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ABSTRACT

Some mixed time dependent boundary value problems for isotropic
elastic plates with circular c;ylindrical boundaries are studied using the
linear equations of elasticity, A multi-integral transform approach is
employeél, necessitating the introduction of éxtended Hankel transforms,
and formal solutions are obtained with the aid of residue theory. Some
properties of the Rayleigh-Lamb frequency equation, pertinent to the
inversion processes, are derived. The problem of a free infinite plate
with a circular cylindrical cavity subjected to a step normal displacernent
is studied in detail and numerical information for the far-field, showing
the eiffect of the cavity radins on the displacements, is obtained using
‘stationary phase technique 5.

The generation of transient elastic waves in free isotropic infinite
elastic plates by time dependent body forces is also treated and the results
for a radial body force, with step time-dependence, are compared with
the corresponding plate-cavity results. Good agreement between the
two is found in the far+field.

Similar problems for a free, transversely isotropic, semi-infinite
plate (slab) are also studied and some numerical information for the far-
field is obtained using the head of the pulse method. Stationary phase
solutions for an isotropic slab subjected to a step edge displaceinent are
obtained and compared with the corresponding plate-cavity rceults. It is
found that at a fixed station the plate cavity solutions approach those for
the slab, as the cavity radius goes to zero, A comparison between the
head of the pulse and stationary pulse results for the isotropic slab is

also made and some discrepancies between the two are found,
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INTRODUCTION

Though the equations of motion of a homogeneous linearly elastic
solid--the so-calléd "exact® equations--present many formidable diffi-
culties, the literature (1) in recent years reflects an increasing interest
in their application, This is due in part to the occurrence of problems
involving high rates of loading, and to the growth of mathematical tech~
niques which make the equations tractable. Although a great deal of
work has been done in connection with infinite media and half-spaces,
much of the interest has centered on wave-guide propagation, i.e.,
propagation in configurations with characteristic lengths. For such
problems multi-integral transform approaches have proven to be of use.
'i‘he difficulties encountered increase with the complexity of the geometry
and depend also on the nature of the applied boundary conditions. It is
generally found that nonmixed conditions (displacements or stresses
specified) are more troublesome than mixed conditions (displacement
and stress specified)., In fact, for geometries involving two or more
perpendicular boundaries, no sovlutions to nonmixed problems have as
yet been written,

To put the present work in perspective, a brief review of the
current situation for such a geometry will now be given, taking the semi-
infinite circular isotropic rod as an example, When the lateral surfaces
of the rod are stress free, mixed problems can be conveniently classified
into two groups, viz.., those in which the normal displacement and shear
stress at the rod end are specified, henceforth termed longitudinal impact

type problems, and those in which the normal stress and lateral displace-
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ment are specified at the rod end, henceforth t-e:.rmed pressure shock
type probl_érns..

In connection with compressional waves Skalak (2} has given a
solution to a problem in the first category, in which the rod end is sub-
jec.ted to a uniform step normal velocity and zero shear stress. ZFolk,
Fox, Shook, and Curtis (3, 4) have given a general method for solving
problems of the second class and applied it to the case in which the rod
end is subjected to a uniform step normal pressure and zero radial dis-
placement. DeVault and Curtis (5) have extended this latter type of work
to problems in which both flexural and compressional waves are generated,
They also incorporated variations across the rod end into their solutions.
{\ major point of interest of the authors of References (3}, (4), and (5)
has been the applicability of their solutions to experiments simulating
nonmixed problems. They found that, for lé,rge distances down the rod,
the main features of the experimental records compared quite well with
the theoretical results.

Both types of problem have been extensively discussed by
Miklowitz (6), using the Mindlin-Herrmann (7) approximate equations
of motion. He showed that this approximate rod theory gave the same
result as the exact theory for the main features of the pulse for large
distances from the source {lower mode activity). Comparisons between
the theoretical predictions and his and Nisewanger's (8) experimental
results not only clarified the regions of validity of the approximate
edquations but also showed that the Mindlin-Herrmann theory modeled
certain higher mode influences in the pulse., The experiments also con-

firmed the Poisson's ratio coupling predicted by Skalak's solution,
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In the same connection the use of time—dependent body forces
should also be noted. Fox {9) has shown that his cxperimental results
for a nonmixed problem also agreed quite well, for large distances down
the rod, with theoretical solutions obtained for an infinite rod in which a
concentrated body force, with step time-dependence, is acting in the
axial direction,

Similar information for the flat elastic plate is lacking, i.e.,
no comparisons between experiments simulating nonmixed problems
and theoretical solutions to analogous mixed problems have been made.
Also problems in which lateral surface loads arise are of technical im-
portance. Miklowitz {10}, using L.aplace and Hankel transforms, has
solved a problem of this type, in which the surfaces of an infinite plate
are subjected to suddenly applicd concentrated normal loads, Such
loadings generate cylindrically-crested waves and it is the consideration
of these that led to the problems at hand.

In the present work interest is in a flat elastic plate with circular
cylindrical boundaries, and solutions have been written for both flexural
and compressional mixed wave problems in isotropic media. A multi-
integral transform approach is adopted, necessitating the introduction of
special Hankel transforms, and some theorems concerning the nature
of the zeros of certain transcendental functions, pertinent to the inversion
processes, have been derived. Approximations to the solutions, valid at
large distances from the source, have been written and evaluated for a
particular compressional wave problemn in an infinite plate with a circular
cylindrical cavity.

The methods and solutions have been discussed in the light of the
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above rod situation and in this connection the pi'oblem of an infinite plate
subjecied to certain tiine-dependent body forces has alsv been examined.
In the final section some related problems for a semi-infinite plate,
which is a limiting case of the plate with the cavity, have been discussed.
There, partly to illustrate the scope of multi-integral transform tech-
niques, the plate material has been taken as anisotropic {transversely

isotropic),
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Section I. TRANSIENT COMPRESSIONAL AND FLEXURAL
WAVES IN FINITE AND INFINITE FLAT ELASTIC PLATES
WITH CIRCULAR CYLINDRICAL BOUNDARIES

INTRODUC TION

In this section certain transient compressional and flexural wave
- problems for a homogeneous, isotropic, linearly elastic, flat plate of
thickness 2H, with circular cylindrical boundaries, are examined,
Kromm (11}, Miklowitz {12), and Goodier and Jahsman (13), worked on
wave problems involving such geometries, using the plane-stress theory,
but, previous to the present work, these types of problems have not been
approached with the exact theory, or higher order approximate theories.

Miklowitz, in the problem on cylindrically-crested waves men-
tioned above {10), employed a multi-integral transform technique, using
ordinary Hankel transforms, i.e., those for the interval (0, c0), to
suppress the spatial variable in the plane of the plate, Here also a
multi-integral transiorm approach is adopted, but ordinary Hankel
tra‘msforms cannot be employed, since the spatial interval of physical
interest does not include the origin., Thus the first step in approaching
the geometry at hand is to seek suitable transform palrs to suppress the
'splatial variable in the plane of the plate. Such transform pairs have been
found and are discussed, together with some of their properties, in
Appendix A,

The lateral surfaces of the plate have been assumed stress free
and various time-dependent boundary conditions of the mixed type are
specified on the cylindrical surfaces. The development used exhibits the

natural occurrence of the mixed conditions and also illustrates the



limitations of the method.

1.1, STATEMENT OF PROBLEMS AND DERIVATION OF FORMAL
SOLUTIONS

The boundary and initial conditions are assumed to be such that
axial symmetry prevails and the cylindrical polar coordinate systerm shown
in Figure 1 is chosen., The stress equations of motion of a linear elastic

solid, for the case of axial symmetry, are (14):

do oc o - o 8211
rr T rr 00 ) _ T
ar _!- aZ + T -I_ p F‘r(r? t! Z} - P atz (1°}-)
‘ 2
au—rz aU-ZZ 0‘1‘2 I} 8 uZ
A f o - _ .
B T Bs xR EMmLATE T (1. 2)
t
where
du ou .
= S __Z
Tpz P“( oz * 8r ) L. 3)
8uz Bur U
Tom (A + 24) Dz * )\( dr ¥ T) (1. 4)
Bur u, auz
o= (N + 21) 57 + ?\—i— + X Fp (1. 5)
Bur u Buz\ u,
o0 = Mam t =+ ) tao (1. 6)

are the stress components, with the usual notation as regards their
suffixes, u, and u, are the displacement corﬁponents, Fr and FZ
are the body force components per unit mass, X and p are the Lamé
constants, pP' is the material density, and t is the time variable. The

strains which are of importance in the subsequent discussions are given

by:
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e = e (1. 7)

z

r = 5o (L. 8)
u-
r

- I
eee - (ln 9)

Substituting equations 1, 3 through 1. 6 into equations 1.1 and 1, 2

gives, after some rearranging, the displacement equations of motion

8211 du u cz.. Bzu c2 3211
S 1 ro T, (1 s z T
81‘2 or 2 CZ ozor 2 Bzz
d d
+ A F tz)-—1-82ur (1.10)
2 Tpe A= T3 ) °
€4 €a
2 2 2 2
(I_E i(aur+k)+8uz+fi(auz+lauz.
2/ 0z or T 2 2 2 r dr )
C 0z c or
d : d .
+5F (r,t,7) = —Lazuz (1.11)
2 gt = 3 ot2 °
€a €
where
cf o B
5 P

Cg: At 2p

arc the infinite medium equivoluminal and dilatational wave speeds,
respectively.,
Taking the Laplace transform {w.r.t. t) of cquations 1. 3 through

1.11 gives:
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where the bar denotes the Laplace transform of a variable,

(1. 12)

(1.13)

(1. 14)

(1. 15)

{1.16)

(1.17)

(1.18)

{(1.19)

(1. 20)

p is the

transform parameter, and the following initial conditions have been

assumed:



(1. 21)

Operating on equations 1,13, 1,17, and 1, 20, with the zero order

Hankel transform given by equation A3, 2, and on equations 1,12 and 1,19

with the first order Hankel transform given by equation A3.1, where the

a and P of Appendix A have been replaced by a and b, respectively,

and taking the body forces to be zerc, one obtains:

where

~1 k Bﬁll‘ e . _ Ja
0., TR F -pkuz +_|.L{r.u'zcl(k, ¥, a)Jb
. TR b
U-zz :(K“"‘ZH)E'— +7\kur +htrurco(ks r, a)Ja
gs)
=0 _ Buz
®ez = oz
2=1 2 =0
d u C du
r 2=1 d Z
7 by - k(5 1) 3 - Liz)
dz c
s
=~ 0 2 o~
d™u c du
2z 2% 0 s T
e )
z c
d
, kZCZ +p2
d
h = 2

(1. 22)

{1. 23)

(1. 24)

(1. 25)

(1. 26)

(1. 27)
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> kzc -I-pZ
g = 5
<
G o~ .
Lz} = -5 31{rurco(k, r,a) - [rﬂr + o
CS
Ci . HGZ - b
+ (1 -3 )r—u————sz Jcl(k’ T, a) E (1. 29)
¢ a
d
Cz' Bﬁr Cz 8?12 =
M(Z)=-;[(1-—'z)r T +-_2_rTI-‘_ Jco(k,l‘,a)
c C
d d
c2 _ b
+-—S— kruzcl(k, T, a) f (1. 30)
Cd a

‘ and, as specified in Appendix A, it is to be understood that if b is finite
then k in the above expressions is to be replaced by k.,
It should be noted here that transformed expressions for e,
and o.. cannot be Writfen, since application of either the zero or first
ovder Hankel transforms to equations 1.5 and 1. 7 does not lead to ex-
pressions which involve ﬁzo and ﬁzl alone. Note however that for a

fluid plate (i.e., p = 0) a transformed expression can be written for the

radial stress o viz, ,

==
=5 du ~1 . - b
cO = A= + A\ku +X[ru C (k, r,a)]
rr dz T | r o Ja

This teature is not unique to the transform pairs at hand, since it is
also true of the analogous Hankel transform pairs for the spatial interval
(0, ). This point will receive some further discussion later in the text.

No attention has been given Lo €50’ since it can be obtained directly
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from u .
T

The solutions to equations 1.25 and 1. 26 may be written as follows:

~=] =] =]

r ( U'r)hm * Py pt.
~5 _ &0 0
Yz T (u“z )ho, * (uz )pto

where (ﬁrl-)ho, R (:E;)).ho, and (ﬁi)pt, , (ﬁ; )pt, are solutions to the
homogeneous equations and particﬁlar solutions of the nonhomogenecus
equations, respectively. These particular integrals can be evaluated
explicitly when the nonhomogeneous terms in the differential equations

are known, To preserve generality, discussion of these boundary terms
is reserved for later in the section, except to the extent that it is assumed
that the specification of two independent quantities o the curved surfaces
of the plate reduces the boundary terms in equations 1. 22, 1,23, 1.25 and
1. 26 to known factors. In this context only these equations need be con-
sidered, since they are the ones which arise when the conditions of

stress free lateral surfaces are applied.

On inserting into the homogeneous equations expressions of the

type:
ﬁi = A cosh nz + B sinh nz
ﬁzo = E cosh nz + D sinh nz

where A, B, D, E, and 1 are not functions of z, it is found that solu-

tions arc obtained iI 1 is chosen to be one of the values

R SR i.%)”"‘
5 .
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and if
D & _ 2 - p2
AT BT T2
B!
(——Z—l)kn
C
S

Due to the odd and even nature of the hyperbolic functions sinh and cosh,

' only two of the above mn wvalues give independent solutions. Thus, using
the method of variation of parameters to obtain the particular integrals,
the general solutions to equations 1. 25 and 1. 26 can be shown to be:

2
L (&, coshm.z + B, sinh n.z) + (ﬁ;)ptn (L. 31)

cli
[
{l

(CLA s1nhnz+0.B coshnz)'l-(u ) 1. 32)

ch
N o
i

Ik oo

where

=
Gr)pt, = W Z (- 1)3 2,/ %cosh . zg L{£) sinh ”q £ dt
j=1

Z
~ sinh 11jz.5 L{&) cush 'r].f; dﬁ}

7 z
+n———n——- Z( 1)’ acosh ngV M(£) cosh n; € dg
171 2 Z 3

- sinh ﬂjzjsz(g) sinh T]J§ dﬁ{

(1. 33)
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2 .
Q. aq 4 . Z
(2°) L= 73_2_3_ E '(-1)33sinh ‘q.z_S‘ L(£) sinh n.§ df
z 'pt. T mo,-m,a, - j _ ]

e

- cosh njzg L(E) cosh ‘r]jg d§ %

1 N 41 “ -
f— Z (-1 ""a. {sinh ﬂ.z§ M{£) cosh m.& dE
j=1

Z

- cosh n;z M(£) sinh 'qjé d§ E

(1. 34)
*r].z - h‘2
ajz_-_JE , j=1,2 (1. 35)
(Cd 1)k
- - yl
2
S
2. 1/2
n, =+ + B (1. 36)
o2
S
/2
n, = +Hx? + B (1. 37)
“a

The boundary conditions on the lateral surfaces of the plate could
now be applied to equations 1. 31 and 1. 32, giving four algebraic equations
for the four unknowns Al’ AZ’ Bl’ and B2° ITowever it is more con-
venient to assume that the boundary conditions on the curved surfaces
of the plate are such that either compressional or flexural waves are
genetated, i.e., it is assumed that L and M in equations 1, 25 and 1, 26
are such that solutions which are either symmetric or antisymmetric
Wo r. t. the middle plane of the plate are gengrated; the two cases are

distinguished in what follows by the affixes C and F, respectively,
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For the compression case the general solutions are:

2

Cu; = Z Aj Vcosh"*qu + (Cllil_ )pt, (1. 38)
j=1
2'\
ﬁozz a. A, sinhmz +(.0°) (1. 39)
Cru JJ J C e 'pt.
j=]

: o | ~0 . .
where (Cur)pt, and (CuZ )pt., are the expressions obtained from
equations 1. 33 and l. 34 on insertion of the appropriate values of 1. and

M., The general solutions in the flexural case are:

2
=1 \ . =]
i, = /, Bj sinh ‘qu + (Fur)pt. {1. 40)
j=1
2
L I =0
Y = Zaij cosh njz: + (FuZ )pt; {1. 41}
j=1

whetre (Fﬁxl- )Pt and (FEZO)ptn are the expressions obtained from

equations 1. 33 and 1. 34 on insertion of the values of L and M appropri-

ate to this case,

Substituting equations 1. 38 through 1. 41 into equations 1. 22 and

1. 23 gives:
2
~1 2 :
Ty = ]J.Z Aj('r]j kaj) sinh ;2 + Sdz) (L. 42)
jo1
2 \
~0 ?
FOpp = Z Aj [()\ + Zp)ajnj + kk] cosh njz + Tc(z) (1. 43)
j=1
2
) _ ~ :
PO = }Lz BJ.(T]j kaj) cosh n;z +So(z) (1. 44)

j=1



-15-

2.
=0 .
o = /, B [(n + 2u)asn, + zk] sinh N7+ Tple) (1. 45)
j=1
Where
2] =1 &0 - b
Sc(z) =B o5 (Cur)pt, - }r.k(cuz )Pto + 4 rcuzcl(k, r, a)J 3 (1. 46)

b
. _ . -9'— =2y .::l —
To() = Ot 2p) g () N Ga) K[rcurco(k, r, a)] ) (1. 47)

b
- 0 = _ e — |
Sple) =1 55 (a0 - bk(ga o), + [rFchl(k, r, a)] ) (1. 48)
0 =g ~ ] — b
Tolz) = (v 2p) 2o (B0, PAK(GED, #A[rpE C ki r )] o)

Transforming appropriately the conditions of stress free lateral

surfaces gives:

=

CO-ZZ = 0, z=+H (1. 50)
=0

Oz = 0, z=+H : (1. 51)
o= 0

ez = , % =*xH {1.52)
=0

FO-ZZ = O, 7 = = H (la 53)

Inserting equations 1.42 and 1. 43 into eqhations 1. 50 and 1. 51 gives the

I
following pair of linear algebraic equations for the unknown Aj s;

2

pz Aj(nj - kc.j) sinh njH = - SC(H)
j=1
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|3¥]

+ 2 H o= -
Aj l:()\ Zp)ajnj + xk] cosh nJH TC(I—I)

Ln,‘
ALY

it is shown in Appendix B that the determinant of the coefficients of Al
and A, in the above equations is not zero when the parameter p is
real, and so the solutions for arbitrary p may be evaluated using
Cramer's rule ( (15), page 42). Substituting the resulting expressions

into equations 1.38 ~and 1.39, and using the identities
1 2
- - +
ny - key ‘”'1 (n, +k7)
ny - kep = 2m,
{(» + Zp,)alnl + Ak = - 2pk
2

- _ P
(n + Zp,)aznz + Ak = (111

2
B (] +x

gives:

=] 5 2.2 .
pcurDc(k, p) =k [anISC(H)cosh n1H+(n1 +k )TC{H)s1nh ”qu]cosh M,%

'r'ﬂl [anZTc(H)sinh TIZH +_(ﬂ12”‘rk2)Sc(H)cosh nZH] cosh M,z
+ Dk, ) (8 (1. 54)
pcﬁZ"DC(k, p) = k [szTC(H)sinh n,H +(-qlz+ k2>sC(H)w§h qZH] sinh 1z
- 7, [ZkHISC(H)cosh n,H + (1 1) T (H) sinh an:l sinh %

+uD_(k, p)(cﬁzO Dot (1. 55)
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where

_ 2,202, - :
Dc(k,p) = (111 + k%) sinh an cosh n,H - 4k nlnacosh 'r]lH sinh nZI—I
(1. 56)
Similarly, inserting equations 1. 44 and 1. 45 into equations 1.52 and 1. 53,

evaluating theresulting linear algebraic equations for B1 and BZ’ and

substituting their values into equations 1. 40 and 1. 41, gives:

ay
Lt

1 _ 2 .2 .
Bt DF(k, P) = k[(nl +k )TF(H)cosh an + anISF(H)blnh ‘I'ilHJblI.lh Ny%

-

_ nl{(qlz-l-kz)SF(H)sinh nzH + anZTF(H)Cosh nZHJsinh "z

a1
+ p DRk, P)(F”‘r)pt, (1.57)

-

=0

B 2, .2 . '
Rl DAF(k, p) = k[(nl +k )SF(H)Slnh T]ZH + anZTF(H)cosh nZH—cosh n,z

2, .2 . i
- nz[(nl +k )TF(H)COSh 1111—1 + anlsF(H)smh anJc osh N,z

-3

tpDplk P gu) (L. 58)

where
D {k, p) - (1’]2'+k2')zcosh nH ginh n,H - 4k21’] Naocosh N,H sinhn. 1T (1. 59)
pye P 1 1 P12 112 2 i °

Using equations 1. 24, 1.55, and 1.58, the axial strains may be

written:

=0 _ X 2,.2 i
Bee,, Dc(k, P) = nlk[anzTc(H)snlh 'r]ZH -l-('r]1 +k )SC(H)coshnZHJ cosh ™2

2 - 2..2 .
- nz[:anlsc(H)coshan+(nl+k )TC(H)smhanJcosh n,2

5 , =0 |
+uDg (il p) 55 (o, Loy, (1. 60)
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=0 \ 2,.2 3 ' ot
Ppe_, DF(k_’ p) = T}lk [‘”1 +k )SF(H)sm.h T]ZH-FanZTF(I-I) coshnZI—IJ sinh N,z

2 2 2 . .
- nz[(nl +k .)TF(H)cosh an + anISF(H)Slnh an sinh n,2

P

2] =0
+pDplk p) 55 (0 (1. 61)

At this stage discussion of the boundary conditions at the eurved
surfaces of the plate is appropriate, As menlivned belore, these conditions
must be such that the specificatio.n of two independent quantities reduces
the boundary terms in equations 1, 22, 1. 23, 1. 25, and l. 26, to known
factors. It appears to be impossible to achieve this by any choice of
nonmixed conditions, even for a fluid plate. If the kernals Co(k, r, b),
Ql(k, r,b) had been used, no basic change in the situation occurs. This
is not a characteristic of the geometry at hand since, as shown in
Section III, the same difficulty arises with slab problems. It is also a
feature of the rod solutions given by Skallak (2), Folk et al. (3), and
DeVault and Curtis (S)o

On using a transform technique to suppress a spatial variable,
which has boundaries associated with it, certain‘nafurally ocecurring
boundary terms of the mixed type arise, From this it would appear that
boundary valge problems of the nonmixed type, involving two or more
pcrpendicular boundaries, are intractable under a multi-integral
transform approach, This is further evidenced by the fact that a multi-
integral transform technique is essentially a separation procedure and,
as Mindlin { (16), page2.55) has pointed out, these procedures have so far
failed to yield even the modes of wave transmission for .such problems

(though Mindlin and Fox (17) have given a set of discrete points and
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associated slopes for the modes of a rectangulé,r bar, for particular
ratios of width to thickness),

Another pdint of interest in this conunection is that dispersion
through the characteristic lengths a and b will not be a feature of
anﬁ‘solutions obtained using the above methods, including possible
solutions to problems with nonmixed conditions, This is readily seen
on noting that a2 and b appear- only in the nonhomogeneous terms of
the algebraic equations which determine the A's and B's, and hence
will never occur in the denqminators (through the zeros of which dis-
persion arises) of the expressions for ﬁi and ﬁzo, as given by equations
1. 54, 1.55, 1,57, and 1; 58, Thus if it were found from some approxi-
mate theory that solutions corresponding to nonmixed conditions were
dispersive through a and b, then this would be further evidence that
the above method is basically unsuited to problems of the nonmixed type.
The solutions obtained by Kromm (11) and Miklowitz (12) for an infinite
plate with a circular cavity are nondispersive (intrinsically), since they
were obtained using the plane-stress theory. No work in this connection
has been done using higher order approximate theories, such as those
given by Kane and Mindlin (18), and Mindlin and Mecdick (19}, for compres-
sional waves, and by Mindlin (20) for flexural waves.

Sets of mixed conditions on the cylindrical surfaces of the plate
which do satisfy the basic requirements will now be described. Four
cases will be given, corresponding to compressional and flexural waves

in finite and infinite plates.

Case (i). Compressional waves in a finite plate,

The conditions specified are:
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Ccrrzzo, r=a

. : {1. 62)
Cur:U’ r=>b ' '
Cgrzzo‘ T=b

where Uo is a constant, {(t) is an arbitrary function of t, and the dot
denotes differentiation w.r.t, t. The conditions at r = a correspond
to the plate surface being in lubricated contact with an expanding mass,
whereas the conditions at r = b correspond to the plate surface being
in lubricated contact with a rigid layer.
Taking the Laplace transform of equation 1, 62, and using equations
1.12 and 1. 21, gives:
_— Uo...-...—
Cur=7p—f(p), r=a

0
Bz Cur+

55 iy =0 x=a

It
=]

9
dz C'r " Fr Cz

Ii follows from the first and third of these equations that

-g’;cﬁr:O, r=ab

and so an equivalent set of conditions is

s T = a (1. 63)
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c%r ~ 0
, r=h (1. 64)
2 a2 T -0
8z C'r  9r C'z ~
Substituting these conditions into equations 1, 22, 1.23, 1. 29, and

1. 30, and noting that Cl(k, a,a) = 0, gives:

Crz T F Bz c¥r T kk cYz T [r Cuzcl(k’ T a)}b
T —(x+-z y L 2%+ ak.5l- xaE??( ) C (K, a, a)
Czz B8z clz C'r P Pl egi®e @y

2 2
C 3 C -
_ d 8 - s " 9 - |
LC(Z) T2 {’_r 5r CY%r * (1 T2 )r 9z CYz Jcl(k’ o a)}
cg U cq - [+]

U
O —
k ey f (p)CO(k, a, a)

nln
[ ¥ ] Fa Pl oV

Mc(z) - k[r C"Gzcl(k, r, a)‘Jb

These equations still contain unknown terms but these can be eliminated
by choosing k to be a root of Cl(k’ b,a) = 0, showing that the specified
conditions do satisfy the basic requirements. With this choice of k,

and noting that ({21}, page 79)

Co(k, Qg a.) = - —TFI-{E

the above equations rednce tn:

o ] 9 1 =0
CTrz = ¥ 3z c%r bk cYz (1.65)
Z\U f(p)
~o 9 *=o0 =1 0
C%z ~ (M + 2p) 9z C'z * chur * rkp (1. 66)



Mé(z) =0

Inserting these values of L, and MC into equations 1. 33 and

C
1. 34, and using equations 1,27 and 1, 37, it is found that

. 2U _f(p)
=1
Cur) = - —°Z—~ (1. 67)
pt. wn,p
- 0'
a =0 (1, 68)
G )pt,

Substituting these values into equations l. 46 and 1,47 gives:

S.=0 (1. 69)

(1. 70}

Case (ii). Compressional waves in an infinite plate.

The conditions at + = a are assumed to be the same as Case (i).
Instead of boundary conditions at r = b, the following "radiation" con-
ditions, which stem from the hypérbolic nature of the governing partial

differential equations, are assumed:
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T Cur-Co(k, T, a)

L Cl(k, r, a)

H
Q!
Hio’
Q

U Cl('k, T, a)

Lim | -0, t=0, -H=z=H (1. 71)
=00 cYy Cl(k, r, a)

=

L2

a Co(k’ r, a)

,_,

QQ Q> [uil ¥

n—gtm Nl"‘” N|°’
@)

cYy C.O(k, T, a)

Using these relations it is seen that equations 1. 67 through 1. 70 are ob-
tained again, the only difference between the two cases being in the

interpretation of k, a fact which only becomes important when the spatial

transforms are being inverted,

Case (iii). Flexural waves in a finite plate.

In this case the following conditions are specified:

r
FOpp = O‘OQ(t), r=a
(1. 72)
oy T 0, r=b
O = 0, r=>=

where o, is a constant and Q(t) is an arbitrary function of t. The
conditions at r = a correspond to a rigid insert, with rough contact,
being moved perpendicular to the plane of the plate, or to a transverse
| ring load being applied at the plate surface {(at r = a), with the cavity
replaced by a rigid insert, The conditions at r = b correspond to the

plate surface being in lubricated contact with a rigid layer.
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Taking the Laplace transform of these equations, and using

equation 1.12, gives:

From the first and third of these equations it follows that

—E?-Z—Fﬁr=0, r=a,b

and so an equivalent set of conditions is:

7 r
. r=a (1. 73)
g = _ o=
"E,—Z—FHZ—TQ(P)
Fur=0
r="h {1, 74)
9 - _ 8 = _
Bz FYr = B By, = O

Substituting these equations into equations 1. 22, 1. 23, 1,29, and

1,30, and choosing k to be a root of Cl(k,b, a) =0, gives:

&z] _ _Q_ .c:*.l_ K =
Forz ~ M 5z 7% ~ HEFY,

=0 d =g o]
ngz:(x-I-ZH)EFuz{-)\kFur
L.=20
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5
2c o _Q(p)
z

1'rp.cdk

Inserting these values of LF‘ and MF‘ into equations 1.33 and 1. 34, and

using equations 1. 28 and 1. 36, one obtains:

\

7

u =0 (L. 75)
F r)pt.

U 2o _Q(p)
Fu-z) - _2__2_ (1. 76)

pt. Trpk’r]l

and hence, from eguations 1.48 and 1. 49,

Zcoﬁ(p)
SF = v s (1. 77}
TI"T'|1
Tp =0 (1, 78)

Case (iv}. Flexural waves in an intinite plate.

In this case the conditions at r = a are assumed the same as in
Case (iii) and the radiation conditions given by equation 1. 71, with .
replaced by Flp €tCes replace boundary conditions at r =b, Heuce
equations l. 75 through 1. 78 are again obtained.

In all ofthe above cases the previously imposed symmetry require-~
ments are satisfied by the assumed houndary conditions. Although uni-
formity of these conditions across the thickness of the plate has been
postulated, in common with the analogous rod and slab solutions (though
in the semi-infinite rod problem treated by Curtis and DeVault (5) non-
uniform conditions are specified at the rod end), this restriction is

unnecessary. For instance, in the compressional case, the conditions



cY = Viz)f(t)

C%zz 0
where V(z) is an arbitrary function of z, could have been specified.

These conditions are equivalent to

u, = V{z)f(t)

C

9 ~ dVv _
Ecul‘-f(t)'d_z r=a
8 _ av

Brcly =~ H g

The rest of the calculations then go through as before, A similar
situation exists for the flexural case,
Mixed problems of the pressure shock type for the above

’geomet'ries cannet be solved using the present technique, even though
similar slab problems are tractable, as pointed out in Section III. As
shown there, the slab solutions to longitudinal impact type problems
are obtained by appropriately applying Fourier sine and cosine trans-
forms to the governing equations of motion. These sine and cosine
transforms can be interchanged and the resulting expressions again
contain only two transformed variables, but the boundary terms are
now of the pressure shock type. Thus it appears that the difficulty
with the present geometry arises due to the lack of interchangeability
of the zero and first order Ilankel transforms, when applied tu the
axially symmetric equations of motion, A consequence of this is that
no information about the non-mixed pressure shock problem can be
obtained from the corresponding mixed problem, as opposed to the
semi-infinite rod and plate equations.

It should be noted here that the equivalence of problems of
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transient compressional waves in an infinite flat plate of thickness 2H
to those for an infinite [lat plate of thickness I—I, lying on a rigid half-
space with a lubricated interface, as established by Miklowitz (10), can
also be shown to be true for the present geometries, The transformed
boundary conditions for the rigid half-space problems are {taking the

origin of z at the interface):

o _ ) _ _

Clrz = C%z ~ 0, z=H {1.79)
.ﬁ.l s

CTvz = Yy 0, z=0 {1. 80)

The boundary conditions on the cylindrical surfaces are the same as
before. From Equations 1, 38, 1.39, 1,65, 1.67, and 1..68, it follows that
équation 1. 80 is identically satisfied. From equations 1,38, 1,39, 1. 65,
1.67, 1,68, and 1. 79, it follows that equations 1. 54 and 1. 55 are obtained
again and so the problems are equivalent,

With the convention on k -given above, the solutions to both finite
and infinite plate problems can be developed simultaneously. Substituting
equations 1. 67, 1. 68, 1. 69, and 1, 70, intn equatione 1,54, 1,55, and 1, 60,
gives!

=1 ZRUOpf (p)FlC(k, P, z) ) ZUOf(p)

- 1. 81)
ct 2 2 2 (L
) mucn; Delk, p) PN

~0 Zkapf (p)FZC(k, P, 2)

cy, = 53 (1. 82)
THe yM5 Dlk, p)

=0 _ AU PIRIF; (k p,2) | 83

CCrz 2 2 (1.83)
me g, Dalk, p)

where
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22 , i .
Flc(k, P, z) = (n1 + k" )sinh an cosh n, %z annzsmh nzH cosh Uk

(1, 84)

. . My 2 2 .
cm(k, P2} = ?.k‘qzsmh 'qZI-I sinh nlz - -1—{—(111 + K )sinh nll-l sinh 'r]zz

{1. 85)
2
F, {k,p, z} = 2kn;n,sinh 1, H cosh 7,z -E—%(n?‘+k2)sinhanoshn z
ey 172 2 1 k 1 1 2

(1. 86}

Substituting equations 1,75, 1. 76, 1. 77, and 1. 78, into equations 1.57,
1. 58, and 1. Al, gives:
) ZG‘OkQ(P)F-’ F(k’ P Z)

~1 .
- L. 87)
F 2 (
g mn, Dk, p)

Zcrok(_l(p)FZF(k, D, 2) Zcroﬁ(p)

=0
_ + (1, 88)
Ol 2 )
z TNy Dp(k, p) TRk
=0 ZD‘OkQ(p)F3F(k: P Z)
CFCzz T 2 (1. 89)
Ti'IJ-ﬂl DF(k: P)
where
F. {k, p, z) = 2kn, sinh n. H sinh z—n—l( %+ k%)sinh n.H sinh n.z
1p\&e Ps Z) = axmysinh Mz - My inh Myt sinh My

(1. 90}

- _ .
FZF(k’ P>z} = (nl + k™) sinh nzH cosh 2z annzsmh an cosh n,2

(1. 91)

2., .2, . T 2 . S
F3F{k, P>z} = 'nl('q1 + k™)sinh n,H sinh nyz - 2mM, sinh n,H sinh 5%

(1. 92)

On using the inversion formula for the Laplace transform
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{McLachlan (22} }, and the inversion formulas for the Hankel transfo rms
given by equations Al. 7 and AL, 10 (with n =1, a = a, f = b), A2.9 and
A2,14, then the inverses c_orre,sponding to equations 1,81, 1,82, 1.83,

1. 87, 1,88, and 1. 89, may be written as follows, on noting that here, in
the inversion of the spatial transforms, the precise nature of k must

be taken into account:

2.2
- kSIS(k,B)C (K, T,
Y e i s i
O

2 2
70 (kja) - 1] (kjb)

: . 1 ) KpFlc(kJ: b z) 1 T pt
Bri- pegn, (k) Dtk p)  pny(k)
(1. 93)
_ 3.2
B .- 'rrUO?\. kj Jl (k'jb)cl(kj’ T, a)
or C'z 2 2.0 v 2 .
MCy ; J]. (I\ja) Jl (kjb)
pF {k.,p,z) E
% -»1-_5‘ 2C ] T(p)ePt ap (1. 94)
™ JBr Lnl(k.)D k., p)
1 12V ey P
3.2
. . nKUO Z kj 'Il (kjb)C](kj, Ty a)
or C zz ~ 2 2 _ L2
beg 5 Iflsa) - ITlcb)
pF, k., p,2z) 3 _
X é}ﬁy [ e Lo J T(p)eP™ dp (1. 95)
\ Bry nz(kj)Dc(kj,p)
12 372 (k b)C. (k )
0 =% S S it A
F'r ™ 13 A Y-
; I (kja) 1] (kjb)
- Fonk,pe2z) 7
x | [ 2 | B! ap (1. 96)

- 2
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3.2
o K/ () C (K, 7, a)

2 2
.{1 (kja) - .]'1 (kjb)

k. F, (k. p, z) -
Zi'i S. [ 7 22 - ; J Qlp)eP* dp%

{1,97)

4_2
i} T, kj Jl (kjb)cl(kj’ r, a)

2 2
Jl (kja) - Jl (kjb)

: F (k.,p,z) -3
XS_ZlTS [ 23F J Jﬁ(p)ept'dp£ (. 98)
[ =™ B L nf(<)D (k. p)

where Br, denotes the well-known Bromwich contour in the right half
of the p-plane, and it is to be noted that possible difficulty with the
constanl Lerm in equation Al. 7 has been avoided by inverting 8uZ/6r

and 8e_ /Br instead of u_ and e .
zZ % ZZ

Infinite plate.

ZUO oy kCI(k, r, al

u =

Chrm Jy le(ka.) +Yi?'(ka)
ApF, .(k, p, z) < ‘
xd =L g 1o - | TpePtap! dak (L. 99)
Yy 2wl Br CZ ZD (k, p) 2
AN o kC (ks P a)
4 = oS‘ o ,
C'= ch o Jiz(ka) lle(ka.)_

pF {k, psz) 7
321‘. g [ S 2C J_f(p)ept dp %dk (1. 100)
m Br:[ nzDC(ks P)
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2\U kC_(k, r, a)

w
Czz wpcz o} J'lz(ka) + le(ka)

d
. 3
pF (k-’ ps Z) i —

X {Z'lrri X [ 3zc J T(p)ePt ap | dk (1, 101)

2
2(70 w0k Cl(k, r, a)

U = = ————

Fr T Jf(ka) +Y12'(k_a)
: > F _(k,p,2z) 7
x —1—5 =S | Bp)eP ap bax (1.102)
2mi B ZD (k, p)
- MYt P
W Zcro oo kCO(k, T, a)
Faz bl o le(ka) + Yiz(ka)
kF__(k, p, =) T
X I.S 23 - | Bp)ePt ap { ax
2mi Br nzD (k, p) an
1 MYpYP 1
(1.103)
2a Q0 kZC (ks r, a—)
e =-—2 =
Faz o Jg le(ka) +Y12(ka)
F, (k,p, z) T
X {ELX [ 3 JQ(p)ePt dp} dk (1,104)
™ “Brl WD L(k, p)

It has already been noted that transformed expressions for the
radial strain and stress cannot be written. However expressions for
these quantities can be obtained on differentiating through the integrals,
or series, as the case may be, in equations 1,93, 1.96, 1.99, and 1,102,
or, as done by Eason et al. (23}, using equation 1.1 and integrating through

the integrals. Expressions for the strains can be of importance, since
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many of the experimental devices in current use measure strains, or the
sum of the strains. Formally differentiating through the summation and

integral signs, the following expressions are obtained for the radial

strain:

Finite plate.

2.2 g .
kj le (kjb) g Cl(kj, r, a}

=qgU L
Crr - "o 2 )
3 ‘T_l (kja] - Jl {kjb)
1 S' ; XpFlc(kj:P: z) i T pt
“yEm )L | Tz 201D ooy oo J“P’e dp
IR A Lt L A PASS

(1.105)

3.2 )
o ijl (kjb) 57 Cl(kj’ r,a)

z Z
3 (k;a) - 3 (kjb)

F (ks P Z) _
X {"é?lr'{ S [ 211? . } O(p)eP? dp} (1.106)
Br- ny (kj)DF(kj, )

Infinite plate.

)
. ?.,UO fa's) k—a—r- Cl(k, r, a)

o le(ka) + Yf(ka)

Crr T
T

) J\Pr‘ (%, P, z) S
x‘——»l.-g [ e - [FiprePtap § ax
lZWl ap 2D (k \ 2

1M d' 2V P Pﬂz

(1.107)
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2 9 |
20‘0 o k -a-fcl(k, T, a)

J}_Z(ka) 1 Yf(ka)

1 S‘
X ¢ =
{2171 B

Forr T

©F (K p, )
[ bkt ]_Q(p-)ept dp} dk (1,108)

2
r;- My Dpdk, p)

1.2, EXACT INVERSIONS

Reduction of the solutions to algebraic expressions can be
- achieved by inverting the Laplace transforms. Since the Laplace inver-
sion process does not hinge on the nature of k, it can be done for both
finite and infinite plate problems simultancously., Use of the convolution
t_heorem is planned and so the integrands are separated into two parts,
viz., f{p) and Q(p) and their multipliers (the term in the square
brackets in equations 1, 93 through 1.108), and inversion of these pai‘ts
is undertaken separately.

Provided certain conditions are met, the Bromwich integrals
- yield so.lutions which are identically zero for times less than the arrival
times of the wave fronts, and, for later times, representations of these
Bromwich integrals can be obtained in forms more readily evaluated.

These conditions are:

(i) Lim (integrands) = O(p—‘i), € > 0, uniformly in arg p and =z.
p{—o

(ii) Singularities of the integrands must lie to the left of the Bromwich

contour.

Henceforth it is assumed that both T(p) and Q(p) satisfy these
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conditions, so that they invert to £(t) and Q(t) respectively., On ex-
panding the multipliers of f{p) and Q(p) for large Ipl, the order
condition (i} is found to hold in all cases. Inspection of the integrands

shows that possible singularities are branch points at p = + ikc , * :'chS

d
{the zeros of m and 1']2) and poles at those values of p which are
zeros of the denominators, i,e., at the zeros of nl, ”r]z, Dc(k, P

DF(k, p)e The point p = 0 is also examined, for the two-fold purpose

of determining whether it;,is—?sing"ular or not, and to obtain the long-time,
or static, solution.

Since the integrands are even functions of ’r]l and nz, no branch
points arise in the present problems. For the compressional case,
drawing upon the related rigid half-space problem, this is in agreement
with Jardetsky's findings ((24), page 244) that in an n-layered half-space
all the branch line integrals vanish except those corresponding to the
nth layer, i.e., to the underlying half-space, which in this case, being
rigid, does not contribute to the solutions. The function [T (p)] -1c-§ll‘ept
" has a simple pole at p = 0 and its residue there is ZUO/TrkZ. The other
functions are well behaved at this point, Expansions in the vicinity of
the zeros of ] and gy show that no contributions to the solutions arisc
from these points, It is shown in Appendix B that, for real k, the zeros
of Dc(k, p} and DF(k, p} are complex conjugate, pure imaginary and
simple. Exceptions to the proof given there were the points p = 0,

p = o, and the zeros of n; and Ny Note that all these exceptions have
been discussed above,

The nature of the zeros of DC(k, p)} and DF(k, p} has usually

been deduced using the physical arguments that no multiple zeros, or
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zeros with positive real parts, are permissiblé, since the corresponding
portions of the solutions increase with time; zerus with negative real
parts are excluded on the grounds that the basic physical model has no
dissipative mechanism, Denoting the zeros of Dc(k, p) and DF(k, p)

by p == imnc(k), p= iwnF(k), respectively, and substituting thesc

- expressions into equations 1. 56 and 1. 59 set equal to zero, gives:

2.1 % 2 _Wl__ 2.3 W21 2 2
tanh[ k X nc(k)] 4k k 3 w C(k)] [ " wnc(k)]
s - - =3 . d (1° 109)
tanh{ k* -5 w2 ()] 2H [2k2- % w2 (k)]
C C
d s
and
" tanh] k%~ L (k)]aH [ 22 L w2 9
C C
5 — = 2 - (L.110)
: 2 1 2 i 20,2 1 1 1 1
tanh{ k“- — wnF(k)] H  4k“[k"- ~5 (k)] [k - =3 (k)] 2
Cd CS cd

which are the well-known Rayleigh-Lamb frequency equations for sym-
metric {equation 1.109) and antisymmetric (equation 1.110} straight-
crested waves in an infinite flat plate of thickness 2H ((24), page 283).
These equations have recently been studied in great detail by
Holden (25), Mindlin and Onoe {26), Tolstoy and Usdin (27), Sherwood
(28), and others. These studies have shown that there are an infinite
number of wnc(k) and wnF(k) versus k branches, or modes of wave
transmission. A few of the symmetric modes are shown in Figure 2,
They have also shown that there are real w's associated with complex
k's, but these need be of no conccern in the present problems, since the

Hankel inversion formulas restrict k to be real. However it should
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Fig. 2. Symmetric wave frequency spectrurﬁ {c = .31,
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be pointed out that in the scheme of inversion where the spatial trans-
forms are inverted first, given by Lloyd and Miklowitz (29) and others,
use may be made of these complex branches to afford different repre-
sentations of the solutions, |

The residues corresponding to the zeros of DC(k, r} and DF(k, p)
are now evaluated. Then, using Cauchy's theorem and residue theory,
the terms in the square brackets in equations 1. 93 through 1,104 are
inverted, the results being in the form of infinite series. Using these
results and the convolution theorem of the Laplace transform, equations

1. 93 through 1,108 may be written:

Finite plate.

2

' K I (k B)C, [k, T, )
ou, = U Z J J 123
T (o]
Tplisja) - Tp(k;b)

t
2N 1
X {S.t f(t_g) li_p" 1c(k‘]’ g: Z) - ;{'E j1 dg } (1" 111)
W J

32 |
ZWXUO Z kj Jl (kjb)cl(kj’ r, a)

o = -
5r C%z B

2 2
F .}'1 (kja) - Jl (kjb)

t
X {S.t He-£)B , (e, £, =) At } (1.112)

W

3.2
. - ZTrKUO Z kj Jl (kjb)Cl(kJ., r, a)
1

Q?lq;
L]
O
N
N

2 2
Jq (kJ.a) - I (kjb)

X {S': He-8)8, ok, £, 2) b (1.113)

W
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k.J(kb) C(k,r,a)

Corr © 32(k.a) - 7 2 (k. b)
1% 1Y

t T 2n 1
X { St f(t-£) { 2 g (ki £, 2) - % } at } (1, 124)
U J

> ‘
211-c 7 ijl (kjb)Cl(kj, r,a)
A

e 2 2
T I lka) - 37 (kD)
X{St Qlt -6, (k.. £, 2) at }
. K » 2 (1. 115)
W
5 21TC§0‘0 k4J2(k b)C (k .y Iy a)
g;FuZ: 38 Z (k)'-.T(kb)
PR R R R
X{ S.t Qt-£YO ., _(k., & }
-t > <j, , 2} d§ (1. 116)
2 4.2 '
‘gﬂ e X ZTTCSU'O Z kj .;Tl (kjb)Cl(;cj, r, a)
I ZZ 1 S oy
T Usa) - 9Tlkb)
X ‘[ S.t Q(t-£)O,, (k. £, z) dE } (1.117)
t 3F J 3 [
W
2 3.2 )
. - Z.Trcsr:rO Z ijl (kjb) 5 Cl(kj’ r, a)
Frr o

2 2
F Jl {kja) - Jl (kjb)

X {S Q-6 gk, €, 2) dt } (1. 118)

where
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(k), z] cos wnC(kﬁ

(k,t,z) =
¢ ZJ[kc

@mF(k, t, =)

o

n=1

F
mF

Wl LNk, i (k)]

[kiw

(k)z] sin @,

,m=1,2,3 (L119)

F(k)t

[ k"¢

22

(k)]

F(k)NF[ k, i

p=iw ~(k)

r C C
J cosh & H cosh 8 anH
C

C cosh 60
n

dn

I sinh §°
51

H

&
dn | ginh 6 5 sinh 6C 1
2 STL dn

]

C \ C
e Jcosh SSnH sinh GdnH

(1.121)
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| op.
Nglk o plk)] = (15 =)

p=iw, (k)
2
H (Y';F“) - 4k26§‘“'q . hof Hsinhs' H
2. F 2 sih dn st sn
c 6 c
s sn d
Y 41° 6 =
[ ( sn) Jcosh SF H cosh 6 H
dn
c 6 c
=
6F F -
2 dn sn F . F
- 4k ’: 5 + 2 i3 .Jcosh SdnH sinh SSnH
c & b
s sn Ca dn
4 F F
+ 5 Yan cosh 6 H sinh Sd H (1.122)
CS
2 1 2 )
Vop = [ 2k™ - - wn(k)] (1.123)
s
2 1 2, %
— - 2 Y
6sn =k Cz n(k)] (1.124)
s
2 1 2, .43
- 1 2
Gd.n ={k 5 Il(1<)] {1.125)
“d

and tw denotes the arrival time of the wave front at the station (r,z).

Infinite plate.

2U kC, (k, ¥, a) 't | X i
v, = ._};.Egj 4 raa. {y f(t_g)[%xplc(k,g,z)-izJdg}dk

.]'1 (ka) + Y1 {ka) t

(1.126)

4\U oo kC (k,r,a)
o S’ o

t b
c'z e { S.twf(vé)(bzc(k, £,2) d§ } dk  (1,127)

o le(ka) + le{ka)
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AU S\oo kC (k r, a} {S’ £(t-£) 3c(k g,z)dé}dk (1.128)

Cezz ™
b J] 2(ka) + Y, 2(ka)

Cérr = S' Jz(kaC (k r, a) {g f{t- {;){ lc(k,{;,z) —-—-%jldg}dk

.

“
u_ = - . g Qt-£)0, (k, £, z)dE } dk  (1.130)
e ™ Yo ri(ka) + le(ka) { t, L¥ }

4020- o KkC (k r, a)
s 0

S‘ Qt-£)6 F(k £, z)dg}dk {1, 131)

u = -
Frz s oJ(ka)+Y{k)
2
4c gy S@O kC (k, r,a) i S't
=- =292 —2 Qt-£)0, (k, £, 2z)dE T dk  (1.132)
Fozz Bl o lefka) +Y12(ka) { t _3F i }
2 ) -
4cc  poo k— C (k rya) g
e = -— Oy 3r Qt-£)6 _(k,&,z)dE rdk  (1.133)
Frrr ™ Yo 1f(ka) +Y1(ka){ t, ¥ }

The above expressions are quite general but they can be made
more general still by working with certain classes of anisotropic media
which are transversely isotropic, the axis of symmetry being pe rpendi-
cular to the plane of the plate. Morse (30), Eason {31), and Anderson
(32), have recently worked with such media, and some slab problems
involving them are discussed in Section III. The transverse isotropy
indicates that axially symmetric motions are possible; it can readily be
shown that the Hankel transform pairs introduced above are applicable
to the egqualivns of motion of such materials,

Further generalizations can be t;btained by including layered

media of the type considered in Appendix B, and linear viscoelastic
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solids can be treated on letting X and p be certain linear operators
involving partial derivatives w.r.t. t, as illustrated recently by
Miklowitz (33). However generalizations obtained by relaxing the con-
ditions of a;dal symmetry are not readily forthcoming in that appro-
priate Hankel transform pairs do ﬁot appear to exist, even for plates
without the cylindrical boundaries. The trouble lies in the fact that the
separation solqtiuns ol the elaslic equalions of mutivn in cylindrical
coordinates involve Bessel functions and also their derivatives, when
there is a 0 dependence (see, for example, Reference 5), This fact
would have to be reflected in the kernals of any possible transform pairs.
A possible approach in such cases would be to suppress the z wvariable
instead of the r wvariable, by means of appropriate .finite Fourier sine
and cosine transforms, thereby having £0 Work with mixed conditions on
the flat surfaces of the plate.

Other restrictions on the generality of the solutions occur because
of thé given form. It is known that the form of solution given above is
convenient only when fér~£ield information is required. If near-field
dala, or data on high (requency narrow-bandwidth pulses, is sought,
then, in the former case, ray theory and Cagniards inversion technique
give more suitable representations (for restricted times), as shown
recently by Rosenfeld and Miklowitz (34), whereas, in the latter case, the
methods given by Redwood ((35}, Chapter 9) would be more readily ap-
plicable.

Attention will now be restricted to a particular problem in com-
pressional wave propagation in an in:?inite plate. If the longitudinal impact

problem is chosen, i.e., if f(t) in equation 1, 62 is chosen to be the
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Heaviside step function, then it is found from fhe resulting solutions
that the radial displacement and strain grow linearly with timc., This
result differs from Skalak's rod solution (2), in which the axial dis-
placement grows with time, but the axial strain remains bounded., A
physically reasonable problem, with somewhat simpler algebra, is
obtained on taking f(t) to be the Dirac delta function, &(t), which is
equivalent to specifying a step normal &isplacement at the inner
cylindrical surface of the plate,

Substituting f{t) = §(t) in equations 1,126 and 1,127, interchanging

summation and integration, and using the result {((36), page 352)

dk = - '!Tan
o K[ I2(ka) + Yi(ka)] 2"

S»oo Ch(k’ r,a)

one obtains:

0
'—.ﬁ.
|2

+

4 i—qgkak MW (0] 'F, [k e ~(K), z] k)t dk
o ), 1( s, a n ) 1ol ke iw ~(K), 2 coswnc()

n=

SRS

ot

(1.134)

[0 a)
Cuzzfy_\z—:

o%)
] -1 .
5 — S:) kCO(k, r, a)] Wn(k)] FZC[ k, 1c.onc(k), 7] cos mnc(k)t dk

n=1

(1.135)
where

W_(k) = [le{ka) + Yf(ka}])[kzcé - wﬁc(k)] N kio (k] (1.135a)

and where it is to be understood that cYn and c4, are zero for times
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1ess.than the arrival tlme of the wave front. Note that the first term on
- the right hand side of equation 1,134 stems from the evaluation of the
residue at p = 0, and so is the long-time solution.

A discngsion of the-possible singularities of the integrands in
equations 1,134 and 1,135 is given in Appendix C; it is shown there that
the integrands are well behaved throughout the region of integration,

It is.also shown (formally) there that cl, and ch,» as given by these
equations, satisfy the differential equations and the boundary and initial

conditions,

1.3. FAR-FIELD APPROXIMATIONS

In general computation directly from equations 1.134 and 1.135
presents many formidable numerical difficulties, particularly if near-
field information is required. For inputs with an arbitrary time-depend-
ence, mlany propagation modes are excited, but, as yet, no theory exists
which predicts the relative strengths of the Various modes. Even if the
input is such that only one mode is excited, the numerical problem
invélved in calculating the Fourier Bessel type integrals in the solutions
can still be quite complicated. For the near-field, approximations to
the integrals are not very successful, beccausc of the difficulty in giving
a physical interpretation to the results, In fact, as was mentioned
earlier, the form of solution given here is not a convenient representa-
tion when data close to the source is required. .However, for the far-
field, the disturbance may be thought of as having separated into an
aggregate of wave groups, and then group velocity ideas can be employed

in physically interpreting approximations to the integrals.
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Prior to approximating.the integrals, the solutions will be written
in terms of certain dimensionless variables, so as to utilize some recent
similar work of Miklowitz {10) on a ‘related problem. Also, the affix C
will henceforth be deleted, since the rémaining work in this section is
solely concerned with equations 1.134 and 1.135. Letting r = pH, z = LH,
W, = CS/H, T=wi, 0,2 = cé/cz, R =a/H, k= K/H and mn{k) = wlsﬂn{K‘;,
these equalivans may be Written*:

w(l-_Zo‘)up r(l-20) R

80~UO - 8¢ P

+ i -g'co "'1 . N
)UK e RIW, (K] [K, 50, (K), L] cos @ (K)7 dK
o T

n=1
(1.136)
'rr(l-Zo’)uz; R oo -1 ‘
— g = 25 C (K, p, RIW_(K)] "' F,[K, if_(K), t] cos ©_(K)T dK
o ao1 ©
(1.137)
where
¢ = Poisson's ratio
C,(K, ps R) = J,(Kp) Y[{KR) - J,(KR)Y,(Kp) (1.138)
CO(K, Ps R) = JO(Kp)Yl(KR) - Jl(KR)YO(Kp) (1.139)

: .
The notation has been chosen to coincide as far as possible with that
used by Miklowitz, Note however that, because of a difference in choice
of origins, ¢ here is equivalent to (1-{) in his work.
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Fl[K, 1Qn(K), ¢l = b sin Kk__cosh den{; - 2k k, sinh dencos Kksni;

(1.140)

H

FZ[K’ zﬂn(K), ¢] 2k 4 sinh Kk, sin Kk _ ¢ - kdnq.lnsln Kk_ _sinh Kk, L

(1.141)
a2 2 2.2 .2 .
W,(K) = [J/(KR) + Y(KR)[K"a® - Q(K)N[K, i _(K)] (1, 141a)
% 3 '
. _ n . .
NI K, 1Qn(K), L] = [ > - 4kdn JS-LQ Kksnsu:Lh den
ak
dn
2 _
4"lJJn . n 41<sn F
+-¢" cosh Kk sin Kk__ - [-'1%_ +—= J cos Kk__cosh Kk,
- sn a
4 ksn ' kdn '
- 7 ( 5 - ) cos Kk_ sinh Kk, (1.142)
a kd sn
n
22(K)
l_IJn = 2.— KZ | (1.; 143)
Q2(K) {1/2 | ,
k= nz -1 (1. 144)
" _
QIZI(K) -.1/2
kg, = | 1- -7;{-7 J (1. 145)

The following asymptotic representations of equations 1,136 and
L.137 for large p are obtained on replacing the Bessel functions con-
taining p by the leading terms in their large-argument asymptotic

expansions ((2l), page 85):
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'rr(l—Zcr)uP _ m(l-20) R
SO'UO 8¢ p
~l/ZOO. oo} , ' _
+ ( }35) ZSO [Y,(KR)cos(Kp-F) - T (KR)sin(Kp- 55 )] [VK w_(K)] !
n=l
X F[K,iQ_(K),{]cos Q_(K)T dK + olp3/2y (1.146)
w(l-2¢)u 5 1/2 & pro - " 1
__%.ﬁ_;._— = ("1?5) Z SO {Yl(KR)cos(Kp-Z) —JI(KR)sin(Kp~Z)][\fK"Wn(K)]
=1
X FLiK, i (K),{]cos Q_(K)7 dK + 0(p'3/2) (1.147)

That these are asymptotic representations can be seen on noting the
theorem ((37), page 16) which states that the asymptotic expansion of

an i.nt.egral containing a large paramctcr can be obtained by replacing
the integrand with its asymptotic series in terms of this parameter,
providing the resulting integrals exist. Note that it has been assumed
that p is so large that the suitable asymptotic form is always that for
large argument, even when the order n of the Bessel functions gets
large. This is not a necessary assumption since representations of the
Bessel functions for large n, and transition regions, can readily be
incorporated. However, since attention will finally be restricted to the
lowest mode, this point will not be enlarged upoﬁ here, Using arguments
similar to those given in Appendix C, it can be shown that the integrals
in equations 1.146 and 1,147 do exist, and hence the above procedure is
valid. The only difficulty which arises is that, for the lowest mode, the

integrand in equation 1.146 behaves like (K)_l/2 at K =0, but this
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singularity is integrable,

The equations may be written:

m(l~2a)u . - x
g f - M2 R Ly 3am-Re>

8o p
o 2\/-11'p nei

o
>_<S‘ YI(KR)NK Wn(K)]'lFl[(K, iszn(K), t][exp ipf (K) + exp ipf_(K)] dK

&}

(o 8; ’ -
+(Im + Re)S. Jl(KR)[\fK wn(K)} lFl[K, ian(K), Lllexp ipf (K) lexpipf_(K)] dK
o .

+ 0(p~3/%) (1.148)
11'(1—20“)11; 1 =
— g - Z 2(Im + Re}
"o wa'rrp 11—'1.

© .
xS:: Yl(KR)[wa Wn(K)] 1F2[K, iQn(K), ¢l exp ipf (K) + exp ipf (K)] dK

- (Im - Re)j; Jl(KR)[{KWn(.K)-]—-;]FZ[K’ iﬂn, t]lexp ipf+(K) +exp ipf_(K)] dK

¥ o(p~3/2 | (1.149)

where
f, =K +'—; Q_(K) (1.150)
f =K - % Q_(K) (1, 151)

and Re and Im denote real and imaginary part, respectively. The
solutions are now in a form to which the method of stationary phase is

applicable,
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The principle of stationary phase ({38}, 'page 506} states that,
given two continuouns real-valued functions f(K) and ¢(K), then, for

large p,

@ 21 “1/2 T -1
S‘ ¢{K)exp| ipf(K)] dK = [W@T J ¢(S)exp i[ pf(S) + 7 sgn £"(S)] + O(p™")

@]

(1.152)

where the primes denote differentiation, and the points of stationary

phase S are given by

LK) g =0 (1.153)

From equations 1.150 and 1.151 it is seen that, for the problem

a;t hand, these points are given by:
£ _
Gg(K) +r =0 (1.154)

whe re

Cg(K) =2 _(K) ' (1,155)

is the group velocity. It is well known that stationary phase methodé and
the concepi; of group velocity are clusely connected, The signal is as-
sumed to consist of a series of wave groups, or packets, each travelling
with the speed (the group velocity) proper to the mean wavenumber of the
packet. At a given station p the major contribution to thc rcsponse at
time T comes from the group which has the speed p/T. The component
waves of this group are thought of as additively“interfering, whereas all

other waves are thought of as destructively interfering. - The validity of

these ideas hinges on whether sufficient time has elapsed for the initial
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disturbance to have dispersed into such a series of groups. In this con-
nection, recent studies by Whitham (39) on group velocity, from a
kinematic Viewpoint, can be of interest. The kinematic approach
utilizes the principle of conservation of wavenumber, and not only affords
further physical insight into the nature of group velocity, but, when used
in conjunction with the theory of characteristics, enables some estimates
to be made of the times for which the group concept is valid,

There is a continuous distribution of stationary phase points which
are solutions of equations 1.154. Since T and p are positive quantities,

the equation

S L
Cg(K) 0

=
can be satisfied only by those K's which are associated with positive
values of Cg’ and similarly, as noted by Lamb ((40), page 396), the

equation
+ 2=
Cg(K) = 0

can be satisfied only by those K's which are associated with negative
values of Cgn Tolstoy and Usdin (27) showed that portioné of several
modes of the Rayleigh-Lamb frequency equations have negative group
velocities associated with them (see, for example, the second mode in
Figure 2), and so these portions can contribute to the stationary phase
solutions. Mindlin ((26), page 25) has shown that the necessary and
sufficient condition for the existence of a frequency minimum, and hence
of negative group velocities, is that the E(v:u,rvanture of the mode at K =0

be negative, a condition which is often realized in practice, Note that the

phase velocities (c = Qn(K)/K) associated with these portions are positive.
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The presence of negative group velocities, though disquieting
at first sight, does not present any particuiar problems, and several
systems have been considered by Lamb (41), Crandall (42), and others,
in which they arise. The explanation given by these authors, and by
Tolstoy and Usdin, is that their essential implication is that the phase
and group velocities are oppositely directed, and so if the group as a whole
moves in one direction then its co;rnponent "phase" waves move in the
opposite direction, i.e., the component waves appear at the front of the
group and ciisappear at the rear, Biot's proof (43) of the identity of group
velocity with the velocity of energy transport, for dissipationless processes
in very general classes of media, applies here also. However this does
not mean that energy is being carried towards the source, as can be seen
from the fact that the component waves of the groups having ncgative
velocities have the phase [Kp + Qn(K)'T] . These waves are travelling
towards the source, since the associated phase velocity is positive,

Hence, using the interpretation of negative group velocities gilven above,
the group as a whole moves away from the source., An interesting point
here is that if an analogous situation existed for viscoelastic plates, then
the above explanations are not so apparent, i.e., the group velocity is

not necessarily the velocity of energy transport. The techniques discussed
by Brillouin {44) may be more suitable in this case.

Apart from the conceptual restrictions on equation 1.152 discussed
above, other restrictions occur because implicit in its derivation is the
assumption that the highcr derivatives are small in comparison with
£"(8), This is not necessarily true in the vicinity of points S, for
which f"(Sm) =0, i,e., near the maxima and minima of the group velocity

in the present case. For the case of 2 minimum (a case of practical
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- %
interest later), the following approximation (45) can be used:

.Sm+€
S ¢(K) exp i[KpxQ (K)T] dK .
o _ n

€
m

zﬂg(sm) =1/3

= wa(Sm){i WJ

Ail-v Jexp i[pS_2Q_(S_)r] + o(p™2/3)
(1.156)

where € is a small quantity, ¢(K) is a continuous real-valued function

of K, Ai{v) is the Airy function given by (38)

0
Aif{v}) = -l—ﬂ_Sl cos(%t3 + vt} dt (1.157)
&)
and
2 =1/3
v, = { TS J Lp2Q! (S )] (1.158)
' n'"m .

In the derivation of this expression it has been assumed that the
higher de rivatives are small in comparison with QxT(Sm)’ a point which
has been discussed by Pekeris (45) and Newlands (47). It has been termed
the "Airy phase" by Pekeris, and is of importance in that, as pointed out
by Ewing, Jardetsky, .‘and Press ((24), page 145), it becomes relatively
stronger with increasing distance from the source,

These approximations will now be applied to equations 1,148 and
1.149. Attention will be restricted to the lowest mode, the justifications
for which are discussed in Section IV. There are no frequency minima

in the lowest mode, and hcnce no associated negative group velocities.

%
This, and similar expressions, have also been discussed in considerable
detail by Cerrillo (46), using the techniques of saddle-point integration,
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Thus, for the lowest mode, the.negative travelling harmonic wave trains
do not contribute to the stationary phase s olutioﬁs. There is a group
velocity maximum at K = 0 and a minimum at K = SIn = 2, for

o = 0,31 (10). Hence equation 1,152 is not applicable at these points.
Note that K = 0 must also be excluded for the reason that the integrand
in equation 1.148 is not continuous there, as mentioned above., Taking
these factors iﬁto account, application of equations 1.152 through 1.158
to equations 1.148 and 1.149 gives, on considering only the lowest mode:

m(l-2c)u
ScU
o

2,(s) -1/2
R EN J

p _m(l-20)R , 1 [

-1 :

<3=5_-¢€
m

X[JI(SR)COS pf (S} + Yl(SR)sin pf (S)] + O(p-3/2‘), €4

(1. 165)
- Q.(S) -1/2
_m(-20)R , 1 1 -1 '
= "Bep p[sﬂﬁ—{'@)—lj LwyS)F L8, i€2,(8),L ]

x[Jl(sR)sinpf_(s,) - Y (SR)cos pf_(S)] + olp 373, s =5+ (L166)

Y [t ) om0
x { Ai(-v )Y (S_, Rilsinpt_(S_) - cos pf_(5 )]
+ Ai(-v_)J (S _R)[sinpf (S ) + cospf (S_)]
+ Ai(-v_l_)Yl(SmR)[sin pf (S _) - cos pf+(Sn;l)]
+ Ai(-v )38 R)[sin pf (S ) + cos pf+(b‘m)]} + in—l) ’

S -€=8S=8_+te (1.167)
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l-20)u, ] Q(s)  =1/2 4
e E'Lm-{'(_sﬂ__] [ wW{s)] “F,[s, i (s), ¢]

C

X [YI(SR)COS pf (S) - Jl(SR.)sin pf‘(S)] - O(p*3/2), €1< §5=5 -«
- m

{1,168)

LT Qs /2 q
F[s Ay | N1 E s 2,09), ¢

X[Yl(SR)sin pf {S) +J1(SR)COS pf (8)] +O(p'3/2), S=5 _+te (1.169)

K

,1‘5/6' Zﬂi(Sm)jl/& . 1/2
(3)" [mptsmn) 6

X {Ai(—v_)Yl(SmR)[sin pf_(Sm) + cos pf_(Sm)_I

o -1 .
[wis N "Fols i (s )¢l

- Ai(~v_)J1(SmR)[sin pf_(Sm) - cos pf_(Sm)]
+ Ai(—v+)Y1{SmR)[sin pf+(Sm) + cos pf+(Sm)]
_ Ai(—v_l_)J'l(SmR)[ sin pf+(Sm) - cos pf_l_(Sm)] } + O(p_7/6),

S ~—¢c=§8= 8 +e (1.170)
m m

whe re
V2 P (S_)
{'T |Qm(sm) H 1/2

(1, 171)

V:I: i
€ and € are small quantities, and fi(Sm) as are given in equations
1.150 and 1.151 (with n rcplaced by 1),

Representations of the solutions, which are valid in the vicinity of
K = 0, can be obtained using Skalak's method (2), given for the rod, On

the basis of the lowest mode alone, this region describes the earliest
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arriving portions of the disturbance--the so-calied head of the pulse--
since the lowest mode group velocity has ite maximum valuc at K = 0,
The procedure is as follows. The analytic behavior of the low frequency,
10ng wavelength portion of the lowest mode is first determined by finding
the corresponding leading terms of a series expansion, This expansion
is then inserted into the various integrands, and only the dominant terms
are retained, except in the trigonometric functions, where the first and

gecond terms are kept. Using the result (10)

C2,(K) = bK( - sK%), K<<l (1.172)
where
=1/2
_ 1 A0
b= C'_P/Cs = [ N2h J (1.173)
2 .2
= lo 2 (1.174)
ta

and following the above procedure, one obtains:

€

w{l-2a)u 1
(1-20) p _ ml-20)R , w(1-20)R 1 S‘ (K)—l/z

o]

SU'UO Scp 80‘\[9 ﬂ_372
. 2 . 3
x { sin [ K(p+pr)-K prs] +sin[ Klp-pr) +K7pro] |
- cos[K(p+[37)-—K3ﬁ'1‘6] - cos[ K(p-pT) + K3pr5] } dK,

0=K= ¢ (1.175)

1
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w(l-2c)u ' €
5 (1-20)R¢ 1 . N
8o, 1T8(1-:)1fﬁ -3/ 2 S‘O VK {SIH[K(P+BT)-K prs]

+ sin] K{p-pr)+K>pré] + cos[K(p+pr)-K> pré]

+ cos [K(p-pr)+ K pré] } dK, 0=K =e¢ (1.176)

The integrals appearing in equations 1,175 and 1.176 cannot be
written in closed form (even if the limits of integration are extended),
and numerical computation seems to be necessary. In particular, they
cannot be written in terms (ﬁ Airy functions and their integrals, or
generalizations of Airy functions ((48), page 380), as opposed to the
corresponding situation in problems involving straight-crested waves
{cf, Section 111},

Another possible procedure for obtaining representations of the
solutione near K = 0 will now bc outlined. The various functions in the
integrands of equations 1.136 and 1,137 (considering only the lowest mode),
except the Bessel functions containing p and the trigonometric functions,
are replaced by their limiting values (as K goes to zevo), and the limits

of integration in the equations are taken to be from 0 to € For large

1D
p and small K, such that Kp is large, C0 and C1 may be approxi-

mated by

C, K, p, B) = (KR)\3_(Kp) + O(K /)

2

C,(K, p, R) = (KR) 7 (Kp) + O(x™1/2)

On using the result (21)

.
I (z) = - g exp i(-n0 + z sin 0) do

-
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integral representations of the Bessel func.tions-are then inserted into
thc.intcgrands, and the order of integration in the equalions is inler-
changed, The inner range of integration (0 to 61) can then be extended
to infinity, since the integrals so added are of a higher order. The
inner integrals can then be expressed in terms of Airy functions and

‘their derivatives, A typical expression arising from this procedure is
T .. _
%Tr : 8719 Ai[{3pT8) 1/3(p sin © - Br)] d6

and it appcars that numerical evaluation is necessary in this casec also,
The Airy phase contribution may be  assessed more readily with

the aid of the following limiting forms of the Airy functions (38):

Al = LV (- %x3/2)[1 + o3/ (1.177)
FA'E S

Ai(-x) :‘/i_ < Y gin (§X3/2 + Iy + ot 321 (1.178)
™

for x large, rcal and positivc;

1 2.
-2/3 T (%) I'(=z) : i
Aifx) = >—_ [T‘Tf_) sin-zé"l + T(E?:’) 31/3X’sin.§..7r'+ 0(x2)J (1.179)

where I' denotes the Gamma function, for x small and real, For
times less than p/ﬂi(Sm), -v_ and -v, are large and negative, and
so, from equation 1.178, the Airy functions in equations 1,167 and 1.170

have an oscillatory behavior, with amplitudes of order p_1/4, For

times much greater than p/ﬂl'(Sm), -v_ is large and positive, whereas
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v, is large and negative., Hence Ai(—v+) has an oscillatory behavior,

4

with amplitudc of order pwl/ s and Ai(-v_} is exponenlially small. For

times close to p/ﬂl'(Sm), v_ is small whereas v is still large (for
large p). In this range the dominant terms are those involving Ai{-v ),
which, from equation 1.179, are of order unity. As expected, (since

‘the corresponding terms do not contribute appreciably in the stationary
.phase solutions), the terms involving Ai(-v+) do not contribute appreci-
ably in this range. KEquation 1,170 shows that the solution in this region
oscillates with a constant period--a characteristic of the Airy phase--

with an amplitude modulated by the Airy functions,

Miklowitz, in Reference {(10), has computed the functions

’ - SQIS) 11/2 F [8,i2.(S), ] sin pf (S)
VP, S,0) = & [m‘r—ﬂ1 ] - :
JALE N p ]l_(S

zﬂf (SIN[S, if,(5) | 1 m
' (1. 180)
L 1[8R{(8) /2 F,[S,iQ(S), L] cos pf_(S) _
.VZ(P: 8, ¢) = 'E[ ’ 61 < S= Sm"G

j27(s) | 20 (SIN[S, i, ()]

{1,181}

for several values of {, In terms of these functions, equations 1.165

and 1,168 may be written:

m{l-2¢)u
p _m(l-20)R -3/2 -
SO'UU = 8op T Vl(P: S, Z;)NLI(P: S) + Ofp )s €1< 5= Sm €
(1.182}
11'(1—20')11g ~3/2
5 = Vz(P’ S, g)Ma(p, s) + O(p )y €<S=S§ -«¢ {(1.183)

o]
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where
ZQiZ(S)[Jl(VSR) cotan pf;_(S) + Yl(SR)]
M, (p, S) = 5 5 5—> 5 (1.184)
. S[I7(SR) + Y[ (SR)][S"a” - Q,(8)]
2912(5)[ Y(SR) - J|(SR) tan pf_(S)]
Mz(p, S) = {1.185)

SLI(SR) + Y(SR)] 8% - @7(S)]

Finally it should be noted that the long-time (static) solution to
equation 1,145 is of the same order as the statiomary phase contribution,
as opposed to Miklowitz's solution (10) to the related problem on cylindri-
cally-crested waves, where it is of a higher order. Also note that the
stationary phase solutions arc of higher order than the Airy phase con-
tI:ibutions, showing that the latter becomes relatively stronger with in-
creasing distance from the source,

Further discussion of the solutions is given in Section IV,
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Section II. THE GENERATION OF TRANSIENT COMPRESSIONAL AND
FLEXURAL WAVESIN FLAT ELASTIC PLATES BY VARIABLE
BODY FORCES

INTRODUCTION

The generation of elastic waves by means of body forces has
received considerable attention in the literature, but most of the work
has been done in connection with infinite media and half-spaces, In this
section solutions al;e written for cértain problems involving variable
body forces in a flat, homogeneous, islotr0pic, linear elastic plate, of
thickness 2H, with stress-free lateral surfaces. Far-field approxima-
tions are derived for a particular compressional wave problem. Apart
from any intrinsic interest, these solutions could be of usc in describing
the mixed and nonmixed pressure shocktypé problems fortheinfiniteplate
with the circular cylindrical cavity, which, as will be recalled from
Section I, appear to be intractable. It was pointed out in the general
introduction that body force solutions for the infinite rod agreed quite
well with expérirnental results {obtained under nonmixed conditions) for
large distances down the rod. It is hoped that this is equally true in the
Present case,

Multi-integral transform techniques are used, but in this case the
pPertinent Hankel tran_sform pairs are those for the interval (0, o). The

notation used is that of Section I, unless uvtherwise specified,

2.1, STATEMENT OF PROBLEMS AND DERIVATION OF FORMAL
SOLUTIONS

‘The body forces, boundary and initial conditions,‘ are assumed to
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be such that axial symmetry prevails, Hence the governing equations of
rnotioﬁ. are given by equations 1, 3, 1.4, 1, 7;_ 1. 8; 1.10, and 1l.1l. Taking
the Laplace transform of these equations, and assuming that the initial
conditions given by equation 1. 21 hold in this case also, equations 1.12,
1.13, 1.16, 1,17, 1.19, and 1. 20, are obtained again. Taking the Hankel
transform of order one--for the interval (0, co)~-of equations 1.12 and
1.19, and the Hankel transform of order zero of equations 1.13, 1.17,

and 1. 20, gives, on using certain properties of transforms of derivatives,

and combinations of derivatives (49):

a%at 2 au’®
r 2=] ( d | z _ 1 =1
R A G B B (2.1)
dz c c
S s
dZ-’ﬁ‘io CZ ":1—'1 )
z _ 2%0 _ (_E o r __ 1 =0
= g“u) - k(— 1) rra i F (2. 2)
Z d d
®2z © " dz (2.3)
du
=1 _ r _ o .
U-rz =H dz kuz) (2.4)
du®

1

T

.&O VA F-—1
O = (A + 2p) - + Aku (2.5)

where

ml m._
ur(k, psz) = S.O ur(r, p,z).]'l(kr) dr

oo

ﬁ:(k, pPs2) = S;) _liz(l‘, P, z)JO(kr) dr
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In deriving the above e‘quations,. the radiation conditions given by equation
1. 71, with C_(k, r,a) and Ci(k,z,a) replaced by T (kz) and J(kz),
respectively, have been assumed.

The general solutions to equations 2.1 and 2, 2 are given by
equations 1. 31, 1.32, 1.33, and l. 34, with L(z)}) and Ml(z) replaced by
--(cz)"1 f“; and - (C(Zi)-l f;, respectively. As in Section I, separation into

symmetric and antisymmetric problems is now effected. Taking

Fr(r, t,z) = V(r)i(t)
} (2.6

FZ(I,t, Z) =0

where V(r) and £{t) are arbitrary functions ;)f r and t, respectively,
compressional waves are excited, and so the general solutions of equations
ol and 2, 2 are given by equations 1, 38 and 1. 39, with appropriate ex-
pressions for the particular integrals. Taking the Laplace and Hankel

transforms of equations 2. 6 gives:

=] ~b
F. =V (RT(p)
%O =0

- A

Substituting these expressions into equations 1. 33 and 1. 34 gives the
particular integrals, and hence, on using equations 1. 27 and 1. 37,

equations 1, 38 and 1, 3% may be written:

oW
ﬁl = Z A.cosh 1.z + (CZHZ)—I -\7'-(1()-{(13) (2.7)
C r J J d 2 )
im1
2
Cﬁg a Z a'jAj sinh njz. R (2.8)
=1
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Taking

Fr(r, t,z) =0
(2. 9)

Fz(r, t, 2} = w(r)Q(t)
where w(r) and Q(t) are arbitrary functions of r and t, respectively,
flexural waves are excited, and so the general solutions of equations 2.1
and 2.2 are given by equations 1,40 and 1.4l, with appropriate expres-

“sions for the particular intcgrals, Transforming equation 2.9 gives:

=ih
==

=0

o = w1 O(p)

il
tl

Substituting these expressions into equations 1. 33 and 1. 34 gives the
particular integrals, and hence, on using equations 1, 28 and 1, 34,

equations 1. 40 and 1. 41 may be written:
PA

Fﬁi ~Z B, sinh 02 {2.10)
J=1
2
=g 2 2.1 ~0, .=
e, H,Z o,ijcosh njz + (cs'r]l) w (&} Q(p) (2.11)
J:

Inserting equations 2.7, 2.8, 2,10, and 2.11, into equations 2,4
and 2.5, and applying the transformed boundary conditions of stress free

lateral surfaces, expressions are obtained for the A's and B's, and
<p

hence, from equations 2.3, 2.7, 2.8, 2.10, and 2.1l, for the transformed

displacements and axial strain. However, in effect, this has been done
in Section I (§1.1), and the final results can be obtaincd from there on

setting
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S.=0

T = hl{{cg‘f]g)_l\?’(kﬁ(m
S = - ukle“n)) e 10 8p)
T_ =0

F

in equations 1,54, 1,55, 1.57, 1.58, 1,60, and 1,61, There results:

25! Lo -
=1 _ [hk VAK)F, ~(k, p, 2) LV () J_f_( ) (2.12)
CYr 2 2 22 P .
2~l
=0 MV (K) Fy (K, Py 2) 7
ct, = ) - j f{p) (2.13)
e Ny Dtk p)
2~l
=g Ak V(k)F3c(k,P,Z)-_
CCan = [ 575 I{p) {2.14)
2~0o ‘
~1 KWK F ok, pyz) 7 _
i [ — J (p) (2.15)
2~0
=0 k™ w (k)FZF(k' P,z 5
i, 5T [ 55 p) (2.16)
Csnl DF(k’ p)
2™~o0
~c kK™w (k)F3F(k, Ps ) _
F~ oz = - [ 2 2 J Q(P) (Zn]-?)
¢ N Dglk, p)

2.2, EXACT INVERSIONS

As in Section I (§1. 2), the T.aplace transformse are inverted first,
and use of the convolution theorem will again be made. It is assumed

that ?(p) and G(p) are such that they invert to f(t) and Q(t), respec-
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tively. It can be shown that the order conditioné of the Laplace inversion
theorem are satisfied by the multipliers of f{p} and Q(p) (the terms in
the square brackets) in equations 2.12 through 2,17, The discussion of
the singularities given in Section I is relevant here also, with some slight
modifications, and, using the information given there, inversion of the
multipliers is achieved through Cauchy's theorem and residue theory,
Using the results together with the convolution theorem, and applying

the Hankel transform inversion formulas (49}, the inverses of equations

2,12 through 2.17 are found to be:

o ‘ -~ t : ™
. :%SAO k3J1(kr)V.(k)[Slt f(t'%)@lc(k, £, z) dg_l dk  (2.18)

W

(o8] : ol t “'.
cl, = % SO -k3J0(kr)V (k)[ft f(t-£)0,~(k, &, z)d«iJ dk (2.19)

W

(SO ot t . 7
= 2h k3J0(kr)V (k)[S; i(t—§)®3c(k,§,z)d§J dk (2. 20)

C'zz  n o
W

H

0 ~ t 3
- ZS’ k3J1(kr)WO(k)[S Q(t-é)‘l’lF(k, £, z)dﬁJ dk (2. 2]1)
0 t
W .

c
It

oo o t -
Yy —ZSO k3JO(kr)w°(k)[S.t Q(t—&)\IfZF(k,g,z)déJ dk (2.22)
W

O

oo - t - -
Fe, = mZS.. k3Jo(kr)Wo(k)[5t Q(t-g)\lf?,F(k, £, z)dg—l dk (2.23)

W
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where

) = Focllio k), z]sin e (k) )
em-C(k’t’Z) = R R m=1,2,3
o=l [% nd—mnc(k)]wnc(k)l\fc[k, imnc(k)] :
(2. 24)
) X Fplkio p(k) 2] sin o p(k)t
‘IfmF(k,t,z)_ 333 . , m=1,2,3
nol |k cs-wnF(k)]wnF(k)NF[k, 1wnF(k)]
| (2. 25)"
The radial strains are giveri by
2x (3 3 AP I
Cel‘r :_[-l_ k 57 Jl(kr)V (k)LS; f(t-ﬁ)@lc(k,é,z)dg_l dk (2. 26)
© w
© 3 9 ~o t E
Fepp = "2 S‘O k 57 Jl(kr)w (k)l:St Q(t-g)‘lle(k, £, z)d§-| dk (2.27)
A

Application of these quite general expressions to a particular
compressional wave problem will now be discussed. The body force
per unit mass in the r direction is chosen to be

P &(r-a)

F(v,t,2) = V(2)E(t) = —S—er f(t) | (2, 28)

where 6(r) is the Dirac delta function, a and Po are constants, and
the chuice has been dictated by the fact that the above expressions are

being used to simulate the plate with the circular cavity, Note that

oo rH 2w
S‘ ' SI S. p'F_(r,t,2)r dr dz db = p'P_i(t)
o Y-H%Yo
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s0 that the total force acting is finite. Taking the first order Hankel

transform of V(r), as given by equation 2, 28, one obtains:
(2, 29)

On letting a go to zero, equation 2. 28 represents a radial line source
(at r = 0) in the plate. However equation 2. 29 shows that in this case
\Nf’(k) is zero, The aifficulty appears to lie in the fact that a radial line
source violates the conditions of continuity which are built into the equa-
tions of motion.

With the above choice of V(r), and taking f{t) to be the Heaviside
step funciion FH(t}, une obiains, un inverting directly from equations 2,12
and 2,13 (so aé to obtain a more suitable representation of the long time

solution), the following expressions for the displacements:

(9 )
7\130 Z
c'r T ROr(r’ z) - 2mpH
n=1 .
xSm kSJl(kr)Jl(ka)FlC[k’ 1cunc(k), z]| cos mnc(k)t e P_ <) T=a
2 2 2 2 . 2
o [k cq” wnc(k)] wnc(k)NC[k, 1wnc(k)] 81‘I’HCd %’ e
(2. 30)
PO
ctz T ROz(r’ z) - 2w H
n=1
3
w k™J (kr)J {ka)F, [k, iw_(k), z] cos w_ ~(k)t
XS‘ 202 1 2C nC nC " (2. 31)

o [kl wlal)]wl L(KINIK, io_ (k)]

whe re
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)\POK S*oo le(kr)Jl(ka)E(k‘, z)

Ry fr,z) = a2 KIT Fsinh K& cosniy 9K (2.32)
-rrpcdH
KPO Y Yo's) kJO(kr)Jl(ka) Gilk, =)
Ry, (riz) = 3 KET ¥ sinh KO cosh kO 9F (2.33)

8mrpc dH 0

E(k, z) = -IE(I—I cosh kz cosh kH - z sinh kz sinh kH)

Cg sinh kH cosh k=z

- 5 55 (2. 34)
(cd - ey Vie
Glk, z) = %E(z cosh kz sinh kH - H cosh k¥H ainh k=z)
ccz1 sinh kH sinh kz
- > 53 {2. 35)
(cd - Cg )k

Note that it is to be understood that Yy and cY, @are zero for times
less than the arrival time of the wave front, In arriving at these equa-

tions use has been made of the result {(36), page 47)

e ak= L (£) . 0<r=a

|

‘Saoo Jv(ka)Jv(kr)
o
v
1 a’
= = (.;) , a=r<o

The R R terms arise from the evaluation of the residues at p = 0

Or* "0z
(use of L'Hospital's rule is necessary in these calculations). The strains
have not been inverted, since they do not play a role in the subsequent

discussions,

A discussion of the possible singularities of the integrands in



-69-

in equations 2,30 and 2. 31'is given in Appendix C; it is shown there that
thece integrands are well behaved in the domain of integration, It is also
shown (formally) there that cl, and cly,r a8 given by equations 2, 30

and 2. 3], satisfy the boundary and initial conditions.,

2.3, FAR-FIELD APPROXIMATIONS

Henceforth the affix € will be deleted. Changing to th.e dimension-~
less variables introduced in Section I (§l. 3), and replacing the Bessel
- functions containing p by the leading terms of their large-argument
asymptotic expansions, equations 2,30 and 2. 31 give, on retaining only

the lowest mode contribution:

2 2 '
Zm.tHcSu 2wpHe 2
P - S R, (pty + Q220LR L e
AP AP T0p P l6o(i-o}p 2V - ©
2 . . . .
xgm K™J{(KR)F,[K, i@, (K), {[[exp ipf [K) +exp ipf_(K)] dK + o(p~3/2)
0 VK [K*a®- Q2] Q2 (KINIK, i@, (K)]
p>R (r>a) (2. 36)
Z'rrp.thzil;tt Zﬂpch
S R, (p,t) - (Im + Re)
Kpo RPO 0% ZN/-TTP
XSOD K2 (KR)F [ K, i@ (K), L] [exp ipf,(K) + exp ipf_(K)] ax + ofp™3/?
o VK] K%a? - Qf‘(K)] QiZ(K)N[ K, iszl(K)]
{2.37}

where ROP and Rog are the expressions obtained on substituting the
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dimensionless variables into equations 2,32 thrbugh 2. 35, with the Bessel
functions containing p replaced Ly Lthe leading té rms of their large-
argument asymptotic expansions.,

Using arguments similar to those given in Appendix C, it can
be shown that the integrands in cquations 2. 33 (with .]'o(kr) replaced by
the leading term in its asymptotic expansion) and 2, 37 are well behaved,
whereas the integrands in equations 2. 32 (with Jl(kr) replaced by the
leading term in its asymptotic expansion) and 2. 36 have integrable singu-~
larities of the type (K)-l/'2 at K = 0., Hence the above procedure is
valid,

The terms ROp and ROQ are essentially Fourier integ;als.
apd, using the Riemann-Lebesque lemma (38), they can be shown to be
order p_3/2 {cf. Reference (10) for details of this proof), It is of interest
that these terms, which are part of the long-time solution (the term in
R/p is also a part), are of higher order than the other terms in the
eguations,

Applying equations 1.152, 1.180, and 1.181, to equations 2, 36 and
2,37, and retaining only those portions which will be evaluated subse-

quently, gives:

2
ZmpHes  a-20)%R
AP Yo Tho(l-o)p

- My(S)Vy(p, S, 8) + O(p™/%), € = 5= 5 < (2.38)

2
ZwuHCs -3/2 - o = .
— _}\_:ETO_ u§= - M3(S)V2{Pp 3, 'v:) ! O(P ): 6]_ =58= Sm— € (z° 39)

whe re



]~

257 (SR)

[s%a® - Q2(s)]

M3(S) = (2. 40)

Further discussion of these results is given in Section IV.
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Section I1I, RELATED SLAB PROBLEMS

INTRODUCTION

In this section some rn.ixed time -dependent boundary value prob-
lems for a homogeneous, linearly elastic, semi-infinite flat plate (slab),
will be examined, for both isotropic and certain classes of anisotropic
media. Apart from intrinsic interest in such problems, the slab is a
limiting case of the plate with a circular cylindrical cavity (as the radius
a goes to inlinily) and so is important in the context of the present work,
For the isotropic slab several authors have contributed transient solu-
tions, and some of this work is reproduced here for the two-fold purpose
of having solutions on which to base further numerical work, and to
clarify some of the issues raised in Section I.

The slab has attracted attention in that it is the simplest geometry
involving twb or more perpendicular boundaries. A solution to a pres-
sure shock type problem (step time-dependence) has been derived by
Folk (50), who discussed its applicability to nonmixed cases. A similar
problem for a wide rectangular bar has been solved by Jones and Ellis
(51, 52}, using the -generalized plané-stress theory. Their results can
be utilized in the plane-strain, or slab, case, on applying the well-known
transformation of elastic constants, Rosenfeld and Miklowitz (34) have
contributed solutions to both longitudinal impact _and pressure shock
problems, with step time-dependencics, and have derived the amplitudes
and location of all the wave fronts, In this section far-field approxima-
tions have been derived for a problem in which the slab end is subjected

to a uniform step normal displacement.
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Sclutions to wave problems in anisotropié media are considerably
more difficult than corresponding cases hligotropic media, because of
the_greater number of elastic constants involved. The situation is further
complicated by the fact that in an infinite anisotrop'ic medium there are,
in general, three speeds of propagation corresponding to the three pos-
sible types of plane waves in any given direction, Also, there is no
sharp distinction between distortional and dilatational waves. Despite
these difficulties some work has been done on steady wave propagation
problems. Buckwald (53), and others, have treated such problems in
infinite media. For certain classes of materials, studies have been
made by Sato (54), Stoneley (55}, and others, on Rayleigh and Love type
waves, and this type of work has been recently extended i)y Anderson (32)
to laye‘red, transverscly isotropic mcdia. Stcady wave guide propagation
has also received some attention. Newman and Mindlin (56) have éxamined
in detail the frequency equation for an infinite plate of monoclinic crystal,
the digonal axis of the crystal heing parallel to the plate surfaces.
Morse (30} has determined the frequency equation for an infinite circular
. rod of transversely iéotropic material, the axis of the rod being parallel
to the axis of material symmetry, However no attempt was made to
'eva.luaf.e the modes, although the small and large wavelength limits of
the lowest mode were calculated, Minalin and his group have further
developed the approximate theories given in Reference (16), and applied
them to problems o_f vibration of crystal plates {cf. (35), 'Chapter 13,
for references on this topic).

As yet, very few solutions have been written for transient
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problems in anisotropic media. Of note in this ‘connection are the solu-
tions recently given by Eason {31} to problems of step loadced spherical
and cylindrical cévities in infinite media., The material he treated had
the property that it was isotropic in all planes perpendicular to the

radial direction. The Jack of fransient solutions for anisotropic wave -
guides generated interest in the present work, in which the plate material
is taken to be transversely isotropic, with the axis of material symmetry
parallel to the lateral surfaces., This has been done to illustrate the
scope of multi-integral transform techniques, -and to su:ﬁvey the diffi-
culties inherent in such problems. Far-field approximations, which
describe the head of the pulse, have been derived for certain longitudinal

impact and pressure shock type problems,

3.1. DERIVATION OF FORMAL SOLUTIONS

Several substances have the property of transverse isotropy,
i.e., isotropy in all planes perpendicular to a given direction. For
instance, many crystalline solids of the hexagonal system satisfy this
requirement., Of the noncrystalline substances, bedded sediments are a
"notable example, The difficulty of a given problem for such a medium
depends on the orientation of the axis of symmetry of the material w. r. t.
‘ the free surfaces. In the present case the axis of material symmetry
is taken parallel to the lateral surfaces of the plate, but it should be
noted that another possible simple choice would be to take this axis
perpendicular to the surfaces (this latter choice being of greater interest

in geophysics),
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The cartesian coordinate system shown in Figure 3 is chosen,
and, with the usual notation, fthe matrix of elastic constants for the

transversely isotropic system is (57):

°11 12 %3 O 0 0
¢y, €57 S35 O 0 0
“13 13 ©33 0 0 0
0 0 0 ¢y, O 0
C 0 .U | 0 C44 0
0 0 0 0 0 ¢y

1 . . .
where Cee = = (c11 - Clz)" Thus there are five independent elastic

constants., Reduction to the isotropic case is achieved by setting

“66 ~ “44
1y = C33 (3.1)
“12 7 “13
The Lamé constants are given by:
7\:012, b= Cyy (3. 2)
and hence
ey =Mt 2 (3.3)

&
Note the difference between 2z here and in Sections I and II. The
present choice conforms to the standard use of z as the axis of
material syimmetry.
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AXIS OF MATERIAL SYMMETRY

Fig. 3. Geometry of slab and coordinates used.
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Since the plate materiai is isotropic in all planes perpendicular
to the 2z axis, solutions indcpcndcent of y, and fo:r which u =0, are
possible, and the boundaryran.d initial conditions are assumed to be such
that these are generated, In this case, and in the absence of body forces,

the displacement equations of motion are:

2 2 2 2

g u c13+ Cuq 3] u, C4q o u o' 0 u_

z T 5oz | 5 = 5 (3. 4)
ox €11 *92 %1 oz 11 ot
2 2 2 2
8 u, +c13+ €44 8 u +c33 9 u ) o' i} u, 5. 5)
x” a4  9FIZ  cyy 5,° 44 gt

The stresses and strains, which are of importance to the problems to be

considered, are given by:

‘ Suz
®rz = Bz (3. 6)
Bux o
€k © Br (3. 7)
ou u_ .
= X
Owz =~ ©44\ Bx 9z (3.8)
8u1{ Buz
“%x = °11 3% | 13 92 (3. 9)
BuX 8uz
% = €13 B% T 33 F% - (3.10)

Taking the Laplace {(w. r.t. t) and Fourier sine {w.r.t. =)

transforms of equations 3, 5 and 3, 8, and the Laplace and Fourier cosine
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transforms of equations 3.4 and 3.9, and using the properties of trans-

forms of derivatives ((49), page 27 ), gives:

%S Kl o+ pf + a5 5
Ux K Cyq T PP =c, %13 " 4q, % _ f7 44 HX)
dx? ‘1 x ‘11 dx moey 92/,
(3.11)
2= 2 L2 ~c
du, Keggt PP .y C3t ey kdux JZ 533 q,
de Caa z Cuy dx T Cuyu 7' 7=0
(3.12)
du®
ag Z e
XZ C44:( dx kux) (3.13)
£
&e duX + Kos 2 @)
O = 11 a@m T 13K, m¥ T 93{n) (3.14)

where

[l m__ |
E;(k,p,x) :“% S.o ux(z,p, x) cos kz d=

= 2 ©_
u.:(k, Py x) = J"ﬁgo uz(z.,p, x} sin kz dz

and initial and radiation conditions analogous to those given by equations
1.21 . and 1, 71 have been assumed.

The boundary conditions are taken to be:

U-XX: U'XZ :0, X = :l:H | (3;15)
u, = UOH(t)

z =0 : (3.16)
g =0
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Using equation 3.16, the bounda.fy terms in equations 3.1l through 3,14
can be evaluated., Symmetric solutions to equations 3.11 and 3.12 in-
volving two arbitr.ary' "constants" can then be written, in the manner of
Section I, On substituting these solutions into appropriately-transformed
equations 3,15, the arbitrary constants are determined, and hence ex-
pressions can be written for the transformed displacements, These can

be shown to be:

T .
Uop c kal(k, P, X) 5 c33kU0

O, R 7o (3.17)
Cyqlc33k " 10'p7)D(K, D) plcg k™ p'p™)

eR
N w
1}

1
iy

'
=20 B ‘]z UOP C13kaZ(k: P X)

~c _ (3.18)
X 2 1 2
chqlc33k7t p'p")ID(k, p)
where
Fl(k, Py X) = nl(nl-kal)sinh 'qIH cosh n,H
- nl(nz— kuz)smh 'qu cosh nyx | (3,19)
Fz(k, P, x) = aznl(nl- kal)smh mH sinh uPes
- alnl(nz— kuz)sinh nZH ginh n¥ (3. 20)
c, e *c )ZD(k p) = {n )*1"'] foh,cosh n,H sinh n H
44137 C44 , 2) iy 1 2
- flhz sinh an cosh nzH (3. 21)
(et ¢, )kn.a, = c, no- (k2. +p'pd), i=1,2 (3. 22)
137 “44’%135% T €447 337 FP L 055 y
f.o=c.ni+ &P, tppd), j=1,2 (3. 23)
;= %137 33 , ’ g

~ 2 2 _ A 2
hy = cpye g TR [epgle gte y) - epgegs] - plepp (3. 24)
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‘ 5 ) 1/2
Ve 11944 M5 = {k [epesse 13(C13+-2C44)] J“_P'(Cu+ c4q)P - (-1’Bls, p)

j=1,2 (3. 25)

2
Bk, p) = {k (cyye35- 13)[ (c116337 €13) - 44l st ey )]

N2 4 2,22, o2
FR) T eyym egy)” F IR L 2oyt ey Mopyeggt epy)

galepst o) - depo g leg st C33)]} (3. 26)

It can readily be shown that, for the isotropic case, equations 3,19, 3. 20

3.21, 3,22, and 3,25, reduce to equations 1,84, 1,85, 1,56, 1.35

» 136,
and 1, 37, respectively,

The Fourier sine and cosine transforms will now be interchanged
Assuming zero initial and radiation conditions, taking the Laplace and

Fourier cosine transforms of equations 3.5 and 3.8, and the Laplace and

Fourier sine transforms of equations 3.4 and 3.9, gives

Z#S 2 ] .
duX C44k tpp o (:13-l-c44 1 duz.— 2 44 ( . 2 27
2 c., B c “dx X) (3.27)
dx 11 11
diu,  eggkThepT L ety du Bu,
5 - - u, t—— kg =7 | o37 cud) 52
dx 44 44 44 VT
aﬁz =
eyl a5 J (3. 28)
cﬁc
-

Cgagx ¥ C44k“x V 44( x)

(3. 29)
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. du? ~ |
R A" ELL (3.30)

Notf_s that these equations still contain only two transformed variables,
and the boundary terms correspond to mixed conditions of the pressure
shock type (this will be shown explicitly below). Thus, as mentioned in
Section I, both types of mixed problem are tractable for the slab, in
contrast to the situation for the plate with the cavity,

The boundary conditions are taken to be:

u =0 *
%

,z=0 (3. 31)
o =~ P _&(t)
77 o
o =0 =0, x==xH {3.32)
XX X7

where Po is a constant and 6(t) is the Dirac Delta function. It is
seen from equation 3.10 that a set of conditions equivalent to equation

3. 31 is:

z =0 (3.33)

Z O
—Z =0 4y
BZ C33

The remaining algebra is now very similar to that used in the

first example and so will not be discussed here, The following expressions

*®
The choice of the time depondence in the boundary conditions has been
partly dictated by the fact that step loads have received considerable
attention in the isotropic case.
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are obtained for the transformed displacements:

—-—

il

Z m

7 2
=c [z[ FoCizk Flkp,x) P _
u 5 > + > > (3. 34)
CalCy k™ +p'P7)D(k, p) C k"4 p'p

_ 2

< ] é POC].31{ Fz(k, Py %) (3. 35)

X m 2 ] ’
C44(C3k" +p'p7)D(k, p)

ol
I

. 3, 2, EXACT INVERSIONS

Inversion of the Laplace transforms for the two problems is
now undertaken. It can readily be shown that the expressions given by
equations 3,17, 3,18, 3.34, and 3.35, are even functions of ) and RPY
and consequently no branch point singularities arise. Possible pole type
singularities occur at p =0, Vp'p = :I:\[C33 k, and at the zeros of D{(k, p).
On expanding the v:;.rious exprcssions around the points Vp' p = iiJC331<,
it is found that these points are not singularities. The point p =0 is a
simple pole of the second term on the right-hand side of equation 3.17.
Tt iz shown in Appendix B that the zeros of Dk, p), for real %k, are
complex Coﬁjugate, pure imaginary, and simple, given by p =+ imn(k),
say (note that the exceptions to the proof given there receive special
attention here). Substituting these values of p into equation 3. 21, set

“equal to zero, gives:

tanh n[k io (KJH  nlk, i (k)] 'fz[k, io (k)] hy[k, ic_(K)]
tanh 1[I0 (M]H = [k e TG, 1o (R TR IR, Tw (KT

(3.36)
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This last equation can. readily be shown to be the frequency
equation for the propagation of straight—crésted symmetric waves in an
infinite plate of thickness 2H. For the isotropic case it reduces to the
Rayleigh-Lamb frequency equation, given by equation 1.109, The roots of
equation 3, 36 are presumably infinite in number,

On expanding the various expressions for large p it is seen
that the ordcer condition of the Laplace inversion theorem is satisfied in
all cases. Hence, using Cauchy's theorem and residue theory, the
Laplace transforms may be inverted. Then applying the inverse Fourier
transforms {49}, the inverses of; equations 3,17, 3.18, 3.34, and 3. 35,

can be shown to be:

(i) Displacement input

ao

4U_p '(313 o k sinkz Fl[k, iwn(k), x] cos wn(k)t
u)z:Uo"_?é""“'z Z 2 ; de 3.37)
44 Vo [0331< —p'mn(k)]N[k, 1wn(k)]
4U_p '013 X A kcos kzFZ[k, iwn(k), x| cos wn(k)t
U.X = - -“-W—— 3 ) dk (3;. 38)
44 Yo [C33k - plw (k)] N[ k,imn(k)]
where

2 B -1 i . . -
C44(C13+ C44) N(k, p) = H[ (112) nlfzhlél flhzﬁz] ginh 'r]lH sinh nzH

-1 1 .
tn,) Tf,h 8- (n,) b6, + 2nhy (Con o6+ p')

+ 2C (C 61. - p'|cosh an sinh T]ZH

11Mi2(CaM
-1
+ Hf ("']2) Tllfzhlf)z - flh?..al] cogh 1']1H cosh 1’]21-1

« | ] _
-2[ b, (Cyny 8y + P')} + ClyE{Cyyn,6,- p)lsinh nyH cosh n,H  (3.39)
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= (4011‘344”5’—1[ 2p'(Cyyt C u)- (-1)j(zp)_1v]_, j=1,2 (3. 40)
v {4“")2(011' C44)sz *29'1‘2[2(011 44/(CyyC33° 123)
2
CaalCyy* Op3) - 4C;Cuy(Cis¥ Coall | - B4

For the isotropic case equation 3. 39 reduces to equation 1,111,

(ii} Stress input

013

4P C Z Svoo k®cos kzF [k iw (k), x] sin w, (k)t

u = dk (3. 42)
z 4~ Yo k - w (k)]w (N[ K, o (k)]
jo's! 2 . . .
o 4P C13 Z oo k“sin kze[k, 1wn(k),x] sin wn(k)t i . 43)
Caq ey [0331<2— mﬁ(k)] w (N[ K, io_(K)]

It is to be understood that u, and u in both cases are zero for times
less than Lthe arrival time of the wave front. Further, it will be assumed
that the integrals in equations 3,37, 3.38, 3.42, and 3.43, are well t;e—
haved (in this case this is difficult to prove, since the modes are not
known explicitly), and that the expressions for the displaccments as

given by these equations satisfy the boundary value problems.

3.3. FAR-FIET.D APPROXIMATIONS

Two types of far-field approximations will now be derived. The
first type, which describes the head of the pulse, will be derived for both

isotropic and anisotropic cases, whereas the second, which is of the
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stationary phase type, will be determined only in the case of the displace-
ment input in an isptropic slah, |

The techﬁiques for deriving head of the pulse approximations have
been discussed in Section 1 (§l. 3) and they will now be applied here,
Thbugh the roots of equation 3.36 are unknown, except in the isotropic
case, the analytic behavior of the low frequency, large wavelength
portion ot the lowest mode may be determined on substituting an expres-
sion of the type wl(k) = Ik + ...nk?’,":= where £ and n are constants, into
the equation. However, this not only leads to very cumbersome algebra,
but also involves rpa,king certain assumptions regarding the magniludes
of the various parameters. An alternative method, given by Chree. {58)

for the analogous rod problem, will be adopted here,

Soluntions of the form
u, = V(x) cos kz cos wt

u, = B(x) sin kz cos wt

are substituted into equations 3.4 and 3.5, and from the resulting equa-
tions two uncoupled, fourth order, ordinary diffe-rrential equations for ¥
and © may be derived, Series solutions are then written for these
differential equations, and, on substituting these series into the boundary
conditions, an expansion of the frequency equation in powers of H is

obtained. Thus the problem of suitably expanding 'r]j is circumvented.

%
That the expression is of this type follows from the fact that coi(k) is
an even function of k,
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After considerable algebra, this procedure gives, to the order of H:

(k) = ke (1 - 5k%) (3. 44)
where |
2

e 2 X
P'Cpyey = C)Cy3 - Cpy (3. 45)

2. _
6Cy;6 = C3H (3. 46)

Using equations 3.2 and 3.3, it can readily be seen that, in the
isotropic case, equations 3,44 and 1.172 are equivalent. Positiveness of

the strain cncrgy function rcquirces that ((57), page 14)

c. C cl s o

11733 © 713
L;,o that the limiting phase velocity, as given by equation 3, 44, is real,
An alternative form of the-equation can be written in terms of E, E',
o, o'y Young's modulus and Poisson's ratio parallel and perpendicular

to the axis of material symmetry, respectively (these are the parameters

most readily measured). Using the results (58)

Cyy = E%(1 - cEQM - ¢') - 2E'cr2]'1

C,; = EE'S[E(Q - ¢') - 2E'¢% 7L

-1
Cy=EYE-E's ){(1 + oYEQ - o) - ZE'U“&]}

equations 3.45 and 3. 46 may be written:

o [

pHE - E'c")
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12 [ Ec(l + 0"')]2
L | Bl to)

& = —
}?3-_]’-'-7'0'2

These alternative forms exhibit more clearly an interesting feature of
the results, viz., their dependence on the elastic properties perpendicu-
lar to the axis of symmetry, This is in contrast to the analogous rod
expression (58), where E and o alone are involved. This however is
not unexpected, since in the isotropic case the plate velocity depends on
v whereas the rod velocity (VE/p') does not,
Differentiating equation 3, 44 gives:
- do, (k)

_ - _ 2
Cg =—3xk— “‘p 36k

Since the second term on the right hand side of this equation is always
positive, the group veiocity has a maximum at k = 0, It is henceforth
assumed that this maximum .= greater than any other possible maxima
of the first mode, i.e., on the basis of the first mode alone, it is as-
sumed that the contribution from the vicinity of k = 0 describes the
head of the pulse. The plausability of this assumption follows from the
fact that it is true in the limiting case of the isotropic plate and it also
holds for the more complex problem of the monoclinic plate (56), of which
the present example is a limiting case.

On substituting the first term of equation 3, 44 into equations 3,19,

*
3. 20, and 3.39, the following limiting values are obtained:

3

kIn thedetermination of these limiting values set 1, = k\bj, M:6: = ?js j=1, 2,
where the 4.'s and ¢.'s are constants. Considérable algebra miay be

. avoided on noting that"an explicit determination of these constants is un-
necessary, since they cancel in the final results,
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Fl[ k, iml(k),: | | . 044
;! C33k2- prwlz(k)] N[k, iwl(k)] k=0 2p 'Ci3k2
Fé[&iwﬁkhx] o C
[Cyakl- plel] NI (@] K70 2Pk

Substituting these values into equations 3,37, 3.38, 3.42, and 3.43, and
retaining the second term of equation 3,44 in the trigonometric functions,

one finds, on extending the upper limit of integration to infinity (which

is permissible, since the integrals so added are of order z_l/z):
(i) Displacemént input
ﬁl pll .
g 1 . 1 : -1/2
T o=ltlg ) A8 dE] -[3+)  Ai-g) ] +oET9,
o o o
0=k = € (3. 47)
u C .x
3 . : " -1/2 . .
_Uﬁ = ! 173 [Ai{(-B") + Ai(-p™M)] + Oz / ), 0=Kk= ¢
o C11(3cPt6)
(3. 48)
where
(CPt - z)
B! = 73 (3.49)
(3CPt5)
(cPt + z)

" = (3. 50)
(3cPt6)1; 3
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(ii) Stress input

" B B _
E P'fp {('1??+\ Ai“‘é)d§]+[%+5 Ai(-£) dg] -1} + Oz 1/2,,
| ) )
0=k=¢ (3, 51)
P C Ai(-B") - Ai(-B™)
B T e kL Y S (3.52)

' 1/3 1
p CllcP(3cPt6)

Some interesting features of these expressions should be noted.
If the k3 term in the trigonometric functions is deleted in the limiting
processes, then, ‘as in:the rod case, expressions are obtained for the
solutions far ahead and far behind the wave front. Far ahead of the wave
front (z >> cPt) one finds that u_, as giveﬁ by both equation 3,47 and

3. 51, is zero. Far behind the wave front (z << cPt) one finds that

in the case of the dispiacerment input, and

P
z c
d P

in the case of the stress input, Thus far ahead and far behind the wave
*
front the above results are in agreement with the elementary theory

predictions, which can readily be shown to be:

(i) Displacement input

w, = U_Ht - Ci )
P

*
By elementary theory is meant the theory described by the equations
2 2 2,2 2 2
) uz/az = (l/cP)(a uz/at ), o, p'c:l__,(au.z/az)c
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where H denotes the Heaviside step function.

(ii) Stress input

u, == Hit - == )
P P
‘Since the roots of equation 3, 36 have not been evaluated, approxi-
mations of the stationary phase type cannot be written for equations 3. 37,
3.38, 3.42, and 3.43, except in the isotropic case, Assuming isotropy,
application of equation 1,158 to equations 3. 37 and 3, 38 -- the example of
most interest in the context of the present work -- gives, on retaining

only the lowest mode contribution, and using equations 1,180 and 1.181:

(l-20) - -1 —s=g .
ﬁjﬁ57 (up’ UO) - M4(PJ S)Vl(Pi S!g) + O(P ), 6]. = 5= Sm €
(3. 53)
17(1—20-)11:; 1 -
._..__B_GTU_:_ = - Mgl(p, S)Vz(p, S, L) + Ofle ), €, =8=85_-¢€ (3.54)
whe re 2
- 1/2 Q,(s)

M,(p, 8) = () A [1 + cotan’ pf (S})] (3. 55)
M,(p, 5} = ( &F )1/2 i | £ (s)] (3. 56)
P, = { o - 1-tan p 3.

5 g [a252- 912(5)] _
p = Z/H
t = x/H
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and the rest of the notation is as in Section I (§1. 3).

Note that the first term on thec right hand.side of equation 3.53
{and 3. 54) is o:f order P_l/g, which is of higher order than tle Uo term,
This is in contrast to the situation for the plate with the cavity, where
both these terms are of the same order. It means that, for the far-field,
the Uo term dominates in this portion of the response., This representa-
tion of thé.:soluﬁon, though somewhat unsgatisfactory, has more validity
than extensions of equations 3.47 and 3,48 into this region (0< S = Sm~€)
since they are only valid in the neighborhood of t = zl/cPn

Further discussion of the above results will be given in the next

~ section,
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Section IV, NUMERICAL RESULTS

In the problems discussed in the previous sections various
approximations to the exact solutions were given. Specifically, station-
ary phase approximations to portions of the lowest mode were made for
the displacements in the problems of the displ'acement input in the plate
with the cavity (Section I, equations 1.182 and 1.183), the plate with the
body force (Section II, equations 2. 38 and 2. 39), and the displacement
input in the isotropic slab (Section III, equations 3.53 and 3.54)., In
this section s.ome numerical evaluations of these approximate solutions
are given and several comparisons of the results are made. In these
calculations the parameters p and o are held fixed, with values 20
and 0, 31, respectively, and the parameters R and { are varied. The
head of the pulse approximations to the displacements in the slab prob-
lems {Section IIi, equations 3. 47, 3,48, 3,51, and 3,52} are also evalu-
ated {in both isotropic and transversely isotropic cases) and the results
are compared with the corresponding stationary phase results {(for the
displaccment iﬁput in thé igotropic slab).

A physical interpretation of the assumptions under which equations
1,182, 1.183, 2.38, 2.39, 3.53 and 3. 54 are valid, is that frequencies
.above a certain value, wviz., that value corresponding to the lowest mode
group velocity, do not arise, as can be seen on inspection of the modes,
Fig., 2. Thus any numerical work based on thes-e equations is suitable
for comparison with measurements of a recorder having a low frequency
bandpass, or, when used in conjunction with the superposition integral,

for input functions which do not excite the higher frequencies.
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Another insight into the restrictions on these equations is afforded
by Fig. 4, taken from {10), which’ shows the predominant period versus
time after arrival of the "wave front" curves, for the threc lowest
modes of the Réyleigh—Lamb symmetric frequency equation. The pre-
dominant period er/ﬂn(K) is the central period of the dominant group
at a given time T at station p and 1/Cg(K) - 1/b = %(rr - £) is the
time after arrival of the head of the pulse, which, on the basis of the
first mode alone, is the time after arrival of the wave front (if all
modes are admitted, the wave front speed is of course Cd/és)° Note
that the portions of ZTr/SZZ, corresponding to negative group velocities
are not shown,

It is seen from Fig. 4 that for times out to the point A the dis-
turbance is governed by the low frequency, long waveléngth portion of
the lowest mode, though it should be pointed out that portions of the
higher modes also contribute in this region. [In fact some portions con-
tribute for times less than —15(1' - -E— ) = 0, since the higher mode group
velocities approach a = Cd/cs < b= CP/CS for large values of the
wavenumber,[ For arrival times greater than A the second and third

modes become operative, If the minimum of & 2, 75) is chosen as

2 =
the upper bound on permissable frequency, then periods down to 2,28 --
the long time maximum of Z'rr/ﬂz -- are admitted, With this restriction
the region in which only first modc contributions arisc can be extended

to the point B {the point corresponding to the minimum group velocity).

No changes in these conclusions occur if the negative group welocities

are taken into account. Note that in the time region DB (D is the inter-
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section of Ql with the ve rtiCai line through C) two portions of the
lowest mode contribute. If oniy times out to E are admitted -~ cor-
responding to an upper bound on frequency well below that of possible
coupling between the lowest and higher modes -- then the shorter
wavelength, higher frequency portions of the lowest mode do not con-
tribute. As pointed out by Miklowitz (10}, it is the portion out to E that
represents the strongest approximation in work of this nature. These
various time regions are indicated on the figures given at the end of the
section. For the region DBC only the contributions from the portion
DB are shown. To assess the contribution from the portion BC, use
would have to be made of equations 1,166, 1,169, and the corresponding
equations in the body force and slab problems. Also, the Airy phase
solutions (§1.3) would have to be employed in the immediate vicinity
of B,

The results of numerical computations based on equations 1.182,
1. 183, ? 38, 2.39, 3.5K3, 3.h4, 3.47, 3.48, 3,51, and 3.52 are shown
in Figures 5 through 18, Figures 5 through 8 give the radial and vertical
displacements in the plate cavity problem; the corresponding results
for the body force problem are shown in Figures 9 through12. Com-
parisons of the results are shown in Figures 13 and 14. The results for
the horizontal and vertical {modified) displacements in the transversely
isotropic slab, as given by the head of the pulse approximation, are
shown in Figures 15 and 16. The displacements in the isotropic slab
(displacement input), as given by both the head of the pulse and stationary

phase approximations, are given in Figures 17 and 18, Following
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Miklowitz {10), the wave front téfms in the above stationary phase
solutions were obtained on letting S = 0 (e%cluding S = 0} in eguations
1.182, 1,183, 2,38, 2.39, ‘3._53, 3.54, This point will be discussed
later,

Fig. 5 shows that, for the radial displacement, as R increases
the ratios of the successive amplitudes of oscillation {around the long
7 time, or static, value) to the maximum amplitude decreases. For
instance, for R = 0.01, ?;_ =1, the ratio of the second to the first
(maximum) amplitude is about 0.43, whereas for R = 2, { =1, this
same ratio is about 0, 28, 'L'he former resull should be compared with
the corresponding result for the horizontal displacement in the slab,
Fig. 17, where this ratio is about 0.48, Thus the height of the second
peak w, 1. t. the initial peak is smaller in the plate cavity problem than
in the slab problem and this effect becomes more pronounced as R
increases. Note that this trend with increasing R is as expected.
The calculations were for fixed p and so ags R increases the distance
between source and observation station decreases. Hence the results
should take on more far-field character-as R gets smaller, i,e., they
should get closer to the slab solutions,

No such effect is evident in the vertical displacements, Fig. 6.
The ratio of the second to the first amplitude is about 0, 85 for both plate-
cavity (all R) and slab problems. However the value of R does effect
the phases in both radial and vertical displacements. As R increases
the initial peak in the radial displacements arrives earlier, whereas in

the vertical displacements it arrives later.
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The {-dependence of the solutions can be secen from Figures 7
and 8. It is seen that the radial displacements are a maximum at the
pla_tte center and decrease towards the lateral plate surfaces, The
vertical displacements are zero at the plate center and reach their
méximum values at the lateral surfaces. This behavior is as expected
in view of the nature of the applied boundary conditions.

Inspection of Figures 9 through 12 shows that the above com-
ments on amplitudes and {-dependence also hold in the case of the body
force solutions. In this case however the phase of the solutions appears
to be independent of R. One of the major points of interest in connection
with the body force solutions is how closely they agree with the plate
cavity solutions. Examination of the curves shows that, in general,
there is good agrcement in the broad overall features. One of the diffi-
culties in making this comparison is the fact that the static solutions
(about which the oscillations occur) in the two problems are different,

To facilitate such comparisonsg, and to have solutions more suitable
for possible experimental analysis, the static sblutions are taken to be
the same. Inspection of equations 1,182, 1.183, 2,38, and 2.39, shows
that the ratio of the static solutions is:

static solution in plate cavity problem _ 2w(l-¢)
static solution in body force problem

1-2¢

= 11. 41, for o = 0, 31

Hence, on multiplying equations 2, 38 and 2. 39 by this numerical factor,
solutions having the same static value are obtained., These solutions,

viz.,
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ZTr}J.HCzll. 41 zchfj 11, 41
NP u, and P ay

O

are termed the modified displacements; in an experiment the necessary
modification can be achieved by suitably adjusting PO {the load factor),

Comparisuns between these modified displacements and the dis-
placements in the plate cavity problem are shown in Figures 13 and 14,
Inspection of these figures shows that on the whole the agreement is
quite good, particularly for small R. The discrepancies which arise
for the large value of R are not surprising in view of the fact that an
increase in R holding p fixed corresponds to a decrease in the distance
between source and observer. The similarity of the results (for small
R} out to moderately large arrival times, i.e., for moderately large
wavenumbers, should be noted. It should also be noted that in the light
of the rod situation discussed earlier (general introduction), viz., the
good agreement for large distances down the rod between Fox's (9)
body force solutions and experiments simulating nonmixed conditions,
the present work suggests that in the plate-cavity problem the mixed
case is a good model for the nonmixed case, for large source-observer
distances,

In calculating the head of the pulse approximations to the displace-
ments in the transversely isotropic slab, Figures 15 and 16, values of
the Airy function were obtained from Miller (59)- and of thc integral of
the Airy function from Jones (60). For large values of z (or p), and
hence t (or T), PB", as given by equation 3.50, is large and positive.

Equation 1,178 shows that in this case Ai(-B")-is of order p—1/4 and so, in
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equations 3,48 and 3,52 is small in comparison to Ai(-8"), for small
L}

B'. Also 13 + E Ai(-£) df approaches unity as B" gets large (60) and
50 the first and third terms on the right sides of equations 3,47 and 3.51
cancel. The fact that the terms involving p" do not contribute appreci-
ably for large p is as expected, since their counterparts in the station-
ary phase approximations do not arise either. For purposes of gener-
ality, the ordinates and abscissae in Figures 15 and 16 are chosen
differently from those in the other figures. Reduction to displacements and
arrival times can readily be achieved in a specific case.

Note that in these head of the pulse solutions disturbances are
shown which arrive earlier than 7T = p/b. These arise mathematically
in that the various functions involved have nonzero values for small
negative values of pf'. However these portions of the response are
difficult to interpret physically, since the approximations as a whole
stem from a region in which the maximum group velocity is b, They
are retained here for the reason that the corresponding portions of the
solutions of Fox et al, (4) to a similar rod problem agree with their
experimental results,

The surface horizontal and vertical displaccrents in the isotropic
slab (displacement input), as given by both head of the pulse and stationary
phase approximations, are shown in Figures 17 and 18, These compari-
sons not only throw some light on the question of the regions of validity
of the two approximations, but also give a measure of the validity of the

procedure of letting S —> 0 in the stationary pHase solutions. It is seen

that, in general, the two approximations are reasonably close, The
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head of the pulse solutions oscillate more rapidly and have larger ampli-
tudes. In the case of the horizontal displacement the maximum ampli-
tudes differ by about 12% (at the plate surface; the difference is more
pronounced at the plate center). Differences in the immediate vicinity
of 's =0, i.e., 7T =p/b, are more marked, particularly in the case

of the vertical displacements, but the head of the pulse solutions should
be more accurate inthis region. As yet no procedures exist whereby
the regions of validity of the two representations can be precisely
demarcated and the final criterion would have to be experimental,
However a reasonable appraisal can be made on the basis of the figures,
Thus for 7/p - l/b < 0.025 the head of the pulse approximation would
appear to be the more accurate. In any event the results indicate that
both representations are necessary to obtain an overall picture of the
response, particularly in the region out to the initial peak. Though

this has only been shown for the slab it indicates that a similar situation
exists for the plate with the cavity and other axially symmetric plate
problems. This suggests that numerical computation of the head of the
pulse solutions in the plate-cavity problem (equations 1.175 and 1.176)
would be desicable,

Some comments on the accuracy of the numerical results should
be made. Miklowitz (10) used a simple central difference technique in
calculating Qi(S) and Qi’(S) from the Ql(S) versus S5 curve showx;
in Fig. 2. One of his numerical checks was a comparison of the maxima
of the functions V1 and V2 {equations 1,180 and 1.18]) obtained from

the difference technique and those obtained using exact exprcssions for
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the derivatives Qi and Ql"., The results obtained were:

S Qi’(S) Vl VZ
Fxact 1.15 -1, 3641 | 0.1757 x 10~ 2
Approx, 1,15 -1, 2410 0.1873 x 102
127 -1. 7895 0. 8803 X 107>
1,27 -1.3948 1,016 X 107°
1.30  -1,5761 0.1739 X 10”7
1,30 -1, 4055 0, 2054 X 10 %
1,41 ~1,3263 0.2272 x 10" %
1,41 -1.3018 0.2267 X102

The agreement is seen to be quite good. Another check used by him
was a comparison between the numerical results and those obtained
through the leading terms in "wave front" (S — 0) expansions. Again
good agreement was obtained. In the present numerical work the
results were obtained using an IBM 7090 cdmputer and ample checks

were obtained using independent calculations,
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Appendix A, EXTENDED HANKEL TRANSFORMS

INTRODUCTION

| As meniioned in the text, Hankel transforms f{or the interval
(0, @) are not suitable Ifor application to problems which do not include
the origin. In this appendix transform pairs which are adequate for
such problems are discussed. They are derived from certain expansion
formulas of arbitrary functions, which are discussed in Titchmarsh (61).
To the author's knowledge the present work constitutes the first appli-
cation of such transform pairs to probleims in eléstici’cy and for this
reason, and for purposes of completeness, a brief account of their
derivation is given. Since the proofs given by Titchmarsh are quite
cbmplex, alternative formal proofs are given here, along the lines of
similar proofs in Sneddon (49}, It is hoped that the derivations given
here will make the material more readily accessible to the general

reader,

Al, FINITE INTERVAL

Consider the differential equation

d (_dy 2
E(r%)%—rky—o (Al 1)

in the interval 0 < a =1 = 3 < o, where k is a real parameter. This

has the solution (the choice of which will be explained later)

y = C_(k, r,a)= J_(kr) ¥ (ka) - J;(ka) Y _(kr) (A1, 2)

where the J's and Y's are Bessel functions of the first and second
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kinds, respectively, This solution has the property that

d 1 . -
l: > Co(k’ T, u)_] | =0 . (Al. 3)

T=aq

and it is assumed that k is a root of the equation

[-d‘ll:c (k, r,a)J -0 (Al. 4)
r=p

The differential equation Al.l and conditions Al. 3 and Al.4 consti-
tute a Sturm-Liouville system in an interval in which the coefficients of
the derivatives in the differential equation are continuous and nonzero,
‘Hence general Sturm-Liouville theory ((62), Chapters 9 and 10) justifies
the expansion of an arbitrary function f(r) in terms of the functions
-Co(kj, r,a), where the kj's are the roots of equation Al, 4, provided
that the Fourier expansion of the arbitrary function is valid, Using well-

known techniques, this cxpansion can recadily be shown to be

2 §) k J (k B)C (k T, a)
i(r) 3—’2"”"""‘5‘ ££{g) d +""‘Zz
p-a 10cj0) - 3(kp)

B
X{S éf{g)co(kj,ﬁ,a) d&}, I<a=r=p<ow (Al, 5)

where the kj's are the positive roots of equation Al,4. This formula
was given (without derivation) by Muskat {63) in connection with a prob-
lem in fluid mechanics. A transform pair can be obtained from it as

follows: If the zero order transform is defined by
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a

4‘ gﬁ | |
£ (kj) = rf(r)CO(_kj, r,a) dr | (AL, 6)

then, from cquation Al.5, the inverse transform is

2.2 ' ~0

B 2 K2 I%(k.B)C (K., r, )T O(k.)

£{r) =-§-2_2S £E(E) dE + WTZ 321 Lo J (Al. 7)
BT-a” Ya : Jl (kja) - Jl (kJS)

Note‘the constant term in the last equation, which is artalogous to the:
tonstant term in a VFou:rier cosine series,

Similar arguments (and more rigorous ones also; cf. Titchmarsh
(61}, page 18) can be used to justify the following expansion of an arbi-

trary function f{r):

" k; 2y {k BIC, (K, T,0) o B
Hr) = E£(£)C_(k.,£,a) d },
Z J (k a) - Jn(kjﬁ) {S‘a n-j
0<G.Er£@<m (A]..S)

where

Cn(k, r,a) = .]'n(kr)Yn(ka) - Jn(ku)Yn(kr)

kj is a positive root of Cn{k, B,a) = 0, and n is a positive integer. If
the ntlr order transform is defined by
f(k.) = rf(r)C (k.y ryu) dr (Al. 9)
J a n
thcn, from equation Al, 8, the inverse transform is

i n 1 | (AL, 10)

3 C_Fn(kjﬂ) - Jn(kjﬁ)

k2T (kB)C (k r,a)f (k)
f(r) = “’TZ
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Some comments on the choice of the_ kerﬁel in equation Al.5
should be made. The derivative w. T.t. T uf the kernel in equation Al. 5
is the kernel in eciuation Al. 8 (Wifh n =1), to within a factor of k, This
is a feature of the zero and first order Hankel transforms for the spatial
interval (0, ) and so the above transforms should be useful for axially
symmetric wave problems, A more general expansion of the type Al. 5

for ai‘bitrary n appears to be difficult to write down,

AZ. INFINITE INTERVAL

For an infinite interval 0 <a = r = o0, k becomes a continuous
parameter and integral, instead of series, representations of arbitrary
functions are obtained. As mentj.oned in the introduction, the representa-
tion formulas to be given in this section have been derived by l'itchmarsh,
but here an alternative, more accessible, approach to their derivation
is presented. The development used follows closely that given in Sneddon
({49), pp. 56~-57) in cunneclion with one of the formulas.

Some algebraic simplifications occur when the second linearly
independent sblution of Bessel's equation is taken to be Gn( (64), page 23)

instead of Yn. The relation between G, J, and Y, is given by

G (z) = IT”[JH(Z) TiY (2)] (A2.1)
The functions

T,k r,a)= J (kr)G(ka) - J,(ka)G_(kr)

T (L, r,0) = J_(Lr)Gy(La) - J{La)G,(Lr)
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where k and { are positive real parameters, a is a constant, and
r a variable, are solutions of Bessel's equation of order zero, Inserting

these into the Lommel integral formula ((64), page 69), and noting that
. d . _ d _ _
[“a“; T (L, 1',‘-1)] = [?1? T (%, r, ﬂ):‘ =0
- r=a , r=q
one obtains:
2 2y h |
(k - L ) 'I‘To(k, r, U-)TO(Q; r, (1) dr
a
= [¢rT {k, r a)—d——T {(k, r,a) - krT (L, r u)iT (k, r,a)],
o' dy "o ! o7 dr "oV T gk ?

(A2, 2)

where h is a constant. The J functions on the right side of the last

equation are now replaced by {Watson (48) }
17 _ inm im
Jn(Z) = ';T'{'[ Gn(Z) e G (ze )]

Then, assuming h is large, the G functions involving h on tle right
side of the resulting equation are replaced by the leading terms of their

large-argument asymptotic expanisons. Multiplying through the resulting

equation by Lp(t)/Bi(Lp), where Bi(La) = ¢'"G,(La)Gy(tae™™ and ()

is an arbitrary real-valued function, integrating w.r.t. { between 0 and

w, and letting h-— w, there results:
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(v'e] ah
Lim V : qu(?é?l) df Su rTo(k, r, a)TO(t;, r,a) dr =

Vi [ G (ka)Gy(Lo) + Gy (kao'™ Gy (Lac'™)]

cuim (| o(L) cos (LHJhdL
b~ Yo { 2m/k B(ta)(g + k) |
Oo \/'Q G (kc,e )G (T,aelw) Gl(k_o.)Gl(f:o,)]
- i Lim Fo()sin(t+10h dt
h—oo* 2mk B (La) (L + k)

V£ [Gykae ™G (La) - G (ka) Gy (Lae™)]
- iTLim g { }?(Q)COS(E‘k)th

h— @ 2nvk B (Lot - k)
el wfé[G (kae'M) G, (£) + G, (ka) Gy (Lael™ .
- iLim S } (;) 112(‘;:1{)1()
h—>w Yo - mek B, (La)
L (% (Po(t)
+ L % S' at (A2, 3)
o R, BNRER)

where P represents the contribution from the higher order terms in
the asympto{:ic expansions of the G functions,

On separating the first and second terms of the right side of
equation A2, 3 into their real and imaginary parts, it can be seen from
the Riemann-Lebesque lemma that the resulting integrals are zero,
provided the conditions of the lemma are met. The restrictions imposed
on ¢ by these conditions are not too severe, as can be seen on observing
that the {} bracket terms in the integrals are bounded (noting that
BI{QCL) and (L +k} have no zeros in the interval in question). Thel last

term on the right side vanishes if the integral multiplying 1/h exists.
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Now (Q‘ - k) is a factor of P, since it is a factor of equation A2, 2, and
so no difficulty arises due to the prescnce of this term in the denominator.
It is henceforth assumed that ¢ is such that this integral exists. The
third term on the right side is of the form

a
et 4(1) cos (¢ - Wn at

Lim

h—o Yo
where F({,k) ‘ =0, 8F/8¢ is non-singular, and F({,k) is bounded
in the interwval, ?;:I-Iiceﬁce it is zero, by the Riemann-l.ebesque lemma, as
can be seen on expanding F{(, k) in a Taylor series about { =k, Thus
the only nonvanishing term on the right side is the fourth term, which
can readily be evaluated by fneans of the thcory of Dirichet integrals

((69), pp. 9-15). There results, assuming ¢ is continuous in 0 = k=<

g Q“P%%L, daf rT (k.r.a)T (L, r,0) dr = ofk), 0SKk= oo
o) 1

(A2, 4)

The argument up to now has followed closely that in Sneddon,
except for the choice of limits and the location of the factor BIL(QO.),
which here has been chosen to allow inclusion of the origin in the range
of { (without it siﬁgularities would arise). Interchanging the order of
integration, egquation A2,41 may be written:

© o Lo(L) T (L, T,a) |
S' rTO(k, r,a) c:i.r.SI B.(L3) dt = ¢(k) (A2.5)
a o 1

Letting
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dg, | {A2, 6)

Qo ‘;Go(g)To(gs T, a)
llJ(I') =S‘ B]_“;U-)

equation A2.5 may be written

jee]
‘P(k) = S I'To(k, I, GNJ(I‘) dr

Q

Substituting this value of ¢ into equation A2,6 gives, on changing the

dummy variables of integration:

W) ——-——-7—§T°(§’ e (7 6t ., apwie) as
= ,y G, 0
o o Bl(l;o. a fa

or, using equation Al. 2, AZ2.1, and the definition of Bl:

o tC (2,1' a) 4t '
Y(r) = dg§ §¢(§)C (£, €, a) ag (A2.7)
o Jl ({,o.)+Y (?;a) a :

If the zero order transform is defined by

~5 _ 200
b (k) = rL|J(r)C0(k, r, a) dr (A2, 8)

a

then it follows from equation A2. 7 that the inverse transform is

© k(KC (K T, a)
Wi{r) = S. 5 5 dk (A2.9)
o J (ka)t+ Y (ka)
1 1
- Using a different technique, Tichmarsh has derived the expansion
formula given by equation A2, 7 ((61), set v =0 in last example in §4.10).

‘However as mentioned before, the above formal approach appears to be

simpler,
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Using arguments similar to the above, the following expansion

can be derived:

co LC (L, r,a)
llJ(I‘) :g 5 n. ) i ngm §¢(§)Cn(§s ‘gs U.) dg (Azo 10)
0 J;(Lu) +Yn(2;a) a '

If the nth order transform is defined by

P (k) =§ r§(r)C (K, r, a) dr (A2.11)
a

then it follows from equation A2.10 that the inverse transform is

o kJ™MK)C_(k, r, a)
() f =

> > dk (A2,12)
o J2(La) + I5(ta)

Equation A2,10 has been derived by Titchmarsh ({61), page 87)

and is termed the Weber integral formula.

A3, TRANSFORMS OF THE DERIVATIVES OF A FUNCTION

Here the transforms of derivatives, and various combinations of
derivatives, are formally derived. The transforms to be considered
are those given by equations Al, 6, Al.9 (withn =1), A2.8, and A2.11 (with
n =1)., Since the question of whether k 1is continuous or discrete becomes
important only when inverse transforms are bei.ng considered, these
transforms can be treated simultaneously, with the aid of the following
notation. The first and zero transforms of a function ¢(r) are defined

tu be
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~ p .
qal(k) =S‘ re{r) Cl(k, r, a} dr : . (A3.1)

¢ (k) =S re{r)C_(k, r, a) dr {A3, 2)
a

respectively, where it is to be understood that if B is finite then k is

to be replaced by kj (in A3.1 a root of Cl(k, B,a} =0, in A3, 2 a root of
Al 4), |

Integration by parts gives:

g
Sll ™ '5"1—- Cl(k, r, (!,) dr

: 4B B
= [rcpcl(k, T, a)—] - k‘Sj rqaCO(k, r,a) dr

44
a

ia €ay
. B
)
‘S; r -5% C,(k, r, a) dr

=B N
- [rqocl(k, rna)| - k%9

a

(A3, 3)

Similarly, the following results can be established on integrating by parts

B 2 1 I
S‘ r[g—%‘l— ;%(:-'— lztplcl(k,r,u) dr
a or ro
8¢ , 1 ' B o
= { rar + cpJCl(k, r,a) - krcpCo(k, r, a)} - k%¢ (k)

a
(A3, 4)
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y r[§;+ ;¢Jchﬁma)dr=[}¢cgknaaq + ke (k) (A3.5})
. _
) a

BT a2 1 -
B89 . 1 8¢
S\r[ 2+rarJC0(k,r)dr
a - 8r
) | P e
:[}Eﬂc(hrﬁn+kmcuﬁnaw - k%°(k) (A3, 6)
r oo 1
- Q

The choice of the above groups of derivatives has been dictated
by their nccurrence in the equations in the text. Note the great similarity
between the above results and similar results for the zero and first

order Hankel transforms for the interval {0, 06), as given by Sneddon

({49), pp. 60-62),
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Appendix B, NATURE OF THE ZEROS OF CERTAIN
’ TRANSCENDENTAL FUNCTIONS

INTRODUCTION

The roots of certain transcendental equations (frequency equations)
are examined analytically in this appendix, The main technique used is
é generalization of one used for locating the roots of certain Bessel
functions (64) and employed by Tranter (65) in connection with a problem
on the vibrations of én elastic cylinder, In Tranter's case the system
is governed by one differential equation, whereas in the present work
systems governed by several diiferential equations are treated. The
discussions are mainly confined to problems arising in the text, but

some extensions to cases of interest in their own right are also included.

Bl,1, ISOTROPIC PLATE; COMPLEX ROOTS

The first cast to be examined is that of the isotropic plate treated
in Section I, Detailed description will be limited to the plate of infinite
radial extent, since, as will emerge subsequently, the question of
whether the outer radius of the plate is finite or infinite is not critical.
Substituting equations 1. 81 and 1. 82 into equations 1. 25, 1. 26, 1. 50, ‘and

1,51, and using equations 1. 27, 1,28, 1.29, 1,30, 1,63 and 1,71, one

obtains:
2 _{n) 22 2 2 (n)
d'Fo  kegmpy F(n)_k(_c_é_l‘)i.F_?_on (BL.1)
5 3 1C 2 dz )
dz Cq Cq



(n) 22, 2 2 (n)

szc _kcs’LPnF(n)_k(f_g_l‘) 4F g -0 (BL. 2)
awl 2 2C 2 dz ' ’
= C [ad
d d

()
ar
__d_lé&__kazné =0, z=%+H (BL, 3)

{n)
dF

(N + 2p) ZC + xkF{‘é) = - {—L( D.ik,p ), =z =z H (Bl. 4)

whe re F(ln(% and F(ZIE:)‘ are the values of the functions corresponding to

the value P, of the parameter p. Let P and Py be arbitrary values

of p. quation Bl.l with n = 2 is now multiplied by F(Z](?J and the

(2)

result is subtracted from the product of FZC and equation Bl.1 with

n = 1. Then equation Bl, 2 with n = 2 is multiplied by Fﬁ%

(2)

result is subtracted from the product of FlC

and the
and equation Bl. 2 with
n =1, Adding the results of these operations and integrating (w, r.t. z)

between - H and H gives, after some rearranging:

H —_
2 2 (1) (f2) o) o{2)
(b - P1)§_H [ FlOFia - Fog Foo | ¢z

(1 ) - (2) -
- {2 F(z){dF Sl |- oo [dF 1C (2

1IC | ~"d dz 2C |
(1)
., dF
+ pi2) [cd —28 (el - 2e )F(l)J

(2)
0 .2 ¥Fac
“a

Y =+ k(ci - 2¢ )F(Z) 5} (BL, 5)

>kT}he se equations also follow directly from the definition of the functions
(cf. Appendix C).
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for Re T}j < 00, This last condition is necessary to insure convergence
of the integrals, Using equatione Bl. 3 and Bl. 4, and the even and odd
nature of the functions F{ré) nd F(Z(% s respectively, equation Bl.5

may be written:
2 2 i) (2) (1) (2)
(b2 "Pl’go [ 1c Fic FFacFac J dz

_2p | n(2) ()] i
K [cm Dol Py} - FpcDellory) | (B. 6)

So far nothing specific has been said about Py and Py It is now
assumed that they are zeros of D{k,p) and hence equation Bl. 6 may
be written:

1 2 1 2
pl)J [ ri) {c)+F(2():Fg(%sz=0 (BL. 7)

Before proceeding further with the main argument, some dis-
cussion of the functions {Iclj) ’ Fgg and Dik, pn) is necessary. Since
these functions are odd functions of e they have branch points at the
zeros of ™ and so suitable branch cuts in the p-plane must be intro-
duced. These cuts are so chosen that it is the principle branches of the
functions which arise, i.e., the cuts run from the branch points to - oo,
parallel to the real p-axis. From the location of the cuts and the form
of the functions it follows that they are analytic functions of p in a
domain which is symmetric w. r.t. the real p-axis and are real when

p is real, provided k is real, Hence, by Schwarz' principle of

#*
For finite Lk, this is equivalent to Re p < oo,
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reflection (66),

Flolp) = F o)
o (Bl. 8)
FZC(P*) = F;C(p)

D, p°) = D (K, p) (BL.9)

ks

where p denotes the complex conjugate of p, etc. From equation
Bl, 9 it follows that the zeros of DC(k, P} occur in complex conjugate
pairs. It is now supposed that Pp= o +iB, and p, are complex con-

jugates. Then, on, using equations Bl. 8, equation Bl, 7 gives:

CH . 2 . 2 _
Bl ||F clatip,2)|° + [F,o(k, atip, 2) | J dz =0 (B1.10)
o]

But the integrand in this last equation is always positive and so a contra-
diction is reached. Hence there are no complex conjugate, and hence

no complex, zeros, except possibly those for which a or B vanish,
i.e., real or pure imaginary zeros. Note also the previous restriction
on the points for which Re nj = w, These points receive special dis-
cussion in the text,

Some general comments on the method and its scope are appro-
priate here, particularly in connection with axially symmetric problems,
The work of Tranter (65) on the cylindrical shell, of Miklowitz (12) on
the sudden punching of a hole in an infinite elastic plate, and of Selberg
{(67) on a cylindrical cavity in an infinite medium, is typical of such

problems. In . Selberg's and Miklowitz's solutions the expression
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corresponding to Dc{k, p) contains functions of fhe type Km(pa/cd),
where K is a modified Bessel function of the second kind, and a
is the radius of the cavity or hole. The limits of integration in the
equation analogous to equation Bl.10 are from a to . Hence the
integrals converge only if Re p > 0, as may b.e seen from the asymp-
totic form of Km(pr/cd), and so the above method works in the right
" half p—'plane only., It is interesting to note that Selberg, using the
principle of the argument (68), located a root of his "frequency equation”
in the second quadrant of the p-plane. Thus a portion of his solution
decays exponentially with time. That this po rtibn stems from the form
of the solution rather than any physical damping can be seen from the
wo__rk of Miklowitz, in which, by suitable choice of the modified Bromwich
contour, this term was replaced by certain integrals which do not have
this exponential time character. However the occurrence of the term
indicates that physical arguments regarding roots in the half-plane
Re p < 0 must be treated with some caution, The issue does not arise
in Tranter's work, since the limits of integration there are finite and
hence the above argument is valid for the whole p-plane, except p = o,

It should also be noted that the above proof holds vuly for those
cuts which give domains which are symmetric w. r.t. the real p-axis.
For other branches complex roots may exist,

The essential features of the proof did not critically hingc on the
particular form of FIC’ cm and DC' In fact the only use made of

their explicit form was in assessing them as analytic functions in the

cut p-plane., On the introduction of suitable branch cuts the functions
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Ff'lf’ FZF and DF’ given by equations 1. 59? 1. 90 and 1, 91, respectively,
are also analytic functions in the cut p-plane. Hence the details of the
proof showing DF(R, p) has no complex zeros for real k except possibly
real or pure imaginary ones, go through exactly as above and will not

be discussed any further here,

Bl. 2, ISOTROPIC PLATE; REAL ROOTS

The zeros of equation 1. 56 satisfy the equation

tanh 1‘]1H 41{2'1111’]2

(B1.11)
tanh n,H (”12 + kz)z
where
2 1/2
m = (1% + 259 (Bl.12)
CS
21/2
(2L P
n, = (k7 + 55) (B1.13)
“a

Assuming k is real and p is real and nonvanishing, and noting that
cq > C.s it is seen that ™ > Moo Hence tanh an > tanh nzH, since
tanh x is a monotonic increasing function of x, Hence the left hand
side of equation Bl.1l is greater than one, Now, since nl > ‘r}z, it
foilows that

P 2_2

2 2.2 2 2,2
(111 + k7)° - 4k nlnz>(nl + k%) - 4k g

2
= (nf - &%)°

>0
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Therefore

4k21'| mn

12
2 2.2 :

(ny +k7)

i. €., the right hand side of equation Bl.1l is less than one, which is

a contradiction.

Hence there are no roots of equation Bl.1l for which

P and k are real, except possibly p = 0 (this point receives special

attention in the text).

Using similar arguments it can readily be shown that DF(k, P)

also has no real roots for which p and k are real, except possibly

p=0.

Bl. 3. ISOTROPIC PLATE; REPEATED ROOTS

As in the previous cases the detailed discussion will be confined

to the problem for Dc(k, p). On letting P, =p; t €, where € <<,

and expanding the various functions containing Py in Taylor geries,

equation Bl. 5 in the limit gives, after some rearranging:

H
‘ZPS
1 H

{2
- jc
Su_

- -

2 2
_Flc(k’ Py z) + cm(k, Py 2} J dz

2
r‘BFlC 8F1c _F- a FlC . .2 BFZC BFZC
07 ap 1C 8z 8p d oz op
1 1 1
oF oF. . - . H

2 2 20 1C
T k(cy cs){ F.c ————apl - Foe -—-—apl J }

2
. 2 F
2C Bzapl

(Bl1.14)

where 8/8131 denotes the derivative w.r.te p cvaluated at p = Py-

—

J
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Differentiating equations Bl. 3 and Bl. 4 w. r. t. 7 p and evaluating the

results at p = Py gives:

2

8" F
1C - k 2G = 0, z = H (31.15)
oz op op
1 1
9°F oF 8D
2C 1C B C _
(7\.+2.}J,) azapl +)\_k'—§'§]-“— k----—-—-apl , 2 =2 H

If Py is a double zero of DC' this last equation may be written:

2
oF oF
2C 1C _ _
Py apl + 2k 5 =0, z=+H (Bl. 16)

A+ 2
( M) B,

Substituting equations Bl,15 and Bl,16 into equation Bl,14, and using

equations Bl, 3 aﬁd Bi.4, one obtains:

H
2 2
Zplgo [Flc(k’ ppp2z) t FZC(k’ Py Z)J dz =0 (BL.17)

It has been shown above that the only possible zeros of DC are
complex conjugate, pure imaginary, given by p = =+ iwnc(k), 5aY.
Substituting these values of p into equations Bl.12 and Bl.13 it is seen
that, for real k, three cases of equation Bl,17 need to be considered,
viz, !

{i) 1, and m, both real, corresponding to k?'c2 > wz (k)
1 2 ’ p g s nC

(ii} 7m, pure imaginary, m, real, corresponding to
1 2 g

2,~1 2

sty 2.=1 2
d nC

(1) < k% < (90 (k)

2. 2 2
k= < wnc(k).

(iii) ™ and n, both pure imaginary, corresponding to cq
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Other possible cases corresponding to P = 0 or to the vanishing
of cithecr 'ql or 1]2 are excluded from the discussion, since these

points receive special attention in the text.

Case {i). It is seen from equations 1. 84 and 1,85 that F... and F,

1C

are both real when ™ and m, are real and hence the integrand in

C

equation Bl,17 is always positive. Thus the equation leads to a contra-
diction and hence there are no repeated zeros of Dc for which

2 2 2
k c > mnc(k).
Case (ii). On substituting n o= . iﬁl, where El is real, into equations
1, 84 and 1. 85, expressions of the type if, and if,, where f; and f,
are real-valued functions, are obtained for Fl and FZ’ Hence the

integrand in equation Bl.17 is always negative and so a contradiction is

again reached. Hence there are no repeated zeros of DC for which

2. -1 2
(cd). w e

(0 <% < (272 (k)

Case (iii). On substituting ny = * i€, n, = + igz, where 51 and éz
are real, into equations l. 84 and 1. 85, expressions of the type ig1 and
igz, where g and g, are real-wvalued functions, are obtained for

F1 and FZ' Hence the integrand in equation Bl,17 is always negative
and so a contradiction is reached once more. Hence there are no

2. 2 2

repeated zeros of DC for which cdk < mnc(k) and so, in summary,

there are no repeated zeros of D, for real k.

C

A similar proof showing that DF has no repeated zeros for real

k follows readily.
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Bl.4, TRANSVERSELY ISOTROPIC PLATE

The next case to be considered ie that of thc transversely iso-
tropic plate treated in Section III, The notation in that section is
adopted here also. In particular note the difference in the choice of
z here and in the previous sections of this appendix.

For the case of complex roots the argument is very similar to
that given for the isotropic plate, the only difference lying in algebraic
details., Either of the two problems treated in Section III cén be focussed
upon, since the same frequency equation arises in both cases. Choosing
the longitudinal impact type problem and going through the procedure
given above (§Bl.1), equation Bl,10 is obtained again, where now F, and
Fz are given by equations 3.19 and 3. 20, respectively, and P and P,
are rools uf eguation 3, 21 set equal to zero, The brancﬁ points of the
functions in this case do not necessarily lie on the imaginary p-axis,
but this ma.kés no basic difference in the argument, since the branch
cuts can still be so chosen that the principle of reflection applies. The
remainder of the proof now goes through as a.bmlre, and it can be con-
cluded that D(k, p), as given by equation 3. 21, has no complex roots
for real k, except possibly pure imaginary or real roots. The points
p = 0, o and the zeros of M and m, are not covered by the above dis-
cussion, but receive special attention in the text.

Proofs of the absence of real and repeated roots are not readily
forthcoming in the present example, not only because of greater algebraic

complexity, but also because the relative magnitudes of the various elastic
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constants are unknown, For the problem at hand the absence of such
roots must be deduced from the physical arguments given previously
(§1..2), i.e., negative real roots are excluded on the basis that the basic
physical model has no dissipative mechanism and positive real and re-
peated roots are cxcluded on the basis that they lead to solutions which

diverge with increasing time,

Bl. 5. PLATE CONSISTING OF ISOTROPIC PARALLFEI 1,AYERS;
COMPLEX ROOTS

Soume of the scope and limitations of the present technique for
determining the nature of the roots of equations have been given in the
preceding sections of this appendix, Since the method appears to be of
gencral usce in multi-integral transform techniques, some further
illustrations of its applicability will now be given. The problem to be
considered here is that of an infinite plate consisting of (2n -1} iso-
tropic layers in welded contact, with the symmetries indicated in
Figure 19, subjected to surface loadings which generate either sym-
metric or antisymmetric waves. It should be noted that a detailed
solution of the problem is not aimed at here, but instead general infor-
mation pertinent to the above techniques is sought.

The notation used is shown in Figure 19, Assuming zero initial
and "radiation" conditions, zero body forces, and axial symmetry,
application of the Laplace and Hankel transforms (for the interval (0, o)

to equations 1.3, 1.4, 1.10, and 1,11, gives the following transformed

equations for the jth layer:
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Fig. 19. Geometry of layered plate and coordinates used.
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dua . ' _ dﬁo.
rj _ 21 2,02 2= 2,-1, 2 2 z]
. (Cey) T kTegyluy - leg) Hegeg) = = 0
i21,2,00.,n (Bl.18)
~o =
du . du .
wj _ .2yl 2 22=0 2.1 2 2 %
dzz (Ldj) (P "tk CSj)qu k(cdj) (Cdj Csj) P 0,
j51,200.,m (Bl.19)
a dul, o
N T w20
T = (2 f%i +akat, j=1,2 B
?_sz“ ( .] 1-LJ-) dz J u-rj: J =5 s‘vovan ( L 21)

The boundary

IrzZn

H

o
ZZT

where H(t} is the Heaviside step function,

conditions are taken to be:

0, + H

n

z

x Vh(r)H(t), =z =*H_

h(r) is an arbitrary

function, V is a constant, and an appropriate choice of the plus and

minus signs leads to the generation of either symmetric or antisym-

metric waves,

Transforming these conditions gives:

(Bl. 22)

Vi), z=+H
P n

The transformed continuity conditions at the interfaces may be written:
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=l. - . -
uI‘j_ = ur(J"’l)’ z = % Hj: J = 1, Z2yaos 1 {1’1‘1) . (B1° 23)
u° __'ﬁo = zxH i =1,2 {n-1) (Bl, 24)
uzj‘—* Z(j_[_l), Zz = j’ J i 3 vy 0o e 3 L]
) I--(-i-ﬁ;l - kﬁo I = p rdﬁi‘(.-ﬂ) I [ z==H, j=1,2 {n-1)
Py Tdz sz"jﬂ[_ dz “z(j+1}J' - * J T freoe,
(Bl. 25)
du’, N da®,.
N zj =1 _ _ z(j+) =]
(hj Zp.j) P + )\jkurj (?\j+1+ ij_l_l) s + ?xj +1ku’r(j+1) s

z = £ H, j=1,2,...,(n-1) (8102’6)

An outline of the process whereby the solution may be dete rmined
will now be given. The displacements are written as linear combinations
0:f appropriate hypcrbolic functions, the exact form depending on whether
symmetric or antisymmetric waves are generated. In general, having
{2n - 2) interfaces, with 4 conditions at each, and 4 surface conditions,
there are (8n - 4) conditions to be satisfied, In the case of either
symmetric or antisymmetric waves there are only (4n - 2} independent
conditions. In such cases the displacements in each layer, except the
layver of material one, are written containing 8 arbitrary constants. That
the layer of material one differs from the other layers is due to the fact
that the displacements there are either symmetric or antisymmetric
Wo rst. the plane z = 0, whereas the displacements in all other lavers
contain both symmetric and antisymmetric components w, r.t. the middle

plane of the layer, even though they are either symmetric or antisym-

metric w, r.t. the plane =z = 0., The satisfaction of the transformed
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displacement equations of motion imposes 4 relations between the 8
constants in each layer and so, in efiect, the displacements in each layer
other than layer one, contain 4 arbitrary constants, The number of such
layers is (n - 1) so that, on taking into account the 2 constants coming
from layer one, there are (4n - 2) constants to be determined from
~the (4n - 2) conditions.

These conditions lead to a set of (4n - 2} linear algebraic non-
homogeneous equations for the (4n - 2) arbitrary constants A ,
q9=1,2,.0s,{4n-2)., The nonhomogeneous terms in these equations cor-
respond to the transformed boundary conditions given by equations Bl, 22
and so may be written as a {4n - 2) dimensional column vector, whose

On]:y nonvanishing element is the term (p)"lv'ff’(k)o Thus, using Cramer's

‘rule, the solutions to the set of equations may be written:

dct B

A, = e 2=L2...,(40-2)

where C is the matrix of the coefficients of the Aq's and B is the
matrix C with its gth column replaced by the column vector corre-
sponding to the nonhomogeneous terms. Suppose the only nonvanishing
term of this column vector occurs in the ith row, Then
vhO(K)C,
A = :
q p det C

where Ciq is the cofactor of the element Ciq of det C, Hence the

solutions for the diaplacements in the jth layer are of the form:

s VBUOF(Kp, 2)
Yrj T T pD(K, P '

i=L2,....n _ {Bl. 27}



-141-

Vh°(k) G;(k, p, 2)

ado) .
uzj = oD%, p) sy =1, 2,600, (Bl. 28)
where
4n-2
Fj(klpiz):zl 1YﬁYJ( 1 P 2 )? J:]-:Z:voosn
y=1
4n-2
Gj(k,p,z)= Z 1y yj(k sP:Z)y J=L2,000,n
y=1

and the ayq's and i:he Byq's denote the coefficients of the arbitrary
constants in the expressions for the transformed displacements. Since
each of these displacements does not involve all the constants, many
of the a's. and B's will be zero, ¥

Substituting equations Bl. 27 and Bl. 28 into equations B1,18,

Bl. 19, Bl, 22, Bl. 23, Bl. 24, Bl. 25 and Bl, 26 there resulits:

2. (v) 2 (v}
d*F c”, Klel
TR T 2 2. :0y) o Zdl oy i o
— (e o) RS + KZe ) F] k( 7 1) - =o,
sj
§=1,2,000,n (B1, 29)
asgtv) , o) cgJ dF (Y’
-~—-J——dzz —(cdj) (p + k% )G +k(1 X ) =0,
dj
§=1,25000,n (Bl. 30)
(v)
dF
—_— - kG(Y) =0, z==xH (B1.31)
dz n ‘ n

£
Ilustrations of the above statements and techniques can be found, for
example, in the work of Saite: and Safv {69).
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acly (y)
n v) _ .
() +2p) —— + N kFY =D(k,p ), z=2 H_ (BL, 32)
];(Y) = F(Y) z =+ H., J .= 1,2,...,(n-1) {Bl, 33)
J L’ J
W oW ism, j=1,2,..., (1) (Bl. 34)
J jtl o
{v) {v)
dF . dF!
R PN 2 L i~y _ - _
pj( - kG ) pjﬂ( L ij+1), z=2H, j=12,...,(n-l)
(Bl, 35)
agty) ) dG(}ﬂ )
—_ ‘ Y o_ T Y
O+ ij) L+ MK (xj at zpj o) L

z=%H, j=1,2...,(01) (BL36)

whe re FjY)

corresponding to p = pY, Equation Bl 29 with y = £ is now multiplied

and G}Y) are the values of Fj(k, p,z) and Gj(k, Ps %)

by Fj(xn) and the result is subtracted from the product of Fj(ﬂ) with
equation Bl. 29 with y = m., Then equation Bl, 30 with y = £ is multi-
plied by G;m) and the result is subtracted from the product of Ggﬂ)

with equation Bl, 30 with y = m. Adding thc results of these operations

and integrating between Q and T, where Q and T are arbitrary,

gives:

(2- Z)S.Tl(z)dz-[ (z)]T i=1,2 n (Bl, 37)
Py =Py o j —‘Pj QaJ—sﬂnﬂs o

whe re
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I(z) = PP ) g oy 5 n (Bl. 38)
j i i

)
dG:
?,(z) = (pg)'l {Gfim) [(x +20) — i + F(” J

' (m (£)
dG: dF, -
G(‘“ [(7\ + 2p)) -—L—~ kaFgm’J JFJ(*“) [_d%. - kc};“ J
. m .
Oty {—J—dz - kG J}, j=1,2,e0esn (Bl, 39)

and it is to be understood that p = o0 is excluded from the discussion,

Taking j =1, Q:-Hl, T:Hl,j:Z,Q 1-11,'1‘ sz_—z,
Q"-HI,T-——HZ,j=j,Q HJlsT:Hjsj:st:'Hj_lsT:"Hjs
etc., successively in equation Bl, 39 and adding the results, gives:

2 2 M & rett “Hy 4
(py - pm){NIS_H I{z)dz +Z N, U]H It(z) dz -S_H It(z)dzJ }
1 t=2 t-1 t-1
n-1
= N H)-N -H )-N H)+N -H
Z [NgegtHg) - Nye (-H) = No o (H) + N e (-H)
gq=1
tIN o (H)-N o (-H)] (BL. 40)

where the N's are constants to be determined.

From equations Bl. 27 and Bl, 28 it is seen that for the symmetric
case Fj and Gj’ J=1,2,000,1, are even and odd functions of z,
respectively. Hence equations Bl, 38 and Bl. 39 give that Ij(z) and
¢j(z}, §=1,2,00 :0, are even and odd functions of =z, respectively,

It can readily be seen that the same is true in the antisymmetric case,



~144-
Hence in either case equation Bl., 40 may be written:

' H ' n H
. 1 _ ¢
(P;zz - an) {NIS_ ]—1(2) dz + ZZ Nt S‘H It(z) dz
H £=2 t-1

n-1
=2 Z [ qupq(Hq} - Nq+1<pq+1(Hq)] + 2N _o (H ) (Bl1, 41)
g=1

Using equations Bl, 31 through Bl, 36, it can be shown that, if

N =p'y, g=L2,c0.,1n, then
Ngifqalty) - N (H) =0, a=12,..., (-
N ¢ (H) = &™)\ u )D(k, p,) - ¢l D, P )
n'n'"n n n L n n T

Hence, with this choice of the N's, equation Bl. 4l gives:

| e .

S

bf-02) ) ol SH 1,(z) dz = GOV DGk, p,) - G NH DG b )
=1 t-1

where I—IOE 0., On assuming Py and P, are zeros of D{k, p}, this

last equation may be written:
_E Ht
2 2 .
(py- p,) N L(z) dz =0 (B1.42)
o YH
t=l L-1

The remaindcr of the proof now proceeds as above (§Bi.1) and it
can be concluded that the frequency equation, i.e., D(k,p) =0, has no
complex roots. The problems of real or pure imaginary zeros, and

repeated zeros, must be examined separately for each individual case,



-145-

Successful applications of the method to other geometries, e.g., infinite

rod consisting of concentric layers, can readily be made.
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Appendix C, ANALYSIS OF FORMAL SOLUTIONS

A number of formal steps have been taken in arriving at equa-
tions 1.134, 1,135, 2,30 and 2. 31, but, appealing to the clastodynamic
uniqueness theorem, if it can be shown that these equations satisfy the
differential equations, boundary and initial conditions,. then they are
the solutions. One method of approach to this problem is to differentiate
through the series and integrals, and manipulate the terms as con-
venient, assuming that the necessary convergence properties are
satisfied. Unfortunately a rigorous demonstration of these convergence
properties is impractical, in view of the complicated algebraic form
of the equations. [ For some measure of the tasks involved in such a
demonstra‘tion, cf, Cagniard (15).] In order to have some confidence
in the solutions, equations 1.134, 1.135, 2.30 and 2. 31, will now be
exainined formally, though the finél criterion as to their validity would
have to be experimental.

Inspection of equations 1.134 and 1,135 shows that possible
gources of trouble are (i) zcros of le'(ka) + le(ka) {ii) zeros of

Nc[k, iwnc(k)] (iii) zeros of [kzccz1 - wtzlc(k)] (iv) k=0 (v) k = oo,

(i) Zeros of Jf(ka) + Y{(ka)

Since le(ka) + Yf(ka) Z 0, for positive real k, the only values
of k for which the expression vanishes are those for which .Tl(ka) and
Yl(ka) vanish simultaneously. But the zeros of Jl(ka) and Yl(ka) are

distinct and so .J'lz(ka) + Yf(ka) is never zero, for positive real k.
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(ii) Zeros of Nl k io_ (k)]

The argument given here is a somewhat expanded version of a
simiiar argument given by Skalak for a related rod problem (2). Itis
valid also for NF[ Kk, iwnF(k)] and both cases can be considered together
by deleting the suffixes C and F,

Equation 1,121 {or 1.122) gives that

Nk 0,00] =75y gp L i, (0]

and so the zeros of N are the zeros of 8D/8p, since wn(k)?ﬁ oo for

k# oo (the case k = co will be conside red later), Consider the kp-
— — d R 'b . R h'
€ €g an ep be unit vectors in this

plane, inthe p, k, S and T direci:ions, respectively, where T is

plane, k,p real, and let g;,

the tangent direction of an mn(k) versus k curve and S ig an arbitrary

direction. Along an mn(k) versus k curve D(k,p) = 0 and hence

oD

57 =0

i €oy

8D .
op ' p

e (ek eT)

—
e

T

= + = 0 (C].. 1)

Hence, if at the point on the curve in question 8D/9p = 0, or g;- ;T= 0,

=0 (dis-

°x° °T

_.counted, since inspection of the modes shows that no vertical tangents

then equation Cl.1 gives that either 8D/8k = 0, or

occur), Hence

v

a — e —a_]j‘—ba_-b aD_'-a-b—-
38 ~ ©g vD*Bk(ek es) +-3-§(eP es)—O
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showing that D is either a maximum, minimum,-. or is stationary, at
the point in question. Howeve r it cannot be a maximum or minimum,
since D(k,p) = 0 aiong the curve. If D is stationary at the point,
then two mn(k) versus k curves intersect there, Inspection of the
modes, noting that Figures such as 2 give only one quadrant (fhe othe r
quadrants are obtained on noting that the modes are even functions of

k and w), shows that no such intersections occur, except at k = 0,
where the lowest mode and its reflection in the k-axis touch. Thus this
point is not covered by the above argument, a restriction which Skalak
failed to mention, In fact it can readily be shown by an expansion that

N=0 at k=0,

(i) Zeros of [k°cS - (k)]

The wnc(k) versus k curves are the zeros of Dc(k, pl.
Substituting p = = ikcd into equation 1. 56 it is found that DC(R, :l:ikcd) =0,
for kH[(C?l/Cz) - 1]1/2 =mm, m=0,1, 2,3, ..., or k=k_, say, so
that zeros of [kzcczl - mflc(k)] can indeed occur, These isolated points
are scallered throughout the entire mode spectrum and some modes may
not contain any of them., For instance, there are no points on the lowest
mode for which wlc(k) = kcd. Howéver [kzc;fi - ‘”12C (k)] does vanish
for k = 0, but this point receives separate discussion later., Taylor

expansions about km and use of the fact that
Flc[k,ﬂ:ikcd, z] = cm[k,iikcd, z] =0

shows that
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Flc[k, ike 4, z | )

Lim - constant
Kk [keZ-w® (k)] 0w, (k)
m d "nC 5k

which is finite, éince dw (k )/9k#+ 0 for k¥ +#0 (however horizontal
nC' m m

tangents do occur for other k wvalues), and

_ Foc [k,+ ike 4, z]
Lim ) 5 - =0
k—~k [k cq- wnc(k)]

Hence the points km’ except possibly km = 0, are not singu-

larities of the integrands,

(iv) k=0
The cut-off frequencies, i,e., the limiting values of mnc(k}

as k — 0; of the symmetric Rayleigh-Lamb frequency equation are (16):

n=1 Lim wlc(k) = Lim ch

k—0 k—0
nwcri{ .
n>1, wnc(k):ﬂz.—f'i— , n=2,3,4,...
where
cnxcd, n=357,...

Using these results, Taylor expansions about k = 0 show that the inte-

grands in equations 1,134 and 1.135 go to zero as k — 0 (for finite n).
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(v) k= oo
It is limown {16) that mfc(k) — kcﬂ, k =~ o, where ¢, = CR
{Rayleigh wave speed), £ =1, Cyp =Cgs £ >1, Using these results,

expressions for large k can be obtained for and I\TCn For

Flier Foc

n > 1 some caution is necessary, since the value of [kz- (ci‘) 12 (k)]
which arises in the terms involving 111, is uncertain, Assuming that,
for n>1,

Lim w_~(k) = Lim [kc +e(k)]

koo nC k—"oo
where e(k) = B/km, 0 and m being positive constants, and replacing
the Bessel functions by the leading terme of their largc-argumecent asymp-
totic expansions, it can be shown that the integrands are well behaved
as k — oo,

The above arguments showing that the integrands are well behaved
over rthe entire range of integration, not only facilitate the determination
of the stationary phase solutions given in §1.3, but also make more
plausible the following formal verification of the solutions, in which the
various expressions are obtained by differentiating through the series
and integrals.

Substituting equations 1,134 and 1,135 into equations 1.10, 1..11

(with Fr = FZ =0), 1.3, and 1,4, gives:

2
2 C 2
9 18 1 s 8% ( )
(""’z+rar St )cu AU z T2 Gz
or r Cd Bz
2 o 2
_ Y *ke (k, r, a) W (k)‘[ 8’ ( d )k—a Foo-d 2p }
5 : > 8z f2c” _z "2F1c
THC : z
d n=1 I3 “s

X cos w Ak}t dk (Cl1. 2)



2 : >
c . 2 2 cC 2 L1 2
__s\(.8" L1 8y o 9 s (9 19y 1 o9~
(- ) o * 3 az)c“r+[ 23 (G5t % r)J 2 ctz
‘ c / oz c or ‘ c. ot
a a ° d
4z X Lo 2 c2
_ o . -1 8 %5 2
T Z SO kG, ry 2} W (k){ 5.2 T2C 2™ Fac
n=} d
2
. _
)
+(1- —g)k 2 Flc} cos w_ (Kt dk (CL. 3)
Cd R
aU X .w
Crp = WO Z S‘O 1C (K, T, a)Wnl(k){ﬁaE Flo kF, }cos w o (k)t dk
n=1
(Cl. 4)
| DU L poo 1 5
COp = Z ) KC fk 5, a) W k) {(x t o) o F,
. (o]
n=1
FARF - } cos w_(k)t di (CL. 5)

Direct substitution of equations 1., 84 and 1, 85 shows that the
terms in the { } brackets in equations Cl. 2 and Cl. 3 are zero, so that
equations 1.134 and 1.135 satisfy the differential equations. Agan
direct substitution of equations 1. 84 and 1, 85, and use of equation 1,109,
shows that the terms in the {} brackets in equations Cl, 4 and Cl.5
are zero at z = £ H, so that equations 1.134 and 1. 35 satisfy the boundary
conditions on the lateral surfaces of the plate, Setting r = a in equa-
tions 1.134 and Cli. 3 gives

u =U o
C'r o0 Crz
r=a r=a

so that the boundary conditions at the cavity are satisfied, The time
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dependence of the ur. cpndi_tion follows from the fact that u (and uZ)
are zero for times less than the arrival time of the wave front (which
stems from the order conditioﬁ of the Laplace transform, cf, §1, 2).
This pr0pe.r1':y also insures the satisfaction of the initial conditions
given by equations 1. 2. The "radiation” conditions given by equations
1. 71 follow on taking the limits ingide the series and integral signs.
Another feature which strongly supports the validity of the solu-

tions is the correctness of the long lime, or static, solutions, viz.,

ctr T Uo

Hip

c%z ~

It can easily be shown thatithese are in fact the solutions to the equiva-
lent static boundary value problem,

Some comments should be made here regarding the solutions to
finite plate problems. It can be formally shown that the equations
analogous to 1.134 and 1.135 satisfy the differential equations, initial
condilivns, and the boundary conditions on the lateral surfaces of the
plate. However, as pointed out by Muskat (63), difficulties arise when
one attempts to verify the boundary conditions on the cylindrical sur-
faccs, sincc the cigenfunctions in the series are identically zero at both
ends of the interval. Hence the series must be sumne d before verifi-
cation of these boundary conditions can be attempted.

Most of the preceding discussions are relevent to the body forcc
problem also and so the discussion of equations 2, 30 and 2. 31 will be

correspondingly brief,
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Using arguments similar”to those given above, it can be shown
that the integrands in equations .2, 20 and 2. 31 are well behaved over
the entire rangé of integratiqn. However in this case it is quite diffi-
cult to show even formally that the equations 2. 30 and 2. 31 satisfy the
diffe.rential equations, because of the presence of the nqnhomogeneous
body force terms. To establish this aspect of the equations, suitable
limiting processes would have to be undergone and much greater care
taken in obtaining derivatives. This difficulty however does not seriously
detract from the plausibility of the results, since it is a feature of many
solutions to nonhomogencous equations, established, for example, by
Green's function methods, and these solutions are known to be of value,

The satisfaction of the boundary conditions can be shown as
follows: Substituting equations 2, 30 and 2. 31 into equations 1.3 and 1.4

gives

[o's) k J (kr)J (ka)cosw C(k)t 5
T H Z S {"a'EFlc'szc}dk

fa) nc(k)] wnc(k)NC[ k, iwnc(k)

(CL. 6)
5
e ("J’Z“)[}T (- z)(—-+- o |
Z S-oo k J (kr)J {(kajcos w c(k)t
2muH Yo -0l 0] el LNk, do (1]

: 3 0, r>a .

x {(\+2p) 5 Foot xkFlc}dk + P (Cl. 7)

5" s 0<r<a
411-Hcda
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Direct substitution of equations 2. 32.and 2,33 shows that

) 9 _ _
55 Bor T 57 Ry, =0 2 =% H (CL. 8)

2
c, .
n +.2H)[_§_z“ Roz * (1 - Zc_g)(-f?? * nlf)Ror:!
d

P
o

Q0
= - 3 J (kr}J.(ka) dk, =z =xH (Cl. 9)
o 1
‘.hTHCd o

Now ((36), page 92)

(o o] ' r>a
S‘ Jo(kr)Jl(ka) dk =

o]

0,
l, r<a
a

and using this, and equations Cl, 8 and Cl. 9, and the fact that the terms

in.the { } brackets in equations Cl, 6 and Cl.7 are zero at z = * H,

it follows that the boundary conditions on the lateral surfaces of the plate

are satisfied.

The satisfaction of the initial conditions follows from the wave

front property and the radiation conditions follow on taking the 1limits

inside the series and integrals.,
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