.900  | 8.249      | 39.600 |
| 3.717      | 26.800  | 8.504      | 47.100 |
| 3.822      | 29.700  | 8.759      | 55.700 |
| 3.916      | 30.900  | 9.012      | 63.500 |
| 4.031      | *****   | 9.266      | 74.400 |
| 4.135      | ****    | 9.520      | 77.400 |
| 4.239      | ****    | 9.774      | 72.200 |
| 4.343      | 27.800  | 10.027     | 61.700 |
| 4.447      | 34.800  | 10.280     | 49.400 |
| 4.551      | 41.500  | 10.534     | 38.400 |
| 4.655      | 55.900  | 10.787     | 29.600 |
| 4.758      | 75.400  | .11.040    | 19.800 |
| 4.862      | 113.000 | 11.293     | 13.700 |
| 4.913      | 154.000 | 11.343     | 11.900 |
| 4.966      | 211.000 | 11.393     | 10.800 |
| 5.017      | 285.000 | 11.444     | 8.410  |
| 5.069      | 276.000 | 11.494     | 6.380  |
| 5.121      | 190.000 | 11.545     | 5.590  |
| 5.172      | 103.000 | 11.595     | 9.180  |
| 5.224      | 59.800  | 11.645     | 14.400 |
| 5.276      | 37.700  | 11.697     | 16.000 |
| 5.328      | 26.200  | 11.747     | 16.300 |
| 5.379      | 19.600  | 11.798     | 14.400 |
| 5.431      | 16.600  | 11.848     | 13.800 |
| 5.482      | 14.700  | 11.899     | 12.900 |
| 5.585      | 13.000  | 11.950     | 12.100 |
| 5.689      | 12.500  | 12.001     | 11.400 |
| 5.946      | 12.400  | 12.051     | 10.900 |
| 6.203      | 14.000  | 12.101     | 9.930  |
| 6.460      | 15.100  | 12.152     | 9.650  |
| 6.717      | 17.200  | 12.202     | 8.980  |
| 6.973      | 18.900  | 12.253     | 8.750  |
| 7.228      | 21.400  | 12.304     | 8.150  |
| 7.484      | 22.700  | 12.558     | 6.780  |
| 7.739      | 27.800  | 12.810     | 5.610  |
| 7.994      | 33.600  | 13.063     | 4.720  |

TABLE 3

(TEXT 9 , FIGURE 16)

CENTER OF MASS ANGLE = 125.27

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA   |
|------------|---------|------------|---------|
| 3.612      | 8.500   | 8.249      | 44.00C  |
| 3.717      | 12.200  | 8.504      | 54.900  |
| 3.822      | 21.800  | 8.759      | 63.200  |
| 3.916      | 24.200  | 9.012      | 68.100  |
| 4.031      | 25.500  | 9.266      | 74.800  |
| 4.135      | 25.100  | 9.520      | 76.600  |
| 4.239      | 29.700  | 9.774      | 69.900  |
| 4.343      | 31.700  | 10.027     | 58.600  |
| 4.447      | 33.700  | 10.280     | 45.300  |
| 4.551      | 38.700  | 10.534     | 33.400  |
| 4.655      | 45.500  | 10.787     | 24.800  |
| 4.758      | 60.500  | 11.040     | 18.200  |
| 4.862      | 93.600  | 11.293     | 11.600  |
| 4.913      | 129.000 | 11.343     | 10.100  |
| 4.966      | 176.000 | 11.393     | 8.800   |
| 5.017      | 227.000 | 11.444     | 7.100   |
| 5.069      | 207.000 | 11.494     | 5.900   |
| 5.121      | 129.000 | 11.545     | 5.500   |
| 5.172      | 67.300  | 11.595     | 7.900   |
| 5.224      | 38.400  | 11.645     | 12.800  |
| 5.276      | 24.600  | 11.697     | 14.400  |
| 5.328      | 17.100  | 11.747     | 14.300  |
| 5.379      | 13.500  | 11.798     | 13.300  |
| 5.431      | 10.800  | 11.848     | 12.400  |
| 5.482      | 10.000  | 11.899     | 11.700  |
| 5.585      | 10.000  | 11.950     | 11.100  |
| 5.689      | 10.000  | 12.001     | 10.000  |
| 5.946      | 11.500  | 12.051     | 9.800   |
| 6.203      | 13.300  | 12.101     | 9.300   |
| 6.460      | 15.400  | 12.152     | 9.000   |
| 6.717      | 18.100  | 12.202     | 8 • 400 |
| 6.973      | 20.300  | 12.253     | 8.400   |
| 7, 228     | 24.100  | 12.304     | 8.100   |
| 7.484      | 28.100  | 12.558     | 6.800   |
| 7.739      | 32.400  | 12.810     | 6.100   |
| 7.994      | 36.900  | 13.063     | 5.500   |

TABLE 3

(TEXT 9 , FIGURE 16)

CENTER OF MASS ANGLE = 140.00

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA   |
|------------|---------|------------|---------|
| 3.612      | *****   | 8.249      | 66.500  |
| 3.717      | *****   | 8.504      | 78.300  |
| 3.822      | *****   | 8.759      | 91.600  |
| 3.916      | *****   | 9.012      | 110.000 |
| 4.031      | ****    | 9.266      | 129.000 |
| 4.135      | *****   | 9.520      | 141.000 |
| 4.239      | *****   | 9.774      | 147.000 |
| 4.343      | ****    | 10.027     | 140.000 |
| 4.447      | 27.600  | 10.280     | 130.000 |
| 4.551      | 30.100  | 10.534     | 121.000 |
| 4.655      | 33.500  | 10.787     | 117.000 |
| 4.758      | 40.600  | 11.040     | ****    |
| 4.862      | 62.900  | 11.293     | 73.600  |
| 4.913      | 86.700  | 11.343     | 65.200  |
| 4.913      | 129.100 | 11.393     | 64.100  |
| 5.017      | 195.000 | 11.444     | 59.300  |
|            |         | 11.494     | 54.300  |
| 5.069      | 224.000 | 11.545     | 48.400  |
| 5.121      | 185.000 |            |         |
| 5.172      | 129.000 | 11.595     | 49.600  |
| 5.224      | 93.800  | 11.645     | 60.700  |
| 5.276      | 72.700  | 11.697     | 69.400  |
| 5.328      | 59.100  | 11.747     | 73.900  |
| 5.379      | 51.900  | 11.798     | 73.200  |
| 5.431      | 46.400  | 11.848     | 71.600  |
| 5.482      | 43.800  | 11.899     | 71.600  |
| 5.585      | 39.100  | 11.950     | 70.800  |
| 5.689      | 36.200  | 12.001     | 68.600  |
| 5.946      | 33.600  | 12.051     | *****   |
| 6.203      | 32.400  | 12.101     | 67.700  |
| 6.460      | 34.400  | 12.152     | 67.000  |
| 6.717      | 35.400  | 12.202     | 67.100  |
| 6.973      | 37.600  | 12.253     | 66.500  |
| 7.228      | 40.600  | 12.304     | 65.600  |
| 7.484      | 46.000  | 12.558     | 64.700  |
| 7.739      | 50.500  | 12.810     | 57.000  |
| 7.994      | 58.000  | 13.063     | 54.700  |

TABLE 3

(TEXT 9, FIGURE 17)

CENTER OF MASS ANGLE = 146.50

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA   |
|------------|---------|------------|---------|
| 3.612      | ****    | 8.249      | 85.100  |
| 3.717      | ****    | 8.504      | 96.100  |
| 3.822      | ****    | 8.759      | 118.000 |
| 3.916      | ****    | 9.012      | 147.000 |
| 4.031      | ****    | 9.266      | 177.000 |
| 4.135      | ****    | 9.520      | 195.000 |
| 4.239      | *****   | 9.774      | 213.000 |
| 4.343      | ****    | 10.027     | 218.000 |
| 4-447      | 22.900  | 10.4280    | 208 000 |
| 4.551      | 23.400  | 10.534     | 177.000 |
| 4.655      | 24.700  | 10.787     | 162.000 |
| 4.758      | 29.200  | 11.040     | 144.000 |
| 4.862      | 50.400  | 11.293     | 130.000 |
| 4.913      | 82.900  | 11.343     | 126.000 |
| 4.966      | 139.000 | 11.393     | 121.000 |
| 5.017      | 239.000 | 11.444     | 111.000 |
| 5.069      | 306.000 | 11.494     | 103.000 |
| 5.121      | 272.000 | 11.545     | 86.600  |
| 5.172      | 199.000 | 11.595     | 86.800  |
| 5.224      | 149.000 | 11.645     | 107.000 |
| 5.276      | 121.000 | 11.697     | 122.000 |
| 5.328      | 97.900  | 11.747     | 132.000 |
| 5.379      | 85.300  | 11.798     | 124.000 |
| 5.431      | 74.900  | 11.848     | 127.000 |
| 5.482      | 68.500  | 11.899     | 125.000 |
| 5.585      | 59.700  | 11.950     | 124.000 |
| 5.689      | 55.600  | 12.001     | 120.000 |
| 5.946      | 47.200  | 12.051     | 121.000 |
| 6.203      | 44.300  | 12.101     | 118.000 |
| 6.460      | 43.800  | 12.152     | 117.000 |
| 6.717      | 43.400  | 12.202     | 118.000 |
| 6.973      | 44.300  | 12.253     | 116.000 |
| 7.228      | 49.600  | 12.304     | 116.000 |
| 7.484      | 58.400  | 12.558     | 111.000 |
| 7.739      | 61.800  | 12.810     | 109.000 |
| 7.994      | 71.700  | 13.063     | 109.000 |

Data for the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment

This table shows the center-of-mass differential elastic cross sections in the same manner as Table 3. The energy range is from 12.8 to 18 MeV. (Page 9)

TABLE 4

(TEXT 9 , FIGURE 18 )

CENTER OF MASS ANGLE = 54.70

| LAB ENERGY | SIGMA       | LAB ENERGY | SIGMA  |
|------------|-------------|------------|--------|
| 12.810     | 85.900      | 16.341     | 54.700 |
| 13.063     | 87.100      | 16.442     | 43.700 |
| 13.315     | 86.500      | 16.542     | 34.700 |
| 13.568     | 86.800      | 16.643     | 28.700 |
| 13.820     | 85,600      | 16.743     | 27.000 |
| 14.073     | 85.300      | 16.844     | 28.900 |
| 14.325     | 86.700      | 16.944     | 32.100 |
| 14.577     | 85.400      | 17.046     | 38.100 |
| 14.829     | 86.300      | 17.146     | 40.500 |
| 15.082     | 85.900      | 17.247     | 42.000 |
| 15.333     | 83.800      | 17.347     | 45.800 |
| 15.585     | 81.900      | 17.448     | 49.700 |
| 15.837     | 78.900      | 17.548     | 52.100 |
| 15.938     | 78.500      | 17.648     | 52.500 |
| 16.039     | 73.300      | 17.849     | 55.600 |
| 16.139     | 72.100      | 18.100     | 58.000 |
| 16.241     | 64.600      | 18.500     | ***    |
| 70.44.     | J , J J J J |            |        |

TABLE 4

(TEXT 9, FIGURE 18)

CENTER OF MASS ANGLE = 63.40

| LAB ENERGY | SIGMA           | LAB ENERGY | SIGMA  |
|------------|-----------------|------------|--------|
| 12.810     | 54.700          | 16.341     | 18.000 |
| 13.063     | 55.100          | 16.442     | 11.000 |
| 13.315     | 56.800          | 16.542     | 6.570  |
| 13.568     | 5 <b>7.</b> 400 | 16.643     | 6.090  |
| 13.820     | 50.800          | 16.743     | 8.910  |
| 14.073     | 57.000          | 16.844     | 13.700 |
| 14.325     | 56.100          | 16.944     | 18.500 |
| 14.577     | 54.300          | 17.046     | 23.100 |
| 14.829     | 54.800          | 17.146     | 28.300 |
| 15.082     | 50.100          | 17.247     | 31.000 |
| 15.333     | 52.100          | 17.347     | 33.600 |
| 15.585     | 47.800          | 17.448     | 37.300 |
| 15.837     | 43.400          | 17.548     | 39.400 |
| 15.938     | 39.400          | 17.648     | 39.300 |
| 16.039     | 35.700          | 17.849     | 42.400 |
| 16.139     | 31.300          | 18.100     | 44.600 |
| 16.241     | 25.000          | 18.500     | ****   |
|            |                 |            |        |

TABLE 4

(TEXT 9, FIGURE 19)

CENTER OF MASS ANGLE = 77.00

|            |        |            | CICUL  |
|------------|--------|------------|--------|
| LAB ENERGY | SIGMA  | LAB ENERGY | SIGMA  |
| 12.810     | 46.400 | 16.341     | 25.400 |
| 13.063     | 45.400 | 16.442     | 21.700 |
| 13.315     | 46.000 | 16.542     | 19.300 |
| 13.568     | 43.700 | 16.643     | 18.000 |
| 13.820     | 44.200 | 16.743     | 17.300 |
| 14.073     | 42.800 | 16.844     | 16.900 |
| 14.325     | 43.200 | 16.944     | 18.900 |
| 14.577     | 41.700 | 17.046     | 19.700 |
| 14.829     | 41.500 | 17.146     | 21.800 |
| 15.082     | 39.900 | 17.247     | 23.200 |
| 15.333     | 39.400 | 17.347     | 23.900 |
| 15.585     | 36.600 | 17.448     | 24.700 |
| 15.837     | 34.900 | 17.548     | 25.800 |
| 15.938     | 32.600 | 17.648     | 26.200 |
| 16.039     | 31.000 | 17.849     | 27.100 |
| 16.139     | 30.700 | 18.100     | 27.200 |
| 16.241     | 28.500 | 18.500     | ***    |

TABLE 4

(TEXT 9, FIGURE 19)

CENTER OF MASS ANGLE = 91.39

| •          |        |            |        |
|------------|--------|------------|--------|
| LAB ENERGY | SIGMA  | LAB ENERGY | SIGMA  |
| 12.810     | 38.900 | 16.341     | 48.800 |
| 13.063     | 37.800 | 16.442     | 47.700 |
| 13.315     | 37.100 | 16.542     | 46.600 |
| 13.568     | 36.200 | 16.643     | 42.900 |
| 13.820     | 34.700 | 16.743     | 37.000 |
| 14.073     | 33.400 | 16.844     | 33.700 |
| 14.325     | 33,900 | 16.944     | 27.800 |
| 14.577     | 32.600 | 17.046     | 24.200 |
| 14.829     | 32.700 | 17.146     | 21.900 |
| 15.082     | 33.300 | 17.247     | 20.100 |
| 15.333     | 33.900 | 17.347     | 18.300 |
| 15.585     | 35.200 | 17.448     | 16.300 |
| 15.837     | 38.300 | 17.548     | 16.100 |
| 15.938     | 38.500 | 17.648     | 14.900 |
| 16.039     | 42.000 | 17.849     | 13.200 |
| 16.139     | 44.400 | 18.100     | 12.300 |
| 16.241     | 46.100 | 18.500     | ****   |
|            |        |            |        |

TABLE 4

(TEXT 9 , FIGURE 20 )

CENTER OF MASS ANGLE = 105.00

| LAB ENERGY | SIGMA  | LAB ENERGY | SIGMA  |
|------------|--------|------------|--------|
| 12.810     | 19.700 | 16.341     | 37.300 |
| 13.063     | 18.700 | 16.442     | 44.000 |
| 13.315     | 18.300 | 16.542     | 48.300 |
| 13.568     | 16.000 | 16.643     | 50.600 |
| 13.820     | 14.800 | 16.743     | 50.700 |
| 14.073     | 14.500 | 16.844     | 47.800 |
| 14.325     | 13.900 | 16.944     | 43.600 |
| 14.577     | 13.400 | 17.046     | 39.200 |
| 14.829     | 12.900 | 17.146     | 34.600 |
| 15.082     | 13.300 | 17.247     | 33.000 |
| 15.333     | 14.400 | 17.347     | 30.100 |
| 15.585     | 14.600 | 17.448     | 26.100 |
| 15.837     | 17.700 | 17.548     | 24.400 |
| 15.938     | 19.900 | 17.648     | 23.100 |
| 16.039     | 23.100 | 17.849     | 20.900 |
| 16.139     | 27.900 | 18.100     | 17.100 |
| 16.241     | 31.600 | 18.500     | ***    |

TABLE 4

(TEXT 9, FIGURE 20)

CENTER OF MASS ANGLE = 115.80

|            | C * C * A | LAD ENERGY | SIGMA           |
|------------|-----------|------------|-----------------|
| LAB ENERGY | SIGMA     | LAB ENERGY |                 |
| 12.810     | 5.860     | 16.341     | 16.300          |
| 13.063     | 5.070     | 16.442     | 22.400          |
| 13.315     | 4.160     | 16.542     | 28 <b>.00</b> 0 |
| 13.568     | 4.120     | 16.643     | 32.600          |
| 13.820     | 3.470     | 16.743     | 35.600          |
| 14.073     | 3.120     | 16.844     | 35.500          |
| 14.325     | 2.570     | 16.944     | 33.000          |
| 14.577     | 2.680     | 17.046     | 31.500          |
| 14.829     | 2.480     | 17.146     | 28.900          |
| 15.082     | 2.290     | 17.247     | 26.100          |
| 15.333     | 2.680     | 17.347     | 23.300          |
| 15.585     | 3.130     | 17.448     | 22.800          |
| 15.837     | 4.250     | 17.548     | 21.700          |
| 15.938     | 5.500     | 17.648     | 20.600          |
| 16.039     | 6.530     | 17.849     | 17.600          |
| 16.139     | 9.310     | 18.100     | 16.300          |
| 16.241     | 11.630    | 18.500     | ***             |

TABLE 4

(TEXT 9, FIGURE 21)

CENTER OF MASS ANGLE = 126.50

| LAB ENERGY | SIGMA  | LAB ENERGY | SIGMA        |
|------------|--------|------------|--------------|
| 12.810     | 8.240  | 16.341     | 19.920       |
|            |        |            | <del>-</del> |
| 13.063     | 7.470  | 16.442     | 20.510       |
| 13.315     | 7.070  | 16.542     | 20.180       |
| 13.568     | 7.220  | 16.643     | 18.680       |
| 13.820     | 7.010  | 16.743     | 17.140       |
| 14.073     | 6.600  | 16.844     | 14.980       |
| 14.325     | 7.050  | 16.944     | 12.400       |
| 14.577     | 7.100  | 17.046     | 10.120       |
| 14.829     | 7.290  | 17.146     | 8.560        |
| 15.082     | 8.370  | 17.247     | 7.440        |
| 15.333     | 8.760  | 17.347     | 6.520        |
| 15.585     | 9,400  | 17.448     | 5.970        |
| 15.837     | 10.600 | 17.548     | 5.290        |
| 15.938     | 12.150 | 17.648     | 4.880        |
| 16.039     | 13.770 | 17.849     | 4.050        |
| 16.139     | 14.820 | 18.100     | 4.270        |
| 16.241     | 17.440 | 18.500     | ****         |

TABLE 4

# (TEXT 9 , FIGURE 21) CENTER OF MASS ANGLE = 133.60

|              | CICHA  | LAB ENERGY | SIGMA  |
|--------------|--------|------------|--------|
| LAB ENERGY   | SIGMA  |            | = -    |
| 12.810       | 24.000 | 16.341     | 36.300 |
| 13.063       | 22.600 | 16.442     | 34.000 |
| 13.315       | 23.400 | 16.542     | 28.800 |
| <del>-</del> |        | 16.643     | 22.100 |
| 13.568       | 23.100 |            |        |
| 13.820       | 23.300 | 16.743     | 16.300 |
| 14.073       | 23.000 | 16.844     | 11.900 |
| 14.325       | 23.100 | 16.944     | 7.800  |
| 14.577       | 23.100 | 17.046     | 5.360  |
| •            | 24.200 | 17.146     | 4.000  |
| 14.829       |        |            |        |
| 15.082       | 25.000 | 17.247     | 3.530  |
| 15.333       | 24.700 | 17.347     | 2.960  |
| 15.585       | 28.000 | 17.448     | 2.420  |
| 15.837       | 30.300 | 17.548     | 2.370  |
|              | 31.400 | 17.648     | 2.040  |
| 15.938       |        |            | 2.320  |
| 16.039       | 32.600 | 17.849     |        |
| 16.139       | 34.400 | 18.100     | 2.930  |
| 16.241       | 34.500 | 18.500     | ****   |
| 10.547       | ンギャンリリ |            |        |

Experimental Errors in the  ${}^{3}\text{H}(\alpha,\alpha){}^{3}\text{H}$  Data

This table shows the systematic error and relative error at each center-of-mass angle. For some angles the relative error has been given separately for several different energy ranges. In general, the relative error tends to decrease with energy because of the lower backgrounds at higher energies. Statistics of the data are the major variation from this trend. (Pages 9, 65)

Table 5 Tabulation of Experimental Errors  $^3{\rm H}(\alpha,\alpha)^3{\rm H}$  (3.6-13.1 MeV)

| <sup>θ</sup> CM | Systematic<br>Error (%) | Relative Error<br>(%)        | Energy Range<br>(MeV)                                                                     |
|-----------------|-------------------------|------------------------------|-------------------------------------------------------------------------------------------|
| 39, 23          | 3.2                     | 6 - 12<br>4 - 6              | 3.6 - 10<br>10 - 13                                                                       |
| 46.99           |                         | 5 - 10<br>3 - 5              | 3.6 - 11<br>11 - 13                                                                       |
| 54.73           |                         | 8 - 15<br>4 - 8              | 3.6 - 8<br>8 - 13                                                                         |
| 60.00           |                         | 6 - 12<br>4 - 6              | 3.6 - 8<br>8 - 13                                                                         |
| 63.43           |                         | 6 - 10<br>4 - 6              | 3.6 - 9<br>9 - 13                                                                         |
| 64.97           |                         | 3 - 6<br>1.5 - 3             | 3.6 - 8<br>8 - 13                                                                         |
| 70.00           |                         | 5 - 8<br>3 - 5               | 3.6 - 8<br>8 - 13                                                                         |
| 75.95           |                         | 5 - 10<br>2.5 - 5<br>1 - 2.5 | 3.6 - 6<br>6 - 8<br>8 - 13                                                                |
| 84.75           |                         | 4 - 8<br>2 - 4<br>1 - 2      | 3.6 - 7<br>7 - 11<br>11 - 13                                                              |
| 90.00           |                         | 3 - 6<br>1.5 - 3             | 3.6 - 8<br>8 - 13                                                                         |
| 95.63           | <i>:</i>                | 6 - 10<br>3 - 6<br>1.5 - 3   | $   \begin{array}{rrr}     5 & - & 7 \\     7 & - & 10 \\     10 & - & 13   \end{array} $ |
| 102.00          |                         | 1 - 2.5                      | 3.6 - 13                                                                                  |
| 109.87          |                         | 1 - 2                        | 3.6 - 13                                                                                  |

Table 5 (cont.)

| <sup>θ</sup> СМ | Systematic<br>Error (%) | Relative Error<br>(%)             | Energy Range<br>(MeV)  |
|-----------------|-------------------------|-----------------------------------|------------------------|
| 116.57          | 3. 2                    | 1.5 - 2                           | 3.6 - 13               |
| 125. 27         |                         | 2 - 3                             | 3.6 - 13               |
| 140.00          |                         | 1 - 2                             | 3.6 - 13               |
| 146.50          |                         | 1 - 2                             | 3.6 - 13               |
| 5.4 FO          |                         | $(\alpha, \alpha)^3$ H (13 - 18 N | MeV)<br>13 - 18        |
| 54. 70          | 3. 2                    |                                   |                        |
| 63.40           |                         | 1.5 - 3.5                         | 13 - 18                |
| 77.00           |                         | 2 - 3                             | 13 - 18                |
| 91.39           |                         | <b>1.</b> 5 - 3                   | 13 - 18                |
| 105.00          |                         | 2 - 4                             | 13 - 18                |
| 115.80          |                         | 4 - 8 2 - 4                       | 13 - 16.3<br>16.3 - 18 |
| 126.50          |                         | 2.5 - 4                           | 13 - 18                |
| 133.60          |                         | 2 - 4<br>4 - 7                    | 13 - 17<br>17 - 18     |

Data for the Reaction  $^3\text{H(a,n)}^6\text{Li}$ 

This table shows the data obtained using the zirconium tritide target. The number of counts obtained is shown for each beam energy. These data were not used directly in our analysis. (Page 11)

| Beam | Energy | Counts       | Beam Energy | Counts        |
|------|--------|--------------|-------------|---------------|
|      | 000    | 2488         | 11. 297     | 12546         |
| 11.  | 040    | 2546         | 11.308      | 13070         |
| 11.  | 042    | 2670         | 11. 317     | 13824         |
| 11.  | 052    | 2696         | 11.320      | 12920         |
| 11.  | 062    | 2732         | 11.327      | 14342         |
| 11.  | 071    | 2764         | 11.360      | 15140         |
| 11.  | 080    | 2740         | 11.400      | 18176         |
| 11.  | 090    | 2706         | 11.440      | 22840         |
| 11.  | 099    | 2880         | 11.480      | 28394         |
| 11.  | 108    | 2830         | 11.520      | 38676         |
| 11.  | 118    | 2920         | 11.560      | 53812         |
|      | 120    | 2920         | 11.600      | 82448         |
| 11.  | 127    | <b>2950</b>  | 11.640      | 111590        |
| 11.  | 137    | 2854         | 11.680      | 127678        |
|      | 146    | 2936         | 11.720      | 118468        |
| 11.  | 155    | 3250         | 11. 760     | 92702         |
|      | 160    | 3302         | 11.800      | 74016         |
| 11.  | 165    | 3592         | 11.840      | 56516         |
| 11.  | 174    | 3942         | 11.880      | 48124         |
| 11.  | 183    | 4490         | 11.920      | 42262         |
| 11.  | 193    | <b>502</b> 8 | 11.960      | 38102         |
| 11.  | 200    | 5238         | 12.000      | 34504         |
| 11.  | 202    | 5498         | 12.040      | 31942         |
| 11.  | 212    | 6252         | 12.080      | 30472         |
| 11.  | 221    | 7014         | 12.120      | 28632         |
| 11.  | 230    | 7730         | 12.160      | 27546         |
| 11.  | 240    | 8498         | 12.200      | <b>2</b> 6468 |
| 11.  | 250    | 9356         | 12. 240     | 258 <b>22</b> |
| 11.  | 259    | 9918         | 12.280      | 25026         |
| 11.  | 269    | 10938        | 12.320      | 25218         |
| 11.  | 278    | 11614        | 12.360      | 25020         |
| 11.  | 280    | 10854        | 12.400      | 24514         |
| 11.  | 287    | 12178        |             |               |

### Data for the Reaction $^3\text{H(\alpha,n)}^6\text{Li}$

This table shows actual reaction cross sections obtained from the data of Schwarz, et al. (1965) on the inverse reaction. The cross sections and energies are shown for our system. The data above 12.5 MeV were obtained from those of Murray (1959). (Pages 26, 27)

Table 7

Data on  $^3$ H( $\alpha$ , n) $^6$ Li Obtained from the Inverse Reaction  $^6$ Li(n,  $\alpha$ ) $^3$ H (Schwarz, 1965, Murray, 1959)

| Lab Energy         | Total Reaction Cross Section |
|--------------------|------------------------------|
| 11.329             | 13.96                        |
| 11.348             | 15. 53                       |
| 11.369             | 17. 29                       |
| 11.408             | 21.62                        |
| 11.448             | 27.71                        |
| 11.488             | 36.90                        |
| 11.527             | 51. 15                       |
| 11.567             | 73. 18                       |
| 11.609             | 104. 31                      |
| 11.649             | 137. 1                       |
| 11.688             | 154. 1                       |
| 11. 728            | 147. 3                       |
| 11.768             | 127. 2                       |
| 11.807             | 107. 0                       |
| 11.847             | 90.84                        |
| 11.889             | 78. 90                       |
| 11.929             | 70. 24                       |
| 11.968             | 63. 63                       |
| 12.008             | 58. 91                       |
| 12.048             | 55. 08<br>53. 35             |
| 12.087             | 52. 35<br>50. 12             |
| 12.127             | 50. 13<br>48. 33             |
| 12. 169<br>12. 209 | 46. 90                       |
| 12. 248            | 45. 78                       |
| 12. 228            | 44. 87                       |
| 12.328             | 44. 13                       |
| 12.367             | 43. 50                       |
| 13.530             | 72. 4                        |
| 13.630             | 84.7                         |
| 13.750             | 78.9                         |
| 14.009             | 80.5                         |
| 14. 248            | 85.7                         |
| 14. 406            | 97.0                         |
| 14.567             | 95.7                         |
| 14.746             | 97. 2                        |
| 14.965             | 106.                         |
| 15.205             | 105.                         |
|                    |                              |

## Table 7 (cont.)

| Lab Energy | Total Reaction Cross Section |
|------------|------------------------------|
| 15. 444    | 104.                         |
| 15. 903    | 110.                         |
| 16.959     | 98.7                         |
| 18.751     | 78.2                         |

Data for the Reaction  $^3{\rm H}(\alpha,n^1)^6{\rm Li}^*$ 

This table shows the total reaction cross section for the two reactions  ${}^3{\rm H}(\alpha,\,{\rm n})^6{\rm Li}$  and  ${}^3{\rm H}(\alpha,\,{\rm n}^1)^6{\rm Li}^*$  as a function of beam energy. The data below the  ${}^3{\rm H}(\alpha,\,{\rm n}^1)^6{\rm Li}^*$  threshold was due only to the  ${}^3{\rm H}(\alpha,\,{\rm n})^6{\rm Li}$  reaction and provided a normalization of the cross sections and the means to separate the effect of the two reactions. (Page 12)

Table 8

## Data on $^3\text{H}(\alpha, n^1)^6\text{Li}^*$

| Lab Energy     | Total Reaction Cross |
|----------------|----------------------|
| (MeV)          | Section (millibarns) |
| 11.00          | 4.4                  |
| 11.05          | 4.3                  |
| 11. 10         | 4.4                  |
| 11. 15         | 4.5                  |
| 11. 20         | 8.4                  |
| 11. 25         | 12.7                 |
| 11. 30         | 15.6                 |
| 11. 35         | 18.2                 |
| 11.40          | 22.2                 |
| 11.45          | 30.0                 |
| 11.50          | 40.9                 |
| 11.55          | 68.8                 |
| 11.60          | 103.4                |
| 11.65          | 140.                 |
| 11.70          | 156.                 |
| 11.75          | 133.                 |
| 11.80          | 102.                 |
| 11.85          | 78.3                 |
| 11.90          | 69.8                 |
| 11.95          | 60.4                 |
| 12.00          | 58.9                 |
| 12.05          | 53.2                 |
| 12.10          | 51.4                 |
| 12. 15         | 52. 1<br>51. F       |
| 12.20          | 51.7                 |
| 12.25          | 50.1<br>49.4         |
| 12.50          | 53. 1                |
| 12.75          | 55. 4                |
| 13.00          | 66.5                 |
| 13.25          | 71.4                 |
| 13.50          | 75. <b>7</b>         |
| 13.75          | 84.6                 |
| 14.00<br>14.25 | 95.7                 |
|                | 108.                 |
| 14.50          | 113.                 |
| 14.75          | ****                 |

Table 8 (cont.)

| Lab Energy<br>(MeV) | Total Reaction Cross<br>Section (millibarns) |
|---------------------|----------------------------------------------|
| 15.00               | 116.                                         |
| 15.25               | 126.                                         |
| <b>15.</b> 5        | 128.                                         |
| 15.75               | 140.                                         |
| 16.00               | 141.                                         |
| 16.10               | 145.                                         |
| 16.20               | 152.                                         |
| 16.30               | 166.                                         |
| 16.40               | 199.                                         |
| 16. 50              | 247.                                         |
| 16.60               | 294.                                         |
| 16.70               | 346.                                         |
| 16.80               | 365.                                         |
| 16.90               | 379.                                         |
| 17.00               | 377.                                         |
| 17.10               | 379.                                         |
| 17.20               | 376.                                         |
| 17.30               | 358.                                         |
| 17.40               | 366.                                         |
| 17. 50              | 341.                                         |
| 17.60               | 338.                                         |
| 17.70               | 341.                                         |
| 17.80               | 327.                                         |
| 18.00               | 337.                                         |

Data for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

This table shows the center-of-mass differential elastic cross sections (SIGMA) as a function of beam energy (LAB ENERGY). The energy range is from 4.6 - 17.9 MeV. The spaces marked by a series of asterisks are points for which data were not obtained. (Page 17)

TABLE 9

(TEXT 17, FIGURE 34)

CENTER OF MASS ANGLE = 39.20

| LAB ENERGY | SIGMA    | LAB ENERGY | SIGMA   |
|------------|----------|------------|---------|
| 4.634      | 542.000  | 9.459      | 325.000 |
| 4.735      | 542.000  | 9.710      | 308.000 |
| 4.836      | 543.000  | 9.961      | 293.000 |
| 4.936      | 534.000  | 10.211     | 285.000 |
| 4.986      | 538.000  | 10.462     | 268.000 |
| 5.037      | 549.000  | 10.713     | 258.000 |
| 5.087      | 574.000  | 10.964     | 252.000 |
| 5.137      | 598.000  | 11.214     | 240.000 |
| 5.188      | 633.000  | 11.465     | 229.000 |
| 5.238      | 654.000  | 11.715     | 229.000 |
| 5.288      | 642.000  | 11.966     | 220.000 |
| 5.339      | 606.000  | 12.217     | 217.000 |
| 5.389      | 575.000  | 12.467     | 210.000 |
| 5.439      | 559.000  | 12.717     | 203.000 |
| 5.691      | 492.000  | 12.968     | 200.000 |
| 5.942      | 467.000  | 13.218     | 194.000 |
| 6.194      | 454.000  | 13.469     | 180.000 |
| 6.445      | 437.000. | 13.719     | 180.000 |
| 6.696      | 427.000  | 13.970     | 180.000 |
| 6.948      | 417.000  | 14.220     | 169.000 |
| 7.199      | 401.000  | 14.470     | 158.000 |
| 7.450      | 397.000  | 14.721     | 153.600 |
| 7.702      | 394.000  | 14.872     | 152.800 |
|            | 403.000  | 15.375     | 141.000 |
| 7.953      | 413.000  | 15.878     | 131.600 |
| 8.204      | 397.000  | 16.380     | 118.400 |
| 8.455      | 394.000  | 16.883     | 114.700 |
| 8.706      |          | 17.386     | 109.300 |
| 8.957      | 373.000  | 17.888     | 103-200 |
| 9.208      | 349.000  | 11.000     | 1034200 |

TABLE 9

# (TEXT 17, FIGURE 34) CENTER OF MASS ANGLE = 47.00

|            |              | AD CHECCY  | SIGMA   |
|------------|--------------|------------|---------|
| LAB ENERGY | SIGMA        | LAB ENERGY | 148.000 |
| 4.634      | 350.000      | 9.459      |         |
| 4.735      | 349.000      | 9.710      | 146.000 |
| 4.836      | 345.000      | 9.961      | 144.000 |
| 4.936      | 339.000      | 10.211     | 149.000 |
| 4.986      | 333.000      | 10.462     | 143.000 |
| 5.037      | 333.000      | 10.713     | 139.000 |
| 5.087      | 305.000      | 10.964     | 137.000 |
| 5.137      | 292.000      | 11.214     | 134.000 |
| 5.188      | 258.000      | 11.465     | 135.000 |
| 5.238      | 227.000      | 11.715     | 133.000 |
| 5.288      | 218.000      | 11.966     | 132.000 |
| 5.339      | 227.000      | 12.217     | 127.000 |
| 5.389      | 244.000      | 12.467     | 121.000 |
| 5.439      | 251.000      | 12.717     | 109.000 |
| 5.691      | 277.000      | 12.968     | 103.000 |
| 5.942      | 278.000      | 13.218     | 94.000  |
| 6.194      | 278.000      | 13.469     | 90.000  |
| 6.445      | 272.000      | 13.719     | 91.000  |
| 6.696      | 266.000      | 13.970     | 92.000  |
| 6.948      | 260.000      | 14.220     | 89.000  |
| 7.199      | 255.000      | 14.470     | 90.000  |
| 7.450      | 246.000      | 14.721     | 86.100  |
| 7.702      | 240.000      | 14.872     | *****   |
| 7.953      | 226.000      | 15.375     | *****   |
| 8.204      | 216.000      | 15.878     | *****   |
| 8.455      | 195.000      | 16.380     | ****    |
| 8.706      | 180.000      | 16.883     | ****    |
|            | 164.000      | 17.386     | ****    |
| 8.957      | <del>-</del> | 17.888     | ****    |
| 9.208      | 154.000      | 118000     |         |

TABLE 9

(TEXT 17, FIGURE 35)

CENTER OF MASS ANGLE = 54.70

| 4.735 245.100 9.710 75  | .100<br>.000<br>.400 |
|-------------------------|----------------------|
| 4.735 245.100 9.710 75  | .400                 |
| 79                      |                      |
| 4.836 244.200 9.961 78  | .000                 |
| 4.936 232.600 10.211 78 |                      |
| 4.986 188.600 10.462 81 | <b>.</b> 600         |
| 5.037 214.000 10.713 85 | .100                 |
| 5 087 187-800 10-964 88 | .700                 |
| 5.137 154.000 11.214 88 | .300                 |
| 5 188 97-800 11.465 86  | .600                 |
| 5.238 58.100 11.715 85  | 800                  |
| 5.288 58.400 11.966 81  | . 800                |
| 5.339 82.200 12.217 75  | 800                  |
| 5.389 105.400 12.467 69 | .600                 |
| 5.439 130.100 12.717 61 | .100                 |
| 5 691 175 800 12 968 52 | 2.000                |
| 5.942 180.000 13.218 50 | 800                  |
| 6-194 189-500 13-469 52 | 2.600                |
| 6.445 180.300 13.719 55 | 5.800                |
| 6.696 182.800 13.970 28 | 3.000                |
| 6.948 175.900 14.220 58 | 3.600                |
| 7.199 165.700 14.470 6  | 1.000                |
| 7.450 158.400 14.721 60 | 0.600                |
| 7.702 144.300 14.872 58 | 3.300                |
| 7,953 126,300 15,375    | 8.900                |
| 8.204 104.500 15.878 5  | 3.300                |
| 8.455 80.600 16.380 4   | 9.400                |
| 8.706 67.100 16.883 4   | 7.600                |
| 8.957 58.400 17.386 4   | 4.900                |
| 9.208 62.900 17.888 4   | 1.900                |

TABLE 9

(TEXT 17, FIGURE 35)

CENTER OF MASS ANGLE = 63.40

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 4.634      | 159.000 | 9.459      | 32.700 |
| 4.735      | 156.100 | 9.710      | 39.300 |
| 4.836      | 151.800 | 9.961      | 42.600 |
| 4.936      | 141.200 | 10.211     | 48.600 |
| 4.986      | 135.700 | 10.462     | 51.000 |
| 5.037      | 123.400 | 10.713     | 55.800 |
| 5.087      | 100.300 | 10.964     | 58.200 |
| 5.137      | 68.800  | 11.214     | 56.500 |
| 5.188      | ****    | 11.465     | 56.100 |
| 5.238      | 4.200   | 11.715     | 54.100 |
| 5.288      | 10.900  | 11.966     | 51.700 |
| 5.339      | 33.900  | 12.217     | 44.100 |
| 5.389      | 57.200  | 12.467     | 38.300 |
| 5.439      | 73.600  | 12.717     | 31.600 |
| 5.691      | 107.300 | 12.968     | 39.500 |
| 5.942      | 120.400 | 13.218     | 30.400 |
| 6.194      | 121.300 | 13.469     | 34.900 |
| 6.445      | 118.200 | 13.719     | 40.000 |
| 6.696      | 115.400 | 13.970     | 42.200 |
| 6.948      | 105.900 | 14.220     | 44.900 |
| 7.199      | 104.000 | 14.470     | 45.800 |
| 7.450      | 90.400  | 14.721     | 48.100 |
| 7.702      | 75.700  | 14.872     | 46.800 |
| 7.953      | 58.900  | 15.375     | 47.200 |
| 8.204      | 37.900  | 15.878     | 46.300 |
| 8.455      | 20.700  | 16.380     | 43.500 |
| 8.706      | 12.600  | 16.883     | 42.000 |
| 8.957      | 14.600  | 17.386     | 41.300 |
| 9.208      | 23.400  | 17.888     | 38.600 |

TABLE 9

# (TEXT 17, FIGURE 36) CENTER OF MASS ANGLE = 70.10

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 4.634      | 112.200 | 9.459      | 31.700 |
| 4.735      | 111.200 | 9.710      | 34.800 |
| 4.836      | 103.100 | 9.961      | 38.700 |
| 4.936      | 98.300  | 10.211     | 42.600 |
| 4.986      | 90.400  | 10.462     | 46.500 |
| 5.037      | 81.400  | 10.713     | 47.900 |
| 5.087      | 70.500  | 10.964     | 49.100 |
|            | 51.100  | 11.214     | 47.900 |
| 5.137      | 29.800  | 11.465     | 46.000 |
| 5.188      | 20.400  | 11.715     | 45.100 |
| 5.238      |         | 11.966     | 41.600 |
| 5.288      | 32.000  | 12.217     | 34.800 |
| 5.339      | 46.100  | 12.467     | 30.200 |
| 5.389      | 60.700  |            | 24.700 |
| 5.439      | 70.300  | 12.717     | 24.700 |
| 5.691      | 90.000  | 12.968     | 25.600 |
| 5.942      | 93.100  | 13.218     |        |
| 6.194      | 88.800  | 13.469     | 30.300 |
| 6.445      | 88.800  | 13.719     | 32.100 |
| 6.696      | 85.500  | 13.970     | 34.900 |
| 6.948      | 78.300  | 14.220     | 38.300 |
| 7.199      | 71.200  | 14.470     | 41.300 |
| 7.450      | 65.100  | 14.721     | 40.600 |
| 7.702      | 54.400  | 14.872     | 39.400 |
| 7.953      | 39.300  | 15.375     | 40.100 |
| 8.204      | 26.300  | 15.878     | 39.600 |
| 8.455      | 16.900  | 16.380     | 39.200 |
| 8.706      | 12.400  | 16.883     | 37.400 |
| 8.957      | 18.000  | 17.386     | 37.400 |
| 9.208      | 25.000  | 17.888     | 36.300 |
|            | ·       |            |        |

TABLE 9

## (TEXT 17, FIGURE 36) CENTER OF MASS ANGLE = 77.00

| SIGMA  | LAB ENERGY                                                                                                                                                                                                        | SIGMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80.600 | 9.459                                                                                                                                                                                                             | 40.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 77.100 | 9.710                                                                                                                                                                                                             | 40.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 73.800 | 9.961                                                                                                                                                                                                             | 42.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 71.300 | 10.211                                                                                                                                                                                                            | 44.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 68.500 | 10.462                                                                                                                                                                                                            | 43.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 66.400 | 10.713                                                                                                                                                                                                            | 43.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 62.200 | 10.964                                                                                                                                                                                                            | 43.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 56.000 | 11.214                                                                                                                                                                                                            | 42.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 57.200 | 11.465                                                                                                                                                                                                            | 39.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60.100 | 11.715                                                                                                                                                                                                            | 38.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 68.500 | 11.966                                                                                                                                                                                                            | 36.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 75.100 | 12.217                                                                                                                                                                                                            | 34.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 78.800 | 12.467                                                                                                                                                                                                            | 29.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 79.600 | 12.717                                                                                                                                                                                                            | 26.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 79.400 | 12.968                                                                                                                                                                                                            | 24.300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 76.600 | 13.218                                                                                                                                                                                                            | 23.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 71.800 | 13.469                                                                                                                                                                                                            | 25.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 66.300 | 13.719                                                                                                                                                                                                            | 26.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 65.300 | 13.970                                                                                                                                                                                                            | 28.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 63.100 | 14.220                                                                                                                                                                                                            | 30.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 60.400 | 14.470                                                                                                                                                                                                            | 29.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 54.500 | 14.721                                                                                                                                                                                                            | 28.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 46.700 |                                                                                                                                                                                                                   | 28.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 41.900 |                                                                                                                                                                                                                   | 28.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 37.900 | 15.878                                                                                                                                                                                                            | 28,600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33.200 | 16.380                                                                                                                                                                                                            | 27.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 33.400 | 16.883                                                                                                                                                                                                            | 27.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 35.200 | 17.386                                                                                                                                                                                                            | 26.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 40.000 | 17.888                                                                                                                                                                                                            | 26.400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 80.600 77.100 73.800 71.300 68.500 66.400 62.200 56.000 57.200 60.100 68.500 75.100 78.800 79.600 79.400 76.600 71.800 66.300 65.300 65.300 65.300 65.300 63.100 60.400 54.500 41.900 37.900 33.200 33.400 35.200 | 80.600       9.459         77.100       9.710         73.800       9.961         71.300       10.211         68.500       10.462         66.400       10.713         62.200       10.964         56.000       11.214         57.200       11.465         60.100       11.715         68.500       11.966         75.100       12.217         78.800       12.467         79.600       12.717         79.400       12.968         76.600       13.218         71.860       13.469         66.300       13.719         65.300       13.970         63.100       14.220         60.400       14.470         54.500       14.721         46.700       14.872         41.900       15.375         37.900       15.878         33.200       16.380         33.400       16.883         35.200       17.386 |

TABLE 9

# (TEXT 17, FIGURE 37) CENTER OF MASS ANGLE = 80.00

| LAB ENERGY | SIGMA  | LAB ENERGY | SIGMA  |
|------------|--------|------------|--------|
| 4.634      | 66.600 | 9.459      | 45.100 |
| 4.735      | 65.400 | 9.710      | 44.200 |
| 4.836      | 61.900 | 9.961      | 45.100 |
| 4.936      | 62.000 | 10.211     | 44.800 |
| 4.986      | 60.700 | 10.462     | 45.200 |
| 5.037      | 62.700 | 10.713     | 43.000 |
| 5.087      | 62.100 | 10.964     | 44.500 |
| 5.137      | 69.000 | 11.214     | 40.900 |
| 5.188      | 77.500 | 11.465     | 37.500 |
| 5.238      | 85.400 | 11.715     | 37.800 |
| 5.288      | 89.900 | 11.966     | 35.300 |
| 5.339      | 92.300 | 12.217     | 33.500 |
| 5.389      | 86.400 | 12.467     | 31.900 |
| 5.439      | 82.500 | 12.717     | 26.900 |
| 5.691      | 75.000 | 12.968     | 23.700 |
| 5.942      | 71.800 | 13.218     | *****  |
| 6.194      | 67.500 | 13.469     | ****   |
| 6.445      | 65.800 | 13.719     | *****  |
| 6.696      | 62.000 | 13.970     | *****  |
| 6.948      | 59.400 | 14.220     | ****   |
| 7.199      | 56.300 | 14.470     | ****   |
| 7.450      | 54.000 | 14.721     | ****   |
| 7.702      | 47.800 | 14.872     | ****   |
| 7.953      | 46.600 | 15.375     | ****   |
| 8.204      | 47.600 | 15.878     | ****   |
| 8.455      | 46.200 | 16.380     | *****  |
| 8.706      | 47.100 | 16.883     | ****   |
| 8.957      | 47.100 | 17.386     | ****   |
| 9.208      | 48.400 | 17.888     | ****   |
| 704.00     |        |            |        |

TABLE 9

(TEXT 17, FIGURE 37)

CENTER OF MASS ANGLE = 85.26

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 4.634      | 55.100  | 9.459      | 48.600 |
| 4.735      | 51.900  | 9.710      | 46.700 |
| 4.836      | 55.400  | 9.961      | 46.600 |
| 4.936      | 57.500  | 10.211     | 46.300 |
| 4.986      | 56.600  | 10.462     | 44.200 |
| 5.037      | 64.400  | 10.713     | 40.800 |
| 5.087      | 70.400  | 10.964     | 38.300 |
| 5.137      | 84.100  | 11.214     | 36.400 |
| 5.188      | 105.000 | 11.465     | 36.900 |
| 5.238      | 118.800 | 11.715     | 35.700 |
| 5.288      | 114.400 | 11.966     | 33.400 |
| 5.339      | 109.400 | 12.217     | 30.900 |
| 5.389      | 96.500  | 12.467     | 30.000 |
| 5.439      | 88.900  | 12.717     | 27.800 |
| 5.691      | 70.400  | 12.968     | 24.000 |
| 5.942      | 61.800  | 13.218     | 21.500 |
| 6.194      | 58.300  | 13.469     | 20.000 |
| 6.445      | 56.100  | 13.719     | 18.400 |
| 6.696      | 52.600  | 13.970     | 16.900 |
| 6.948      | 52.400  | 14.220     | 15.800 |
| 7.199      | 51.000  | 14.470     | 16.300 |
| 7.450      | 49.900  | 14.721     | 17.100 |
| 7.702      | 52.700  | 14.872     | ****   |
| 7.953      | 55.100  | 15.375     | *****  |
| 8.204      | 57.500  | 15.878     | ****   |
| 8.455      | 59.900  | 16.380     | ****   |
| 8.706      | 61.100  | 16.883     | ****   |
| 8.957      | 59.700  | 17.386     | ****   |
| 9.208      | 52.900  | 17.888     | ****   |
|            |         |            |        |

TABLE 9

## (TEXT 17, FIGURE 38) CENTER OF MASS ANGLE = 90.00

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 4.634      | 49.400  | 9.459      | 53.500 |
| 4.735      | 46.000  | 9.710      | 47.800 |
| 4.836      | 52.600  | 9.961      | 43.500 |
| 4.936      | 58.600  | 10.211     | 40.000 |
| 4.986      | 65.900  | 10.462     | 39.400 |
| 5.037      | 74.700  | 10.713     | 36.700 |
| 5.087      | 87.100  | 10.964     | 34.600 |
| 5.137      | 116.000 | 11.214     | 34.000 |
| 5.188      | 141.900 | 11.465     | 32.000 |
| 5.238      | 151.600 | 11.715     | 30.600 |
| 5.288      | 142.300 | 11.966     | 30.700 |
| 5.339      | 118.200 | 12.217     | 30.600 |
| 5.389      | 101.100 | 12.467     | 29.400 |
| 5.439      | 90.200  | 12.717     | 28.300 |
| 5.691      | 59.600  | 12.968     | 24.900 |
| 5.942      | 53.900  | 13.218     | 20.900 |
| 6.194      | 47.800  | 13.469     | 19.900 |
| 6.445      | 46.800  | 13.719     | 15.000 |
| 6.696      | 43.700  | 13.970     | 13.700 |
| 6.948      | 47.300  | 14.220     | 11.200 |
| 7.199      | 46.100  | 14.470     | 11.000 |
| 7.450      | 50.800  | 14.721     | 10.500 |
| 7.702      | 54.300  | 14.872     | 9.480  |
| 7.953      | 62.000  | 15.375     | 8.450  |
| 8.204      | 68.500  | 15.878     | 7.500  |
| 8.455      | 70.400  | 16.380     | 6.650  |
| 8.706      | 72.400  | 16.883     | 6.260  |
| 8.957      | 67.500  | 17.386     | 5.900  |
| 9.208      | 61.400  | 17.888     | 5.740  |
|            |         |            |        |

TABLE 9

# (TEXT 17, FIGURE 38) CENTER OF MASS ANGLE = 98.40

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 4.634      | 45,400  | 9.459      | 46.900 |
| 4.735      | 49.400  | 9.710      | 41.800 |
| 4.836      | 54.800  | 9.961      | 36.400 |
| 4.936      | 69.200  | 10.211     | 34.400 |
| 4.986      | 83.600  | 10.462     | 31.100 |
| 5.037      | 101.500 | 10.713     | 27.300 |
| 5.087      | 122.400 | 10.964     | 24.100 |
| 5.137      | 165.300 | 11.214     | 24.100 |
| 5.188      | 196.300 | 11.465     | 22.900 |
| 5.238      | 194.500 | 11.715     | 22.100 |
| 5.288      | 159.100 | 11.966     | 21.700 |
| 5.339      | 120.200 | 12.217     | 21.800 |
| 5.389      | 95.100  | 12.467     | 23.200 |
| 5.439      | 78.200  | 12.717     | 21.900 |
| 5.691      | 40.200  | 12.968     | 21.200 |
| 5.942      | 35.000  | 13.218     | 19.500 |
| 6.194      | 32.600  | 13.469     | 16.100 |
| 6.445      | 32.000  | 13.719     | 13.800 |
| 6.696      | 33.600  | 13.970     | 11.000 |
| 6.948      | 34.300  | 14.220     | 10.100 |
| 7.199      | 38.500  | 14.470     | 8.800  |
| 7.450      | 41.800  | 14.721     | 6.800  |
| 7.702      | 48.100  | 14.872     | 6.980  |
| 7.953      | 59.700  | 15.375     | 5.520  |
| 8.204      | 72.200  | 15.878     | 3.970  |
| 8.455      | 76.600  | 16.380     | 3.780  |
| 8.706      | 74.900  | 16.883     | 3.160  |
| 8.957      | 70.600  | 17.386     | 2.650  |
| 9.208      | 59.000  | 17.888     | 2.190  |

TABLE 9

(TEXT 17, FIGURE 39)

CENTER OF MASS ANGLE = 106.40

| LAB ENERGY | SIGMA       | LAB ENERGY         | SIGMA  |
|------------|-------------|--------------------|--------|
| 4.634      | 49.200      | 9.459              | 34.700 |
|            | 54.700      | 9.710              | 28.900 |
| 4.735      | 64.700      | 9.961              | 26.000 |
| 4.836      | 87.400      | 10.211             | 22.200 |
| 4.936      |             | 10.462             | 17.600 |
| 4.986      | 102.200     | 10.713             | 16.300 |
| 5.037      | 123.100     | 10.964             | 14.700 |
| 5.087      | 156.300     |                    | 14.000 |
| 5.137      | 196.200     | 11.214             | 12.500 |
| 5.188      | ****        | 11.465             | 10.700 |
| 5.238      | 204.700     | 11.715             | 11.600 |
| 5.288      | 156.100     | 11.966             | 12.200 |
| 5.339      | 105.000     | 12.217             |        |
| 5.389      | 74.000      | 12.467             | 13.600 |
| 5.439      | 55.700      | 12.717             | 14.600 |
| 5.691      | 23.000      | 12.968             | 15.800 |
| 5.942      | 17.300      | 13.218             | 16.900 |
| 6.194      | 17.800      | 13.469             | 15.500 |
| 6.445      | 20.600      | 13.719             | 14.600 |
| 6.696      | 23.000      | 13.970             | 12.500 |
| 6.948      | 23.900      | 14.220             | 10.700 |
| 7.199      | 28.400      | 14.470             | 10.200 |
| 7.450      | 36.300      | 14.721             | 8.600  |
| 7.702      | 42.300      | 14.872             | 8.740  |
| 7.953      | 50.600      | 15.375             | 8.000  |
| 8.204      | 60.500      | 15.878             | 7.030  |
| 8.455      | 64.900      | 16.380             | 6.810  |
| 8.706      | 66.700      | 16.883             | 6.500  |
| 8.957      | 56.200      | 17.386             | 5.920  |
| 9.208      | 45.700      | 17.888             | 5.460  |
| 7.4.4.0    | ( ) + 1 0 0 | <del>-</del> · · · |        |

TABLE 9

# (TEXT 17, FIGURE 39) CENTER OF MASS ANGLE = 116.80

| LAB ENERGY | SIGMA   | LAB ENERGY | SIGMA  |
|------------|---------|------------|--------|
| 4.634      | 51.000  | 9.459      | 17.200 |
| 4.735      | 58.200  | 9.710      | 13.500 |
| 4.836      | 71.900  | 9.961      | 11.200 |
| 4.936      | 92.400  | 10.211     | 8.700  |
| 4.986      | 100.800 | 10.462     | 7.000  |
| 5.037      | 130.500 | 10.713     | 5.600  |
| 5.087      | 160.700 | 10.964     | 4.500  |
| 5.137      | 186.700 | 11.214     | 3.600  |
| 5.188      | 203.800 | 11.465     | 3.200  |
| 5.238      | 179.100 | 11.715     | 2.800  |
| 5.288      | 125.500 | 11.966     | 2.300  |
| 5.339      | 76.300  | 12.217     | 2.600  |
| 5.389      | 44.000  | 12.467     | 3.200  |
| 5.439      | 29.400  | 12.717     | 4.900  |
| 5.691      | 7.700   | 12.968     | 6.900  |
| 5.942      | 8.300   | 13.218     | 7.600  |
| 6.194      | 12.000  | 13.469     | 8.300  |
| 6.445      | 13.400  | 13.719     | 9.000  |
| 6.696      | 17.300  | 13.970     | 9.800  |
| 6.948      | 19.800  | 14.220     | 9.800  |
| 7.199      | 24.100  | 14.470     | 9.300  |
| 7.450      | 28.100  | 14.721     | 9.500  |
| 7.702      | 32.600  | 14.872     | 8.780  |
| 7.953      | 39.100  | 15.375     | 8.840  |
| 8.204      | 45.000  | 15.878     | 8.630  |
| 8.455      | 48.000  | 16.380     | 8.510  |
| 8.706      | 46.800  | 16.883     | 8.230  |
| 8.957      | 35.200  | 17.386     | 9.050  |
| 9.208      | 26.600  | 17.888     | 8.340  |

TABLE 9

(TEXT 17, FIGURE 40)

CENTER OF MASS ANGLE = 125.20

| LAD ENERCY            | SIGMA   | LAB ENERGY | SIGMA  |
|-----------------------|---------|------------|--------|
| LAB ENERGY            |         | 9.459      | 18,900 |
| 4.634                 | 46.800  | 9.710      | 14.500 |
| 4.735                 | 52.500  |            |        |
| 4.836                 | 62.400  | 9.961      | 12.600 |
| 4.936                 | 79.400  | 10.211     | 10.400 |
| 4.986                 | 92.400  | 10.462     | 8.200  |
| <b>5.</b> 03 <b>7</b> | 111.400 | 10.713     | 8.000  |
| 5.087                 | 129.900 | 10.964     | 7.700  |
| 5.137                 | 154.400 | 11.214     | 7.200  |
| 5.188                 | 165.200 | 11.465     | 6.900  |
| 5.238                 | 145.800 | 11.715     | 7.900  |
| 5.288                 | 98.000  | 11.966     | 7.400  |
| 5.339                 | 61.300  | 12.217     | 6.500  |
| 5.389                 | 39.900  | 12.467     | 6.400  |
| 5.439                 | 26.000  | 12.717     | 5.300  |
| 5.691                 | 11.300  | 12.968     | 4.200  |
| 5.942                 | 13.000  | 13.218     | 4.200  |
| 6.194                 | 16.600  | 13.469     | 4.100  |
| 6.445                 | 20.600  | 13.719     | 3.800  |
| 6.696                 | 20.900  | 13.970     | 3.900  |
| 6.948                 | 26.800  | 14.220     | 4.900  |
| 7.199                 | 30.200  | 14.470     | 5.300  |
| 7.450                 | 35.400  | 14.721     | 4.400  |
| 7.702                 | 39.500  | 14.872     | *****  |
| 7.953                 | 44.500  | 15.375     | *****  |
| 8.204                 | 50.600  | 15.878     | ****   |
| 8.455                 | 52.000  | 16.380     | ****   |
| 8.706                 | 47.100  | 16.883     | ****   |
| 8.957                 | 36.800  | 17.386     | *****  |
| 9.208                 | 27.300  | 17.888     | *****  |

TABLE 9

# (TEXT 17, FIGURE 40) CENTER OF MASS ANGLE = 135.00

| LAB ENERGY       SIGMA       LAB ENERGY       SIGMA         4.634       36.100       9.459       53.20         4.735       38.700       9.710       47.90         4.836       44.800       9.961       43.60         4.936       55.000       10.211       39.90         4.986       64.300       10.462       37.00 | 00                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 4.735     38.700     9.710     47.90       4.836     44.800     9.961     43.60       4.936     55.000     10.211     39.90                                                                                                                                                                                          | 00<br>00<br>00<br>00<br>00 |
| 4.836     44.800     9.961     43.60       4.936     55.000     10.211     39.90                                                                                                                                                                                                                                     | 00<br>00<br>00<br>00       |
| 4.936 55.000 10.211 39.9                                                                                                                                                                                                                                                                                             | 00<br>00<br>00<br>00       |
| 27.0                                                                                                                                                                                                                                                                                                                 | 00<br>00<br>00             |
| 4.986 64.300 10.462 37.00                                                                                                                                                                                                                                                                                            | 00<br>00                   |
| 5.037 75.800 10.713 34.6                                                                                                                                                                                                                                                                                             | 00                         |
| 5.087 94.100 10.964 33.5                                                                                                                                                                                                                                                                                             |                            |
| 5.137 121.600 11.214 32.6                                                                                                                                                                                                                                                                                            | 0.0                        |
| 5.188 143.000 11.465 32.3                                                                                                                                                                                                                                                                                            | UU                         |
| 5.238 147.400 11.715 30.7                                                                                                                                                                                                                                                                                            |                            |
| 5.288 122.100 11.966 31.3                                                                                                                                                                                                                                                                                            | 00                         |
| 5.339 98.000 12.217 29.9                                                                                                                                                                                                                                                                                             | 00                         |
| 5.389 74.700 12.467 29.5                                                                                                                                                                                                                                                                                             |                            |
| 5.439 66.200 12.717 24.7                                                                                                                                                                                                                                                                                             |                            |
| 5.691 43.700 12.968 21.0                                                                                                                                                                                                                                                                                             |                            |
| 5.942 37.500 13.218 16.1                                                                                                                                                                                                                                                                                             |                            |
| 6.194 35.400 13.469 14.0                                                                                                                                                                                                                                                                                             |                            |
| 6.445 36.500 13.719 10.5                                                                                                                                                                                                                                                                                             |                            |
| 6.696 41.100 13.970 10.7                                                                                                                                                                                                                                                                                             |                            |
| 6.948 45.100 14.220 10.8                                                                                                                                                                                                                                                                                             |                            |
| 7.199 46.700 14.470 11.0                                                                                                                                                                                                                                                                                             |                            |
| 7.450 56.800 14.721 8.9                                                                                                                                                                                                                                                                                              |                            |
| 7.702 65.500 14.872 8.9                                                                                                                                                                                                                                                                                              |                            |
| 7.953 75.800 15.375 8.1                                                                                                                                                                                                                                                                                              |                            |
| 8.204 88.200 15.878 6.6                                                                                                                                                                                                                                                                                              | 30                         |
| 8.455 89.200 16.380 6.0                                                                                                                                                                                                                                                                                              |                            |
| 8.706 86.900 16.883 6.0                                                                                                                                                                                                                                                                                              |                            |
| 8.957 79.200 17.386 5.6                                                                                                                                                                                                                                                                                              | 70                         |
| 9.208 68.400 17.888 5.8                                                                                                                                                                                                                                                                                              | 50                         |

### Table 10

Data for the <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li and <sup>4</sup>He(<sup>3</sup>He, p<sup>1</sup>)<sup>6</sup>Li\* Reactions

Table 10A shows the laboratory differential reaction cross sections for the reactions <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li (SIGMA0) and <sup>4</sup>He(<sup>3</sup>He, p<sup>1</sup>)<sup>6</sup>Li\* (SIGMA1) as a function of beam energy (LAB ENERGY) for each laboratory angle investigated. A row of asterisks indicates that the data for that point were not obtained even though the energy was above the required threshold. Table 10B and 10C show angular distributions of the ground state and first excited state protons. The cross sections are listed as a function of the center-of-mass angle. (Pages 18, 19)

TABLE 10

### LABORATORY ANGLE = 15.00

| LAB ENERGY | SIGMAO          | SIGMA1          |
|------------|-----------------|-----------------|
| 7.919      | 5,790           |                 |
| 8.171      | 8.740           |                 |
| 8.422      | 9.570           | •               |
| 8.523      | 10.400          |                 |
| 8.624      | 10.700          | •               |
| 8.725      | 10.800          |                 |
| 8.825      | 12.700          |                 |
| 8.926      | 12.300          |                 |
| 9.027      | 14.200          |                 |
| 9.127      | 15.900          |                 |
| 9.228      | 17.700          |                 |
| 9.328      | 20.900          |                 |
| 9.429      | 23.800          |                 |
| 9.530      | 27.400          |                 |
| 9.630      | 29.100          |                 |
| 9.731      | 30.400          |                 |
| 9.832      | 28.700          |                 |
| 9.932      | 2 <b>7.</b> 900 |                 |
| 10.033     | 25.600          |                 |
| 10.133     | 22.800          | •               |
| 10.234     | 21.200          |                 |
| 10.335     | 17.500          |                 |
| 10.435     | . 17.800        |                 |
| 10.686     | 15.900          |                 |
| 10.938     | 16.100          | * * * * * * * * |
| 11.189     | 12.100          | ****            |
| 11-441     | 15.700          | ****            |
| 11.692     | 12.300          | 9.670           |
| 11.943     | 11.400          | 13.800          |
| 12.194     | 10.100          | 20.100          |
| 12.445     | 9.540           | 25.900          |
| 12.696     | 7.610           | 31.900          |
| 12.946     | 6.770           | 36.700          |
| 13.197     | 6.440           | 35.500          |
| 13.448     | 5.740           | 32.500          |
| 13.698     | 5.200           | 36.300          |
| 13.949     | 4.890           | 45.900          |

TABLE 10

## LABORATORY ANGLE = 20.00

| LAB ENERGY | SIGMAO | SIGMA1 |
|------------|--------|--------|
| 8.422      | 10.200 |        |
| 9.731      | 29.200 |        |
| 10.435     | 18.300 |        |
| 10.938     | 16.500 | ****   |
| 11.441     | 16.000 | 6.150  |
| 12.354     | 12.910 | 25.540 |
| 12.445     | 11.500 | 29.900 |
| 13.111     | 11.310 | 42.000 |
| 13.197     | 8.740  | 43.900 |
| 13.866     | 12.340 | 33.380 |
| 14.872     | 11.310 | 28.170 |

TABLE 10

### LABORATORY ANGLE = 22.50

|            |        | ,      |
|------------|--------|--------|
| LAB ENERGY | SIGMAO | SIGMAI |
| 7.805      | 5.570  |        |
| 8.311      | 8.970  |        |
| 8.817      | 12.410 | ·      |
| 9.323      | 19.460 |        |
| 9.829      | 28.170 |        |
| 10.335     | 19.070 |        |
| 10.840     | 16.920 |        |
| 11.345     | 15.550 | *****  |
| 11.850     | 15.050 | 11.960 |
| 12.102     | 15.050 | 23.180 |
| 12.354     | 14.490 | 29.580 |
| 12.607     | 13.940 | 41.660 |
| 12.859     | 13.890 | 60.120 |
| 13.111     | 13.290 | 49.400 |
| 13.363     | 13.850 | 65.890 |
| 13.614     | 13.700 | 52.170 |
| 13.866     | 13.270 | 36.330 |
| 14.118     | 13.580 | 31.970 |
| 14.369     | 13.240 | 28.670 |
| 14.872     | 12.680 | 34.340 |
| 15.375     | 12.480 | 33.650 |
| 15.878     | 12.060 | 33.020 |
| 16.380     | 12.110 | 29.840 |
| 16.883     | 12.410 | 29.640 |
| 17.386     | 11.230 | 32.260 |
| 17.888     | 10.140 | 30.280 |
|            |        |        |

TABLE 10

### LABORATORY ANGLE = 25.00

|            |                 | 0.7.0.1.1 |
|------------|-----------------|-----------|
| LAB ENERGY | SIGMAO          | SIGMA1    |
| 7.919      | 1.030           |           |
| 8.171      | 7.510           |           |
| 8.422      | 9.180           |           |
| 8.523      | 9.740           |           |
| 8.624      | 9.980           |           |
| 8.725      | 10.800          |           |
| 8.825      | 11.500          |           |
| 8.926      | 12.300          |           |
| 9.027      | 13.100          |           |
| 9.127      | 14.100          |           |
| 9.228      | 16.500          | •         |
| 9.328      | 18.500          |           |
| 9.429      | 21.900          |           |
| 9.530      | 25.200          |           |
| 9.630      | 27.100          |           |
| 9.731      | 2 <b>7.</b> 300 |           |
| 9.832      | 27.200          |           |
| 9.932      | 25.200          |           |
| 10.033     | 23.100          |           |
| 10.133     | 21.700          |           |
| 10.234     | 20.700          |           |
| 10.335     | 18.700          |           |
| 10.435     | 17.700          |           |
| 10.686     | 17.100          |           |
| 10.938     | 16.200          | ****      |
| 11.189     | 15.200          | ****      |
| 11.441     | 16.500          | 6.290     |
| 11.692     | 15.000          | 11.700    |
| 11.943     | 14.000          | 16.300    |
| 12.194     | 13.900 /        | 25.800    |
| 12.445     | 13.200          | 30.700    |
| 12.696     | 12.600          | 41.300    |
| 12.946     | 12.100          | 46.200    |
| 13.197     | 10.900          | 56.600    |
| 13.448     | 10.300          | 44.100    |
| 13.698     | 9.010           | 46.100    |
|            |                 |           |

## LABORATORY ANGLE = 27.00

| LAB ENERGY | SIGMAO |   | SIGMAl |
|------------|--------|---|--------|
| 12.354     | 14.370 |   | 27.100 |
| 13.111     | 14.670 | • | 45.890 |
| 13.866     | 13.870 | • | 37.340 |
| 14.872     | 13.510 |   | 32.920 |

TABLE 10

#### LABORATORY ANGLE = 30.00

| LAB ENERGY | SIGMAO | SIGMA1 |
|------------|--------|--------|
| 8.422      | 8.420  |        |
| 9.731      | 24.200 |        |
| 10.435     | 17.700 |        |
| 10.938     | 15.900 | *****  |
| 11.441     | 17.000 | 5.560  |
| 12.445     | 14.900 | 33.400 |
| 13.197     | 12.800 | 56.300 |

TABLE 10

#### LABORATORY ANGLE = 31.60

| LAB ENERGY | SIGMAO | SIGMA1 |
|------------|--------|--------|
| 7.805      | 5.070  |        |
| 8.311      | 8.620  |        |
| 8.817      | 10.910 |        |
| 9.323      | 16.240 |        |
| 9.829      | 23.430 |        |
| 10.335     | 17.730 |        |
| 10.840     | 15.480 |        |
| 11.345     | 14.950 | ****   |
| 11.850     | 14.850 | 12.800 |
| 12.102     | 15.770 | 23.880 |
| 12.354     | 15.860 | 33.180 |
| 12.607     | 16.530 | 45.430 |
| 12.859     | 14.950 | 50.870 |
| 13.111     | 15.680 | 52.100 |
| 13.363     | 15.130 | 42.370 |
| 13.614     | 15.680 | 46.840 |
| 13.866     | 14.450 | 42.670 |
| 14.118     | 14.570 | 40.230 |
| 14.369     | 13.990 | 34.710 |
| 14.872     | 14.000 | 32.020 |
| 1.5.375    | 13.310 | 28.120 |
| 15.878     | 12.440 | 25.820 |
| 16.380     | 13.040 | 24.560 |
| 16.883     | 12.230 | 23.790 |
| 17.386     | 10.740 | 22.750 |
| 17.888     | 9.890  | 18.130 |
| 71 * 00 C  | ,      |        |

TABLE 10

### LABORATORY ANGLE = 35.00

| LAB ENERGY | SIGMAO | SIGMAl |
|------------|--------|--------|
| 8.422      | 6.850  |        |
| 9.731      | 22.000 |        |
| 10.435     | 16.000 |        |
| 10.938     | 14.600 | ****   |
| 11.441     | 16.000 | *****  |
| 12.445     | 16.300 | 34.400 |
| 13.197     | 15.100 | 56.700 |

TABLE 10

#### LABORATORY ANGLE = 36.80

| 7.805 8.311 7.450 8.817 10.070 9.323 14.820 9.829 19.930 10.335 15.870 10.840 11.345 15.590 ******* 11.850 16.070 11.610 12.102 16.460 24.490 12.354 16.520 28.910 12.607 12.859 16.590 13.111 15.530 16.090 13.111 15.530 16.090 13.363 16.090 15.320 13.614 15.910 15.320 13.866 15.020 48.470 14.118 15.400 42.050 14.369 14.280 37.630 14.872 14.050 29.680 15.375 13.420 26.320 15.878 13.260 21.386                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LAB ENERGY | SIGMAO ' | SIGMA1 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|--------|
| 8.311       7.450         8.817       10.070         9.323       14.820         9.829       19.930         10.335       15.870         10.840       14.540         11.345       15.590       ********         11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.401       53.320       48.470         14.118       15.400       42.050         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                        |            | 3.640    |        |
| 8.817       10.070         9.323       14.820         9.829       19.930         10.335       15.870         10.840       14.540         11.345       15.590       ********         11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.883       9.860       20.930         16.883       9.860       20.040         17.386       10.090       18.010 |            | 7.450    |        |
| 9.323       14.820         9.829       19.930         10.840       14.540         11.345       15.590       ********         11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.883       9.860       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                        |            | 10.070   |        |
| 9.829       19.930         10.335       15.870         10.840       14.540         11.345       15.590       ********         11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.883       9.860       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                       |            | 14.820   |        |
| 10.335       15.870         10.840       14.540         11.345       15.590       ********         11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                 |            | 19.930   |        |
| 10.840       14.540         11.345       15.590       ********         11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                             |            | 15.870   |        |
| 11.345       15.590       ********         11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                         |            | 14.540   |        |
| 11.850       16.070       11.610         12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                    |            | 15.590   | ****   |
| 12.102       16.460       24.490         12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                             |            | 16.070   | 11.610 |
| 12.354       16.520       28.910         12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                      |            | 16.460   |        |
| 12.607       16.550       46.670         12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                               |            | 16.520   | 28.910 |
| 12.859       16.590       50.950         13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                        |            | 16.550   | 46,670 |
| 13.111       15.530       51.180         13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                 |            | 16.590   | 50.950 |
| 13.363       16.090       55.320         13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 15.530   | 51.180 |
| 13.614       15.910       53.320         13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 16.090   | 55.320 |
| 13.866       15.020       48.470         14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 15.910   | 53.320 |
| 14.118       15.400       42.050         14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 15.020   | 48.470 |
| 14.369       14.280       37.630         14.872       14.050       29.680         15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 15.400   | 42.050 |
| 14.872     14.050     29.680       15.375     13.420     26.320       15.878     13.260     23.210       16.380     11.780     20.930       16.883     9.860     20.040       17.386     10.090     18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 14.280   | 37.630 |
| 15.375       13.420       26.320         15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 14.050   |        |
| 15.878       13.260       23.210         16.380       11.780       20.930         16.883       9.860       20.040         17.386       10.090       18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 13.420   | 26.320 |
| 16.38011.78020.93016.8839.86020.04017.38610.09018.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 13.260   | 23.210 |
| 16.883     9.860     20.040       17.386     10.090     18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 11.780   | 20.930 |
| 17.386 10.090 18.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 9.860    | 20.040 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 10.090   | 18.010 |
| 17.888 8.390 17.480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 8.390    | 17.480 |

TABLE 10

### LABORATORY ANGLE = 40.00

| LAB ENERGY | SIGMAO | SIGMAl |
|------------|--------|--------|
| 8.422      | 1.980  |        |
| 9.731      | 19.600 |        |
| 10.435     | 14.400 |        |
| 10.938     | 14.700 | ****   |
| 11.441     | 16.000 | ****   |
| 12.445     | 16.800 | 25.300 |
| 13.197     | 15.900 | 59.300 |

TABLE 10

#### LABORATORY ANGLE = 40.80

|            |        | •      |
|------------|--------|--------|
| LAB ENERGY | SIGMAO | SIGMAl |
| 7.805      | ****   |        |
| 8.311      | 6.850  | •      |
| 8.817      | 9.700  |        |
| 9.323      | 13.650 |        |
| 9.829      | 18.710 |        |
| 10.335     | 14.000 |        |
| 10.840     | 13.870 |        |
| 11.345     | 14.860 | ****   |
| 11.850     | 15.290 | 13.450 |
| 12.102     | 16.400 | 21.100 |
| 12.354     | 16.690 | 26.860 |
| 12.607     | 17.430 | 41.380 |
| 12.859     | 17.050 | 51.200 |
| 13.111     | 15.570 | 55.110 |
| 13.363     | 16.360 | 53.790 |
| 13.614     | 15.040 | 52.500 |
| 13.866     | 14.850 | 48.830 |
| 14.118     | 13.630 | 40.930 |
| 14.369     | 13.620 | 38.750 |
| 14.872     | 12.950 | 31.580 |
| 15.375     | 12.960 | 25.480 |
| 15.878     | 12.470 | 23.250 |
| 16.380     | 10.970 | 20.870 |
| 16.883     | 10.880 | 19.400 |
| 17.386     | 9.700  | 17.130 |
| 17.888     | 8.180  | 15.840 |
| _ ,        |        |        |

#### LABORATORY ANGLE = 45.00

| LAB ENERGY SIGMAO SIGMA  7.805 ******  8.311 ******  8.523 0.540  8.624 1.730 | •        |
|-------------------------------------------------------------------------------|----------|
| 8.311 *******<br>8.523 0.540<br>8.624 1.730                                   |          |
| 8.523<br>8.624<br>0.540<br>1.730                                              |          |
| 8.624 1.730                                                                   |          |
|                                                                               |          |
|                                                                               |          |
| 8.725 3.920                                                                   |          |
| 8.980                                                                         |          |
| 8.825 6.480                                                                   |          |
| 8.926 7.930                                                                   |          |
| 9.027 9.390                                                                   |          |
| 9.127 10.100                                                                  |          |
| 9.228                                                                         |          |
| 9.323 13.000                                                                  |          |
| 9.328 13.300                                                                  |          |
| 9.429 14.300                                                                  |          |
| 9.530 16.300                                                                  |          |
| 9.630 18.300                                                                  |          |
| 9.731 17.000                                                                  |          |
| 9.829 15.690                                                                  |          |
| 9.832 16.300                                                                  |          |
| 9.932 15.300                                                                  |          |
| 10.033 15.100                                                                 |          |
| 10.133                                                                        |          |
| .10.234 14.100                                                                |          |
| 10.335 13.650                                                                 |          |
| 10.435 12.600                                                                 |          |
| 10.686 13.700                                                                 |          |
| 10.840 14.400                                                                 |          |
| 10.938 14.000 *****                                                           | <b>*</b> |
| 11.189 14.300 *****                                                           | *        |

TABLE 10

### LABORATORY ANGLE = 45.00

| LAB ENERGY | SIGMAO | SIGMA1 |
|------------|--------|--------|
| 11.345     | 14.080 | ****   |
| 11.441     | 15.600 | ****   |
| 11.692     | 14.300 | ****   |
| 11.850     | 14.980 | 7.570  |
| 11.943     | 14.300 | 14.100 |
| 12.102     | 14.380 | 16.390 |
| 12.194     | 15.600 | 17.300 |
| 12.354     | 15.100 | 23.890 |
| 12.445     | 16.600 | 30.200 |
| 12.607     | 16.570 | 39.830 |
| 12.696     | 15.600 | 43.200 |
| 12.859     | 16.990 | 51.110 |
| 12.946     | 15.000 | 52.400 |
| 13.111     | 15.270 | 56.650 |
| 13.197     | 14.600 | 49.900 |
| 13.363     | 15.360 | 54.880 |
| 13.448     | 14.100 | 54.200 |
| 13.614     | 14.090 | 48.390 |
| 13.698     | 13.900 | 50.300 |
| 13.866     | 14.070 | 46.940 |
| 14.118     | 12.730 | 42.540 |
| 14.369     | 12.130 | 36.870 |
| 14.872     | 11.970 | 30.410 |
| 15.375     | 11.390 | 25.960 |
| 15.878     | 11.130 | 21.330 |
| 16.380     | 10.680 | 21.040 |
| 16.883     | 9.160  | 17.520 |
| 17.386     | 8.110  | 16.260 |
| 17.888     | 7.780  | 14.570 |

TABLE 10

#### LABORATORY ANGLE = 50.00

| SIGMAO | SIGMA1                                                                                 |
|--------|----------------------------------------------------------------------------------------|
| 14.300 |                                                                                        |
| 11.900 | •                                                                                      |
| 12.100 | *****                                                                                  |
| 14.500 | ****                                                                                   |
| 14.890 | 20.140                                                                                 |
| 14.700 | 29.900                                                                                 |
| 13.650 | 51.000                                                                                 |
| 14.200 | 50.700                                                                                 |
| 11.940 | 44.220                                                                                 |
| 10.720 | 28.760                                                                                 |
|        | 14.300<br>11.900<br>12.100<br>14.500<br>14.890<br>14.700<br>13.650<br>14.200<br>11.940 |

TABLE 10

#### LABORATORY ANGLE = 55.00

| LAB ENERGY | SIGMAO        | SIGMAl |
|------------|---------------|--------|
| 9.630      | 12.600        |        |
| 9.731      | 12.700        |        |
| 10.435     | 11.000        |        |
| 10.938     | 11.700        | *****  |
| 11.441     | 13.600        | ****   |
| 12.354     | * * * * * * * | ****   |
| 12.445     | 13.100        | 23.600 |
| 13.111     | 12.160        | 50.210 |
| 13.197     | 11.900        | 47.100 |
| 14.872     | 8.930         | 27.760 |

TABLE 10

#### LABORATORY ANGLE = 60.00

| LAB ENERGY | SIGMAO        | SIGMA1 |
|------------|---------------|--------|
| 9.630      | * * * * * * * | •      |
| 9.731      | 10.100        |        |
| 10.435     | 9.570         |        |
| 10.938     | 10.400        | ****   |
| 11.441     | 11.600        | ****   |
| 12.354     | *****         | ****   |
| 12.445     | 11.400        | 18.900 |
| 13.111     | 10.630        | 59.400 |
| 13.197     | 10.900        | 39.800 |
| 14.872     | 7.740         | 26.060 |

TABLE 10

## LABORATORY ANGLE = 65.00

| LAB ENERGY . | SIGMAO | SIGMA1               |
|--------------|--------|----------------------|
|              | 1.440  |                      |
| 9.630        | 2.390  |                      |
| 9.731        | 4.480  |                      |
| 9.832        | 6.150  |                      |
| 9.932        | 7.510  | •                    |
| 10.033       |        |                      |
| 10.133       | 8.700  |                      |
| 10.234       | 8.030  |                      |
| 10.335       | 000 8  | ·                    |
| 10.435       | 8.640  |                      |
| 10.686       | 9.330  |                      |
| 10.938       | 9.420  | ****                 |
| 11.189       | 7.810  | An An An An An An An |
| 11.441       | 10.900 | ****                 |
| 11.692       | 9.290  | ****                 |
| 11.943       | 9.770  | ****                 |
| 12.194       | 10.200 | ****                 |
| 12.354       | ****   | ****                 |
| 12.445       | 10.600 | ***                  |
| 12.696       | 11.000 | 20.200               |
|              | 10.200 | 27.000               |
| 12.946       | 8.590  | 49.760               |
| 13.111       | 9.370  | 32.400               |
| 13.197       |        | 34.800               |
| 13.448       | 9.160  | 32.900               |
| 13.698       | 8.670  | 18.350               |
| 14.872       | 7.370  | 10.330               |

## LABORATORY ANGLE = 70.00

| IAB ENERGY | SIGMAO | SIGMAl |
|------------|--------|--------|
| 10.435     | 7.700  |        |
| 10.938     | ****   | ****   |
| 11.441     | 8.440  | ****   |
| 12.445     | 9.020  | ****   |
| 13.197     | 8.530  | 25.800 |

## LABORATORY ANGLE = 75.00

| LAB ENERGY | SIGMAO | SIGMA1 |
|------------|--------|--------|
| 10.435     | 7.180  |        |
| 10.686     | 6.690  |        |
| 10.938     | ****   | ****   |
| 11.441     | 7.200  | ****   |
| 12.445     | 6.910  | ****   |
| 13.197     | 7.350  | ****   |

#### LABORATORY ANGLE = 80.00

| LAB ENERGY | . SIGMAO | SIGMA1 |
|------------|----------|--------|
| 10.435     | 5.140    | 1      |
| 10.938     | ****     | *****  |
| 11.441     | 6.660    | ****   |
| 12.445     | 6.500    | *****  |
| 13.197     | 6.860    | ****   |

TABLE 10

### LABORATORY ANGLE = 85.00

| LAB ENERGY | SIGMAO | SIGMA1          |
|------------|--------|-----------------|
| 10.234     | 4.890  |                 |
| 10.335     | 5.610  |                 |
| 10.435     | 5.190  |                 |
| AI.189     | 5.680  | ****            |
| 11.441     | 6.350  | ****            |
| 11.692     | 5.630  | ****            |
| 11.943     | 5.290  | ****            |
| 12.194     | 6.170  | * * * * * * *   |
| 12.445     | 6.320  | ****            |
| 12.696     | 5.860  | ****            |
| 12.946     | 6.100  | * * * * * * * * |
| 13.197     | 5.560  | ****            |
| 13.448     | 5.750  | 9.620           |
| 13.698     | 4.390  | 11.300          |

### LABORATORY ANGLE = 90.00

| IAB ENERGY | SIGMAO - | SIGMA1 |
|------------|----------|--------|
| 12.445     | 5.160    | ****   |
| 12.696     | 5.440    | ****   |
| 13.197     | 4.690    | ****   |

### TABLE 10B

### GROUND STATE PROTONS

### LAB ENERGY = 10.938

| CENTER OF MASS | CENTER OF MASS |  |  |
|----------------|----------------|--|--|
| ANGLE          | CROSS SECTION  |  |  |
|                |                |  |  |
| 23.9           | 6.50           |  |  |
| 31.8           | 6.82           |  |  |
| 39.6           | 6.89           |  |  |
| 47.3           | 7.02           |  |  |
| 55.0           | 6.73           |  |  |
| 62.5           | 7.13           |  |  |
| 69.9           | 7.19           |  |  |
| 77.2           | 6.64           |  |  |
| 84.2           | 6.92           |  |  |
| 91.1           | 6.68           |  |  |
| 97.7           | 6.63           |  |  |

### TABLE 10B

### GROUND STATE PROTONS

### LAB ENERGY = 12.445

| CENTER OF MASS<br>ANGLE | CENTER OF MASS<br>CROSS SECTION |
|-------------------------|---------------------------------|
| 23.0                    | 4.13                            |
| 30.6                    | 5.09                            |
| 38•2                    | 6.01                            |
| 45.7                    | 7.01                            |
| 53•0                    | 7.99                            |
| 60.3                    | 8.63                            |
| 67.4                    | 9.00                            |
| 74.4                    | 8.46                            |
| 81.2                    | 8.07                            |
| 87.9                    | 7.57                            |
| 94.3                    | 7.64                            |
| 100.5                   | 7.10                            |
| 106.4                   | 5.98                            |
| 112.1                   | 6.22                            |
| 117.5                   | 6.72                            |
| 122.7                   | 6.13                            |
|                         |                                 |

### GROUND STATE PROTONS

### LAB ENERGY = 13.197

| CENTER OF MASS<br>ANGLE | CENTER OF MASS |
|-------------------------|----------------|
| ANGLE                   | CRUSS SECTION  |
| 22.7                    | 2.86           |
| 30.3                    | 3.96           |
| 37.7                    | 5.08           |
| 45.1                    | 6.16           |
| 52.4                    | 7.56           |
| 59.6                    | 8.33           |
| 66.6                    | 8.06           |
| 73.5                    | 8.31           |
| 80.2                    | 7.44           |
| 86.8                    | 7.32           |
| 93.2                    | 6.81           |
| 99.3                    | 6.74           |
| 105.2                   | 6.36           |
| 110.9                   | 6.54           |
| 116.2                   | 5.86           |
| 121.4                   | 5.49           |
|                         |                |

### TABLE 10C

### FIRST EXCITED STATE PROTONS

### LAB ENERGY = 12.445

| CENTER OF MASS |  |  |
|----------------|--|--|
| CROSS SECTION  |  |  |
| •*             |  |  |
| 6.69           |  |  |
| 7.94           |  |  |
| 8.45           |  |  |
| 9•62           |  |  |
| 10.50          |  |  |
| 8.24           |  |  |
| 10.70          |  |  |
| 11.60          |  |  |
| 10.30          |  |  |
| 9.43           |  |  |
|                |  |  |

#### TABLE 10C

# FIRST EXCITED STATE PROTONS

#### LAB ENERGY = 13.197

| CENTER OF MASS | CENTER OF MASS |
|----------------|----------------|
| ANGLE          | CROSS SECTION  |
|                | •              |
| 27.7           | 10.80          |
| 36.9           | 13.70          |
| 46.0           | 18.20          |
| 55.1           | 19.00          |
| 64.1           | 20.10          |
| 73.0           | 22.40          |
| 81.9           | 20.40          |
| 90.5           | 22.60          |
| 99.0           | 23.30          |
| 107.3          | 22.20          |
| 115•2          | 20.80          |
| 122.9          | 19.50          |

TABLE 10C

# FIRST EXCITED STATE PROTONS

#### LAB ENERGY = 14.872

| CENTER OF MASS<br>ANGLE | CENTER OF MASS<br>CROSS SECTION |
|-------------------------|---------------------------------|
| 22 4                    | 10.47                           |
| 33.6                    | 12.95                           |
| 37.7                    |                                 |
| 45.2                    | 12.81                           |
| 52 <b>.</b> 7           | 12.97                           |
| 61.1                    | 12.67                           |
| 67.5                    | 14.14                           |
| 74.0                    | 14.39                           |
| 81.7                    | 14.67                           |
| 89.2                    | 15.42                           |
| 96.5                    | 15.94                           |
| 103.4                   | 12.49                           |

#### Experimental Errors

This table shows the experimental errors associated with the  ${}^3{\rm He} + \alpha$  scattering. The first column shows the laboratory or center-of-mass angle in question. The second column gives the systematic error for the angle and the third column gives the relative errors. The reactions  ${}^4{\rm He}({}^3{\rm He}, {}^3{\rm He}){}^4{\rm He}, {}^4{\rm He}({}^3{\rm He}, {\rm p}){}^6{\rm Li}$  and  ${}^4{\rm He}({}^3{\rm He}, {\rm p}^1){}^6{\rm Li}^*$  are considered. (Pages 17, 18, 19)

Table 11

Experimental Errors for the  ${}^4\text{He}({}^3\text{He}, {}^3\text{He}){}^4\text{He}, {}^4\text{He}({}^3\text{He}, p){}^6\text{Li}$  and  ${}^4\text{He}({}^3\text{He}, p){}^6\text{Li}$  Experiments

 $^4$ He( $^3$ He, $^3$ He) $^4$ He

| $^{	heta}$ CM | Systematic Error (%) | Relative Error<br>(%) | Energy Range<br>(MeV) |
|---------------|----------------------|-----------------------|-----------------------|
| 39, 2         | 1. 1                 | 4 - 5                 | 4.7 - 8.0             |
|               | 1. 1                 | 1.5 - 4               | 8.0 - 14.7            |
| 47.0          | 1. 1                 | 2 - 4                 | 4.7 - 8.0             |
|               | 1. 1                 | 2 - 3.5               | 8.0 - 14.7            |
|               | 1. 5                 | 2.5                   | 15 - 18               |
| 54. 7         | 1. 1                 | 2 - 3                 | 4.7 - 8.0             |
|               | 1. 1                 | 1.5 - 2               | 8.0 - 14.7            |
|               | 1. 5                 | 2                     | 15 - 18               |
| 63.4          | 1. 1                 | 1.5 - 2.5             | 4.7 - 5.25            |
|               | 1. 1                 | 3 - 7                 | 5.25 - 5.4            |
|               | 1. 1                 | 2 - 2.5               | 5.5 - 8               |
|               | 1. 1                 | 2.5 - 5               | 8 - 14.7              |
|               | 1. 5                 | 1 - 2                 | 15 - 18               |
| 70. 1         | 1. 1                 | 2.5 - 5               | 4.7 - 8               |
|               | 1. 1                 | 3 - 5                 | 8 - 14.7              |
|               | 1. 5                 | 1.5 - 2               | 15 - 18               |
| 77.0          | 1. 1                 | 2.5 - 3               | 4.7 - 8.0             |
|               | 1. 1                 | 3.0 - 4.5             | 8 - 14.7              |
|               | 1. 5                 | 1.5 - 2.5             | 15 - 18               |
| 80.0          | 1. 1                 | 2.5 - 3.5             | 4.7 - 8               |
|               | 1. 1                 | 3.5 - 4.5             | 8 - 13                |
| 85.3          | 1. 1                 | 2.5 - 3.5             | 4.7 - 8               |
|               | 1. 1                 | 3.5 - 5.5             | 8 - 14.7              |
| 90.0          | 1. 1                 | 2.5 - 3               | 4.7 - 8               |
|               | 1. 1                 | 2.5 - 5.5             | 8 - 14.7              |
|               | 1. 5                 | 2.5 - 3.5             | 15 - 18               |

178
Table 11 (cont.)

| <sup>θ</sup> СМ | Systematic Error (%) | Relative Error (%)                                                  | Energy Range<br>(MeV) |
|-----------------|----------------------|---------------------------------------------------------------------|-----------------------|
| 98.4            | 1. 1                 | 1.5 - 3                                                             | 4.7 - 8               |
|                 | 1. 1                 | 2 - 4                                                               | 8 - 13.25             |
|                 | 1. 1                 | 4 - 6                                                               | 13.25 - 14.7          |
|                 | 1. 5                 | 3 - 5                                                               | 15 - 18               |
| 106.4           | 1. 1                 | 1.5 - 3.5                                                           | 4.7 - 8               |
|                 | 1. 1                 | 2.5 - 5                                                             | 8 - 14.7              |
|                 | 1. 5                 | 2.5 - 3.5                                                           | 15 - 18               |
| 116.8           | 1. 1                 | 1 - 2.5                                                             | 4.7 - 5.5             |
|                 | 1. 1                 | 2.5 - 5                                                             | 5.5 - 8               |
|                 | 1. 1                 | 2 - 5                                                               | 8 - 10                |
|                 | 1. 1                 | 5 - 9                                                               | 10 - 14.7             |
|                 | 1. 5                 | 2.5                                                                 | 15 - 18               |
| 125. 2          | 1. 1                 | 1.5 - 3.5                                                           | 4.7 - 8               |
|                 | 1. 1                 | 2 - 5                                                               | 8 - 14.7              |
|                 | 1. 5                 | 2.5 - 3                                                             | 15 - 18               |
| 135.0           | 1. 1<br>1. 1         | $     \begin{array}{r}       1 - 2 \\       2 - 4     \end{array} $ | 4.7 - 8<br>8 - 14.7   |

# Table 11 (cont.)

# $^4\mathrm{He}(^3\mathrm{He},\mathrm{p})^6\mathrm{Li}$

| Laboratory Angle | Systematic Error % | Relative Error %                |
|------------------|--------------------|---------------------------------|
| 15               | 1.1                | 2.5 - 4.5                       |
| 20               | 1, 1               | 2.5 - 4.5                       |
| 22.5             | 1.5                | 2 - 4                           |
| 25               | 1.1                | 3 - 5                           |
| 27               | 1.5                | 4                               |
| 30               | 1.1                | 3 - 5                           |
| 31.6             | 1, 5               | 2.5 - 4.5                       |
| 35               | 1.1                | 4 - 6                           |
| 36.8             | 1.5                | 3.5 - 6                         |
| 40               | 1.1                | 4 - 8                           |
| 40.8             | 1.5                | 4 - 6                           |
| 45               | 1. 1<br>1. 5       | 5 - 10<br>(8-13.8 MeV)<br>4 - 6 |
|                  |                    | (14-18 MeV)                     |
| 50               | 1.1                | 5                               |
| 55               | 1.1                | 5                               |
| 60               | 1. 1               | 6                               |
| 65               | 1.1                | 6 - 12                          |
| 70               | 1.1                | 7                               |
| 75               | 1.1                | 7                               |
| 80               | 1.1                | 7 - 12                          |
| 85               | 1.1                | 7 - 9                           |
| 90               | 1.1                | 8                               |

Table 11 (cont.)

# $^{4}$ He( $^{3}$ He,p $^{1}$ ) $^{6}$ Li\*

| Laboratory Angle | Systematic Error % | Relative Error % |
|------------------|--------------------|------------------|
| 15               | 1.1                | 6 - 10           |
| 20               | 1. 1               | 15               |
| 22, 5            | 1.5                | 15               |
| 25               | 1. 1               | 15               |
| 27               |                    | 15               |
| 30               | 1. 1               | 15               |
| 31.6             |                    | 15               |
| 35               | 1. 1               | <b>15</b> ,      |
| 36.8             |                    | 15               |
| 40               | 1.1                | 15               |
| 40.8             |                    | 15               |
| 45               | 1.5                | 12               |
| 50               | 1.1                | 10               |
| 55               | 1.1                | 10               |
| 60               | 1.1                | 8                |
| 65               | 1.1                | 8                |
| 70               | 1.1                | 8                |
| 85               | 1.1                | 10               |

# $^3$ H( $\alpha$ , $\alpha$ ) $^3$ H Phase Shifts in Degrees

This table shows the phase shifts obtained from the  $^3\mathrm{H}+\alpha$  scattering data. The laboratory energy is shown in the first column (ELAB). The quality of the fit at that energy is indicated by  $\chi^2$  in the second column (CHI2). The number at the top of each of the next 7 columns gives the value of  $J_{\pi}$  for the phase shifts listed below. The letter 0 indicates the real phase shifts  $\delta_{J_{\pi}}$ . The letter X indicates the parameters  $X_{J_{\pi}}$  used in the analysis. Tables 12A and 12C show the real phase shifts and  $X_{J_{\pi}}$ 's obtained from data below 13.1 MeV. Tables 12B and 12D show the real phase shifts and  $X_{J_{\pi}}$ 's obtained from data above 12.8 MeV (data obtained using negative ion injection). (Page 28)

TABLE 12A

LI7 PHASE SHIFTS

| D5/2- | -4.77<br>-0.90<br>-1.08    | 466                  | 000          | 4 4          | 00           |      |                      |      | •    | m d        | Ċ    | •    | •    | •    | •    | •    | •    | •    | •    |
|-------|----------------------------|----------------------|--------------|--------------|--------------|------|----------------------|------|------|------------|------|------|------|------|------|------|------|------|------|
| 07/2- | -6.53<br>-1.20<br>1.98     | 0,00                 | 00           | 1.2          | 6.0          | 8.7  | 6.30<br>8.30<br>8.31 | 9.2  | 84.4 | 1.6<br>7.9 | 47.1 | 53.9 | 58.4 | 61.1 | 63.4 | 64.3 | 67.8 | 69.1 | 71.1 |
| D3/2+ | -14.84<br>2.52<br>8.27     | 4.                   | 1.2          | 0.           | 2.0          | 7    | 6,4                  | + 15 | 0.7  | 0.2        |      | 0.7  | 1.0  | 42   | •    | ထ္   | 5    |      | .2   |
| D5/2+ | -3.12<br>1.58<br>0.73      |                      |              |              |              | -    | •                    | 'n   | •    | 0          |      |      | •    | •    | •    | •    | •    | •    | •    |
| D1/2- | 148.56<br>145.97<br>148.71 | 54.4                 | 51.1         | 49.0         | 45.7         | 47.0 | 47.0                 | 51.7 | 51.7 | 47.1       | 45.0 | 43.8 | 45.8 | 41.7 | 40.5 | 40.7 | 38.4 | 38.4 | 36.2 |
| 03/2- | 158.27<br>159.35<br>160.71 | 64.1<br>62.0<br>63.1 | 63.1<br>63.1 | 62.1<br>62.1 | 62.1<br>61.0 | 0.09 | 58.8                 | 61.1 | 58.8 | 58.8       | 57.8 | 59.0 | 59.0 | 58.0 | 56.8 | 56.8 | 56.8 | 57.0 | 56.0 |
| D1/2+ | -34.15<br>-31.80<br>-35.15 | 35.0                 | 37.0<br>38.0 | 38.0         | 40.0         | 41.0 | 42.0                 | 2.0  | 1.8  | 5.2        | 44.0 | 4.0  | ~    | 6.1  | 6.1  | 6.1  |      | 0    | 8.0  |
| CH12  | 24.000<br>12.400<br>6.590  | 0.7.                 | . 9 6        | .7           | ω, σ         | ω,   | 9,0                  |      | 6.   | 0,1        | . 2  | 6.   | 2    | 7.   | • 6  | •    | 4.   | .5   | ω,   |
| ELAB  | 612<br>717<br>822          | .916<br>.031         | 23<br>34     | 44<br>55     | 65           | 86   | 16                   | 90   | 90   | 12         | 1.2  | 27   | 32   | 37   | .431 | .482 | .585 | 689  | 946  |

TABLE 12A LI7 PHASE SHIFTS

| c | -     |        | ,      | 1 / 2  |          |          |        |       |
|---|-------|--------|--------|--------|----------|----------|--------|-------|
|   | 71H2  | 17/70  | _2/sn  | ->/IO  | 12/54    | N3/2+    | -7//0  | -7/60 |
|   | .41   | 7.8    | 56.0   | 35.    | ~        | 0        | 72.7   | 0     |
|   | • 44  | 9.8    | 55.0   | 33.1   | •        | 0        | 72.9   | 6.    |
|   | .53   | 50.8   | 54.0   | 29.8   | • 4      | •        | 73.9   | 8     |
|   | .80   | 51.8   | 53.0   | 31.1   | <b>-</b> | 7        | 74.6   | 1.6   |
|   | 0.656 | -52.85 | 153,15 | 130.12 | 1.00     | 5.60     | 175.09 | 14.22 |
|   | .89   | 55.0   | 51.0   | 31.4   | 5.       | ~        | 74.6   | 6.8   |
|   | .77   | 56.0   | 50.0   | 33.8   | • 4      | 6.       | 75.0   | 1.1   |
|   | .72   | 56.0   | 46.7   | 34.0   |          | ထ        | 75.4   | 5.9   |
|   | .52   | 58.1   | 44.5   | 36.4   | 8        |          | 75.1   | 0.8   |
|   | .30   | 58.1   | 45.4   | 35.4   | 0        | r,       | 76.7   | 7.6   |
|   | .60   | 58.0   | 42.5   | 36.7   | • 4      | .3       | 76.8   | 5.0   |
|   | .75   | 58.0   | 41.5   | 36.8   | 8        | 6.       | 76.5   | 4.0   |
|   | .95   | 59.1   | 40.5   | 37.0   | •2       | ě        | 78.8   | 4.1   |
|   | .78   | 60.1   | 40.7   | 37.1   | •        | •2       | 79.7   | 6.2   |
|   | •16   | 59.0   | 39.8   | 37.3   | φ,       | $\infty$ | 80.1   | 8.8   |
|   | 96.   | 60.0   | 39.3   | 32.0   | .2       | •2       | 82.7   | 9.4   |
|   | .30   | 8.09   | 38.8   | 27.0   | 8        | •        | 86.5   | 10.3  |
|   | .97   | 61.6   | 38.3   | 22.0   | ဆ        | 2.3      | 88.1   | 16.9  |
|   | .68   | 62.4   | 37.8   | 17.0   | φ,       | ۲.       | 85.0   | 24.0  |
|   | .28   | 63.3   | 37.3   | 13.6   | 0        | 7.       | 81.8   | 33.3  |
|   | •65   | 4.4    | 35.1   | 11.8   | 6.       | •2       | 6.61   | 6.7   |
|   | .90   | 4.4    | 35.1   | 11.9   | 7        | •2       | 80.3   | 38.6  |
|   | .80   | 8.1    | 33.9   | 14.3   | 6•       | 0        | 78.3   | 39.0  |
|   | .87   | 9.1    | 33.9   | 14.4   | 3        | .2       | 79.2   | 45.0  |
|   | .95   | 5.7    | 33.9   | 14.4   | φ,       | ۲.       | 79.8   | 45.7  |
|   | .67   | 6.2    | 33.9   | 15.5   | 3        | •2       | 77.4   | 47.8  |
|   | .11   | 2.9    | 36.1   | 14.6   | 3        | .2       | 76.7   | 2.9   |
|   | .05   | 1.7    | 35.0   | 08.8   | .7       | 7        | 79.0   | 1.0   |
|   |       |        |        |        |          |          |        |       |

TABLE 12A

LI7 PHASE SHIFTS

| ELAB  | CH12  | 01/2+  | 03/2-  | D1/2-  | 05/2+ | D3/2+ | D7/2-  | D5/2-  |  |
|-------|-------|--------|--------|--------|-------|-------|--------|--------|--|
| 769*  | 1.099 | -60.61 | 135.00 | 107.65 | 3.94  | 2.11  | 182.97 | 127.30 |  |
| 747   | 0.871 | -65.60 | 134.00 | 106.65 | 3.68  | 3.93  | 180.73 | 127.70 |  |
| *798  | 0.782 | -69.05 | 134.00 | 107.85 | 2.10  | 0.40  | 181.50 | 130.00 |  |
| .848  | 0.625 | -66.75 | 134.00 | 107.85 | 3.80  | 2.90  | 180.40 | 132,10 |  |
| .899  | 0.882 | -70.75 | 134.05 | 106.80 | 2.40  | 1.80  | 180.10 | 132.90 |  |
| .950  | 0.706 | -73.05 | 132.90 | 108.00 | 3.00  | 1.10  | 179.70 | 133.80 |  |
| .001  | 0.711 | -68.45 | 134.00 | 108.00 | 2.10  | 1.40  | 180.20 | 135.70 |  |
| .051  | 0.841 | -72.35 | 134.00 | 108.15 | 2.70  | 1.30  | 179.40 | 136.60 |  |
| .101  | 0.570 | -73.50 | 132.90 | 108.10 | 1.70  | 0.10  | 179.60 | 136.60 |  |
| 1.152 | 0.867 | -73.50 | 131.90 | 106.95 | 1.81  | 1.17  | 178.46 | 136.60 |  |
| 2.202 | 0.879 | -75.14 | 131,90 | 108.15 | 3.20  | 1.20  | 179.30 | 137.70 |  |
| 2.253 | 0.777 | -75.15 | 131.90 | 108.25 | 2.00  | 0.70  | 179.00 | 137.80 |  |
| 304   | 1.694 | -79.79 | 133.00 | 110.55 | 1.51  | 1.55  | 175.55 | 138.85 |  |
| .558  | 1.250 | -79.14 | 131.90 | 108,45 | 3.90  | 1.20  | 179.10 | 142.30 |  |
| .810  | 1.142 | -74.99 | 129.75 | 108.55 | 3.61  | 0.47  | 179.16 | 142,30 |  |
| 3.063 | 2.006 | -77.84 | 129.75 | 107.55 | 2.00  | -1.40 | 181.30 | 144.60 |  |

TABLE 12B L17 PHASE SHIFTS

| 05/2- | 146.00 | 50.1     | 80.9 | 51.8 | 52.0 | 52.0 | 53.0 | 52.0 | 51.0 | 52.0 | 51.0     | 51.0 | 51.0       | 51.0 | 49.4  | 45.7 | 47.7 | 30.2 | 21.7 | 21.6 | 15.4 | 42.8 | 43.5 | 44.1 | 47.0 | 48.0 | 49.0 |
|-------|--------|----------|------|------|------|------|------|------|------|------|----------|------|------------|------|-------|------|------|------|------|------|------|------|------|------|------|------|------|
| D7/2- | 183.00 | 85.0     | 85.4 | 85.4 | 84.6 | 86.0 | 85.4 | 87.0 | 87.6 | 89.1 | 0.06     | 94.1 | 97.1       | 00.2 | 07.1  | 10.7 | 20.0 | 14.7 | 12.2 | 13.1 | 93.7 | 05.6 | 19.9 | 33.3 | 44.5 | 44.0 | 45.9 |
| 03/2+ | -2.50  | 2.5      | 2.5  | 2.5  | 3.4  | 2.5  | 2.5  | 2.5  | 1.7  | 1.7  | 1.7      | 3.4  | 3.3        | 4.0  | 9.9   | 6.3  | 7.9  | 0.3  | 2.8  | 2.7  | 1.5  |      | 5    | . 7  | ထ္   | •    |      |
| D5/2+ | -2.50  | 2.5      | 2.5  | 2.5  | 1.8  | 2.5  | 2.5  | • 5  | 3.3  | 3.3  | 3,3      | 1.8  | 1.7        | 7.0  | 3.4   | 2.8  | 0.8  | 2.1  | 1.2  | 7    | 0    | 4.   | •2   | 6.   | •    | .2   | • 1  |
| D1/2- | 110.14 | 08.4     | 08.5 | 07.2 | 05.8 | 02.0 | 03.2 | 02.5 | 05.0 | 8.66 | 00.5     | 99.2 | 6.00       | 6.00 | 00.00 | 01.2 | 03.4 | 9.90 | 00.4 | 7.7  | 5.8  | 9.3  | 8.4  | 6.9  | 3.5  | 5.5  | 7.5  |
| D3/2- | 136.60 | 33.9     | 34.0 | 32.0 | 30.2 | 28.0 | 26.6 | 23.3 | 22.0 | 20.1 | 19.9     | 17.5 | 18.4       | 18+3 | 16.3  | 15.6 | 12.6 | 20.2 | 19.7 | 23.2 | 29.9 | 00.8 | 06.2 | 08.3 | 13.7 | 5.1  | 8.1  |
| D1/2+ | -76.64 | 77.9     | 81.0 | 1:5  | 83.5 | 82.0 | 83.6 | 3.2  | 85.0 | 84.2 | 89.0     | 90.2 | 0.2        | 91.0 | 88.0  | 9.1  | 0.1  | 7.1  | 4.5  | 2.3  | 9.1  | 0.1  | 3.4  | 5.1  | 4.2  | 0.1  | 0.0  |
| CHI2  | 0.680  | 9        | 0    | 0    | 6.   | ٠.7  | 7.   | 7    | • 4  | *2   | r.       | 3    | 3          | 3    | æ     | ε,   | 0    | 7.   | 3    | ₹    | 4.   | 7.   | 6.   | 6.   | 0    | 4.   | Š    |
| ELAB  | .810   | <b>—</b> | 56   | 2    | 07   | 32   | 57   | 2    | 08   | 33   | $\infty$ | 83   | $\epsilon$ | 03   | 13    | 24   | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    | 4    |

TABLE 12B

LIT PHASE SHIFTS

| 05/2- | 149.45 | 150.13  | 149.35  | 150.01  |
|-------|--------|---------|---------|---------|
| 07/2- | 148.31 | 149.25  | 152.71  | 153.77  |
| 03/2+ | -1.86  | 1.88    | 1.62    | 0.53    |
| 05/2+ | -0.86  | 0.23    | -0.16   | -0.25   |
| D1/2- | 79.84  | 81.73   | 81.49   | 80.76   |
| 03/2- | 120.54 | 121.72  | 120.68  | 118.74  |
| 01/2+ | -99.01 | -104.01 | -108.83 | -112.19 |
| CH12  | 4.887  | 4.047   | 4.487   | 2.819   |
| ELAB  | 17.448 | 17.648  | 17.849  | 18.100  |

TABLE 12C

# LI7 PHASE SHIFTS

| X5/2- | 4.30  | 6.30  | 8.80  | 12.40 | 17.40 | 24.10 | 31.90 | 36.50  | 33,30            |      |       | 20.90           |     | 16.50 | 15.00 | 13.90 | 12.90 | 12.20 | 11.50 | 10.80 | 10.60 | 10.00 | 9.40  | 8.80  |
|-------|-------|-------|-------|-------|-------|-------|-------|--------|------------------|------|-------|-----------------|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| x7/2- | -0-   | •0-   | -0-   | -0-   | -0-   | -0-   | -0-   | -0-    | -0-              | -0-  | -0-   | -0-             | -0- | -0-   | -0-   | -0-   | -0-   | •0-   | •0-   | -0    | • 0-  | •0-   | -0-   | -0-   |
| X3/2+ | -0-   | -0-   | •0-   | -0-   | -0-   | -0-   | •0-   | -0-    | -0-              | -0-  | -0-   | -0-             | -0- | -0-   | -0-   | -0-   | •0-   | -0-   | -0-   | -0-   | •0-   | -0-   | -0-   | -0-   |
| X5/2+ | -0-   | •0-   | -0-   | •0-   | -0-   | -0-   | -0-   | -0-    | -0-              | •0-  | •0-   | •0 <del>-</del> | -0- | -0-   | -0-   | -0-   | -0-   | -0-   | 0-    | -0-   | -0-   | -0-   | •0-   | -0-   |
| X1/2- | -0-   | -0-   | -0-   | •0-   | -0-   | -0-   | -0-   | •0-    | • 0 <del>-</del> | •0-  | -0-   | -0-             | -0- | -0-   | 0-    | -0-   | -0-   | -0-   | •0-   | -0-   | •0-   | •0-   | -0-   | -0-   |
| X3/2- | -0-   | -0-   | -0-   | -0-   | -0-   | -0-   | -0-   | •0-    | -0-              | •0-  | •0-   | -0-             | -0- | •0-   | -0-   | .•0-  | -0-   | -0-   | -0-   | •0-   | -0-   | -0-   | -0-   | -0-   |
| X1/2+ | 16.50 | 18.00 | 18.50 | _     | 20.50 |       | _     | _      | _                | _    |       | _               | _   | _     | _     | _     | 27.50 | _     | _     | 28.50 | 29.00 | 30.00 | 31.00 | 32.00 |
| CH12  | •     | 6.    | 8     | ω,    | 6.    | •     | -     | 0      | 0                | φ    | 7.    | • 6             | φ,  | 7.    | 7.    | φ,    | 0.570 | φ,    | 8     | . 7   | •     | .2    | 7.    | 0     |
| ELAB  | . 293 | .343  | .393  | • 444 | •464  | . 545 | . 595 | . 645. | 169.             | .747 | . 798 | .848            | 83  | .950  | .001  | .051  | 101   | .152  | .202  | .253  | .304  | . 558 | .810  | .063  |

TABLE 120 LI7 PHASE SHIFTS

|       | _     |     |     |      |     |          |     |     |      |         |          |        |     |     |         |             |      |         | •       |       |               |       |     |              |        |       |          |       |
|-------|-------|-----|-----|------|-----|----------|-----|-----|------|---------|----------|--------|-----|-----|---------|-------------|------|---------|---------|-------|---------------|-------|-----|--------------|--------|-------|----------|-------|
| X5/2- | 5.00  | 0   | -0- | 0    | •0- | <u>.</u> | 0-  | 0   | -0-  | -0-     | <b>0</b> | •<br>• | 0   | •0- | 9       | •<br>0<br>1 | •0-  | 0       | •0-     | 0-    | 0             | •0-   | •0- | 9            | 0      | -0-   | 0        | 0-    |
| X7/2- | 0-    | •0- | 0   | •0-  | •   | 0        | •   | •0- | •0-  | •0-     | •0       | •      | •0- | •0- | •0-     | •           | 10   | 10      | $\circ$ | 33.00 | $\circ$       | S     | S   | 0            | ŝ      | 0     | <b>∽</b> | 41.50 |
| X3/2+ | r.    | .5  | 5.5 | 0.   | 5.5 | 31.50    | 3.  | 0   | 3    | ٠.<br>ح | 5.       | 9.0    | 0.  | 0.6 | e.      | 0.6         | J. 5 | Q.      | 9.5     | 6.5   | Ç.            | 9.5   | 9.5 | ٥ <b>•</b> ( | ٠<br>6 | 9.0   | ~<br>•   | 38.50 |
| X5/2+ | -0-   | 0   | -0- | •0-  | -0- | •0-      | -0- | -0- | • 0  | -0-     | -0-      | -0-    | •0- | •0- | •0-     | •0-         | •0-  | •0-     | -0-     | •0-   | -0-           | -0-   | -0- | •0-          | -0-    | 0     | -0-      | •0-   |
| X1/2- | -0-   | -0- | -0- | -0-  | -0- | -0-      | •0- | -0- | 0-   | -0-     | -0-      | -0-    | •0- | -0- | -0-     | -0-         | -0-  | -0-     | -0-     | -0-   | -0-           | -0-   | -0- | -0-          | -0-    | -0-   | -0-      | -0-   |
| x3/2- | -0-   | -0- | -0- | -0-  | -0- | -0-      | 0   | -0- | -0-  | -0-     | -0-      | -0-    | -0- | -0- | -0-     | S           | S    | 0       | 0       | 17.50 | 0             | 0     | 0   | 0            | S      | S     | 0        | 30.50 |
| X1/2+ | 22.50 | .5  | 5.  | 0.   | .5  | 31.50    | 5   | •   | 5 5  | 5.      | .5       | 3.0    | 9.0 | 9.0 | υ.<br>5 | 0.6         | 5.   | υ.<br>Σ |         | 6.5   | 6.5           | Ω.    | 9   | 0.6          | 39.00  | 39.00 | 39.00    | 38.50 |
| CH12  | 63    | 19  | 67  | 03   | 01  | 66       | .72 | .73 | 111  | 48      | .22      | 5.04   | .37 | 34  | 57      | 82          | 3.5  | 80      | 7.5     | 5.7   | . <del></del> | . 4 1 | 7.8 | 6            | 96.    | 03    | .46      | u ı   |
| ELAB  | 8     | 90  | 31  | 5.56 | 82  | 07       | 32  | 57  | . 82 | 08      | 33       | 58     | 83  | 93  | .03     | 13          | 74   | 34      | 77      | 54    | . 64          | 74    | 8   | 96           | 0.4    | 14    | 24       | 7.347 |

TABLE 12D LI7 PHASE SHIFTS

| ELA8  | CH12  | X1/2+ | X3/2- | x1/2- | X5/2+ | X3/2+ | ×7/2- | X5/2- |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 877   | 4.887 | 38.50 | 32.00 | •     | -0-   | 38.50 | 38.50 | -0-   |
| 54.8  | 4.448 | 38,50 | 33.50 | -0-   | 0-    | 38.50 | 36.50 | 0-    |
| 24.0  | 4.047 | 38.00 | 34.50 | -0-   | -0-   | 38.00 | 34.00 | •0-   |
| 849   | 4.487 | 37.50 | 36.50 | •0-   | -0-   | 37.50 | 30.00 | •0-   |
| 8,100 | 2.819 | 37.00 | 39.50 | -0-   | -0-   | 37.00 | 27.00 | 0     |

# <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Phase Shifts in Degrees

This table shows the phase shifts obtained from the  $^3\mathrm{He}$  +  $^4\mathrm{He}$  scattering data. The laboratory energy is shown in the first column (ELAB). The quality of the fit at that energy is indicated by  $\chi^2$  in the second column (CHI2). The number at the top of each of the next 7 columns gives the value of  $J_\Pi$  for the phase shifts listed below. The letter D indicates the real phase shifts  $\delta_{J_\Pi}$ . The letter X indicates the parameters  $X_{J_\Pi}$  used in the analysis. Table 13A shows the real phase shifts and Table 13B shows the parameter  $X_{J_\Pi}$ . (Page 28)

TABLE 13A BE7 PHASE SHIFTS

TABLE 13A BE7 PHASE SHIFTS

| D5/5- | 94     | 04.9 | 6 - 30 | 13.6 | 19.3 | 22-6 | 25+4 | 27.3 | 29.1 | 30.1 | 30.7 | 30.9 | 30.0 | 30.0 | 33.6 | 9.8      | 40.1 | 40.7 | 45.6 | 45.1 | 43.4 | 43.9 | 45.8   | 47.3 | 46*4 | 48.7 | 48.6 | 49.5 |
|-------|--------|------|--------|------|------|------|------|------|------|------|------|------|------|------|------|----------|------|------|------|------|------|------|--------|------|------|------|------|------|
| 07/2- | 169.01 | 70.6 | 70.5   | 70.2 | 70.4 | 6.69 | 70.7 | 70.7 | 72.1 | 72.6 | 73.7 | 76.7 | 7.77 | 82.9 | 90.1 | 92.5     | 85.6 | 70.3 | 56.8 | 55.0 | 53.9 | 55.7 | 54.5   | 24.9 | 53:4 | 9.65 | 6*65 | 9*65 |
| D3/2+ | -2.00  | _    | o      | 3    | 3    | 6    | 9    | 0.3  | ~    | 1.4  | 0.7  | 1.4  | 0.5  | 0.3  | 0.7  | <b>.</b> | 1.9  | 2.3  | 5.9  | 7.7  | 3.5  | 1.9  | 2.2    | 1.6  | ٦.   | 1.3  | -    |      |
| D5/2+ | -3.00  | ÿ    | Ŋ      | 7.   | 4.8  | 5.5  | 4.6  | 4.3  | ω.   | 2.9  | 3.9  | 2.7  | 1.7  | 1.9  | 1.6  | 0.2      | ۲.   | r.   | 1.8  | 1.3  | .2   | 0.9  | 1.5    | 0.0  | 0.5  | 2.2  | •6   | 1.6  |
| D1/2- | 118,11 | 15.9 | 14.5   | 12.6 | 14.8 | 17.3 | 16.0 | 16.3 | 16.3 | 15.6 | 15.0 | 13.1 | 10.3 | 07.3 | 03.5 | 98.7     | 1.1  | 98.6 | 8.9  | 9.2  | 8.2  | 9.9  | 7.5    | 6.9  | 7.0  | 00.8 | 2.4  | 02.7 |
| D3/2- | 131.33 | 30.3 | 29.5   | 30.4 | 26.3 | 24.6 | 22.9 | 20.2 | 18.2 | 16.6 | 15.2 | 14.5 | 13.3 | 10.8 | 7.70 | 05.5     | 1.60 | 9.60 | 10.3 | 1.60 | 60.5 | 10.7 | 14.0   | 15.0 | 17.7 | 21.4 | 24.7 | 26.4 |
| D1/2+ | 72     | 73.5 | 73.3   | 73.6 | 70.6 | 72.8 | 73.7 | 76.2 | 77.1 | 78.4 | 78.7 | 79.3 | 79.6 | 80.2 | 6.61 | 1.9      | 83.0 | 83.4 | 84.3 | 85.8 | 86.8 | 86.7 | 87.3   | 87.5 | 89.2 | 90.4 | 3.6  | 96.7 |
| CH12  | 0.610  | 7    | \$     | • 6  | 4.   | 7.   | 4.   | 6    | 7.   | 0    | 0    | . 2  | .2   | ω,   | .2   | 6        | .2   | 0    | 7.   | 4.   | 6.   | -    | *<br>? | ų.   | • 6  | 3    | ψ,   | 3    |
| ELAB  | 9.208  | • 45 | .71    | 96.  | 0.21 | 0.46 | 0.71 | 96.0 | 1.21 | 1.46 | 1.71 | 1.96 | 2.21 | 2.46 | 2.71 | 2.96     | 3.21 | 3.46 | 3.71 | 3.97 | 4.22 | 4.47 | 4.72   | 4.87 | 5.37 | 5.87 | 6.38 | • 88 |

TABLE 13A

BE7 PHASE SHIFTS

| 05/2- | 148.21            |
|-------|-------------------|
| D7/2- | 149.10            |
| 03/2+ | -2.50             |
| 05/2+ | -2.50             |
| D1/2- | 103.76            |
| D3/2- | 127.06            |
| D1/2+ | -98.60<br>-100.53 |
| CH12  | 0.575             |
| ELAB  | 17.386            |

**TABLE 13B** 

BE7 PHASE SHIFTS

| CH12    | X1/2+ | x3/2- | X1/2- | X5/2+ | X3/2+ | X7/2- | x5/2- |
|---------|-------|-------|-------|-------|-------|-------|-------|
| 9       | 0     | •0    | 0.    | •     | 0     | 0     | 3     |
| 68      | 0     | •     | •     |       | 0     | •     | 0     |
| 84      | 1.0   | •     | •     | •     | 1.0   | 0     | S     |
| 69      | 2.5   | •     | •     | •     | 2.5   | •0    | 0.    |
| 7       | 4.0   | •0    | •     | •     | 4.0   | 00.0  | ٠     |
| 17      | 5.0   | •     | •     | •     | 5.0   | •     | 0     |
| 61      | 5.5   | 0     | •     | •     | 5.5   | •     | 0     |
| 61      | 6.5   | •     | •     | 0     | 6.5   | •     | 2.0   |
| 12      | 7.0   | •0    | 0     | • 0   | 7.0   | •     | 7.5   |
| 80      | 8.0   | •     | •     | •     | 8.0   | 0     | 0     |
| 67      | 0.5   |       | •     | •     | 0.5   | •     | 2.0   |
| 46      | 2.0   |       | •     | •     | 2.0   | 00.00 | 8.0   |
| 72      | 3.5   |       | •     | •     | 3.5   | •     | 5.5   |
| 459     | 25.50 | •0    | .0    | •     | 25.50 | •     | 13.00 |
| 95      | 7.0   |       | •     | 0     | 7.0   | •0    | 1.5   |
| 74      | 8.5   |       | •     | •     | 8.5   | •     | 3     |
| 01      | 9.5   | 0     | 0.    | 0     | 9.5   | 4.00  | 0     |
| 07      | 1.0   | 0     | •     | 0     | 1.0   | 8.50  | 3     |
| 21      | 2.0   | r.    | •     | 3     | 2.0   | 13.00 | IJ    |
| 27      | 2.5   | 1.0   | 0.    | •     | 2.5   | 19.50 | •     |
| 39      | 3.0   | 2.5   | •     | 5     | 3.0   | 28.50 | •     |
| 23      | 3.5   | 3.5   | •     | 5     | 3.5   | 43.00 | °     |
| 34      | 4.0   | 4.5   | ċ     | 5     | 4.0   | 57.00 | ċ     |
| 26      | 4.5   | 6.0   | •     | 0     | 4.5   | 63.50 | °     |
| 60      | 5.0   | 6.5   | •     | 3     | 5.0   | 63.00 | 0     |
| 5       | 5.5   | 7.5   | o.    | 5     | 5.5   | 59.50 | •     |
| 49      | 6.0   | 18.50 | ô     | 18.50 | 0.9   | 54.00 | •     |
| $\circ$ | 6.5   | 9.5   | •     | ٠     | 6.5   | 8.5   | •     |
|         |       |       |       |       |       |       |       |

TABLE 138

# BE7 PHASE SHIFTS

| ELAB       | CH12  | X1/2+ | X3/2- | X1/2- | X5/2+ | X3/2+     | x7/2- | X5/2-       |
|------------|-------|-------|-------|-------|-------|-----------|-------|-------------|
|            | 001   | 27 00 | 20.00 | Ċ     | 20.00 | 37.00     | 43.00 | •0          |
| 0.4.0      | 1.150 | 00.00 | 21.00 | , c   | 21.00 | 37.50     | 38.50 | •<br>•      |
| .721       | 7.500 | 51.50 | 00.17 | •     | 21 50 | 27.50     | 36.00 | ď           |
| 872        | 0.359 | 37.50 | 71.50 | •     | 06.12 |           |       |             |
| 375        | 0.634 | 38.00 | 22,50 | •     | 22.50 | 38.00     | 30.00 | •<br>ວ      |
| ) (<br>) ( |       | 00 88 | 23.50 | 0     | 23.50 | 38.00     | 25.00 | ċ           |
| 2/2        | 040.0 |       | 000   |       | 24.00 | 38.00     | 20.50 | 0           |
| .380       | 0.317 | 38.00 | 74.00 | •     | 204.7 | ) (       |       | ,<br>,<br>, |
| 200        | 0.526 | 38,50 | 24.50 | •     | 74.50 | 38.50     | 10.00 | *<br>5      |
| ) v        | 0 575 | טע אר | 25.50 | •     | 25.50 | 38.50     | 10.50 | •           |
| 000.       | 7.7.  | 0 0 0 |       |       | 26.00 | 28.50     | 0     | •           |
| α<br>α     | 0,831 | 38.50 | 76.00 | •     | 20.02 | > 1 • 0 1 | ,     | ,           |

# Resonance Energies and Reduced Widths

This table shows the resonance energies and reduced widths obtained for  $^7\mathrm{Li}$  and  $^7\mathrm{Be}$ . A radius of 4.0 Fermis was used for the analysis of all the levels. The subscripts  $n_0$  and  $p_0$  refer to the decay of the level to  $^6\mathrm{Li}$  + nucleon. The subscripts  $n_1$  and  $p_1$  refer to the decay of the level to  $^6\mathrm{Li}$ \* + nucleon. (Pages 40, 41)

Table 14 <sup>7</sup>Li

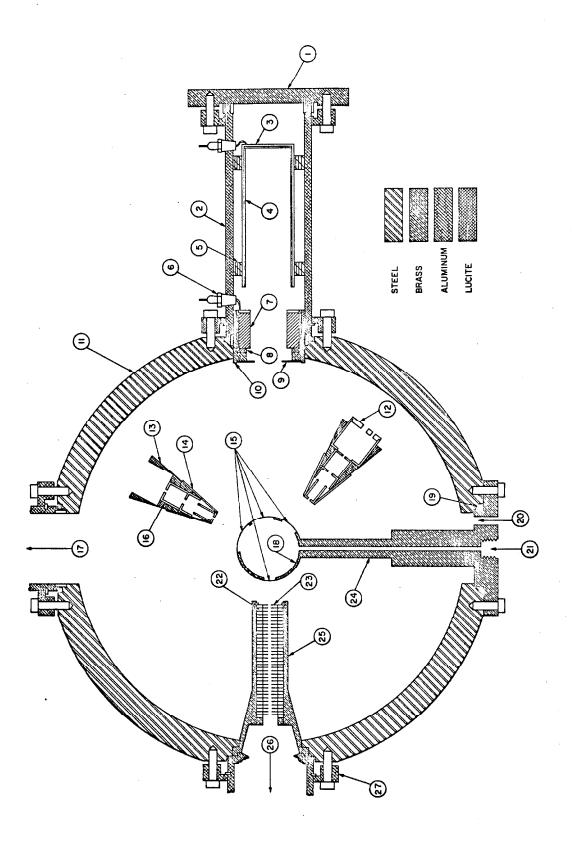
| State $J_{\text{TT}}$ $\gamma_{\alpha}^{2}(\text{MeV})$ $\theta_{\alpha}^{2}$ $\gamma_{n0}^{2}(\text{MeV})$ $\theta_{n0}^{2}$ $\gamma_{n1}^{2}(\text{MeV})$ $\theta_{n1}^{2}$ $E_{\text{res}}(\text{MeV})$ | 1/2 | $^2F_{5/2}$ $^25/2^ ^2_{1\pm0.3}$ $^{1.36}$ $^{0.00\pm0.01}$ $^{0.000}$ $^{-}$ $^{-}$ $^{6.64\pm0.10}$ $^{+}$ $^{0.002}$ $^{-}$ $^{-}$ $^{-}$ $^{6.64\pm0.10}$ | $5/2$ $5/2^{-}$ 0.024 0.011 1.2 $\pm$ 0.1 0.26 - 7.47 $\pm$ 0.03 $\pm$ 0.001 $\pm$ 0.001 $\pm$ 0.02 | $^4D_{7/2}$ $^{7/2}$ 1.2 $\pm$ 0.5 0.53 10.6 $\pm$ 3.0 2.3 9.67 $\pm$ 0.10 $\pm$ 0.22 $\pm$ 0.22 | $\theta_c^2 = \frac{\gamma_c^2}{3\hbar^2}$ where a is the radius of interaction and $\mu$ is the reduced mass of the particle pair c. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|

Table 14 (cont.) <sup>7</sup>Be

| ${ m E}_{ m res}$ (MeV)                                                                       | 4.57 $\pm$ 0.05      | $6.73 \pm 0.10$                 | $7.21 \pm 0.06$                                      | 9, 27 $\pm$ 0, 10      |
|-----------------------------------------------------------------------------------------------|----------------------|---------------------------------|------------------------------------------------------|------------------------|
| $^{2}_{\mathrm{p1}}$                                                                          | ŧ                    | 1                               | ì                                                    | 1.8                    |
| $egin{array}{ccc} eta_{ m p0}^2 & \gamma_{ m p1}^2  ({ m MeV}) & eta_{ m p1}^2 \ \end{array}$ | i                    | i                               | ì                                                    | $8.4 \pm 2.5$          |
| 8 po                                                                                          | 1                    | 0.000<br>±0.002                 | $0.26 \pm 0.02$                                      | 0.29<br>+0.09<br>-0.18 |
| $\theta_{\alpha}^{2}$ $\gamma_{p0}^{2}$ (MeV)                                                 | ı                    | 1.36 0.00 $\pm$ 0.01 $\pm$ 0.13 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1.3 + 0.4<br>- 0.8     |
| . <b>ಇ</b> ರ                                                                                  | 0.70<br>± 0.04       | $\frac{1.36}{\pm 0.13}$         | 0.010 1<br>± 0.001                                   | $0.70 \pm 0.26$        |
| $\gamma_{lpha}^{2} \; ({ m MeV})$                                                             | $1.6\pm0.1$          | $3.1 \pm 0.3$                   | 0.023<br>± 0.003                                     | 1.6±0.6                |
| 片                                                                                             | 1/2                  | 5/2                             | 5/2                                                  | 7/2                    |
| State                                                                                         | $^2\mathrm{F}_{7/2}$ | $^2\mathrm{F}_{5/2}$            | $^4\mathrm{P}_{5/2}$                                 | $^4\mathrm{D}_{7/2}$   |

#### The Tritium Chamber

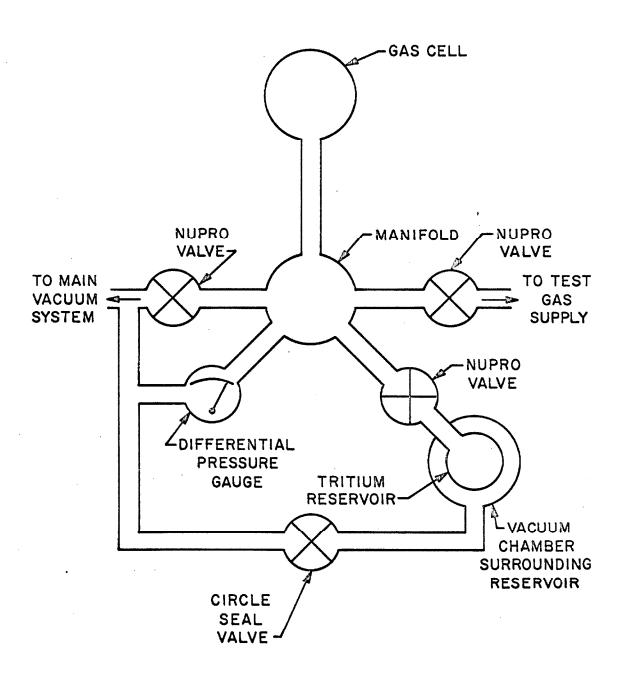
The tritium chamber is shown as seen from the top on a horizontal plane through the beam line. The numbered items are listed below.


- Blank off flange connecting to the force equalization bellows. (1)Outer body of Faraday cup. (2)Brass Faraday cup body. (3)Tantalum liner. (4)(5)Teflon insulator. Electrical feed through. (6)Suppression magnet. (7)(8) Lucite insulator. Tantalum aperture. (9)Brass insert. (10)(11)Chamber body. Brass can for counters. (12)(13)Lucite can holders. Counter collimator. (14)(15)Gas cell windows. (16)Brass counter collimator slits.
- (18) Gas cell body.
- (19) Typical O-ring seal.
- (20) Vacuum passage to gas handling system.

To main pumping system.

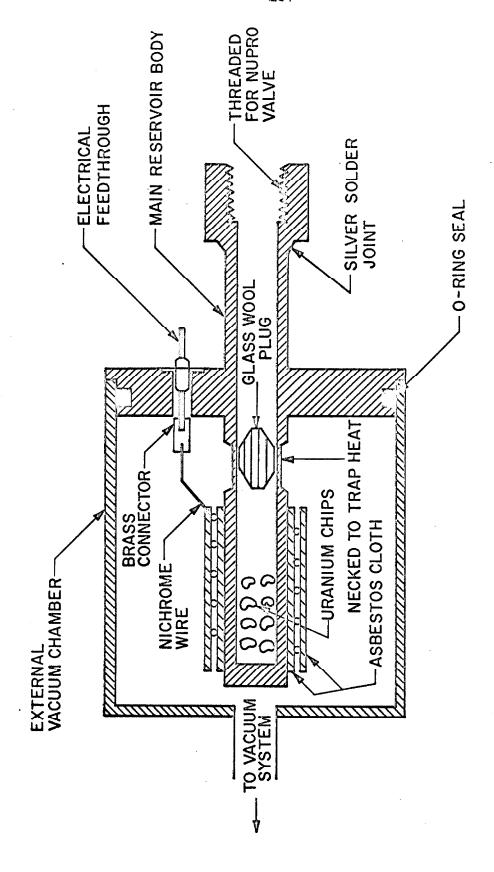
- (21) Receptacle for gas manifold.
- (22) Spacers for collimation disks.
- (23) Tantalum collimation disks.
- (24) Gas cell support.
- (25) Beam collimator.
- (26) To upstream pumping and second set of slits.

(Pages 3, 4)


(17)



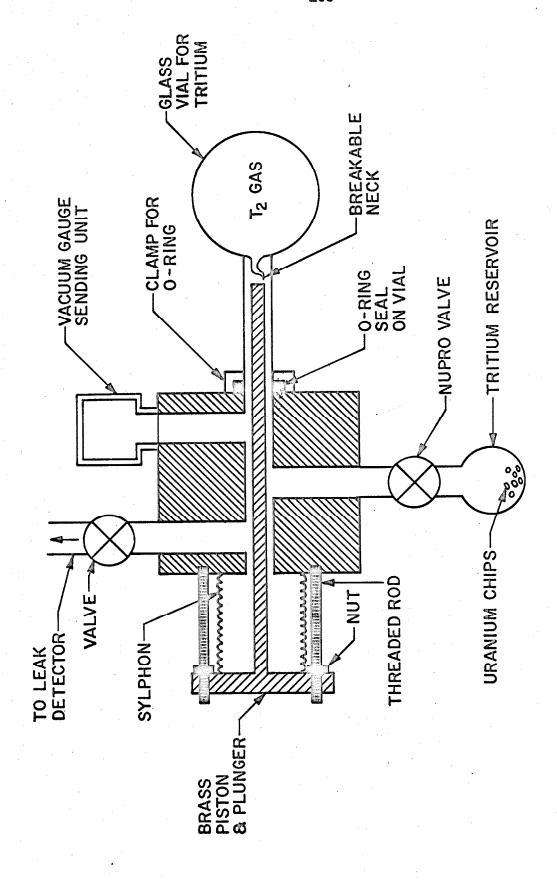
# Gas Handling System


A schematic diagram of the gas handling system used in the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  experiment. (Page 5)

#### SCHEMATIC DIAGRAM OF GAS HANDLING SYSTEM FOR T(a,a)T EXPERIMENT



#### Tritium Reservoir

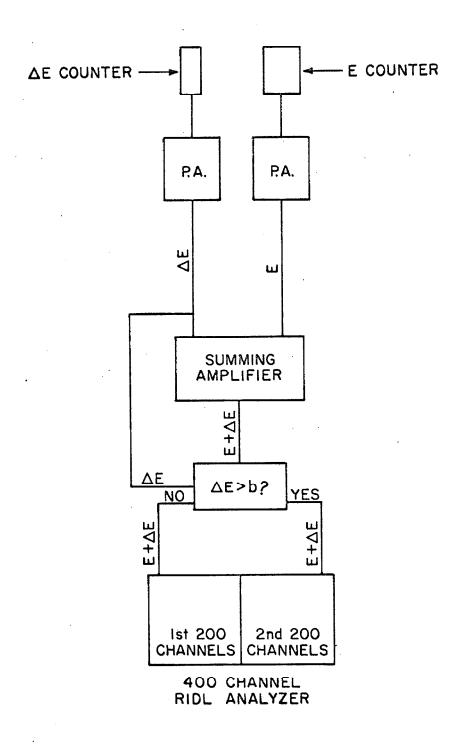

A schematic diagram of the reservoir used to store the tritium as uranium tritude. (Pages 6, 63)



SCHEMATIC DIAGRAM OF TRITIUM RESERVOIR

# Transfer Manifold

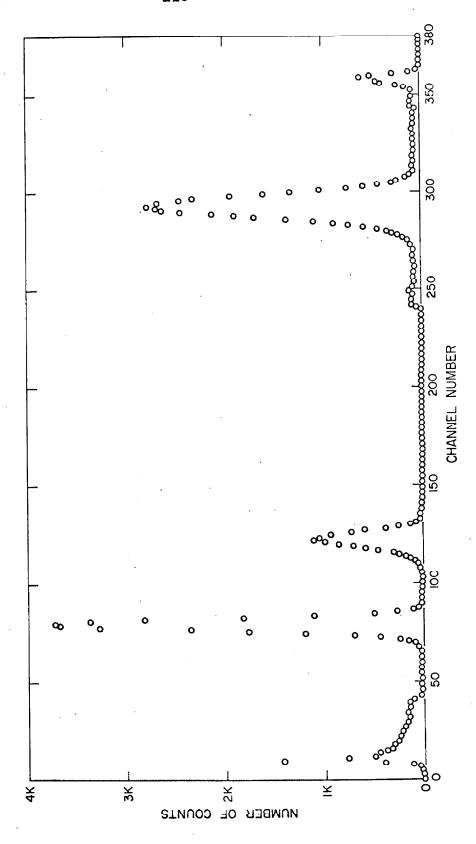
A schematic diagram of the manifold used to transfer the tritium gas from the glass shipping container to the reservoir. (Page 64)




SCHEMATIC DIAGRAM OF TRITIUM TRANSFER MANIFOLD

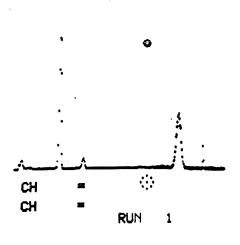
# Electronics

A schematic diagram of the electronics used with the  $\frac{dE}{dx}$  , E counter telescope. (Page 57)


# SCHEMATIC DIAGRAM OF ELECTRONICS



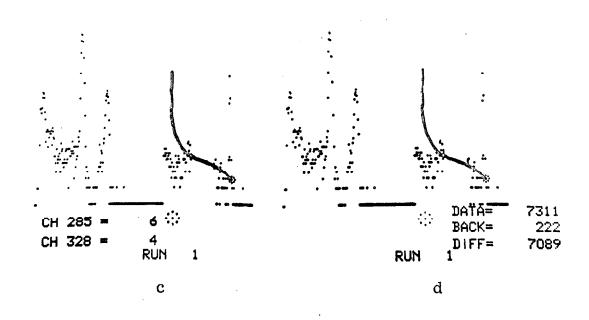
# Figure 6 $Typical \ Spectrum \ from \ the \ ^3H(\alpha,\alpha)^3H \ Experiment$


A spectrum obtained using the  $\frac{dE}{dx}$  , E telescope and the 400-channel analyzer. The first 200 channels show charge

1 particles and the second 200 channels show charge 2 particles. (Page 8)

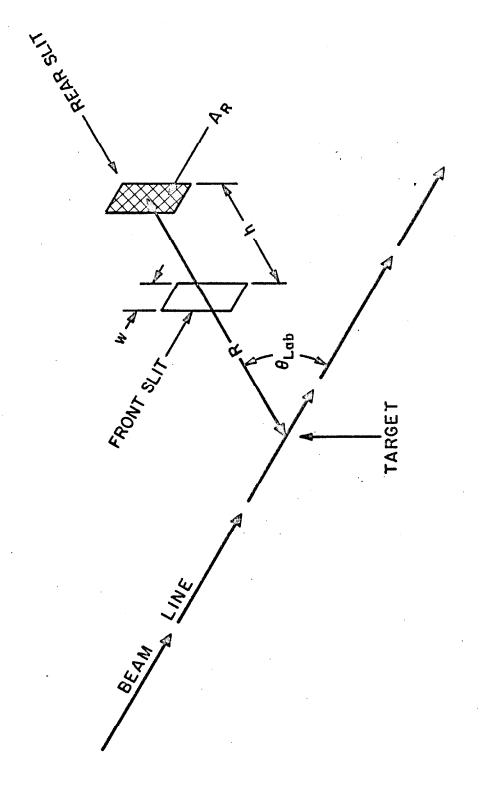


#### Data Reduction Display


This figure shows a sequence of photographs of the cathode ray tube used (with the Burroughs 220 computer) to display and partially reduce our data. (Page 59)

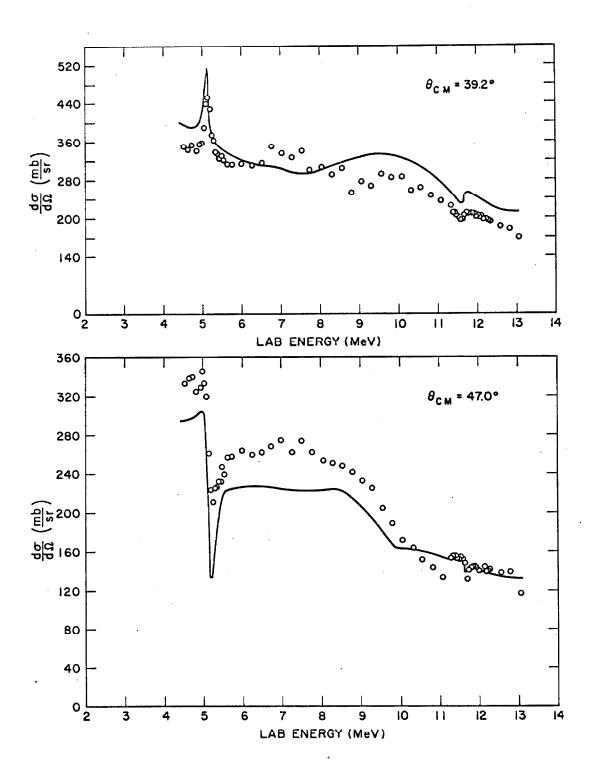


CH = PEN IIN
CH = RUN 1

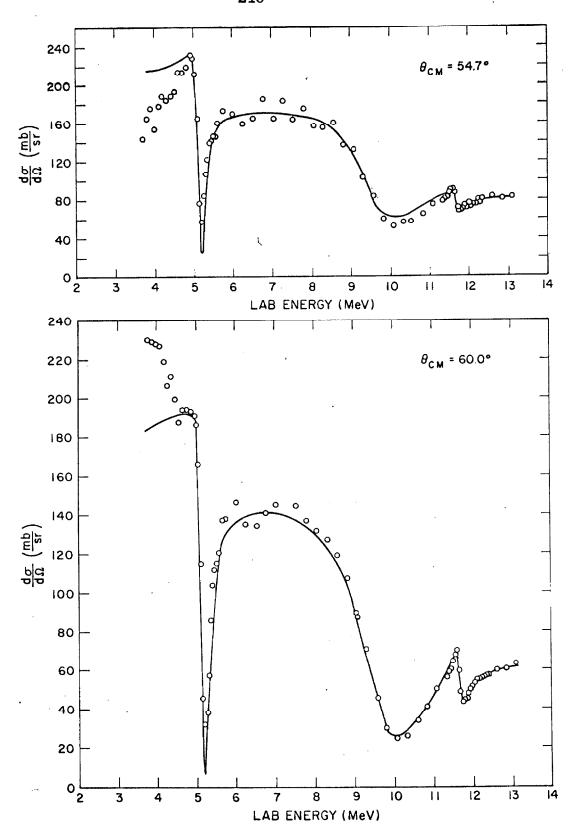

a

b

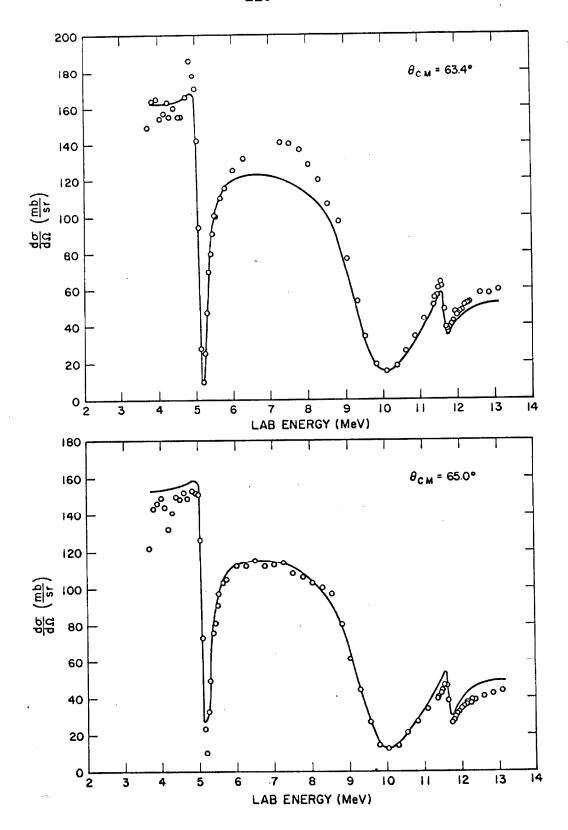



#### Slit Geometry

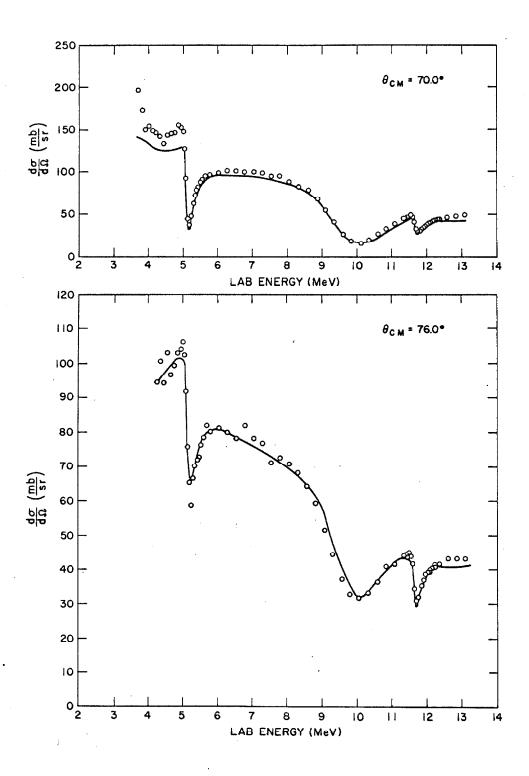
A schematic diagram showing the slit arrangement in the detector collimators and the relevant parameters for determining solid angle and target thickness. (Page 61)



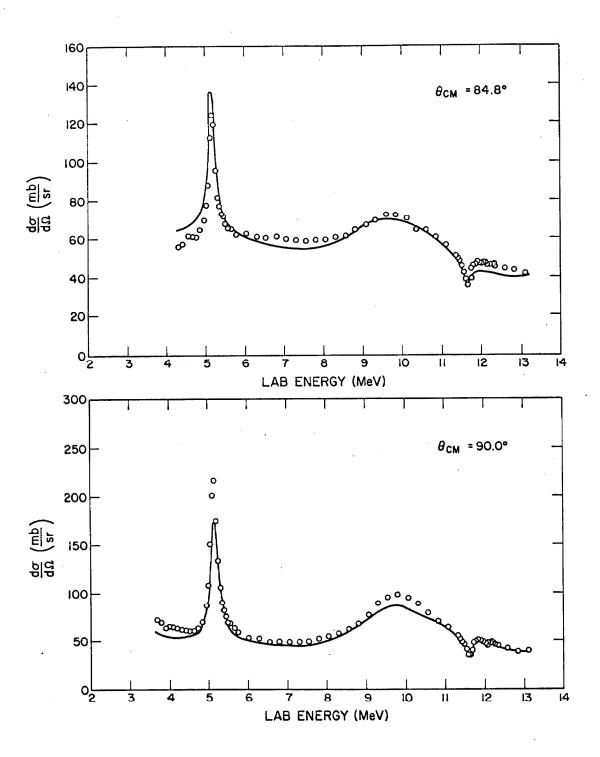

SCHEMATIC DIAGRAM OF DETECTOR SLIT GEOMETRY


Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment



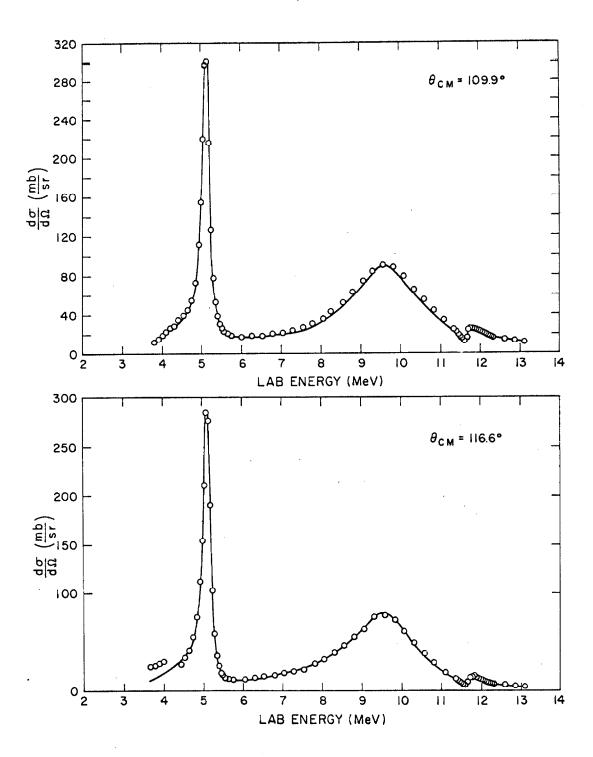

Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment



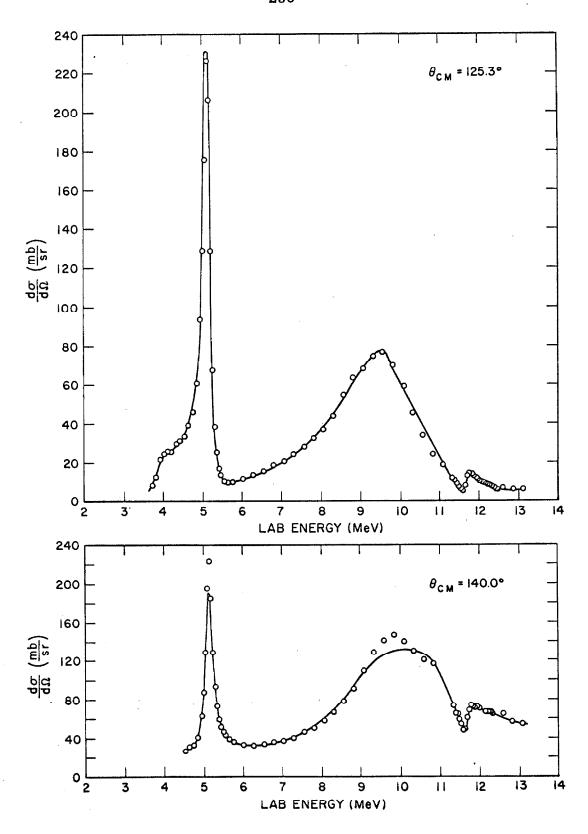

Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment



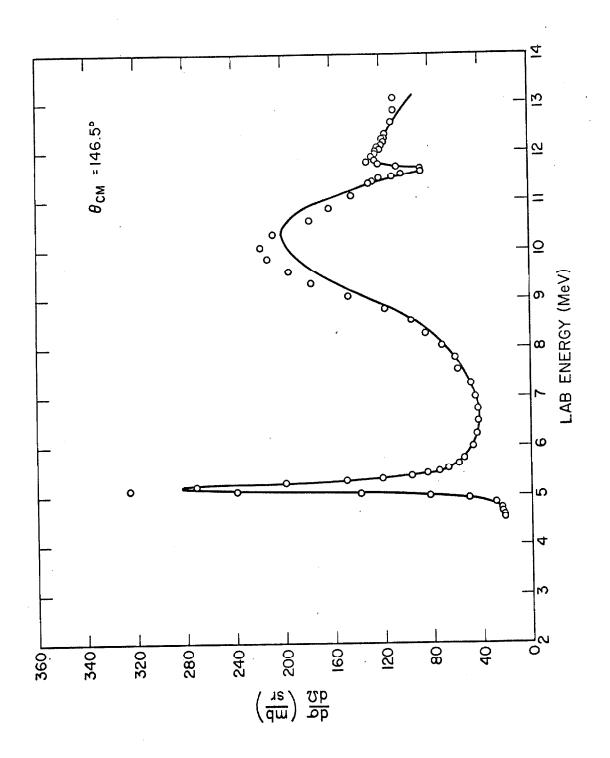
Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment



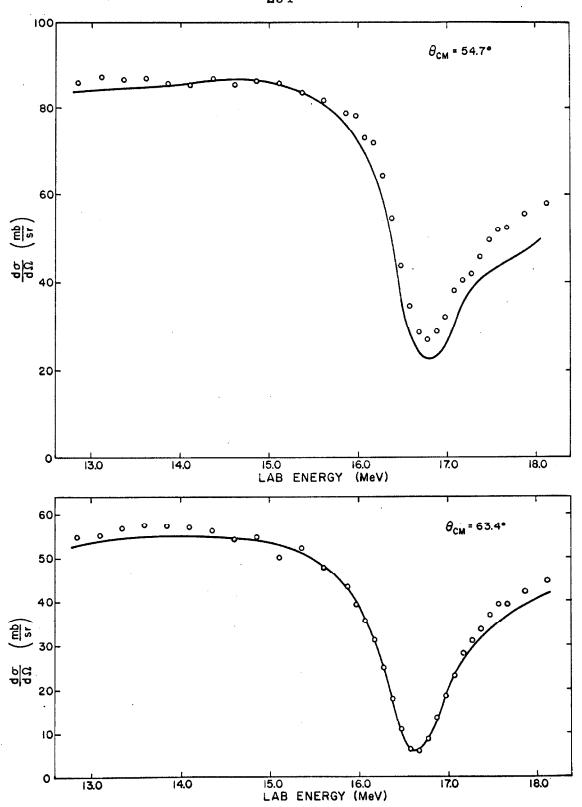

Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment



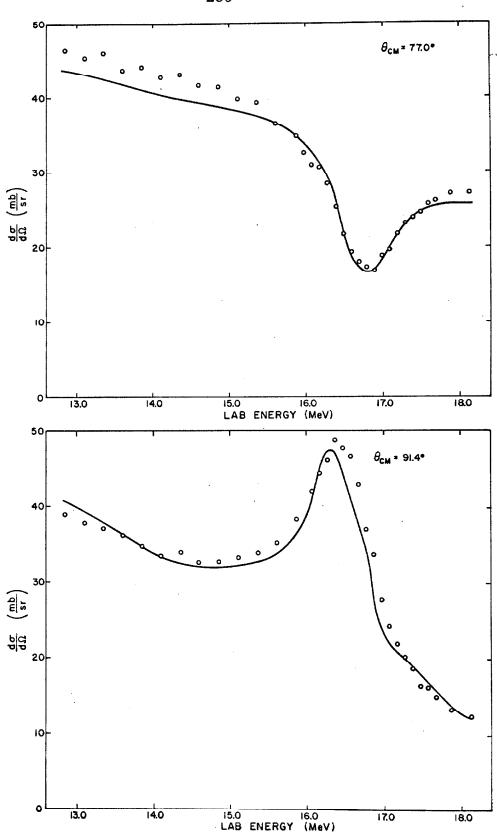

Excitation Curve from the  $^3$ H( $\alpha$ ,  $\alpha$ ) $^3$ H Experiment


Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment

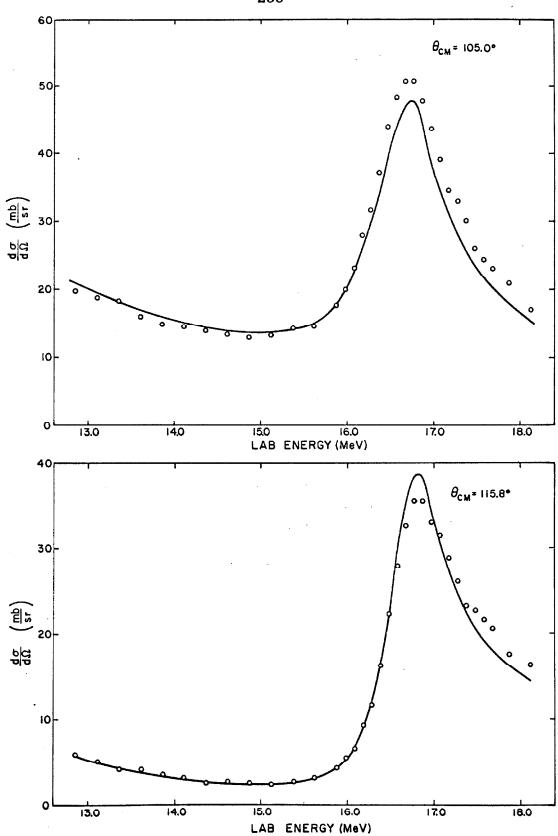



Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment

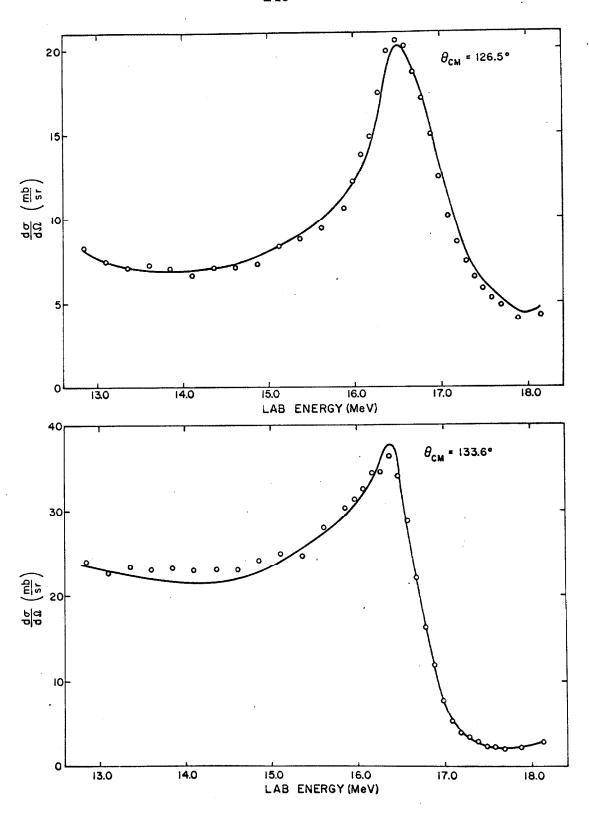



Excitation Curve from the  $^3\text{H(}\alpha,\alpha)^3\text{H}$  Experiment



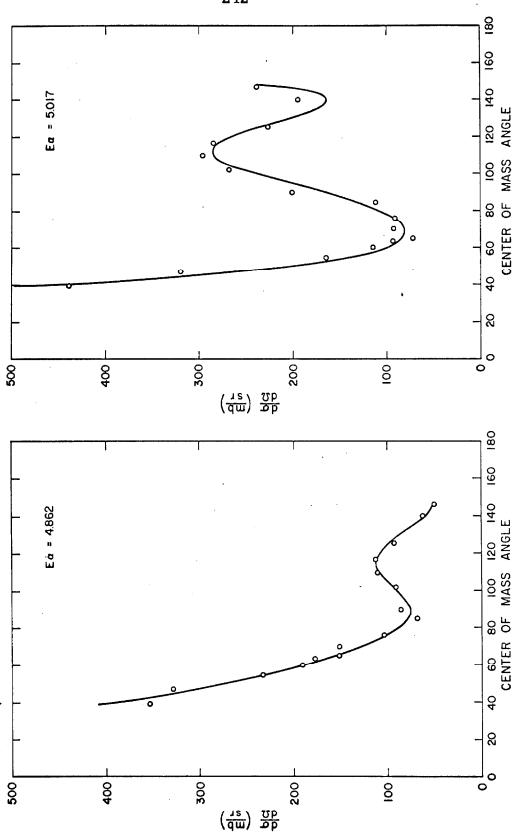

Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment




Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment

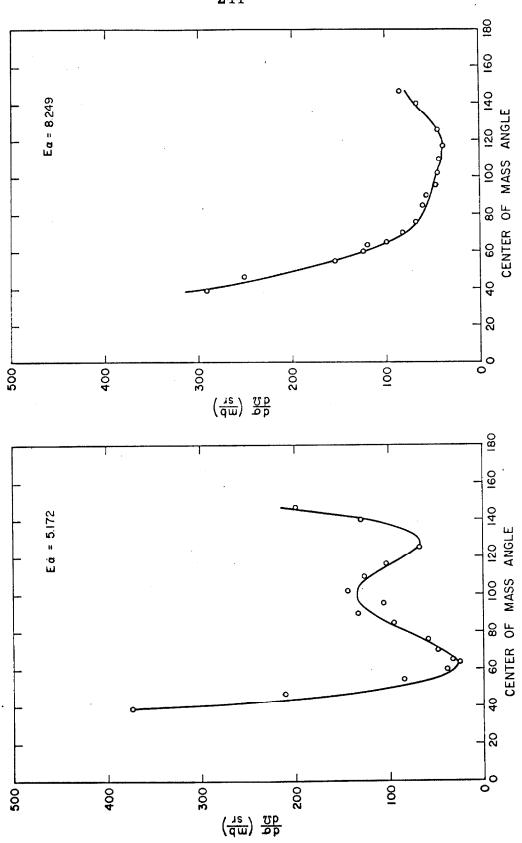


Excitation Curve from the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment



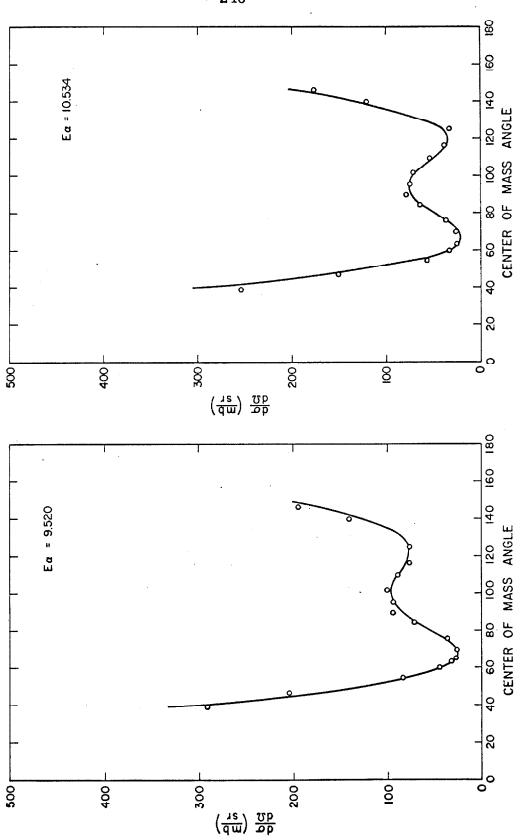

Excitation Curve from the  $^3$ H( $\alpha$ ,  $\alpha$ ) $^3$ H Experiment




Angular Distributions for the  ${}^{3}\mathrm{H}(\alpha,\alpha){}^{3}\mathrm{H}$  Experiment

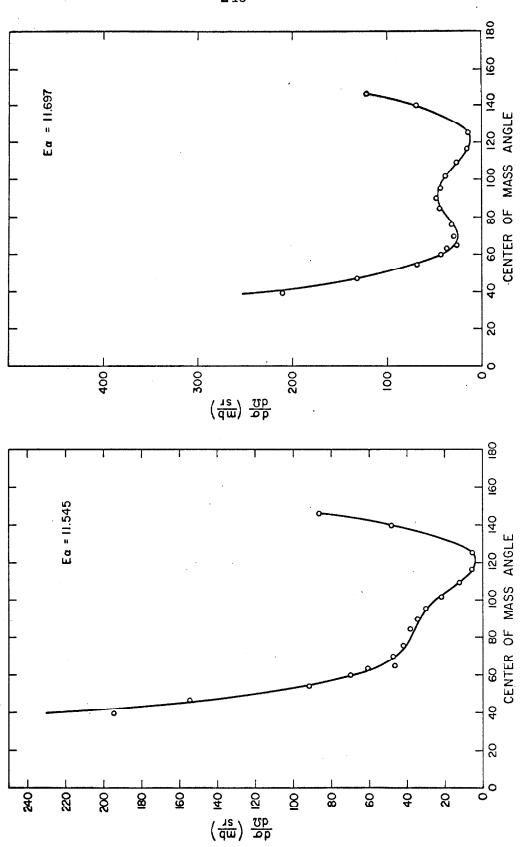
This figure shows the center-of-mass differential elastic scattering cross section as a function of center-of-mass angle. The open circles show the data points and the solid line shows the fit from the phase shift analysis. (Page 9)




Angular Distributions for the  $^3H(\alpha,\alpha)^3H$  Experiment

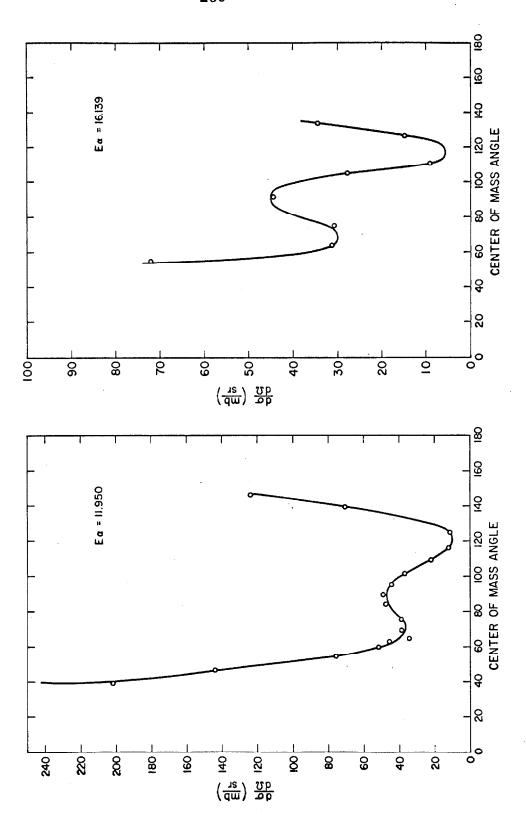
This figure shows the center-of-mass differential elastic scattering cross section as a function of center-of-mass angle. The open circles show the data points and the solid line shows the fit from the phase shift analysis. (Page 9)




Angular Distributions for the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment

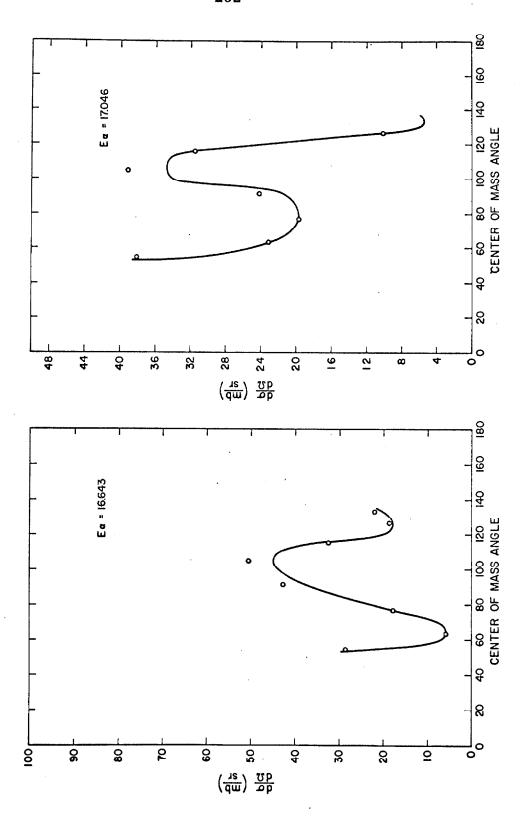
This figure shows the center-of-mass differential elastic scattering cross section as a function of center-of-mass angle. The open circles show the data points and the solid line shows the fit from the phase shift analysis. (Page 9)




Angular Distributions for the  ${}^{3}\text{H}(\alpha,\alpha){}^{3}\text{H}$  Experiment

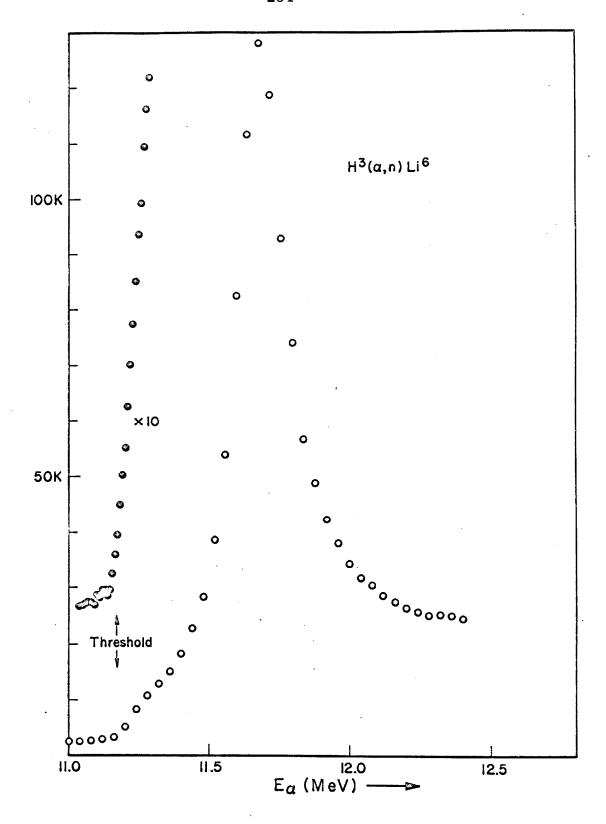
This figure shows the center-of-mass differential elastic scattering cross section as a function of center-of-mass angle. The open circles show the data points and the solid line shows the fit from the phase shift analysis. (Page 9)




Angular Distributions for the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment

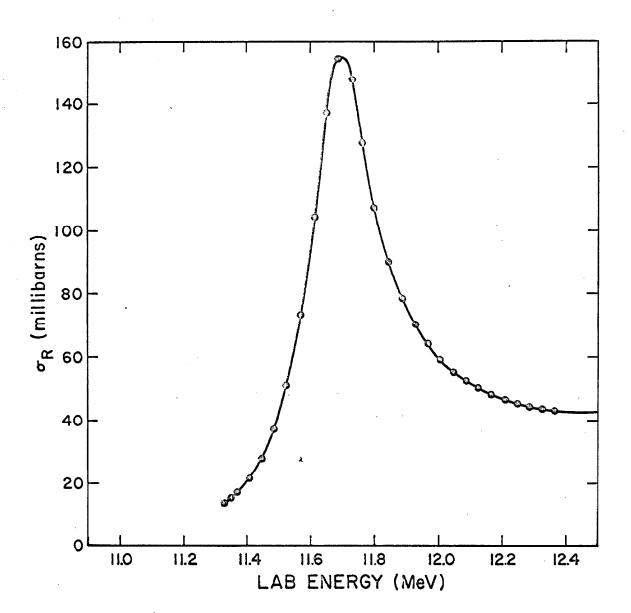
This figure shows the center-of-mass differential elastic scattering cross section as a function of center-of-mass angle. The open circles show the data points and the solid line shows the fit from the phase shift analysis. (Page 9)




Angular Distributions for the  $^3\text{H}(\alpha,\alpha)^3\text{H}$  Experiment

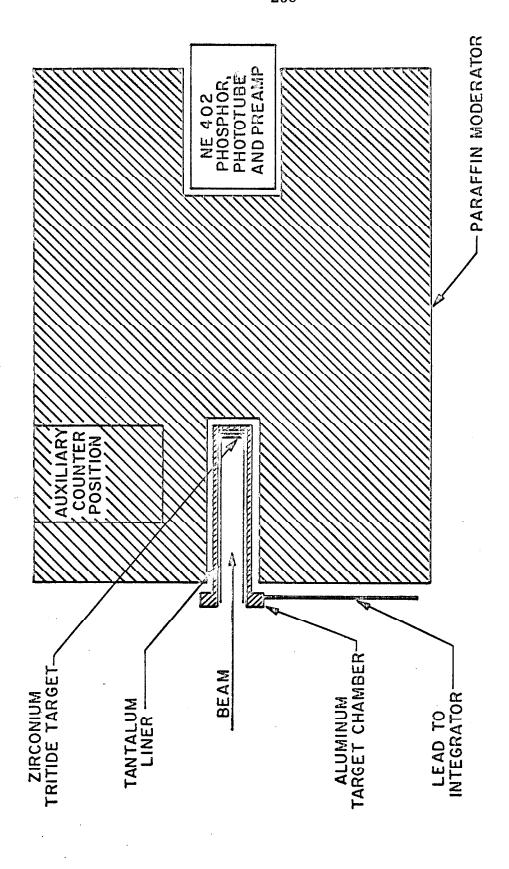
This figure shows the center-of-mass differential elastic scattering cross section as a function of center-of-mass angle. The open circles show the data points and the solid line shows the fit from the phase shift analysis. (Page 9)




# Data for the Reaction $^3\text{H}(\alpha,\,n)^6\text{Li}$

This figure shows the data obtained with the zirconium tritide target. The number of counts are shown as a function of beam energy  $(\mathbf{E}_{\alpha})$ . The open circles represent the actual number of counts. The closed circles are the number of counts multiplied by 10 to show the threshold behavior. (Page 11)




# Data Obtained for the Reaction $^3H(\alpha, n)^6Li$ from the Inverse Reaction

This figure shows the total reaction cross section for the reaction  ${}^3\text{H}(\alpha,n){}^6\text{Li}$  as a function of laboratory energy. The line serves only to connect the points. These data were obtained by converting data on the reaction  ${}^6\text{Li}(n,\alpha){}^3\text{H}$  to our system. The data on the inverse reaction were obtained by Schwarz, (1965). (Page 26)



Schematic Diagram of the Detection Geometry for the  ${}^3{\rm H}(\alpha,\,n^1){}^6{\rm Li}^*$  Reaction

This figure shows the geometry and apparatus used to detect neutrons for the  ${}^3\text{H}(\alpha,n^1)^6\text{Li}^*$  reaction. The paraffin moderator is cast in the form of a cylinder with the target and detector shown on axis. The diameter of the cylinder is 31 cm. and its length is 33 cm. The distance from the target to the detector is 19 cm. (Page 11)



NEUTRON DETECTION GEOMETRY

Excitation Curve for the  ${}^{3}\text{H}(\alpha, n^{1})^{6}\text{Li*}$  Reaction

This figure shows the total reaction cross section for the  $^3\text{H}(\alpha,n)^6\text{Li}$  and  $^3\text{H}(\alpha,n^1)^6\text{Li*}$  reactions. The data on  $^3\text{H}(\alpha,n)^6\text{Li}$  below the  $^3\text{H}(\alpha,n^1)^6\text{Li*}$  threshold provides normalization and background subtraction data thus allowing the effect of the  $^3\text{H}(\alpha,n^1)^6\text{Li*}$  reaction to be separated. (Page 12)

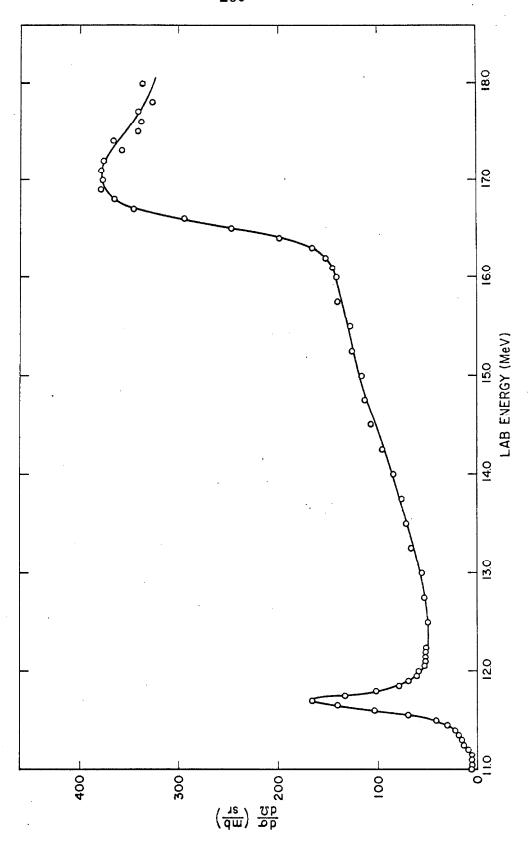
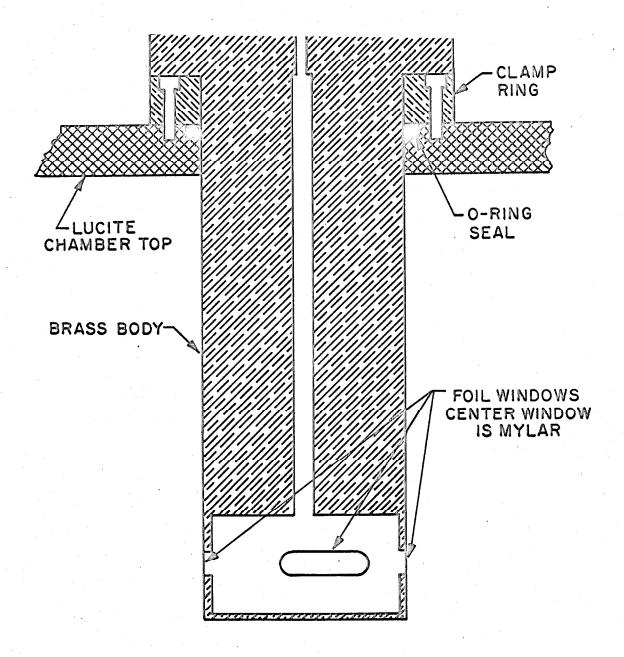
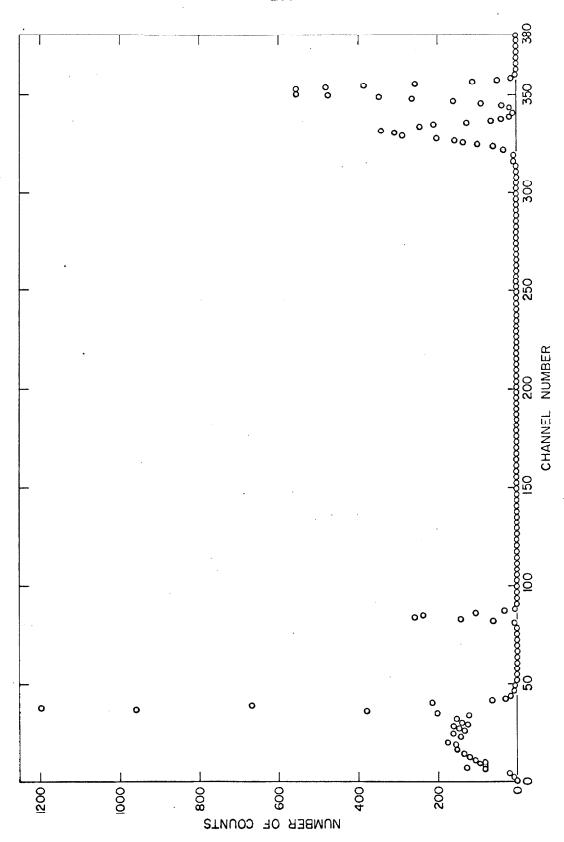
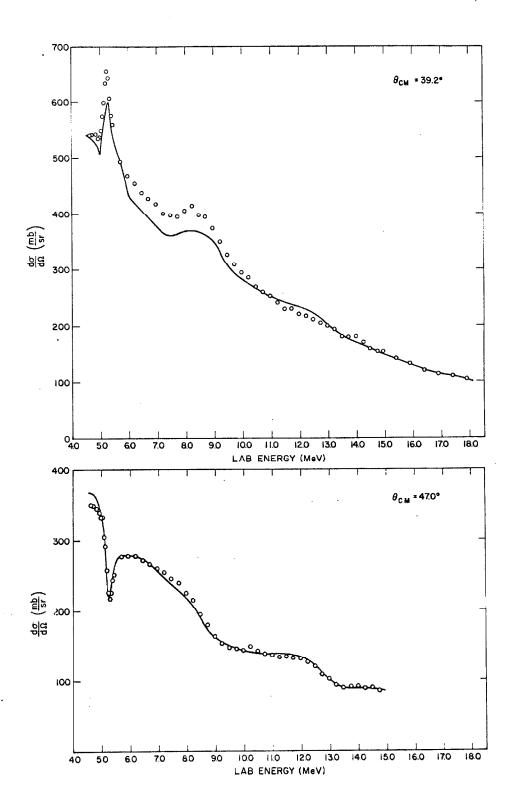



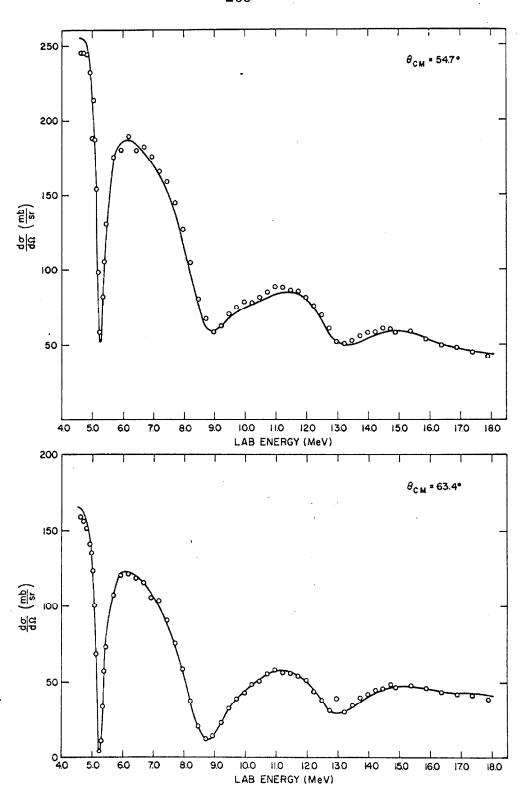

Diagram of the High Energy Gas Cell


This figure shows a diagram of the gas cell used to obtain the  ${}^4\text{He}({}^3\text{He},{}^3\text{He}){}^4\text{He}$  data for energies above 14.7 MeV. (Page 15)

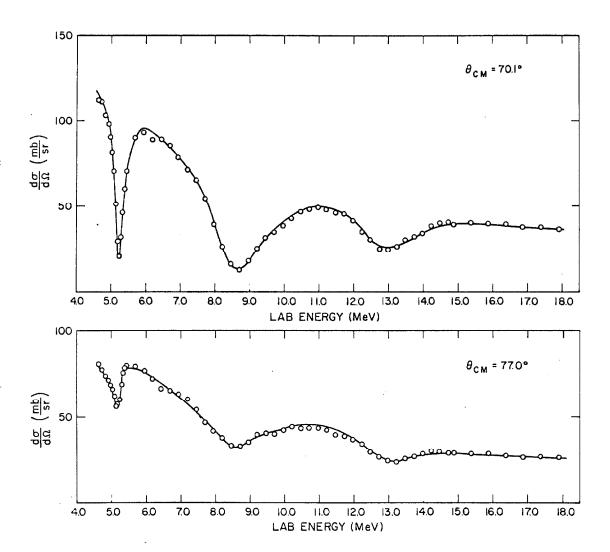



HIGH ENERGY GAS CELL

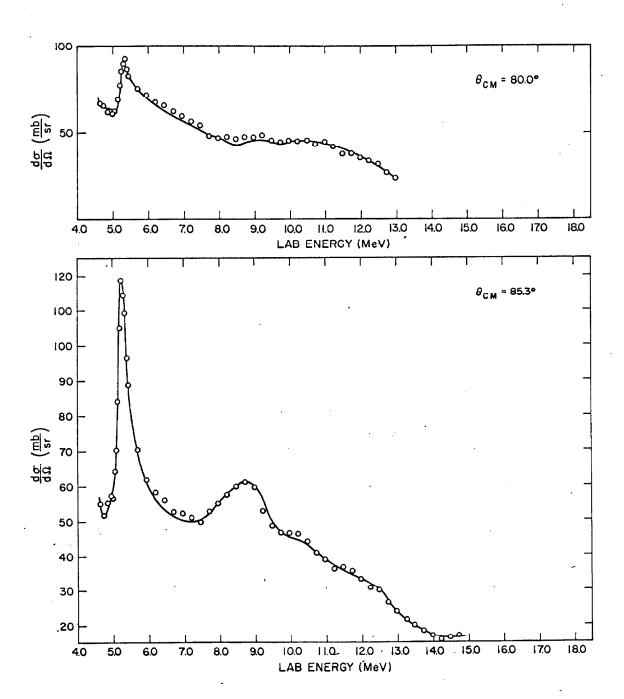
Typical Spectrum from the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment


This figure shows a typical spectrum from the 400-channel analyzer. The first 200 channels show charge 1 particles. The second 200 show charge 2 particles. The highest group (in channel number) is the <sup>3</sup>He group. Just below it is the  $\alpha$  group. The group near channel 80 is a proton group from the reaction <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li. The sharp group near channel 40 is a proton group from the reaction <sup>4</sup>He(<sup>3</sup>He, p<sup>1</sup>)<sup>6</sup>Li\*. The background under this group is due to deuterons from the breakup of <sup>6</sup>Li. (Page 16)

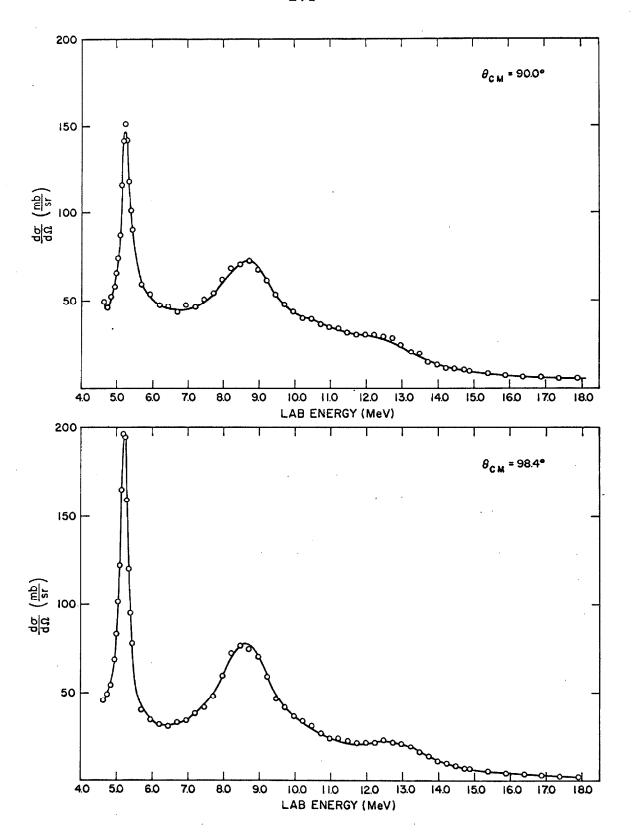



Excitation Curve for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

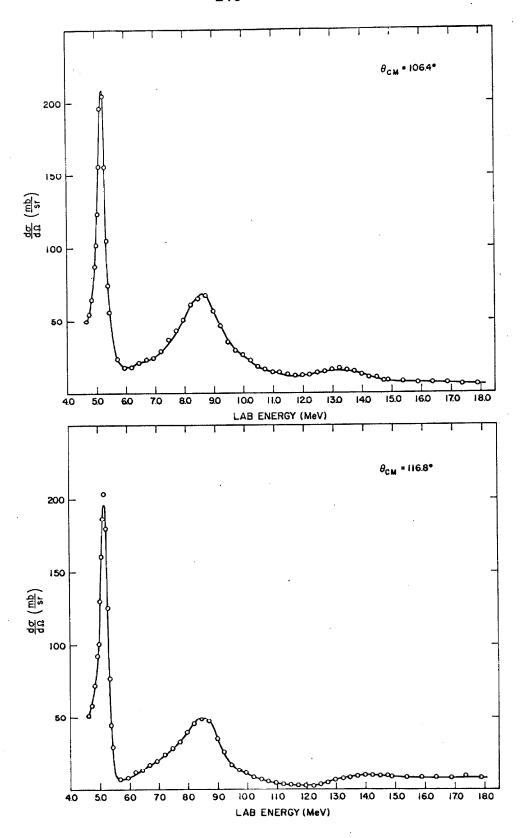



Excitation Curve for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

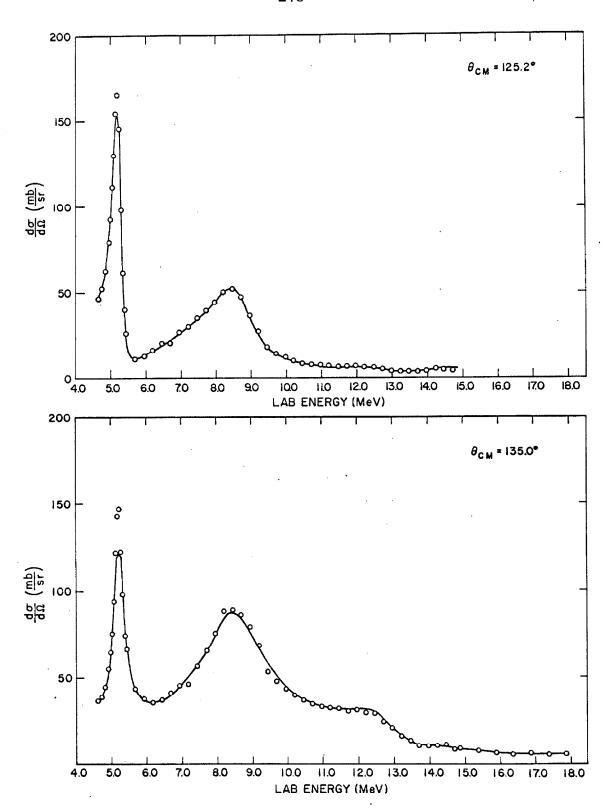



Excitation Curve for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment



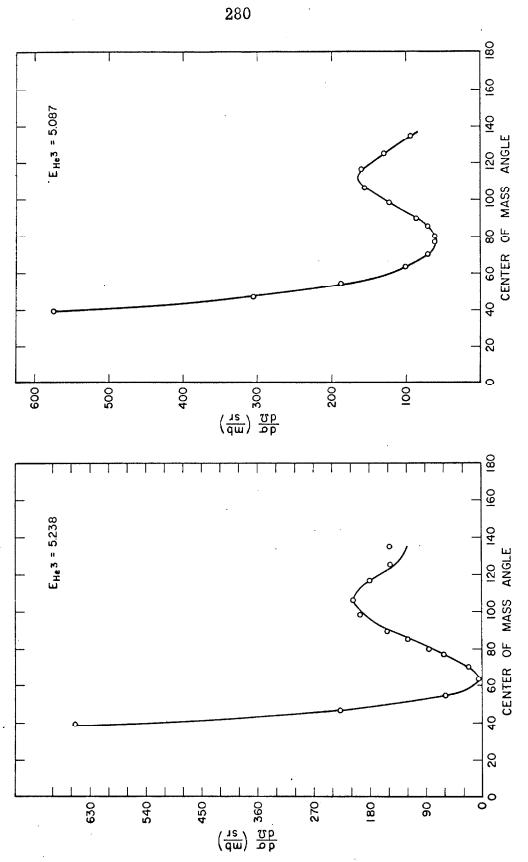

Excitation Curve for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment




Excitation Curve for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

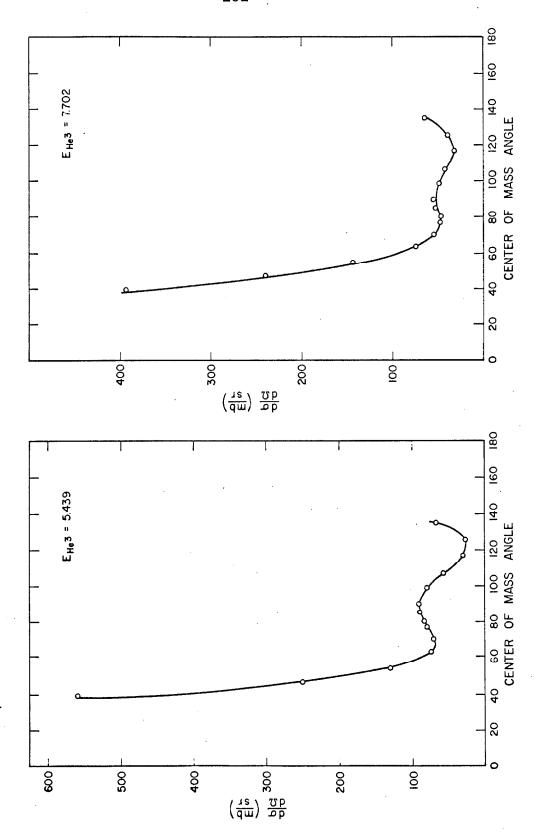


Excitation Curve for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment




Excitation Curve for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment




Angular Distribution for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

This figure shows the differential elastic scattering cross section (in the center-of-mass system) as a function of center-of-mass angle. The open circles are data points and the solid line is a fit from the phase shift analysis. (Page 17)

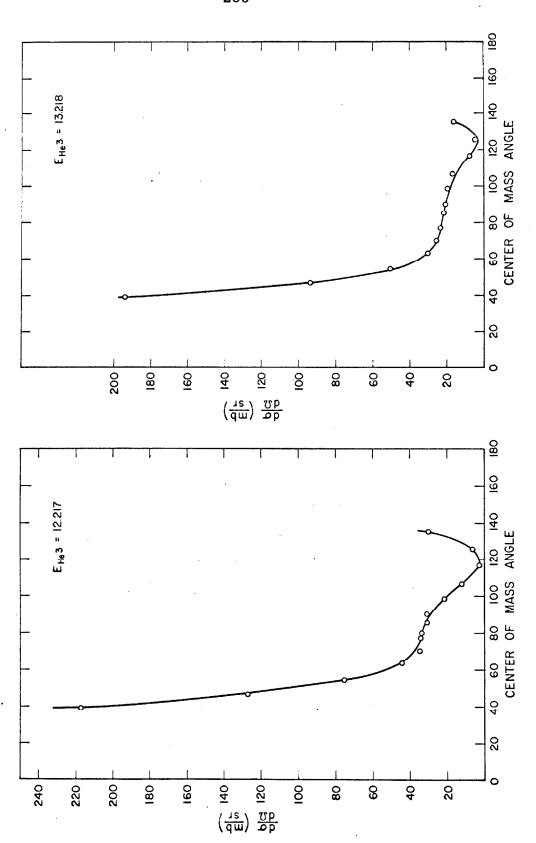


Angular Distribution for the  ${}^4\mathrm{He}({}^3\mathrm{He},{}^3\mathrm{He}){}^4\mathrm{He}$  Experiment

This figure shows the differential elastic scattering cross section (in the center-of-mass system) as a function of center-of-mass angle. The open circles are data points and the solid line is a fit from the phase shift analysis. (Page 17)

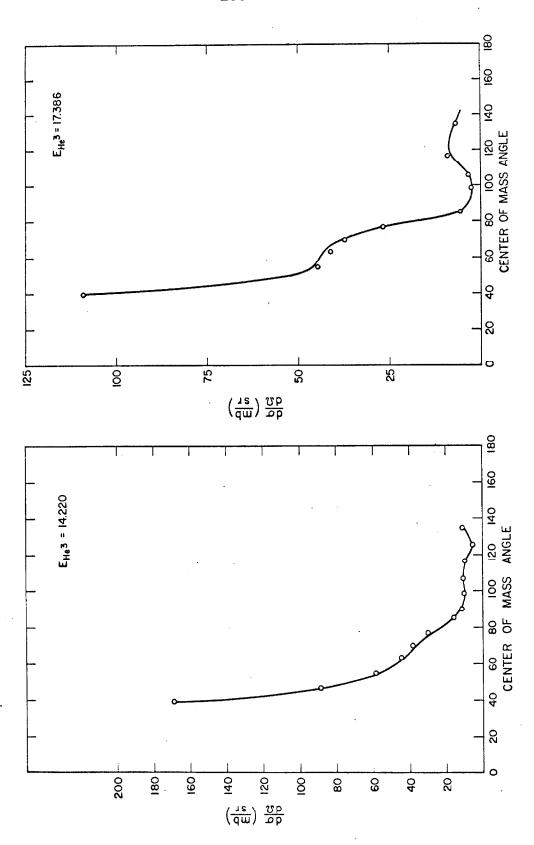


Angular Distribution for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment


This figure shows the differential elastic scattering cross section (in the center-of-mass system) as a function of center-of-mass angle. The open circles are data points and the solid line is a fit from the phase shift analysis. (Page 17)

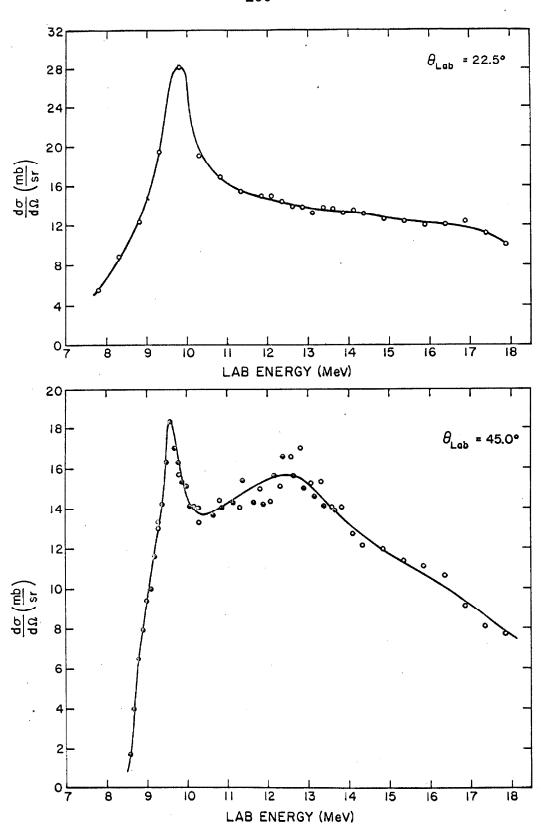





Angular Distribution for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

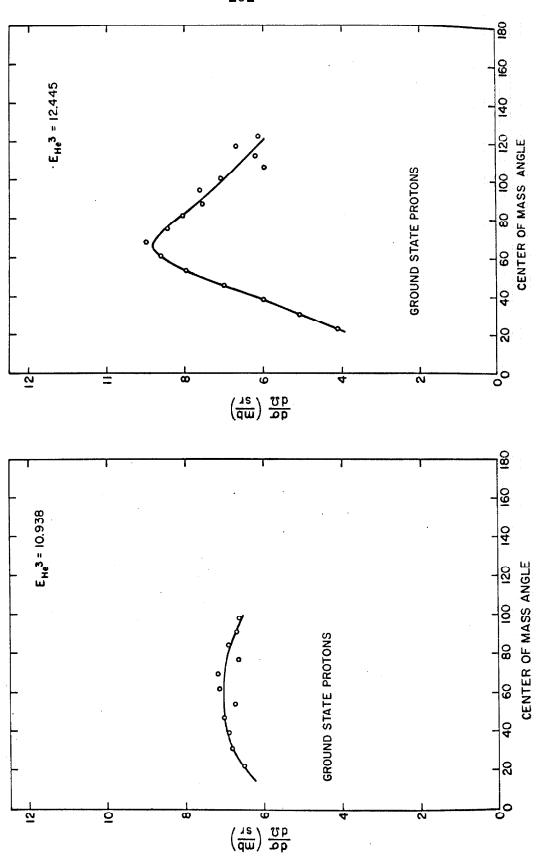
This figure shows the differential elastic scattering cross section (in the center-of-mass system) as a function of center-of-mass angle. The open circles are data points and the solid line is a fit from the phase shift analysis. (Page 17)




Angular Distribution for the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Experiment

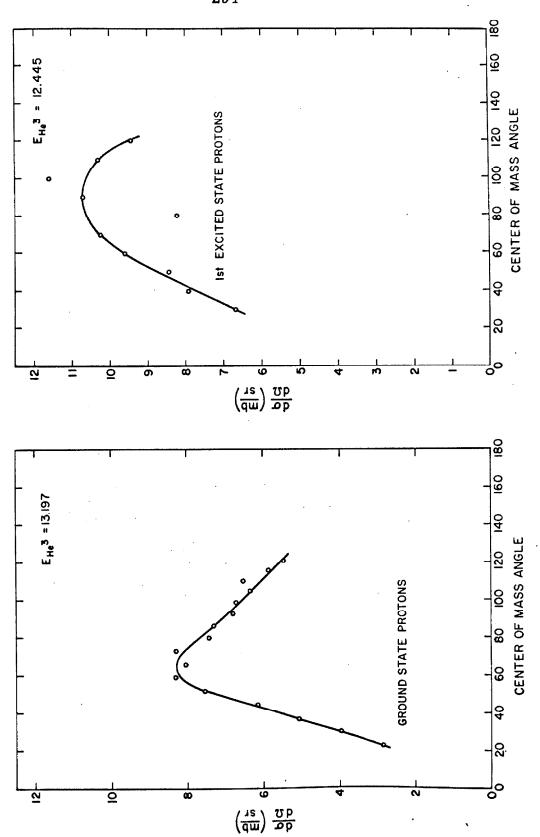
This figure shows the differential elastic scattering cross section (in the center-of-mass system) as a function of center-of-mass angle. The open circles are data points and the solid line is a fit from the phase shift analysis. (Page 17)




Excitation Curves for the <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li Experiment

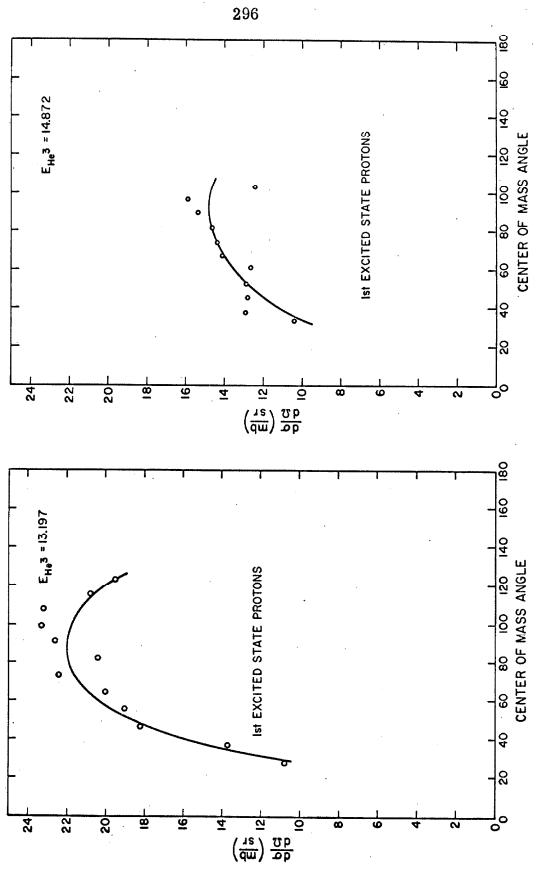
This figure shows the differential reaction cross sections for the <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li reaction at 2 typical laboratory angles. The open dots are the data obtained using the gas cell. The closed dots are data obtained by filling the whole south 20<sup>0</sup> chamber with target gas. The lines serve only to connect the points. (Page 18)




Angular Distributions for the <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li Reaction

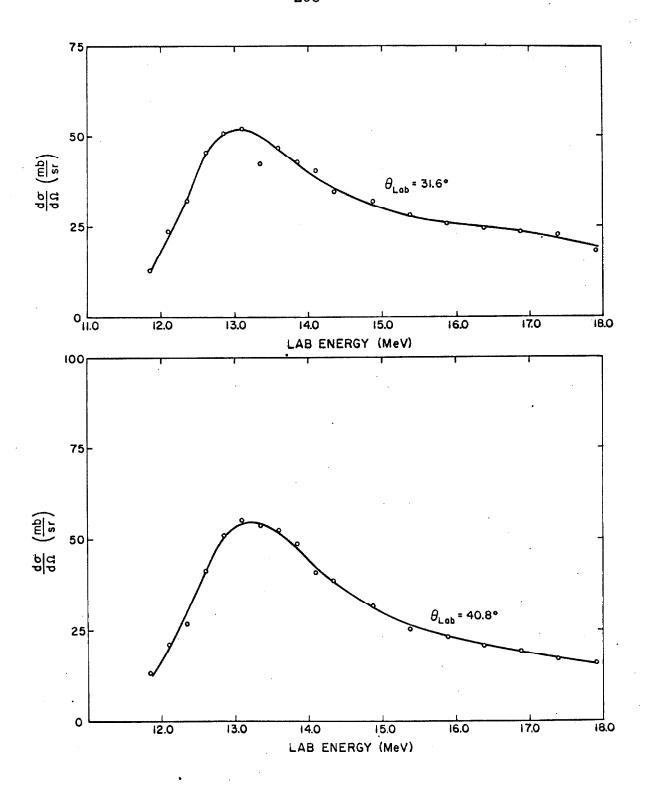
This figure shows 2 angular distributions of the protons from the <sup>4</sup>He(<sup>3</sup>He, p)<sup>6</sup>Li reaction. Center-of-mass differential cross section is plotted against center-of-mass angle. The lines serve only to connect the open circle data points. (Page 18)




Angular Distributions for the  ${}^{4}\text{He}({}^{3}\text{He}, p){}^{6}\text{Li}$  and  ${}^{4}\text{He}({}^{3}\text{He}, p){}^{6}\text{Li}$  and  ${}^{4}\text{He}({}^{3}\text{He}, p){}^{6}\text{Li}$ 

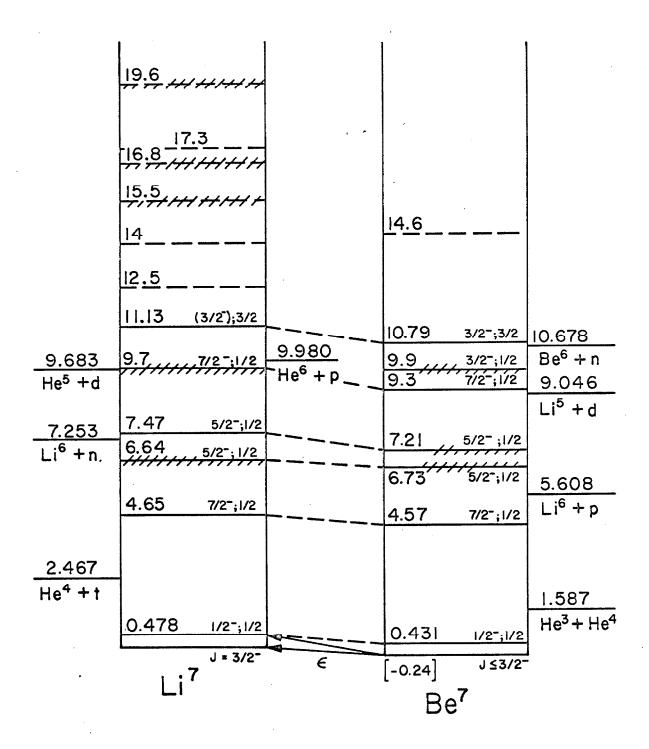
This figure shows another angular distribution for the ground state protons and also an angular distribution for the first excited state protons. The quantities plotted are the same as in Figure 47. Here too the line serves only to connect the data points. (Pages 18, 19)




Angular Distributions from the <sup>4</sup>He(<sup>3</sup>He, p<sup>1</sup>)<sup>6</sup>Li\* Reaction

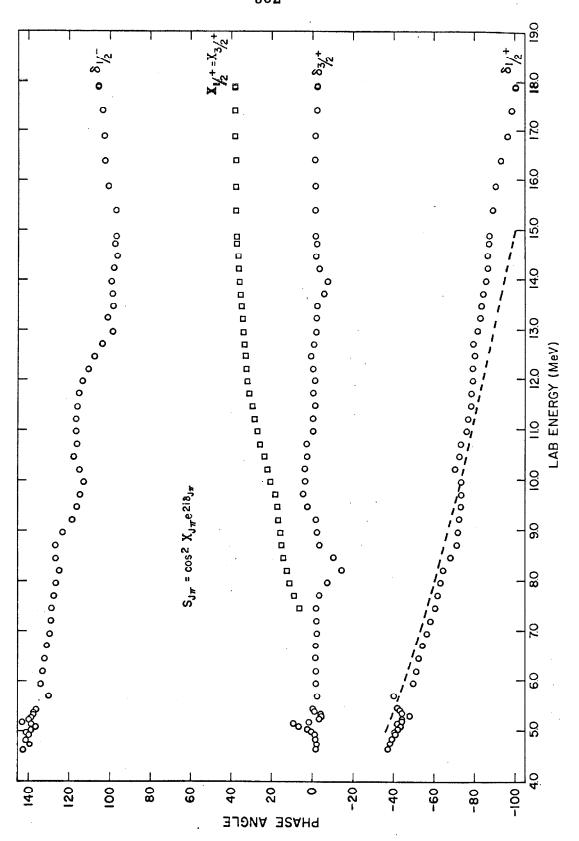
This figure shows two more angular distributions of the first excited state protons. The quantities plotted are the same as in Figure 47 and the lines serve only to connect the points. (Page 19)




Excitation Curves for the <sup>4</sup>He(<sup>3</sup>He,p<sup>1</sup>)<sup>6</sup>Li\* Reaction

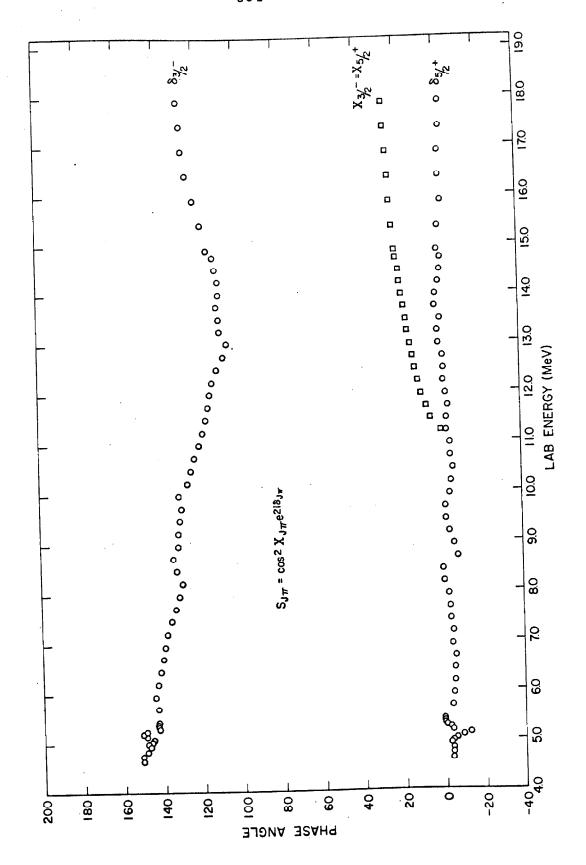
This figure shows excitation curves of the first excited state protons for two laboratory angles. The shape is quite similar for other angles investigated. The laboratory differential cross section is plotted versus beam energy. The lines serve only to connect the points. (Page 19)




#### Energy Level Diagram

This figure shows the energy levels of <sup>7</sup>Li and <sup>7</sup>Be. The spins, parities and isospins of the levels are also shown.



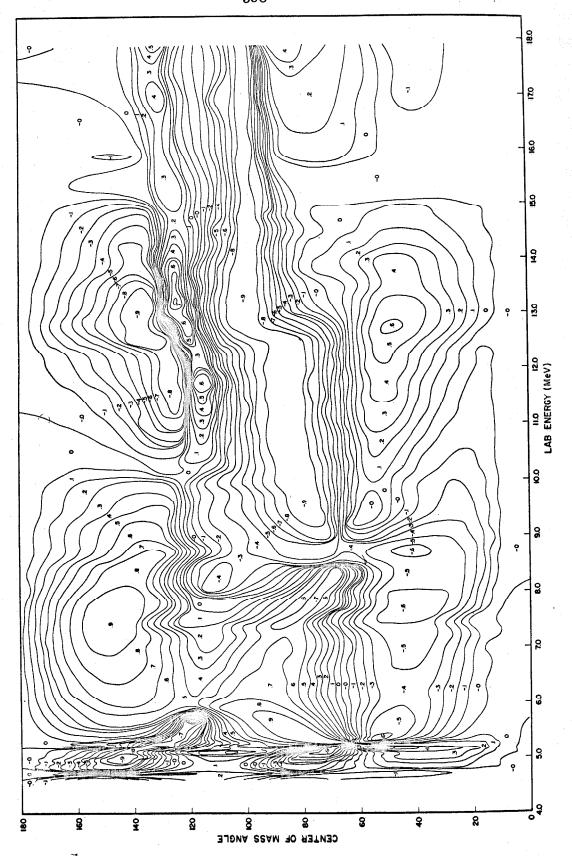

 $^4$ He( $^3$ He,  $^3$ He) $^4$ He Phase Shifts in Degrees

This figure shows the phase shifts  $\delta_{1/2}^{+}$ ,  $\delta_{1/2}^{-}$  and  $\delta_{3/2}^{+}$  as a function of energy. It also shows the parameters  $X_{1/2}^{+}$  and  $X_{3/2}^{+}$ . The dashed line is a fit to the phase shift  $\delta_{1/2}^{+}$  and corresponds to the s-wave scattering from a hard sphere of radius 2.8 Fermis. (Page 28)



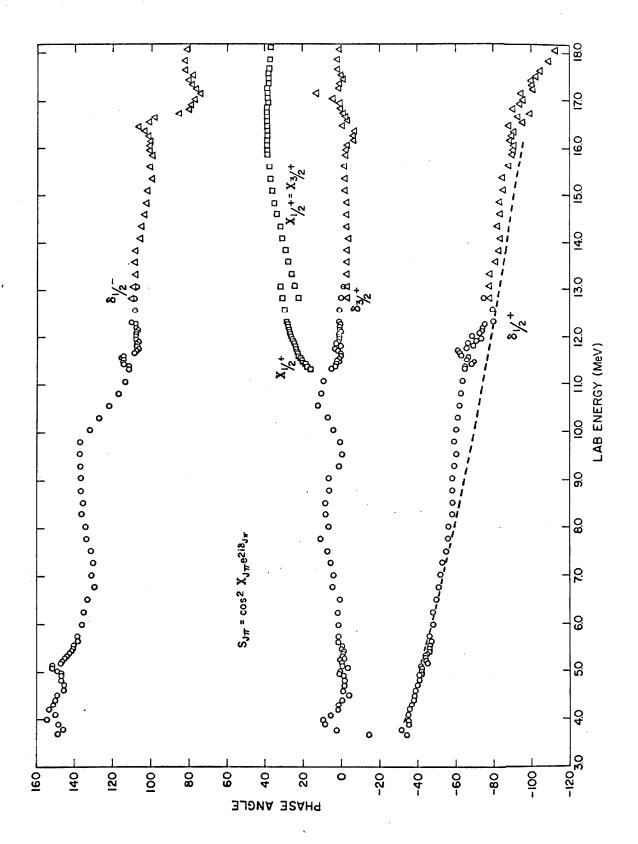
· <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Phase Shifts in Degrees

This figure shows the phase shifts  $\delta_{3/2}^-$  and  $\delta_{5/2}^+$  as a function of energy. It also shows the parameters  $X_{3/2}^-$  and  $X_{5/2}^+$ . (Page 28)



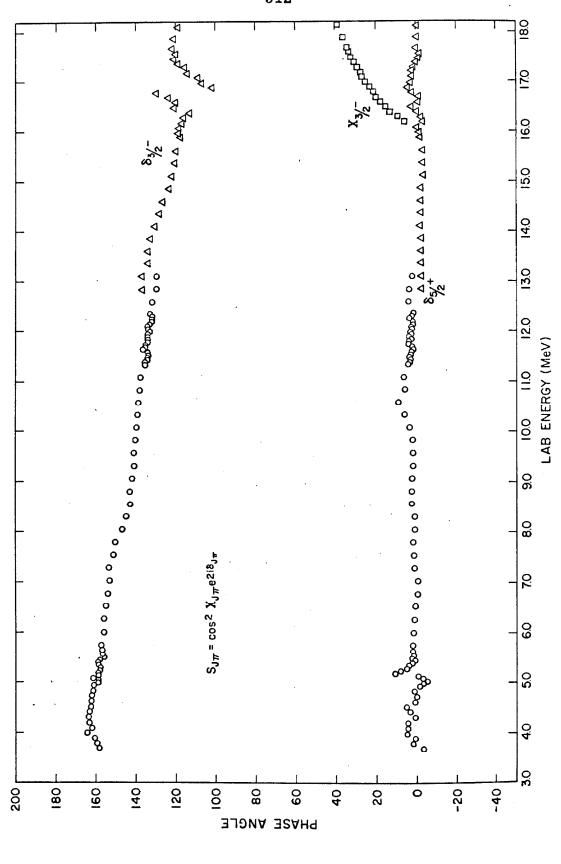

<sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He Phase Shifts in Degrees

This figure shows the phase shifts  $\delta_{7/2}$  and  $\delta_{5/2}$ . It also shows the parameters  $X_{7/2}$  and  $X_{5/2}$ . The lines show the fits to the phase shifts from R-matrix theory. (Page 28)


# <sup>3</sup>He Polarizations

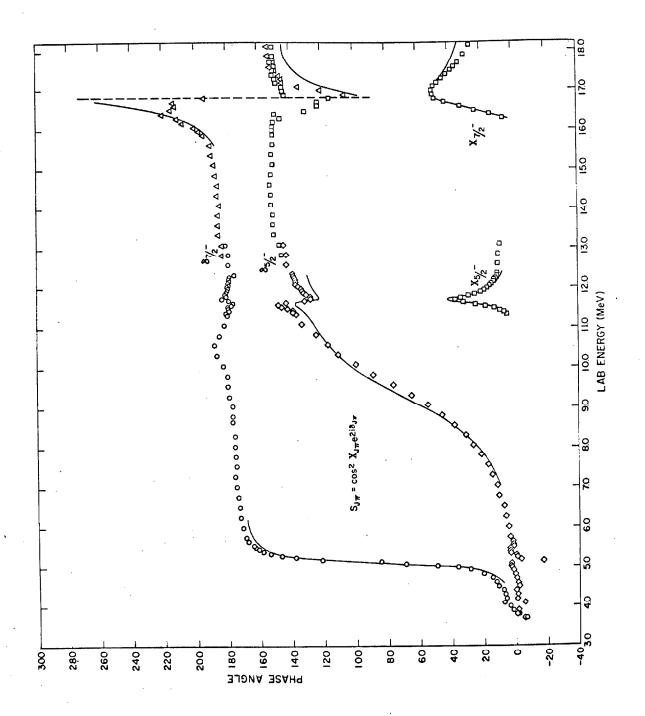
This figure shows the spin polarizations of the scattered <sup>3</sup>He particles from the <sup>4</sup>He(<sup>3</sup>He, <sup>3</sup>He)<sup>4</sup>He experiment. The polarizations are calculated from the phase shifts obtained in the phase shift analysis. The Basel convention for the sign of the polarizations is used and the contour levels are plotted as a function of center-of-mass angle and laboratory energy. (Page 32)




# $^3\text{H}(\alpha,\alpha)^3\text{H}$ Phase Shifts in Degrees

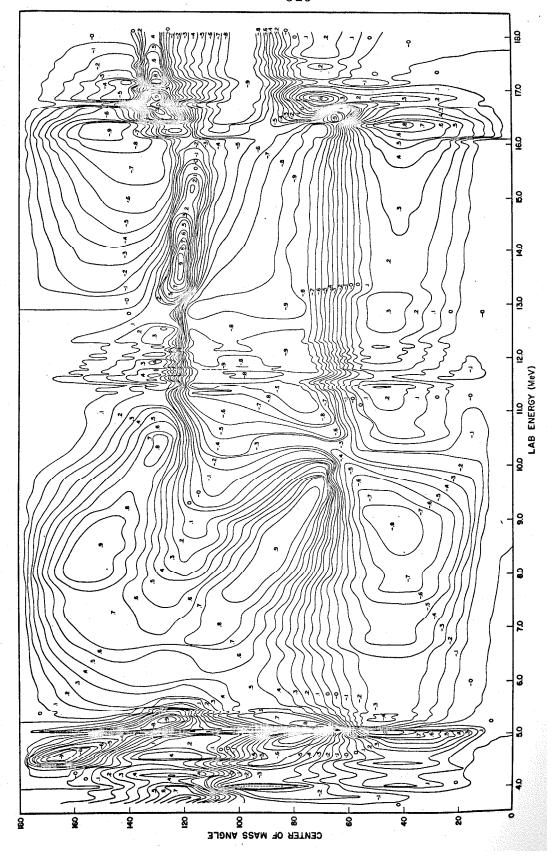
This figure shows the phase shifts  $\delta_{1/2}^{-1}$ ,  $\delta_{1/2}^{-1}$  and  $\delta_{3/2}^{-1}$  as a function of energy. It also shows the parameters  $X_{1/2}^{+1}$  and  $X_{3/2}^{-1}$ . The dashed line is a fit to the phase shift  $\delta_{1/2}^{-1}$  and corresponds to the s-wave scattering from a hard sphere of radius 2.6 Fermis. The change of symbols near 13 MeV indicates that the phase shifts and  $X_{J_{\Pi}}$ 's obtained above this energy used the high energy beam data. Below this energy the low energy beam data were used. (Page 28)




# $^3$ H( $\alpha$ , $\alpha$ ) $^3$ H Phase Shifts in Degrees

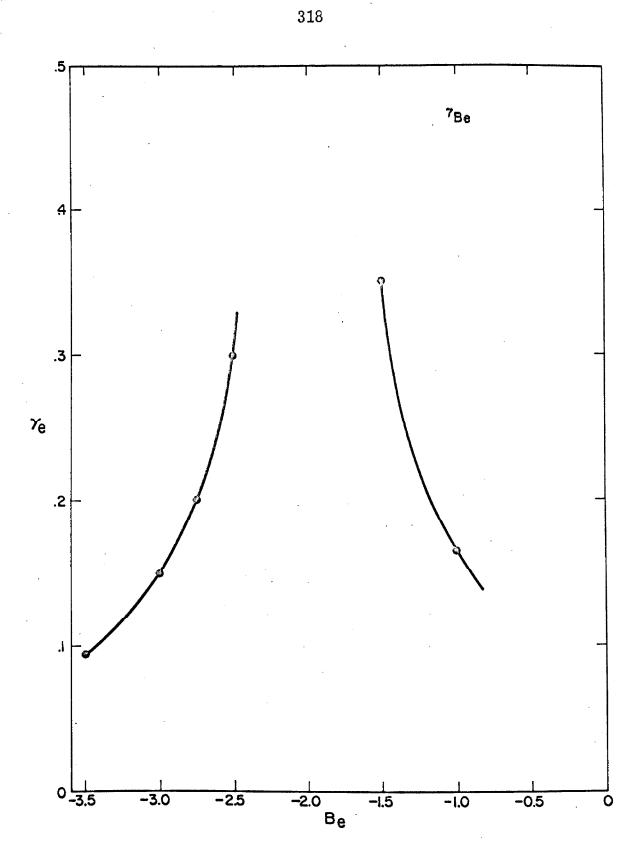
This figure shows the phase shifts  $\delta_{3/2}^{-}$  and  $\delta_{5/2}^{+}$  as a function of energy. It also shows the parameter  $X_{3/2}^{-}$ . The change of symbols near 13 MeV indicates that the phase shifts and  $X_{J\pi}$ 's obtained above this energy used the high energy beam data. Below this energy the low energy beam data were used. (Page 28)




# $^3\text{H(}\alpha,\alpha)^3\text{H}$ Phase Shifts in Degrees

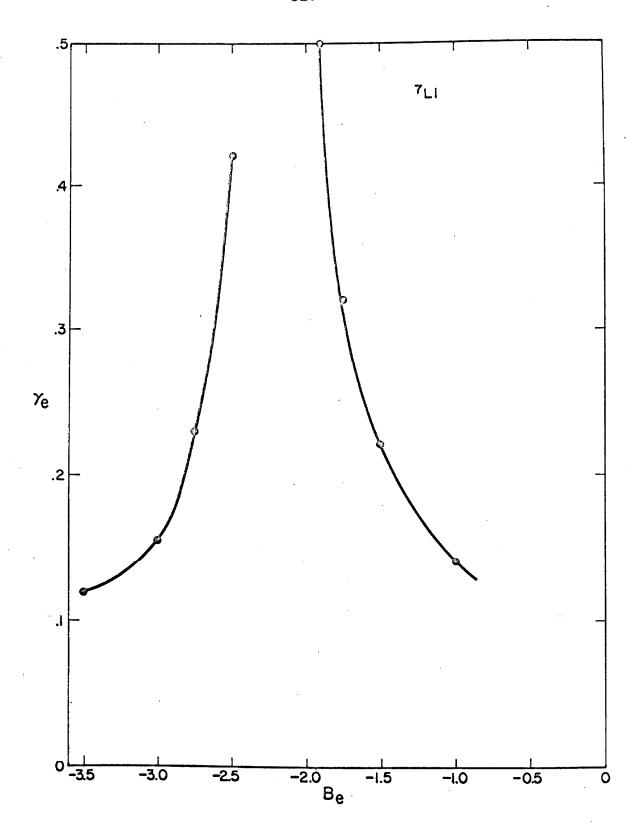
This figure shows the phase shifts  $\delta_{7/2}$  and  $\delta_{5/2}$  as a function of energy. Also shown are the parameters  $X_{7/2}$  and  $X_{5/2}$ . The change of symbols near 13 MeV indicates that the phase shifts and  $X_{J\pi}$ 's obtained above this energy used the high energy beam data. Below this energy the low energy beam data were used. (Page 28)




#### Triton Polarizations

This figure shows the spin polarizations of the scattered tritons from the  ${}^3\text{H}(\alpha,\alpha){}^3\text{H}$  experiment. The polarizations are calculated from the phase shifts obtained in the phase shift analysis. The Basel convention for the sign of the polarizations is used and the contour levels are plotted as a function of center-of-mass angle and laboratory energy. (Page 32)




# <sup>7</sup>Be Boundary Value Variations

This figure shows the value of the elastic reduced width amplitude for the  $^4\mathrm{P}_{5/2}$  state in  $^7\mathrm{Be}$  which gives the best fit for a given value of the boundary value  $\mathrm{B}_\mathrm{e}$ . The line is a smooth curve connecting the calculated points. (Page 45)



# <sup>7</sup>Li Boundary Value Variations

This figure shows the value of the elastic reduced width amplitude for the  $^4\mathrm{P}_{5/2}$  state in  $^7\mathrm{Li}$  which gives the best fit for a given value of the boundary value  $\mathrm{B}_\mathrm{e}$ . The line is a smooth curve connecting the calculated points. (Page 45)



#### Nuclear Model Predictions

This figure shows the energy levels for  $^7\text{Li}$  or  $^7\text{Be}$  with their spins, parities and isospins as predicted by the rotational model (Chesterfield, 1962) (b) and the shell model (Barker, 1966) (c). Parts (a) and (d) show  $^7\text{Li}$  and  $^7\text{Be}$  energy levels determined by experiment. The isospin is  $\frac{1}{2}$  except for those levels listed as  $T = \frac{3}{2}$ . (Page 51)

| 11.13 3/27;3/2        | 10.60 3/2-                                     | 11.17 3/2-;3/2                                         | 10.79 3/27;3/2                               |
|-----------------------|------------------------------------------------|--------------------------------------------------------|----------------------------------------------|
| 9.7 7/2-              | 9.80 7/2 <sup>-</sup><br>9.43 1/2 <sup>+</sup> | 9.80<br>9.61 7/2 <sup>-</sup><br>9.17 3/2 <sup>-</sup> | 9.9 3/2 <sup>-</sup><br>9.3 7/2 <sup>-</sup> |
| 7.47 5/2 <sup>-</sup> | 7.67<br>7.52 <u>5/2</u>                        | 7.48 5/2-                                              | 7.21 5/2-                                    |
| 6.64 5/2-             | 6.27 5/2                                       | 6.56 5/2-                                              | 6.73 5/2                                     |
| 4.65 7/2              | 4.91 7/2-                                      | 4.63 7/2-                                              | 4.57 7/2-                                    |
| 0.48 1/2-             | 0.48 <sub>1/2</sub> -                          | 0.64 1/2-                                              | 3/2                                          |
| 7 <sub>Li</sub>       | ROTATIONAL<br>MODEL                            | SHELL<br>MODEL                                         | <sup>7</sup> Be                              |
| · (a)                 | (b)                                            | (c)                                                    | (d)                                          |