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ABSTRACT

The system of pseudoscalar meson and baryon octets is
examined for spontaneous breakdown of SU(3) symmetry in a Boot-
strap theory with vanishing renormalization constants. The latter
are calculated in second order perturbation theory; the splittings
are taken to retain SU(2) symmetry and are included to first order
only. The equations are diagonalized in the dimension of the
representations,

The F-D mixing parameter a is found to have the value 3 /4.
The system shows great instability in the § representation, and
two solutions exist for not unreasonable values of the coupling constant
and the meson-baryon mass ratio; one of the solutions has the ob-
served relative signs for the mass splittings and exhibits a coupling
splitting pattern found by other workers. A solution exists in the 2;?
representation with a coupling constant squared which is two orders

of magnitude too large.
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I. INTRODUCTION

A number of investigations indicate that many of the observed
features in elementary particle physics may arise from the bootstrap

(1)

hypothesis, which can be stated as a self-consistency require-
meﬁt. Assuming a set of particles with certain forces, it is often
found that the system requires, in a non-trivial way, the existence
of particles which can be identified with the ones used as an input. (2)
Or again, the bootstrap condition has been found to produce sym-
metries(3) (4)

and conservation laws observed in nature.

- The present work is an investigation of the latter type into
whether the observed breakdown of SU(3) symmetry(S) in the pseudo-
scalar meson and baryon octets can be produced by the mutual inter-
actions among those particles themselves. We do not admit any
other particles into our system; it is clear, therefore, that we are
making a very drastic approximation to nature., - Nevertheless, it is
of interest to ask how this system behaves when isolated from every-
thing else. In keeping with the spirit of a true bootstrap theory we
shall treat the mesons and the baryons on an equal footing, (6) (Often
in practic:al bootstrap calculations not all of the particles in the
system are required to be generated self-consistently; in effect,
then, some particles are treated as elementary.) The bootstrap
requirement will be imposed in the form 6f vanishing renormalization

(7,8)

constants, calculated in second order perturbation theory.,

As an additional restriction in our problem we include the splittings

of masses and coupling constants to first order only. It is evident
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that the results cannot be expected to be quantitatively significant, but
it is hoped that the investigation may give some useful insights into
the problem.
The procedure will be to calculate the vertex renormaliza-
tion constants and the baryon and meson wave function renormaliza-
tion constants as a function of all the independent couplings and

masses in the problem. We write

Z

- Z_ | »m_ L, )
k Gk oyet’ @t

ZZi = ZZl(g-fst xmq'}"l) 9 (1'1)
Zak = Zakle__ mgety) o
Z_ is the renormalization constant for the vertex at which meson

ijk

k may be absorbed into baryon j to form baryon i, and Z and

2i

Z3k are the renormalization constants for baryon i and meson k

respectively. g_ is the coupling constant at the vertex in which
rst

meson t is absorbed by baryon s to form baryon r, m_ is the

mass of baryon gq, and Py is the mass of meson £, It is under-

stood that g_ , mq, and By, represent all the independent param-
Ts

t
eters of the three types in the problem.
If the baryon and meson octets obeyed SU(3) symmetry the

bootstrap requirement applied to the renormalization constants

would be



z. |.=o ,

ijklg

zZil =0 , (1.2)
s

z3k|s=o .

The symbol Is means evaluation at SU(3) symmetric values. It
implies equal masses for the baryons and mesons respectively

(mq =m, p, = for all gq,f), but does not specify definite ratios
between all the coupling constants unless a value of the mixing
parameter between the two possible SU(3) symmetric coupling pat-
terns (called D and F) is given., It will be found that the condition
Zi-jk ] = 0, which is to be satisfied for all (ijk), fixes the mixing

- parameter, commonly called @, to have the value « = 3/4, The
ratios between all couplings are then determined, once a definite
phase convention for the particle states has been adopted.

We are interested in whether the bootstrapped meson-baryon
system admits not only a SU(3)-symmetric solution but also a solu-
tion which breaks the symmetry. It greatly simplifies the calculation
to look for a solution which differs from the symmetric one by only
small quantitiess We may then expana the renormalization constants

about the symmetric values and keep only first order differences,

obtaining
Z. =7Z + 8Z_, he - i,
p=7Zp| * %5 where (1.3)
YA
z &g + Z P 6m + z Gp.z ’
Bg_f rst dm 9 4
rst st Ig q g p‘l 8
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and where P stands for any of (ijk), 2i, or 3k.'?) Using Z

pls=0
the conditions Zﬁ = 0 then become
BYA
62‘3_2 -B-—-P sv, =0 . (1.4)
” Vv g

for all B. Here v, stands for any of the variables g _ .’ mq and
s

p.f . These conditions will be satisfied only if

9z
det (—a——P
v

v

>:O o (1.5)

As is well known, a fiéld theoretic calculation of the Z's
will give divergent integrals; we circumvent this difficulty by the
common expedient of introducing cutoffs. The quantities ZBI and
(BZB/BVV) l g are functions of the meson-baryon mass ratio p./sm and
an over-all coupling constant g. For given values of these two
parameters we aajust the cutoffs such that 2‘3!5 = 0 (three cutoffs
will be needed, one for each of the three'types of renormalization
constants), Using these cutoffs we compute det [(8Zp/8vv). ] and
search for a zero as p/m and g are varied. °

Let us appraise the magnitude of the problem. We restrict
our investigation by looking only for solutions that retain SU(2)
symmetry, as the latter is rather well satisfied by nature in com-
parison with the large SU(3) violations. There are then four inde-
pendent bafyons (N,=,A,Z), three mesons (w,K,n), and twelve
independent couplings (NNw, EEw, AZr, Z3r, NAK, EAK, NIK,

=EZK, NNn, E8n, AAn, £Zn). This makes a total of nineteen inde-
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pendent variables, so that there is a determinant of a 19 by 19

matrix to be computed. By the use of group theory, the problem

can be reduced; in the next section we describe the general pro-

cedure by which this will be accomplished,
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II. SIMPLIFICATION BY GROUP THEORY

We have noted that our calculation will be to first order in
the splittings, In writing the equation

5vv

9Z
62 = Z 'a??f

v

s

we had in mind to first calculate Z‘3 by using a Lagrangian with
~arbitrary masses and coupling constants and then compute azﬁ
by differentiating with respect to all independent variables and
evaluating at SU(3) symmetric values as indicated. .Alternatively,

we could have considered an effective interaction Lagrangian which
at the outset was separated into two parts. We write £I off = £Io+ &6&,
where £‘Io is SU(3) symmetric and 6£ is composed of the indepen-
dent splitting terms like, for example, the lambda mass splitting
~term -GmA'q_,aA\.lJA and the SU(2) symmetric pion-nucleon coupling
splitting term égNNw@NYSIqJN) ) . It is not difficult to convince
oneself that if we evaluate any perturbation amplitude with fixed
external momenta to a given order in the couplings by using these

two Lagrangians, we get identical results to first order in the
splittings, (10) Now the r;anormalization constants ZB’ in any order
in the couplings, are related to'perturbation amplitudes in which the
external particle lines are evaluated on the mass shell, Hence in
computing {SZp there are additional first orde.r splitting terms
arising from differentiation with respect to the external particle

masses, The method of using the effective interaction Lagrangian

to get (SZ|3 would therefore need a more careful treatment. For the
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purpose of making plausible our subsequent method of calculation,
however, we shall ignore this point in the present section. The
calculation itself will be explicit and needs no further proof,

The advantage of looking at the problem from the point of
view of an effective interaction Lagrangian will emerge if we con-
sider the transformation properties of 6£ ; in particula;:-, we shall
expand &f into irreducible representations of SU(3).

I.et us define splitting operators for the couplings and masses

as follows:

gﬁf = gZ ﬁf(n,a)O(n,a). ,

= ), b P ™ (2.1)
no '

6}.&2 - Z ﬁp(zn’a)Q(n’a) .
na

Here O(n,a)’ P(n,a)’ and Q(n,a) are irreducible tensor operators
transforming according to the n-dimensional representation of SU(3);
a supplies the additional quantum numbers necessary to specify the
oln,a)

tensor completely, is a trilinear form of field operators in

the combination I[:itqu‘;k, and -P(n,oz) and Q(n,a) are bilinear forms
of. Tpiup.i and ¢k¢k respectively (\.Ill and qSk stand for the field
operators for baryon i and meson k). Gf(n,g)’ Gm(n,a)’ and 6""(2n,a)
are constants, which we shall refer to as the irreducible splittings.

For later convenience we have introduced a common coupling factor g;



-8-
.the physmal couphngg are written gfgk = gfi_jk’, so that the f’s_ and.
.8f's contain the SU(3) information. Physical splittings, like the
lambda mass splitting or the Apw~  coupling splitting, would be

obtained by taking matrix elements:

smy = (Alsm[A) = 2 ﬁm(n,a)th(n’“)lA) ,

g

Rpn- <A|g5flpw'>=g2 af(n,a)mlo(“’“’lpn’) ‘

no

In terms of the splitting operators we have simply

58 = g6f - 6m - &5 (2.2)

-

where ©&f differs from 6f only in that the Dirac matrix Y5 is in-
serted between mi and L]Jj in the expansion of O(n,a); the SU(3)
properties of l;f and 06f are the same,

Now we look at the expansion of the splitting operators in
greater detail. We are interested in those splittings which keep SU(2)

O(n,a), P(n,a)’ and Q(n,a')

symmetry intact. The tensor operators

must therefore conserve hypercharge Y and isospin I, That is,

we shall admit only the ¥ =0, I =0 components of the irreducible

representations. (This condition excludes all representations which

are not self-conjugate as the latter haveno Y =0, I =0 member.)
First consider the mass splitting operators. They are

composed of two octets, so that n must be a representation which

is contained in §X§ = +§1 +§2 + 10+ 10 + 27. The 10 and 1_9*

representations haveno Y =0, I = 0 member. We can write



explicitly“ 1)
(8,) (8,)
- (1) 1 2 (27)
dm = Bm(i’)P + 6m(81)P + 6m(82) + 6m(27)P
: (2.3)
(8 )
{1) i (27)
op. Sp(i)Q + op (8 ) + 5“’(27)0 .

The antisymmetric representation 82

because it would split the K and K masses. These are all well-

is not aliowed for the mesons

~ known results.
The coupling splitting operators are composed of three octets.

Therefore n must be a representation contained in

8X8X8

(1 +8

L +8, 10 +10F +27) x 8

8+Z(1+81+82+10+10*+27)
% %,
+(8 +10 + 27+35) + (8 + 10" +27 +357)
* *
+(8 +10 +10  + 27 +272+35+35 +64) .

We find there are two i's, eight g's, six 2':1’3, and one 6‘:1 or a
total of seventeen coupling patterns. (The 35's haveno Y=0,1I=0
member,) In order to distinguish all these patterns (their compo-
sitions are all different) we shé.ll keep track of which intermediate
repres entation, obtained from the product of the first two g's s they
originated. We write (n,a) in this case as (ny,n;,), where n:l.

specifies the intermediate representation, The last 27 in the

expansion of 8 X 8 X 8, for example, would be identified by (272,27).
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At this point we may note that we have got more independent
coupling patterns (seventeen) than we ought to have, because there
are twelve independent coupling cohstants in the SU(2) symmetric
Lagrangian., The discrepancy arises because in counting the inde-
pendent SU(2) couplings we automatically assumed that the system
possessed hermitian symmetry, as must be the case for any
physically acceptable theory. .Thus , for example, no distinction was
made between the NAK and ANK couplings. (We here distinguiah
the antiparticles explicitly by a bar.) But mafhema.tically there is a
distinction, because the two patt‘:erns‘ have different SU(3) quantum
numbers. This situation prevails in five of the twelve previously
enumerated cases, viz. AZw, NAK, EAK, NZK, and SEZK; this
accounts for the discrepancy., In practice, we shall find that if we
form the irreducible coupling splitting operators by first combining
the éntibaryon aan baryon operators Eixpj into the representation
n;, s and then put this bilinear form together with the meson operator
¢k to make a Y =0, I =0 member c:f the representation n_, then
exactly five of the operators O(ny,ny,) will violate hermiticity, and
the other twelve will conserve hermiticity. {More precisely, it will
be necessary to take linear combinations of those operators for which
n:{, is either 13 or 19*.) Furthermore, the operators do not mix
the two types of splittings. Hence to look for hermiticity conservihg
solutions we simply require that those irreducible splittings ﬁf(n ,n',)
which go with the hermiticity violating operators be zero. (tz) V¥

We have, for baryon i,



1=
(n )
6mi=(i|6m|i) =z bm, )(iIP Y .
ny Y
(n) -
Since P Y is just a combination of terms ij\l:j forming the
Y =0, I=0 member of the representation ny, the matrix element
{n )
(i|P Y |i) is essentially given by a Clebsch-Gordan (CG) coef-

(ny)

n
ficient. We write (i|P Y |i) = P, '. As is expected the matrix

will be orthogonal so that we also have
(n)
ém = Z P, Y om, . (2.4)
(n.) i i :
L

In the same way we get

(o)
2 _ E . Y
G!J‘(n‘Y) = . _ Qk

g (2.5)

{

i

)

n n

where Q. ¥ = Pi Y if the label i refers to the quantum numbers
v, = (Yi’Ii’Iiz) without distinguishing the baryons and the mesons.
For the coupling splittings we have the analogous result

(n sn' !)
6£_=25f N« IR A
(n'y’ny') ijk

UK iy
(2.6)
» {n_,n!,)
n_,nl ) = Z O"'}Z Y T
i
(n_,nl,) (n_,nl,)
where Or‘IZ Y =(i|O Yo Ijk) . It is essentially the product

1)

of two CG coefficients; the first coefficient combines _q_litpj into

the representation n:{, and the second coefficient couples the result



{2~
‘with ¢k ‘to formthe Y=0,1=0 member of ny.

The simplification of the problem, which is achieved by using
irreducible splittings, comes about because the equations can be

} is

diagonalized in the quantum number n. The matrix (BZp/va ls

thus transformed into diagonal block form. There will be four such
blocks, corresponding to n = i, §, 2;7, and €’.,4’ each of which can be
analyzed independently.

Let us look at the baronn wave function renormalization
constants Z,.. They are related to the S-matrix elements (B, !S]Bi) ’
where Bi .stands for baryon i.In the case of SU(3) symmetry the
S operator is a unitary singlet so that these matrix elements would
transform just like (ifP(i) ix} = Pgi) « When the symmetry is broken
the change in the matrix elements to first order in the splittings may
be written as (Bi i 8§S [Bi) , where 8S contains &£ just once. {(More
precisely 6S contains the corresponding Hamiltonian operator
6%, which, however, can be put equal to -6£.) The essential point
is that 6S will be composed. of the same irreducible components as
58, i.é. of n = 1, §, 2;7, and 6:1:.

If we now form the linear combination Z P.lnY(Bi] 85|B,) »
we can show by a straightforward application ofl the Wigner-Eckart
theorem that it transforms according to the representation n., (We
prove this in detail in Appendix A4, making use of the results in
Secs. III and IV.) Therefore, if the combination is expanded into

. . cees 2
irreducible splittings Sf( m(pa), and Sp.(ua), only those

)
I-’-asl-’-;l) !
terms will be present for which p = n (o, however, need not equal vy).
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Our procedure can now be described as follows., We
compute ZZ.i for general masses and coupling constants, find the

first order chang?n 6Z,. = %: (BZZi/ﬁvv) | SGVV, and form the linear
combinations §Z, Y defined by

(n) (n,) "
5zZY = z P, Yoz, . | (2.7)
i

The right-hand side can now be expressed in terms of Gf(

naanat)’

6m( ), and Gp.(z ),' so that a diagonalization with respect to n
has been accomphshed for the equations 622 = 0. Analogously the

combinations

(n.) (n.) |
6Z , Y - z QkY 6Z 51 (2.8)
k

for the meson renormalization constants are diagonal with respect

to n.

The vertex renormalization constant Z{jk is related to the
matrix element (B IS IB Mk) » which in SU(3) symmetry transforms
like Of_.ik’ny’). (The transformation property of O. IZ Y is inde-
penden:Jof the values of n:{, and Yy, but the splittmlgJ patterns do

depend on them.) The first order change in the matrix, which we

may write as (B, | 65 IBij) , has the property that thé linear com-

(n ’n’ l)
T v’y < s .
bination %1;( oi-jk _ (Bi] 6S]BjM_k) is diagonal in n when expressed
in terms of irreducible splittings. (Proof in Appendix A4.) To find

the appropriate form for the vertex constant, let us look at the exact

relation between the matrix element (BiIS[Bij) and Z'-'k « The
oy
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second order part of Z___k is given by(m)
ij '
: (2) 5 153
igf_ Z.7 =-(B.|s"|B.M) (2.9)
ijk 1jk - t JMk mass shell

where 8(3) is of third order in the couplings (we may count by the

over-all constant g), and the matrix element is evaluated on the

mass shell. Let us define a second order vertex function Afjk by
igh. = (B,|s% B , (2.10)
Ljk mass shell
and a total vertex constant rfjk by
I'. =£f  Z_. . (2.11)

ijk ik ijk

Up to second order we therefore have

=, (1+z®¥)y =1 -a

- . - (2.12)
ik ijk ik’ Gk ijk

The vertex bootstrap condition in the many-particle case is just(14)

r. =0 . (2.13)

ijk
This becomes

I. =0 (2.14)
ijk | |

in the case of SU(3) symmetry; for first order splittings we have the
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additional requirement of

6. =06f. -6A_. =0, (2.15)
ijk ijk ijk :
where
SA_
- ijk
SA_ = z F) J va .
jk & Yy .
The connection between 6A'_'k and (BilﬁslBJ.Mk) suggests that
1]
(n yn! 1)
the useful combinations of 6I'. are i oY Y s, , and in
ijk iJ ijk ijk
fact we shall find that these expressions are diagonal in n. (We
may note that the terms 6f_ in 6I'_  just make up the irre-
S {jk {jk

ducible splitting Gf(n » 50 that this part is diagonal not only in

’n_'yi)
n but in y and n\'{, as well,)
Our procedure for the vertex equations is then summarized
as follows. We compute the total vertex constant
r:-. = f-- - A- »
ijk ijk  ijk

calculate the first order differences by

al-
6T z __Hk
Tik v, v *
v S '
and form the combinations

(n an? ) (n ,n' |) .

T Y Y =z oY Y sr. . (2.16)
ijk ijk

ijk
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The right-hand side when expanded in irreducible splittings is diagonal

in n. This accomplishes the partial diagonalization of the equations

6I'- =0,
ijk
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III. NOTATION AND CONVENTIONS

We write the interaction Lagrangian as

SI = Z gf{jkEiysxquSk + renormalization terms . (3.1)
ijk

Here q"r (¢r) is the field operator which destroys a baryon (pseudo-
scalar meson) with SU(3) quantum numbers given by L (Yr,Ir,Irz)
.and creates its antiparticle, and 'L—pr is the field operator which
creates a baryon with quantum numbers V. and destroys its anti-
particle, (It is understood that the ordering of the creation and des-
truction operators is in normal form.) The Lagrangian is assumed
to be expanded in renormalized masses and coupling constants ,(15)
so that the physical coupling constant acting at a vertex at which

meson k is absorbed by baryon j to form baryon i is gf,-,k.. (The
. ij

constants f__ contains the SU(3) information; g is an over-all

1jk
coupling constant.) In case of SU(3) symmetry we write
2
f. = Z f!_y) , where
ijk o) ijk

{3.2)
) 8 8 8y,/8 8 1
TR G I
ijk Y\-i j -k /\-k k o/ ik

The index 7y, which may have the values 1 and 2, refers to the two
independent SU(3) invariant coupling schemes, called D and F,
The bracketed symbols are SU(3) Clebsch-Gordan (CG) coefficients ,(16)

where for simplicity of notation we have written
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j=v. =(Y,,L,L ) . 3.3
j=vy=(¥ILL10) (3.3)

The negative of vj (and j) represents the SU(3) quantum numbers of
the antiparticle of j and is defined by

-j=vy= (-Yj,xj,-sz) . (3.4)

The first CG coefficient couples the pair Eixpj to form a combination
transforming as a member of an octet with v = Vi The second coef-
ficient combines this with meson k to make an overall SU(3) singlet,
as is required for SU(3) symmetry. The symbol 0 here stands for
v =(0,0,0). (The properties of the SU(3) CG coefficients are dis-
cussed in Appendix A1.)

The factor hY specifies the relative amount of D and F
coupling (-¥8 has been taken out for later convenien‘ce). In terms of

the usual mixing .parameter a the ratio(i'” of h1 and h2 is given by

h .
1 _ B «a
h, 3 T-a ? (3.5)
2
R P .
so that a = T + 1 » We shall choose the magnitudes of h
to be
h, = -%\/i_Sba
1 3 ? v
(3. 6)
hy=2¥3 (1 - a) .

With this choice the over-all coupling constant g will equal ENNT

(see Table 3) if SU(3) symmetry is assumed to be valid for the
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couplings. (The experimental value is ‘gIZ\IN“_/‘hr ~ 15,)

The factor 7- takes account of the phase difference(is)

ijk _
between the mathematical SU{(3) states(ig)

and the corresponding
particle states. (The CG coefficients operate on mathematical states,
s0 a correction is necessary if the fi-jk are to couple physical
particle states.) Let us consider the meson states |M1> and the
corresponding mathematical states which we write as IM;vi) . We

introduce a phase factor 'q(vi) =n; such that
IMiv.y = n M) = (M) |0) (3.7)
i it it ’ *

where in the last expression (Mi)T stands for the creation operator
for the meson M; and |0) is the vacuum state. For the anti-

particle of Mi’ which is just M. , we have
i

IM;-v)) = n M) = v o) (3.8)
1 1 1 1

where 7. = 'q(-vi). We now require that(zo)
i

Qi ‘
n.ne = (-1) . (3.9)

Here Q, = L+ %Yi, the "charge" on particle i. The condition

(3.9) is satisfied if we define

m =-1 if v, =(0,1,+1) or (-1,3,-3),
(3. 10)

Nn, =+1 otherwise .

This is the standard phase convention for the mesons. We choose
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exactly the same phaée convention for the baryons and the anti-
.baryons. The correspondence between the.mathematica.l SU(3)
states and the physical particle opérators is then as given in

Table 1. (Our choice of phase differs from that in some references

in which the signs in front of 2 and E are reversed, but it has
the advantage that all three octets can be treated uniformly. Also,
the SU(2) expansions, which we turn to shortly, will have greater

symmetry.) To simplify the notation we define products of %'s by

n_rst. ee T MpMgMge e s * (3.11)

We then have

Q ’ (3.12)

Now we return to the phase factor required in the coupling constant
£ multiplying the field operator product E.lp.dl . Since {., Y.
ijk i'i'k i j
and dzk contain the creation operators for baryon Vi antibaryon

.vj and meson -vk respectively, we need the product ‘nin._.n_ ,(21)
: J
which we write as
Q.1Q.+Q .
- 17 'k
M. =7 (-1) =1, . (3.13)
jik  ijk ijk :

(In the last step we used conservation of charge at the vertex:

Qi = Qj + Qk.) |
To define the SU(2)-independent coupling constants that we
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Table 1, Phase relation between physical particle operators and
SU(3) base states.

State _ Creation operator (X)T where X is:

|¥,1,L) Baryon Antibaryon PS meson

l0,0,0) A A 7

|0,1,+1) -zt -z" -t
s34y ™

l0,1,0) =° =° °

[6,1,-1) z” =7 o

li :%:"%) P -E‘—‘: K+

[1 :%9 %) n EO K°

]_1 ,%’-}%) Eo -I—l —IEO

v
-
;[v—-
.l
[ ST
~o
¥
ul
]
‘Ji
[}
A
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shall use, we express the SU(3) symmetric Lagrangian in terms of

SU(2) invariant forms. The SU(2) dependence of f"'k is separated
1]

out by writing (see Appendix A2)

£ o=f£ £ o (3.14)
ijk ABC ijk ijk .
where
S S S | I. I.0
1 — - -
J MiMj M, -M, M 0
2
£ = Z £
ABC .~ ABC
v=1
8 8 8 8 8 i
=z - hv( )( ) .
> Ip-Yy Ig¥p |Ig~Ye/ VMIg-Yo IYs 100
(3.15)

A, B and C refer to the SU(2) multiplets to which the particles
i, j and k respectively belonge. IA’ IB’ IC are the isospins of the
multiplets, and M, = (IAz)i etc.

We now define the SU(2) invariant forms, which we call

((ABC)), by

i I —_
=2 M- W, Ug O

({ABC)) = N (3.16)

ABC MMM,

The normalization factor NKBC is introduced so that ((KBC))
may have a closer relation to the commonly written SU(2) invariant

forms., The SU(3) symmetric Lagrangian is finally written as
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S'I = Z gABC((ZBC')) + renormalization terms, (3.17)
ABC
where
=gf_  DN_ . 3.18
8aBC ~ B'gpc ABC (3.18)

(We have suppressed the Dirac matrix Yg.)

NXBC and the expansions of ((KBC)) are given in Table 2;
EABC is tabulated in Table 3 for a general mixing parameter a in
terms of the contributions from D and F couplings, and also for
the special value o = 3/4, A few comments are in order. As is seen
in Table 2 the SU(2) invariant forms are defined to have the
hefrhitian property ((KBC)) = ((BAC)). ‘Therefore the couplings
gaopc 2re also hermitian, i.e. BARC = 8BACT {We do not distinguish
the antiparticles by bars in gABC') Consequently BARC has been
given in Table 3 only for the twelve independent couplings. In order
that the forms ((ABC)) may be hermitian it was necessary to choose
NKBC such that for the K-meson conjugate forms it had opposite
signs. (See Appendix A; for some properties of the various coupling
constants.) Finally we like to point out that for the sake of greater
symmetry between the expansion of the pair ((NNw)) and ((EEw)),
and fhe pair ((ENE)) and ((EEK)), the forms ((_F_-'ETT)) and
« ZEK)) have been defined with a negative sign relative to the com-
mon forms.(:"'*:-z =) "1: and % (Ec.z =). The SU(3) symmetric valueé
of Sy and 'ngK therefore differ by a sign from those given in

some references,
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Table 2. The expansion of the SU(2) invariant forms ((ABC)) in
particle operators.
ABC ((-A_BC)) N Common
ABC notation

— —_ S — — i —
NN \/épmr+ + Jénpw + (pp - nn)rro % (NTN) . m
EEr VRECEr +R2E E°r + (B B -E°E)n° =z EmE.p
Azr A w +=Tn +2%0) - 713_ K=z m
TAr (Zn  + 2 n + =°29)A - é— (Z+mA
T=r  (2027-2t20 Tz 72002 "

+ (=2t .20 - ?}Z “i(ZXZ) . w
NAK (GKT +5K%)A —\—}2— © (NK)A
ANK A(pK~ + nK%) - 7}2— A(RN)
EAK (K~ +ECK%)A - :715 (EK A
AEK A("K' +E°K°) = AR
—_—= T —p ™= - =0, -  —o. 1 —
INK V2Z pK° +v2Z'nK ™ + Z°(pK - nK") " Z - (K7N)
- -t 0 —_——F —t — 0y w0 1 gl
NZK V252 'K° +V2a= K" + (pK ' -1nK%)= - (NTK) - T
ZEK B EOKY + TR+ 30 k- 5Ok°) -}6— -3 (K T8
XK WREZ'K +2E TR + (B K -E°RKOZC - '}fe_ - (B7K ) * 2
— — — 1 —
NNn (pp + nn)n 5 (NN)n
=5 (B &+ -'-'40»;0)7] "5 (EE)n
AAn  AAn 1 Adn
ZEq (T =T +3T 2+ 202%q - -%1— (2 D)y
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S EABC .
Table 3. The coupling constant g in SU(3) symmetry,
ABG D contribution F contribution BABC BABC for @ 3
(v = 1) {y=2) g g 4
NN a 1-a 1 1
e o -(1-a) 20 - 1 1
[ ] 2
2 2 V3
AZw 3 Va 0 3 V3 a 5
=Zn 0 2(1-a) 2(1 - ) 2
NAK ——“/-35—(1 -'ﬁ(i-d) -—‘63—-(3 -ZQ) -ﬁ
2
=EAK - -{‘;— a V(1-a) l?— (3 - 4a) 0
NZK @ -(1-a) 2a - 1 1
EZK o 1-a i 1
NN~ - _‘é—i o 1@(1-&) -?— (3 - 4a) 0
e V3 V3 V3
EEn -3« ~B(1-a) -5 (3 - 20) -2
| 2V3 2V3 V3
Mn -5 0 -5 "z
‘ 23 23 V3
Z2n =3 @ 0 =3 @ z
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In the splitting calculation we wish to compute

ﬁgABC = gNKBCGf};BC . (3.19)
. tl s f
where afKBC is related to the previously introduced § Tik by
6f . = 6f fI- M- . (3. 20)
ik ABC ijk ijk

Since we are chiefly interested in splittings which satisfy hermiticity,

for which agABC = agBAC’ only one coupling shift will be computed

for each conjugate pair.
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IV. THE IRREDUCIBLE SPLITTINGS

In Section II we introduced splitting operators

(n_,n!y)
6f=z 8, n,)oV"' ,
T, ! v’ Y'
nn'yy
- (n.)
5m=z Sm Pp Y . (4.1)
(n)
ny nY
(n_)
592=z Guf‘n ) v,
ny Y

where

(n_,nl ) (n_,nl)
oMLY oy
ijk ¥4
ijk

(n ) _ ‘
plny) - z P Y T (4.2)

i
(n ) (n,)
Q Y=szY%¢12< .
k

Foliowing the discussion in that section we can write down
the matrix elements of O, P, and Q in terms of SU(3) CG coef-
ficients. The only additional point to be observed is the question of

.the possible phase difference between the particle operators and the

mathematical SU(3) states. This was discussed in Section III, and

the appropriate phase factor n, was defined. We therefore have
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1 { 1
O(—ny,ny,)=(8 8 nv.)( n' 8 n,v)n- a3

ijk -i j -k -k k 0 ijk
(n_) (n )} 8 8 n
P, V=q VY =( ")n_-, . (4.4)
t ! -i i 0 ii

We like to find the composition of the irreducible mass splittings

in terms of physical splittings, Consider the baryons, Eq. (2.4):

8 8 n Q.
Gm(n)=2(. . OV>(-1) 1szi . {4.5)

. =1 1
Y 1

The mass splittings are to conserve SU(2). We then have
8m, = ém ,, where A isthe SU(2) multiplet to which baryon i

belongs, and i is any particle within the multiplet. Writing

E 8 8 n Q. 8 8
-i i 0 I,-Y I,Y

1
nY>CIA I, 0 M+3Y,
A™'A ‘A'aA

(-1)
0 0/ -M, MO0
1 1

I,+M,
(22) c IA I, 0 ) ('1)A i

and using —F—=—=— we can sum over M, to get
-M.l Mi 0 "ZIA-I-J.

Y 8 8 n

N

Y )ﬁm . (4.6)
0 0 A

A‘fZIA+1 (
I,-Y

1. -

§m, | = Z(-i) A

‘ Y A AT'A ‘atA

(There are (2I,+1) wvalues of M., each contributing the same
A i

(16)

amount.) Evaluation of the sum using de Swart's tables of iso-

scalar factors, gives,
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_ VB30 |
Gm(z.” = -5 {2 ﬁmN ~i-26nr1E - 38mA - GmZ) ,

_ 5
6m(81) = - (6mN + GmE + ﬁmA- 3 sz) ,
(4.7)
Sm
(8,)
_ V2

For the mesons we impose the additional requirement that

6|J.IZ< = Gp; and get
5}.&(227)= -%’-(4@%- 35;»121 - 5912r) ,
Gp(z‘é) = - ‘—'?’5— (2 5%2{ + apf] -3 5‘*12r) , | (4.8)
5‘.].(21) o %(4 apé + 5,{; + 3595) ,

where it is understood that Gp(zs) = 6}1.(2'8 ) ? 5“’%8 being zero, The
i

2)
inverse relations can be read off from these equations provided we

take note of the multiplicity of the isostates. The expansion for the

nucleon splitting, for example, would be

\30 V5 1 V2
6mN = - —2—6-611’1(27)- 10 6m(81) +-z ﬁm(sz)- 'Z-ﬁm(i) .

The irreducible coupliﬁg splittings are

( 8 8 n'y|> | n'8 nY
&£ =Z ( )n_ 6. . (4.9)
(n >0 e Vchod K -k k 0/ ijk ijk
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Let us first investigate the symmetry of the expa,nsion under charge
conjugation. Rela.beling the dummy summation indices by letting

i++j and k++k we transform as follows

%
8 8 n', 8 8 n', 8 8 n',
Y\ Y- | ' Y

(-i_ i -k ) (-' ik ) _gi(nY').g3(nY'),( ; ) ’

j i -i j -k

n' 8 n n' 8 n n'* 8 n*
U Eod R ELXCLINI GHENAD B
-k k 0 k -k O Y

-k k O

Q.+Q.+Q
n.. — m__ =n.(1) 1t J ko, .
ijk jik ijk ijk

The phase factors £, defined by de Swart(16), are discussed in

Appendix Ai; our simplified notation for ’ék(pL1 My ”3:1) in the case

By = B, =8 is §k(p.3a). By (Al.14) we may write

€1(ln\'l.)§3(n\'[.)_§3(n' 8n)=£/(8n'n) .

Since nY has to be a self-conjugate representation in order to

%k
containa I1=0, Y =0 component we may drop the star on n_ .

Eq. (4.9) can therefore be re-expressed in the form

8 8 n.::: n'* 8 nv
of ' =§(8n'n)z )‘r]_.. 6fo—
(ny’ny') 1 A i -i j -k -k k 0 ijk  jik
{4.10)

If the splitting conserves charge conjugation we must have
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&f yv=£E£.(8n'n ) &f ey e {4.11)
(nY,nY,) 1 Y (ny.ny)

. £
Now n{l. can be anything reached by §X§, i.e. 1, 8 §2, 19, 19 s

~ 17
and 2.3. For the self-conjugate representations 1‘."21’ ,§2’ and 23
the above equation gives the selection rule that &1(8 n' nv) =1 fora
charge conjugation conserving splitting Gf(n n')" This condition is
violated for the splittings with (nY,n;l,) = (272,27), (8_2,81), and

(82,8.2). For the 10 representations we shall form the linear com-

binations 19 + and 1 '9_ » which are symbolically defined by

10,) = - (110) = [10%)) . (4.12)
We may then write
Gf(nv’mi) =:i:§1(8 10 nY) Gf(ny,loi) .

Here we have used the relation §1(8 10 n) = §1(8 10™ n*); only the
values nY = 8, 27 will be of interest so we may remove the star (and
the subscript vy if we like). Evidently the linear combinations
represented by n\'l, = 10, have definite symmetry under charge
conjugation; we find that the splittings with (ny,n;{,) = {27 ,10+),
and (8,10) are zero.

Eq. (4.11) can be cast into a more convenient form by de—_

fining a sign factor o as follows:

o'(n;.) = -1 if n'Y, =10_ ,
(4.13)
O‘(n;'.)=+1 if n;l,=1, 8 8 10+, 27 .

&Rl 227 ~
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For any n;. we then have

Gf(n ') s a(n{/.)&i(B n' nY) Gf(n ;') (4.14)

Y v YOy
(It is understood that whenever ¢ appears in an expression, the
linear combinations 10 must be used. If a phase factor £ is
&
present, it will have the same value for 10 and 10 .) In summary

we list the splittings which violate charge conjugation symmetry;(za)

they are those Gf(n ') for which
H 1

Y ¥

(o ,nl0) = (27,,27),(27,10,),(8,10 ), (8,,8,), and (8,,8,) . (4.15)

We now proceed to evaluate the irreducible coupling splittings

in Eq. (4.9). Because of the assumed SU(2) symmetry of Gf,,k we
1}

may write, by Eq. (3,20),
I

6. = of f_ - where
Tik ABC ijkfl ijk ’
I I I I I 4]
f?‘.k = C A B C C C C
i - - -
J Mi MJ Mk Mk Mk 0

Separating out the isospin CG coefficients from the SU(3) CG

coefficients in Eq. (4.9) gives another factor of f,.I_k . Since
1)
2

(n- .) = 1, the sum over M., M., and M, can be performed:
ik _ %7 k
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_The result is

(n_,n'y)
&f \ o Y Y ¢ , where
(nY Dy v) Ls “EBC ABC
(n,n',) 8 ;) n', n' 8 n
om;lc‘! =( Y )( Y) . (4.16)
I,-Y, Ip¥p | Ig-Y o/ V1Y 1Y |00
The inverse is also true:
(n ,n',)
&f = Z 6f L, O Y Y (4.17)
ABG () “xBC |

nn'yy'

The expansion coefficients are given in Table 4. The linear
combinations 10, of the representsentations 19 and 13* .have
been used, so that all the Gf(n ') are either symmetric or anti-
symmetric under charge conjuéati%n. From the previous discussion

it is clear that the charge symmetry violating combinations contain

particle coupling splittings in the form (foi-j - afj"ﬂi)' The expansion has

k
been made in terms of the isoscalar splittings af}YBC defined by
: . 21
of. = of _ fE N- . If we note that fI__ = (-1) Cf_I see
ijk ABC ijk ijk jik ijk

Eq. (A2.6)], it is clear that the K meson isoscalar couplings will

occur in the form (6f_ +6f_ _). Inthe charge symmetric com-
ABK BAK

binations the situation is reversed. The particle coupling splittings

appear as (6f_-_k + 6f__), but the K meson isoscalar splitting are in
ij Ji
the form (&6f_ - 6f_ ).
ABK. BAK
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V. DYNAMICAL QUANTITIES

We need to find the derivatives of the renormalization
constants with respect to all independent coupling constants and
masses. The dependence on coupling constants will be dealt with
in the next section; in the present section we shall calculate the
dependence on masses only and it will be unnecessary to carry along
the SU(3) particle indices. (We do, however, have to distinguish
the various particle masses associated with all the lines in the per-
turbation theory diagrams, because in the SU(3) theory they will
in general be different.)

The interaction Lagrangian for a spin 1/2 fermion inter-

(15)

acting with a pseudoscalar meson can be written as

2.4

- - i
£1= gbvgd + (Z;- vghd + g AAZIH
+ AmMZ By + (Z,- )GV m)y
1,2 2,1 2 2,2

+ 3005285 4 S (2 - OV 95 p%T (5.1)
Here the field operators are all renormalized Heisenberg operators,
and the coupling constant g, the spinor mass m, and the meson
mass [ are the renormalized (physical) quantities. Am and Ap.z
are the mass renormalizations for the spinor and meson respectively
(more commonly written as 6m and 6].!.2), and A\ is the coupling
renormalization for the four-point meson interaction., The factors

1/2 and 1/4 arise from the Bose-Einstein statistics of the mesons.

. . - . . T _ _ .
[Our convention for Fhe Dirac matrices v, 15y, = YoYp.Yo’ p=1,2,3;
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Y, tyy, = ng,v' where the metric tensor g}w is diagonal with

1)

Boo = 1» 8 = -1 for i=1,2,3; v = y1y2y3y6 (it has the properties

yg = Yo¥sY, and yg = -1). The slash symbol on a four vector bp
stands for a contraction with yp': ¥ = Yp.bp = Yobo - Y*b; the com-
pongnts of the differential operator are given by Vp. = (B/Et,-Y). We
use the units c =1, { =1,]

In anticipation of the renormalization procedure we have

separated out the lowest order term in the vertex constant gZ1 ,

by writing it as g + g(Zi- 1); the expansion of the last term in orders

of g. is therefore
g(Zi- 1) = g(Zgz) + Z(14) + Zgé) +...)

The vertex renormalization pro;edure, to lowest order, is now
%
described as follows. We calculate the total vertex operator igll

5
(24)

up to third order in g by summing the graphs in Fig. 1a. Then

we reqﬁire that this total vertex when evaluated with the external
particle momenta on the mass shell be equal to the basic vertex
ig\(5 (g is the physical coupling constant). If we write the value of

the triangle diagram on the mass shell as igysA, the renormalization

requirement then gives

2= . (5. 2)
Up to second order., therefore, we have

Z,=1-4A . ' (5.3)

The mass and wave function renormalization procedure for the
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/
J/
" 2,
1gI‘ = + - -
5 1gvsz(12)
(a)
RN iAm(?) 1ng’ (- m)
—iz*(p) = e -t A et I e I . T —
P
(b)
i(ap?) (@ iz (q2-p2)
*a2 + + 3
-l (g9 = —- i e e Rt b

(c)

Figure 1. The renormalization procedure in lowest order



-38-

spinor, in lowest ordér, consists in calculating the second order
.se_lf_-energy operator E*(p) as given in Fig. 1b. [ To second order
we have Z,-1 = Z(ZZ), and (ZZAm)(Z) = Am(z); the operator (i¥ -m)
in momentum space reads (g -m).] Expanding the result in powers

of (f-m) we may write
s
* * 83 (p) 2%
Z(p) =2 (p) "'(P"m)—iil t(f-m)°Z _(p) . (5.4)
p=m 0 I;d:m ¢

- The mass and wave function renormalization requirement now is that

(25)

the first two terms vanish. Let us denote, as is customary, the

S
first diagram in the expansion of -iZ (p) in Fig. 1b by -iZ(p). In

terms of Z(p) the renormalization conditions are just

(2) _
Am'™ = E(p)(pi=m s
| (5. 5)
(2) _ 8Z(p)
Ao |

Up to second order we therefore have

'Zz”*%%(mlp, : | (5.6)
=m

The meson renormalization procedure is parallel to the one just

described. The result is

2
z3=1+§m—§~l— (5.7)

2. 2 !
9q q =

"

where -iH(qZ) is obtained from the first graph in Fig. 1c.
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We begin by evaluating Z3. Defining masses and momenta

through Fig. 2c we get, by the rules for Feynman diagfams ,

atic (-1 Tr{yg(tm,) vg(-d+m,) 1i°
em? " (&E-m[ lk-q)2- m2]

. 2 .
-ill{q"sm, ,m,) = (12)25 . (5.8)
Let us first ignore the trace factor in the numerator and define a

function =, by the integral

4 : .2
. 2 21 d'k i
-iZ (q”;m,,m,) = (ig) g {5.9)
o T2 (em?* @<P- ml (-q)%- m]

(Zo would be the second order self-energy operator in the case all
the particles were spinless.) We like to express this as a disper-
sion relation in the variable q2 = s, Z}o has a cut along the positive
s axis in the complex plane. The discontinuity across the cut is
obtained by substituting for the propagators &-functions according
to the prescription given by Cutkosky:(2.6) i/(pz—'mz)—> er6(p2—m2). We
then get for the imaginary part of EO {equal to 1/2'1 times the dis-

continuity of 2 )
2 1 (g2 (4 2 2 2.2,
Im B (q%m, ,m,) = - > 2“) ) d k 8(k“- m)8[ (q-K)“-m5] . (5.10)

This expression is evaluated in Appendix B with the result

[}

2 2

' 2
Im ?o(qz;ml,mz) = - (_llgr?) —;—Q(s,ml,mz)e(s-(mi'i'mz)z)v . (5.11)

We have substituted q° = s, and written



igygAlm mymym ;up,) =

— p—k
// K \\
// N
m m \ m
_ L o \ <1
-iZ(pim,p) = R ™ o
(b)
k
g2 K
-ill{q im, ,m,) = _——— —_——
q
k-q

(c)

. Figure 2, Identification of masses and momenta. The vertex
graph in (a) is evaluated with external momenta on

the mass shell.
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2 2 2 2
L(s,m1 ,mz) = J[ s - (mi-mz)' 1[s - (m1+m2) ] s (5.12)
O is the unit step function defined by

é(x) =1 for x=0 ,
{(5.13)
0{x)=0 for x< 0 .,

Now we turn back to II. Evaluating the trace results in the
factor -4[k-* (q-k)+m1m2] . Using Cutkosky's rule we get for the
imaginary part of II

2
Im T(q9) =- 4 (£) | ok 4k (@R m,m,] 803~ mA ol (- md]

(5.14)

(The mass arguments in II have been suppressed.) Using the first
6~-function, we set kZ = mf in the factor from the trace and in the

second §-function. The latter becomes 6{-2q+k +q2+mf- mg).

We may thus put ks q = -%(q2+ mf - mg) in the trace factor, which
now can be taken outside the integral as it no longer depends on k.

The integral is just the one we had for Im Eo so we get
Im Il(s) = 2[ s - (mi-mz)z] Im Eo(s) . {5.15)

For large s, Im II(s) goes like s; hence the unsubtracted disper-

gion relation

RN O

™ 2 s' - s
m1+m2)
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does not exist since the integral is infinite, We therefore introduce
a cutoff, at s = )\g, in terms of which the meson renormalization

constant becomes

2
A N aet
Z3 { = ;'Ijst _i_S 3 Im II(s') ds . (5.16)
s 2 27, 2.2
s=p. (m,+m,)" (8'-p%)
Our final expression for Z3 is
Z3(m1m2;p,) =1 - 13(m1m2;p.) , (56.17a)
where
ds'L(s',mf,mg)Z[s'-(ml-mz)z]
L3(m m,ip) = () g 7.2 .
(m +m s'(s'- ")

(5.17b)

Next we evaluate ZZ' Defining masses and momenta as in
Fig. 2b we obtain

vy (K + m)ygi®
(k2= m?) (p-K)2-p?]

-2pim, ) = lig? { L (5.18)
(2m*

Commuting one y; through the factor (¥ +m) and using yg = -1

gives YS(K+m)y5 = ;Z- m, We see that £ has one part which is

composed of the matrices yp. in a Lorentz invariant form and one

part which is proportional to the four-dimensional unit matrix.

Since pp. is the only physical four vector given, relativistic invari-

ance requires that the yp matrices occur in the form @. We can

therefore write
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2 2.
Z(p) = mA(p®) + ¥B(p°) (5.19)

(the mass arguments have been suppressed), and identify

4 .2
2 . 2 d*k i
A(p7) = - (-ig")
S (2zm? ®*-m?)[(p-K?-ph
(5.20)
4 .2
#B(pz) o ing d’k Ki . .
(zm* (®-m%)[ (p - k)2~ u7]
The imaginary part of A(pz) is just
Im A(p?) = - Im Eo(pz:m,u)
so we get
2 (_g_'z Kg ds't(s' m? pz)
A(p“) = S‘ 2 2 . (5.21)
| ) (ma?  s'(s’-p%)

As before, we introduce a cutoff, at s = )\.g. In the equation for

lsz(pz) we multiply through by ¥, take the trace, and evaluate the

imaginary part of the expression pZB(pz). The result is

. 2
p?1m B = - 4 (&) | a¥kpe1050E-mP6[(p-19%- p

where the factor p2 has been taken outside the imaginary sign (it is

real on the real axis). Using the 6&-functions gives p- k =

2

.-é—(pz'l'm -p.z), and proceeding as before gives

2p 2 Cpr 22 ' 2_ 2.
B(pz) . (_‘lg_ﬂ)g(rjm)zds ¢{s',m",n%) %(1 +_r_n_s.;_E_) . (5.22)

s'(s' - 2

P
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Having evaluated A(pz) and B(pz) we identify Z‘2 by
expanding X(p) in powers of (f - mi); the coefficient of the firat
power of (§ - m, ), symbolically written as 9Z(p) /o IF{=m1 » equals
Zz- i. A and B are both functions of pz, so we shall first expand

in powers of (pz- mf). We get

Z(p) = mA(p%) + ¥B(p?)

2 2 2 2
m[A(mi) + (P = mi)A'(mi)]
+ B[B(m?) + (p- m$)B(m2)] +order (p2-m?H)?,
where the primes denote first order derivatives with respect to pz.
The expansion in powers of (§ - mi) is now accomplished by writing

ﬁ = m1+(p,'m1): and (PZ' m?) = (I£+m1)(ﬁ'm1)=2m1(ﬁ'm1)+(y{'m1)z'

Substituting and collecting terms gives
2 2
Z(p) = mA(m?) + m, B(m?)
+{#-m,) [B(m?) +2m%B"(m?) +2mm, A (m?)]
1 1 1 1 i 1
2
+ order (p(-mi) .
The final result for Z2 can be expressed in the form
Zz(mim;p.) =1 - Iz(mim;p) , (5.23a)

where
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.Iz(mim;p.) =

. °y 2
(_E_)ZS‘)\'Z zds'gés',mzépzz)[ (s'_mmi)z_p2(8|+mf)+sv(m_mi)Z] .
" (m+u)™ 28! (s'—mi) ( , |
5.23b

For the vertex we wish to evaluate the operator corresponding
to Fig. 2a on the mass shell, First we state precisely what this
means. For arbitrary external momenta p 1 and P, {momentum
conservation requires that g = Py pz) let us write this graph as
igAs_(pi,pz). Then by definition the desired constant A (suppressing
the mass arguments) is ‘

Y5h = (0, 1p) | : (5. 24)
5 5172 mass shell

The operation of evaluating A5 on the mass shell is now defined by

= Afu

(u Aglp,,p,)u ) YU ), (5. 25)
pym, 51’2 p,m, qZ 2 pym, '5°p,m,

where u and u are free particle spinors with the
17 Pt |

property upimi(p{i—mi) 0, (yfz- mZ)up2m2= 0. Hence if a 151

appearing in As(Pi ,pZ) is commuted through to the left it may be

I o

replaced by m,; similarly a Py when commuted through to the
right, may be replaced by my. {(The common notation for this

operation is A (p,,p,) .} We have
5\P1+P; ,
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vs(ﬁiﬂé +m,)yg (B, K Hmyyg 1
2 2 212 2
(2'"') [(P1+k) - 3][ (szk) 'm4](k ""'2)

.lgA (Pi :PZ) = {ig) 'S‘ «{5.26)

Bringing the two Y5 matrices at the ends through to the one at the

center, the factor in the numerator may be written as
'YS(Y{i +¥+m3)\/5(ﬁ2+¥ +m4)Y5 = - (#1 +¥" ms)Y5(ﬁ2 +¥' m4) .

The terms F‘i and yfz when evaluated on the mass shell will just
give m,; and m, respectively; the factor in the numerator then

becomes
Vg [k?‘- K(m, - m,- mytm,)-{m, - my){m,-m,)] .
- Let us separate the resulting A5 into three parts, writing

A5 = Y5(A1 +'IX2 + A3) ¥ (5- 27)

el S 2
(?m)

where

.2
iZ
= -(m m3)(m m4)( 1g )S‘ 4 "13" ’

(21r)

and where D =[(k +p1)2— mg] [ ( +p2)2- mi] (kz-p.g). We like to

express these functions as dispersion integrals in the variable
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2. 2 — . " [i] . -
q = (pir p,)” =t. We "cut” the lines with the masses m, and m,,

: butting them on the mass shell by Cutkosky's rule:

.2

1

[ (k +P1)2' mg] [ 13 +P2)2' mi]

— (2m) %] (s +p;) - m316[ (k +p,) - m7] .

Making this substitution in A1 the imaginary part is

2 2
Im A, (q°) = -5 (&) §d4k [ (i +p,;) %~ m2] [ (k +p,)*-m?] -———kf_ 5 .
2

{5.29)
Writing kz/(kz— pg) =1+ p.g/(kz- p.g') we notice that the first term
gives an integral over two §-functions very similar to the expression
for Im Eo(qz) in Eq, (5.10). In fact, making a change of the
variable of integration by k —+ k - Py it is just equal to

Im Eo(qz;m3,m4). The second term we write as p.g Ion(qz) where

2 2 2 2
2 o[ (ktp,)"-m5] 8] (k+p,) - my]
2, _ 1 4 1 3 2 4
Im A (q%) = - 3 zgw-)gd k o . (5.30)
2

(A o would be the vertex function in the case when all the particles
are spinléss.) The integral is evaluated in Appendix B with the

result

) |
Im A (t) = w{ £- 4 1og (Z2BYo(t m,+m )%,  (5.31)
o (4-”)' Ce m?,m)) =B ) 3tmy

where
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2, 2 2, 2 2. 2 2
a = (t-mi_’i'mz)(t-m3+m4) - Zt(mz-i- my,- p.z) ’
2 2 2 2
B = Q(t,mi,mz)g(t,m3,m4) .

The function [ was defined in Eq. (5.12), and we have written

Ll 2 2
p1 mi’PZ m, . Hence

A
1M _dt'
A1 = -“-S. 4) t' 2 [Im = (t ,m3,m4) +p.2 Im A (t’)] s  (5.32)

where we have introduced a cutoff at t' = Xf, and evaluated at the

.mass shell value t = pf o

Now consider IXZ which we write as

where (5.33)

Since Py and p, are the only independent momenta given, L!-l’ must

have the form

L, =P,y PP (5.34)

Multiplying this equation by p 1# and pr. respectively we get two

equations. These can be solved for L1 and L2 with the result

L, =2 [p5p,* 1) - (o, p)lp,e L]

(5.35)
L,=3[-(p;" PZ)(Pi L) + pi(p,’ nl |
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2 2 2 .
where d = P{P, - (p1° pz) . Before starting to evaluate (p1- L) and
.(pz- L) let us look at the mass shell contribution of I{, I}/ appears
in A; in the form ysl/= ys(yfiL1+y!2L2). We commute 151 with
g to the left, which gives a minus sign; 3{2 is already to the right.

The result is

Y5 ¥ = y5(-m;L, +m,L,) , (5.36)
177

142=m2

where it is understood that we also put qz = p.f. Hence the mass

shell contribution of the IXZ term to the quantity A, defined by
Eq. (5.25), is

A, = (m1 - m, - m, + m4)(rn1L1 - mZLZ) . (5.37)

Now what we eventually want to compute are the first order deriva-

tives of A evaluated at equal baryon masses and equal meson

2 3
therefore only need the equal-mass (eq.m) value of the second
factor, i.e. m(Li- LZ) l . At equal masses pf: p§= mz so that
eq.m

masses, DBecause of the factor (mi-m -m +m4) in AZ,-we

1, 2
(Ly-L)) | = F{m%tp, PP, -p,y) L . (5.38)
eq.m eqg.m _

We have

.2
d4k (pi-pz)-k i

2
(py-p,) L =-igS . (5.39)
172 qu.m (2m? (k2+2k~p1)(k2+2k-p2)(k2-p.z)
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Putting the first two propagators on the mass shell to find the dis-

continuity gives the &-functions

5(k%+ 2k=p, ) 6(k>+ 2k+D,) = 6(k*+2k*p,)6(2k- (p,-p,)) .

Hence k- (pi-pz) = 0 so that the discontinuity vanishés. Therefore
Az gives no contribution to A and its first order derivatives
evaluated at equal masses.

The term A3, which equals -(mi-.rn3)(m2- m4)Ao, clearly
gives no contribution to A and its first order derivati.ves evaluated
at equal masses either.

The effective value of A, therefore, is just A1 as given
in Eq. (5.32), Evaluating at equal spinor masses and"equal meson

masses gives, dropping the prime on the integration variable,

ZV A dt | 2, 2 t-4m*
A = —(41r)§4m2( [(t-"hn )1 1°g(“ 7 )|

€ege.m t_pz) \ft(t-4m2) V8

The expression within square brackets is always positive, so that A

(5,40)

is negative. (27) Since Z1 =1 - A this means that Z1 cannot be
zero for a single spin 1/2 fermion interacting with a pseudoscalar
meson, If the particles belong to octets, however, the SU(3) coef-
ficients will change the sign so that a bootstrap éituation is possibie.
We finally list in explicit integral form all the dynamical
quantities that we shall need. They are the integrals that we have

just derived, and their first order derivatives, evaluated at equal
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spinor masses and equal meson masses (we shall again refer to the

evaluation at equal masses by the symbol introduced in Sec. I).
8

Let us define, for Zi’ the positive integral I1 by
I {mm, m.m i, p,) = - A (5.41)

A straightforward calculation now gives the following vertex quan-

tities:
t—4m2 i
V= )g - 1 -=log{1+y)) , (5.42)
4m (t -p%) 4 ‘
oI oI 2
e U B 2,2\
22" Bm ' “Em, | =-am(f) ) =
1's 2 s 47 4m2 2 >
(t-n7) Yt(t-4m"™)
x{diog (1+y) - 2= (5.43)
y %4 Y 1 +Y . 4 b
o1 o1 2
2 =g | = o =-2m(f,:)f oy i ( z)
3's 4's (t - ) t-4m® +p.
(5.44)
oL (& 2 S")‘f - _at ‘/t-‘lmz 1 |
a.= —t | = ' 1-=log (1t +y)| , (5.45)
3 9 2 411‘) 4m2 (t_pz)z t vy
1 o __,_1_ dt - Y
"3 pul -- (&) 5 5 > [“g (1+y) 1+y] '
B2 {t-p.%) Y t{t-4m")

(5.46)

where y = (t-4m2)/p.2. Subscripts 2 and 3 refer to differentiation



-52-

_with respect to ba_ryofl and meson masses respectively, while a
prime is added to denote differentiation with respect to an internal
particle mass.

With a similar notation we write the dynamical quantities

for Z. as:

2
-i(ﬂ—)zg 248l [ (eemd2pFemd)] (5.47)
2\4mw (m+) SZ(S_mZ)Z A
)\2
bf?{"' = m( W)S oy —‘ig—‘-’———)g—[(s-mzﬁ-pz(sshnz)] , (5.48)
b! = EZ_ = -m( )S\ ;(s-mzmz)[(s—mzj.z-uz(smzil
2 om (mhw)? s (s m?)? 4
~(s-m%) ¢ % . (5.49)
2 2y 2,2 2 2
b —_.__I__ g g(sﬁn -p ) (s-m") *-u (s +m”)]
3 (417)5‘ (S -m ) [
+(s+m2)gf , (5.50)

where ¢ =g(s,m%u?) = Y[ o-(m-p) 2 s-tmt)?] .

Finally, the quantities for Z3 are:

c =1, ~z( )§3 ds S(S'4m) , (5.51)
u)
91 a1 '
3 3 s
C, = 7 = == | . = ~-4m S‘ , (5.52)
2 8m1 s om (411') 4m (s- p-) 4m2
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_ 813 - 2 )\3 ds Vs(s-‘-4m21
Cy=——2 | =4 . (5.53)
3 2 T 2 2.3
o s 4m (s-p%)

We have deleted the prime on b3 and 3 because there
is no ambiguity in what mass is the variable of differentiation,
The integrals Ii’ IZ’ and 13 are dimensionless quantities like the
Z's and depend on g, the meson-baryon mass ratio p/m, and
the dimensionless cutoffs (K/m)z. The derivatives, like
c, = (813/8m1) ls and cg = (813/392) IS, occur in our equations in
the forms czﬁm and csﬁp.z; these we write in terms of dimension-
less factors by (mcz)(ﬁm/m) and (m2c3)(6p.2/m2), choosing the
average baryon mass as our unit of mass. In evaluating the
dynamical quantities we put m = 1; p and the cutoff masses )si »
7\2., and )\3 are then understood to be in units of m. Our system
is independent of the scale of mass, which is a feature considered

desirable in a bootstrap theory,’
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VI. THE SU(3) SYMMETRIC BOOTSTRAP CONDITIONS

We now turn to the full SU(3) calculation. It proceeds as in

Section V except that we shall use the Lagrangian given in Sec. III:

S.I = i; gf{jkLpiYSLIquSk + renormalization terms .
In the graphs from which the renormalization constants are derived
we now need to sum the internal particles over all the members of
the octets. This is illustrated in Fig. 3. In terms of the integrals
11 s IZ’ and 13, which were introduced in the preceding section, we
can immediately write down the required expressions. For the wave

function renormalization constants we get, in the notation of Figs. 3b

and 3c,
jk
A
7. =1-Zf—_f_ L (m.m.; . 6.2
3k T jik “ijk 3( i |J'k) ( )

According to the discussion of Sec. II the vertex bootstrap condition,
in the case of many particles, will be applied on the total vertex

constant I'. . Wehad I'_ =f_ -A_ , where A__ is the many-
ijk ijk  ijk ijk ijk '

particle generalization of the vertex constant A introduced in the-
previous section. ‘We found that A was negative and defined the

positive integral I1 by I1 =-A. Interms of I, we therefore have,

i
using Fig. 3a,
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Py
A+ Y AL
ijk / m, f. £ m,
rs i ies 5T j
(a)
~70 T~
V™ N
/ \
/
/ mJ )
zZi : Z et - g . -
. m - -— m
Jk L ijk jik i
(b)
B Fyc
Z3y Z - == - -
ij
f_ £
ik fjk

(c)

Figure 3. SU(3) structure of the lowest order
renormalization graphs.
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... =f -A_
jk fx ik ’

where

(6.3)

A,. = - . . H .
fjk z, fro £}‘sk£§j'l I (mmm mup,)
rsd

These then are the quantities on which we shall apply the bootstrap
conditions; first at the SU(3) symmetric values, and then on the

lowest order variations in the couplings aﬁd masses from those
values. In this section we solve the first part of the problem,
leaving the second part to Sec. VII.

Consider the vertex conditions

Ir_ =0 for all (ijk) . (6.4)
ijk Ig v
We have
A | =- (Z £ f. f_ )v , (6. 5)
ijk | - ' ird jsf rsk
8 rsi

where V=1 1ls and the f's are the SU(3) constants defined in

Sec, I1 (we have written f___.I = 1. P from the requirement of her-
5j js

- mitian symmetry), Expressing the f's in the form of Eq. (A2.2)

in Appendix A2,

Z Qj(B 8 SY)
- o= h n... (-1 ’
T LD AL

f

gives
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Z f_ f_ f_
ir{ jsf rsk

rst
Q. /8 8 8 8 8 8 8 8 8
=z h, h, h 7. (-1) Y1 Y2 V3.
(Y1 Y2 Y3 U -i r -t -j s -1 -r 8 -~k
rs .
Y1YoY¥3

The three CG coefficients can be summed to form a SU(3) Racah
coefficient(zs) (the CG coefficients and Racah coefficients are
discussed in Appendices Al and A3 respectively). Using Eqs. (Al.5)

and (Al.6) we may write

8 8 8 Q.78 8 8
(o )=o) 1)

i r - i £ =~z

8 8 8 Q /8 8 8.
( ; 2(2) = Sty 1) S(z 'Yz) )

i s - s J

Here the phase factor £{y) stands for §a(p.1p.2p.3y) in the case
that p, = By = B3 = 8; it is independent of o and has the value
E(y) = (-1-)Y+1, By charge cons ervation at the vertices the factors
(-1)Q become
Q Q. Q (Q_-Q.) Q (Q,+Q ) Q.
(-1) T(-1) Y1) P= (1) T P(e1) S=(e1) £ S=(en) 3 .

The sum over (rsf) can now be performed:



-58-~
i1 2 12 2 3 23 12 3

| 8 8 8 8 8 8 8 8 8
D (L )T (0T )
-i 4 -r £ s j -r s -k

rsi

1 23 p
8 8 8

: =Z(8 8. |8 8}( V) ,
" Yo Y3 Y2 YO N 5 ok

- where we have written out the symbols over the four CG coefficients
to make explicit the correspondence with Eq. (A3.5); for notation,

see also (A3.,7). Hence we have

= Q. 8 8 8
Zf, £, £ =Z hhh(-i)J( Y)
Fi ird jsf rsk Yy Yy Y3 i i -k

1 ]
rs Y1Y2Y3Y

|8

X E(v)lv )8y 8, 18y

8,) - (6. 6)

From Table 16 it is found that the Racah symbol in which all the
p's are g's is non-zero only if the y indices are equal in pairs;l
furthermore, when it is non-zero it has the value 1/2 except in
the case that all the y's are 1 (for which it equals -3/10). Using
these properties it is easily shown that for fixed y and Yy the
sum over Y, and Y3 vanishes if y # \7E We may therefore put

Y = Y; and consequently also Y3 = Yy the result can be written

as
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< | (v) (yg)
Z £ f. f = Zf,—, c , (6.7)
ird jsi Tsk ijk
rsd Y4
where )
Y thé‘( Ye(y,)(8. 8. |8 8 (6.8
) Y, vz) Y Y2 Y, V1> ) -8
Y2
We therefore have
(\11) {vy) _
Z £ (1 +C V) , (6.9)
ijk )
where , evaluating,
A SinZ o, (6.10a)
(2) w2+ L2
hi +=h; . {6.10Db)

Now the SU(3) symmetric constants f(-i) and f(z) represent inde-

ijk ijk
pendent coupling patterns, and we may choose (ijk) such that either
i
iﬂ: or f(_zlz vanishes. The bootstrap requirement (6.4) therefore
1]

gives the two conditions
1+cWy-o | (6.11a)
1 +c@v=0 |, (6.11b)

and thus c{1) = C(z). This gives h, = hz\@ and consequently a = 3/4,
which is the result quoted in Sec. I. A useful form for the vertex

condition is
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1-2h‘;:v=o . (6.12)

which further reduces to

= 2
V=3 . (6.13)

We might also satisfy Eq. (6.4) by pure D coupling (e =1,

£{2)

i1k = 0), with a V such that '

My=y-3 42y =
t+CV =1 - 5hiV=1-2V=0.

Since the indications(zg) are that a is claser to 3/4 than to 1 (usually

@ is found to be between 0.60 and 0.75), we do not consider the latter
case further. (Pure F coupling is excluded because it would require
V to be negative.,) We therefore take Eq. (6.13) as; the condition
which will determine the cutoff (Ki/m)z for the vertex integrals as a
function of the over-all coupling constant g and the mass ratio
i/m.

The wave function renormalization constants, Eqs. (6.1) and
(6.2), are easily evaluated at the SU(3) symmetric values. We
write IZ'S = b and I3 's = ¢ as in Sec, V, use the hermitian
property fj-i'IE = ffjk and express ffjk by Egs. {A2.3) and {A2.2) in
'ZZi and Z3k respectively. The orthogonality property (A1.2) of

the CG coefficients then gives for the sums

(v,) (v} (v;) (v,)
2 f_if_2=Zf_1f_2=Zhh6 = h®+hs .
ijk ijk ik ijk Yy Yo Yy, 10 T2

Jkyyv, ijvyv, Y4Yy
{6.14)

The conditions Z,.| =0 and Z, | =0 therefore give
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_ 2
b= 2, (6.15)
c ---3 , (6.16)

where we have used « = 3/4. These equations determine the cutoffs
()\Z/m)z and ()\3/m)2 respectively in terms of g and p/m.

Let us return for a moment to our result a = 3/4, which was
essentially a consequence of the properties of the SU(3) symmetric
: .coupling constants (the only dynamical requirement was that V be
-positive). In a more complete calculation we would expect the de-
tailed dynamics to play a role, because the expression for I‘i-jkls
m Eq. (6.9) would acquire more terms. For example, Cutkosky and
Lin(so) have considered the system of the baryon octet and the 3/2+
resonance decuplet in a static bootstrap model using the Bethe-
Salpeter equation, Their vertex bootstrap condition is similar to
ours, and they get o = 0.63. The difference is directly attributable
to thé inclusion of the decuplet, and the result is dependent on
dynamical assumptions. It is interesting to know what would happen
if we were to include f{fifth order terms in our calculation. We
could still maintain our dynamics-independent result provided the
SU(3) factors turned out right; the requirement is that for any fifth

order graph W the two factors‘ CS) and CE:), corresponding to |
the ¢Y's for the third order graph, be equal for o = 3/4. We
find, however, that. this condition is not satisfied for one fifth
order vertex graph, namely the one in which the two internal meson

lines cross; the two SU(3) factors for this graph are equal for
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@ = 0,68, (The details are worked out in Appendix C.) In conclusion,
then, we have to say that our value for o, though satisfactory and
obtained in a simple way in our lowest order calculation, is not

expected to remain unchanged in a more complete model.
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VII. PARTIAL FDIAGONALIZATION OF DETERMINANT

We use the general expressions for ri’jk , ZZ:’.’ and Z3k
in Eqs. (6.1), (6.2), and (6.3) to compute their first order variations
from the SU(3) symmetric values. A straightforward calculation

using the dynamical quantities defined in Sec., V gives

8. = &6f__  + VZ (6f_ f. +o6f. f. £ +6f _f. £ )
ijk ijk rsk irt jst ir jsf Tsk  sjf irf Tsk

I‘S
+a,{ém.+§ z f_ +a! Z 6m +6m ).
2( ™y m ) 11’1 Jsl rsk { ) ird JSlf-l-'Sk
rsd
. .
+a,6 Z f. f_ £  +al Z ) f. £ Tedl
3%k irt jsf ¥sk pl fre jst Tsk ’ (7.1
rsi rsi
-5Z.. = Z (6, f. +6f _1f_ ) +b,6m Zf?
2 _ ijk ijk jik ijk ijk
jk J
2 2.2 '
+b’26m.f +b 26 f 7.2
2 ik 34 Mrimpr (7.2)
ik jk

(6m + ém., )f—-

3k T4 ik ik Jik ijk 2 L, i 15k
ij 1j
2\ 2 _
+‘ Cy Gp.kz f'f_]k . (7.3)
ij _

Here all the fi'jk are the SU(3) symmetric constants and we have

used their hermitian property by writing f,.ﬂ_c_ = i-  in a few places,
J ijk
For a splitting pattern which preserves charge conjugation symmetry
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we also have 6&6f._ = 6f. . In the remainder of this section we shall
_ jik ijk

make this substitution. The above expressions, however, have their
general form, for we shall come back later to investigate the nature

of the hermiticity violating solutions.

According to the discussion in Sec, II we now form the com-

binations
(n :n' 1) 8 8 n', n' 8 n
sT ¥ Y = z v )( ‘/) M. 8T-_ , (7.4)
SEN-td sk Nk ko0 ijk  ijk
(n.) 8 8 n
522‘/ =Z( Y)n,_, 82, , (7.5)
< \-i i 0 i« -
1
n) </8 8 n
YA Y = ( Y) 672 ) (7'6)
3 é’ & k o/ Rk 3k
. (n ’n“\/‘) (n_)
where we have written out the explict forms of O_-_kY , P. Y ,
(n, ) ij

and Qk Y using the result of Sec, IV. These combinations, when
expressed in terms of the irreducible splittings &f 1y OmM s
_ (nY,nY) (n\[)
and Gp.(zn )? are diagonal in the quantum number n.
Y

The explicit evaluation will be facilitated if we first investi-

gate the symmetry properties of the above expressions under charge
(n_,n!,)

conjugation. First consider §I' Y Y , Redefining the dummy
summation indices by i+ j, k <=k gives [ compare with the

analysis in getting Eq. (4.10)]

o ¥

' k] .
(n ,n',) 8 8 n' n'" 8 n
sT ¥ Y,=§1(8n'n)Z( Y')( Y)n,-, &T__ . (7.7)
Vijk i j -k /\-k k O ijk - jik
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It is easy to show that 61"-.1_{ 6. , if the splittings are hermitian.
Ji ijk

' Then, just as in Sec. IV, we may write

(n,,n!,) (n_,n!,)
sT Y'Y = o(n )€, (8 n' n 6T v (7.8)
{(The presence of o‘(n\'{,) means that we are using the linear combina-
tions 1,9:& instead of the representations 10 and .1_’0*.) This may

be expressed as

{n_,n'y (n_,n!})
sT Y Y sgsT YOV (7.9a)

where
b=50t+oll)E (8n n)] (7.9b)

¢ is zero for the values of (ny,n;’,) given in (4.15), viz. (272,27)
(27,10+), (8,10 ), (82,81), and (82,82). Therefore we do not need
to evaluate these combinations explicitly. Furthermore, in deriving

the relation 6I'__ = 8I'. it is found that 6I'- contains three
Jik ijk ijk

pairs of terms whose members turn into each other under charge

conjugation. The members of each pair therefore contribute equally
(n_,n! 1)
inthose 8" ¥ Y for which ¢ = 1, and subtract to bring about

the cancellation in the others for which ¢ = 0. The result is that we

can use an effective GT'-'k given by
1)

(6T- ) .. = 6f +VZ of_ f. f. +268f. f. f
ijk eff ijk ( rsk ird jsi ird jsd 'fsk)

+ 2 dm.ta, & f. f- % ) 2y op )= ’
;_i(az myta, m. ) s (a38mctay P;g) ist JSILI:Sk
s

(7.10)
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in terms of which

(n_,n',) (n_,n!))
51“"‘:}:0_‘1“6):‘_ . 7.11
6, Ot VT ) oge (7.11)
ijk
(nY)
Now consider the forms Z3 « Because the meson

octet contains its own antiparticles we may put 6}1.12( = 6}.&; . (For
the baryons we have implicitly used the equality of masses for a
particle and its antiparticle. In \gvriting< m, we always mean the
mass of the baryon with quantum numbers v; = (Yi’Ii’Iiz) and
baryon number +1; note that me does not equal mi.) Evi-

dently, theﬁ, 623-1; = 6Z3k. Relabeling the summation index k

by k+—k in Eq. (7.6) gives

(n_) 8 8 n
6. ¥ = Z( Y) M, . 6Z _
3 k -k 0 Kk 3%

K
8 8 n
= Y . |
gi(n‘l)z (-k k 0 ) e 23k (.12
Thus
(n ) . (n_)
sz, ¥ = 2[4 +&, ()] 6z, V. (7.13)

The factor -—12—[1 + §1(n_y)] vanishes for nY = 82, which is not sur-

P . 2 . 2 2
& = 0. The two terms c. ), ém,f° £
prising since p.(sz) e two e?m c, 4 mlfijkand <, Zameijk
(n) 1 1
will contribute equally to 523 Y {if ny # 82) so that we can use an

effective 6Z3k given by
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_ ' c 2 2\ .2
- (stk)eﬁ. = 2¢ . f:-‘k 6f_ + ZCZZ ﬁmif._k+ C36pszi_jk

—/ X ijk — ij ~
1) 1) 1j
' (7.14)
in terms of which
{n_) (n )
y_ 1 Y :
k

(nY)

No similar simplifica.fion can be made for SZZ ; however, we note

- that the terms containing the b coefficient become just ZbZ:E:. of

i ijk ijk
when we use 6f-_. = 6f- . :
jik ijk ‘ (n.n',) (n.)
The actual computation of the forms &I Yy , SZZ Y , and
(n,)
6Z_. ¥ in terms of the irreducible splittings &f y s Om s
3 (nY,ny.) (nY)

and Su(z‘n ) is a somewhat tedious application of the recoupling
(Racah) formalism. We give three explicit examples in Appendix D,
together with some comments, Here we merely quote the results.,

We get

{

n 1
6T ¥V Y =51
(n

+V h h &(y,)&6(y,)(8. n',|8 nl)éf
.Y:n.:ll) -Y;Zp Yi ‘\{2 Yi YZ< -yiny'! an& (ny,n"a)

1)

+¢2v z h\(lhyzé(yi)ﬁ1 (Bung)e, (w,NE, (8p'ng

ViYore!

aa'Bp'e >((n:1.nY ]P-anp) ( 8\/1”“ IBYZ}LE) (“enp I“:znp') 6f(npg,p.('w;)

. (Yi) .
+¢2a2 z hyic <nY'nY18Y1 ng ‘3)
Y4B

+¢ Za'z Z thhYZhysg(Yi)g(Yz)( 8\/11'1\’[l ]8‘(211;) (nc'yn.Y ]8Y3nﬁ> Gm(nﬁ)+
Yi¥oY3
af '
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ray ) Ry Py, Py, SV 6 V)8 (Bt
Y{YoY3k

1 & 2
aa.‘pp ><(nY .nY Ip.apﬁ)(BYZp.QISY?’P-au) (l{amBIBYinﬁu) Bp‘(nﬂ‘) s

o) (7.16)
-5z_,_n‘f = 2b T

L Yi Vz

<3Y1n m np)tf(u )65,
Y pap

2,.2
*+b,(h +th;)6
gy 21 2 n,)

+b'2 z thh'ng(Yi)g(Yz)(B\’inYISanﬁ) Bm(nﬁ)
Y1YZp

+b3z “1 v2<8v1n ls np)ﬁp(np) , (7.17)
Y VP '

(ny) -
—523 = ZCZ thﬁf(ny’SY )
Yy 1

i
+ 5[ +g1(ny)]2czz hV1hY2(8 1n l8 n )6m
Y1Y25

(n ﬁ)

2yo 2
)8 .
2 (ny)

2
+c3(h‘1 +h (7.18)
C(Y) and ¢ have been defined in Eqs. (6.8) and (7.9b). The factors
¢ and —%[ 1+ §1(ny)] have been written out only where necessary;
they might have been written in front of each term in (7.16) and (7.18)

respectively. It is understood that 6“’(28 and the hermiticity

2}
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violating coupling splittings given in (4.15) are zero.
The evaluation of these expressions is easiest done by matrix

algebra. For example, let us define matrices C1 and CZ by(31)

(nym 1Cy lkgng) = & ()6 (Bungi(n m le ng) (7.19)

- ' . 7.20
(kanplColrgmgn) Z hvzhvf(yz)(gvz”a|8v3”a'> %, (7-20)
Y23

(np and np. have been introduced in the definition of Cz so that it

may operate in the same space as Ci') Then the two expressions in
(n_,n!,)

8" Y Y  which involve triple products of Racah coefficients can be

written rather simply as

’ !

(b zvz (nl n |C1 CZC1 Ip,"z'np'> Bf(nﬁ"p'al)

Ll Yy

and
2
! C,C,C, |8 h. & .

a3yzp'<n 'n-YI 1v¥2 1| np') Yy P-(nﬁ')

1 B

The calculation is straightforward and we merely quote the results in
Table 5. This table, then, gives the elements of the matrix

(BZp/avv) | s in a partially diagonalized form; the diagonalization is
with respect to the representation n (=1, 8, 27, 6:1) of the irreducible
splittings. In Table 5 the elements have been wriﬁten for general a,

implicit in h1 and hz. The value a = 3/4, for which we want to
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compute the determinant, is equivalent to h1 = hzw/é ; making this

substitution in Table 5, using 1 = Zhgv, and dividing out suitable

factors(32) we get the result presented in Table 6, We have not

included there the equation for the splitting according to the repre-

sentation n = 64, It reads

61‘(64’27) - _1__6
3
The coefficient has the value 8/3, and we must have 6f(64 27) = 0;
. H
~there is no splitting for n = 64.

The quantities Xy, = V/h,, X =b/h,, and X =c¢ /h2
appearing in the coupling splitting columns of Table 6 are constant
factors by virtue of the SU(3) symmetric bootstrap conditions.
(The ratios are X /Xy = XC/XV =1/3.) If we diagonalize the sym-

metric square matrices involving XV, i.e. solve for 6f( in

n_,n',)
Y Y
terms of &Sm and 6p.2 » we can then use the diagonal elements
M ny) ) |

to get rid of the terms in X and XC. Thus we reduce the deter-
minant to that of a three by three matrix for n = 8 and two by two
matrix for n =27 and 1. In Table 7 we give the solution to the
first step, that of solving the coupling splittings in terms of the mass

(

splittings. 33) Using these relations we eliminate the coupling
splittings from the remaining equations and are thus left with
equations connecting mass splittings only. These we present in
matrix form in Table 8. (We have taken a linear combination of the
equations coming from 6Z(281) and 52(282) in Table 6 to get rid of
%:he 'b3 terms in the first row of Table 8.) This is the limit of our

algebraic diagonalization of the original 19 by 19 determinant-matrix,
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Table 6, Continued

=27
nEg e(ny.n;daﬁny.n§d
' . y 2
(nyonl) (27,,27) (27,10_) (27.8,) (27,8,) 6m 57 LI
) 3v70 3v5 1
®(nml) 5 5v2 T0 b2
(27,20 | 4 1 ,
. - = - - - Cmal
sI TGs Xv i Xv xv ‘ xv .Saz+ ay ag
(27,10) | 19 3
2 -3 Xy 200 Xv Xv Xy | "5227%22 a3
(27,8,) 59 ' '
s Xy Xy 5 Xy -TXy -6a,+ 2a), -15a,+ 13a}
(27,8,) ' '
T -Xv XV -7Xv 65XV 632- 182\Z -9334- 1133
(27) L . :
62, Xy, = X, 2X, z?cb 9b,+ b} by
(27)
74} 0 0 10X 6X,, 2c, 9c,
(1,8,) (1,8,)
- : 2 2
n=1 ¥ 6f &f 45m, 260,
(1,8,) 5
Ly -5 Xy Xy -(ay+ aj) ~(az+a3)
3 - Xy Xy ~(ay+ ab) ~lay+a})
(1) 3
6z, 2x, 2X, 3 byt bY) 3b
sz{!) 2X, ‘ 2x, 3c, 3¢
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Table 7, Coupling constant splittings in terms of mass splittings, We give the expression of

Xvaf(ny,n'y.)' where e(ny.n.y',

(Xy = V/h, = 4/3/9.)

e(ny,n;) and Xv are the quantities used in Table 6,

SE

= < ' 2
Xy®(g 37y =50 {(%2 + Sla'z)ém(sl) = (33a, +17a))¥5 am(az) - 87336p(8>}

= .‘.. - . m m
Xvbis,10,) = 2 { (a, *ay)é (8,) " 22 tays s (az)}

X

als %

S - . ‘ 2
Vﬁf(st'sl) = 335 {(7932 +51a'2)6m(81) {63a, + 17a'z)v§ 5m(82) (112a,+ 853'3)6;;(8J

1 o1 ) ) ; 2
3 x"&f(apaz) = 5 {(39a2 17a'2)6m(81) (7a, + 17a'2h/é 6’“(82) (20a, + 17a3)6u‘8)}
V10 1 , . ' 2

= Xvig ) = T3g { (25a, - 85a}) 5m(81) tla, + 17az)ﬁs 5m(82) + 15836p(8)}

3v70

_ 63 4 2
‘_s'xv‘sf(z'il,z?)‘ 10 {' (223, +5a5)bm ,q + “asa‘*(zn}

= 3 {. 4 z

52 X837, 10 2 { (1582, +3 a3)omy, + 55a36p(27)}

3V _ 3 e 2

T XV“(Z?,Bl) = 35 {(1023.2 - Za'z)ém(z.n - (2133 + 5a3)6p(27)} )
1 1 2, 2

3 XVSf(z.,'az) = 3 {(ZZaZ + 3 az)ﬁm(zn - (Sa.3 + a'3)6p(27)}

5 2

V5 xv“(i,al) =-3 {Z(az + a'z)ﬁm“) +(a, +a3)5pm}

= A
1,8, ~ % L8
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VIII. DISCUSSION OF RESULTS; STABILITY

The determinants of the matrices in Table 8 were evalﬁated
numerically, using a computer, fof selected values of u/m as a
function of g, The experimental mass ratio p/m is 0.356, where
p is the root mean square of the meson masses and m is the
average baryon mass., (9) In the case that the coupling splittings are
small, g2/41r would be about 15. We have plotted the determinants
~ for p/m = 0.356 as a function of the coupling constant in Fig. 4; the
normalization is as in Table 5, (34)

We would have hoped to find a zero in the n = 8 determinant
at about the experimental value of g, since the measured mass
splittings are dominantly n = §,(35) but the determinant never
reaches zero although it has a rather sharp minimum at 'g2/41r =43,
The determinant for n = 27 does go through zero but at a value of
g2/41'r'which is about two orders of magnittide too large; since the
experimental mass splittings according to the 2;7 representation
are sma11(35) it is  encouraging that our model predicts no spontaneous
symmetry breakdown for any "reasonable" values of g in n = 27.
(Although the n = 27 curve approaches the axis for small g, it is
very unlikely that it will actually cross; both terms in-the expansion
of the determinant are negative and about the same magnitude.) The
n = i -determinant does not have a zero in the calculated region,(36)
but a zero for some lower value of g is pfobable because the two

terms in the expansion of the determinant tend to cancel.

If p/m is varied we find that the curve for n = 8 is quite



10

10

100

50

20

10

-20
-50

-100

I i I { I

/

i n=1 i

| n= 27 -~

ns= §

R T _

i o| i
3

- () —-—
wn
-\ [

R o 4
()

- 'g -

N ) A

- _SL -

] i i L | ;
1 20 .50 100 200 500 103 104

g%/an

Figure 4. Determinants for p/m = 0.356.
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unstable; for p/m = 0,250 the minimum has dipped below the axis
.and we have two zéros, at g2/41r = 46 and 103, We have plotted in
Fig. 5 the curves for some values of p/m to illustrate the instability
in n = 8; in all cases the.re is a rather sharp minimum, which sug-
gestts that even when no actual spontaneous breakdown occurs, the
system is potentially unstable against perturbing influences which
have been disregarded in our simple model., This is in agreement
with other studies ,(37) and, in particular, is consistent with the

| theory of octet enhancement by Dashen and Frautschi.(ss) The

zeroé for n = 27 still occur for very high values of the coupling.
constant. In Table 9 we present the location of the zeros for n = §
and 2~7 for a few values of the mass ratio, together wifh the approxi-

mate position and magnitude of the minimum in the curve for n = §,
) [ad

TABLE 9. The determinants forn = 8 and 27 as a function of
p./m and g2/411'

g%/an
Minimum for n = 8

1%1 Zeros for n = E Position Valu‘; Zero for n = 2;7
147 50.5 529 350 -10% 1310
.250 45.9 103 75 -130 1320
.356 ces ‘ 43 2.5 : 1420
.500 cee 28 0.8 1682

.712 e 20 0.3 . 2430
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Before turning our attention to the splittings we like to test
our solutions for stability in a different way. We wish to find out
how sensitive our results are to the way in which the renormalization
constants are calculated. If, for example, we had included fourth
order terms in Z3k’ it would have been of the form

-1 - g27(2) _ _4.(4)
Zy =1-8 I3 ~ 8 T3k | (8.1)
In a'simple investigation of stability we substitute for the last term
a parametric constant €3 ind_ependg-mt of couplings and masses. We

may then write Eq. (8.1) as

Zy = (-t - g200) (8.2)

where we have defined gg = gz/(i - 63). Our bootstrap conditions
szls =0 and BZ3k =0 gre then just like what we had before (we
may divide out the factor (1 - e3) in front), except that the coupling
constant g, is used in place of g in the dynamical quantities c,
C5» and Cge In the same way we write

Z,.=1- gZJ(z) €

2i A

(1 - €)1 - gngZZi)) : - (8.3)

and take into account the effect of €, by using the coupling constant
= gz/(l - 62)' rather than the given g2 in the dynamical quantities

b, bz, b'z, and b3. For the vertex constant I'._ we introduce €

ijk 1

by
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I. =f. -A_ -£f- ¢ . (8.4)
ijk ik Tijk ik !

Writing A_ = ng_ and defining gf = gz/( 1-€,)gives
ijk ijk
2;(2) )

ijk

r- = 1 - € ) f— - .
Ijk ( 1) T
The factor (1 - 61) in front is again irrelevant for the bootstrap con-
ditions I, | =0 and 6I'- =0, so that the only effective change is
5 ijk '8 ijk

g” - g? in the dynamical quantities ¢, c, c'z, 03, and c

I
2 3°
We now test the stability of the solutions by assigning non-

(39) and find the zeros of the deter-

zero values to the € -parameters
minants., The results of such an analysis for p/m = 0.356 is pre-
sented in Table 10, where we give the location of the zeros for n = 8
and n = ZJ. It is interesting that although previously the § deter-
minant for p/m = 0,356 did not reach zero, it does so for some not-
unreasonable valge for any one of the €-parameters. We tabulate

for one oif f:he e's»non‘-'zero with magnitude 0.5, and also, for n = §,"

the smallest amount in steps of 0,1 that an € has to be changed from

zero in order to produce a solution.,

TABLE 10, Stability test for location of zero for p/m = 0.356.

g°/4n
€ € €
i 2 3 n= § n =27
0 0 0 (Minimum at 43) 1420
-0.5 0 0 15.4 16.8 1190
0.5 0 0 210 734 1800
0 0.5 0 5.4 16.7 574
0 0 0.5 9.0 45 - 1270
0.2 0 0 73 88
Q 0.2 0 23 28
0 0 0.1 33 43
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We note in passing that a zero was also found for the n = i
determinant with €, =0.5, €,=€,; =0 at g2/41r = 8.2, This seems
to confirm our suspicion that a solution exists for some low value of
g in the unperturbed case, since the effect of a positive €, is con-
sistently to shift the position of the zero to a larger g value. The
sequence of the solutions in n= 1, E, and 27 conforms with the obser-

~ "~

- vation which has been made that the forces tend to be stronger in a
channel with a lower-dimensional representation. (40)

It is evident from Table 10 that the solutions are quite unstable;
the values of g2/41r for n =§ tend, however, to be the right order of
magnitude, whereas for n = 2;7 they remain quite large. We shall not
concern ourselves with the latter representation any further, but
limit our attention to the case n = §, which is the more interesting
one experimentally anyway.

Having found the zeros of the determinant we can evaluate
the splittings in the corresponding solutions., Since the equations
connecting the splittings are homogeneous, we can at most find the
ratios. Before we present the numerical solutions, we derive some
relations between the coupling splittings which rest solely on the
assumption that they transform according to the §-representation.
This we can do because there are only five distinct hermiticity-
conserving irreducible splittings fo_r n = § » in terms of which the
twelve independent agABC are to be calculated. We therefore
expect seven relations(41) among the 6gABC' To find these we use

Table 4. It gives the expansion of
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_ ' (n_,n!))
&f = Z 6f o Y Y
ABC (8, 1) "EBC
Yn"Yl .

where on the right-hand side we now include only the five hermiticity-
conserving (C = +) splittings for n = 8. Eliminating the irreducible
splittings among the twelve independent equations (if the conjugate
forms XBC and BAC are different we need consider only one of
them) we get seven relations between the GfKBC's. These are ex-~
pressed in terms of &g, by using Eq. {3.19); the normalization
constant NKBC is given in Table 2. The result is presented in
Table 11. We shall prefer to express our calculated splittings in
terms of the fractional values (GgABC/gABC) = A{ABC). The sum
rules for the fractional splittings are given in Table 12, (For a = 3/4
we have B AK gNNn = 0; for purposes of normalization we have put
them both equal to gv3/2.) It should be noted that the relations in
Table 12 depend on «, but those in Table 11 do not.

The splittings corresponding to the zeros in n = 8 which
have been given in Tables 9 and 10 are presented in Table 13, We

have calculated Am1 and Amz which are the ratios of the baryon

mass splittings to the meson mass splitting defined by

Sm 2
Am1 ( nisi))/( 6:2) ) , exp. value = -0.32 ;

B>
5

' o6m 2
2 ( ;82) )/( 6:82) ) y €xp. value = 1,33,

The coupling splittings A(ABC) are fractional splittings,
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Table 11. Coupling splitting sum rules for symmetry breakdown
: according to n =8,

R |
GgEEK ) GgNNn

IiI

=-4
enzk = 77 %8

=

SeNAK T 8mAk = - l[32‘(‘°’L‘%NN1:- O ) 288 5
%8NAK " O8zak = - Z:/ig—-(agNNTr - Sgmmy) +?/32" e zn
%8AAn - %8xmn T 2885

gn T 25853,

o
o
Il
Il
3
o
o
2z
a
3
>
m
Z
=
(@]
o
Il

Table 12. The relations in Table 11 expressed in fractional forms
for a =3/4. We write A(ABC) = BgABC/gABC’ B2 AK and

ENNT have been assigned the value gV@/Z.

A(EZK) = - 3 A(NNm)

A(NZK) = - 5 A(=Em)

A(NAK) - A(EAK) = A(NNn) +3 A(EEm) - 2A(AZm)
3A(NAK) + 3A(SAK) = A(NNT) - 2 A(SE) - 2A(Z3m)
A(AAM) + A(ZZn) = -2A(AZT)

3A(NNm) + 3A(=E") = -2A(NNw) + A(EET) - 2A(SZm)

A(NNm) - A(EEn) - 2A(ZZn) = zA(NNv) + A(EE&)
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| ﬁgABC/gABC (with g s = ENNg = g¥3/2), evaluated by using the
experimental value of ép(zs)/mz. We have also tabulated the cutoff
masses )\1, )\.2, and 7\3 in units of the average baryon mass (the
threshold masses are mi/m =2, mz/m =1 +p/m, m3/m = 2),

The mass splittings for the zero with the lower g tend to
have the correct sign, but the magnitudes vary considerably and a
comparison with experimental values does not appear meaningful,
For the zero with the higher g the dominant mass splitting Amz
tends to have the wrong sign.

The coupling splittings are fairly un.stable also, both with
respect to changes in p/m and the e-parameters., Nevertheless
there are a few features worth pointing out.

The splittings which are consistently smallest in both solu-
tions are those whose SU(3) symmetric couplings vanish (g"._—’-.'AK
and gNNn); the EAK coupling in particular stays remarkably
small throughout.

The coupling splittings for the zero with the lower g in those
cases where the €'s are small exhibit a behavior similar to that
observed by Dashen, Dothan, Frautschi, and Sharp (DDFS) in their
calculation of coupling shifts(42) ; in the table the baryon-antibaryon
channels have been arranged in order of increasing mass for each
meson, and it is apparent that the coupling shift tends to increase as
we progress from low to high mass channels., The result of DDFS
was exactly opposite to this. (It is amusing that if we change all the

signs in the coupling splittings for the two cases p/m = 0,250 and
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p/m = 0,356 with € = 0.2 we reproduce their values within = 0.02,)
They consider the reciprocal bootstrap mode1(43) for the baryon octet
and 3/ 2+ baryon decuplet and investigate the dynamical breakdown

of SU(3) symmetry by an S-matrix method for calculating pertur-
(

bations. 44) Aside from technical differences between our approach
and theirs, a conceptually simpler difference is that they include the
decuplet in their bootstrap system and treat the meson octet as a fixed
~ input (with regard to the meson masses(45)), whereas we admit
only the baryon and meson octets but treat them both equally. Since
the same patfern of relative coupling shifts emerges in both calcu-
lations it is suggestive to think that the main effect of the decuplet’is
to supply an over-all factor (of order -1) for the meson-baryon
coupling splittings., In any case the decuplet does have an important
effect on the coupling shifts, as was noticed 4®) in the work of DDFS,
and should be taken into account in any realistic calculation,
Empirically, "hard" information about the coupling constants
is s;arce.(‘l?) Theoretical analyses of experiments are usually
based on simple models, and it is difficult to estimate the reliability
of the answers. Roughly speaking, SU(3) symmetry of the couplings
seems to work fairly well. (As mentioned by DDFS, however, their
result that the m-couplings aré reduced is an attractive one experi-
mentally since mn-production is relatively rare; also the reduction bf
K-couplings relative to mw-couplings was reported(48) to have some
empirical evidence.) We shall only make one comment about our

results with reference to experiment, In our model there seems to
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be a correlation between the pi-nucleon coupling splitting and the
pi-lambda-sigma coupling splitting, which exists in both solutions.
Approximately, the fractional splitfings are related by A(AZn) =

—%A {NNm). (49) The AZnr coupling constant has been estimated to be
about equal to or larger than the NNw coupling. (50) The SU{3)
symmetric NNnw and AZr couplings, for a« = 3/4, are g and
g¥3/2 respectively; as suming A(AXw) = -12- A{NN7w) the total coupling
constants can only be equal if both fractional splittings are negative.

This is in agreement with our results, and contrary to those of DDFS

.2
* ENNmr

outside the "empirical"” range). Although we feel that the latter work

(their result for the total couplings is gizw = 0,45, which is
is a realistic one (for one thing the reciprocal bootstrap model upon
which it is based is among the most successful ones there is), this
example serves to illustrate the uncertainty in the calculation of
coupling constants,

One can discover other properties of our model; for example,
in the case of p/m = 0.356 the magnitude of the pi-nucleon coupling
constant increases fairly consistently with increasing g in both
solutions as the €'s are varied. However, we do not wish to dwell
further on the detailed properties of our model, the significance of
whic’h would be quite unclear., We stress again that cur calculation
is quite sensitive to the parameters we have introduced into the prob-
lem; the same feature was found in an investigation of the self-inter-
acting vector meson system by Cutkosky and Leon(sn using an

approach somewhat similar to ours,
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To the extent that our simple- model has quantitative validity,
the solution with the higher value of g does not seem to reflect itself
in nature, whereas the one with the lower value of g does, It is an
interesting question theoretically to ask if there is a reason‘for the
system to select one of the two solutions in1 n = 8 instead of the other;

"~

we can find no criterion that would make such a choice.
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IX, SOME RELATED PROBLEMS; CONCLUSION

We like to make some comments on other matters related to
our investigation.

In their calculation of coupling shifts, DDFS found solutions
which violated charge conjugation. This difficulty, based on the
lack of "vertex symmetry" in most N/D-type calculations, has been
‘discussed by DDFS and others,(sz) It may be interesting to see
what happens in the present work when the hermiticity requirement
on the coupling splittings is relaxed.

First, however, we find the conditions which ensured the
existence of hermiticity conserving solutions. When the requirement
that the hermiticity violating coupling splittings be zero was imposed,
it was essential that the number of vertex equations effectively be
reduced ffom the original seventeen to twelve. This reduction was

taken care of by the phase factor ¢ in Eq. (7.9a); it was made

possible by the hermitian-type property 6I'__ = 6I""k . In
Ji i
deriving the latter relation we used, beside the condition 6&6f__ = 6f,__k,
Ji 1

symmetry properties of the dynamical vertex quantity

Ii(mimjmrms;“kpl)’ name}y 8I~1/8mils = 811/8mj Is and Bli/amrlS:

BI1 /E)mS | 5 These -iollow from the general cohdition of vertex sym-
metry, which is that I1 be invariant under the simultaneous exchange
of m, mj and m_ <+ m this general property is easily shown
to be satisfied by L.

Without imposing the hermitian condition on coupling splittings
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in the expressions for 6T-
: ijk
equations in the irreducible splittings have the following properties.,

’ GZZi,vand 6Z3k, the resulting

The hermiticity violating splittings do not couple to the hermiticity
coﬁserving splittings or to the mass splittings. The equations con-
necting the hermiticity violating splittings are linearly dependent in
both the § and ZJ representations (for a = 3/4) so that a non-
trivial solution exists for all g in both representations, (53) We
show this in detail in Appendix E.

The SU(3) symmetric vertex bootstrap condition ri-jkls =0
gave us, without much effort, the rather attractive result a = 3/4
(another possibility was @ = 1), We like to apply this condition to a
few other simple cases. First consider a pseudoscalar singlet ¢

in a Yukawa coupling with the baryon octet. The basic interaction

Lagrangian is
SI = Z gfiinSq"i)‘ﬁ ’ (9. i),
. i °

where

IT. =1, - A. , where
i~ i _

(9.2)
A,

1

1]

-£1, (m;m;m,m;p p) .

L ]S is positive; hence the vgrtex bootstrap condition I‘i IS =0 can-

not be satisfied with a pseudoscalar singlet coupled to a baryon octet.
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‘Next we look at the system of scalar mesons interacting with a
baryon octet, The basic dynamical quantity A (introduced in Sec.V;
for pseudoscalar mesons we defined }'.1 = -A) has the same sign for
scalar and pseudoscalar mesons interacting with baryons, if we
conéider the high-energy dominant term in the integral, These two
types of mesons, therefore, behave in the same way with regard to
the vertex bootstrap condition. Finally we look at the case of vector
mesons interacting with baryons (by an electric type coupling). The
vertex integral has a behavior similar to that for a vertex in eléctro-__
dynamiq's; in the latter case Z1 = Z2 by Ward's identity and therefore
' Z1 is one minus a positive quantity. Hence for a single vector meson
interacting with a single spinor field it is possible to satisfy the vertex
bootstrap requirement (A is positive); the same is evident1y~ true for
a vector meson singlet interacting with a baryon octet, If both
particles belong to octets thg SU(3) symmetric vertex bootstrap

conditions are, for a general F-D ratio,

vy) {yq)
Z . (1-¢C A)=0 for all (ijk) , (9.3)
: ijk ’

1

where the coefficients C(Y) are given in (6.10). With A positive,
Eq. (9.3) can be satisfied only for pu.re F coupling. This is a
theoretically attractive result because in the limit of SU(3) symmetry
the p meson would then be coupled to the conserved isospin cur-

(

rent, 54) We summarize in Table 14 the results of our simple appli-

cation of the vertex bootstrap condition.
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Table 14, The vertex bootstrap condition for some mesons
interacting with a baryon octet

Bootstrap
Condition
Meson -Satisfied Remarks
i No
Scalar ~ '
8 Yes @ =3/4 or pure D
Pseudo- .}. No
scalar g Yes «=3/4 or pure D
) 1 Yes
Vector ~
8 Yes Pure F

One of the features in the numerical calculation was that the
-splittings for those couplings whose SU(3) symmetric vaiues
vanished were consistently small., In the case of the vector meson
octet coupled to the baryon octet with pure F we have a situation
where three SU(3) symmetric coupling constants are zero (see
Table 3), and it is interesting to see what would happen in a spon-
taneous breakdown of symmetry in this case, From Table 4 it is
seen that the couplings for AZp, AA¢, and TZ¢$, which are zero in

pure F, connect to the irreducible splittings 6f(n n')) for which
. 1

(nvwn,:ll) = (64327):(271,27), (27:81)9 (8,27)9 (81:81): (8:1)9 and
(1 ,81). Evaluating the bootstrap conditions in Table 5 for h1 =0

we find the following. Of the above-mentioned irreducible splittings

the ones belonging to n = 64, 27, and {1 must be zero; the three
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‘with n = 8 couple only to &m In the reduced determinant for

(8,)°

n = 8 the splitting ém does not couple to the other mass splittings;

(8,)
hence if there is a solution in the 8 representation it is either such

that om = 0 and the others are non-zero, or vice versa (it is very

(8,)
unlikely thi.t all the mass splittings are different from zero). Although
we can say nothing conclusive without calculating numerically, it is
interesting that there is the possibility of a symmetry breakdown in
which the vanishing symmetric couplings remain identically zero.

In conclusion we like to summarize the main results of our
simple model of the bootstrapped pseudoscalar meson and baryon
octets. The value of the mixing parameter was found to be o = 3/4,
which is surprisingly good. A symmetry breaking solution is found
in the 23 representation but for a coupling constant squared which
is two orders of magnitude too large. In the E representation the
system shows great instability ; two solutions can easily be produced
for not unreasonable values of the coupling constant and the mass
ratio. The solution with the lower value of the coupling constant has
the expe:imentallf observed relative signs of the mass splittings;
in addition, it exhibits the same coupling splitting pattern found by
other workers in a calculatidn based on the static reciprocal boot-
strap model, but with the relative signs of the coupling shifts and
mass shifts reversed. We feel that a spontaneous symmetry break-

down has been proved to be possible, but our model is too crude to

reflect anything but a few remnants of the real situation.
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APPENDIX A

SU(3) COEFFICIENTS

1. Clebsch-Gordan Coefficients

We summarize here some properties of the SU(3) CG

coefficients, following the work of de Swart, (16) We may com-
bine the eigenstates qu and d)v of the irreducible repre-
1

By By B
sentations p, and ko of SU(3) into an eigenstate

W)

of the representation @ . The expansion coeifficients are the CG

By By By
coefficients Y) .
(vi vzv)
By
By By B ( 172 Y> (e (uy)
Y _
w( by by (Al.1)
Viva

Here the v's stand for the quantum numbers (Y,I,Iz) of the eigen-
states, the u's denote the representations, and vy is any additional
quantum number needed to specify the representation in the product

space. The coefficients have the orthogonality properties

. . 1
Z ( By H> HY)(_“Z‘. |J'Z |J'.Yl) .
L — =8 & 8 (A1.2)
v v. Vv,V 'Vi Vo v! pp ' vv! YY’ ’ -
172
= 1 6 1. ' Al.3
H‘!’V v1 v2 v v'1 v'zv vivi VZVZ

The dependence on the z component of the isospin is just as

in SU(2). We may make this explicit by writing
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By Hp By L I, I By B By
) =C 11 ( ) (Al.4)
Vv,V 1z "2z "z Iin IZYZ Iy

K2

1Y

“Y"
IY) does not depend
1 7272

v3
. where the isoscalar coefficient (I ;
1

| I I, I
onthe I 's. The SU(2) CG coefficients C i 2 and the iso-

iz 2z "z

scalar coefficients both satisfy orthogonality conditions similar to
(A1.2) and (Atl.3),
We shall frequently use the symmetry properties of the coef-

ficients. These are written as

( ) ”3y) P2 Hq By
= £ (L By By (A1.5)
{1y By Pay s
Y123 2¥1 Y3
' * %k
By B2 Fay Q, [N, By B3 Fayr
N Ealiy by g ) (1) M\ v , (A1.6)
1°2°3 1773772
. L £
o =60y By Ba) . (AL.7)
v v v 3 1 2 3Y - =V, -V

i 2 3 12 73

. 0= 1 v =
Here ?_3,1, 52’ and §3 are phase factors equal to =1; Qi— Iiz*l-—z- Y1 =
the "charge" of the state v,; N, and Nj; are the dimensions of the
representations (9 and M3 and p,* is the representation conjugate
to p. The negative of the quantum number v = (Y,I,IZ) is defined

by -v = (-Y,I,-Iz). In our application of Eq. (Al.6) the indices ¥y'
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and y may be equated.

| In the present work we shall need two kinds of CG coef-
ficients. The first is for the case p, = By = § and k3 any repre-
sentation contained in § X g To simplify the notation the phase

factors § are then written with By and By deleted:

§k(p3y) =£,.(8 8 p3y) . (A1.8)

- The second case is where one of Mg and By is §, the other of My
and }12 is anything contained in E X E, and M3 is a self-conjugate
representation contained in By X o viz. one of l, 21, §,2,’ 2';71,
2;72, and 6:1 . The £ factors in the case where By = 8 are given
in Table 15, (If By = g the £'s may be derived by using symmetry

relations.) We note that in the special case when all three repre-

sentations are 8's, we may define
~

by =g 08 8 8)= 0¥, (A1.9)

where the phase is independent of the index k=1, 2, 3, y can here
take on the two values 1 and 2 corresponding to the symmetric and
antisymmetric representation respectively. (In fact we also have
£ (8 27 27.) = (-1)¥")

We sometimes need to perform the double operation of chang-
ing the order of By and Py and changing the sign of all the v's. For

the SU(2) coefficients this operation is very simple; we have just

o 2 1 - c IZ 11 1
-1, -I, -1 °

(A1, 10)
Ilz I?lz Iz 2z 1z, "z
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Table 15, The phase factors § for By =8

-1

27

35
27

10

10

357
27

10*

10™

64

35

35°
27,

27

272

10

*
10
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For the SU(3) coefficients we write

® % %
By By P‘v By By ‘J'y
= 513(;:.1 o p.Y) (A1.11)
V1 Vz v . -Vz'vi‘v ‘

where

ialey vy ) =£ (e 1, py)§3(uz By

* k%
= E3ly By BBy By B

For the two cases mentioned above which we shall encounter

we have (ny here stands for a self-conjugate representation),

. - *
§y3ley) = 638 p n)=-1if w=10, 0r 107 ,
+1if p.=1,81,82,27. (A1.12)

~

Therefore
513“HJ§13“EP ny)= +1 . (A1'13)

We may evidently put stars on either of the p's, and we may also
switch the order of 8 and p. This enables us to simplify some

triple products of §'s by writing, for example,

€3l JE 5(u 8 n.y) =£,(8¢p ny) . (A1, 14)
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2. Coupling Coefficients for Two Octets

In Séc, IIl we derived the SU(3) symmetric coupling coef-

ficients f'-'k' They were written as
13

f_ = Z ff-?l) » wWhere
ijk ijk

y=t | (A2.1)

8 8 8'Y 8 8 1
£ - v n ( X )n.-. .
ijk YN\ 4 j ~k/M-x k 0 ijk

Here v has been written as r in the CG coefficients., The expres-~
(v)
ijk
coefficient [ see Ref. 16, Eq. (14.10)]:

sion for f is put into more convenient form by evaluating the last

Q
(88 1>=_(_1) k
“k k 0 VB

(This explains why the factor -v8 was introduced at the outset.)
Q.
Writin . =1m..(-1) ', and using Q. =Q, +Q charge conser-
gnijk nuk( ) g Q ; k( g

vation at the vertex) we get

. Q. & 8 8
(v) _ . j( )
fijk LYNCEY L . {A2.2)

By applying symmetry relations of the SU(3) CG coefficients we may

write this in several forms., Another useful form is

8 8 8"[
() ( )
277 = h 7n., . A2.3
ijk v ijik ko -j i ( )
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The f"k are the coefficients in front of the triple product
1)
of particle field operators (xp.lxqusk) in a Lagrangian, They must
therefore possess symmetry under hermitian conjugation, i.e., they

must satisfy

f. =1__ . (A2.4)
ijk i

Let us check this explicitly using the form (A2.1). We have

8 8 8Y 8§ 8 1
ALY - ( )( )n._
jik YVo i o x/ Mk -k o/ 5
8§ 8 8‘/ 8§ 8 1
=-vh € (8)( )g(i)( )TJ-.
YI3UYING oy o/ TV Mk ko ik
=gy
1jk
Q,+Q.+Q,
Here we used n__ =1 (-1) J =1 (by charge conserva-

jik  ijk ijk .
tion at a vertex), and §13(8y) = +1 by Eq. {A1.12)., (We write 8 =8

throughout.) Since in our calculation we preserve SU(2) symmetry,
we sometimes like to separate out the SU(2) dependence explicitly.

Using (A1.4) in the basic form (A2.1) we get

£V e

- , where
ijk ABC i'jknijk
I I, I I I 0
(v) 8 8 8 8 8 i
0 = o)
' IA YA IBYB IC'YC IC-YC ICYC 00
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Here A, B, and C stand for the SU(2) multiplets to which particles
i, j, and k belong; to simplify the notation we have written
(IAz)i = Mi' and similarly for particles j and k. To investigate the

hermiticity property of f,]_: we write

ijk
1 1 1 I I 0
f._.]; B a e ¢ '
Ji ‘Mj Mi Mk Mk _Mk 0
I 1 I 21 I I 0
_c A B c %o 6
MMMy M, M, 0
21
= (-1) c f.—.I (A2.6)
ijk
Since N.. =1_ and f.g'.\_(_) = f(_Y) we get
jik ijk jik ijk
21
£ gy G (A2.7)

- BAC ABC

In Sec. III we formed SU(2) invariant forms of the multiplets A, B,

and C, written as ((KBC)) and defined by

- i ‘ T -
ABC)) = z f. - .
(EBC) = & ci " PA¥B fc

We required that ((ZBC)) have the hermitian property ((ABC))

1]

((BAC)). Evidently; then, the ﬁormalization constant NKBC must
be chosen such that
N =(-1)ZIC N . (A2. 8)
ABC BAC
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.This accounts for the sign difference in NK for the conjugate
BC

forms involving the K meson.

3. Racah Coefficients

(by)  (By) (k3)
y +9,7 ,and qSV of the representa-
1 2 3

" tions Bys Ky, and Mg of SU(3) can be combined to form an eigen-

The eigenstates

state of the representation p in two distinct ways. We may first
~ combine Mg and My into a representation Myo which is then put
together with Ha to make p; or we may form Fa3 from By and
M3, and then join p, and p,, to make i. Interms of the SU(3)

CG coecfficients these two eigenstates of p are

b Rao | By By B Byo Mg W (p)(u)r(u)
4;( 12a M3 y)=Z(1 2 12a)( 12 3 Y)¢v1¢v2¢v3 ’

v Vivz v1 VZ v12 viZ v3 v i 2 3

VvV, .V

12°3 (A3.1)

q)(}"'i Fa34! P-Yl> z (l"'z Ha P'23al) (l“'i LX) pvr)gb(pi)qs(pz)qb(p:‘;)
. = v v v *
| v vov., Y2 Y3 Y23 Vi Va3 Vv i 2 3
1" 2
V3V23 (A3.2)

They are connected by a real orthogonal transformation whose
matrix elements are called recoupling (or Racah) coefficients; we
write

Lp(piZaf By B

VV) = Z ((uiuguizaug,uylui(u2u3)uz3avuvn)

B2y

Py B 1 B

x¢< L 723« Y) . (A3.3)
v
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The notation is basically that of Krammer(27); howevef, we have

' P B3 B My B N
chosen to expand Lp( 122 73 Y) in terms of ¢( 1 723a Y),
v _ v

rather than vice versa, with the same symbol for the Racah coef-

ficient (the advantage bof this is that our expansion formulas can be
read in a more natural way from left to right), Substituting (A3.1)
and (A3.2) into (A3.3) and making use of the orthogonal property of

() (u)) (it5)

the eigenstates ¢ , 9 o »and ¢ v gives
3

1
z (“1 B ”12a)(“12 B3 “y)
v, Y1 Y212 Yiz Y3V

12

Z (g Bodiy o0 Bg iy 1y by k3 baz gy )
23Y23
Q'Y'

(l"'z F3 P23al>(l~"1 a3 P'.Yl) (A3. 4)
VZ V3 v23 v 14 v

1 723
Using the orthogonality of the CG coefficients we can remove first one

and then the other of the two coefficients on the right-hand side:

Z (“1 »2 “1za)(“12 B3 ‘*y)("‘z L} “zsa')
v

v, v v v, v v, v, v
EPAPAS 1 "2 12 12 "3 2 3 23

: By Mo p'Yl
=2, (el g ky b iy tprgdiygy o) L ,
' 1 V23"

(A3,5)
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('*1 k2 *‘1za>(*‘1z k3 ”y)(‘*z H3 “23a')(“1 F23 ”y')
v v v v v vV v v

vivva 1 V2 V12 Viza Y3 Va2 Y3 V33 1 V23
v v

= Uy mpdiypq by iy Ty (pg)pps Byt) - (A3.6)

In the present work only Racah coefficients for the case

By Sy TPy = 8 will be needed. We introduce the simplified

. notation

(”12“ P'YIP'23Q1 P-Yv> = ((8 8)H12a, 8 HYIS(B 8)‘-"23alp'vl> . (A3.7)
Eq. (A3.4) will be frequently used for the case that v = 0 (by this
is meant Y=0,1=0), Since v =0 can be formed from v' and v"

only if v'=-v", the summation over vy, and v,, may be dropped:

) 8 8 p." 8 I.I."n 1
=.Z (Panl%!n:)( “)( ”) .
Y Y v, v, -V v, -v, 0

pla'y! 2 '3 1
{(A3.8)

(We have redefined‘_ some of the symbols.) Similarly, for v =0 and

By SHy Sy = 8 (A3.5) becomes
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. 1
200 G )
> v, Vv -y -y v 0 v v -V

8 g ny.
= Z (Pa n.Y[P-;,I n'Y'>( ) . (A3.9)

v -V
.YI

In Sec. IV it is shown that the useful irreducible coupling
splittings are not those obtained directly from the representations
%
10 and 10 Dbut rather the linear combinations 10, defined sym-

bollically by

|10, ) = —}5(110> + |10%y) . (A3.10)

It will be advantageous to express the Racah coefficients directly in
terms of these linear combinations, not only because they will give
the desired answers directly but also because the evaluation of pro-
ducts of Racah coefficients will often be simplified. Using the tables
of Krammer and the orthogonal transformation matrix 712- ( 1 -11)
connecting the representations 10 and 19* with the coﬁbinations
19+ and 1'9_, we compile in Table 16 the coefficients that will be
needed, Those are the coefficients (p.a x‘3 |p.<'x, XB'> for which

X » 10, 27 and 64 (p.a and p."z, are representations contained

~k’

H

X

=1
in 8

8
8); in the case x =10, we only need p=p'=8,
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Table 16. The Racah coefficients (pa xp] “;'Xﬁ'>

1
l"'a”ﬁl
27 10 0. 8y 4 8,4 8 , 8,, g
o B

27 < 0 @. _i{é_ 0 0 _‘/_6_ i_\/}
40 20 20 . Z )

V2 V2
10, | 0 0 0 0 = =5 0 0
Vi5 1 vio V6
10_ |- O e~ 0 0 0 =
3v6 V10 3 1 N7
8,130 O = i 0 0 S -°F

V2 1 1

V2 1 {
8 5| © -= 0 0 5 5 0 0
82,21 7 0 0 P 0 0 2 T
33 V5 V2 V2 1
1= © -z -7 0 0 % 3

X =1
uc'y.

81 | 0
82 0 i
X = 64

p.l
n 27
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Table 16 Continued

X = 27
p':xl,pl
27 27 10 10
b, a4 T2 + -8 8
3 V35 Vid
27 4 5 0 e 0 = 0
1 V3 A
27 , 0 3 0 'B" 0 2
V35 1 vio
10, i3 0 > 0 - = 0
V3 5 V2
10_ 0 - 0 - 0 5
Vid V10 1
81 s % "5 0 5 0
V6 V2 1
8, 0 > 0 -5 0 - 5
X =10,
lJ-Q,l’p!
8 8 8 8
ba,p 1,+ °2,+ {,- 2,-
2 V5
8,4+ -3 0 o0 -3
V5
8, 4 0 0 = 0
V5 2
8 _ 0 -%F -3 0
’ VB
8, _ = 0 0 0
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4, The Wigner-Eckart theorem, two applications

(1,)

If we have a tensor operator T, 2 belonging to the irreducible
7)), (|L1

representation p,, the matrix element (tfi ’ ) where
d’v and v are base states of the irreducible representatlons
1 3
My and P3» can be expressed in the form
(k3) () (p By by B
(¢v3’Tvz 1 Z( g P2 3")(9 IIT Z"*‘iy (A4. 1)
3 1 %2 "3

This is the Wigner-Eckart theorem for SU(3); its usefulness lies in

that the v dependence of the matrix element is contained entirely in

the CG coefficient.

We use the theorem to prove two statements made in Sec, II.

It was stated that the forms

>
I

(n )
L = Zpi Y (B |ss]B,) ,

i

, ZO Y'”L"<13IesslBMk> .

1Jk

(A4.2)

>
0

when expressed in terms of irreducible splittings are diagonal in n.

(n ) (n_,p,)
The coefficients P Y and O_Y B

ijk
(4.3). The operator 6S may be expanded in irreducible components

are given in Eqs. (4.4) and

(with v = 0) by -

&S = Z 'I‘iX) , (A4.3)
X
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x)
"where x = 1, 8,27, and 64; except for X = 64 the operator Tox
stands for several inequivalent irreducible operators of dimension
X + The particle states IBi> and le) are identified with

8 8 .
ni‘ﬁ(vi) and nkqﬁsk) respectively,

The first form can thus be written

8 8 n Q. 8 x 8 |
x1=_2(. _ 0*)(-1) ‘Z( . _6)(8|1T(’”118)Enﬁ.
i X €

-1 1 1 1

(A4.4)

Using (A1.5) and (A1.6) we write

( 8 8 ny> : \ 8 8 nY
i Y\ o

8 x 8_ Q, 8 8 ¥
( | 6) = £,(8 x 8)(-1) * —-——I? ( €>.
i 0 i x \i-i 0

The factors (-1) ' cancel out; the sum over i gives § )
n,X Y,€

so that only X =n survives. This establishes the desired result

for the first form.
In the second form we first note that the state iBiMk) does

not belong to an irreducible representation, so that the Wigner-Eckart

(x)

theorem cannot be applied to (BiITo

|B.M, ) directly. We need

to take a combination of lBiM'k> of the form

(kpi) 8 8 pg
¢V,F3 = Z ( L "3) njkIBij) (A4.5)
T ’ |
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(n ’l"'p)
in order to get an irreducible base state, But O, 13

: ij
expressed (by A3.8) as

can be

(n sbg) 8 8 p! 8 p' n_,
B’ 8 v
1Jk Z (Hﬁ Y!”ﬁ'n ,)( . )( o )ni.jk ,  (A4.6)

i -1 i 0

B'y'

which contains the type of CG coefficient we need in (A4.5).

second form may now be written as

The

Z (wgity lngm, :)( ’ u Zyl)ﬂ; Z(M :. fe)(SllT(X)llu')eni.

uﬁv

Expressing the CG coefficients in the form

8 P-' n_q M 8 n_,
Y=§(swn.)( "),
(—i i 0 ) t Y'\i -1 o
e x 8 _ Q. p' 8 x
( . .€)=§2(p' X 8)(-1) W/ﬁ-s— ( o 6),
i 0 i X i -i 0

Q.

the phase factors become n,ni(-l) t
1

(A4.7)

= 1; again we can sum over i

giving & 6, » which establishes the desired result X = n.

X n Y ;€



-113-

APPENDIX B

TWO INTEGRALS IN THE EVALUATION
OF WEIGHT FUNCTIONS

We calculate the basic integrals encountered in Sec. V for
the imaginary parts of the second order self-energy diagram and the
third order vertex diagram. For the self-energy diagram we

derived
Im 2 (p?) = 1 (g V(0 4 2 2 2 2
o = - 3 (£) ) d'ksa®-mHs[(p-1)%-m]] . (B1)

The integral is evaluated in a special coordinate system after which
the general result is obtained by relativistic invariance., Let us
choose our coordinate system such that p = (w,0); w is then given

2 2

W= = s+ The §&-functions become
P

G(kz- mf) 6(k2— 2kep + pz- mg)

2

2 2 2 2
G(ko— 1'5 - mi) 6(-2kow +s + m'- mZ)

il

i 2 2 2 i 2 2
Z[wl 6(.15 - ko+m1)-5[ko 'ZVV(S"-mi- mz)} .
In terms of kz and k0 we have

§d4k= Sdkog—% x| d(E)ZS dsz}S ,

where the integration over the direction of k is fdﬂk = 47, Using

~
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‘the o6-functions gives

Im Eo(p?‘ = - % (-Zg—“, - ZTL}:]‘ .
5 is obtained from
YL B
w
= Z%LZ(S.mf,mg) s

where we have defined

t(s,mZ,m2) = y[s-tm,-m,) ][5 - m +m)2] . (B2)

The integral exists for s = (m1 + mz)z; therefore -

2

m 2 (s) = - (L) 2 t(s,m2,m26(s - (m, +m,)?) , (B3)

where 8 is the unit step function defined by

0(x) =1 for x=0,
0(x) =0 for x<0 ,
The basic integral to be evaluated for the vertex diagrams is

2 8 (p, ) *-m2] &[ (p, +k)2- m2]
Im A (q?) = - %(‘zg?r) S dhe — = . (B4

k—p.z
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Changing the variable of integration by k =+ k - p, gives

‘ 2 2.2 2
2 §[ (g +k)“-m;] 6(k“-m?)
2 1 “C.4 3 4 y
Im A _(g“)=-3{£&) \d%k (B5)
. o'} 2(211’) S‘ (k_pz)z_ P‘%

{we have written P{~P, = d). There are two independent four-vectors:
in the problem, We choose a coordinate system such that q = {w,0)

and P, = (pO,O,O,p) where p = 0, Evidently we = q2 =t,

and

P, and p are related by pé - pz = pg = mg (p1 and p, are the

momenta of external particle lines so that pf = mf and pg = mg.)

The integrand now becomes

2 2

2 2 2
ﬁ(ko—b -m4) G(ZWko +t +m4- m3)

2 2 2
—Zkopo +2|‘15[p cos 0 + m4+ m,- P,

1 2 2 2 .2 2
1 6 kt 5= (6T my- m3)] 6(k"- k+ my)
2|W|2|1.SIP (cos 6 + Q) *

Here 0 is the angle between k and the z axis and

~

1 2 2 2
(-2p k_ +m) +tm> -pl) . _ (B6)
2p K| oo T g Ty T Hy

Making use of the azimuthal symmetry of the integrand we write

5d4k =Sdk0§ 3 Ix| d(x%) § 2m d(cos 0) .

Performing the integral now results in
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2 |k
m A0 = -3 (F) T 8(@71) -

With w = vt the §-functions give

1 2 2

k == —{t+m] -m;) ,
| 2 _2

k| = vy L{t,m;,my) .

2.2 2 2
Using m, =P, =(q+p2) =t +m2+2wp° we get

_ 2 2
Substituting into (B 6) and (B7) gives finally

1

2
Im Ao(t) = "(_4&“) 2

g(tsmi:mz)
where
_ 2, 2 2.2, _ 2, 2_ .2
a=(t- m, + mz)(t - m3+ m4) Zt(m2 + my, }LZ) s

B = ¢{t,mZ,m2)L(t,m2,m}) .

The ©-function implies that Im Ao(t) =0 for t< (m3+ m4) .

log ;fg G(t-(m3+m4)2) ,

(B7)

(B8)

In the above derivations we have not been entirely rigorous
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with regard to Sigﬁs; implicit in the épplication of Cutkosky's rule is
the selection of the "proper" root of the &-function arguments. Our
answers, however, are in agreement with the results of a rigorous
calculation of the discontinuities directly from the Feynman

integrals.

Since our work depends crucially on the sign of the vertex
constant A, effectively equal to A1 as given in Eq. (5.32), we
like to point out that the dominant term in the integrand, which is
just Im Zo(t';m3,m4), has necessarily the correct sign; the
opposite sign for Im Zo would have given the results Z(Z) >0 and

2
Z§2) > 0, which are unacceptable from more basic principles (see

remark in footnote 39).,



-118-

APPENDIX C

SU(3) FACTORS IN FIFTH ORDER VERTEX GRAPHS

In Sec. VI it was shown that the third order vertex graph in

SU(3) symmetry can be written as
igh, | =i Z V) gy | (¢t
B8k ls & L i (c1)
Y

For a = 3/4 the constants C(i) and C(Z) are equal and the vertex
function is proportional to the total SU(3) coupling constant fi'j .
We like to know if this‘ rule holds for fifth order graphs also, i.e.

if for any fifth order graph W the two constants CS;I) corresponding
to C(V) in the third order graph are equal at a = 3/4,

Fifth order graphs which are obtained from the third order
graph by making second order insertions in the internal lines, like
the ones in Fig. 6a, satisfy the rule because the magnitude of the
insertion is independent of the SU(3) quantum numbers of the line.

Making a second order vertex insertion into the third order
graph, as in Fig., 6b, will, for « = 3/4, just have the effect of multi-
plying the total SU(3)— coupling constant at that vertex by a factor;
by induction, the o = 3/4 rule is maintained.

There remains the graph in Fig. 6¢c to be investigated, We
need to evaluate thevproduct of the coupling constants summed over

all internal particle indices; we write
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(b)

{c)

Figure 6. Some fifth order vertex graphs.



-120-

w o= fo f £ £ f
Z ir'f T'rf' Tsk S'sl js't'

TS
I'I"S'

5

8 8 8 8 8 8 8 8 8

=2 (gm0

- - -l _'l Iy N | - - -
lrs(\(t) .t-i t 4 -r i £ r -r k -5 -r
1|rlsl

8 8 8 8 8 8
X Y4 Y5) , (C2)
-4 -g -g' g s

Here we have made use of the hermitian property of fhe couplings
and expressed them in the form (A2.3); (yt) stands for vy, YpseeeYge
By recoupling the two internal meson lines can effectively be un-
crossed; changing the order of the first two rows in the first CG

coefficient the sum over r' in the first two CG coefficients can be

performed by (A3.5):

18 8 8 8 8 8
DELT O W
~ -4 -4 -

-r -r' -r' -i

o, (0 )0 %)
= Z §(y1)<8vz 8Y1Ip.a sﬂ) y . (C3)

- ‘ - ' -'
apy T v 1" v -i

The states £, r, and s are now coupled basically as in the third

order vertex graph; summing over these indices gives



- . o
= Z %(y4)<sy3 “a|3y4 T ( o ) . (C4)

We are left with three CG coefficients, namely

(8 8 ua.)(S 8 8Y5)(8 v 8?’)
-k -s' v -2' -s' -j -4' v i )

-J -1

Changing the order of the first two elements in the last two CG
coefficients the product can be summed over ({'s'v) with the result
, 8 8 8
26(\/5)51(8 " Sﬁ)(pa. 8538\(5 8.) (_k ., _i) . (C5)
~The last CG coefficient multiplied by the phase factor n, k in’ (CZ)

is just h _(i). Collectmg all the factors our fmal result is
. 1)

w = Z fi(':lz C\(:) , Wwhere (C6)
, €

cle) z (Ttih )g(y1>§<v4>§(vs)€ (8 v 8p)

paa'

{y,)B
(SYZ 8Yl l“a8ﬂ><8y3p‘a|8y4“a'><]"'a‘8{318'y586> .

(C7)
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' Evaluating gives

(1) _ 4 4.8 22

Cw =3Eh tEhih; ,

(2) _ 4.4

Cw -5h1 . (C8)

Putting C(i) and C(Z) equal we find
w w
h, =5 h, , or h, =0 , (C9)

The first value corresponds to « = 0,68. Hence the dynamics-
independent result a = 3/4 in lowest order of consistency is not

maintained in higher orders.
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APPENDIX D

EXAMPLES OF THE CALCULATION USING
THE RECOUPLING FORMALISM

As a first example we evaluate the contribution of the a, mass
(n_,n!,)
term in Eq. (7.10)to 6T Y Y :

_ —78 8 n'\/n" 8 n '
Y, = ZaZZ( Y Yin,. z ém.f. f. f_ . (Dt)
-1 j -k /N\-k k o0/ Uk & tigh jsk rek

ijk J rs

The sum over (rsf) is just what we had in Sec. VI; by Eq. (6.7),
using (A2.3),

{v,) 8 8 8
Z f. £ f. = Z C “h_ 7 Vi) . (D2)
ist jsd rsk Y1 ijk s

rs ! ko-jo-d

The indices (ijk) do not occur in a form suitable for summing,
Eventually the mass term 6m, must give an irreducible mass

1

splitting like

.. i
=< \-i 1 O 1
i

8 8 n
Y B
= _ . . D3
Combining the phase factors in (D1) and (D2) gives the desired
form n,. . A CG coefficient which has the required "fnagnetic
ii

quantum numbers" can be obtained by recoupling of the two CG

coefficients in (D1); using (A3.8) we get



-124-

G- eeniars (G T D)

pap
(D4)
8 8 8
Since the CG coefficient in (D2) is just equal to ( . .Yi
. ; i
we can sum over (jk) obtaining 6 8 6 by orthogonality. The
. B asYi

remaining CG coefficient in (D4) now has the same form as the one

in (D3)., The final result is

T (y,)
- 1 1 .
Y1 = ZaZZ hyic (nY. nyh"‘an[fi) Sm(np) . (D5)
Yq
(n )
Next we consider the coupling term in GZZ Y.
/8 8 n N 8 8 8
Y, =Z Yin_ /, kb n..k( Yi)ef. (D6)
Ny 3 o/ il ¥ Uk - -i ijk
ijk Yi
where fle has been expressed in the form (A2.3). An irreducible
coupling splitting is obtained from a sum of the type
8 8 2 8 n
ing ) = Z( a)( B)“"‘k TR )
] -3 . - - 1
B a {3k i j -k kk O ) 1) _
The two n-factors in {(D6) become n,__k, which is just what we need;
1)

to get the needed magnetic quantum numbers we again recouple:

§ 8 8 \/8 8 n 8 8 p\/8 p n

Y @ e

(-k -] -i1>(-i i ) Z<8"1 oy ltan 5>( -j i k)(—k Kk o>'
. pof .

(D8)
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Switching the order of the first two components of both CG coefficients

-and changing all the signs gives the £-factors 213(pa)§13(8 p.np) the
product of which is unity by (Ai. 13); the sum over (ijk) gives the

irreducible splitting &f The result is

(na ’ }L:)'

Y,= Z hvi(Byinylpa nﬁ) Bf( . . | {D9)

%
v haB 8 i)

*
The sum of p, over the representations 10 and 10 looks like

*

|10 nﬁ)ﬁﬁnﬁ,io*)+ lto nﬁ>5ﬂnp10) ; (D10}
.expressed in terms of fioinp) and 6f(nﬁ,ioi) it reads

|10 ng) af(nﬁ’10+)- [10_ng) 5f(nﬁ’10_) . {D11)

The minus sign for the term in 19_ can be introduced by the sign

factor o‘(p.a) defined in (4.13). Therefore
Y2= z _ hY <8Y n\{lpanﬁ)o’(pa)(ii'(n ) (D12)
1 i B’
Yqhap

As our final example we evaluate one of the more complex
{n_,n!,)
terms in 6T ¥ Y :

8 8 n'A/n' 8 n
Y, = Z( Y)( V) n. 6f. f_ £ . (D13)
ij -k -k k O ijk  irt jsf rsk
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The summation over the indices of Bf:, ’ will be done in the last
ir
step to form an irreducible splitting of the type

8 8 p \fpn' 8 ng
6y = }: ( . “)( P )n, 5. .
g2 Mgt 7 -i r -2 -2 2 0 irf ird

ir

(D14)

We therefore begin the summation with the indices (jsk). Writing

‘the SU(3) symmetric couplings in the form (A2.2),

8 8 BY X & 8 8"1 )
f. £ = j; h, h_ m, ( 1 2), (D15)
jst rsk Lo Yy Y rdk\ o o,

-3 -r 8 -k
YiY2

we note that the phase factor n. ,, together with n__ in (D13) will
jrik _ . ik
give n_ 0 which is what is needed in (D14)., The four coefficients in
ir
(D15) and (D13) are not of the form required in (D14), so the
indices have to be reshuffled by applying (A3.9). Eventually we need

p' 8 g n' 8 n
a coefficient like ( )which has to come from( Y)
-4 14 0 -k k O

by recoupling. This cannot be done directly, because we would need
a CG coefficient which contains both the indices k and 4, and there
is no such coefficient; we have to apply (A3.9) more than once. The
way to proceed is not unique, and each way will give the answer in a
different form. One criterion which we like to apply to all our final

expressions is that they contain Racah coefficients for the expansion
§ X § X § only (these have been tabulated by Krammer). No simpli-

fication of the forms of the answers occurs if coefficients of other

expansions are admitted; in practice the method of trial and error
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was often resorted to for finding the simplest form. We outline the
procedure used to calculate the expression in (D13). Using (A3.9)

we recouple the two CG coefficients appearing in (D13).

8 -8 n')\yn' 8 n 8 8 puy 8 p n
Y Y) - o ( Q’X 53) .
(—i i -~k X—k k 0 Z {ny n"'“"‘n‘3> k i i i 0

wap J i -i i

(D16)

Our immediate goal is to sum over (jsk) by (A3.5). Writing

| 8 8 8 Q. /8 8 8
( Yi) = E{v,)(-1) ( "1) ,
-j 8 ~-£ £ s j

8 8 8 Q 8 8 8
( Yz) =(-1) 8 ( ‘/2) ,
-r s -k 8 k r
the total phase factor is independent of (jsk); hence by {A3.5)
8 8 8 8 8 8 8 8
200, 0 0L )
. £ s j j ki s k r

jsk
8 8 n
€
= 8 8 .
Z ¢ Vipal Y2 6)(1 )

r 1

Collecting all the factors, we have so far
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Y. = h h ) ' 8 8
Y3 25 Yy ng(yi)nirl <nv'n7'"“np>< Yipal Vzpe)

irlyiyz
8 8 p 8 p n
x( E)( p) 8. . (D17)
£ r i/Ni i O irg

paPe
two CG coefficients in (D17) are now recoupled to get the form
J14); switching the order of 8 and p in the last coefficient they

may be written

88p.€p,8n‘3.
S8 ® nﬂ)( L or i >(i i 0 )

8 8 u', 8 p' ng
= §1(8 B np)z <”€nﬁlpf'1'nf3'>( i Ia )(1 ’ ).

pla'p! r -1 -4 0

Switching the first two components in both CG coefficients gives

the desired form (D14); our final result is

Y3 = z thhng(Yi)gi(e M nﬁ)gi(“&")gi(s p' npl)
YqY e
aa'Bf'e

X (n.:l,nYlp.anp)(8Y1}LQIBY2F€><M€ ng [k gmg ) *ngru) *

(D18)
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APPENDIX E

HERMITICITY VIOLATING SOLUTIONS

(n_,n',) (n ) n_)
We examine the forms 6" ¥ Y s GZZ Y , and 623 Y

given by Eqs. (7.4 - 7.6) using the general expressions for GT:.'k
. 1
GZZi, and GZ3k as given in (7.1 - 7.3). The only difference from

our previous work is that the hermitian condition 6f__ = 6f_ s
jik ijk
not imposed on the coupling splittings. It is clear that the irreducible
(n, ,n ) (n_)
" mass splitting terms in the expansions of 8I" ¥ Y , BZZ Y, and
(n) -
623 Y in Eqgs. (7.16 - 7.18) are unchanged; in particular, by ('(7.9a)', )
n ,n ;
the mass splittings will not appear in those combinations of §I" ¥ Y

for which the phase factor ¢ is zero.
Before considering the coupling terms we like to denote, for
easier reference, those values of (nY,n\'I.) for which ¢ equals 1

and 0 as belonging to sets I and II respectively. The irreducible
(n sn' I)
splittings of Y'Y of type I thus conserve hermiticity, whereas

those of type II do not.

The expansions of 6Z and 6Z3k contain the coupling

2i
splittings in the hermitian form (6f. + 6f__ ); the combinations
(n,) (n) ijk  jik
52, Y and 8Z Y', therefore, do not mix in splittings of type II.
When we previously showed that the vertex combinations
(n_,n',) »

sT ¥ Y of type II vanish [ Eq. (7.9a)] , we used the hermitian

property Gf,._E = 6f. K What we really proved, therefore, was that
Ji 'ij
(n_,n' 1)
the forms 6I' ¥ Y of type II do not contain splittings of type I.

We can test the presence of type 1I splittings by imposing the anti-
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hermitian property Gf.___]!z = —6f:._k . Consid_er only the coupling
Ji i)

splitting terms in &6T'_
ijk

§F. = 6f_ +V§ (6f_ f. £ +6&f. f_ £ +686f_ -f_ £ ) ,
ijk ijk rs-.z rsk ird jsd ird jsd Tsk sjd ird rsk

(Ei).

For anti-hermitian splittings we have 8F._= - 6F_ ; denoting by
jik ijk
(n_,n! ) {(n_,n,)
. 61"£ Y Y the contribution of GF-ijk to 8" ¥ Y we obtain by an

analysis similar to that in getting (7.8)

(n_,n!,) (n_,n!)
6T, ¥ ¥ =-oml g (8 o' n)eT, ¥ V. (E2)

Therefore

(n_,n'))

¢, Y ¥ =0, | (E3)

.which proves that type II splittings are not contained in type I com-
(n_,n!,)

binations of 6" ¥ Y .

In summary, we have just shown that type II coupling splittings
(n_,n!,)
appear only in type II forms of 6I' ¥ Y and do not connect to the

mass splittings.
To compute the expansion coefficients we note first that the

last two terms in &F go into the negative of each other under

ijk

hermitian conjugation (i == j, k = k) for anti-hermitian splittings.
- (n_,n'y)

In type II forms of 6I‘f Yoy they therefore add equally, so we may

use an effective GF:._k given by
1)

5F,. = &f_ +VZ 8 f. f. +26f. f. f_ . E4
( 1Jk)eff ijk ( rsk ird jsi ird jsi rrsk) (E4)
rs .
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This is ’she same f.or.m that was used in Sec. VII. Its contribution to

. 5T;ny’ny') has the same algebraic .expression as before, because in

the derivation of the latter no further hermiticity property of the

splittings was used; we just drop the factor ¢ in the third term of

Eq. (7.16) and evaluate(only 'th)e coefficients of type II spiittings in
21y

n
the type II forms of {51"f Y Y., The result is given for general «

in Table 17.

(n sn! 1)

Table 17. The hermiticity violating forms of &I" Y Y

n=8 Y 6, 55
S (8,10_) (8,,8,) (8,:8,)
(8,10 )
- 1.2 2 V10 vio .2
6T 1 +(gh{ - BV = h h,V -Z—h{v
(8,,8,) '

2°%1 V10 3 .2 1.2

oI _——5 hihZV i- (-1-6 hi - '2' hZ)V ’hihZV
(8,,8.)

22 V10 , 2 1,2 ..2
sT : - Z—h{V -hyh,V i +5(h{ +h5)V
n =27 5f(272,27) *(27,10,)

(27,,27)
2’ 3.2 1.2 V15
1-A(ph) -3h)V 75~ byh,V
(27,10 )
+ Vis 3 ,2.,1.2
6T T bh,V - (f5hy tgh)V
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Evaluating with h1 = h21/5 (equivalent to « = 3/4) and putting
1= 2h§v gives three identical equations for n = 8 and two identical

equations for n = 27:

V2 + &f -5 &f =0 , (E5)

*(g,10) " ®(s,,8)) (8,,8,)

1
of + — &f =0 . .
(27,,27) ' B " (27,10,) (E6)
We therefore have the curious result that the mathematics admits non-

trivial hermiticity violating solutions for all g in both the 8 and 27

representations,
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We follow the common practice of calculating with the first
power of the baryon mass and the square of the meson mass,
as is suggested by the forms in which they appear in the

Lagrangian.

"This is easily seen if the perturbation amplitude is expressed

in integral form by the usual Feynman rules. For a coupling

constant variable the operation 6g (8/8g_ ) just replaces
Tst Tst

any g_ appearing in the graphby 6g . For an internal -
rst Tst

~ mnass variable, say a baryon mass variable mq, the operation

qu(a/amq) is equivalent to inserting a mass term -iém

into the propagator line:

qu 8121(1 (K'imq ) = (_K_-—lr_n:;) (-iﬁmq)(’?':iﬁ).

The splittings which transform accordingto n = i do not

violate SU(3) symmetry; we carry them along for the sake of
completeness, and also because the singlet coupling splittings
might produce a change in the F-D mixing parameter a.

It may be noted that another set of irreducible coupling splitting
operators can be formed by first combining the meson-baryon
pair qSkLpJ. into a representation n\'!, and then use the resulting
form together with ﬁi to lmake a Y = 0, I=0 member of D
This set is coﬁnected by a unitary transformation to the first one,
butk is unsatisfactory because most of the splittings will contain

both hermiticity conserving and hermiticity violating parts.
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Our definition of ijk is the many-particle generalization of
the vertex renormalization constant Z1 for a single meson
field interacting with a single spinor field (see Sec. V); in
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Symmetry (Interscience Publishers, New York, 1966).
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the standard Condon and Shortley phase convention. See Ref. 16,

Secs. 7 and 8.

See, for example, Ref. 16, Eq. (8.2).

Since in field theory the emission of a particle and the absorp-
tion of the anitparticle are on the same footing, the destruction

operators in .L—Pi, ij and qSk couple with the same phase as the

creation operators.

See, for example, A, R, Edmonds, Angular Momentum in

Quantum Mechanics (Princeton University Press, New Jersey,

1957).



23.
24,

25.

26, .

27.

28,

29.

30,

-136-

Compare with R, F. Dashen, Y. Dothan, S. C, Frautschi, and
D. H, Sharp, Phys. Rev. 151, 1127 (1966), footnote 28.

We write out explictily the factors i which come from the
rules of the perfurbation expansion of the S-matrix.

The mass and wave function renormalization conditions are
more fundamentally stated by the properties of the renormal-
ized propagator: The propagator must have a pole at the
physical mass with unit residue. In the renormalized Heisen-
berg representation the propagator summed to all orders is

@B-m-2%p)) L, where =¥(p) = =(p) - Z,4m - (Z,-1)(# - m).

2

Choosing Am and Z, suchthat Z,Am = z(p)‘ykm and

2
(Z,-1) = (62(p) /08) | 4, will vesult in ="(p) being of the
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(n%(.nY |C 1 lp.'anp) is the transformation matrix which connects

the set 6f( a' ) with the set 6&f obtained by the

E I

(nﬁ :P-a)
method described in footnote 12,

The factors are easily found by comparing the entries in
Tables 5 and 6 in the mass columns 5m(81)’ 6m(27), and
4 .

M)
It was mentioned in footnote 11 that the n = 1 splittings do not
violate SU(3) symmetry but that they might change the F-D

mixing. The last equation in Table 7, which reads 6f(1 8.) =
'T2
1

—= &f » now tells us that the F-D mixing remains unchanged
Vs (1,8;)

with @ = 3/4, We may show this by considering only the ny= 1
terms in Eq. (2.6), and write

of. = Z ( )( )n_n 55
ijk ] -i j -k -k k o/ ijk (1 38Yl)>

AN -1 (y")
_Z(\/é hY') f{jk 6f(1,8\(|) o
Yl

Using hy =h,/5 and 5f(1,81) =5 &f ) it is seen that the

quantity R = (V8 hY,)—1 6f(1 8..) is independent of y'. The
2 ,Yl

(1,8

total coupling constant is therefore

f- +8f- =(1 - R) Z V) s q-ry 5.,
ijk ijk 7 ijk ijk

so that the whole effect is just a change in the over-all

constant g,
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