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ABSTRACT

The methodology of “Stokesian dynamics,” an efficient and accurate simulation
technique for' suspensions of spheres, is extended to non-spherical particles. The
model system ‘consists of rigid, non-Brownian prolate spheroids suspended in an
incompressible Newtonian fluid at zero Reynolds number. The method is applied
to calculate the hydrodynamic transport properties of unbounded dispersions of
ellipsoids. Both “random” configurations and very orderly arrangements of particles
are considered in order to probe the relation between the microstructure of the
suspension and its macroscopically observable properties.

The simulation method is based on a microstructurally detailed description of
the two-phase system and explicitly takes into account hydrodynamic interactions
between the particles. Non-local singularity solutions for ellipsoids in Stokes flow
are coﬁbined with Faxén laws using pair-wise additivity of velocities to construct
a far-field approximation to the mobility tensor. The convergence problems associ-
ated with the long-ranged nature of viscous interactions at zero Reynolds number
are handled using O’Brien’s renormalization procedure. The Ewald summation
technique is applied to accelerate the evaluation of the lattice sums generated by
the periodic boundary conditions. Lubrication stresses between almost touching
“spheroids are added in a pair-wise manner to the mobility inverse. All the two-body
resistance functions which diverge as the surface separation vanishes are computed
to O(e")z with € the gap width, so that the singular behavior of the lubrication inter-
actions is captured correctly for arbitrary relative orientations and relative motions
of the particles.

| The method is first illustrated for a finite number of particles in an unbounded
fluid domain, and shown to be accurate and efficient. It is then applied to crystalline

geometries of spheroids over the full concentration range from 0 to closest packing
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(74% by volume). The dependence of the hydrodynamic transport properties (sedi-
mentation rate, diffusion coefficient, stress /rate-of-strain relation, permeability and
hindered diffusivity) on the density of the dispersion, the aspect ratio of the parti-
cles and the lattice type is investigated. Equilibrium structures of hard ellipsoids
generated by a Monte Carlo procedure are also considered. The high frequency
limit of the hydrodynamic transport properties is computed and compared to the
results for crystalline configurations, and to available experimental measurements.
A discontinuous jump in some suspension properties is observed at the isotropic to
nematic transition.
As a prelude to dynamic simulations, the compatibility of unit cells with pure
straining flows is examined. It is demonstrated that no self-reproducing lattices
exist in axisymmetric extensional flows, but a set of compatible basis vectors is

derived. Planar straining fields on the other hand possess an infinite number of

strain-periodic lattices.
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Chapter 1

Introduction

The unifying theme of this dissertation is the numerical simulation of hydrodynamic
interactions between elongated particles in viscous fluids. This research was stim-
nlated in part by the growing industrial and commercial importance of composite
materials and of liquid crystals, and in part by experiments on the hindered rota-
tional diffusion of molecules trapped in gels (Claeys, 1988; Claey: & Arnold, 1989).
The enormous impact of fibre reinforced composites on the technological scene of the
last decades was driven by the constantly increasing demands on the performance of
materials. Plastics gradually supplant metals in the automotive world, and replace
wood and brick in the construction business. Very often, a fine dispersion of fibres is
imbedded in the polymeric matrix in order to improve the quality of the hybrid ma-
terial. The transport properties in particular, such as the heat conductivity or the
electrical resistance, can be dramatically affected by the addition of a tiny volume
fraction of filamentous material. In a suspension, the rate of momentum transport
also jumps by orders of magnitude due to the presence of rod-like particles. This is
obviously of great concern during the fabrication of fibre-reinforced composites, as
these are often processed as dispersions of solid particles in a liquid. Although the
influence of slender inclusions on the macroscopic properties of compound materials
is beginning to be understood quantitatively at semi-dilute concentrations, the va-
lidity of analytical approaches is usually limited to unrealistically high aspect ratios
because they rely on a slowly converging asymptotic expansion in the logarithm of
the inverse aspect ratio (Batchelor, 1971; Dinh & Armstrong, 1984; Shagfeh, 1988;
Fredrickson & Shagfeh, 1989; Shaqfeh & Fredrickson, 1990). In other cases, their
usefulness is hampered by the crude approximation of the particle geometry as a

“shish-kebab” (Feéciyan & Dahler, 1982; Muthukumar & Edwards, 1983).
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In this work, we study the rheological properties of dispersions of ellipsoids in a
liquid by numerical simulation. We start from a microstructurally detailed descrip-
-~ tion of the system as a héterogeneous mixture of elongated solid particles in a bath
of fluid, and “scale up” to calculate the observable, macroscopic characteristics of
the two-phase composite. Hydrodynamic interactions between the fibres are taken
into account rigorously. It is shown that computer modeling can increase our in-
sight in the connection between the properties of the suspension and its geometric
features (such as the orientation distribution and the degree of translational order).
Furthermore, by visualizing the evolution of the microstructure under imposed de-
formations, the interdependency of topology and rheology will become more clear.
Although we have not yet performed dynamic simulations on infinite suspensions,
our work paves the way for such studies. Since the positioning of the fibres in a
composite greatly affects its properties—heat conduction may be favored in the
direction of alignment of the threads, for instance— and because this microstruc-
ture is determined under dynamic (flowing) conditions, the rheological properties of
rod suspensions need to be understood before major advances can be made in the
application of fibre composites to new and existing technologies. Theoretical inves-
tigations of this issue are just emerging and restricted to very dilute dispersions.{

Dynamic simulations offer a valuable alternative.

Solid-liquid suspensions also occur in a variety of other circumstances, and the
methods developed in this work pertain to most of them. The “particles” may
be sub-micron sized such as the molecular constituents of liquid crystals (which
are generally composed of elongated rigid polymers in a suitable solvent), or quite
large, such as the splinters in the slurries generated during the production of paper
from pulp. In all instances, hydrodynamic interactions play a dominant role in de-
termining the macroscopic behavior, and these are the focus of the present study.

If the rods are fixed rather than moving with the fluid, the approach described

1 We are aware of current research by A. Szeri & L.G. Leal on that subject.
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- in the thesis allows one to evaluate the properties of fibrous media (specifically,
the permeability and the hindered diffusion coefficients). This WOI:k is therefore
ialso relevant to the study of filters and membranes. It may also help quantify the
contributions from viscous effects in gel chromatography and electfophoresis. The
accent, howéver, lies on the development and validation of the simulation technique.
Most applications are left for future work. We do, however, report on the hydrody-
namic transport properties of crystalline configurations and equilibrium structures
of prolate spheroids (Ch. IV).

Several key model assumptions are made throughout the dissertation. The
particles are rigid non-Brownian prolate spheroids unless stated otherwise (except
in Ch. II). Their dynamics are taken to be representative, at least qualitatively, of
most rod-like objects, but their axisymmetry simplifies the mathematical analysis
considerably. The suspending fluid is incompressible and Newtonian, and suffi-
ciently viscous for inertial effects to be negligible on the length scale of the particle
(i.e., the Reynolds number, based on the dimensions of the fibres, approaches zero).
The usual “no-slip” boundary condition is assumed at the contact surface between
the liquid and the spheroids. We further suppose that the characteristic rate of
deformation is sufficiently slow for the motion to be quasi-stationary. Finally, solid
boundaries are absent in the simulation; we either imagine a few particles in a vast
liquid domain, or a dispersion of infinite extent. This is a significant restriction,
because wall effects are believed to be important in many practical situations. How-
ever, our simulations, by focussing on the “bulk” properties, in effect analyze the
proper constitutive equation for the composite material. Particle slip at the walls,
and wall induced alignment, if real, can then be incorporated in continuum models
as boundary conditions.

The chapters are arranged in order of increasing complexity. The lubrication
interactions between two isolated particles are analyzed first. Chapter III then
describes the dynamics of a finite number of spheroids in an unbounded Stokes flow.

We extend the method to suspensions containing infinitely many particles in Ch.IV,
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but report data for thé short-time limit of the_ hydrodynamic transport properties
only. Some aspects regarding dynamic simulations of unbounded dispersions are
then addressed in the last chapter. The complexity of the particle shape, on the
contrary, lessens as one progresses through this work. The formulae of Ch. II are
derived for arbitrary surfaces (the only restriction being that they cannot touch
at more than one point when brought into contact). Chapters III and IV concern
prolate spheroids, or, in some sections, triaxial ellipsoids. The final chapter makes
abstraction‘of the particles and considers them as points —a few results for spheres
are also quoted.

The very large and localized stresses experienced by almost touching particles
in relative motion dominate the rheological behavior of dense dispersions. These so-
called lubric¢ation interactions cause the stress response to a straining field to diverge
as the maximum packing fraction is attained, and dramatically reduce the mobility
of particles at high concentrations. In flowing suspensions, they prevent particles
from ov’erlapping and provide the connectivity needed for efficient stress transfer
via particle clusters. Because of their importance, Ch. II is dedicated exclusively
to the study of lubrication interactions. Expressions are derived to O(e®) for the
force, torque and stresslet exérted by two close rigid surfaces of arbitrary shape
in arbitrary relative motion. (The symbol e represents the minimum separation
between the surfaces. The stresslet, which is defined in the next chapter, is germane
to the viscosity of suspensions (see §4.5).) The formulae given in Ch. II relate the
first two moments of the stress density on the particle surfaces to their relative
velocities and to the externally imposed rate-of-strain. They suffice to construct
the grand resistance tensor for any system of two almost touching bodies. They
capture all the singular components of the stress at contact. In particular, we
sjhow that forces and torques that diverge logarithmically with decreasing surface
separation can arise due to curvature of more than second order.

Chapter III descfibes the simulation method for a finite number of prolate

spheroids in an unbounded fluid. The fundamental concepts of Stokesian dynam-
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~ ics (Brady & Bossis, 1988) are introduced, and the theoretical framework of the
technique is rigorously defined. The general procedure is then appliea to.ellipsoids;
the construction of the grand mobility tensor is thoroughly explained in the special
case of prolate spheroids. An efficient algorithm for the accurate determination of
the points of closest approach of two ellipsoids at arbitrary separations and at any
relative orientation is sketched, and its advantages for the calculation of lubrication
interactions is emphasized. To conclude the chapter, we illustrate the importance
of hydrodynamic interactions by means of a few examples. Comparisons with other
numerical techniques for Stokes flow show that our approach is both accurate and
efficient.

The procedure developed in Ch. III is adapted for unbounded dispersions in
Ch. IV. The difficulties associated with the long-ranged nature of hydrodynamic
interactions at zero Reynolds number are clarified, and a renormalization technique
due to O’Brien (1979) is used to obtain an absolutely convergent formulation of the
solution. Numerical aspects of the simulation method, which become quite intricate
for infinite systems, are discussed in a separate section. The practical implemen-
tation of the Ewald summation technique in particular is examined in detail. We
then report simulation data for the short-time limit of the hydrodynamic trans-
port properties (sedimentation rates, self-diffusivities, viscosity, permeability and
hindered diffusion coefficients) for two classes of dispersions: crystalline configura-
tions, characterized by perfect order, and equilibrium structures, which are random
at low densities, but become nematic at higher volume fractions (in agreement with
thermodynamic predictions (Onsager, 1949) and mélecular dynamics simulations
(Frenkel et al., 1985)). The variation of the macroscopic characteristics of the sus-
pension with concentration, their depéndence on the aspect ratio of the particles,
aﬁd the influence of the dispersion microstructure on the properties are systemati-
cally investigated and discussed. The results are compared with experimental mea-
‘surements available in fhe literature. The long-time limit of the transport properties

is not calculated, since it can only be accessed by dynamic simulations, in which the
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‘microstructure of the dispersion evolves under action of the imposed velocity field.
'This type of study has not yet been performed for dispersions of inﬁnite extent.
The last chapter deals with unit cells suited for dynamic simulations of un-
bounded dispersions. We first define a standard shape for the simulation box which
facilitates geometric operations such as the search for nearest neighbors. The kine-
matic compatibility of unit cells with pure straining flows is examined next. An
infinite family of admissible basis vectors is found for planar extension. For uniax-
ial stretching flows, we demonstrate the non-existence of self-reproducing lattices.
Using a theorem from the geometry of numbers, we are able, however, to deduce
a unit cell which accepts the maximum packing fraction of spheres tolerable under
these flow conditions. The issue of strain periodicity in general three-dimensional

pure straining flows is also resolved. The implications for dynamic simulations are

briefly discussed.
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Chapter I1
- Grand resistance tensor for

two arbitrary almost touching particles

2.1 Introduction

The large pressure produced in the thin fluid layer between a rotating shaft and its
bearing allow it to support heavy loads. This common application illustrates the
importance of lubrication forces, which occur whenever two immersed surfaces rear
contact are in relative motion. It is a well-known result of low-Reynolds-number
hydrodynamics that the force required to push these two surfaces together diverges
as the surface separation becomes vanishingly small. Thus, two particles subject
to finite attractive forces cannot, in theory, come into contact. In practice, sur-
face roughness, the compressibility of the solid surfaces or of the fluid, and other
considerations play a role when the gap width reaches extremely small dimensions,
but nonetheless, lubrication theory is a very useful continuum-mechanical approxi-
mation to the fluid forces influencing relative motion. Also, as alluded to in Ch. I,
lubrication stresses dominate the rheological response of concentrated suspensions
and dramatically affect their dynamics.

| Lubrication theory is essentially an asymptotic method for flow problems in-
volving very narrow channels. The results are usually expressed as expansions in
the smallest dimension of the flow domain. In this chapter, the dominant terms,
to O(1), are calculated for the forces, torques and stresslets exerted by two surfaces
moving.in close proximity of each other. The formulae are presented in the frame-
work of low-Reynolds-number hydrodynamics, where the linearity of the governing
equations implies the existence of a so-called mobility tensor relating the particle
velocities to their streés moments., This tensor, which depends on the instantaneous

configuration of the system only, is symmetric and positive definite (Brenner, 1963).
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Its inverse, relating the stress moments to the velocities, is called the resistance ten-
sor. Its symmetry properties are often referred to as Lorentz’ reCi;;rocal theorem
(¢f. Appendix B).

For the purpose of accurate and efficient computer simulations of many-body
low—Reynoids—number flow problems, the method known as Stokesian dynamics
(Brady & Bossis, 1988; see also Ch. III) extends the forinalism of the resistance
and mobility tensors to include the effects of an imposed linear flow field. The ex-
panded tensor is called the “grand” resistance tensor. The good agreement between
experiment and numerical data obtained by Stokesian dynamics for the hydrody-
namic transport properties of hard-sphere dispersions (Phillips et al., 1988) confirms
that the method not only captures the essential physics, but is also quantitatively
accurate for volume fractions ranging from the dilute limit up to very high packing
densities (Ladd, 1990). The importance of lubrication interactions is demonstrated
by the fact that suppressing them in the computation results in a failure to repro-
duce experimental data at moderate and high concentrations. Phillips et al. (1988)
also showed that including higher order moments in the multipole expansion for
the force density on the particle surfaces (see Ch. III) improves the reliability of
the simulation method, but they found that a truncation at the stresslet level is
satisfactory for most purposes. In order to apply the methodology of Stokesian
dynamics to particulate geometries other than spheres, it is necessary to know the
forces, torques and stresslets exerted by such particles when placed very near to
each other in an arbitrary linear flow or when near contact and moving with re-
spect to each other in an arbitrary fashion. The appropriate resistance factors are
derived analytically in this work for any two curved surfaces near contact. The
fOrrﬁulae are accurate to O(1) in the surface separation. The contributions from
én imposed straining field are included in the calculation, and stresslets, which are
often omitted, are evaluated. Higher stress moments are not considered because
they are seldom neceséary for the evaluation of physical quantities. It should also

be obvious from section 2.1.2 that they are less singular than the first two stress
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moments and therefore less important.

The present analysis is a complement to the work of Cox (1974j, who approx-
imated the geometry of the almost touching surfaces by quadratics at the point
of minimum separation. Cox recognized that this level of approximation is insuf-
ficient if one wishes to calculate the leading order behavior of all the forces and
torques for arbitrary prescribed motions of the surfaces. He indicated that a more
detailed description of the particles’ shape, retaining features on a finer scale than
the principal radii of curvature at the point of closest approach, is necessary to
find some of the resistance factors. It is obvious that O(1) contributions to the
stress moments can only be computed if the entire shape of the particle is known,
rather than just its local features near the point of minimum separation. However,
as stated by Cox (1974), even the calculation of a few logarithmically “singular”
forces requires a more complete knowledge of the surfaces’ geometry. The terms
“singular” and “divergent” will be used in this context to describe any quantity
that becomes unbounded as the surface separation goes to zero. Cox also showed
that the first order correction to the force required for motion of the bodies along
their common normal is itself singular, and that its calculation requires that the
surfaces be described with a greater accuracy than the one assumed by him. The
present analysis has therefore been undertaken to extend Cox’s results so as to cor-
rectly calculate all the divgrgent forces, torques, and stresslets for arbitrary relative
motions of the surfaces. The singular resistance functions associated with imposed
linear flows, which were not considered previously, are now derived. The approach
followed in this work mirrors the approach taken by Cox (1974), and the notation
is largely borrowed from his article. His results are, of course, also applicable here
and they will simply be quoted to avoid redundancy.

| Ini section 2.1.1, the problem at hand is formulated mathematically. The gov-
erning lubrication equations are derived in §2.1.2, and formulae for the stress mo-
ments sought are givén in terms, of rescaled variables. The sections 2.2-2.4 then

discuss three separate classes of relative motion (covering all possibilities) which
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- give rise to different levels of singularities. For motion of the particles along their
‘common normal (§2.2), the solution is subdivided into three parts, cdrresponding to
an increasingly detailed description of the surfaces. The force, torque and stresslet
exerted by deforming particles near contact are considered in section 2.5 in order
to calculate the effects of a straining flow. Section 2.6 proceeds to construct the
resistance tensor for a system of two arbitrary almost touching particles and demon-
strates for a few selected elements that the results reported here satisfy Lorentz’
reciprocal theorem. A comparison with published formulae for two spheres near
contact is made in §2.7. These examples also illustrate some of the manipulations
involved when the point of reference chosen for the stress moments and the veloc-

ity of the particle is changed. The conclusions in section 2.8 summarize the main

features of this chapter.

2.1.1 Statement of the problem

Consider two rigid surfaces W and W' moving in a Newtonian fluid of viscosity ji.
The minimum distance é between the two walls is assumed to be small compared
to the radii of curvature of the surfaces at the point of minimum separation. It
is further assumed that contact would occur only at a single point if the particles
were brought together in \their current relative orientation. The fluid in the gap is
“incompressible and the Reynolds number (based on the gap width) is so small that
inertial effects may be neglected. The creeping flow equations are therefore appli-
cable. From lubrication theory, one expects very high pressures in the gap, leading
to singular behavior of the stress tensor when the particles’ separation becomes
vanishingly small. In the present chapter, the leading terms in the expansion for
émall ¢ of the hydrodynamic force, torque and stresslet acting on these surfaces are
found for any prescribed motion of the particles. From these results, the resistance

tensor for a system of two arbitrary bodies near contact can be constructed accurate

to O(eo).v
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The governing equations for this problem read:
pVia =V, ’ (2.1a)
V-u=0. ' (2.1b)
A cartesian frame of reference (Z1,29,23) centered on W at the point of closest
approach O is used to describe the instantaneous geometry of the particles (Fig.2.1).
‘The &3 axis is chosen along the line of minimum separation, i.e., normal to both
surfaces, and pointing toward W'. The 2, and &2 axes are tangent to the surface W

but otherwise arbitrary. For example, they can be taken in the directions of principal

curvature of the surface W at O.

The surface W can then be locally described by an equation of the form

\2 \2 3 4
P Diad—ial — Y Yt ial + 0000, 2.92a
3 2R1 sz 2 1 ZO h (™) (2.2a)

with # = (22 + 22)? small. R; and R, are the principal radii of curvature of the
surface W at O, while the coefficients I'; and T; depend on the finer details of
the local shape of W near O. The labels “1” and “2” are assigned to the radii of
curvature such that the set of coordinates (21, &2, d3) defines a right-handed frame
of reference.

Similzirly, one can choose a second cartesian coordinate system (&}, &5, &%) cen-
tered at the point of closest approach O' on W', with the 2} axis coincident with
the 3 axis and the other two axes along the directions of the principal curvature

of W' at O' (Fig. 2.1). The surface W' is then given by

3

r_
$3—‘

r \I3—z\z 14— zxz 5
2R, 2R, L +ZT’ 403", (2.2b)

1=0
' 1
for small ' = (27 4+ 27)2.
If ¢ is the angle between the &; and the 2] axes, the relation between both

coordinate systems reads:

2} = 21 c08 ¢ + &g sin ¢, Ty = —21sind + 5 cos @, Ty =23 —¢. (2.3)
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~ Therefore, the surface W' can also be written in the form:

where for example

2 N si 2 \ - Y 1 2 2
By = e ¢ + =2 ¢, B; = (—1— — 1 )singbcos o, By = il ¢ ) ¢
2R} 2R, R, R, 2R} 2R,
: . (2.4b)
If the velocities of the points O and O' are given by U and U’ respectively,
and the angular velocities of the surfaces W and W' are Q and O respectively, the

no-slip boundary conditions for this problem may be written as

[«

=U+QALy on W, (2.5a)
with, of course, tw = (21,22, %sw ), Tsw being given by (2.2a). Similarly,
a=U+Q'AY,,  on W, (2.5b)

where ¥}, = (&1, 22, 3w’ — ¢€), Taw’ now being given by (2.4).
The variables are non-dimensionalized using the scaling typical of viscous flow:

Y A [ [‘]‘c
¥ = Rer | 21="U.u, =5, (2.6)
R,

with Rc—l = (R;1 + R;l-i- R'l_l + R'{l)/él, and the characteristic velocity U, =
([Q - Q’\RC-F U - U’[)/2 Of course, other dimensional variables such as &;, R,
Yi, etc., must be made dimensionless accordingly and are denoted by the corre-

sponding symbols without accent. In particular, the non-dimensional gap width ¢

is defined by € = ¢/R..

2.1.2 Method of solution

As usual for this typ'e-of geometry, the lubrication hypothesis is invoked, and the

velocity and pressure fields (u,p) are expanded in terms of the small parameter e.
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In the inner region, the coordinates need to be stretched depending on the gap
width. The correct scaling is derived by Cox (1974). From the ex;;ressions (2.2a)

and (2.4) for the surfaces, one easily obtains
T, = e—%wl , Fo =€ Zxq , F3 =€ lzs (2.7a)
and from the equations of motion, it follows that
iy = €1/27F)qy, , Ug =‘e(1/?_k)uz , tis = e Fug | p= 6(2—k)p . (2.7b)

The exponent “k” is a constant to be determined from the boundary conditions (see

below). The surfaces W and W' are now respectively given by:

Ly x2

L . 1/2 ~3—i~i ~4— z~z 3/2 ~5
T3 = —op 3R, et/ ZI‘ ) EET 2 +O0(e°7),  (2.8a)

$3“1+ZB ~2— 1~;+€1/22ﬂ1~3 1~ z+EZb~4 z~z +O 3/2~5) (28b)

In order to cast the boundary conditions into a more convenient form, a set of
non-orthogonal curvilinear coordinates defined by

~2

Tg = Zg, x3_x3+§§;+2R2+61/2ZP~3 ’m’z—}—eET“l ’:B’

8
—
1

=
-

(2.9)
is used to square-up the geometry. The walls W and W' are then described by:

F3 = O(/%7) on W, (2.10a)

and

s =1+ (30 + 1/(2R1))@§ + B1Z:172 + (32 + 1/(2Rz)) 75
4

+é/? Z(ﬁl + T2 775 + e Y (b + Ti)T '3k + O(E/%7)

1=0

= h.(Z1,%2) + € / hh(il,fzg) +€he(Z1,%2) + O(E%7)  on W'. (2.10b)
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~ In this new coordinate system, the Stokes equations of motion take the following

form, accurate to O('s):]L

—_— +
073

iy ay  O%y 2% 8%y L2 O
65% 857% R; 07,073 Ry 07,073

<—~—->~<>} o i

8 _ 3}5
— 2 -2 z 4 — -r 3 = z
_3$61 —Rl _801:3 +e E (3 =)z | + € E (4—1) 2 5%s

0%y 6{6%12 81, 231 i, 25, Oy

52 92 " 222 T R, 92:07, | R, 07,07
+ (Ell“f' 2)2—22—+ (%+%) %2;%2} (2.11b)
662%3 g_i , (2.11c)

and the continuity equation becomes

Oty n Otio n Otz Ty Oty 4 L2 i) 6“2 1/2{2(3 - Z)P "2 —ig ’ 8 Uy (2.11d)

9%, " B3, | 03y | Ry 05 | R, 03

+ZZF T3l 16u2}+e{2(4 )Yz~ 'm%a —i—ZzT TiTizlT 1%}=0.

8:1:3
This set of equations is solved for u and p using an expansion of the form

u=u,+e’?up +eu, + ... and p=p,+ € pr +epe + ... (2.12)

T It is also possible to work with the formalism of covariant and contravariant
cbmponents; this is not necessary, however, and the method employed here follows
the original work by Cox (1974) more closely. Note also that the velocity vector u

is still projected onto the Cartesian set of coordinates (%1, %2,%3) even though one

works in the curvilinear frame (z1, Z2, 73).
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The rescaled and non-dimensionalized boundary conditions (2.5) applicable at the

‘surface W now read:

Uy =€ {Ul—6293$2—592{—2ﬁl—+9]{2+62 ZF G lx;'{_ez’rii%_iié}} ’
' 0

(2.13a)
72
—k+l Ly = 3—i~3 z—iz
Ug = € 2 Us+€2Q371 +€8 4 —= +e2 ZI‘&: x2+eZT }
{ (it )
(2.13b)
Uz = €—k{U3 + 61/2(91532 — Qz.’il)} , (2.13C)

and, at the surface W':

Uy = ek ts {U{ — e%QQ@ - EQIQ (hz(£1>£2) -1+ G%hh(ilafé?) + 6hf(51’52))} )

| (2.14a)

upy = e FTILUL + €371 + Q) (ha(Z1,32) — 1 + €2 b1, %2) + €he(31,22)) § |
1

| (2.14b)

Uz = e—k{Ué + e 2(Q 3y — ngl)} . (2.14c¢)

From the linearity of the creeping flow equations and of the boundary condi-
tions, it can be seen that the problem at hand can be subdivided into three distinct
cases characterized by different values of “k” and corresponding to different non-zero

‘components of the prescribed motions of the walls W and W'. The flow resulting
from Us and/or U requires k = 0, as should be obvious from (2.13¢) and (2.14c).
It will be discussed first, and will be referred to as a “direct approach” of the sur-
faces. Second, k = 1/2 for non-zero values of Uy, U, Ui, U}, Q1,Q2, Q) or Q). This
represents a tangential or rolling motion of the surfaces. Finally, if Q3 or Q} differ
from zero (i.e., the particles rotate around their common normal), k = 1 gives the
correct scaling. 7

Before proceeding with the solution of the problem, the expressions for the

~ dimensionless force, torqué and stresslet on the wall W should be considered. Let
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n be the unit normal to the surface W, pointing into the fluid, so that the force F,

" the torque T and the stresslet S exerted by the particle on the fluid about the
point O are defined as

F=—/¢rav, =—/1wAadwg (2.152)
. JW w
s:—l/‘@wa+@nﬁT—ghw-{ydmf (2.15b)
2 Jw 3 ’

with dW = ndW an infinitesimal surface element of the wall W and the stress

0 =—pl+Vu+Vul . (2.16)
The unit normal n is given by
Vfw
n=-——, 2.17a
¥ (24T

where fiw (x) = 0 defines the surface W. It is apparent from (2.2a) that, to O(r?),

2 3
T . —5 3 . —i 3
Vfu =T+ > T3 - il EROEICEDE ziler  (217)

3 4
) . 3—1 1—1 . 4—1 1—1
— E T; E T; }e + ez .
+ {Rz + — taer e i=1 B ’ i

Here, e;, e, and e; are the unit base vectors corresponding to the coordinates 1,z
and 3 respectively.T The elementary surface area dW can be deduced by noting
that e - dW = dz;dz,. Hence dW = dzidze/n - eg = |V fi|dzidz,.

The lubrication equations are valid only in a small domain ¥, around the point
of closest approach, where the gap is very narrow. Let this region be determined
by requiring that the distance between the two surfaces must be smaller than some

quantity e+¢? in I, (the parameter ¢ is independent of €). In terms of inner

variables, the bdundary of ¥, thus becomes

ho(1,32) =1+€1e?. (2.18)

1 e1 and e, are also the base vectors corresponding to the coordinates 71 and 5.
The base vector associated with Z3 is a combination of e;, e, and e;. The reciprocal

base vector corresponding to Z3, however, is ej.
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Since ¢ is independent of ¢, it suffices to evaluate (2.15) over I, to obtain the
‘singular behavior of the force, torque and strésslet as € = 0. The rest of the wall
will give at most an O(1) contribution.

The integrals over £, can best be evaluated by expressing all quantities in
inner variables: ry = e%ilel + e%:Egez + eF3wes, where I3y is given by (2.8a),
and similarly, dW = end#;di, /n-eg. Expanding |V fy{ in half-integral powers
of €, one obtains

# ~
n =es + €2 {El—el + %ez} (219)
1 2

52

72
+e{elzf(3—z)w2 ‘g +e22z1" F3ig! e3(R2 +;22)}+O( €?) .

The area of the elementary surface element dW then turns out to be

_ 72
&V:e&V:eP+e(x1 %ﬂd@d@+4%é). (2.20)
The components of the stress tensor are
k-2 0t .
oi=¢€¢ *{ p—l—2ea~ for:=1,20r 3, (2.21a)
ot ot
k—1 1 2
= = — = 2.21b
012 =021 =€ {(%2 + 8:7:1} ) ( )
_s 0u ou
'0'23 =032 = 6k g _8—5_7_2_ -+ 66—3,32} (2.21C)
_3 0u ot
013 = 031 = ek g{ai; + 6%-% (221(1)

Using rescaled variables, the leading terms of the expansions for the force, torque

and stresslet exerted by the surface W on the surrounding fluid then read, to O(l)T,

1 T 3u
o= odW =3 [ |25, — 222 45, d3 .
1 /e e o € »/;5 {Rlp 5% ] dz; dZs (2.22a)
Iy . 0u N2 i .
+ € / {Rﬁll Pr — hl + E i3 - z):c2 prZ} dz, di,

T The O(1) error arises from neglecting that part of the surface not included
in ¥.. For k¥ > 0, some of the terms written in the expressions (2.22) are therefore ’

superfluous, being negligibly small compared to the O(1) error term.
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1

_— odW = -t [ 225, - 082) 4z 4z 2.22b
F;— Lcez o-dW =€ 2/25[}32 : 8m3}dw1 T2 ‘ (2.22b)

T2 . 8“”12 3—i~i—1~ .
+ € / Dh — +ZZPIE Zy7 p.| dz; dy
[Rz 6:1: i—1 }
Fy = &1 / PodE; di, + F3 f pr diy dF, (2.22¢)
. Ee: 3

+€k/ [~E __23u~z3 _ f_}_auzl _ »’C_2_auz2] diy dis
.

T1 = ek_% / fzﬁz d.’Z'l diz’z + Ek / ﬁfgﬁh d.’il d.’f?Q (223&)
Ty =—e’“*%/ #15, A%y d:zz—ek/ #1pn i diy (2.23b)
11 di i
N e I ~ z1 o~ 22 ~ ~
Ty =€ /25 [(R2 Rl):clxzpz + T 5 Z1 5%, ] dz; dZ, (2.23¢)
_ =2 ~9 ~ .

ok :c_l~ _ 6uz1 1 iz__ . auzl ~ auzZ Td., ds
S =€ /E NIRRT {( 2R2)pz (& 555 2 5%, )}| 41 42,
(2.24a)

- ~2 ~2 ~ ~ -
_k _"1_7_2_~ auz2 - _E_z_ s (=~ 8'Unzl ~ au:.'2 d#+ di
S22 = € /E R, T {(231 2R2)pz (& CERIRC T )}| d&: dz
(2.24b)

i ~2 =2 =2 =2 ~ ~ -
ok W .. 1., %% 5. _ O, . Olge 45, d
J23 = € L - (og; tag, P 3l (apy Hag Pe — (g + o gz D)} | 41 di
(2.24c¢)

Y . . O, Jt,

Si2= Sy = = / TR ;cmpze &1 %32 &2 % 1] d&; dE,  (2.24d)
513 = 531 = —T2/2 (2246) ' 523 = 532 = T1/2 . (224f)

It follows from (2.24e) that, to O(1), the (1,3) components of the symmetric and
antisymmetric parts of the first moment about O of the stress density on the particle
Sﬁrface,W are equal. Indeed, in the domain where the lubrication approximations
hold, the distance (rw )3 is O(€'/?) compared to (ry )1, as are the force components
in the direction of ey édmpared to those along e;. Hence the (3,1) component of the

first moment about O of the stress density is O(¢) compared to the (1,3) component,
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and the relation (2.24e) between Si3 and T, follows. A similar reasoning applies

to (2.24f).

The only difficulty remaining is the calculation of p,, ps,pe, u. and uy for ar-

bitrary prescribed motions of the walls W and W'.

2.2 Direct approach of the surfaces

2.2.1 Leading order problem — Cox’s solution (1974)
The leading order problem has been solved by Cox (1974). We shall only outline

the major steps here. From (2.11), the equations for u; reduce to:

a2azl _ aﬁz _i_laﬁz 62&.22 _ % + _iziaﬁz aﬁz
9z Oz ' R 9z3 ' 0z 0z, R, 073’ 073

=0, (2.25a)

Ot Ol »9 Ot .3 z1 Oty To Ol o

07, 0Zo 0Z3 E—l. 03 + R, 0Z3

—0. (2.25b)

Taking k = 0, the boundary conditions on u, for a direct approach of the surfaces

along the Z3 axis read:
'a»z1 = '&,22 =0 N &23 = U3 on I3z = 0, (226&)

Uy = Uzp =0 s Uy3 = U:; on T3 = hz(fbf?)' (226b)

By solving the equations (2.25a) in terms of the unknown pressure field, and substi-
tuting the expressions in the continuity equation (2.25b), one obtains the following

Reynolds equation for the pressure p,:
V- (h3Vp,) = 12(Us — Us) . (2.27)

In this equation, as well as in the remainder of this chapter, the vectorial operator ¥

stands for

‘_7 = 816/837] + ega/ai‘Q . (228)
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In order to solve (2.27), another coordinate transformation is carried out, map-

ping the (Z1,Z2) axes onto the directions of principal curvature of h, (Appendix A),

so that

hy =14 M\22 + Xd2 . (2.29)

It can easily be proven that 0 < A; < 2 for any non-intersecting surfaces W and W'
(Appendix A). The transformation from (Z,Z2) onto (#1,#) is orthogonal, and

can thus be cast in the form

1\ _ (&1 _ cosy siny . 21 (2.30)
Ty ) \Z2 ) \ —siny cosy 9 ) -
Elliptic coordinates, defined by the relations

&1 =7Fcosl/y/ A1, o =7sind/y/ g, (2.31)

are then introduced, yielding the following form for the lubrication equation (2.27):

825, 25,
(A1 cos® 8 + Aq sin? §)7? +2(>\2 —Al)smﬁcos0r§ 50

+ (A1 sin® 8 4 Xy cos? 6) 5‘92 +(

-3
+2(A1 — )\2)sm9cos96pz (1?:*2)
672 Op. , 72
S — = — ——— 2.
+ (1+7°2)()‘2 A1 20 (Us U3)<1+7A'2)3 . (2.32a)

The operation on the left-hand side of the previous equation will be referred to

as L(p.(7,6)):

52

7
(1+72)

As 7 — oo, the inner solution, valid in the thin gap separating the two sur-

L(5.) = 12(U} — Us) (2.32b)

féces, must match the flow-field in the “outer” region. Since the pressure p in
the outer region must not diverge as ¢ — 0, it can easily be shown that $, must
be O(77*) as # — co. Indeed, assume that j, is of order 7" for very large 7,

then p = (LU./Re)e™2p, is s O(e™27") = O(e™ - ") as 7 — oo (but with finite r').
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Hence n < —4 is required. Also, the solution of (2.32) must not be singular at the
" origin. Cox (1974) then found the solution |
N /0 / A

= — . ‘ 2.33
S W Wl ) .

The components of the velocity field are given by

. 10p, _ sz_
Uzl =

1
k), Uyg = '2‘8 3(Z3 — h;), (.2.3421)

1. le, = 1 ie. _
fiss = ﬁvzﬁz(3hz—23_cg):i§+ZVﬁ,-VhZE:3+§)'c-’R L5, 73(hy—73)+Us . (2.34b)

Here, X = Z1€; + Toep and R = dzag(Rl,Rg) Then, according to eq. (2.22)-(2.24),
with & =0,

, .
Fi =0(ne) F,=0(lne¢) F3=—3mwe! (Us — Us) +0(e71/?) (2.35a)

VA dz(A1 + A2)
T; = O(lne) T, = O(lne)
3 (UL —Us) 1 1,,1 1, .
T:—Trlne —_—— — +0(1 2.35b
"’ Tanln 3 B~ By T ) saxeosx +0Q) - (2:350)
(Uj cos? X sin® y\ 1 1 1
S11 =371
i ne\/_—xlxz(xlﬂz){( 2 )2.R1 5% X >\1R1 Asz)
1 1 1 1
- —1—§sm X<)\2R1 + )\1R2> - §} +0(1) (2.35¢)
(Us = Us) cos?x  sin®yy\ 1 1 2 1 1
Sog =37 1 . —_ =
e némulmz){( 5 )m e S  E)
1 1 1 1 )
-1 sin X()\le + )\1R2> — g} +O0(1) (2.35d)
(UL — Us) 1, /1 1 1. 1 1
S33 =37 1 ' _Z ot a2
2 " ne\//\l)‘Z(/\l +)\2){ 3% X</\1R1 - >\2R2) 3o X()\le * )\1R2)

+ g-} +0(1)  (2.35)

3 Uy =Us) 1 1 1 1y .
Si2 = -7l - - = .
12 = g lne )\1)\2(/\1_*_)\2 ( + R2)(/\2 Al)smxcosx (2.35f)

523 = O(ln 6) 513 = O(ln 6) .
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Equations (2.35a)-(2.35b) were also given by Cox (1974), who did not, however,

calculate the stresslet.

2.2.2 Second order problem

As indicated in (2.35), the solution of the leading order problem, which amounts to

a local approximation of the surface geometry by quadratics, does not suffice to cal-

culate the dominant singular behavior of the components Fy, F,, Ty and T3. Also,

the correction to the result (2.35a) for F; diverges as € — 0, and is thus needed

since the desired level of accuracy is O(e”). It is therefore necessary to consider

the next order in the hierarchy of problems generated by the asymptotic expan-

sion (2.12). The equations (2.22)-(2.23) show that the pressure field correction py

and the velocity field correction uj, can indeed give singular contributions for k£ = 0.

From (2.11), the equations to be solved are

0% tipy 3Ph Z1 Obn —2—i zapz
013 = 91 Rl 933 * 2(3 R

=0

uny  Opn | T2 Opn F3=igicl Op:
B:Eg _8 R28$3+Z F T2 89:3

9pn _ o
5583

Qiipy | Olipg  Olips 71 Ol +-T_26'ah2
071 O%o 853 R, Oz; Ry Oz3

Bu dt
E —2 —i z z1 § : _3 —_ z -1 22
+ (3 - z)T + ZF 2 —6—1:
subject to the following boundary conditions on W':
~ _ 1 apz — ~ 1 ap&
Up1 = 2ax —h hh, (2.3(&) Upo = 26$2h hh R

G = _1(513; Oh. +.613z ﬁh’z)h hy + (arl Op +£2—aﬁ)hzhh _

83—31‘ 8551 8562 83‘:2 R1 611 R2 81’2

(2.362)

(2.36b)

(2.36¢)

(2.36d)

=0,

(2.37h)

(2.37¢)
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On W, the no-slip boundary condition simply prescribes that uz = 0. One proceeds
‘following the same steps as Cox (1974) to arrive at the modified Reyholds equation

V- {r3Vp,} = -3V - {hZR,V5E, } . . (2.38)

In terms of 7 and 8, this reads:

(Uy =Us) #° _ 5
— - 6
L(pr) =36 e ) (A2 — A1) sin 6 cos 8]k cos® 6+
(262 — 3kg) cos? §sin 6 + (3r3 — 2k1)sin? § cos § — k sin® 6] (2.39)

272
3—1 —
+z_goh,cos §sin’ 6[)\151n 8 + Xy cos? 6 + (A1 cos 20 + )\, sin? 9)(4 1+A2)}}

where the operator £ was defined in the preceding section (2.32b), and the coeffi-
cients x; are defined such that hp = 72 Ez_ kicos3 1 @sin' 8: if K; is defined via

the relation (2.30) in such a way that

3

3
mEY (8 + Tz 'z Z 43708 (2.40)
i=0 i=0

then «; can be derived from the simple formula x; = K;\; 5 /\ 3 . The boundary
conditions for the partial differential equation (2.39) are periodicity in 8, bounded-
ness at the origin, and the requirement that p, = O(772) as 7 — oo at finite t.

In order to solve this equation, it is useful to solve the problem in the limit of
large 7 first. Separation of variables is then possible, with a solution of the form
pr=7"20(0). 1t is fairly straightforward to solve the remaining linear ordinary
differential equation for ©. Inspired by this result, we then succeeded in solving

(2.39) over the entire range of {#, §}. The first order correction to the pressure field
is found to be
23

= U _03) 3 3—ig i r
Pr = /\1 nyw {ZZ; K;cos” ' fBsin 9m+ (2.41a)

mé+

[3/\2&3 + A1K1 . 3A1ko + Agke o 9} 7
221 + 33X, 3A1 + 2 (1+72)
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or equivalently,

(2.41b)

. 6(U3 Us) +—1—[3’C0+K2:E 3763—%-’(:150]}
Ph Mt VB2 RZIBN 2he b T 2h 8 A

The {relocity field can then be calculated from Pr, using equations analogous to (2.34),

namely:
i = {gi’l’ 72 (S’fz hi + gp'l‘h ):ﬁs} : (2.422)
ins = {gi’;:ﬁ (g§:h +g§’;h )@}, (2.42b)
s = -lx‘?zﬁhfg + E{h,ﬁ B+ Vb, - Vhy + h.Vopy + Viy - Vh, )22 (2.42¢)
S B B - - B B
- e inea{ea - Pl - )Y nat-a{ st - Zna)

1=
After considerable algebraic effort, one can then calculate the contributions from

the O(s%) pressure and velocity field corrections to the force F and the torque T:

3 (Ué — U3) ()\1 + 2)\2)#22 + (7/\1 + 2)\2)}%0 3 1
o= = — — A .
1 mlne 3N T 2N (2 Nov:) 3V 1)cosx

2 VA1A2 (A1 4+ Az)
(2A1 + A2)k1 + (2A1 + TA2)k3
— 3/
+ 21 1 3 (2,/_31 )smx
3 Kg + 3kg IRC 3K3 + K1 cos? y sin? X
A7 cos X——5— AZ sin Y ——5— + SFO( N + ™ )

. 1 1 sin?y  cos? y }
2 % —_—— T 0(1 2.43
+ lsm”OSX(AQ ,\1)+ :( N );+0M)  (2430)

3 (U3 — Us) {(/\1 +2X2)k2 + (TA1 + 2X2)k0 )
Fy=—nln 3/ Ny — =
? A + Ag) 3\ + 2)s ( 2 \/—Rz) X

(221 + A2)k1 + (2X1 + Tho)ks
2X1 + 3 (2 or, oV ) BEX

] - . ) 2 '
2 2 /\1 )\2

-+

. 1 1 cos?y sin’y } ,
+ 2 sinycosy| — — — ) + T + + 0O(1 2.43b
o+ 2y X(Az o) AN ) o (248
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T, = 971- Ine (Ué —_ Ug) {(2)\1 + )\2)1‘{1 + (2)\1 -+ 7)\2)63 cos Y
1Ty Vaidz (A1 4 A2) 2\ + 3X; Ve
(/\1 =+ 2/\2)/‘62 -+ (7A1 + QAQ)R[) sinx} '
- : o1 2.43
3 4 2% 7 oW (2.43¢)
T - _Zr ].116 (Ué - Ug) {(}\1 + 2)\2)&2 + (7>\1 + 2}\2)&0 cos Y
2= 4 \ )\1 )\2(/\1 + )\2) 3/\1 + 2/\2 \/—)q
(2)\1 + AQ)K;l + (2)\1 + 7)\2)&3 Sinx}
0o1) . 2.43d
* 2 + 3% v rom . A

The contribution to F3 of the O(e%) solution turns out to be zero, which is not
surprising since this correction arises from the O(r?®) features of the wall, which are
antisymmetric about the origin. The O(In €) components of the stresslet 513 = S3;

and Sz3 = S33 can be obtained from the equations (2.24e) and (2.24f): Sy3 = —T5/2
and 523 = T1/2

2.2.3 Third order problem

Since the error on Fj is still O(In €), and hence singular, it is necessary to solve for
the second correction pe to the pressure field. The procedure is conceptually quite
similar to the method of solution adopted in the preceding sections, but the algebra
gets even more involved. The interested reader is referred to Appendix C, where
some of the details of the calculation and several intermediate results have been

recorded. The expression for the normal force Fy that is finally derived reads, for a
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direct approach of the surfaces and to O(1):

_ UL —U. 9 ; 5
Fy = — 3re™? (s 3) — Z 7ln ( 3) [(10/\‘1 + 5)\'2):“\3%

AV )\1/\2()\1 + /\2) \/ )\1 + )\2)2
3 ) \ |
F (G %)kt + (a+ AQ)@ ( A1+10A2)n3+(3xl + 2% )koks
+ (2/\1 + 3/\2)&1 K3 + (7)\1 + 2)\2)&0}{1 + ()\1 + 2)\2)&2}{1 + (2)\1 4+ /\2)/‘61 K,

+ (2)1 -+ 7A2)K,3.K2 + (5)\1 -+ )\2)(0 + ()\1 + k2)(2 + (>\1 + 5>\2)<4}

3 (Ug — Us) 2 32
A —)\ Ay — —(3X1 + A
+ ,———)‘l/\2()\1 MEWD [ 5( 2+A%)+ 1A2 ( 1 2)
A2 A1 3 3 3 3

ettt st =t

2
— — (M + 3+ — 4+
Rz( ' 2) RiR, A2p3 R? Py R2 153

A1py
A
— (/22 2.44
W (2.44)
The parameters Ry, Ry, R,, py, p2, K1 and K are defined in (C.2b), (C.4c) and
(C.12¢); the coefficients (; can be derived from (C.12b).
At this point, all the singular components of the forces, torques and stresslets

exerted by two bodies in close proximity approaching each other along their common

normal (or moving away from each other along that normal) have been obtained in

closed form.

2.3 Tangential and rolling motion of the surfaces
For this class of motions, the value of the parameter “k” is 1/2. As a consequence,
at all particle spacings, this type of movement contributes at most O(1) to the com-
ponents S;; (2 = 1, 2, or 3) and Sy2 = S2; of the stresslet and to the component T}
of the torque (cf. (2.22)-(2.24)).

Cox (1974) formulated and solved this problem for the singular stress moments
by following the same steps as in section 2.2. His results are:

rlne [ Oy cos x 1 Qg sin x 1
= -1 —
YT 4/ {3/\1 2, (R1A1 ) TN T+ 30 (Rl,\2 1)

L 4U — T )] +0(1), (2.452)
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P= Sl () e e ()

30+ 20 \Eoh /T 2h 430 \Rohs -
+4(US - Uz)] +0(1), , (2.45b)
wlne [ —Ql sin y Qz cosy |
T, = +0(1), 2.45¢
T A LB F2X2) ¢ Aa(2h +3Xe)] (1) (2.45¢)

~ ~

—7mlne [ Qicosy Q2siny ]
T, = + 0(1) . 2.45d
2 4/ A1 02 LA(BA1 +2X2)  Aa(2M1 +3A2) ] W ( )

The dependence of the force and the torque on the relative motion of the surfaces

is concealed in the factors Qy and (), which are given by

Ql _f[cosxy =—siny)\ C:)l
( Q2 ) B ( sin x cos x ) ( Q- ) ) (2.46a)
with

(@1 ) Lo [ (%= 9)+ (U1 = T ((2R) 7 — Bo) - (U}~ U2)Bs /2
(@ = Q1) + (U — U2)(2R2) ™ = Bo) = (U} - U1)B/2 )
(2.46b)
Cox (1974) did not calculate F3, but showed that it was O(lne). Actually, one

does not need to calculate F, since Lorentz’ reciprocal theorem predicts that the
relation between F3 and U; is the same as that between F; and Us, and similarly

for the pairs (F3,$) and (T1,Us). One can then immediately deduce that

3 (U' — Ul) {()\1 + 2)\2)52 + (7)\1 + 2)\2)&0 3 1
Fy=—nl 1 — — A
P R AN + M) 371 + 27z 2 (,/_AIR1 1) cos X
(2)\1 + /\Q)Kl + (2/\1 + 7/\2)%33 3 1 .

b — /) ,

+ a1+ 3, > (JA;RI 2) sinx

i K2 + 3K L. 3Rz + K cos?y sin?y
— A COSX—T_A2 smx—2—+3fg< Y + n )

. 2! 1 sin? x  cos® x
+2F151nkcosx(5\;—x>+F2( N + )\2 )}



-99-

3 (Ué — UQ) {(/\1 + 9)\2)62 + (7/\1 + 2/\2)/‘50 3 .
b | VAL — sin
+27r nemm + X2) 3X1 + 2 ( 2) X

(2)\1 -+ )\2)/"-21 -+ (2A1 + 7)\2)1‘6:3 _
+ 221 + 3X2 (\/_R2 v )COSX
L. K2+ 3Ko L 3k3 + K1 sin? X ' cos? X
+ A7 anx————Q—-———)\z cos Y 5 +3F3( N + W )
. 1 1 cos?y  sin?y
+2P251nxcosx(->—\;——>\—1)+l"1 W + " )
+9 (Q ) {(2)\1 + /\2)/{1 + (2)\1 -+ 7)\2)&3 COS Y
\/ A1 /\2()\1 + )\2) 2A1 + 33X, \/E
_ ()\1 + 2)\2)&2 + (7)\1 + 2)\2)&0 sinx}
3A1 42X V1
_gﬂ_ In e (2 — Q9) {(Al +2X2)k2 + (TA1 + 2X2)Kg cos X
4 VA1 )\2()\1 + )\2) 31 + 2, \/:\T
(2)\1 + )\2)!@1 -+ (2)\1 + 7/\2)!‘&3 sinx}
0(1) . 2.47
+ 221 + 37 7y o) (2.47)

2.4 Rotational motion of the surfaces about their normal

Cox (1974) also discussed this case, for which £ = 1. From (2.22)-(2.24), it should
be apparent that only F; needs to be considered here. The result obtained by Cox

reads

3rlne 1 Ao — g )
s (7~ ) T S+ O (249

2.5 Particles in a straining flow

As stated in the introduction, the microstructural dynamics of any system of parti-
cles suspended in a Newtonian fluid are characterized, in the limit of zero Reynolds
number, by the grand resistance tensor. For two almost touching surfaces W
and W', it is convenient to introduce the vectors ¥ = (U, Q)T and F = (F, T)7
and their analogs U' and F' for the surface W', and to subdivide the grand resis-
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tance tensor Rg as shown below:

F U Ry Ryp REp'\ U
Floree| Y | = BFy Ry Ry Rip o U
3 E st Rey  Rsp  Rsp B
s’ -E su su’ se REg —E'

(2.49)
The symbol ® denotes the appropriate contraction operator. E = E' is the rate-
of-strain tensor of the imposed linear flow field. The subscript and superscript
notation should be fairly transparent and is further explained in the nomenclature
of this chapter. The results arrived at in the previous sections suffice to calculate
the coupling terms between the stress moments and the velocities of the particles,
with at most an O(1) inaccuracy. Evidently, from (2.49), the construction of the
grand resistance tensor also requires the evaluation of the force, torque and stresslet
exerted by the particles when subjected to a straining flow. For this problem to be
independent of the ones discussed previously, the relative velocity of the surfaces
(both translational and rotational) should be zero at the points of closest approach.
Thus the rigid bodies are immobile with respect to one another, and the lubrication
equations predict a non-singular net force, torque and stresslet (since the boundary
conditions impose a zero velocity along all the walls). Hence any singularities in
the components of the resistance tensor which link the stress moments to the rate
of strain must come in pairs such that they cancel each other exactly when the net
force, torque or stresslet (about the point of minimum separation) is calculated.
Therefore it is not necessary in practice to know these singular terms. For the
sake of completeness, however, and because it has been found in the case of two
spherical particles that their knowledge helps to speed up the calculation of the
non-singular contributions to the stresslet (Jeffrey, 1989; Jeffrey & Corless, 1988),
the components of the resistance tensor for two arbitrary bodies placed near.contact
in a straining flow are calculated here. These results will also provide a check for

internal consistency of some formulae derived in this work by means of Lorentz’

reciprocal theorem.
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Following Jeffrey (1989), the individual contribution of each tensor element to
the total stress moment exerted by the particle can be found using lubfication theory
if one considers deformable surfaces. Let the surface velocity be U(kw) =D - %y
on W and U'(X,,)=D' %!, on W' where X, and X, are measured from the
points O and O', respectively, and D and D' are the deformation rate tensors.
Assuming that the particles are incompressible, D should be traceless. For the
sake of generality, no other constraints will be put on the tensor D. Obviously, if
desired, D can be separated into an antisymmetric rotation tensor and a symmetric

deformation tensor Ey, .

Expressed in rescaled variables (using (2.7)), the boundary conditions on W

read, correct to O(e! F):
Uy = €~k+1{D11£i1 + D]zfﬁg} ) Ug = 6_k+1{D21‘i1 + DQQ.;IVIQ} s (250&)

Ug = E“k+% {Dg]fél + Dngi‘z + 6% D33f1§3} . (250b>

Analogous expressions can easily be written for the velocity at the wall W'. Three
cases need to be discerned. Djq, D32, D}, or Dj, # 0 imply that k£ = 1/2. If all
these components are zero, the exponent k must be chosen equal to 1, unless the
only non-zero elements in D and D' are Dy3, Da3, D3 and D), in which case no
singular forée, torque or stresslet will arise due to the deformation, since the velocity

of the boundary is then at most O(e~*+%),

2.5.1 Non-zero D3y or D3s

The problem with k& = 1/2 is easily solved by noting that the boundary conditions
are formally identical to the case of a rolling motion of the particles. Replacing

Q2 by —Dsq, Q) by —Dj;, Q1 by D3z and Q) by Dj,, the results from §2.3 can thus

be carried over as

3wlne (D’ — bgl) cos Y 1 (f)' — 1532) sin x 1
Fo= 31 1 32 _
SV, ve vl IEEES WIS (R1/\1 ) % + 3, (RlAg 1) +0(1)
' (2.51a)
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3mlne [(Ds; — Diy)siny /1 (Dyy — Dgg)cosy ¢ 1 ]
By = -1 -1 o1
2= e { 3+ 2 (R2A1 ) 23 + 3 (szz )| o
‘ (2.51b)

] + O(1) (2.51c¢)

T 3rlne [_(Dlgl — Dyy)siny  (Djy — Dsg)cosx
P VM L (A 2y A2(2X1 + 3)2)

—37lne [(13'31 — Ds1)cos x N (DY, — ﬁgg)sinx] +0(1)
VAAz | A(BA1 +2X) A2(221 +3X2) . '

The variables D; ; are related to the components D;; of the displacement rate ten-

I, =

(2.51d)

sor D in the usual way,

1:):;,1 — 1:)31 _[cosxy —sinyx\ (D3 —Dx (2.51¢)
Di,— D3 )~ \siny cosy Dy, —Dsy | - -
The normal force can be derived in the same manner:
r :?—w e (D§, — Dss) {(2/\1 + A2)k1 + (2A1 4+ TA2)k3 cos y
7y VA1 (A1 + Az) 21 + 3\, V2

_ ()\1 =+ 2)@)&2 + (7)\1 + 2)\2)&0 sinx}

3A1 + 2, NS
+ Y Ine (Ds3y - Ds1) {(’\1 + 2X2)k2 + (TA1 + 2X2)K0 cos x
4 VAt A2 (A1 + Ag) 3\ + 2) VoW

(2A1 + A2)k1 + (2A1 + TA2)ks sinx}
O(1) . 2.51f
+ 2/\1 + 3A2 VA2 + ( ) ( )

As always, the relations S13 = S3; = —T5/2 and Sz3 = S32 = T1/2 (2.24e-f) hold.

2.5.2 D31 and Dgs» equal to zero

The governing equations are identical to (2.25):

2.~ = = A5 2 = = a5 =
P O DO Fha Oh B Oh O (g5
O0z3 07, Ry 0z 073 0Z9 R, 0z 0z3
8‘1121 8&22 aﬂzg zq 81221 ) 8'&22
I1 00U | T2 = 52
921 | 032 | Bis Ry 0%s Ry 07 O (2.52b)

The no-slip boundary conditions, however, now imply that (note that k = 1),
on &3 = O:

Uz = Dy1%1 + D122 , Uzo = D21%1 + Daoio

’&,23 = D33i'3 s (253&)
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while on T3 = h,(Z1,Z2):

~ 1o~ 1o~ ~ 1o~ !~

fiys = Diy(2s — 1) . (2.53b)

The steps leading to the solution of a set of equations such as (2.25) are outlined

by Cox (1974). The following differential equation for p, is readily arrived at:

V- (h3V5,) = 12D}5(h, — 1) + 12(D11 + Da2)h, + 6(A11 + Agz)he (2.54)
cos?y  sin®y.., . 1 1., . sin? x = cos? X\ .o
_12A33{( R, + >R, ):vl +51nxcosx(E——R;2-)$1m2+( 2R + SR, xQ}

Oh,
- 6((A11 cosx — Aqs smx)ml + (An sin x + Ay cos X)w2> (cos Xa_A— + SmX@x2>

Oh,
_ 6((A21 cos Y — Aggsin X)fb'l + (Azl sin x + Agg cos x ) —sin x 3A 2 4 cosy 81:2)

+ 12((A11 cos x — Aygsin )& + (Aq1sinx + Agg cos X)$2) 1 CO8 x + &9 siny

bl

1 81n + 9 COS
((A21 cos x — Aoqgsin X)fL'l + (A21 sin x + Ags cos X 2) X 2 X

where the shorthand notation A;; = D;; — D;; has been introduced. The boundary
conditions for this p.d.e. are most easily expressed in terms of the cylindrical coor-
dinates (7, 8). The solution must be periodic in 8, bounded at the origin, and must
satisfy p. = O(#~?) for large # at finite 7. Since k = 1 for this problem, only the
F3 component can display singular behavior as e — 0 (see (2.22 - 2.24)). From the
discussion in §2.2.3 (especially eq. (C.8) and following), it should be apparent that
it suffices to solve the previous p.d.e. in the limit 7 — 0o to capture the singular

nature of the normal force. For large 7, a separation of variables is possible. A
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solution of the form p, = #720(6) exists, where O(6) must satisfy:

(/\1 sin® 6 + A cos® 6)—— dG? ((6A1 +2X2) cos® 6 + (2X; +6X2)sin’ 6)0 =
cos®y  sin® y. cos? 6 1 sin 6 cos 6

1. .
—12A33{( SR, + 2R2) N + —}a-—E;)smxcosX———-——,__.__/\l)\2

(sin2 x  cos? X) sin” 8
5R, | 2R; )

} + 6(A11 + Age)
- 12(A11 cos® x — (Aqz + Agq)sin x cos x + Agg sin® X) cos? @

- 12 (An sin® x + (Aqg + Agy)sin x cos x + Ago C082 x) sin? 6

—12 Alg(\/—COS X — 1/—-s1n x + Aoy 1/———cos X — \/—sm x sm9cos€
s?

CcO

A1z Az 1cos?d
+ 12 {An A22 Rz + sin x cos X( i + R, )] N
sm A12 A21 Sil’l2 0
+ 12 {An Agz R + sin Y cos X( R2 )] ™ (2.55)
A A A in 6 cos #
+ 12[ 2_11_ — -Aﬁ) siny cos x + (cos x — sin x)( Rllz + RQ:)] Slil/)\_f;_i

[A A )
—12(A1 + Agg)( —)—\—;‘ + )‘—2) sin x cos x sin 6 cos 8 + 12(D11 + D23 + Dys) .
1

Using the tracelessness of D', the last term can be written as —12(Ay; 4+ Agy). The
solution of (2.55) is of the form ©(6) = E?:o £; cos?~ @sin’ 6. Since O(6) has to be
integrated from 0 to 27 in order to evaluate F3, only the coefficients £, and {3 need

to be calculated. (The term in ¢; yields zero.) After some straightforward algebra,

one gets the following result:

1/2 2

Fy = / = dirdiz + O() = (A h) 72 / FTHAR [ ©(6)d8 +g(8) + O() =
. ) 1]

£

3rlne 1 ,cos’y sin’y 1 ,sin®y cos®y
A v
2\/—/\1)\2()\1+)\2){ 53 577 ( PR v Ry G v )
A fcos?y  sin?y Agy rcos? y  sin’y
2.
b Gl v R el G v v (2:56)

Aga Ao\ 1 1 0
+ smxcosx( i + E) <)\—2 - —)\—1) —2(A1 + Azz)} + O(¢€").
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2.5.3 Rigid particles in a straining flow

" The tensorial relation between F and E, is the same as between F and the opposite
of the imposed rate of strain E (Jeffrey, 1989). Hence according to (2.56), the
(3,3,3) component of the subtensor linking the force F to the rate of strain —E in

the grand resistance tensor is given by

‘ 3rlne 1 scos?y sinfyy 1 ysin’y  cos?y
RY ™)y = + +
(Res s 2\f—A1A2(/\1+A2)[2RI( YRR eI Rl i G v vy
1 1 ,cos?x sin’y 1 ,cos?y sin’y J '
- , -4 . (2.57
e G+ S v ) -4 - e

The tracelessness of E has been used to confer the same property to R¥%Y, follow-

ing the usual convention (Kim & Mifflin, 1985). It is now easy to see that the re-
sult (2.57) and equation (2.35¢) satisfy the symmetry relation (RYY )iix = (RE)Y ) ki

predicted for any ¢,j,k by Lorentz’ reciprocal theorem for the case ¢t = j = k = 3.

Also, since

AIZ A21 E! 12 + E:v21 EW12 + EWZl 1 1 ! 1 1
= (=X — - Q2 — QWY (— — —
R,y T Ry ( 2 2 )<R1+R2)+( 3 3)(R1 Rz)’
(2.58)
the tensor elements (RY Y )312 = (R¥Y )321 are found to be:
: —3rlne 1 1 1 1
RY")q,0 = - i — 4+ =~ 2.59
( FE )312 1 ’_)\1)\2(,\1+)\2)SIHXCOSX(R1 Rz)()\z )‘1) ( )

which agrees with (2.35f). One can also easily recover the result of §2.4 for the
dependence of F3 on 3.

Note also that since the formulae derived in this section only involve the dif-

ference in the deformation rates of W and W', the tensors R¥Y = —R¥”"’ and
RY = —RY'. Hence the net forces, torques and stresslets exerted by immobile

surfaces near contact in a straining flow are at most O(1) = O(€?), as discussed at

the beginning of §2.5.

2.6 Resistance tensor for two particles near contact
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2.6.1 Structure of the resistance tensor in the lubrication limit

‘The general structure of the grand"resistance tensor for any two parficles in a low-
Reynolds-number linear flow is given by (2.49). However, in the special case of
‘almost touching particles, the results of the lubrication analysis onIy depend on the
relative motion (U —U') of the two surfaces at their point of closest approach and

the general formulation (in the absence of an imposed rate of strain),

F + U
F T Q U
(f’) = F" =R U' :R (u'> y (260&)
T Q
must satisfy
_( R —-Rpg
Rﬂ_(_Ri Rk) : (2.60D)

with Ry and R} 6 x 6 subtensors. In addition, Lorentz’ reciprocal theorem states

that R should be symmetric, hence it requires that Ry = R}l and that Ry = R].

Therefore,

_( R —-Rpg 5
R = (—RL R ) , (2.60c¢)

with Ry, = RY.

2.6.2 Agreement with Lorentz’ theorem

In some of the preceding sections [e.g., eq. (2.47)], explicit use of Lorentz’ theorem
“has been made in order to avoid lengthy and error-prone calculations. In many other
cases, however, the reciprocal theorem provides a check for internal consistency. In
§2.5.3, it has been shown that (R} )si; = (RE)” )ijs for the pairs (¢, j) = (3,3)
and (1,2). It is very easy to prove the same relation for the sets of indices (1,1)
and (2,2). The formula for F3 given in §2.5.1 can also be shown to fulfill the re-
quirements set by Lorentz’ thedrem, but since this equatioh was derived from (2.47),
this is ‘a circular argument. In this section, the reciprocal theorem is shown to be

satisfied by a few additional sets of resistance factors derived in this work. Other

examples can be found readily, but may require more algebra.
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2 6.2.1. (RWWI)33 and (Rgéw)g,g

" By applying Lorentz’ theorem to the result quoted in §2.4 we obtaih the relation

T = 3rlne 1 ) A2 — Aq

L
Us — U (= - =
?Af—/\lxz( T 3)(1%1 Ry/ Maa(A1 + X2)

Note from (2.35b) that this implies T3 = —T3 + O(1). Indeed, conservation of linear

sinycosx +0(1) . (2.61)

and angular momentum implies that for any finite values of U, U’ and E, the singular
parts of F and F' must satisfy F = —F', because the total (combined) force on the
particles cénnot be siﬁgular as € — 0.

It is also possible, rather than deriving (2.61) from Lorentz’ theorem, to ap-
ply (2.35b) directly to the surface W'. The relevant frame of reference is then given
by the set of coordinates (z,z},z}). Therefore, the angle x between the Z; axis
and the z; axis has to be replaced by the angle x + ¢ between the #; axis and the
z} axis (Fig. 2.1). Also, since the outward normal now points in the opposite sense

of the z} axis, the right hand side of (2.35b) is “off” by a minus sign,Jr ie.,

,_ 3 (Us — U3) 1 1y/1 1y,
To=—gmhn \/m_z(/\1+>\2)(R' R_'l)(x—z_Al)Sm(XW)"OS(XM)*Z(z;

7 A more careful, but also more elaborate and less insightful, proof of this
change of sign requires the introduction of ar set of coordinates (z7, z}, 23 ), centered
at O'. The 2z} axis points in the direction of the outward normal to W' at O’ and
* hence runs antiparallel to the z3 and #} axes. The z7 and z3 axes are chosen along
the local directions of principal curvature of W' such that the set (z7, x5, 23 ) forms
a right handed coordinate system. A logical choice is 2} = 2/, and 5 = «|. This set
of coordinatés is the equivalent on W' of the frame defined by (z1,22,23) on W. In
order to convert the formulae obtained in the previous sections to this new coordi-
nate system, yet another set of coordinates (21,23, %%) needs to be introduced, with
Z3 = 3, ] = 29, and &3 = &;. The angle between 2} and z} is —(x + ¢). Taking
these transformations into account, and applying them to (2.35b), one arrives at

the formula (2.62).
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The expressions (2.61) and (2.62) can only agree if
<_l_ — i_) siny cosy = — (-}_ - -—) sin(x + ¢)cos(x + ¢) + O(1) .  (2.63)
R, Ry/ - R, R, ,

This 'simple relation is proven in Appendix A.

2.6.2.2. (R¥¥" )11 and (R )11

It is easy to derive the following components of the resistance tensor from the

expressions (2.45¢) and (2.45d):

' 3rlne sin® y cos? x }
RIS = 2.64
(Rra’ ) \/Xiig'{xl(3xl F2h2) ¢ (@ + 3h2) (2.642)
' ' 3rlne 1 1
Ww ww — 3 —_
(Rra" 12 = (Rpa” o = Vﬂr;xgsulx‘x”3‘[xl(3Al4-2A2) A2(2A14—3A2)]
(2.64b)
3rlne cos? sin? x }
RY + . 2.64c
(Rra" a2 = \/KEXQ{A1(3A14-2A2) X2 (21 + 3h2) (2.64c)

These equalities are valid to O(e?). The equation (2.64b) shows that the pre-
dicted symmetry of Ry is not violated. Lorentz’ reciprocal theorem demands
that (R¥¥");; = (R¥.%);;. However, by applying (2.64a) directly to W' in the

frame (z7,z%,z}) [see preceding footnote or eq.(2.66)], the following expression is

arrived at:

(Rﬂlll_3ﬂm6{sm7x+¢) C%%x+¢)] (2.65)

T Vg [Ae(8d2 +201) T M(2Xe +3))

Use has been made of the fact that A} = Ay and A5 = ;. In order to verify (2.65),
one calculates (R¥ ¥ )*1 from the expressions (2.45) derived in the frame (21, 72, 23)

by applying the transformation

z | —sing cos@ 0 T1 Ty
z3 | = cos¢ sind Ol - |laxl =A-| a9 ~ (2.66)
T3 0 0 -1 z3 z3

to the components of the torque T' and of the angular velocity Q. (The boldface

characters in the next two equations stand for the matrix representations of the
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corresponding tensors in the relevant coordinate systems,v rather than for the tensors
“themselves): | v | ; »
T =AT. T =RV " . Q=RIV".AT.Q", (2.67a)
‘where the superscript * denotes that the frame of reference used is (27, 3, 3). But

since T™* = (RY ¥ )** - Q*, the two resistance tensors must be related by
(RF Wy = A-RYV" - AT . (2.67hb)
In particular, the eje] component can be computed as

(R7,7)1: = sin® (R )11 —sin g cos ¢ [(RY S )12+ (RY &7 )21] +cos® g(RY 7)o -
(2.67¢)

This relation is easily verified using the formulae above.

2.7 Application to two spheres near contact

The use of the results derived above will be illustrated for two almost touching
spherical objects. Cox (1974) calculated the first term in the asymptotic expansion
of most, but not all, of the resistance functions for this system. The present results
now make it possible to construct the resistance tensor accurate to O(€®) for any
two surfaces near contact. In the special case of two spheres, the expressions can
be compafed with Jeffrey’s calculations (Jeffrey, 1982; Jeffrey & Corless, 1988;
Corless & Jeffrey, 1988; Jeffrey, 1989).

The gap width between the two spheres, expressed in terms of rescaled vari-

ables, is given by
11 1N, el 1y,
=gzt ) rs(mr w) (2.682)
where R = Ry = R, and R' = R} = R}, are the radii of the spheres with surface W
and W' respectively. All the other symbols retain the meaning of the preceding
sections. Obviously, Ay = A = A= (R™' + R"™1)/2, x; = 0 for all i, and

1. . 1,11 1
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2.7.1 (RY)" )33 and (R );s
~ As a first example, the normal force exerted by the surface W when the particles
move along their line of centers can be calculated. Using (2.44), it is immediately
deduced after some simplification, that

Sm(UE-U) 3 (U-U(l , T 1

_ LTI N 2.69
Fs 2¢ A2 20" A3 (R2 RR’+R’2) (2.69)

This result agrees with the expression given by Jeffrey (1982).

2.7.2 (Rgvnw)lgz and (R;V;ZW)ISQ

The next example to be discussed concerns the stresslets exerted by both spheres
on the surrounding fluid when one of the particles rotates about an axis perpen-
dicular to the line of centers and the other sphere is kept stationary. The rotation
axis, which passes throﬁgh the geometric center of the spinning sphere, defines the
direction of the z, axis. From the definition of the stresslet, (2.15b), it is straight-
forward to derive that a change of origin from a point B to a point A4 transforms S

according to the rule

1 1
s4 =88 _ 5{rasF + Frp} + 3(F - ras)l, (2.70)

where r,p is the vector linking B to A, and S4 is the stresslet at A. (In the
preceding sections, S = SO.) Also, for rigid bodies, the velocities at A and at B are

related as follows:

UA=UP+QAr,,. (2.71)

The stresslet component 5SS, exerted by the sphere of radius R at its geometric
center C' when it rotates with angular velocity Qze; in the vicinity of a stationary

sphere of radius R' can then be calculated using the expressions derived in this

work:

R
SG =589 + §F1

w R - w w R? 4
= [(RSWQ J132 + E(RFJV)M + R(RG 131 + 7(R?JV)11}92 - (2.72)
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We omitted the superscript “O” on all the resistance tensors, since this has been the
" default point of reference throughout this chapter. On the surface; at O, where the
coordinate (rw )3 is O(€'/?) compared to the radial distance [(rw)? + (rw )3] 2 the
relations (2.24e) and (2.24f) hold so that (R¥)" )132 = — (R %Yoz and (R¥ W )13; =

—1(RY¥Y )21. Also, from Lorentz’ reciprocal theorem, (R¥Y )12 = (R¥" )9;. There-
fore (2.72) is equivalent to

SG; = { (R Y )22 + (R )11}Q2 . (2.73)

The resistance functions in the previous formula can be evaluated from (2.45). A
little algebra yields, with o = R'/R,
4 R?

S5 = 7r1ne(1_Jr )2(29_.g2x)2, (2.74)

which is identical up to O(1) to the result reported by Corless and Jeffrey (1988).
Note also that all the other components of S¢, save S = S5, should be at
most O(1) from symmetry considerations. This can easily be verified using the
relevant resistance functions (2.45) applied to two spherical bodies.

The relations (2.45) can also be used to calculate the stresslet on the stationary

particle. In this case,

%?—ﬁd—gﬂ ’ (2.75)
R ; RR!
= (R " 1s2 — —(R;Vnw)m + R(R Y131 — "'—(R )11}92
W’W ww' R
= *“( )22 — —(R )21 — —(RTU 21 ~ (Rm 11]92
! 1 w 1 RRI !
= ——(RWW )22 — —(RWW )21 — ”"(R 7 Y21 — (RWW )11]92 .

The last step exploits the fact that only relative particle motions matter in the

lubrication approximation so that

(R’TU 21 =R 1z = —(R Y 12 = =Ry )21 = (RYY ')21 . (2.76)
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The application of (2.45) in the special case of two spheres near contact, and some

‘simple algebraic manipulations, then reproduce Corless and J eﬁrey’s(results (1988),

le.,

7 2+ 3 .
rlne (R+R')3{(f—+g%}92 . (2.77)

Other known results for two almost touching spheres (Jeffrey, 1989; Jeffrey & Cor-

’ | 2
SIC __Z
13 5

less, 1988) can be recovered through ‘a,nalo‘gous calculations.

2.8 Conclusions

The grand resistance tensor for two nearly touching walls can now be constructed
accurate to O(€?), where € is the minimum separation between the surfaces, non-
dimensionalized by the harmonic mean of the principal radii of curvature at the
points of closest approach. The formulae needed are given in (2.35), (2.43), (2.44),
(2.45), (2.48), (2.51), (2.56) and (2.24e-f), and occasional use of Lorentz’ reciprocal
theorem to find resistance factors which were not calculated explicitly. The only
restriction placed on the walls is that contact would occur at a single point if the
surfaces were forced to touch in their present orientation. Any two convex shapes
satisfy this criterion. This work extends Cox’s analysis (1974) of the forces for two
bodies near contact by including stresslets in the calculation, by considering the
effect of an imposed rate of strain, and by evaluating the stress moments arising
due to surface curvature of more than second order. Most notably, it has been
shown that the O(r®) and O(r*) features of the particle shapes can give rise to
logarithmically singular forces and torques ’a,s e — 0. Since it is not possible with
lubrication theory alone to determine the O(1) corrections to the resistance tensor,
this study has reached the limits of attainable accuracy based on this asymptotic
method. Note however that the singular behavior of the derivatives of the resistance
functions with respect to position is not yet fully characterized, as O(eln(e)) con-
tributions to the stress moments were not estimated. Since the magnitude of the

Brownian displacements of suspended particles depends on the divergence of R}
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(Brady & Bossis, 1988), these quantities are of interest in suspension rheology. They
"could, in principle, be obtained by carrying out the analysis to highel; order, but the
| algebra becomes quite complicated even in the case of spheres (Jeffrey & Corless,

1988; Corless & Jeffrey, 1988; Jeffrey, ’1989). We did not attempt their calculation

for arbitrafy surface shapes.
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APPENDIX A

The relation between A, A2 and ¥,

and the geometry of the problem

Finding the transformation matrix mapping the (Z1, Z2 ) coordinate system onto
the set (24, 5:2) requires the solution of a simple eigenvalue problem. The equation

for the gap width %, can be written in the form
h, =1+ (31 %) C-(Z; 52)7 . (A1)

The characteristic matrix C is defined as

. (2R1)—1 + By B /2
C= ( Bi/2 (2R2) + Bz) ' (A-2)

Let &; and €, be the unit eigenvectors of C corresponding to the eigenvalues A;
and Ay and consider the orthonormal matrix Y = (&; &;). By definition then
C-Y =Y - diag( 1, A2) and the transformation (5:1,5:2)T =Y - (&1,%2)T achieves

the desired simplification,
he—1= (&1 22)-C-(Z1,22)7 = (&1 &2)-diag( A1, A2)-(31,32)T = MidT+X283 . (A.3)

Thus Y can be associated with the transformation matrix in (2.30). Solving the

characteristic equation det(C — X\;I) = 0 gives the following roots:

101 11 1
WY SIS SO I SN 1 A4
4{R1+R2+R’1+R'2 J (A4)

where the discriminant D is given by

- h) () - DG -R) o

Since the surfaces are non-intersecting, C is positive definite and A; > 0. This

implies that D < (R;! +v R;' 4+ R+ R7Y)2. If one recalls that distances are
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non-dimensionalized using R = (R7M+ R{ '+ RV 4+ RY)/4, it is clear that
0< <2 L

The relation between the eigenvectors €; and &, and the angle y defined

in (2.30) leads to:

(R{' = Ry") + cos2¢(Ry = Ry )+ VD

tany =
X sin2¢(R, > — Ry V)

(A.6)

from which it is easy to derive using trigonometric identities that

1
<R—1 - 7%;) sinycosy = _(Ri’l - —Rl-;z—) sin(x + ¢)cos(x + ¢) . (A7)
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APPENDIX B

Implications of Lorentz’ reciprocal theorem

Let u be the velocity field and o = ~Ip+ Vu+ (Vu)” be the pressure field corre-

sponding to any flow satisfying the Stokes equations
Vp=Viu and Veu=0, (B.1)

and let (u’,0') characterize any other fluid motion conforming to (B.1). Then the

reciprocal theorem, originally due to Lorentz, demands that (Brenner 1963)

/dS-a-u':/dS-a'-u, (B.2)
s

s

in which S is any closed surface drawn in the fluid. The result (B.2) imposes
symmetry requirements on the resistance tensor of an arbitrary isolated particle
(Brenner, 1963; Brenner, 1964; Hinch, 1972). Lorentz’ theorem also determines the
symmetry properties of the N-body resistance tensor in systems of N particles.

Consider, for example, the two flow cases depicted in Figure 2.2. The velocity
field u and the associated stress field o arise from the translation of a particle W
with velocity U, keeping particle W' stationary. The fields u’ and o' are caused by
spinning particle W' at an angular velocity Q', while fixing particle W. Let S con-
sist of the particle surfaces, and of a shell Z of very large radius Rz chosen such
that Z surrounds both bodies. When applying the reciprocal theorem, the contri-
bution of the outer sphere Z vanishes, since ¢ - u' and ¢’ - u are at most O(R3’)
as Rz — oo, while the surface is O(R%) (Brenner, 1963). Using the no-slip bound-

ary condition at the particles’ surface, we obtain the relation
/dW'-a-(Q’/\r)z/dW-a'-U, (B.3)
W w

which can be rearranged as

Q'.(/r/\a.dw’):U-/dW.a’. (B.4)

w! w
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The integral on the left hand side is the hydrodynamic torque experienced by par-

“ticle W' under action of the translating particle . It depends lin‘ea‘rly on U in the
limit of zero Reynolds number, when (B.1) apply. Hence

“/”"'dW’=R¥’;‘”-U, (B.5)
WI

with R¥ " a part of the grand resistance tensor for this two-body system. Similarly,

- / AW .o’ =R"" . (B.6)
w

is the force experienced by particle W due to the rotation of its companion W'.

The reciprocal theorem predicts that
Q RVY.U=U-RI.Q . (B.7)
Since ' and U are arbitrary, this implies that
Q

Ry,” =R (B.8)

A series of similar expressions can be derived to show that the N -body resistance

tensor is symmetric.
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APPENDIX C

Solution of the third order problem for a direct approach

of the surfaces (complement of §2.2.3)

From (2.11), the equations describing the flow are:

0%ty 8% 1 n 0%l n 271 0%t 27, 0%,
85% 6.’5% R; 0%,0%3 Ry 07,073

073
1 3u21 SE% 5% 82’&21
Ly 2 1
+ (Rl + ) 575 T (R? + R?) 822 (C1a)
_ ape xl ape _2 —iz i 2 ._3 iz 6]9:
= %5 R0z 2(3 O T g, 2 T G

82'&52 {BQﬁzz 62ﬂz2 +2.’il 02'[1;2 +2:f2 azazz

072 o072 * 072 Ry, 03,0735 R, 07,0%3

1 au =2 2 f% 82'&)22

— + — ~ e C.1b
+<R1+R2> 073 +(R2 +R2) 9z? ( )

aPe -’132 Ope —3 18Ph —4 —igi— 1319::
— 1‘\ 1 2 ‘r

a:fz Rz 63:3 +§Z T3 +ZZ 2 81'3

62u23 aﬁe
= A

aﬂ'el aad Bﬁ£3 T aael 372 auf2 _2 auhl
+ — Iz27iz) C.1d
5271 8:2"2 853 R1 853 R2 6.1?3 + ; Z) 72 653 ( )

_ auhQ 671:1 _4— 8Uz2
3 —1 z 1 4 7= z 1 _
—|—E AR +E(4 i) ams—{-g 8 R EEN =0.

Although the expressions become extremely unwieldy, the procedure for solving
these coupled equations is identical to that followed at the two lower levels of ap-
proximation. First, p. can be calculated, up to an unknown function II(Z1,Z,),

by integration of (C.1lc). Making use of the result (2.34b), it is straightforward to
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obtain that

. (U5~ Us) —2(\; + )\g)xz 1272
‘ A1+ Az (1 +#72)3 (1+7

2( A1 —J;—/\g)f B 872
‘ (1'+7z2)2 3 (1+72)3

472 cos? d sm 9 A >\2 s1n9cos€ 4
- = C.2
TR (YRR TR ) @
272 cos2 sm 9 //\1 //\2 sin 8 cosﬂ}
II(r, 0
* (1+f2)2{ P >‘1 (79)

where the variables Rl , Rz and Rs have been introduced so that:

A2)4(A1 cos? 6 + A, sin? 9)

+ (A1 cos® 6 + Ag sin® 0)z3

1 cos?y  sin?y 1 sin? + cos? x

Ry R, Ry ’ R, Ry Ry
1 ( 1 1 ) .
— =|—=— ——=)sinyxcosy . C.2b
7 = \& Ry inxeosx (C.2b)

The velocity components #; and ez can then be written in terms of II by inte-
grating (C.1a) and (C.1b). It is convenient for this purpose to define 4.; and i in
analogy with eq.(2.30), i.e.,

(-G =) e
Uen sin X cos X Uea
and to express the equations in terms of #; and Z5:
62u61+ (921121 i 82‘&,1 i 2‘5:1 821121 2@2 62’&.11 I (_1_ L) 8'&2-]
8333 853% 057% Rl 01,1073 RQ 0%,0Z3 _]%1 ? 073

R \"282,0z5 | 0,05 Fr A f122 A? a%

3} ODe Iy 0P,
01, Ry 03 R, 073

Pl | 0% O%h.e 22, 0%y 2%, O%4, 1 1\ Ol
< I\2 + ~ ~ — ~ — +( + )
014 R, 01,10%3
2 2 24, 72 9 22N 824,
b 2 (5 Ll g, Ol rig + 22) 2L
R 8CL‘16$3 axgax‘g} 5

= 2 :C_z_ape + 5_1%
95y " R, 025 T R, 075’
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In these equations, it has been taken into account that 9p,./0%3 = 0 and likewise

that 0p,/0%Z3 = 0. The quantities p1, po and p, are chosen to satisfy

1 cos?y  sin’y 1 sin?x  cos?y
FTR B A m R
' 1 1 1
— = — sin x cos C.c
. ( 2 RQ) X COSX - (C.4c)

The boundary conditions for these equations can easily be shown to be Gic = 0 on W

and

i = —%hehz%z — %hhhzvﬁh (C.5)

on W'. The solution of these equations is quite simple but long. The expressions
for ¢ can then be inserted into (C.1d), which then needs to be integrated with
respect to 3. The no-slip condition at the wall W requires that .3 vanishes there,

and on W', it reduces to the following constraint:

h;_

e = ——h Wi p, — —(h2 +2h:he)Vps - Vhe + %R (heVp: + Vi)

— —h hh(sz th +Vph Vh )+ 2h hhapz 2(3 Z)F 727z

| 0p. - =3—ioi—1
+ 2h hha zs szixl Ty . (C.6)

=1

After more tedious algebra, the desired equation for II(#,6) is obtained:

—(A1 + >\2)

V(R =

2213
v. {hzh V5. +hih} sz+h2thph}+(1+r ) N(7,6)
(C.7a)

or equivalently,

—(A1 + A2) 72
(Us —Us) (1+472)

L(IT) = V- {hIhVp. + h.R3VP, + B2y Vin )} + N(7,6)

(C.7h)
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where the function A(7,6) stands for

. 4 P Ar A
./\/(,7’,6) 5(1—+W(3)\ +2)\1/\2 +3/\ )+-—-—r——{—8(R1 sin 9+ —iCOS 9)

(1+72) 2 Ry
A A
+ %(3)@ cos? 6 4+ A1 g + 32Zsin? 4) — ()\—1 + ‘;\f‘) — 48 (E!% cos” 6 + 1;2 sin® 6)
2 1
1 1 Apcos?8  Aisin?é
+12[cos G(E--%— )+sm 9<E+7)]+4(R1R2+ Xy p2 + A2 p3 )

sin 8 cos 8 [\ [ A2 DY /A2 s1n900s9 /)\1 /)\2
= | Y= 2 ~ o = ~ -

+8 Rs [Rl( /\2 + /\1)+R2( /\2 +2 )\1)] +3 AQ /\1
4 A1 A2 A1 . o A2 2 sinf cos 8
r)(”)\z +1/—>G-) <\//\2 sin 6+\/)\—1cos 9) + 164/ A1 A2 ) . (C.7¢)

As before, the solution of this p.d.e. is subject to the conditions of boundedness at
the origin, periodicity in the parameter # and the requirement that II(7,6) = O(7~2)
as 7 — oo at finite r. It is very simple to prove that the solution for large 7 can be

decomposed into an angle-dependent part ©(6) and a distance dependent factor,

which proves to be simply #72. In other words,
II(+,8) — #~20(6) as 1 — 0o . (C.8)

To calculate F3, it is necessary to evaluate fz Ped W. From (C.2), bearing in mind

that the wall W is described by Z3 = O(€3/27%), it is easy to see that

—1/2
o (U =Us) /”/f c . Fdrde ,
AW =3—=— -~ II(7, ) — c.9
| » e A (DL (C.92)
/ / [cos2 sin® 9 //\1 //\2 s1n9cos€ rdr de

3JA(T[]_3(A1 +)A2) {—rlne(}—%— + é—) + /5 i1 @(9) 6 + g(é)}

1 2 0

where § is chosen such that (C.8) holds for 7 > ¢, and ¢(é) is given by:

g(6) :'/06 /O% II(#,6)F d7 d6 . (C.9b)
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Although the exact form of the pressure contribution II(7,8) is unknown, the fact
‘that it is bounded everywhere is sufficient to state that g(6) has‘ a finite value-
for all gap widths. Since the integral over ¥, is independent of the exact choice
of é, the Iné term from the first integral on the right-hand side of (C.9a) must be
balanced exactly by ¢(6). Hence one can discard the lower bound of the integral
in the calculation, and lump the error with the O(1) uncertainty on the force Fj.
Note that the upper bound of the integral over 7 yields a logarithmically singular
contribution to F3 for small €. To find the coefficient of this O(ln €) term, ©(6) must
be integrated over a unit circle. Now for II = 7720, the operator L(II) can be

factorized as L(II) = 772 L4(©) with

9?0

L(0) = (A1 sin® 6 + A, cos? 6) 507

~2{ (A1 4+ 3X2)sin? 0 + (3X; + Az) cos® 6} O .
(C.10)
Direct integration of £(II) over € from 0 to 27 in the limit of # — oc (after multi-
plication by #%) thus yields
2m

Lo(©)d6 = (C.11a)

0

2w 2
= / {()\1 si‘n2 6 + Az cos® 9)%9— —2{(A1 + 3X2)sin? 8 + (3A; + A) cos? 6’}@} dé
0

2w 27

= 2(A1 — A2) (cos? 6 — sin® )© df — 2 {(A1 +3X2)sin® 6 + (31 + A2)cos?8}Od8 .
0 0

To arrive at this simplification, two integrations by parts have been carried out on
the first term of the operator Ly. Mere algebra then yields the simple formula

27 ) 2

Lg(0)d8 = —4(A1 + A2) ©de . (C.11b)

0 0
This result implies that (C.7) need not be solved, since it is known from (C.9) that
integrating over the angular variable 6 at large values of 7 suffices to obtain the

singular contributions of p, to the normal force F3. Substituting the expressions for
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T hz», hyn and h in the right-hand side of (C.7b), the integration yields that

2w 3

3
400 + h) | 0= 677[(10)\1 + AQ)% 5

A1+ /\2)&% + ()\1 + 5)\2)&%

+ (5/\1 + 10X2) k3 + (3A\1 + 2Xg)koka + (2A1 + 3Ag)k1 K3+

(7)\1 + 2A2)ﬂ‘01{1 + ()\1 -+ 2)\2)/{21{1 + (2)\1 + )\2)/"51]{2 -+ (2)\1 + 7)2)&31{2—%

192 128
(5)\1 -I- A2)Co + (A1 + )\2)(2 + (A1 + 5>\2)C4] +7 [“—(Az A2) — “‘")‘1>‘2

2 A1 A2
g T /\zpl %)

1 1 /\2
_ 12(R2 + A% + = 7 7—%- 72 (\/ \/ (C.12a)

where the coefficients (; are deﬁned by the requirement that

4
he Z(b + 1)z 7T = Z Cicos* " @sin' 0 | (C.12b)

1=0

and thé notation K; and K has been introduced for the following:

K= TRt mg g = Ppmtan (C.12¢)
Noting from (2.34) that on the surface W given by Z3 = O(*/?),
2‘%{’3 =h,x- R V5, . (C.13a)
03
while also, for i =1 or ¢ = 2,
_‘Z“Tj _ %hz?;: , (C.13b)

it 1s possible to rewrite the expression for the O(lne€) correction to the force Fj in

terms of (Z,2,) as

~ a'&zS i’l 3ﬁz1 1112 8u22 B 1 1o A )
6_2_“*‘~ - —_ dz; dz e__hz_' . . ~

— = 1 .’2‘_18]);, x_28Pz _1 apz 0p.
/:[ hz(Rlasﬁl+ﬁzaﬁz) 2R ( 195, T QaA

)| dzrdz, . (C14)
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When this integral is evaluated, and the result (2.35a) is taken into consideration,

‘the expression for the normal force F3 for a direct approach of the Suffaces becomes,

to O(e°),

- (U =Us) 9 (UL — Us) 5
Fy = —3me?! (Us — —7ln 10A; 4+ =) ) &2
’ (VS v WO VT W R Vs v W S WIS W ( 1t 2)’*0
3 3 5

+ (52 de)kl+ (500 el + (320 + 103 ) 3 + (32 + 2Xe)ors

+ (27 +3A2)k163 + (TA1 4+ 2X2)ko K1 + (A1 + 2X2)k2 Ky + (2A1 + Ao)r1 Ko

+ (2A1 + Tho)ra K2 + (5A1 4+ A2)Co + (A1 + A2)Ce + (A1 + 5>\2)C4}

3 (Us — Us) 32
1 PEIEEDY —)\ Ao — —(3A1 + A
+ 57ine ___._/\1}\2(/\1_*_/\2)2[ (AT +25)+ 142 ( 1+ A2)

2 Az A 3 3 3 3
——,\+3,\+AA+A+A+ t 5+ =+
(A +3%) RiRy, NPt Mepi o RO R A

A 212
+R§ ﬁ/g+ rﬂ’ (C.15)

which is (2.44) reported in §2.2.3.




-55-

References

" Brady, J.F. & Bossis, G. (1988) Stokesian dynamics, Ann. Rew. Fluid Mech. 20,
111-157.

Brenner, H. (1963) The Stokes resistance of an arbitrary particle, Chem. Eng. Sci.
18, 1-25.

Brenner, H. (1964) The Stokes resistance of an arbitrary particle-IV. Arbitrary
fields of flow, Chem. Eng. Sci. 19, 703-727.

Corless, R.M. & Jeffrey, D.J. (1988) Stress moments of nearly touching spheres in
low-Reynolds-number flow, Z. Angew. Math. Phys. 39, 874-884.

Cox, R.G. (1974) The motion of suspended particles almost in contact, Int. J.
Multiphase Flow 1, 343-371.

Hinch, E.J. (1972) Note on the symmetries of certain material tensors for a particle

in Stokes flow, J. Fluid. Mech. 54, 423-425.

Jeffrey, D.J. (1982) Low-Reynolds-number flow between converging spheres, Math-
ematika 29, 58-66.

Jeffrey, D.J. (1989) Stresslets resistance functions for low-Reynolds-number flow
us‘ingdeforming spheres, J. Appl. Math. Phys. 40, 163-171.

Jeffrey, D.J. & Corless, R.M. (1988) Forces and stresslets for the axisymmetric
motion of nearly touching unequal spheres, PhysicoChemical Hydrodynamics
10, 461-470.

Kim, S. & Mifflin, R.T. (1985) The resistance and mobility functions of two equal
spheres in low-Reynolds number flow, Phys. Fluids 28, 2033-2045.

Ladd, A.J.C. (1990) Hydrodynamic transport coefficients of random dispersions of
‘ hard spheres, J. Chem. Phys. 93, 3484-3494.

Phillips, R.J.; Brady, J.F. & Bossis, G. (1988) Hydrodynamic transport properties

of hard-sphere dispersions . L. Suspensions of freely mobile particles, Phys.

Fluids 31, 3462-3472.



-56-

Phillips, R.J., Brady, J.F. & Bossis, G. (1988) Hydrodynamic transport properties
of hard-sphere dispersions II. Porous media, Phys. Fluids 31, \3473—3479.



-57-

Nomenclature of Chapter II

A nomenclature section is includéd in this chapter because the notation is quite
involved, as the length of the lisf of variables will attest. This compilation may
also help those who wish to apply the lubrication formulae without going through
“their derivation. We have tried to keep the symbols consistent throughout the
dissertation. However, it would be impractical to never dev'iate from the conventions
used in this chapter in the remainder of the thesis. We mention in particular, that
R will subsequently denote the true N-particle grand resistance tensor (as opposed

to its numerical approximation R) and that é will stand for the idemfactor.

Roman

A : transformation matrix mapping the principal coordinate system (z1,22,23)
of W onto the principal frame of W', given by the set (z}, 23, z%)

b; : coefficients of the fourth order terms in the local approximation of W' about O’

(expressed in the system of principal axes of W) [m™?]

o

; : coeflicients of the second order terms in the local approximation of W' about O’

(expressed in the system of principal axes of W) [m™!]
: geometric center of the particle
: characteristic matrix for the quadratic h, — 1

: displacement rate tensor [s7}]

VD O a Q

: discriminant defined in Appendix A

e; : unit base vector

E : rate-of-strain tensor [s7!]

Ey : deformation tensor [s7!]

F :rfor’ce exerted by the particle on the fluid [N]

F : generalized force vector (force and torque exerted by the particle on the fluid)

~ fw : function of position defining the surface W
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h : term in the expansion of the rescaled dimensionless gap width in powers of €2
VI : ideﬁtity tensor

i,7 : dummy indices

k- ekponent of e determining the scaling appropriate for the boundary conditions
K; : coefficient of 2272} in the expression for Ay

K; : linear combination of the X; defined in Appendix C

L : operator acting on a function of (7, 6)

Ly : operator acting on a function of 8

N : function of (7,6) defined in Appendix C

O : point of closest approach on the particle

p : pressure field [Pa]

Q; : factors arising in the solution of the problem for tangential or rolling motions
of the surfaces (§2.3)

r : radial distance from O [m)]

r,p : vector linking point B to point A in space [m]

R; : principal radius of curvature of Wat O [m]

R; : linear combinations of the principal radii of curvature R; defined in Appendix C

R : diagonal matrix consisting of the principal radii of curvature R;

R, : characteristic length scale [m)]

R : resistance tensor for the system of two nearly touching particles [units depend

on component considered]
Rz : radius of the spherical shell Z considered in Appendix B [m)]
S : stresslet exerted by the particle on the fluid at the point of closest approach [N.m]

S : composite surface considered in Appendix B in order to apply Lorentz’ reciprocal

theorem to a system of two particles ; S=ZUW U W'

T : torque exerted by the f)article on the fluid at the point of closest approach [N.m]



-59--
u : fluid velocity [m/s]
U : translational velocity of the surface at the point of closest approach [m/s]

U : generalized velocity (translational and rotational velocities) of the surface at

the point of closest approach
Ue: charact’eristic’velocity [m/s]
W : surface of the particle
dW : infinitesimal surface element of the particle [m?]
z; : coordinate in physical spacé [m]
X =Zie; + Toeq
Y : transformation matrix mapping (Z1,%2)T onto (21, #2)7
Z : spherical surfacé of very large radius considered in Appendix B

Greek
B; : coefficients of the third order terms in the local approximation of W’ about O’
(expressed in the system of principal axes of W) [m™?]
I'; : coefficients of the third order terms in the approximation of W about O [m™2]
6 : small dimensionless distance in the (z1,x2) plane
Aij = Di; — Dj;
€ : minimal gap width [m)]
¢ : small dimensionless distance measured in the e; direction
(i : coefficient of #* cos?~%#sin' § in the expression for h.
© : function of the angular variable 6 only
: angular variable in the elliptic coordinate system defined in §2.2.1
ki . coefficient of #3 cos3~? @sin' 6 in the expression for hj

A;i ¢ coefficients of the second order terms in the expansion of 4, around the point O

[(2)\i)'1 is a non-dimensionalized principal radius of curvature of surfaces of

constant hz] :
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f : fluid viscosity [Pa.s]
& : coefficient of cos?~* @sin' § in the expression for ©(6) in §2.5
I : term in theiexpre'ssion for pe, Appendix C
o : ratio of the sphere radii R'/R
pi : functions of Rf and R} defined in Appendix C

0 : stress tensor [Pa)

3. : region around the point of closest approach where the lubrication approxima-

tions are valid

T; : coefficients of the fourth order terms in the approximation of W about O [m™3]
¢ : angle between the principal axes of W and W'

x : angle between the principal axes of h, and W

Q : angular velocity of the surface [s7]

Subscripts

1, 2 : (for tensorial quantities) denote projections of the subscribed tensor onto

coordinate axes which are tangent to the surfaces at their point of minimum

separation

3 : (for tensorial quantities) denotes a projection of the subscribed vector onto the

coordinate axis lying along the normal common to both surfaces at their point

of minimum separation

¢ : indicates that this quantity is chosen as the “characteristic” measure for this

variable

FE,FU,FE,SU,SE (subscripts for various resistance tensors) : the subscripts
indicate which quantities are linked by the subscribed tensor; Ry, for example,

relates the stresslet S to the applied rate of strain E

h : the subscribed variable is the first correction to the leading order term in the

asymptotic expansion of this quantity for small e!/2
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L : the lubrication approximations have been invoked to calculate this variable
"w,w’ : lying on surface W, W' respectively |
z: the subscribéd‘variable is the lowest order term in the asymptotic expansion of
| this quantity for small €l/2 |
€ : the subscribed variable is the third order term in the asymptotic expansion of
this quantity for small €!/2

Superscripts

A, B : denotes that the origin, or the reference point, is A or B respectively

" : for variables concerning surface W' in particular

* : for components along the 7, 2} or z3 axes, i.e., for projections onto the principal
frame of reference of W'

ww,ww', w'w,w'w’ (for resistance tensors) : indicate that the superscribed tensor
relates a quantity concerning the surface W to another quantity associated
with the surface W (or W/ W', W /W and W' /W' respectively). The ordering
of the subscripts dictates the sequence in which the superscripts are written;
for instance, R%Y" links the stresslet exerted on the fluid by the wall W to the
translational /rotational velocity U' of W' at O'.

: denotes that the variable has dimensions (the corresponding non-dimensionalized

variable has the same symbol, without accent)
: indicates that the variable is non-dimensionalized and rescaled according to (2.7)

indicates that the coordinates of the position vector are given in the non-

orthogonal frame defined by the transformation (2.9)

. indicates that the axes “1” and “2” of the frame of reference lie in the directions
of principal curvature of the surface h, = constant

Operations

det( ) : takes the determinant of the matrix between the parentheses

diag(iy,12,...,4,) : forms a n x n diagonal matrix with iy, 42, ...,1, on the diagonal
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. transpose of the superscribed tensor; AT performs a right transpose of the
tensor A (the last two indices of the matricial representation of A are reversed);
T A indicates a left transpose (the two first indices are exchanged).

V : nabla operator [m™1]

V = e,0/0%; + e20/0Z ; two-dimensional nabla operator

-+ scalar (dot) multiplication of vectors

A : vectorial (cross) multiplication of vectors

® : contraction of tensors; it can denote the scalar multiplication “.” or the nested

“double-dot” product “:” depending on circumstances

Abbreviations

o.d.e. : ordinary differential equation

p.d.e. : partial differential equation



Fig.2.1: Coordinate systems used in this chapter
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(u,0) (v, 0’)

Fig. 2.2: Geometry of the problem considered in Appendix B.
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Chapter III
Stokesian dynamics for a finite number

of non-Brownian prolate spheroids

3.1 Introduction

The motion of small particles in viscous fluids is relevant to fields as disparate
as chemical engineering, biology, soil mechanics, geophysics, materials science and
the microelectronics industry (Happel & Brenner, 1973; Kim & Lawrence, 1988).
It pertains to the locomotion of microorganisms, the transport of blood cells in
arteries, and the diffusional approach of substrates to enzymes. More traditionally,
low-Reynolds-number hydrodynamics have been used to analyze the processing of
slurries, colloids and composites. If some of the particles are fixed, the results
apply to petroleum recovery in porous rocks, or to the monitoring and control of
particulate contaminants in cleanroom environments. Suspension rheology is also
at the core of active efforts in constitutive equation modeling for polymeric and
liquid crystalline solutions.

In many cases, the particles are distinctly non-spherical, and their anisometric
shape is a fundamental characteristic of the problem at hand. Typically, the de-
parture from sphericity influences the global properties of the fluid-particles system
in any of three major ways. Equilibrium Monte-Carlo studies (Frenkel & Mulder,
1985; Frenkel, 1988) have shown that the phase-diagram of fluids of anisotropic hard
bodies of revolution differs qualitatively from that for spheres, with the appearance
t_)f orientationally ordered structures in concentrated samples, even for particles with
moderate aspect ratios. These structural changes due solely to packing considera-
tions affect all macroscopic properties of the solvent-particles composite. In effect,
the anisotropy of the microscopic constituent is imparted to the entire dispersion.

In general, the microscale anisotropy reflects on the suspension average properties
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whenever a preferred direction of alignment for the particles exists (due to exten-
sional components in the flow for example). Additionally, under non-equilibrium
conditions, orientation is no longer a dead degree of freedom and particle rota-
tions cause non-trivial changes in the instantaneous microstructure’and this in turn
reflects on the suspension properties. For example, the tumbling of spheroids in
shear flow (Jeffery, 1922) induces periodic variations in the local stress response
(Ivanov et al., 1982). Finally, suspensions of anisometric particles often behave
quite differently from suspensions of spheres because the solid inclusions interact
hydrodynamically much more strongly than spheres do at the same volume fraction.
This effect is most pronounced for elongated particles, and semi-dilute fibre suspen-
sions for example display extremely high extensional viscosities as a result of these
“screening” interactions (Batchelor, 1971; Shaqfeh & Fredrickson, 1990; Mewis &
Metzner, 1974). This tremendous increase in the resistance of fluids to stretch by
the addition of a minuscule amount of fibrous material is of great technological im-
portance, and is one of the factors that prompted us to study ovary particle shapes
rather than pl'anetary.

Much is known at present about the motion of single, rigid particles in creeping
flow. This knowledge is directly applicable to the analysis of dilute suspensions, in
which each particle is effectively isolated. The behavior of more concentrated disper-
sions, however, remains a challenge for rheologists. For spherical particles, dynamic
microstructural simulations have provided valuable insight into the flow behavior
of suspensions up to very high particle densities (Brady & Bossis, 1988; Phung &
Brady, 1991). Similar attempts for dispersions of elongated particles however, have
thus far neglected hydrodynamic interactions, modeling the suspension as a gas of
impenetrable needles, and incorporating solvent effects in an ad hoc manner (Bit-
sanis et al., 1988, 1990). As mentioned previously, hydrodynamic interactions have
been shown to be immensely important, especially for rod-like particles (Batchelor,
1971). The numericai difficulties experienced with continuum descriptions of fibre

suspensions in the semi-dilute concentration regime and near solid boundaries also
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- reflect the importance of viscous interactions and the difficulty in treating them ad-
equately (Rosenberg et al., 1990). The need ekists, clearly, for a hydfodynamically
rigorous simulation method for dispersions of elongated particles. In addition, very
few numerical and theoretical investigations are available to date in the literature
on the rheology of suspensions of thick rods, with moderate aspect ratios. Asymp-
totic theories for fibre dispersions usually employ the so-called weak expansion in
inverse powers of the logarithm of the aspect ratio, and their predictive value is thus
limited to extremely slender bodies. This is unfortunate since most particles and
macromolecules of practical importance have eccentricities intermediate between
spheres and very slender rods.

‘We present herein a new simulation method for suspensions of prolate spheroids
of arbitrary aspect ratio, which accurately accounts for hydrodynamic interactions,
including many-body effects. It is similar in concept to the successful simulation
technique for disperéions of spheres known as Stokesian dynamics. Only systems
consistiﬁg of a finite number of particles are considered here first in order to demon-
strate the essence of the new approach and its advantages. These simple systems also
serve to highlight the effect of viscous interactions, which are harder to distill from
simulations of infinite suspensions. Two-body dynamics are also interesting in their
own right. For instance, they determine the tendency of rods sedimenting through
highly porous fixed beds to line up in the direction of gravity (Shagfeh & Koch,
1990). The next chapter discusses the extension of our method to unbounded sus-
pensions and illustrates its effectiveness with selected results on the transport prop-
erties of uniformly aligned énd equilibrium’hard-ellipsoid structures. The model
suspensién consists of rigid non-Brownian prolate spheroids interacting hydrody-
namically in a Newtonian, incompressible fluid at zero Reynolds number (based on
the largest particle dimension). Since the body is axisymmetric, this is the simplest
geometry retaining the essential novel feature of interest: orientability. It encom-

passes the sphere at one end of the spectrum and slender round-ended rods at the

| other.
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As the inertia of pérticles up to several hundredths of a millimeter in size can
often be neglected relative to viscous retardation in common liquids,~ the equations
governing fluid motion in suspension rheology are usually taken to be the Stokes

equations:

Vp = uViu (3.1a)
Vou=0. (3.1D)

(¢ represents the viscosity of the suspending fluid; u is the velocity field, and p the
associated pressure.) Even though the creeping flow equations (3.1a-b) are linear,
very few analytical solutions are known which satisfy the no-slip boundary condi-
tion on two or more immersed particle surfaces. The most notable exception is
the solution in terms of bipolar coordinates for two spheres traveling with equal
velocity along the line joining their geometrical centres (Stimson & Jeffery, 1926).
The method of reflections (Happel & Brenner, 1973) exploits the linearity of the
Stokes equations to generate an iterative sequence of solutions of ever increasing
accuracy for problems involving two bodies in an unbounded fluid, provided the
disturbance velocity due to each particle separately is known. This technique is not
easily amenable to situations where three or more particles interact simultaneously
(Kynch, 1959). Based on an elaborate formulation in terms of ellipsoidal harmon-
ics, Wakiya (1965) derived an analytical expression for the sedimentation rate of
two widely separated spheroids. However, his results assume that the distance be-
tween the particles greatly exceeds their largest dimension, and the intricacy of
the algebra required forbid the application of his method to include more particles.
Many numerical techniques for Stokes flow problems have therefore been developed
(Weinbaum et al., 1990). We shall focus on their utility for suspensions of prolate
spheroids. Finite difference or finite element schemes will not be discussed as they
are not generally applicable to unconfined Stokes flow problems, where velocity dis-
turbances decay so sléwly that an immense region would need to be discretized.

Instead, solutions for the particulate dynamics are sought, which do not require
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determining the entire flow field.
The first class of methods is based on a discretization of the Boundary inte-
gral equation (Ladyzhenskaya, 1963), which writes the velocity at any point x of

‘the (bounded) flow domain in terms of the force density and fluid motion at the

boundary 9V:

L * [ x—yE-yE-y)
O B o T G oy e
with

o= —pb+ u(Vu+? Vu). (3.3)

The stress tensor ¢ is evaluated at y on the boundary. dAy is an elementary surface
element of 9V, poinfing into the control volume V'; the subscript y indicates that the
integration is carried out with respect to the vector y. The first integral therefore
represents the disturbance produced by a surface distribution of point forces with

strength ¢ - dAy. Their effect propagates with the Oseen tensor

) rr
Jr)=—+ — . (3.4)
O =Rt R ~
A straightforward application of the divergence theorem shows that the second

term on the right hand side of (3.2) vanishes for rigid particles for any x in the flow

domain.

In essence, boundary element methods evaluate (3.2) at 0V, apply the appropriate
boundary conditions and solve the resulting Fredholm integral equation by discretiz-
ing the surfaée. Coincidentally, the first article exposing a numerical application of
this technique considered Stokes flow past spheroids (Youngren & Acrivos, 1975).
As mény as 64 surface patches were needed to determine the torque exerted by
simple shear flow on the particles to an accuracy of 1% or better. Although the
programming aspects have become more refined since, this work illustrates the

high computational cost of the technique. Since point forces are distributed on the
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surface of the particles, evaluating (3.2) at the boundary generates singular inte-
- grals. Moreover, a vefy fine mesh is necessafy to capture large’str(ess gradients in
‘the flow, such as may occur between almost touching particles in relative motion.
More effective numerical approaches, collectively known as multipole techniques,
are now available for a wide class of creeping flow problems, restricting the use of
the boundary element method to systems with deformable interfaces or complicated
geometries.

The oldest of these techniques is the multipole collocation method (Gluckman
et al., 1971). It has mostly been applied to the motion of two or three spheres
(Hassonjee et al., 1988), and to axisymmetric flows past chains of ellipsoids (Gluck-
man et al., 1971; Liao & Krueger, 1980). It is best suited for problems involving
a finite number of identical particles positioned in a very symmetric arrangement.
Basically, stress singularities are located at the centre of the particles, and their
strength is determined by simultaneously satisfying the no-slip condition on all
spheroids on a number of judiciously chosen rings on their surface. Since all un-
known coefficients are found collectively as the solution of one matrix equation,
many-body effects are incorporated. Surface-averaged properties such as the drag
can be calculated quite accurately using this technique. However, as the particle
separation decreases, many terms must be retained in Lamb’s fundamental solution
(Lamb, 1932), on which the method is based. Also, as recognized by Hassonjee
et al. (1988), the combuter memory and computation time requirements are rather
large, and compare unfavorably with the needs of Stokesian dynamics (see §3.2).
Although the “multipoles” were described merely as “multilobular disturbances”
originaﬂy (Gluckman et al., 1971), Weinbaum et al. (1990) have shown for spheres
that they correspond to moments of the stress density on the particle surface, i.e.,
to the Stokeslet, rotlet, stresslet, quadrupole and octupole of the multipole moment
method (vide infra). This suggests an inherent deficiency in the multipole colloca-
tion technique for noh—spherica,llparticles, since even an isolated ellipsoid creates a

disturbance which can be correctly reproduced only by an infinite series of Stokes
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singularities at its geometric centre (Brenner, 1964 b).

By allowing the singularities to be distributed within the p;':nrticle however
| (rather than restricting their location to the middle), Chwang & Wu (1975) con-
structed exact solutions for isolated spheroids in linear ambient flows using only
low-order singularities such as Stokeslets and doublets, rotlets, and stresslets and
octupoles. Their singularity representation, reminiscent of the slender body theory
pioneered by Batchelor (1970), is much more convenient for numerical purposes
than the gfantedly more compact symbolic operator formalism of Brenner & Haber
(1983) (see also Brenner, 1966), which, in effect, places an infinite series of distur-
bances at the centre of the particle, just as in the multipole collocation technique.
Chwang & Wu'’s result, on the other hand, states that a single spheroid in a uniform
velocity field behaves hydrodynamically as a line of Stokeslets (i.e., point forces) of
constant magnitude, with potential doublets distributed with a parabolic density
profile to correct for the finite body thickness. This inspired Barta & Liron (1988)
to calculate hydrodynamic interactions between slender objects by determining the
Stokeslet distribution along their axes which best satisfies the no-slip condition.
Their procedure, unfortunately, does not allow the forces on the particles to be
specified, and is limited to thread-like bodies. Kim (1985a) furnished a very el-
egant proof of the functional equivalence between Faxén laws and the singularity
representation of disturbance velocities for rigid particles in Stokes flow. [Kim &
Lu (1987) extended their theorem to include fluid-fluid boundaries.] He then used
Chwang & Wu’s formulation for spheroids (1974, 1975) in conjunction with the
method of reﬂections to examine the sedimentation of two identical spheroids in
an unbéunded fluid (Kim, 1985b). Since the formulation is exact in the absence
of interactions (unlike the multipole collocation approach for non-spherical bod-
ies), better accuracy is expected for the same number of unknown multipoles, even
though many iterations may be necessary. Kim carried the calculations out to the

second reflection, but lost convergence at small separations.

The multipole collocation and the multipole moment methods are similar in
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many ways and have been blended in a few hybrid approaches. Indeed, for spheres,
‘as pointed out, there exists a one-to-one correspondence between the disturba,nces of
the collocation technique and the stress moment propagators of the moment expan-
sion. Yet this second scheme is substantially more efficient and typically introduces
fewer unknowns. It also very readily accommodates periodic boundary conditions to
simulate suspensions of infinite extent. The multipole-moment technique expands
the contribution of the surface stresses on each particle in the boundary integral
equation (3;2) into moments about the particle centre. The zeroth moment singles
out the effect of the total force. The first moment has antisymmetric and symmetric
cornponénts. The former corresponds to the net torque experienced by the particle;
the latter is identified as the stresslet. Higher moments yield the quadrupole, oc-
tupole, hexadecupole, etc. This series is truncated at the level appropriate for the
accuracy desired. The motion of each submerged object is then determined from
Faxén formulae, with the velocity field given by the moments expansion of (3.2).
This méthod lies at the core of Stokesian dynamics (Brady & Bossis, 1988; Brady
et al., 1988) and of the technique presented herein, and will therefore be explained
in greater detail in §3.2. It converges particularly rapidly for suspension viscosities
and self-diffusion coeflicients; more terms are needed to determine sedimentation
rates and permeabilities (Ladd, 1990). In all cases the number of moments neces-
sary to achieve quantitative accuracy increases with solid volume fraction. The only
“application to non-spherical particles of a variant of the multipole moment method
of which we are aware, is the recent work by Yoon & Kim (1990), in which up to
4 moments are retained to describe the dynamics of pairs of spheroids. Instead of
relying oﬁ Faxén relations, a least squares collocation technique is used to calculate
the strength of the unknown multipoles from the no-slip boundary conditions.

| Stokesian dynamics is generally accepted as being the most cost-efficient nu-
merical simulation technique for suspensions of spherical particles. It combines the

multipole moment method with lubrication formulae to remedy the inadequacy of

the moments expansion when particles are nearly touching. It is therefore accurate
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over the full concentration range, from very dilute to nearly maximum packing.
‘In addition, the method very consistently preéerves any symmetry ihherent to the
system by making explicit use of Lorentz’ reciprocal theorem (see Ch.II, App.B) in
order to improve both its numerical efﬁciency and its robustness. Since our approach
for prolate spheroids essentially adopts the same strategy, we discuss Stokesian dy-
namics in the next section. Section 3.3 then details how far-field interactions are
calculated (i.e., the multipole moment method for our system), and near-field as-
pects are tackled in §3.4. The accuracy and efficiency of the method is illustrated

by means of several examples in §3.5. We summarize our main findings in the

concluding section.

3.2 Stokesian dynamics for a finite number of particles

Three major problems stand in the way of quantitative numerical simulations of
non-dilute hard-body dispersions. The first stems from the long-ranged character
of hydrodynamic interactions in Stokes flow: in an unbounded fluid, the velocity dis-
turbance due to a Stokeslet decays with distance as r™! (c¢f. the Oseen tensor (3.4)).
Such a slow dissipation of forcing actions results in non-convergent expressions when
the effects of a large (infinite) number of particles subject to a net force such as
gravity are summed to calculate collective préperties such as the sedimentation rate.
This problem, however, is not severe for finite clusters, and therefore not applicable
here. Let us simply mention that it can be dealt with appropriately by “renormal-
izing” the interactions, i.e., subtracting the mean-field effects (O’Brien, 1979). The
success of this approach has been demonstraﬁed for suspensions of spheres (Brady et
al., 1988) andv we shall explain how to implement it for prolate spheroids in the next
chapter. A related, second difficulty is the importance of many-body effects. The
rhotion of two particles in a fluid is affected by the presence of a third through direct
hydrodynamic interactions of each particle with it, but also because the velocity dis-
turbance of the pair is reflected on the third object’s surface and thereby altered.

Thus, unfortunately, the solution of the three-body problem cannot be obtained by
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summing three two-body systems. Yet pair-wise additivity can be used intelligently
to reproduce the dynamics of maﬁy spheres adequately. (As Stokeéian_ dynamics
exploits such a scheme, we shall come back to this later.) The third difficulty in
suspension rheology lies in the very strong and localized interactions between nearly
touching immersed surfaces in relative motion. These stresses, which diverge as the
separation vanishes and so in theory prevent particles from ever touching (until
the gap width reaches molecular dimensions at which the continuum description
breaks down), can only be captured by retaining an infinite number of multipoles
in the collocation and moments schemes explained in the introduction, or by an
extremely fine discretization near the points of closest approach for the boundary
integral method. Many researchers therefore resort to artificial repulsive potentials
between particles to prevent them from overlapping during dynamic simulations.
Yet analytical formulae are known for any two convex particles for the force, torque
and stresslet generated at sufficiently close separations by these so-called lubrication
interactions (see Ch. II). Stokesian dynamics takes advantage of these expressions
and, consequently, is accurate even at very high packing densities when these in-
teractions dominate, causing the other methods described in the introduction to
fail.

Two basic problem formulations exist in suspension mechanics. In the mobility
version, the velocities (both translational and rotational) of the particles are sought,
given the ambient flow field and the forces and torques acting on each body. The
converse, finding the forces and torques required to impose a desired particulate mo-
tion in an external flow, is referred to as the resistance formulation. The governing

equations (3.1) are solved subject to no-slip boundary conditions
ux)=U,+(x—%,)AQy , X €4, (3.5)

on the surface A, of each particle (labeled by integers p from 1 to N). £, denotes
the body’s angular velocity, and U, is the translational velocity of its locator point ,

Xp (usually its centre of hydrodynamic stress (Brenner, 1963)). Far away from the
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cluster, the imposed linear flow us, with uniform velocity Uy, vorticity Q, and

" rate Qf strain Eo, must be recovered:
u(x)—>ﬁoo(X)=Uoo+xAQ°o+Eoo-x, | x| = o0 . (3.6)

Owing to the linearity of the boundary conditions and of the Stokes equations, the
forces and torques exerted by the particles on the fluid are related through tensors
to their velocities and angular velocities relative to the undisturbed flow and to the

imposed rate of strain. For instance, the force F, on particle p may be found as:

N N N
Fp=> R (Up—ua(xy)) + 3 R (R — Qo) = Y RIL:Ew . (3.7)
g=1

g=1 g=1

The resistance tensor RY?, gives the force experienced by particle p due to a trans-
lation of ¢, holding all objects other than g fixed. (Its evaluation therefore requires
the solution of an N-body problem). The meaning of all other quantities in (3.7)
should be clear. Since the Stokes equations are memoryless, and since the depen-
dence of F, on the particulate motion and on the ambient flow have been factored
out, all resistance tensors are purely geometric quantities; except for their scaling
with the solvent viscosity u, they depend only on the configuration of the particles
at that instant. Relations such as (3.7) may be written down for the torques as
well. Grouping the forées and torques of all particles into a vector F of length 6 N,
- their translational and angular velocities into U, and the undisturbed fluid velocity

and vorticity at their locator points into U, we may write the resistance problem

as:
f:R}'u'(u_uoo)—'R}-E :EOO . (3.8)
The mobility problem is not only conceptually, but also mathematically its inverse:

U=Up+R;:-F+RIE-Ryp: Eun . (3.9)

. ~1 . . . - .
(The existence of R, is guaranteed since resistance tensors are positive definite by

virtue of the dissipative nature of viscous flow (Happel & Brenner, 1973).) Mazur &



-76-
van Saarloos (1982) tackled the complete’ N-body mobility problem for spheres
using a Fourier space multipole expansion technique. They calculated the velocity
functions as series in inverse powers of the particle spacing up to O(r~"), with
r the centre-to-centre distance. They also proved that n-body effects enter the
mobility problem at O(r® ~3"). In contrast, third-body reflections contribute terms
of O(r=?) to the resistance formulae.

Pair-wise additive schemes construct the resistance tensors, or their inverse, by
considering all pairs of particles successively and calculating their interactions as if
all other bodies were absent. In effect, in the resistance formulation, the R*? (see
(3.7)) are evaluated as two-body characteristics rather than properties depending
on the configuration of all N p‘articles. Mazur & van Saarloos’s findings (1982)
indicate that the pair-wise mobility formulation is more accurate than additivity
of forces (the resistance version), since the first many-body effects are of O(r—*)
as opposed to O(r~%). In essence, any pair of particles senses the presence of
other dbjects less when these are freely suspended than when they are fixed in
space. Moreover, the series expansion in r~! for the mobility functions converges
much more rapidly than the series for the resistance or friction tensors (Felderhof,
1977). Thus pair-wise additivityrof velocities is preferable to additivity of forces.
Lubrication forces however, are only preserved in the resistance approach. (The
tensor REL for two touching particles p and ¢ is singular, and therefore dominates
the behavior. In contrast, its inverse vanishes, and its effect will be swamped by
that of all other particles in any scheme using pair-wise additivity of velocities,
leading to particle overlap (Bossis & Brady, 1984).) These observations lie at the
heart of the method called Stokesian dynamics (Durlofsky et al., 1987). The N-body
mobility tensor is first approximated using the more accurate pair-wise additivity of
{felocities. It is then inverted to yield a “far-field” estimate of the resistance tensor,
to which lubrication stresses are added using the two-body resistance functions.

This procedure is elucidated further below.

The boundary integral equation (3.2) can be applied to a finite cluster of parti-
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cles in an unbounded dbmain by confining the system to a very large imaginary enve-
“lope. Order-of-magnitude arguments demonstrate that both integralé in (3.2), when
performed over the virtual shell surrounding the control volume, yield zero. (One
needs to know that the disturbance velocity u — uo, decays at least as O(|x|™1)).
As mentioned earlier, rigid particles do not contribute to the second term on the

right hand side of (3.2) either. Thus, for finite clusters of solid (inelastic) particles,

the boundary integral equation reduces to:

1 N
() o) =~ [ Ix-y)-oly)-dAy (3.10)

Following the example for spheres given in Durlofsky et al. (1987), the integrated

surface force density in (3.10) is expanded in moments about the particle locator

points x4 to yield

N oo xm Xm
-1 / 1 —t— N
U(X) — Ueo(X) = — —(y —%x4) ©"{ Vy J(x—y)}ly=x, - 0(y) - dA
(%) (x) 877#; 4, 2l (y —x) 0™ {Vy J( )}y (y)-dAy
1 N o xm ;n;
_ 1 1 olv— met1 _
_ 8@;;% /Aqn oy = %y ddy O™ Uy I(x — 2)omx, . (3.11a)
Xm

We have introduced the notations "%~ for the direct product of m tensors x, and ©™
for the m-fold contraction operator (for which we adopt the “nesting” convention;
 see, for example, Chapman & Cowling (1970)). We also decomposed dA = ndA,
with n the unit outward normal to the surface A. Per definition, the m™ multipole

moment of particle ¢ is a tensor of rank m + 1 given by

- Xm
(my 1 ’ ‘
P, == . n-oly —x,]d4y . (3.12a)
q
Hence (3.11) can be written as
N o Xm
1 =~
_ m-+1
u(x) — ugo(x) = F— YN PV, I(x—x,) (3.11b)

g=1 m=0
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The monopole or zeroth moment of the stress corresponds to the net force exerted

by the particle on the fluid:
PO =F, = -/ o-dA . (3.12b)
Aq

The dipole or first moment can be decomposed into a symmetric and an antisym-

metric part. The antisymmetric component is related to the total torque by:
Tq=—/ (y—xq)/\a-dAyzengl). (3.12¢)
Aq

The symmetric part is essentially the stresslet S (which is made traceless using
V - J =0, a consequence of continuity):

Sq:—/A %[n-a{y—xq}+(y—xq)a-n} —%6[n-a~(y—xq)] d4,

q

1 1 T 1 1
=3[P+ TP - 286 P (3.12d)

In any physical situation, the force and torque are the only stress moments which can
be specified externally. Higher multipoles are induced — they result from interactions
with the flow and with other particles. They do, however, often have components
proportional to moments of lower order. For instance, the quadrupole of a sphere
of radius a, can be contracted to recover the force (apart from a multiplicative
constant reflecting the geometry). Namely, P(qz) 16 = %—agpgo). The irreducible
sphericali quadrupole can then be constructed as Pg2) - éaqué = 122). For spheres
then Pff) = I(qz) + %aglgo)& from which we see that the summand in (3.11b) with
m = 2 generates a term proportional to the force Fy. In order to group all the
contributions from the force, torque, etc., we rewrite (3.11b) using the irreducible
multipoles I:
1 L& .(m)

o Yo T oot £ I(x —x,)} - (3.13)

=1 m=0

u(x) = Uoo(x) =

1 Unfortunately, it is not clear how to build a basis set of irreducible moments

for particles of arbitrary shape. Ellipsoidal particles are treated in §3.3.
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where ﬁgm) is a linear operator, specific for the geometry of particle ¢, which raises

“the rank of its tensorial argument by m. For spheres for example,

A(0) afr 2

"(1) ag 2 . ]
= — 3.13
Eq (1+1OV +...)V ( )
~(2) A o 12
= —=V L)V = Z2V48)

where we have transferred the tracelessness of 12,2) to Z;z), which is otherwise defined
by (3.13) only to within the addition of an arbitrary isotropic operator. Equation
(3.13) indicates the meaning of é;m){ J(x—x4)}: it is the singularity representation
of the velocity disturbance due to an irreducible multipole of order m acting on

particle ¢. In practice, the expansion (3.13) is truncated after a suitable number of

moments M.

The algorithm of Stokesian dynamics proposed by Durlofsky et al. (1987) then
calls for the application of Faxén formulae to the flow field (3.13) in order to de-
termine the particle motions. Generalized Faxén laws relate the stress moments on

particles to the ambient flow field u,+u’ in which they are immersed. Symbolically,

>

Fp= Ay {Up+ @, A (X = X,) = teo(X) — W(X)} e, -

T, = ALY (U + @ A (x = X)) = oo (X) = W) ooy, (3.14)
S, = A0 {U, + 9, A (x = %) — o (%) — (%)} sy
I = &7 (U, + 0, A (X = Xp) = Uou(x) = 0/(3) o, -

and so on. In the context of Stokesian dynamics, u’ is the disturbance velocit
: v Yy

caused by all particles other than p. For spheres, Faxén relations are well known
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and read:}
AY —rapu(1+ %vz)a ,
—.JA\Sa) -47ra§pv €, (3.14"
A% Z%QM;MQ + ”v2) (V6+TV6)
AY =6ra3u[BCY)1 08 (14 Pv2)[vv 3v26]6 .

([3(3’3)]"1 is defined in Mazur & van Saarloos (1982); cf. their equation (F.9).)

The concise and insightful theorem by Kim (1985 a) helps to clarify the connection
between the operators' Zz(,m) and A;,m). Brenner (1964 b) and Brenner and Haber
(1983) also showed in principle how to calculate ]\;m) with m = 0 or 1 for arbitrary
particle shapes. Their approach is straightforward to generalize to higher values
of m (Rallison, 1978). If u' = 0 in (3.14), one must recover the resistance functions
for an isolated particle in an unbounded linear flow, which can be written as tensors

(Brenner, 1963, 1964 a). In general therefore, (3.13)

2 (0)

Fp =Kf,  (Up — ue(%p)) + Kb+ (2 — Qo) — Kfip : Boo — Ap (%) |x=x,

T, =K2,, - (U,, uoo(xp)) + K2, (9, — Qo) — K2, :Eq — ' (X)x=x,
<1s)

Sp =K2, - (Up — uco(%p)) + K2 - (@ — Qoc) = KZp i Boo — A, - 0/(X)lxmx,

etc. The tensors K? are similar to R’ in (3.7), but K? is a property of particle p
alone; the calculation of RP? on the other hand, demands that the zero-velocity
(no-slip) boundary condition be satisfied at the surface of all other objects in the

flow domain. Energy dissipation arguments (Happel & Brenner, 1973) guarantee

i Alternatively, and more consistently, the second and third relations in (3.14)
can be combined as I(l) A (1) AUp + Qp A (x— Xp) — Uoo(x) — U/ (X) } |x=x, With
~ a2
A; - = gmadu(l + "VZ)[4V5 +TV8] = 67ra§’,p[B(2’2)]_1 : (1 + 2V?)Vé for spheres.

B®?) 45 given in Mazur & van Saarloos, cf. their equation (4.16).
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that the set of three relations in (3.15) can be inverted:

. ) : : )
' .UP_uOO(xP) zng'FP'i'K:?JT'Tp‘*'Kgs:SP £

~(0 x
— £ 0 (X)=x,
o ; ~(1a)
. ~(1s)
_EOO =K§F N Fp + KI;T * Tp + KI;S : Sp - ep M u,(x)‘xzxp .

These expressibns are then inserted into the Faxén law for the quadrupole,

~(2)
I.gf) =Ko - (Up - uoo(xp)) + Koo (QP - QOO) ~Kor 1 B - AP ' u,(x)"‘:"r’

= (K%, Kl + K2, KDy + KB, i K2,) Fyt o — 25 0/(X) e, o(3.16b)
for the octupole, and all higher moments up to I;,M" ). When the result (3.13) for
u’ (with the restriction ¢ # p, and truncated after m = M,) is inserted into the
set (3.16a-b), one obtains an approximation to the N-body grand mobility tensor.
Physically, the disturbance field due to each particle ¢ is described by means of
a series of irreducible singularities Igm),m = 0,1, ...,Mé; the motion of particle p
is then found as the superposition of its responses to each disturbance separately,
whence the phrase “pair-wise additivity of velocities.” This formulation is exact if

Vq, My — oo. In matrix notation, we construct M, with

U-Us F My Mys Myg F
—FE =M ® S)|=|Mzgp M Mz | @] S . (3-17)
0 H Myr Mys Myy H

The operator ® signifies the appropriate contraction. The vectors U and F were
defined previously (see (3.8)). The stresslets on all N particles are stringed in S,
and E,, contains the rate of strain at the locator points. H stands for all higher
multipoles, i.é., for Igm) with m > 1 and ¢ = 1,2,..., N. The tensor M is, strictly
speaking, of infinite dimension.

Since the last elements on the left-hand side are zero for undeformable particles in

a linear impressed flow, this system can be recast into

U - llc; A o F _ ;EZLLr ;&les F i
(“Cz)-#e(5)- (G #o)e(5). e
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~ where, for instance, ﬂus =Mys —Myz ® M;}, ® Mys. Inverting the relation
(3.18) to find F yields (3.8), which is to say that Ry, is the 6 N x 6 N principal
minor of./f,(;(_1 (or of M ™! for that matter), i.e., R;& = ;\vdu; - ./\7“5 : ./\7;51 : ﬂEF.
In practice, this relation is only approximate since the multipole moment expansion
(3.13) is truncated. However, as shown by Durlofsky et al. (1987) and by Mazur
(1982), the maﬁrix inversion process sums all the reflected-interactions between all
moments retained during the construction of the mobility tensor by the pair-wise
additive scheme explained above. Hence, the inverse R of M (which is the finite-
dimensional approximation to M) contains many-body effects, and is therefore a
better estimate of R than what would have been obtained by pairwise additivity of
forces. In particular, the mobility invert reproduces the screening characteristic of
porous media (Durlofsky & Brady, 1987).

As explained earlier, however, M ™! still lacks the strong resistance interactions
occurring between very close particles. Following the methodology of Stokesian dy-
namics (Durlofsky et al., 1987), the stress moments due to lubrication are added
in a pair-wise additive manner to the mobility invert. [All the resistance functions
which diverge as the separation between the surfaces vanishes are known asymptot-
ically to O(€?), with € the width of the gap bwetweeri the particles (Claeys & Brady,
1989; Ch. II).] Some multipole reflections between nearly touching objects may be
included in both M ™! and the lubrication tensor, and must therefore be subtracted

in a corrective step. In summary,
R~R= IV-[--1 + Rlub - Rcorr . (319)

This approximation R to the true N-body resistance tensor R preserves lubrication
interactions and captures the essence of many-body effects.

Dynamic simulations require one to solve

(?) =f{®(u:g;o> (3.20)
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for the velocities ¥ and integrate the trajectories over a small time-step to find the
“evolution of the particle configuration. The fesistance tensor is then constructed

anew with the updated particle locations. The dynamics associated with Brownian
“motion are well understood (Ermak & McCammon, 1978) and can be incorporated

rigorously in the framework of the technique. (This is explained for spherical par-

ticles in Brady & Bossis (1988). The thermal motions of prolate spheroids can be

treated in a similar fashion.)

In most applications of Stokesian dynamics to dispersions of hard spheres
(Brady & Bossis, 1988; Phillips et al., 1988 a-b; Bossis & Brady, 1989), the multipole
moment expansion (3.13) has been truncated at M, = 1. A mean-field estimate of
the quadrupolar effect has sometimes been included also. Those simulations pro-
duce results in excellent agreement with experimental data. In the next sections,

we present the first extension of the technique to non-spherical particles, namely

prolate spheroids.

3.3 Far-field estimate of the resistance tensor

The far-field estimate of the resistance tensor is the many-body approximation to R
obtained by inverting the grand mobility tensor M. The previous section outlines
how to construct M by combining the Faxén relations for the particles with the
irreducible multipole expansion (3.13) of the fluid velocity disturbance due to their
presence in the flow. Although our work primarily concerns prolate spheroids, some
of the results reported in this section are presented for arbitrary ellipsoids. It is not

difficult to take the limit for ovary ellipsoids of revolution if so desired.

For a generic ellipsoid p centered at x, and with surface A, such that
x€Ad, A;l (x-xp)(x—x%xp)=1, . (3.21)

with A, a positive-definite symmetric tensor of rank two, we show in Appendix D

that the disturbance velocity field can be decomposed into contributions from irre-
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ducible multipoles Ig,m) as follows:

| Pa
1 = 1 d sth
_ _ (m) mm+1 "i(— ™ Vi, J
()~ () = g 3 LV (2mt 1) (535" 5, 2] T Jx—x,)

, (3.22)
The velocity field ug is the undisturbed flow as it would be in the absence of the
particle. The scalar operator D, = , /Dg, with '

D=A,:VV= Zaee, vV = za

=1

e 2 , (3.23)
where we have defined an orthogonal coordinate system (z1, z2, 23 ) using the eigen-
vectors e; of A,. These lie along the principal axes of the ellipsoid, and we shall
assume that they héve been labeled such that a; > az > as. As usual, (sinhD,)/D,
must be interpreted as its infinite series representation (with D} = D2(D°), etc.)
and (2m + )1 = (2m + 1)!/(2™m!). The irreducible stress moments Ip are de-
fined for ellipsoids so that contractions of any two of its last m indices with the
dyadic A;! yield zero (¢f. Appendix D).

Faxén laws for the stress moments Pg,m) were derived by Kim & Arunachalam
(1987). At the two lowest orders, their results can be cast in the form:

F - P(O) _ I(O) Kp Up _ KPI;U . l'(SlI.]Z-};-Dp )u@(x)} ' , (324&)
p

L

1 d sinhD, ,
D 1) _7r..Q 7P - V ‘ )
P, I, P :e-Q, -7 [3(Dp D, D, ) u@(x)} . xp(3 24b)

The polyadics K%, and Z? can be expressed in terms of elliptic integrals depending
only on the Body’s dimensions (Brenner, 1966; Rallison, 1978; Brenner & Haber,
1983). It is now easy, at least conceptually, to build the grand mobility tensor for a
Systeni of arbitrary ellipsoids by combining the irreducible expansion for the velocity
disturbance (3.22) with the resistance functions (3.24). [Since only the Faxén laws
for the force, torque énd stresslet are known for arbitrary ellipsoids, the mobility

tensor can readily be constructed if one truncates the multipole expansion after the
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first moment. Kim & Arunachalam (1987) elucidate the procedure for calculating
~ Faxén relations for higher stress moments if additional terms need to be retained.]
The MZZ tensor for example, which links the translational velocity of particle p to
the force exerted on the fluid by ellipsoid ¢, can be written as (for p # ¢):

1 /sinhD,  sinhD

M = (T ()

q)J(xp -xg) . (3.25)

An alternative, non-local description‘ of the partlcle s interactions with the flow-field
exists. Kim (1985a) showed that the Faxén relations for a prolate spheroid can be
expressed as integrals of the velocity field ug and of its gradients over a line segment

along the spheroidal symmetry axis, connecting the foci at x,%c,d,. His results

(for the force, torque and stresslet only) read:}
F =16rpuc{aidd + az(§ —dd)} - U (3.26a)
1-—
— 8mp{ardd + ay(6 — dd)} - {1 +(? 52)( : )vz} ug(€) de

2
T = §3—7r,uc3{7dd ++'(6—dd)} - Q
—drp{ydd ++'(6 —dd)}- [ (c® =€)V Aug(€)de (3.26b)
c 2
— 8mpard A (c2—§2){1+(62 )(1 )V2}d ep(€)d¢
k s 1 '
Sii = zsm{7 (did; - 5&,—) (ded: - gak,)
+ %(diajkdl + d;bjdy + 6udjdy + bixd;d; — 4d;d;didy)
+ %(5%51‘! + bitdjk — 6ijbki + didjép + bijdyd, (3.26¢)
= dibudy — 6ixdjdy — dijrdi — bud;dy + didjdkdl)}'
¢ 1—e
(@ - {1+ (- )L ey (0], ¢

— 2mpag (digjrd; + djeirdr) (02 —){V Auy(f) - 2Q}, d¢ .

t Kim & Arunachalam (1987) later generalized these formulae to any multipole

moment P,(,m) for arbitrary ellipsoids.
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(All variables, except u, are proper to particle p. We suppressed the subscript p
on F,T,S,U,d,ﬂ,a,'y,c and e for the sake of clarity. The implfcit summation
convention for repeated indices is adopted in (3.26¢).) The unit vector d (for di-
rector) lies along the spheroidal axis; U, and £, are the translational and angular
velocities of the particle at its locator point x,. The notation ey is shorthand for
%(Vug + TVuQ), and £ stands for x, + £d,. All the remaining parameters depend
only on the geometry of the body: ¢ is the distance between the geometric centre
and the foci of the generating ellipse; e = c/a is called the eccentricity, with a the
length of the major semi-axis; a’and v are functions of e, defined in Kim (1985 a)
(see also Chwang & Wu (1974, 1975), and App. J). In essence, a5 dominates dur-
ing axisymmetric extension about the spheroidal axis, a* characterizes the stress
response to simple shear flows for which the velocity gradient lies along d,, and a4

gives the particle’s stress contribution when the plane of shear is perpendicular to

the director.

The two formulations (3.24) and (3.26) are of course compatible, since one can show

for any tensor X(x) that (Kim & Arunachalam, 1987)
1 8 \msinhD
(535) B X0hes, = (3:272)

1 1 // q2m—1(x/){1 + ﬁivz}X(xl) dAxl .
2rcpey 2m — D! J /g 4m +2

The domain of integration E is the elliptical disk confocal to the particle surface Ap:

KE€B s i) =1 =X [(X_Xf;)'ez] >0 (3.27b)
‘e E

with ¢} = af — a and ¢/2 = a% —a} . For a prolate spheroid, with a» = a3 and
e; = d, the fundamental ellipse degenerates into a line with length 2cg = 2¢, and

(3.27a) takes the form:
1 0 \msinhD
(535) 5 X()be, (3:27¢)

B 1 ¢ 1 ) 62 m a§ .52 )
T 2¢ ), mel(l'_ c_z) {1+4m+4<1_c_2>v X(xp +£d,) dE .
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Note that a/c? = (1 — €?)/e? and compare (3.27c) with (3.26).

The identity (3.27a) can be used in conjunction with the irreducible expansion (3.22)

to get the disturbance velocity as:

u(x) — ug(x) = | (3.28)
‘ . ><m
1 = 2m+1 24* ,
(m) Gm+1 2m-1 B9 o2l 3 (x - x') dA, .
87 i ngolp Irepcy // (x T Imt2 } (x —x)

This is consistent with the singularity representation of Chwang & Wu (1974,
1975), who constructed exact solutions of the Stokes equations for isolated pro-
late spheroids suspended in linear flows using uniform, parabolic and biquadratic

distribution of singularities along the particle’s major axis.

We now have all the elements necessary to build the grand mobility tensor, but

the Faxén laws (3.26) need to be inverted. It is trivial to obtain:

1
167 puc

U — uno(%,) = {a7'dd +a;'(6 —dd)}-F

. {1+(2 52)(1 e)vz} w'(€)de,  (3.20a)

—C

where we have extracted the contribution from the impressed flow us (see (3.6)),
and introduced u’ = uy — u. (In Stokesian dynamics, u' typically represents the
disturbance velocity due to all particles other than p.) The relations (3.26b-c) for
Q- Qoo‘ and —E, however, are coupled. This reflects the fact that a spheroid
tumbles in a extensional flow (unless its axis is aligned with a principal direction
of the irate of strain). [From a mathematical standpoint, this coupling results from
the somewhat artificial distinction between the antisymmetric and symmetric parts

of the velocity gradiént.] The expressions (3.26b-c) must therefore be inverted
~ together. After a bit of algebra (Claeys, 1988), one arrives at the following mobility



-88-

functions for prolate spheroids:

w— Qo = 52_72;25{7—1(1(1_{; [7,_1 _ (228/(2—62) )](S-dd)}-T

a* 4+ ay
3 1
a*+a1)

(dAS-d—-d-SAd) (3.29b)

(e —ewauea,

-3 [ 9 1 1
~(Beo);; = 398 {E(didj — 38i) (drdi - 36m1)

1
+ - (dibjrd; + dibjidr + burdjdy + bixdjd) — 4did;jdydr)
(a* + zeey al)

1
+ %‘(‘551;51'1 + bk — 6ij6r1 + did;brr + 655drd; (3.29¢)
4
— dibjidy — bixdjdi — dibjidi — 6adjdyk + didjdkdl)}skl

c _ p2

=/ (c? — 52){1 4 (c? — 52)%626—)V2}621(6) d¢
_ 3 1

327 uct (%‘ia* +a1)

(dd/\T—T/\dd)ij .

As before, e = 1(Vu' + TVu'). It may be useful to point out that e?/(2 — €?) =
(rZ—1)/(r2+1), with r, the aspect ratio of the particle (r, > 1 for prolate bodies).

From the linearity of the creeping flow equations, u’ may be constructed by
superposing the contributions (3.28) of each particle separately. Truncating the
expansion after the first moment (experience with Stokesian dynamics for spheres
indicates .that retaining the effects of the force, torque and stresslet is sufficient for

most purposes), we rewrite (3.28) explicitly for prolate spheroids:

) = wm /{1+<2—§>“4€§ Jor)a(x - g)ae

=

- 3 477#03 / (&% — )V A J(x — £) dé  (3.30)

_327ruc3 Sq ](C 52){1+(2 62)(1 e)vz} (vx+Tvx)J(X—§)d§;
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The grand mobility tensor for a system of N prolate spheroids can be constructed at
“ the level of forces, torqﬁes and stresslets by summing the disturbances (3.30) over all
particles ¢ # p, inserting the result into the mobility functions (3.29), and repeating
this for all spheroids p. [The inclusion of higher moments is straighforward provided
their Faxén laws are first determined.] The contribution of a force F; exerted by

particle “2” to the translational velocity U, of spheroid “1”, for example, is given

by:

U, __E__/Cl [{1+(c§—gf)%—)v2} (3.31)

=327rpc162 —o
(1-¢})

1+ (@- é%)WW}J(sl — &) | dézdér - Fy .

—ca

In contrast to (3.25), this non-local description of the interactions between spheroids
only involves the Oseen tensor and its second derivative (recall that V*J = 0).
Equation (3.31) shows that the rods behave hydrodynamically as if they were line
distributions of point forces and potential doublets —no higher multipoles are needed
for the M2%-coupling. This is a definite advantage over the symbolic representa-
tion (3.25) since multipoles of higher order generate more complex flow disturbances
and have stronger singularities at their origin. Indeed, we have found the formu-
lation (3.25) to be totally unsatisfactory for numerical purposes in cases where
the centre-to-centre separation of the particles is comparable to the sum of their
major semi-axes (i.e., when the spheres circumscribing the spheroids penetrate).
In (3.25), mobility elements are calculated as infinite alternating series with very
poor convergence properties at small distances. (The amplitude of the terms grows
exponeﬁtially before decreasing to zero, implying that no systematic improvement
in the accuracy of M¥% can be achieved by retaining more terms in the series rep-
‘resent‘ation of sinhD,/D,, unless a sufficient number has been calculated already.
The limited precision of modern-day computers very often resulted in the loss of all
significant digits before convergence could be expected in theory.) The non-local

description (3.31) is far more robust, although the kernel can be sharply peaked
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or rapidly varying for nearly touching particles. Adaptive integration techniques
(Piessens et al., 1983) ‘handle these numericai difficulties very nicely. The mobility
tensor M obtained in this way can be inverted using a Cholesky decomposition
~algorithm (see for example Perry & Green, 1984) since M is positive definite, a
consequence of viscous dissipation, and also symmetric from Lorentz’ reciprocal
theorem (Happel & Brenner, 1973).

The computation of each element of the mobility tensor (except the self-terms
MP??) requires a double integration over the particle axes. Using cylindrical coor-
dinates centered at the origin of spheroid “2” with the azimuthal axis along da,
the first integration in (3.31) can be carried out analytically. The result is most

conveniently expressed in terms of the coefficients By, n(x), which Chwang & Wu

(1975) introduced as: ’
c2 n
Bunn(X) = / & (3.32)

—c2 |X - £|m
For instance, defining a right-handed orthonormal frame of reference (ds,e,,ep)
such that x — x; = z4d; + re,, we find

Cc2
/ J(x —&,)dé; = (2B1,0 — r*Bs0)d2ds + (24B3,0 — B3, )r(dze, + eqdz)

—ca

+ (B1,0 + m?Bsyp)ere, + Bigegeq . (3.33)

Note that x = £; in (3.31). Therefore, e, and ey are functions of £;, whose variation
must be taken into account during the subsequent integration along the axis of
spheroid “1.”

Closed form expressions for Bm,n(x)’ in terms of elementﬁry functions are
known for arbitrary integer values of m and n, and recurrence formulae for n > 1
‘(Chwang & Wu, 1975; Claeys, 1988) make their use especially suited for com-
Aputerrprogramming. Taking advantage of identities relating derivatives of By, n(x)
(Claeys, 1988), and after some tedious but straightforward algebra, all the niobility

coefficients for particles “1” and “2” can be written as integrals along the symmetry

axis of either ellipsoid in the form p=* [ It ({Bm,n(€1)}) dé1, where far ({Bm.n})

—C1



-91-
is a linear function of the set of By, ,(x) involving c;,cs,e; and e; as parameters.

This integral is then evaluated numerically (Claeys, 1988; Claeys, 1991)._

3.4 Addition of lubrication effects

As explained in §3.2, lubrication stresses arising from the relative motion of nearly
touching particles in the fluid are added in a pairwise manner to the mobility invert.
Unlike the far-field hydrodynamic interactions, lubrication is essentially a two-body
problem dominated by the flow in the small and narrow gap region separating the
close surfaces. Hence pair-wise additive schemes should be successful. The con-
struction of the resistance tensor for two objects near contact involves two steps.
At first, the points of closest approach must be determined. This then specifies
the local geometry in the thin gap, from which the friction functions can be calcu-
lated. In Chapter II, we derived formulae for all stress moments which diverge as
the surface separation € vanishes; i.e., the resistance tensor is known to O(e°) for
arbitrary objects (with mathematically smooth boundaries which would touch at a
single point when brought into contact along their common normal without altering
their orientation —all convex particles satisfy these conditions). The O(1) = O(€°)
corrections to these expressions require the solution of the “outer” flow, which is
quite complex and depends on the exact relative orientation of the particles (char-
acterized by 4 independent parameters for axisymmetric bodies). Although they
can be found using a collocation or finite elements method for example, even the
task of tabulating them is foreboding.

Since the points of minimum separatioﬁ z, and z, on particles p and ¢ must be
determinéd over and over during dynamic simulations, it is imperative to develop an
efficient and accurate algorithm devoted to this goal. Precision is important since
even rather good approximations to the points of closest approach can give poor
estimates of the gap width €, with which the resistance functions scale (Fig. 3.1a).
In addition, in the aciéular limit, the principal radii of curvature, which also largely

determine the magnitude of the stress response, change very rapidly near the tip
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of the rod (Fig. 3.1b). Thus the algorithnﬁ must converge very quickly to the exact
~ location of z, and z,. The method we have devised is based on the observation
that the normal to the surface A, at z, coincides with the normal to 4, at z, (but
is antiparallel to it). We also exploit the following property of ellipses:{ the sum of
the distances from any point x of the ellipse to the foci is constant. The surface A,

of a prolate spheroid centered at the origin is thus correctly represented by
X €A, <= fp(x)=|x—cp|+|x+cp| =20, . (3.34)

Its foci are at +c,, and a, is the length of the major semi-axis. The normal to the

surface at x can thus be written as

X—cC X+cC
pr_ P P

= . 3.35
x—c,] T K+ (3:35)

That is, the normal bisects the lines joining x to +c,. As a consequence, all the nor-
mals to A, intersect the spheroidal axis betwen the foci. The normal common to A,
and A, must therefore cross the symmetry axes of both particles, and z, and z4 are

the points where it penetrates their surfaces. The outline of our algorithm is thus

as follows (Fig. 3.2):

1. Find the intersection xz(ok) of the normal to A, at zl(,k) with the spheroidal axis.

Repeat for particle g.

2. Find the intersections zg,k"'l) and z(qk+1) of the line joining xg,k) to X(qk) with the

surfaces A, and A,.

3. Convergence check. (For instance, are the normals at zj(,k_H) and at zgk'H)

nearly antiparallel 7). Iterate 1.-3. if necessary.

The first guesses zg,o) and zgo) must belong to the surfaces, but no other restrictions

are placed on their accuracy, and one always finds limg— o z](f) = z,. This method

has several advantages over alternatives. In the spherical limit, it corresponds to

i This property is often used by landscapers, who draw ellipses in the soil by

pulling taut a rope attached to two pins hammered in the ground.
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joining the centres of the particles, the most obviousyway to find z, and z4 in
‘that case. In general, we have reduced the dimensionality of the search domain
from 4 (two curved boundaries) to 2 (two line segments). This obviously speeds
up the convergence. Also, all schemes scanning the surfaces of the particles slow
down dramatically as they near the points of closest approach, since the step size

;k) - z.(;k)! in some fashion. (In our method, on the other

usually scales with |z
hand, the step size is set by ng,k) - xgk)| >> {zg,k) — zgk)l.) Finally, this algorithm
is guaranteed to have a real solution at each iteration. By contrast, many other
methods which “shoot” from one surface to the other, may occasionally “miss”,
especially if the first estimates were poor, or if one of the points of closest approach
is very near the tip of a slender ellipsoid. We note that this method also detects
the points of maximum penetration in the case of overlapping spheroids (as long
as the line segment [x, — ¢,,X, + ¢p] is exterior to A,), and that its concept can
be extended to arbitrary ellipsoids (in which case xgk) belongs to the elliptic disk
confocal with A,).

The local geometry near the points of closest approach may readily be found
by expanding f, (see (3.34)) in a Taylor series about z,. We then apply the for-
mulae of Chapter II to build the resistance tensor to O(1) for each pair of particles
near contact (i.e., for each set of spheroids izor which the surface-to-surface separa-
tion, normalized by the harmonic mean of the local radii of curvature, is smaller
than a prescribed threshold). This information is then added to M ™! to obtain R
(see (3.19)). At this level of accuracy, the correction term R, is irrelevant, since

it would only contribute to the unknown O(e?) part of the lubrication stresses.

3.5 Selected examples of simulations for a finite number of
- prolate spheroids interacting hydrodynamically in a viscous fluid
3.5.1 Numerical aspects

Using the method outlined in the preceding sections, we carried out a variety of sim-

ulations for systems involving a finite number of prolate spheroids in an unbounded
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Newtonian incompressible fluid. Beca,usve of numerical rather than conceptual limi-
tations, we restricted the range of aspect ratioé from 1 4+ 2 x 107 to about 50. The
lower bound is so close to the spherical case that it can hardly be called a limitation.
It springs from difficulties in computing the coefficients o and + in the expressions
for the self-terms MP? (see (3.26) and App. J), and could easily be removed. The
most efficient way of dealing with spheres, however, is to take their shape explic-
itly into account, and replace the line distribution of singularities used here (even
though the line segment becomes infinitesimally short) by the appropriate combi-
nation of point forces, doublets and other multipoles at the sphere’s centre (as done
in Stokesian dynamics up till now (Durlofsky et al., 1987)). This is trivial to do.
The upper bound r, ~ 50 comes from more subtle numerical aspects. The major
difficulty in the acicular limit is the smallness of the radii of curvature near the tip
of the slender body. Since lubrication interactions only set in at surface separations
small compared to that dimension, extremely close encounters between particles can
occur before they experience any repulsion. The time-step in dynamic simulations
1s mostly determined by the requirement that there would be (virtually) no particle
overlap; when the superficial separations are so small, demands on the computer
time become prohibitively large. This problem is by nature inexistent for static
simulations (in which the evolution of the configuration is not tracked), so that one
can then study fibres with much larger aspect ratios. [Few natural or man-made
materials, however, consist of straight rigid fibres of very high aspect ratio; such
slender bodies either bend or break (Salinas & Pittman, 1981).]

Particle paths are integrated using a fourth order Adams-Bashford formula
(Abrambvvitz & Stegun, 1970). The time step is chosen suitably small to make
errors due to the time integration insignificant. The mobility tensor was usually
formed and inverted for each new configuration, since far-field interactions domi-
nate the dynamics of most applications involving only a few spheroids. For more
concentrated systems, considerable savings in computer time may be achieved by

updating the mobility tensor less frequently than the lubrication interactions. (The
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gross features of the N-body configuration, which determine M, vary slowly on
~ the time scale of the trajectory calculatioh, which is set by the réquilfement that
typical displacements do not exceed the smallest gap width between particle sur-
- faces.) Optimal use was made of Lorentz’ reciprocal theorem for the construction

of M. To minimize the number of required operations even further, we exploited

the interesting identities (see Appendix E):

M?PL =le.(6: ML), (3-362)
[Mf,’z%,]” = —[Mg‘-’s],-k,j&, + %[M’E,qs]mklngklsmnsij ’ (336b)
M2L =e - MEL + (e - MEL)T . (3.36¢)

These hold for ellipsoids regardless of whether p = ¢. From these relations, it can be
seen that only the couplings My, My s and Mg need to be evaluated for each pair
of particles to build the grand mobility tensor M. Taking maximal advantage of
the tracelessness of E and S, and of the symmetry of My (see (3.31)) and of Mgs,
this reduces the number of unknown independent mobility functions to 36 per pair

of particles. (For the selfterms, only 21 are needed since MP% = 0 for spheroids.)

The identities (3.36) also imply the following, previously apparently undiscovered
relations between the coefficients a and v defined by Chwang & Wu (1974, 1975)
(see also Kim, 1985 a):-

-1 1 -1 -1

YT =505 —ay (3.37a)
2
- - € - —1
A1 -yl =5 (a7’ = 3at), (3.37b)
2
-1 _ 3471 = . .
ay - sag G e 1o (3.37¢)

The symmetry elements in some of the illustrative examples given below (mirror
symmetry about a plane, planar configuration...) can also be used to reduce the
number of unknowns and speed up the computations. This was done in a few cases,
but most simulations IWere performed using a general version of the code capable of

handling fully three-dimensional particle conformations and polydisperse samples.
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~ The symmetry inherent to the method (mostly through Lorentz’ reciprocal theorem)
makes it very robust, and we never noticed any. violations of the symrﬁetxty imposed
by the initial conditions in any of our simulations.

Because of the strong coupling between the torque and the rate of strain (M%%,
is non-zero even for p= q), it does not make sense for spheroids to consider an
“F-T”-methodka,s proposed by Durlofsky et al. (1987). They found that useful
results could be obtained for spheres (in the absence of extensional components in
the impressed flow), by retaining only the couplings between the force and torque
on the particles, and their translational and rotational velocities. They recognized,
however, that they owed this success to the fact that all stresslets are induced in
such circumstances. This is no longer true for ellipsoidal particles, because a single
spheroid in a vorticity flow experiences strain. It is therefore necessary to keep the
symmetric as well as the antisymmetric part of the first moment of the stress density
on the particle surface, i.e., one must use the full “F-T-S”-method of Durlofsky et
al. (1987).

To test the accuracy of our method, we checked our results against those ob-
tained by other researchers using various numerical techniques (vide infra). We also
verified for a large number of multiparticle configurations that the grand resistance
tensor that we calculate in the limit of zero eccentricity matches the one found
using the version of Stokesian dynamics dedicated to spheres. All calculations were
performed on a Sun4/360 workstation and typically required at most a few seconds
of CPU time. The duration of dynamic simulations such as those presented in sec-
tions 3.5.4 and 3.5.5 depends on the number of particles and their aspect ratio. Few
of the examples given here however, were generated in more than 10 minutes. The

program is written in FORTRAN (Claeys, 1991).

3.5.2 Axisymmetric flow past chains of spheroids

Gluckman et al. (1971) introduced the multipole collocation method to calculate

the drag on equidistant identical spheroids, all lined up along one line, and moving
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with uniform velocity. We list in table 3.1 the force neces’sary for this motion in the
‘case of ellipsoids of aspect ratio 2 and 5 for various separations, and\ note excellent
agreement with all published results. The accuracy of our results matches that
achieved by Gluckman et al. using 3 or more “multilobular disturbances” emanating
from the centre of each particle, and is always within less than 1% of their converged
| results. Our data for chains of up to 15 particles long also are indistinguishable from
their results (data not shown), except in the case of 7 touching spheroids with r, = 5,
where we calculated drags approximately 5% smaller than those deduced from their
Figure 11.

Table 3.1: Drag on two prolate spheroids moving with equal velocity U along

their line of centres.

Tp - X —x%41/(20) [F|/(8rau|Ul)  [F|/|Fre

2 1.0001 0.31483 .9945
2 2 0.36788 9998
2 3 0.39216 1.000
2 16 0.43908 1.000
5 1.0001 - 0.20423 9938
54 ' 2 0.23512 1.000
) 3 0.24546 1.000

The first column (r,) gives the aspect ratio of the particles; F ¢ is the final result given with five
significant digits in Gluckman et al. (1971). The smallest separation considered is 1.0001 instead

of 1 because the resistance tensor is singular when the surfaces touch.

The efficiency of the multipole collocation technique was later tested by Liao &
Krueger (1980) for ellipsoids of different size and aspect ratio. They calculated the
force on a small sphere touching the nose of a large prolate spheroid of aspect ratio 10
as a function of the relative volume of the two bodies, which are assumed to move

at the same speed in the direction of the spheroid’s axis. As shown in Fig. 3.3,



- 98-

~ we find that the sphere experiences a minimal force when it is slightly ahead of
the ellipsoid, rather than ‘against it. This pecﬁlia,r behavior 1s remihisqent of the
results of Cooley & O’Neill (1969), who calculated the resistance of two unequal
spheres moving at the same velocity along their line of centres as a function of
their separation (using the analytical solution for this problem due to Stimson &
Jeffery (1926)). They found that, for sufficiently dissimilar radii, the drag on the
large sphere first decreases with increasing distance between the particles, goes
through a minimum and then monotonically ascends to its asymptotic value at
large separations. It is possible that an analogous phenomenon occurs here. The
harmonic mean radius of curvature at the pole of the spheroid is b%/a, with b
the dimension of the minox.; semi-axis. For a spheroid of unit half-length and aspect
ratio 10, this equals .01, which is considerably smaller than the radius of the spheres
considered in this analysis (see Table 3.2). For reference, the volume of a sphere of
radius Ry = a/100 is only 10™* times that of the ellipsoid. Thus it can be argued
that, in a local sense, the spheroid looks like a smaller object than the sphere,
strengthening the analogy with the work of Cooley & O’Neill (1969). In Table 3.2,
we compare the calculated minimum drag on the sphere to the collocation results
for touching particles (Liao & Krueger, 198770). Our computations systematically
predict a higher force, and the agreement gets worse as the relative size of the two
bodies departs more from unity. Liao & Krueger remarked that the drag calculated
using the multipole collocation technique monotonically approached a plateau value
from below as the stick boundary condition was satisfied at more points on the
large spheroid, but they fixed the number of éollocation points on the small particle
at 4, relying bn earlier studies for touching spheres. In some respects, however,
as pointed out above, the tip of the ellipsoid resembles an object smaller than the
sphere presumed small in the analysis. Thus it may have been necessary to represent
the sphere by more multipoles, and the truncation after the fourth term may have
caused an underestimation of the true drag force. In the same light, it is certain that

~our method would be more accurate if contributions from the quadrupole, octupole
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and higher moments were retained.

Table 3.2: Drag on a small sphere preceding a spheroid of aspect ratio 10 moving

at the same velocity.

Vi/Va' Rgla  |Fi 2| |F2|/|Fs]  rm/a
1 2154 01565  0.1255 1.04 0.2
10 1000 0.1766  .050894 1.10 0.14

100 0464  0.1880  .020192 1.25 0.09
1000 .0215  0.1937  .007779 1.38. 0.06

The spheroid and the sphere move with equal velocity U in the direction of the rod’s axis. The
first two columns determine the relative size of the particles, as a ratio of volumes (V1 /V,, where
the subscript “1” denotes the spheroid), or in terms of the radius of the sphere R; relative to
the major semi-axis a of the spheroid. The forces F; and F2 are scaled by 8maulU. They are
evaluated when the clearance between both bodies is ry,, chosen such that the drag Fa on the

sphere is minimal. Fg is the value reported by Liao & Krueger (1980) for the force on the sphere

when both particles are touching.

3.5.3 Drag on two acicular spheroids

Instead of adopting the distribution of singﬁlarities suggested By the Faxén laws,
Barta & Liron (1988) determined the optimal density of Stokeslets along the sym-
‘metry axis of the spheroids as part of the solution procedure, by equating the
disturbance velocity at the particle’s surface to the imposed rigid body motion.
Since they collapse the surface stress density onto a line, yet neglect singularities
more complex than point forces, they cannot fully capture effects arising from the
finite thickness of the rods. In particular, it is uncertain that a distribution of
Stokeslets confined between the foci of the spheroid can correctly represent the flow
field ih the immediate vicinity of the particles’ surface, as they assume. For two
parallel ellipsoids in an unbounded fluid, the drag was calculated at various separa-

tions for synchronous motions along the axes (U; = Uz || d; || d2), along the line
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of centres, and perpendicular to the plane defined by the directors of the particles.
~ We repeated the analysis and obtained the results of Table 3.3. They agree quite
reasonably with the forces calculated by Barta & Liron (1988). As was to be ex-
pected, the largest deviations occur in situations when hydrodynafnic interactions
are most pronounced, i.e., for motion in the direction of the line of centres, and
at the smallest separations. In those cases, the optimal Stokeslet distribution cal-
culated by Barta and Liron deviated significantly from the uniform density profile
predicted for isolated particles by Chwang & Wu (1974, 1975), but only by about
20% at most. It is worth mentioning that Barta & Liron need to solve for a new sin-
gularity distribution for each prescribed motion, while Stokesian dynamics solves all
mobility problems simultaneously for a given geometry. Our method also captured

the small rotation induced by the motion of the spheroids parallel to the direction

in which they point (data not shown).

Table 3.3: Drag on two spheroids of aspect ratio 100 placed side by side.

dfa  |Fyl |Fn] |Fq|

25  .1168 (1.30) 1300 (1.12) .08009  (1.10)
1 1382 (1.07) 1510 (1.021)  .09413 (1.012)
2 1497 (1.024)  .1597 (1.006)  .09885 (1.003)
4 1593 (1.007)  .1655 (1.002)  .10151 (1.001)
6 1632 (1.003)  .1677 (1.001)  .10240 (1.000)

In all cases the velocities U; = Uy = U. All forces have been nbn-dimensionalized by 87au|U].
The distance d is measured between the centres of the particles. |F| is the drag for motion along
the line of centres, |Fp| for movement perpendicular to the plane in which the spheroidal axes lie,
and |Fg4| is the force for U} dy) ds. The entries in parentheses give the ratio of the drag calculated

by Stokesian dynamics to the data found in Barta & Liron (1988).

3.5.4 Sedimentation of spheroids

The motion of two sphefoids sedimenting side by side is intriguing since “peri-
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odic” orbits appear for certain initial conditions (Kim, 1985b). Hydrodynamic
‘interactions then cause the particlés’ directbrs to rotate past w/2 radians, at which

point the trajectory —projected onto a plane perpendicular to gravity—is reversed
(Fig. 3.4b). At larger separations, the viscous interactions are weaker, and the
bodies simply drift apart (Fig. 3.4a). Similar effects had been observed for highly
symmetric arrangements of spheres (Durlofsky et al., 1987); four spheres placed at
the corners of a square in the vertical plane, for example, fall in a viscous fluid
following a pattern in which the top spheres first move inward and faster than the
ones on the bottom, eventually overtaking these to form a new square which is the
mirror image of the original configuration. This scenario is repeated ad infinitum
in the absence of external perturbations.

One can generate many “repeating” configurations of spheroids by positioning
the particles’ centres at the corners of a regular polygon at right angles with grav-
ity g, with their directors all parallel to g (or all at the same angle with gravity,
such that the spheroidal axes lie on the envelope of a circular cone). The periodic
trajectories described by the ellipsoids in the (R/a) — 6-plane are shown for a few
collections of spheroids of aspect ratio 2 in Fig. 3.5. (R is the centre-to-centre dis-
tance between nearest neighbors and 6 the azimuthal angle.) The time ¢p necessary
for the original configuration to be reproduced decreases at first with the number of
spheroids in the system, as expected because of the more numerous hydrodynamic
interactions (Table 3.4). However, as the arrangement becomes more circular, the
effects of the two nearest neighbors balance each other progressively more (the
induced torques are nearly antiparallel) and the distance between spheroids dia-
metricaliy opposed grows, weakening their interaction. As a result, we observe a
minimum in tp at N = 5 for spheroids released at the corners of regular polygons
of side 2a. If we fix the diameter of the polygon instead, we still observe a minimum
(t'p, Table 3.4), now due to the strong mutual hindrance of the tumbling spheroids
as they are nearly clos;e packed. It 1s coincidental that both minima occur for pen-

tagons. Note that, even fhough the period of similitude tp is shorter for N =5
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than for N = 4, the particles travel farther in one cycle when they are arranged
"in a pentagon. This is due, of course, to the fact that the drag deéreases with N,
causing them to fall faster. ,

Table 3.4: Period of similitude of highly symmetric configurations of sediment-

ing spheroids.

N tp 2(tp) th  2(th)
2 324 761 33.6 787
3 113 332 8.48  26.5
4 951 314 513 201
5 9.24 329 3.88 185
6 9.40 353 595  32.6
8 101 411

10 111 475

This table reports some characteristics of the trajectories of N identical sedimenting spheroids
released parallel to gravity at the corners of regular polygons of side 2a¢ (columns tp and z)
or of diameter 2.02a (columns t}, and z’). The period of similitude tp (or 1) is defined as
the minimum time elapsed between two instants at which the configuration of the spheroids is
the same, except for a uniform translation by z(tp) along the direction of gravity. (A spheroid
pointing “up” is considered equivalent to one pointing “down”. If the sense of the director needs
to be distinguished, the reported values of tp and t}, should be doubled, since the configuration
first reverses before reassembling.) Time is non-dimensionalized by |F|/(87ua?), with F the force
of gravity. The distance z traveled by the centre of mass of the arrangement is scaled by the
particle’s half-length a. |

Two hofizontal spheroids placed directly atop one another, but not perfectly
aligned, spin while sedimenting because, as a pair, they have a propeller-like ge-
ometry. QOur simulations show that both particles rotate in the same sense and
at the same rate as they fall; there is no relative motion between the two bodies.
(This behavior is the only one consistent with the symmetries which the system

must obey upon reversal of the direction of gravity.) The rate of rotation of the
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particles for different centre-to-centre sepérations R is plotted as a function of the
~angle © inscribed between the spheroidal axes in Fig. 3.6. Similar ‘plot's for other
aspect ratios display the same qualitative features, but the magxﬁtude of the speed
of gyration is lower for blunter spheroids, and the maximum in the curves shifts
toward the middle (¢ = n/4). The angle ¥, (R/a) at which the tumbling is most
rapid does not increase monotonically with separation R, but is minimal at about
{R = .3a,¢m — .28 /2} for rods of aspect ratio 10. For all aspect ratios considered,

we found limg—, o ¥m = 7/4. This limit is always approached from below.

The fact that the rotation rate is zero for 1» = 7/2 can be proven from symmetry
arguments. The (small) negative rotation rate for almost touching particles and very
acute inscribed angles can be explained by the trade-off between two competing
effects. Those are best brought to light by considering the equivalent resistance
problem and decomposing the motion of the spheroids: in the first case, the top
spheroid is moved downward, holding the other particle fixed; in the second, the
lower rod is pulled away from the stationary upper rod. We then superpose both
motions to reproduce the original situation. In the first case, a torque must be
exerted on the moving spheroid to oppose its tendency to rotate at right angles to
the lower rod. This can be understood by visualizing the fluid as being squeezed
more tightly in the sharp corner formed by the rods, than in the obtuse angle
complimentary to it. In the second case, the moving lower rod attempts to drag the
upper rod in its wake; thus holding it stationary requires a torque in the opposite
sense. The first effect is only important at very close separations, and for angles
relatively far removed from 7 /2, and explains the negative rotation rate in Fig. 3.6.
In most situations, the second contribution is the largest, and the propeller-like
motion is observed. As one would expect, this phenomenon is absent (or not

noticeable) for spheroids of aspect ratio 2, and confined to a much smaller range

I We are not aware of any experiments confirming the reversal of the sense of

rotation predicted here.
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of 1 when r, = 50.

- 3.5.5 Perturbation of -Jeﬁ'ery‘(jrbits and migration in shear flow
A forée-free isolated spheroid placed at the origin of an unbounded simple shear
flow precesses about the vorticity axis with a period of 2x(r, + 7,1)/E (with E the
magnitude of the velocity gradient), but the particle’s centre does not move (Jeffery,
1922). The rate of rotation is not uniform however, and.the particle spends most

~of the time aligned with the flow. This swinging motion suggests that the stress
response of a dilute suspension of rods in simple shear is oscillatory. Experimental
evidence abounds however (Ivaﬁov et al., 1982), indicating that these fluctuations
are traﬁsient, and that a well-defined, time-independent macroscopic viscosity can
eventually be assigned to the dispersion. Many randomizing factors have been
implicated, including polydispersity and other imperfections in the particle shape,
Brownian motion, and hydrodynamic interactions (including wall effects). It is
therefore instructive to examine the motion of pairs of non-Brownian, identical
spheroids in shear flow to isolate the role of viscous forces.

The geometry considered consists of two ellipsoids of aspect ratio 2 which are
mirror images of each other with respect to the plane of shear (Fig. 3.7). They are
inclined at an angle 7/3 relative to the vorticity axis, and are initially either perpen-
dicular to the velocity gradient (¢;—¢ = 0), dr to the direction of flow (¢|,=¢ = 7/2).
Somewhat surprisingly, the particles migrate due to hydrodynamic interactions,

- even though the undisturbed fluid velocity at their centres is zero. When the par-
ticles start off aligned with the flow (¢;=¢ = 0), they cycle on a closed trajectory,
moving atop one another in a fashion similar to the jaws of a nutcracker. The
composife cehtre of mass follows an 8-shaped loop in the plane of shear in the
clockwise direction (Fig. 3.8); the rods meanwhile, “open” and “close,” making the
most acute angle with the vorticity axis when they reach the top and the bottom
of the figure “8.” This motion can be rationalized more easily perhaps by picturing
dumbbells instead of spheroids. lInitially, the simple shear exerts a torque on the

particles, causing them to spin. It experiences less resistance from the ends of the
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rods which are close together (the hinge of the nutcracker) however, than from the
" poles Which are farther apart. (In the same‘manner, the combined drag on two
nearly touching spheres is less than twice the force felt by an isolated particle.) The
effect of this imbalance is a net displacement of the rods in the same direction as
the “hinge.” If the spheroids are initially at right angles to the fluid velocity, their
interactions result in a finite translation in the flow direction during each period of
rotation. At the inflection point in the orbit of the centre of mass (Fig. 3.8), the
particles are perpendicular to the velocity gradient (¢ = 0) and the inscribed angle
between their axes is minimal. Note that the behavior is very similar to the former
case, @ji=¢ = 0, except that, when ¢ = 0 here, the centroid lies on a streamline with
non-zero velocity. Lubrication interactions are, on average, less important in the
second case, and the motion perpendicular to the plane of shear is consequently
much less pronounced. The period of rotation is 15.66 for rods initially at right
angles to the flow and 15.53 when ¢|;=¢ = 0. (Time is non-dimensionalized by the
magnitude of the velocity gradient.) For comparison, it is 15.71 for an isolated
spheroid of aspect ratio 2. The slight decrease can be understood since the pair of

ellipsoids effectively acts as a body with a lower aspect ratio.

3.6 Cbncluding remarks

The examples of the preceding section demonstrate the effectiveness and accuracy
of the moment expansion technique that we have developed for Stokes flow prob-
lems involving interacting spheroids. Because it is analogous in spirit to the es-
tablished simulation method for spheres (Brady & Bossis, 1988), we also use the
name “Stokeéian dynamics” to describe this new technique. In fact, we have shown
in §3.2 that the fundamental concepts of Stokesian dynamics can be stated in very
general terms, and thereby hinted that its methodology can be valuable for a much
wider class of body geometries than ellipsoids only. We discussed its application to
prolate spheroids in particular in §3.3 and §3.4, and have shown that our approach

compares quite favorably with other numerical methods.
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Although many relevant problems can be addressed by considering the inter-
- actions between only a few particles, the usefulness of the technique introduced in
this chépter would be increased manifold if it were applicable to systems containing
a very large (infinite) number of particles. Most importantly, this would make it a
valuable tool in suspension rheology, and enable one to study the flow properties
of slurries, the permeability of fibrous media, or the diffusion coefficients within
liquid crystalline domains for instance. The extension of the method to unbounded

dispersions constitutes the topic of the next chapter.
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APPENDIX D
Irreducible expans'ion for the disturbance velocity of an ellipsoid

We define the surface kA of an arbitrary ellipsoid by specifying that
X€EA &= Al:xx=1, (D.1)

with A any positive-definite symmefric second rank tensor. Without loss of gen-
erality, we have set the origin x = 0 at the geometric centre of the particle. It is

apparent from (D.1) and the definition (3.12) of the multipole moments

Xm

P — ——1—' n-o x dA, (D.2)

m. Ja

that any contraction of P(™) by A~! in any two of its last m indices yields P{(m=2)

(apart from a multiplicative constant). Resorting to index notation,

TR 1
]ioiliz...im[ ]iki, = m(m— 1)'[

[pm) p(m=2)] (D.3)

20851 bigeeeti, o
with 1<k<i<m and Vpe€[l,m]: {jp—1 <jpandk#j,#I}.

We therefore define the irreducible moment I(™) for an ellipsoid such that all similar

contractions give zero:

Xm

. )
I™=—— [ n.ox dA, . (D.4a)
m! A

For instance,
I =pO =F, , (D.4b)
IV =P =5 _le. T+ 1P 45, (D.4c)

' 1

1® = -3 /An olxx— $A]dAx = p® — %P(O)A : (D.4d)

We now prove by induction that

xm  |[m/2] x(m—27) *J

—~ (2m — 45 + ! e
o *-JZ_;) (2m~—2j+1)!!p( x4 (D-32)
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or, equivalently, for m > 1,
Xm Xm [m/2] xX(m=27) Xj

— - (2m — 45 + 1! (_
e N ~ A
=X ; em—2; + 1"

(D.5b)

The notation |z| means the largest integer value smaller or equal to z. As can
Xm xXm

be inferred from (D.4), X stands for the irreducible core of /x\, which has the
property that all possible contractions by the dyadic A™! give zero. [Alternatively,
(D.5b) can be seen as its definition, in which case we must prove its irreducibil-
ity with respect to contractions by A~!.] The oit)eration p(X), with X a tensor
of rank m, sums all distinguishable tensors which can be constructed from X by

permuting its indices. For instance,

p(xXyy) = XXyy + XyXy + XyyX + yXXy + yXyX + yyxx . (D.6)

It is an easy combinatorial problem to show that (2j + k)!/(k!275!) different per-
iy
mutations of the indices of X A exist. Of these,
xk x(j—1)
. (27+k—2)!/ (k12971 (j—1)!) begin with A. They are contracted to 3p(x A )
by a double-dot multiplication with A~!.

(2 E=2)1/ (k! 2j;2(j —2)!) begin with two indices belonging to different A’s,
«k X(-1)
. . . . 7~~~ A
like [X]ijk1 = [A]ir[A]ji. These permutations yield 2(j — l)p( x A )
- 2(2 4+ k= 2)/((k—1)12771(j — 1)!) have the same first two indices as either
‘ xk X(]—l)
xA or AxT, and condense onto 2k p(X A ).

. xk
(27 4+ k = 2)!/((k — 2)!27;!) begin with the first two indices of X and are

contracted to zero by definition.

‘Therefore,
xk *J xk *(-1)
1 e . —_ _
AT i p(x A )=02Fk+2+Dp(x A ). (D.7)
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We now condense both sides of the relation (D.5b) with A™', anduse A™! :xx =1
- to get: k

' xm  x(m-2) lm/2] . x(m—2j) X(7=1)
—~— - Hit —_—
A7V x = Tx o - Z (2m—4j+1) p( X A ) ) (D.8)

< (2m—2j — D)!!

which is zero by induction from (D.5a) (Q.E.D.). Obviously, the proof does not
Xm
depend on which two indices of X are condensed, and all multiple contractions of

i
Xm ~J

—_~
X by permutations of A ™! (with 0 < j < |m/2]) will also yield zero. Finally, it is
x0

trivial to show that the premise (D.5a) holds for m = 0 and m =1, since "x "=1
><1

and "X = x, which are both irreducible. This completes the proof of (D.5a).

We now prove the following preposition for any sufficiently smooth tensorial

function X(x):

X(x) = i (an;{—! it 2-?@ [(11) (;iD)msnng} - X(y)ly .. (D.9)

We begin with the Taylor series expansion for X about x = 0:

X)= 3 -,;21—”‘ 7 X(y)ly=o (D.10)

xXm

We then apply (D.5a) to expand “ x ', and use

x(m—2j) XJ ><m - x(m—2j) x(m—2j)

| e .
of © A)om V= - < om2% 'V D%, (D.11)

— (m—2j)!24)!
(with D?* = A : VV as defined in (3.23)), to get

oo [m/2) .
(2m — 45 + ! 1
2 zz: @m =2 T I (m=2;)127,1 (D.12)

X (m—2;) x(m=-2j)
T 0"UDY YV X(Y)ly=o
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After changing the running index from m to n = m — 23, we find

a >0 xXn oo Xn ,

X § : (277' +1)” —~ 1 0i ,
X) = — % @n E i Z)J v —o, D13
= n=0 n! =0 (2n + 25 + 1)1 275! X(Yﬂy 0o, ( )

which is equivalent to (D.9).

Finally, we now derive the irreducible expansion of the disturbance velocity
of an arbitrary ellipsoid in Stokes flow. According to the boundary integral equa-
tion (3.10) (Ladyzhenskaya, 1963), the disturbance velocity due to the presence of

any rigid particle in a flow ug may be written as

()~ uy(o) = g [ Ix—y)-a(y)- day (D.14)

Introduction of the identity (D.9) with X = J into (D.14) yields

u(x) — up(x) = (D.15)
‘ Xm
~1 & (2m+ 1) Py ma1 |71 d ymsinhD] ==
8 ng_—:o m! /An oy d4y © (D '(1_5) D V. J(x = 2)|z=0 ,

which is identical to (3.22).
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APPENDIX E

Relations between the mobility tensors

of hydrodynamically interacting ellipsoids

It should not be surprising that a relation linking My, to My exists: both tensors
couple the velocity of one particle to the first moment of the force density on another
body. Equation (3.36) then shows that enough informétion is contained in the
coupling to the symmetric part of the stress multipole (i.e., the stresslet S) to
deduce the mobility response due to the antisymmetric half (the torque T). We

explore the origin of this relation here.

From the definitions (3.12) of the torque and stresslet exterted by a particle g,
and of its first multipole P(ql), we get

Ty =¢€: Pgl) and Sy = [%(33%—55) — 366] : P(ql) =¢: Pgl) ) (E.1)

where we introduced the notations

(gz)ijkl = 8,’k6j1 and (56)ijk; = 6“6]-k . (E2>
Inversely,
1 1
Pgl)=sq—§€T9+§L [y—Xq]O'dAy5 (E?))

q

The last term on the right hand side is inconsequential in incompressible media, and
will not be considered further. We now introduce the mobility tensor My, which
couples the 0" gradient of the particle velocity (relative to the ambient flow) to the
15 moment of the force density on the particle surface. By definition then, if we
ignore the contribution to the translational motion of particle p of all objects other

than ¢ and of all stress multipoles other than Pgl), we have
U, —uy =M} P =M :S, — 1M} :e- T, . (E.4)
We can clearly identify the more familiar tensors My, and My, as

MPS =—iMF:e and MPL=M}!:¢. (E.5)
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, Note that Mys is defined as being symmetric and traceless in its last two indices,
since it is otherwise indeterminate (Kim & Mifﬂin, 1985; Brenner, 1964 a). To
convert My into My, we thus need to multiply it by ¢ (see (El))

We shall derive the relations (3.36) for ellipsoids in what ‘follows, but conjecture
that they hold for a wider class of body geometries. Indeed, our proof hinges mostly
on the existence of singularity solutions to describe the dynamics of the particles
in Stokes flow, and these certainly are not limited to ellipsoids (Chwang & Wu,
1974; 1975). We shall sometimes hint how to generalize our reasoning, but leave
the details of a formal theorem up to the interested reader.

We explained in §3.3 how to construct the mobility coefficients by combining
the disturbance velocity and the Faxén relations for the particles. In the case of
ellipsoids, the non-local representation (Kim, 1986) clearly shows that each element

of the mobility tensor can be written as a linear functional of the Oseen tensor and

higher singularities. For instance,

2 2
M2, = — 1, : // // qp—l(x){1+%v2}
327 HCE,CE, CE,CE, E, E, 2

1/ 395 o2 '
g, (X')91+ —2—V J(x—x")dA, dA, (E.6)
= Ooo(J) ,

with x € E, and x' € E;. All other symbols have been introduced in §3.3, except

the operator Opo which is defined, for an arbitrary tensorial function X of the

separation vector x — x’, as

OOO(X) = (E.6b)

1
-1 -1 1 o2 2 2 2 2} )
3273 peg, CE cE, CE // // 9p 94 2(a3pqp+a3qqq)v X dA4, dA4,

In general, it follows from Appendix D (see also Kim & Arunachalam, 1987)

that the mobility interaction between the m' gradient of the velocity at the particle

locator point and the n'! irreducible stress multipole is a linear functional of an ap-
m—+n

~—
propriate transpose of V J. In particular, the coupling between the translational
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velocity Up — up(x,) and the first moment of the force density I(ql) involves 7VJ
only. (This is not necessarily so; counterexamples can be found améng the class of
bodies with scréw—symmetry.) Note also that Ig,l) = PE,‘) for ellipsoids, so that the
equations (E.1)-(E.5) still hold in terms of the irreducible multipole.

One can now write the Oseen tensor J(r) as (V26 — VV)r, an identity first
used by Beenakker (1986) to facilitate the application of the Ewald summation to
hydrodynamic interactions in periodic suspensions. This brings out the symmetry

which we exploit to derive the relations (3.36):
Mo1 = Op1(TVI) = 001 ((VETVE - VVV)r) . (E.T)

Since Oy consists of linear non-tensorial operations only (such as integration and
differentiation with respect to a coordinate, multiplication by a scalar function of

position, etc.), the contractions given by (E.5) commute with the operator and
Mys = 001 ((TVI) 1 ¢) = 001 (A V[V + 6V] — VVV)r) (E.8a)
1 1
Myr = -—5001 ((TVJ) LE) = -2—(901 ((V?V -e)r) . (E.8b)

For p # ¢, relation (3.36a) now follows as an identity, since
6:Mys=6: 001-((TVJ) 1¢) = 001 (6:(TVI): §) = 001 (V?*Vr). (E.9)

The other two equations in this set can be derived in a similar fashion, but concern
couplings between the first gradient of the particle velocity and the first irreducible
stress moment. They thus involve a scalar linear functional O;; instead of Og;, but
the reasoning is the same.

For p = ¢, the validity of these relations is most easily demonstrated by checking
the identities (3.37). It is then easy to verify (3.36) from the expressions (3.29b-c)
for the mobility tensors M%%., MY and MEL. The relation between MPY and \Y

becomes trivial since both tensors are zero for p = q.
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b)

- Fig. 3.1: Sensitivity of the lubrication parameters to local features of the
geometry. :

a) Although the points of closest approach are well approximated (on the scale
of the particles), the estimate of the minimum separation € is poor.

b) € is estimated accurately, but the principal radii of curvature are incorrect.
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Fig

.

3.2: Tllustration of the algorithm to find the points of closest approach on two prolate spheroids.
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Fig.3.3: Drag on a small sphere placed at the tip of a spheroid of aspect ratio 10
moving at the same speed.

The drag is non dimensionalized by 8npaU. Distances scale with the half-length "a"
of the spheroid. The radius of the sphere equals 0.0464 for the bottom curve, and

is 0.1 for the other. The drag which the sphere of radius 0.0464 would experience in

the absence of the large particle is indicated by the dashed line. The asymptote for the
other sphere lies at 0.075. See text for details.
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sketch on the left represents snapshots of the spheroids taken at equal time intervals.
The vertical distance has been scaled down in this illustration.



S50

-100 -

-150 |-

-200

LN S B B S SN RN

-250

-124-
Sedimentation distance

-300

-350

-400

rY7or] Yyl rryjrrrrrrry

0 T T T T T Y T YT TIOTT T v v T

PUNT ST U W IO T ST S U S S U WA N WO TN SV SN DA WA SR S Y sl a b

1.0 1.5 2.0 2.5 3.0 3.5 1.0
Half center-to-center separation
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Fig.3.5: Periodic centre-of-mass trajectories of spheroids with aspect ratio 2
sedimenting at the corners of regular polygons.

From top to bottom, N=2 (line); N=3 (equilateral triangle); N=4 (square);

N=5 (pentagon); N=6 (hexagon); N=8 (octagon); N=10 (decagon).

All curves are symmetric about 0 =7/ 2.

The spheroids are initially separated by R = 2a, with "a" the particle half-length,

and aligned with gravity (8 = 0).
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The speed of gyration is non-dimensionalized by 87jia? /IF gl,
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Fig. 3.7: Geometry considered in Fig. 3.8.

The vector d indicates the orientation of the particles.
z lies along the vorticity of the shear field, and x is the
direction of the flow. The angle ¢ is measured from x.
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Fig.3.8: Shear induced migration of two spheroids of aspect ratio 2.
The abcissa, x/a, denotes a displacement in the direction of the
undisturbed streamlines. The ordinate, y/a, measures distances
traveled in the plane of shear, perpendicular to the flow.

The closed orbit (dotted line) is described if ¢ =0 initially.
For ¢ = 7/ 2, the open trajectory (solid line) is followed.
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Chapter IV
Stokesian dynamics for unbounded dispersions

of prolate spheroids

4.1 Introduction

Fluid-particle systems in which the solid phase consists of elongated objects occur
in all areas of science and engineering. Suspensions of rods are essential intermedi-
ates in many production processes, ranging from the fabrication of fibre-reinforced
composites to the manufacture of paper from pulp. The permeability of filters and
fibrous membranes depends, apart from specific physico-chemical factors, on the
pressure drop across a fixed bed of fibres. The electrophoretic mobility of biopoly-
mers in a gel is greatly influenced by steric and viscous interactions between the
macromolecule and the fibrous network through which it moves. The molecular con-
stituents of all liquid crystals are elongated, and self-diffusion in those anisotropic
fluids is of great interest from both a practical and scientific standpoint. In all cases,
from a rheologist’s point of view, the physical system consists of a fluid in which
non-spherical particles are suspended. In this chapter, we propose to calculate the
hydrodynamic transport properties of such dispersions by extending the ideas set
forth in Ch. III to systems consisting of infinitely many particles. The approach is
akin in concept to the simulation technique for unbounded suspensions of spheres
known as “Stokesian dynamics” (Brady & Bossis, 1988; Brady et al., 1988).

Rod dispersions are of particular interest because they can display radically dif-
ferent transport properties than the solvent, even at concentrations of solid matter
so low that most other characteristics of the sample are unaltered. In the semi-
dilute concentration regime especially (defined as the range of volume fractions ¢

such that T, o px Ty 1. with rp a characteristic length-to-breadth ratio for the
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particles), hydrodynamic interactions between the rods totally dominate the rheo-
logical response of the suspension, even if only minute quantities of fibers are present
(¢ << 1). The iﬁcommensurate increase of the extensional viscosity of fluids upon
addition of minuscule amounts of dispersed fibrous material (Méwis & Metzner,
1974; Pittman & Bayram, 1990) is the most vivid illustration thereof. This dra-
matic enhancement of the resistance to stretch is typical for rod suspensions, and
is not observed when the particles are spherical or disk-like. It is of tremendous
relevance for the processing of fiber dispersions, and is the hydrodynamic analogue
of the large directional increase in heat transport or electrical conductivity which
can be achieved in fiber composites. The origin of these phenomena is now well
understood (Batchelor, 1971), and can be traced back to the observation that rods
which transmit energy, current or stress very effectively, influence the transport of
these quantities over regions much larger than their own volume. In fact, while
the concentration of the fibres scales with the length L of the particles (for a given
cross-sectional area), the domain over which their presence is felt grows with the
cube of the length (Batchelor, 1971; Shaqfeh & Fredrickson, 1990). Long, slender
pafticles therefore affect the macroscopic properties far more than would be ex-
pected from their concentration, and increases of the Trouton viscosity by orders
of magnitude can be attained by adding just fractions of a percent of rods to the
suspension (provided the rods are slender enough, so that ¢r,? = O(1), i.e., the
suspension is semi-dilute).

Although the fundamental elements determining the hydrodynamic behavior
of rod suspensions begin to be understood, many benefits can still be reaped from
microstructurally detailed simulations such as the ones we propose. In a certain
sense, the computer is the ideal tool fér non-invasive experimentation. Qur method
enables us to investigate the effects of aspect ratio and concentration, and even to
study polydisperse samples (spheroids of varying dimension and/or shape). More
importantly, numerical simulations allow one to turn on and off interactions at

will, permitting an in-depth analysis of the interplay between the various forces
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in the system (hydrodynamic, gravitational, Brownian, colloidal, etc‘.). They often
give one the opportunity to test hypotheses in the most direct and convenient way
possible (which is not always accessible experimentally). Wall effects are absent
(or can be included if desired). One exerts absolute control over the microstruc-
ture of the suspension, and can impose perfect order if desired, an idealization
unachievable otherwise. Alternatively, the configuration may be allowed to evolve
with the flow, in which case computer simulations generate precise snapshots of
the microstructure, revealing geometric characteristics such as clusters and flow-
induced alignment. This information provides the link between the topology of
the dispersion and its macroscopic properties. Experience with Stokesian dynam-
ics for spheres has taught that numerical simulations help increase our insight into
the dynamics of suspensions, and contribute much to our understanding of their
rheology. Computer simulations, of course, have their limitations. They always
make use of an idealized model of reality, and, by necessity, only incorporate the
physics which are understood. Constraints on the computer time usually imply a
trade-off between rigor and feasibility. Wall effects are replaced by artifacts due
to boundary conditions. Yet we are convinced that numerical simulations remain
a very powerful tool of investigation, and there exists a wide body of literature to
back this claim. Moreover, most analytical theories on fibre dispersions are asymp-
totic, and hold only in the limit of very slender inclusions. No information is given
about the behavior of moderately elongated particles, of aspect ratio intermediate
between the sphere and the line. Indeed, many theoretical treatments (Batchelor,
1971; Shaqfeh & Fredrickson, 1990) employ a very slowly converging series expan-
sion in the inverse of the logarithm of the aspect ratio, so that corrections can only
be neglected in principle for extremely anisotropic fibres (with r, > O(10%) or so).
Few natural or man-made materials, however, consist of straight rigid fibres of very
high aspect ratio; such slender bodies either bend or break (Salinas & Pittman,
1981). Slurries comménly contain particles which are distinctly non-spherical, but

they usually resemble short rods rather than fibres. Similarly, the shape of many
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proteins is well approximated by ellipsoids, but their length-to-width ratio seldom
exceeds five or six. Our simulation method accurately describes t'he rheology of
these slightly eldngated, fat bodies.

The model system we consider consists of prolate ellipsoids of revolution sus-
pended in a Newtonian fluid. This class of particle shapes includes the sphere at
one end of the spectrum, and the line segment (i.e., an infinitely slender rod) at the
other. The method can accommodate heterogeneous populations of spheroids, ac-
cepting polydispersity in both size and aspect ratio. The Reynolds number, based
on the largest particle dimension in the dispersion, is assumed to be vanishingly
small, so that the dynamics of the fluid phase are adequately described by the

quasi-stationary creeping flow equations:

Vp = uViu, (4.1a)

The vector field u represents the fluid velocity, p is the associated pressure and
w the viscosity of the liquid in the absence of particles. The adoption of the Stokes
equations (4.1) implies that inertial effects are negligible compared to viscous retar-
dation on the length scale of the particles. The spheroids are, however, large enough
to neglect the effects of Brownian motion. No-slip boundary conditions hold at the

surfaces A, of the particles, which are considered to be undeformable:
ux)=Up,+(x—x%x,) A, , for x€A4,. (4.2)

The translational and angular velocities U, and , of particle p fully characterize
its motion. U, is evaluated at the locator point x, of the spheroid (chosen to be
its geometric centre).

Unbounded, statistically homogeneous suspensions are modeled by periodically
replicating a suitable vnumber (N) of spheroids in space. Denoting the fluid phase
by V and its boundary by dV (= the union of all the particle surfaces A,) we thus
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require, Vz € Z2:
X€OV < xX+2(,) €9V, with 2 =B-z. (4.3)

23 denotes the space of all ordered sets of 3 integers; hence z contains three inte-
ger coordinates. The columns of the 3 % 3 constant matrix B make up the basis
vectors b; (7 = 1,2, 3) used to reproduce the N reference spheroids periodically in
‘space. The ensemble £ of all possible points #(,} therefore defines a lattice. In
essence, (4.3) states that the microstructure is invariant with respect to transla-
tions along any of the basis vectors b; of the lattice £. The only restriction placed
on the basis vectors is that they should be compatible with the mutual impene-
trability of the particles. They should, of course, also be linearly independent and
form a complete basis set for the three-dimensional Euclidean space. If dynamic
simulations need to be performed, some care should also be taken to ensure that
the chosen lattice is compatible with the kinematics of the imposed motion. In
particuiar, the basis vectors must retain a finite length at all times under the defor-
mation, as well as, in principle, for t — oco. In the absence of boundaries, it would
be inconsistent in a statistically homogeneous dispersion to consider any imposed
flow other than those characterizeci by a constant (position independent) velocity
gradient Vu = G (which may be zero). Since the lattice must deform affinely with

the flow, the most general rate of deformation of the unit cell is defined by
B=G-B, (4.4)

with G an arbitrary, possibly time-dependent, traceless second rank tensor. (The
trace G : § =0 as a consequence of incompressibility.) The tools of the geometry
of nﬁmbers (Gruber & Lekkerkerker, 1987) can be employed to investigate the
éxistence of lattices compatible with isochoric time-independent linear deformations
(ie., G = 0in(4.4)) (Adler, 1985; see also Ch.V). In these studies, appropriate sets
of basis vectors B were derived for all two-dimensional flows, as well as for uniaxial

extension (even though no strain-periodic lattices exist in this case (Chapter V;
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Reinelt & Kraynik, 1990)). No universal procedure is available yet to find unit cells
compatible with more general, fully three-dimensional flows, even though some
examples are known.

'The simulation method outlined hereafter is general, and can be applied for
dynamic calculations. We shall, however, only present results in which the time
evolution of the microstructure under influence of the flow is not followed. Hence
we shall not be concerned with the compatibility of our lattices with any imposed
deformation. Instead, the hydrodynamic transport properties are computed for a
few chosen, representative configurations. As we shall explain in section 4.5 (see
also Brady & Bossis, 1988), all the transport properties (sedimentation rates, self-
diffusivities, hindered diffusion coefficients, viscosity and permeability tensors) can
be calculated simultaneously by Stokesian dynamics. Results are reported for two
types of microstructures in this work. In §4.6, we discuss crystalline geometries,
characterized by perfect translational and orientational order. The entire dispersion
is usually constructed using only one particle per unit cell. In a second part, §4.7, the
transport properties of equilibrium hard-ellipsoid structures are calculated. They
are averaged over several configurations generated by a Monte-Carlo procedure.
Quite interestingly, we tracked the concentration dependence of several properties
across the thermodynamic isotropic-to-nematic boundary for a few systems. As is
to be expected from a first-order phase transition, a discontinuous jump occurs at
that point.

The method proposed here is essentially a multipole moment technique for
Stokes flow (Weinbaum et al., 1990). The basic ideas were laid down in Ch.III, and
the present chapter mostly concerns the adaptations needed for suspensions of infi-
nite extent. It is now well documented (Batchelor, 1972; Brady et al., 1988) that the
slow decay of velocity disturbances in creeping flow lead to severely non-convergent
expressions for many transport properties in an infinite suspension, unless the in-
teractions are properly renormalized and the appropriate “backflow” integrals are

subtracted from the results obtained by a simple-minded superposition of effects.
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In the next section, we shall discuss the application of O’Brien’s metlhod (1979) to
correct these aphysical convergence problems. We shall then give a brief overview
‘of the methodolégy of Stokesian dynamics for prolate spheroids (but refer to the
preceding chapter for details), and discuss the application of the Ewald summation
technique (Ewald, 1921; Beenakker, 1986) to accelerate the convergence of the cal-
culations. Sections 4.6 and 4.7 are illustrations of the method, and we close in §4.8

with a few comments about present and future work.

4.2 A convergent formulation of hydrodynamic interactions
in unbounded dispersions
The Green’s function for the governing equations (4.1) is called the Oseen tensor J

(Ladyzhenskaya, 1963):

I(x) = g +35 (4.5)
with r = |x|. According to (4.5), the velocity response at x due to a point force f
at the origin is u(x) = J - f/8ru. At zero Reynolds number, velocity disturbances
thus decay inversely proportionally with distance in an unbounded Newtonian fluid
of viscosity p. Hence a simple-minded calculation of the sedimentation rate of an
infinite collection of particles by superposing the contributions of all bodies (since
each of them acts as a point force to a first approximation) diverges as R2, with Rr
a characteristic size of the macroscopic system. The origin of these convergence
difficulties is now well understood, and several procedures have been devised for
overcoming them (Batchelor, 1972; Batchelor & Green, 1972; Jeffrey, 1973; Hinch,
1977; O’Brien, 1979). O’Brien’s method is most conveniently adapted to microstruc-
turally detailed numerical simulations, since it does not rely on preaveraging the
it_lteractions to obtain well-posed, absolutely convergent expressions for the trans-
port properties. Since the technique is well-documented (O’Brien, 1979; Brady et
al., 1988), we shall orﬂy briefly review the main lines of its reasoning here.
It starts by applying the boundary integral equation (Ladyzhenskaya, 1963)

to the portion of a statistically homogeneous suspension delimited in thought by a
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. mathematical surface I'" lying entirely within the fluid:

u(x) = - WZ [, 3x=v)-ow)-any | @)

‘871% Jx—-y)-oy) -dA, T /1“' K(x—y):u(y)dA,

The sum represents the effect of the N particles included in the fluid domain,
while the last two integrals give the contributions of the stress density ¢ and the
velocity u at the surrounding surface I''. The infinitesimal vector dAy = ndA,
is an elementary surface patch with normal n pointiﬁg into the control volume V

containing the N particles; the subscript y indicates that the integration is carried

out with respect to the vector y € OV. The stress tensor

o= —pb+ u(Vu+TVu), (4.7)

and
XXX

&x
=-3—0 =2 T I nind
K=-3—" = (VJ V- (4.8)

Equation (4.6) is exact for rigid particles. If I is taken to be very large, so that
|x —y| > £ for y € IV, with £ a characteristic separation between the particle cen-
tres, one may replace I by a smooth surface I' which cuts through both fluid

and solid phases, and express the last two integrals in (4.6) in terms of suspension

averaged values of o and u:

/ J(x—y)-o(y) -n'dAy, + / K(x —y):u(y)dA, = (4.9)
T T

/{(a) :nJ - ng(Q') ©° nV, T} dA, + / K:<u>da,
IN T

We introduced ng for the number density of particles, and the notation ®@™ for the
m-fold nested contraction operator. The vector n is the normal to the smoothed
sﬁrface I'. The mean quadrupole Q' arises as a contribution from the “slices” of
particles between the surfaces I and I' (Glendinning & Russel, 1982). It is defined
as the second moment of the force density on the particle surface

' 1 l
Q=5 [ m ol -xlly - xlddy (4102)
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By use of the divergence theorem, (4.9) can be converted into a volume integral of

average forces

F,,‘.—__/ o-dA , | (4.10b)
A :

p

torques

T,=—[ (y—%x,)A0-dAy ,. (4.10¢)
AP

stresslets

Sp = —/ %[n'a{Y“xp} +{y —xp}o - n] - %5[n-a-(y—xp)] dA-V , (4.10d)

Ap

and quadrupoles Q}, (Brady et al., 1988). Taking care to isolate the singularity at x
by surrounding it by an infinitesimal shell enclosing a volume of fluid V, one then

transforms (4.6) into

()~ (u(x)) = TE2[AQ':8) - (6 WZ /A Joo-dA,  (411)
né

_%/V () 34 (T) - R+ (8): K +(Q) ©° TVILAY;

The tensor R = 1& : VJ is the propagator for a point torque (or rotlet) in Stokes
flow. The limit as V, — 0 is implied in the second integral of (4.11). Although
this is irrelevant for the first three terms in the kernel, it is necessary to exclude x
from the integration domain in the calculation of the contribution from the average
quadrupole, since the finite effect of this singularity at x is accounted for explicitly
by the first term on the right hand side of the equation. One can now let the
dimensions of the surface I' become larger and larger, since the expression (4.11)
fér the velocity at a point x in the suépension is absolutely convergent. Indeed, it
is easy to see that the contribution of the N particles cancels, in an average sense,
the volume integral. Note that the velocity enters the formulation only relative to
the flow field imposed on the dispersion. Equation (4.11) is thus expressed in a

frame which moves and deforms so that the net volumetric flux through any surface
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~ fixed in it is zero. Physically, the first term in the volume integral thus represents
the backflow of fluid relative to these axes, driven by the pressure éradient which
balances the excess average force (F) exerted by the particles. By analogy, we shall
refer to all the contributions from the volume integral as the “backflow.”

The motion of the particles may then be related to the fluid velocity u given
in (4.11) by means of Faxén relations. As explained in ‘Ch. III (eq. (3.24a); see
also Brenner, 1966), an ambient field u causes a force-free ellipsoid whose surface
is defined by A;':(x—X,)(x —%,) =1 (A, is a positive definite second rank

tensor) to translate with a velocity U, given by:

U, = 52805 0y (4.12a)
DP
with D, =./D? and D=A,:VV. (4.12b)

As usual, sinhD, /D, stands for its series expansion, and Dyu = D2(Dju), etc.
By applying this formula to (4.11), and accounting for the force F, acting on the
particle, we obtain an absolutely convergent expression for the translational velocity

of ellipsoids in a statistically homogeneous unbounded suspension (Appendix F):

Up—(utxy)) = 354 [2(Q:8) - <6:Q>+1<Ap:6><F>—éAp~<F>

1 sinhD
—_ P P P
+ (A OF) 6<A F)| + K., - F, SWE: / J.o-dA
qFp
_ Ip2yy. 341 2py.
i {(1+ =D})(F)- T+ ¢ O°F) -3 (4.13)

+(T) R+ (8) : K +(Q) 0" VI }av

We expressed (4.13) in terms of the irreducible ellipsoidal quadrupole Q = Q' — :FA
(Appendix D), and neglected contributions which decay as O(|x — y|™*) in the vol-
ume integral. The dyadic K% relates the velocity of the spheroid to the‘ force it
exerts on the fluid, and is a well- known material constant (Brenner, 1964). Ex-

pressions analogous to (4.13) can be obtained for the angular velocity relative to
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the vorticity of the imposed flow and the (zero) rate of deformation relative to the
‘impressed rate of straiﬁ. A similar derivation is also possible for VVu|xp (the ve-
locity counterpart of the quadrupole), but, as explained in Brady et al. (1988), this
is only marginally necessary since all irreducible second moments are induced by
particle interactions and are therefore of small amplitude. Expressions for higher

multipoles are bonvergent even without applying O’Brien’s method and do not need

to be considered.

As mentioned in the introduction to this chapter, we approximate the mi-
crostructure of an unbounded, statistically homogeneous suspension by periodically
replicating N spheroids in space. It was demonstrated by Brady et al. (1988) that
the application of the Ewald summation technique to construct the grand resistance
tensor for such spafially periodic dispersions correctly accounts for hydrodynamic
interactions, and yields an expression which corresponds term by term with the
“renormalized” formulation obtained using O’Brien’s ideas. In periodic dispersions
obeying (4.3), particle interactions can thus be computed as sums over the lattice L.
Their evaluation is dramatically accelerated by an ingenious technique due to Ewald
(1921). In essence, the slowly converging lattice sum is replaced by two complemen-
tary summations: one consists of terms which decay rapidly with distance, ensuring
a speedy convergence; the other is Fourier transformed and calculated in reciprocal
space. Nijboer & DeWette (1957) describe judicious ways to split the original lat-
tice sum so that exponential rates of convergence are achieved for summands which
decay only algebraically with distance. The first application of this method to the
Oseen tensor (4.5) is due to Beenakker (1986). Brady et al. (1988) extended his
approach and lifted the restriction (F) = 0 that he had placed on his derivation. We

refer to their papers for details concerrﬁng this technique (see also the next section).

4.3 Stokesian dynamics methodology for unbounded suspensions

of prolate spheroids

The linearity of the Stokes equations guarantees the existence of a “grand resistance
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tensor” R connecting the moments of the stress density on the particle surfaces
(i.e., the force, torque, stresslet and higher multipoles) to the motion ‘of the particles
relative to the fluid. We chose to truncate the multipole expansion after the first two
moments, so that 11 unknowns are associated with each particle. These typically
are the thrée components of the velocity, the three components of the rotation rate,
and the five independent elements of the stresslet (a symmetric, traceless second

rank tensor, see (4.10d)). Therefore, R is an 11N x 11N tensor so that

F U-Us\ (Rev Rv R U-Us
T = R ® 9 - 'QOO = Rpg RT.() Rsn ® Q - QOO . (4.14)
S "Eoo RFE RTE RSE “-Eoo

The operator @ signifies the appropriate contraction. The vectors of length 3N
U,2,F, and T , and the 3N x 3 matrix S group the translational and angular
velocities of all N particles, and the forces, torques and stresslets that they exert
respectively. Similarly, the undisturbed ambient fluid velocity, vorticity and rate of
strain at the geometric centres of the spheroids are lumped into U, 2 and E..
Standard arguments in zero-Reynolds-number hydrodynamics (Happel & Brenner,
1973) show that R is positive-definite and symmetric. More importantly, it is a
purely geometric quantity, fully determined by the instantaneous configuration (and
shape) of the particles. The greatest asset of Stokesian dynamics is its efficient and
accurate algorithm to épproxima,te this resistance tensor. The method was first
developed for suspensions of spheres (Durlofsky et al., 1987), and we showed in the
preceding chapter how it can be applied to a finite number of prolate spheroids. We
now extend the approach to unbounded dispersions.

The first step in the procedure consists in forming the grand mobility ten-
sor M = R

U-U. F My, My, My, F
7 Q—«Qoo =M® T - MQF MOT M_Qs ® T . (4.15)
_Eoo . S MEF MET MES S

- We explained previously (Ch. III) how to construct M for a finite number of

spheroids by combining the singularity representation for the disturbance veloc-
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ity (Chwang & Wu, 1974, 1975) with the non—local formulation of the Faxén laws

"derived from the work of Kim (1985). The M}%-coupling, for mstance which links

the translational velocity of particle p to the force exerted by ¢, can be written as:

1 Cp 62 A
MM = — {1+(c — £ AV (4.16a)
or 327r,ucpcq ) 4e2 P

[ G- @ e - eagdsy

The geometry of the sphefoids is characterized by the distance cq from their centre
to the foci of the generating ellipse, and by their ec‘centricity eq, defined as ¢4/ay =
\/(1 = b2/a2), with a, and b, the lengths of the major and minor semi-axes respec-
tively. The vector £, = x4 + £,d,, with d, the unit vector along the axis of the
particle. One sees ffom (4.16a) that, as far as My is concerned, each spheroid is
equivalent to a line of stokeslets with uniform density, supplemented by potential
dipoles, V2J, distributed between the foci according to a parabolic density pro-
file. As for spheres, these quadrﬁpolar pieces reflect the finite cross-section of the

particle. As an alternative to (4.16a), a symbolic operator representation for the

mobility elements can be used to get:

1 sinhD, sinhD

Pq _
Mk 8rp D, D,

qJ(x,; —X,) - (4.16b)

The operator D, has been defined in (4.12b), which reduces to D2 = c2[(d, - V)?
+ (1 —e€2)/e2V?] for axisymmetric spheroids. The non-local description (4.16a)
and the infinite operator series (4.16b) are fully equivalent (eq. (3.27); Kim, 1986;
Kim & Arunachalam, 1987). The former, however, is to be preferred for numerical
evaiuation, except when the particles p and ¢ are very distant (see §4.4). The entire
grand mobility tensor M is built up of similar double integrals.

For unbounded systems, the grand mobility tensor becomes, in principle, of
infinite dimension. Periodic structures, however, in which the configuration of N

chosen spheroids is replicated on a lattice, are amenable to a simpler treatment,
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provided all “images” of a given particle are subject to the same f,or(ce and torquet
(ie., V{z}, Fpi (.} = Fp with F, (.} the force exerted by the particle at x, + .y,
and a similar condition on T,.) In these circumstances, the dynamics of the entire
‘dispersion may be described by a N x N mobility tensor M.
To caiculate MP%, for such a periodic system, consider a force-free spheroid p
embedded in a lattice of spheroids ¢, each exerting a force F, on the fluid, which
would otherwise be quiescent. The velocity of the test particle p is given by (4.13)

as:
2
U, = 1§¢[2Qq 6-6:Q,+ (A L 6)F, — 6A F,+ (A L )F, — 6A F,|
81 Zsth/ J.o-dA (4.17)
e Agi(z)
e . 2 . . 3
~ &nn {(1+6Dp+6D JF,-J+S,: K+Q,0°VVI}dv.

We have assumed that no external torque acts on the particles and implicitly restrict
the summation to those particles of the lattice whose centre lies in V. The integral
of the stress density on the surfaces A; may then be expanded into irreducible

moments IE[”) as follows (Appendix D), in order to isolate the effect of the force F:

—/ Jx—x4)-0-dA " (4.18)
Ay .
oo d Xm
1 sinh D,
= N em | (= — 2)|p=x
mz=:o(2m+1) i [(Dq qu) D, ] V= J(x—z)| !
=F,- SthqJ(x—-xq)—l—...

q

The irreducible ellipsoidal moment Igm) is defined as the projection of the m* mo-

ment of the stress density on the particle surface for which all contractions by Aq'1

1 If the problem is formulated as a resistance rather than a mobility problem,
the imposed translational and angular velocities must be the same for all “images”
~ when measured relative to the ambient flow (so that the integrity of the periodic

micrbs’cructure is preserved while the lattice deforms affinely with the flow).
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in any two of its last m indices yields zero (Appendix D). The notation (2m + 1)!!

Xm

is standard and stands for (2m + 1)!/(2™m!) (Abramowitz & Stegun, 1970); V is
shorthand for the direct product of m nabla operators, and the subscript z on V,

implies that the derivative is taken with respect to z.
Concentrating on the direct contribution of the force F, to Uy, we find
= [2(A1‘, L 6)6 — A, +2(A, : 6)6 — Aq] (4.19)

—x, — _ D 1+ D%+ =-D2)JdV .
87p D, D, J(*P B G V_Ve( + 505+ §Dd)

{=}
As shown by Beenakker (1986), the lattice sum is most efficiently evaluated by
noting that

J(x) = (V26 - VV) x| (4.20)
and writing

1 sinhD, sinhD
8mp Dy D,

LI(xp — xg — B(z}) = M - ppplet N el

. . (4.21a)

. 1 sinhD, sinhD
with MP? = S7n D, P D, L(V28 — VV)(rpgerfc(Erpg)) , (4.21D)
and M2 = 1 sinhD, Sthq, (V26 —VV)(rpgerf(Erpg)) . (4.21c)

" 8mu D, D,
We introduced the succinct notation Tpg = |Xp — X4|. The sum of Mflﬁ{z}] over
all {z} is performed in real space, while the lattice summation of M3 is best carried
out in reciprocal space by applying the Poisson summation formula (Nijboer & de
Wette, 1957) (see §4.4). The parameter £ dictates the rate of convergence of the
two sums (see §4.4). Using the Ewald technique, equation (4.19) can be converted

into
— z 1 —
Mg%, = ZM‘:’;[Q-’—{ }] + @ 2 COS(k{C} . (Xp — Xq)) ng(k{g}) s ) (4.22)
{#} {¢}=#0

where ki¢y = (1ki + (2ka + (sks are the points of the reciprocal lattice. The basis
vectors k; are defined such that k; - b; = 27d;;, with 6;; the Kronecker delta. fngq is
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- the Fourier transform [ exp(—ik - r)My(r)dr. As explained for spheres in Brady et
al (1988), one can show that the “backflow” volume integral and the first term
on the right hand side of (4.19) ‘(proportional to ng) are cancelled by the limit
as ky¢3 — 0 of ﬁgq(k‘{(}) (Appendix F). The origin of the lattice in k-space is thus
omitted from the sum. ’

All the elements of the grand mobility tensor (4.15) can be constructed by
performing similar lattice summations. A few numerical aspects of this procedure
will be discussed in the next section. Heed is neededv in the case of the hydrodynamic
coupling ﬁ{’& between a particle and its own images, since the effect of the force
acting on the “reference” spheroid is accounted for separately. In order not to
include the self-term twice in the mobility interactions, one must therefore remove
the “image” at xp + 2o} from the lattice sum by excluding the central unit cell
from the sum of M; and subtracting its contribution to the summation in reciprocal
space. In other words, for p = ¢, (4.22) is replaced by
MY, = Kb+ 3 Mprraly l_}—! > MEP(kyy) — M lemo - (429)

{z}#0 {¢}=#0

Symmetry arguments can be invoked to prove that there is no coupling between
even derivatives of the spheroid’s velocity relative to the undisturbed flow at its
geometric centre, and odd moments of the stress density on its surface. Hence
| ﬁ%ﬂ and ﬁ{,’; are identically zero (as well as ﬁy} and ﬁ%’; by virtue of Lorentz’
reciprocal theorem). This & priori knowledge helps avoid extraneous calculations
during the construction of the grand mobility tensor. As shown in Appendix E, the

amount of required computations can be further reduced by using the identities

MPS = Le. (6: M2Y) (4.242)

[MEL]i; = —[MELTiktjba1 + 3 [MEL Imkinbr18mnbi (4.24b)

MPL =g MBL + (e- M2E)T . (4.24¢)
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Only the last two relations are also useful when p = ¢. It is clear that they hold
for M as well. ,

| The grand fnobility tensor for N periodically replicated prolate spheroids is
inverted to yield a “far-field” estimate of the resistance tensor R. Lubrication
interactions between close particles are then included in a pair-wise additive manner
to the inverse of the grand mobility tensor, as in the version of Stokesian dynamics

for a finite number of spheroids (Ch. III):
R~R=M" 4R . (4.25)

All the resistance functions which become singular when two ellipsoids touch can be
derived to O(1) from Chapter II. The only caveat is that situations may now occur
in which a rod is Simultaneously in the vicinity of more than one image of another
particle. This is merely a geometric and programmatorial complication, however,
and does not add any conceptual difficulties. Also, unlike spheres, lubrication in-
teractions between a spheroid and its own images (on a dense lattice) may result in
a net torque or stresslet.

We expanded in §3.2 on the validity and accuracy of the scheme used here to
approximate the grand resistance tensor, viz. using pair-wise additivity of velocities
to form the a far-field estimate of the mobility tensor, and pair-wise additivity of
forces to preserve the large, localized lubrication stresses between close pairs of
particles. We shall not repeat these arguments here (see also Durlofsky et al.,
1987). Dynamic simulations simply solve (4.14) for the motion of the particles
by balancing the hydrodynamic and external forces and torques, and integrate the
trajectories (relative to the lattice which deforms affinely with the flow) to update
the microstructure. Because the spheroids are non-Brownian in this work, their
paths are fully deterministic. The intricacies associated with thermal motion can
be addressed by the methods developed for spheres (Bossis & Brady, 1989), and
form a subject for fufther study. Since M is determined by the configuration of

the particles, it needs, in principle, to be evaluated at each time step. This may be
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~ deferred in some instances to maximize computer time rentability, as discussed in

Durlofsky et al. (1987).

4.4 Numerical aspécts of the lattice summation using

the Ewald.technique
A few computational details are discussed in this section to indicate how the oper-
ation intensive task of forming the mobility tensor is managed in practice. We first
return to the non-local description of the mobility interactions, (4.16a), and insert

the representation (4.20) of the Oseen tensor J:

1 Cp
Pq = — — 1 -2 p 2 4.26
UF 327,ucpcg { +(C 5) 42 V} 7 ( )
1+ (cq - 52) “ Vz}(szS VV)(rpe) d€q dép -
—¢q
Since the kernel in (4.26) is a function of rpq only, V, = —V,, and hence the operator

after the first integral may be transferred to the innermost integral. To minimize
the required algebra, we then simplify the expression for M?% by making use of

the identity V43 = 0 before we apply the Ewald summation formula, and therefore

redefine qu and Mp ? as follows:

(1- 6]2))
L —
My _327r,ucpcg [_C [_cq 1+ 51’) 4e2
(1—eg) .
(- )] v2}(v25 —VV)(rpg) dEgd,  (4.27)
g
=MP? + MY |

with

1 Cp Cq (1 - 62)
Mpq — 1 l: 2 _ g2 Pr
! 327 pcpey /_C [_Cq{ tlG-6) 4e?

i 63)(14 ; q>} }(v%s — VV)(rpq erfe(Erpq)) dé, dE, . (4.282)

I We shall 111ustrate several points using the M¥%-coupling in this section, but

the same principles can be applied to all elements of the grand mobility tensor.
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The definition of M3? simply requires that one substitutes the error function erf
for erfc. The mathematical equivalence of the non-local description of interactions
and of their symbolic operator representation, alluded to at the beginning of §4.3

with the expressions (4.16a) and (4.16b), can also be applied here to get

1 ¢sinhA, sinhA 1-— d sinhA sinhA
Pq __ P q 2 p P 7\ w2
M 87['/,L{ Ap Ay T 2¢} (A dA, A, )( )V (4.28b)
1~ sinhA,, d sinhA
2 g\ 2 26
tc q 262 ( Ap ‘ )(Aq qu Aq )V }(V 6 VV) (TPlI erfC(STPQ)) ?

with A, = ¢pd, - V,. Equation (4.28a) shows that M7? may be calculated as a dou-
ble integral over the rectangular domain [—c¢p, ¢p] X [—¢q, ¢¢]. At small and moderate
separations (rp, = O(cp + ¢4)), the kernel often displays saddlepoints, with sharp
peaks and deep valleys, making the cubature difficult. We found it imperative to
use adaptive integration schemes (Kahaner & Rechards, 1987) in order to achieve
sufficient accuracy to guarantee the positive definiteness of the numerical approxi-
mation to M. Note that this test is especially stringent, since the mobility tensor
becomes increasingly ill-conditioned as the particles become more slender, reflecting
the fact that fibres experience less viscous resistance than spheres as they move, and
hence dissipate less energy.

The formulation (4.28b), although equivalent in principle, works poorly except
at large distances. A truncation of the infinite operator series at a chosen order
in 1/rp, essentially approximates the spheroids by a set of point singularities situ-
ated at their centres: to O(r;ql ), the particles act as point forces; the first effects
of their relative orientation come from including the dipoles; point quadrupoles are
added néxt etc. Mobility elements are then calculated according to (4.28b) as an
alternating series. (Note that Vrp, = (X, — x4)/rpg, and that the sign of 4 a1

& F T
dn 1) Although this series is convergent at all distances, it is

is opposite that of
inadequate for numerical purposes when the ellipsoids are close enough to “sense”
each other’s elongated shape, 1.e., roughly speaking, when the spheres circumscrib-

ing the rods intersect. In those cases, for r,, small, the expansion behaves like the
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Taylor series of exp(—r'];q,1 about the point at infinity: the magnitude of the terms
“goes through a maximum which far exceeds the numerical value of the final result,
and the loss of significant digits on the computer makes the total of the addition
worthless, even though the theoretical radius of convergence of the series is infi-
nite. Hence the truncated moments expansion (4.28b) is potentially useful only at

large distances r,4, where convergence is rapid and necessitates less work than the

numerical cubature of (4.28a).

Slender body theory shows that a force-free rod immersed in an axisymmetric
straining flow and aligned with the principal direction of extension behaves as a line
distribution of Stokeslets whose magnitude varies linearly with position (Batchelor,
1970 a). Chwang & Wu (1975), however, give an exact Stokes flow solution for the
special case of spheroidal rods using a parabolic distribution of dipoles along the
symmetry axis, complemented by a biquadratic profile of octupoles reflecting the
finite thickness of the particle. Both results may be reconciled by partial integration,

as shown below. We shall then explain the advantages of each representation for

computational aims.

The singularity representation for the fluid disturbance velocity due to a sta-
tionary isolated ellipsoid in a purely extensional flow characterized by the rate-of-

strain tensor E infinitely far away from the particle, is (Kim, 1985)

u) <B-x - FB: dyd,n [ (& -V AT -6, (4.292)

—cp

c

2 1 —e?
+E: K2, : / (& — )1 +(S - ) — 2V LV + TV)I(x — £,)dE, .

2
¢p 8ep

The shape specific tetradic K% and the coefficient o are known for spheroids (Ap-

pendix J; Chwang & Wu, 1975; Kim, 1985). We decompose V =d,(d, - V) + V =
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- d, 6% + V1 and integrate by parts:

c

| | ] - .
u=E-x+E:K%;: 2/ {1+ (- gg)—4—65£v3}-;-(dpJ +7Td,J)d¢,
p .

—cp

' Cp 1—¢2
+E:Kfp: (c2 —62){1+(C§—éﬁ)—ge_zgvz}%(VL+TVL)Jd€p
e 2

C

| , |
—uE: [dpd,, Al EdA AT dﬁp] (4.29b)

. o
— ?153 : [dpdp AN (G—EWVLAT dg,,} :

—cp
In the limit e, — 1, the first and the third integrals in (4.29b) equate the effect of
the spheroid with that of a linear distribution of Stokeslets, as predicted by slender
body theory. Although (4.29b) is “messier” than (4.29a) (which is bad enough
already!), it turns out to be useful when computing the interactions of fibres in
close proximity to one another. By assigning the largest weight to the ends of
the particle, this representation emphasizes the elongated nature of the rods, in
contrast to the formulation (4.29a), where the density of the dipoles vanishes at the
extremities. In practice therefore, we calculate the summand M}? using either the
infinite operator series (4.28b) when rprq >> O(c¢p + ¢4), or the non-local singularity
representation (4.28a) or its variant (4.29b), depending on circumstances, when
rpg = O(cp + ¢g).

An alternative method for very close pairs of particles rests on the observa-
tion that (4.28a) is well approximated, for small r,q << 1/&, by substituting r,,
for rpserfc(Erpy). The advantage of this procedure is that the innermost integration
can then be carried out analytically, as shown in Ch. III (eq. (3.33) for instance),
since this amounts to calculating the interactions between these two rods as if
fhey were isolated, without applying the Ewald technique. Only the correction
due to rpgerf(€rpq) now requires a numerical cubature. The savings result from
replacing a difﬁcult.'t;wo—dimensional integration by a simpler quadrature (in one

variable) which gives the dominant contribution, plus a cubature which is much less
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demanding than the original one, since it is only a corrective step,~ to which the
global result is not very sensitive.

It will be obAvious from the discussion above that summing M; is a computer-
intensive operation. Fortunately, the algebra is much simpler for Mj. The sum
is best carfied out in reciprocal space by relying on the following identity for an

arbitrary function g of position (Nijboer & de Wette, 1957) :

D9ty + oy ~ E]] E ety k) - (4.30)
{z} {<}

g is the Fourier transform of g. The sum on the left hand side of (4.30) runs over
the lattice £ defined by the matrix B (see (4.3)); the sum on the right is performed
over its reciprocal lattice, with basis vectors k; such that [k, ko, ks]T-B = 276.

The Fourier transform of M2? is most easily derived from (4.28b) as

—~ 1 k2 k2 k4 smA smA
Pq _ o 2
My = exp(’ 452)(1+ o7 + g ) (K8 — ki) { iR (4.31)
1-—¢2 1 smA smA 1-—- 6 1 d smA smA
2 P P N2 2 q AR

k stands for |k|, and A, = ¢,d, - k. Applying (4.30) to M5?, and noting that ﬁ’z’q

is an even function of k; we obtain

z 1 ==
z Mp[q+{ - F Z cos (k{(} . (rp - I‘q)) ng(k{c}) . (4.32)
{=} ¢}

This was used in (4.22). The right hand side converges at an exponential rate gov-
erned by £. Since the summand (4.31) in (4.32) is simpler to evaluate than M??
('seev (4.28)), it is to be expected that £ should be chosen so that part of the lattice
sum over L is traded for summations in reciprocal space. Indeed, the optimal value
of £ = \/I% ¢/ %L with N1, N5 the number of computer operations needed to evalu-
~ate My, M, respectwely at one lattice point (Appendix G). Thus N7 > AN biases £

to higher values, accelerating the convergence of the sum of M, at the expense of
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- the summation in reciprocal space. Note that ,/I\qu(O) is ill-defined. This singular
ferm is not included in the calculation of the mobility elements however since it
cancels the backﬂow integral and the contribution from V. in (4.19) (Appendix F;
see also Brady et al., 1988). |

Our final note on numerical aspects concerns the special case p = ¢, i.e., the in-
teractions between a spheroid and its own images. As mentioned in (4.23), the term
with {z} = 0 must be excluded from the calculation of M}%., and hence MA? le=0
must be evaluated. The fdstest route to the correct result is to invert the Fourier

transformation:

1 —
: pp _ pp
ll}II(l) M3? = ) /M2 dk . (4.33a)

For small £, this can conveniently be expressed as an infinite series:

. 88 o= (—=1)"
MPP — § 4.33b
xl-lir%) 2 NZ3 — n! (4.33b)
(2¢,€)?" ¢ 1 1—€ 2n45
- 1)6 d,] .
T T a1 (2 e (2n+3)° Hm +1)8 4 ndyd;]

For large £, (4.33a) is written in spherical coordinates, and the azimuthal angle de-
pendence is integrated out. The remaining cubature can easily be done numerically,
since the kernel decays rapidiy for large k.

4.5 Calculation of hydrodynamic transport properties via

Stokesian dynamics

This section recapitulates the way hydrodynamic transport properties are evaluated
in Stokesian dynamics (Brady & Bossis, 1988; Phillips et al., 1988 a-b). These prop-
erties include the sedimentation rate of a dispersion, the self-diffusivities and the
stress in a suspension, the hindered diffusion coefficients in porous media and the
permeability of a fixed bed of particles. At the outset, let us emphasize that only the
short-time limit of these properties is calculated in this work, since we do not track
the evolution of the microstructure under influence of the flow. This asymptote can
be accessed experimenfally by dynamic light scattering or by rapid oscillatory rheo-

metric measurements (at a frequency too high to affect the particle configuration in
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the suspension); the pérmeability, of course, is not frequency dependent (provided
the quasi-stationary Stokes equations remain valid at the frequencies of interest).

The stress in the suspension is very often the quantity of most interest to the

fluid dynamicist. For non-Brownian spheroids not subject to interparticle forces, the

hydrodyndmic stress ¥ of a suspension undergoing a shearing motion characterized

by the rate of strain E is given by (Batchelor, 1971)
Y= —peb + 2uE + TL¢<S) . (4.34)

The first term is an isotropic term, which is irrelevant in incompressible media. The
second term represents the Newtonian fluid phase response. The final contribution
to the hydrodynamic stress comes from the particles, and is proportional to the

mean stresslet (S), which can be calculated from (4.14) as
| (S) = (Rou- (U —Uco) = Res : Eoo) (4.35)
= (Rsy - R;; “Ryp — RSE> By . (4.35b)

In going from (4.35a) to (4.35b), we have assumed that the particles are freely sus-
pended. The vector U lumps the translational and angular velocities of all particles;
hence Ry, stands for the 5N X 6N tensor in the bottom left corner of R (see (4.14))
and includes both Rgy and Rg,. Similarly, F groups the forces and the torques.

The averages in the previous equations are taken over all particles, as well as over
 several realizations of the microstructure if applicable. The hydrodynamic stress in
systems which are macroscopically isotropic is characterized by one coefficient (the
effective viscosity of the medium), and additional averaging over the elements of
the stress tensor S is possible, and recommended to obtain better statistics (since
’ghe five elements of S can be considered independent measures of the viscosity). In
an extensive study of the multipole moment expansion technique for Stokes flow
in random hard sphere dispersions, Ladd (1990) has shown that the viscosity is
relatively insensitive fo the number of particles used in the simulation, and that

the moment expansion converges rapidly, with meaningful results when the series
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is truncated at the level of stresslets (as done here), and little chal}ge beyond the
~ octupole. Indeed, Phillips et al. (1988a) report excellent agreement with the exper-
| imentally measured high-frequency limit of the effective viscosity for monodisperse
“hard-sphere dispersions (van der Werft et al., 1989) using Stokesian dynamics.

To obfain the sedimentation velocity V of a suspension, we consider a collection
of spheroids subject to gravity. For the sake of clarity, we shall assume that the
dispersion is monddisperse, in which case all forces are equal. This is a mobility

problem, which is solved by inverting (4.14) to obtain

(=@ (S =B B (5). s

or, writing out the contribution of each particle,

\4 A F
(W, ) = (%) (437)
a=
The averaging occurs over all particles p in the unit cell, as well as over several
realizations of the microstructure if desired. In most cases (including isotropic
samples), W is zero because the sedimentation process does not induce non-skewed
particles to rotate in a systematic sense. Special microstructures can be conceived
however, which yield a non-zero average angular motion of the spheroids under
the action of gravity. The collective diffusion coefficient, measuring the particle
| flux in response to a concentration gradient, is closely related to the sedimentation
rate, and can be directly derived from it (Batchelor, 1976). Unfortunately, these
properties are known to display a strong system size dependence, with the influence
of periodicity decreasing very slowly (as N~%) (Phillips et al., 1988a). Ladd (1990)
devised a procedure to correct for this effect, which is very effective for dispersions
of spheres. He also démonstrated, however, that many force moments need to be
retained in the description of the particle dynamics in order to achieve quantitative
accuracy for the sedimentation rate, even if lubrication interactions are explicitly

included. Since we truncate the multipole expansion after the first moment (i.e.,
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we only use the force, torque and stresslet exerted by each particle), we should
- not expect to capture more than the leading order behavior of ‘theu sedimentation

velocity. .

‘The self-diffusion tensor of a particle can be evaluated from the Stokes-Einstein

formula as
(D) =kT((Rz:)""), (4.38)

which in essence shows a direct proportionality between D and the velocity of a
tracer subject to a force in a suspension of force-free particles. (“k” is the Boltz-
mann constant and “T” the absolute temperature.) In random, monodisperse sys-
tems, the averaging usually occurs over all particles and several realizations of the
microstructure. In bidisperse samples, the diffusivity of one component may be of
particular interest, in which case the averaging only includes this species. As noted
by Phillips et al. (1988a), this property also displays a strong system size depen-
dence. - Indeed, due to the spatially periodic nature of the dispersion, all images
of the tracer particle are subject to a force too; hence the system de facto con-
siders a simple lattice of spheroids sedimenting through N —1 lattices of neutrally
buoyant particles. The effect of the periodically replicated force is long-ranged and
introduces the N3 scaling. For random dispersions of hard spheres, Ladd (1990)
successfuliy factored out this undesirable dependence by heuristically adapting the
~ low-ng correction, known analytically (Hasimoto, 1959), for the increase in viscos-
ity occurring at higher concentrations (see also Phillips et al., 1988b). He also
pointed out that the moments expansion technique is very adequate to evaluate
this property and converges rapidly, provided lubrication interactions are included
in a pair-wise additive manner, as done here.

| Hindered diffusion coefficients describe the mobility of a test particle in a fixed
bed of other particles. We again rely on the Stokes-Einstein formula, which now

becomes (for ue = 0, F, # 0, and Vg # p, U, = 0):

(Hp) = kT((RE,)™) . (4.39)
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As for self-diffusion and viscosity, this property is expected to converge rapidly
‘with the number of stréss moments if 1ubricaﬁon interactions are a((ided_ explicitly.
Indeed, relatively few multipoles are sufficient at low concentrations, while lubri-
‘cation dominates the physics at high packing fractions; since both extremes are
handled well by Stokesian dynamics, deviations from the correct behavior cannot
be large at intermediate densities. Note that lubrication interactions are much
less pronounced in sedimenting suspensions and for permeability calculations since
there is little relative motion between the particles in those cases. At high solid
contents, the formulation used here (keeping only the effects of the force, torque
and stresslet) is thus only qualitatively correct for these properties (Ladd, 1990).
The effect of the long-ranged periodicity of the model configurations, on the other
hand, is partly screened in porous media (cf. the analysis of the Brinkman equation
by Stokesian dynamics (Durlofsky & Brady, 1987)), resulting in a weak, at most
O(N~1)-dependence for the hindered diffusion coefficient (Phillips et al., 1988b).

The permeability K of a fibrous bed is the tensorial structural property which
relates the macroscopic pressure gradient to the mean velocity of the fluid in Darcy’s
law:

Vp=-K™. (u). (4.40)

It can be evaluated by simulating a uniform flow past a collection of immobile

spheroids. From an overall force balance over a representative volume of the dis-

persion, it is clear that Vp = —ng(F) (Brady et al., 1988). Therefore the resistiv-

ity K~! of a porous medium is given by
K™ =ny() R2L). (4.41)
) q

As alluded to above, it is necessary at high packing fractions to retain more moments
of the stress density than just the two first multipoles kept here (Ladd, 1990). The
qualitative features of the concentration dependence of the permeability, however,

are adequately reproduced using only 11 unknowns per particle, as done in this work.
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Artifacts due to periodicity are absent provided the Brinkman screening length
(which scales as 1/,/73) is small coinpared to the size of the unit cell {Phillips et al.,
1988b). This condition is easily satisfied except at very low solid volume fractions.
| In the remainder of this chapter, we shall apply the techniques sketched above
to calculate the hydrodynamic transport properties of spheroid dispersions. Two
classes of micrdstructures will be considered. We shall first examine perfect crystals
(i.e., an extremely ordered state), and then turn our attention to equilibrium hard-

ellipsoid configurations.

4.6. Hydrodynamic transport properties of crystalline dispersions
of prolate spheroids
Hard-rod dispersions undergo a phase transition to a liquid crystalline state at high
volume fractions (Onsager, 1949; Frenkel, 1987). This sudden change in the equilib-
rium microstructure, caused solely by excluded volume effects, dramatically alters
the macroscopic characteristics of the material. Most notably, the anisotropy of the
microscopic configuration imparts a directionality to most observable properties,
including all hydrodynamic transport coefficients discussed in §4.5. The growing
impact of quuid crystals on industrial and household technology drives many cur-
rent research efforts in this area. Microstructural theories, which explain macro-
scopic phenomena in terms of the underlying physics at the microscale, have, in
conjunction with Monte-Carlo and molecular dynamics simulations, already greatly
expanded our understanding of these complex systems under equilibrium conditions
(Allen et al., 1989; Talbot et al., 1990). Yet most of these works either consider flu-
ids of hard convex bodies (Frenkel & Mulder, 1985; Talbot et al., 1990), or neglect
hydrodynamic interactions between the rods while recognizing that this significantly
restricts the scope and validity of the analysis (Bitsanis et al., 1988, 1990). It is
tempting to use Stokesian dynamics to remedy this situation. In particular, our
simulation method seems ideally suited to investigate how the rheological prop-
erties of liquid cryst‘ais depend on the concentration of the particulate phase, its

microstructure, and its molecular characteristics (such as the aspect ratio and the
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- monodispersity). .
v’ At high concentrations, a fluid of hard spheroids spontaneously assembles into
a structure devoid of translational order, but possessing ‘a preferred direction of
a,ligmhent (Frenkel et al., 1984). These textures are called nematics. At higher
densities still, tvhey' solidify into a crystal resembling a close-packed face-centered
cubic cell of spheres stretched along the (111)-axis (see below). We shall consider
idealized models of a nematic liquid in this section, characterized by perfect orien-
tational and translatioﬁal order. Near the maximum packing, their microstructure
is similar to that of the frozen system of hard spheroids. These examples also serve
as useful reference configurations, comparable to simple cubic lattices for spheres.
The highest packing fraction attainable for prolate spheroids on a simple cubic
cell is 7/(6r2), and hence is about 0.5% for rods of aspect ratio 10. It is possible,
however, to achieve a density equal to the maximum for spheres, 7/(3v/2), by
stretching a face-centered cubic cell of spheres in any direction by a factor equal
to the aspect ratio of the spheroids. This transformation maps a sphere onto an
ellipsoid without altering the volume fraction of the crystal. To preserve as many
symmetry elements in the lattice as possible, we chose the direction of stretch to
be perpendicular to the hexagonally packed stacks, i.e., along the (111)-diagonal of
the original cubic cell (Fig.4.1). This guarantees the simplest possible form for the
tensorial properties of the crystal. We shall refer to the direction of stretch, which
coincides with the orientation of the spheroids, as the z-axis. The system thus
possesses 6-fold symmetry about 2. Based on the invariance of the microstructure
under rotations by 7/3 in the zy-plane, and under reflections about the origin, one
can show for instance that the fourth rank tensor which relates the stress to the
rate of strain only has 3 independentr components. (Using only the tracelessness
of S and E, and the symmetry of Rz, one cannot reduce the number of coefficients
further than 15. For comparison, 4 coeflicients are needed if the lattice is stretched
“in the (001) directioh, and only 2 for face-centered cubic cells (Nunan & Keller,

1984).) In addition, a distortion along (111) generates a structure which resembles
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the configuration into which fluids of hard ellipsoids solidify at high densities. It is
thus physically realizable in this sense.

In order to study dispersions at concentrations different from the maximum, an
algorithm must be devised to expand the lattice. The most simple-minded approach,
an isotropic dilatation, soon results in very uninteresting structures consisting of
hexagonally‘ packed sheets of spheroids separated by lar‘ge gaps filled with fluid.
This is a consequence, of course, of the marked shape anisotropy of the unit cell
at the highest volume fraction. In order to preserve a “space-filling” configuration
even at low concentrations, we decided to expand the lattice in such a way that
the surface-to-surface separation between nearest neighbors is the same in all di-
rections.] Although this definition is somewhat arbitrary, it offers an unambiguous
way of constructing an “isotropically compact” structure with full three-dimensional
character. This has the added benefit that the geometry reduces to a face-centered
cubic geometry at infinite dilution, independently of the aspect ratio of the parti-

cles. We shall call this type of crystalline geometry “expanded face centered,” or

efc for short.

The entire crystal can be built using only one spheroid per unit cell. This has
obvious computational advantages, since the time savings associated with using the
minimal nﬁmber of particles far outweighs the cost of having a denser lattice over
~ which to perform the Ewald summation. Unfortunately, this also impoverishes the
information content of the simulations; indeed, because the forcing is periodic, the
problem formulations for the self-diffusivity, the hindered diffusion coefficient and
the sedimentation rate become identical, and no meaningful results can be obtained

for D nor H unless more particles are included in the unit cell. Nevertheless, because

1 The geometric problem of determining the correct amount of stretch along the
three basis vectors in order to maintain the surface separation equal within the
hexagonally packed layers and between neighbors in adjacent layers, reduces to a

non-linear equation in one variable which can be solved iteratively (Appendix H).
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of its efficiency, we used the most elementary module, containing a single spheroid,
for most of the results reported here. Note that the basis vectors of the unit cell are

non-orthogonal and of different lengths, but the resulting geometric complications

are relatively straightforward to overcome.

4.6.1 Sedimentation rates

The sedimentation rates for an efc-lattice of spheroids of aspect ratio 6, normalized
by their value at infinite dilution, are displayed in Fig.4.2, alongside their rotational
counterparts (i.e., the rotation rates due to unifornﬂy applied torques). From sym-
metry considerations, all particles fall at the same speed, and there is no coupling
between translation and rotation (i.e., W =0 in (4.36)). Motions along the direc-
tion of alignment aré also decoupled from motions perpendicular to it. Furthermore,
as pointed out earlier, the crystal possesses a 6-fold axis of symmetry and thus is
isotropic in the zy-plane. Therefore, 4 components suffice to characterize the 6 x 6
sedimentation tensor (or collective diffusion tensor): VI{",Vf, > and Vi°. (The
rotational “sedimentation rate” V|[® represents the angular velocity of the particles
resulting from a uniformly applied torque parallel to their axes; V° is defined in a
similar fashion.) The most striking feature perhaps of Fig. 4.2 is the peculiar con-
centration dependence of the collective rotational mobility perpendicular to the rod
axis. A very shallow minimum at an extremely dilute volume fraction (V]° reaches
| 0.99933 at ¢ = 0.00035) is followed by a pronounced maximum exceeding 1 at about
21% solids by volume. The initial drop is due to the increased effective viscosity
of the suspension. The subsequent rise can be understood by reference to Fig. 4.3,
where we sketch how viscous interactions between the rods reinforce the particles’
r:otation, in a manner similar to the drag reduction experienced by two spheres when
fhey fall as a doublet rather than as two isolated balls. At higher concentrations,
however, the hexagonally packed stacks of spheroids become interpenetrating, and
~actively counteract each other, causing the collective rotational diffusivity Vi° to

drop again. A schematic drawing similar to Fig. 4.3 will show that hydrodynamic
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interactions always act to retard the motion in the case of V|/°, which therefore
"decreases monotonically with increasing volume fraction. The translational sedi-
mentation rates V' also fall off with concentration, as expected intuitively, because
the strong backflow dominates the analogous cooperative effect of hydrodynamic
interactions. The slight upward bend in V* at high packing densities is associated
with the negléct of multipoles higher than the torque and the stresslet, and should
be disregarded. (Similar aphysical behavior has been noted in simulations of con-
centrated samples of Spheres if the mean field quadrupole was not included in the
formulation, as is the case here.)

Synimetry arguments demonstrate why lubrication stresses affect V*°, but
not V*. This is true for every microstructure which can be constructed using a
single particle per unit cell. The abruptness of the drop at about 28.5% is artificial,
and merely a consequence of our lack of knowledge concerning the O(€®) correc-
tion to the lubrication formulae of Claeys & Brady (1989). This O(1) constant
provides the smooth transition from the “far-field” behavior to the “near-field,”
singular resistance behavior as the surface separation € between two particles de-
creases. Without it, lubrication interactions must be allowed to “kick in” at a
certain threshold separation €max, set at 1 in these simulations. (This distance is
non-dimensionalized by the harmonic mean of the radii of curvature at the points
of closest approach.) The effect is quite dramatic for crystals because lubrication
stresses set in at the same concentration for all particles. No discontinuity is notice-
able for more random configurations, since the contribution of lubrication stresses
to macroscopic properties is smeared out by averaging over the particles in that case
(cf. the results of §4.7). Moreover, the threshold €y,x, which is somewhat arbitrary,
was set at an unusually high value here for illustrative purposes. We typically chose
émax = 0.08, which is more consistent with the assumption underlying lubrication
theory that e << 1. In the remainder of this section on crystalline geometries, we

shall actually suppresé lubrication effects altogether (emax = 0).

For a suspension of spheres of radius a arranged on a simple cubic lattice of
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~ volume fraction ¢, Hasimoto (1959) calculated that
VY =1 1.74¢3 , (442

where the sedimentation velocity has been scaled by |F|/6map. The collective trans-
lational mobilities V¥ of spheroids on an efc-lattice do not, however, decrease quite
linearly with the cube root of the concentration, although' this dependence is ap-
proached asymptotically (Fig.4.4). This deviation is explained by the fact that the
lattices do not remain perfectly self-similar when they are compressed, because they
are constructed so that the superficial separation bétween the spheroids is uniform
in 3 non-planar directions (vide supra).

The sedimentation rate V|* drops faster with concentration than V|* for all
aspect ratios examined. The decline steepens slightly as the eccentricity of the
spheroids increases. The maximum in V[° also becomes higher, reaching more
than 10 for r, = 24 at ¢ ~ 0.21.

4.6.2 Hindered diffusivities

As explained earlier, the evaluation of hindered diffusion coefficients requires the
use of more than one particle per unit cell. Figure 4.5 shows the hindered diffusiv-
ities for translation and for rotation perpendicular to the rod axis in an efc-lattice
of spheroidé of aspect ratio 6 obtained using 1, 4, 8, 16 and 32 ellipsoids per unit
cell. In the last case, one particle is subject to a force (or torque, respectively),
and the remaining 31 are held still. The set of data with N =1 reproduces the
sedimentation rates. For both translational and rotary motion, the number depen-
dence is rather mild, and the results for 32 particles are not much different from
the ones for N = 16. The rotational mo’bility H™ < V™ because the cooperative
hydrodynamic interactions giving rise to the maximum in the ¢-dependence of Vie
are screened by the intervening stationary particles. For the translational motion,
H™ > V* because the backflow of fluid, driven by the pressure gradient balancing

the forces acting on the particles, weakens (from a macroscopic momentum balance),

becoming zero as N — oo.
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-~ 4.6.3 Relation between the stress and the rate of strain

‘By applying the transformations for which the efc-lattice is invariant (a rotation
by 7/3 about the z-axis, for instance), exploiting the tracelessness and symmetry
of the stresslet S and of the rate-of-strain tensor E, and making optimal use of the
implications of Lorentz’ reciprocal theorem (Hinch, 1972), it is easy to demonstrate

that Ry - R7} - Rrp — Rgp, which we shall denote by Rz (see (4.35)), must have

the following structure:
P L _L
R.p = 87a ,u{377T (dd 35) (dd 35)
+7n.(déd + Tdéd + déd” + Tdéd” — 4dddd) (4.43)

+ ,(66 + 86 — 66 + ddé + 6dd + dddd — déd — Tdéd — déd” — TdadT)} :

The unit vector d indicates the orientation of the rods, and lies along the z-axis.

The non-standard notations ?5 and 86 mean
(5V5),'jkl = 5i15jk and (33),’]'“ = 6ik6j, . (4.44)

To within at least 5 significant digits, the tensor Ry calculated for an efc-lattice us-
ing Stokesian dynamics conformed to (4.43). For isotropic suspensions, the three co-
efficients 7,71 and 7)) are equal to the scaled single particle contribution 7 to the ef-
fective viscosity [i.e., Ryp = 87ra3;m(5u5 + 86 — 286) so that peg = p(1 + 8mangn)
= p(l+ 6r}2, #n)]. For dispersions which possess cylindrical symmetry about d (such
as efc-lattices of spheroids), nr gives the resistance to uniaxial extension in the
direction of d, n; indicates the stress in response to simple shearing flows with a
velocity gradient parallel to d, and 7 corresponds to the apparent viscosity during
simple shear (or hyperbolic straining) in a plane perpendicular to d (Fig. 4.6).

At infinite dilution, (4.43) reduces to the expression for the stresslet exerted by
an isolated freely mobile spheroid in a purely extensional flow. Using the symbols of
Chwang & Wu (1975) (see also Kim (1986) and App. J), we can derive the limiting

forms of 1y, n, and n,lb for very slender rods as

ng—0 3

U T =5 (18log(2rp) — 27)71 + O(r;?)  (4.45a)
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(v ee) Doy e
ull 7.%‘?:*0 ‘ —3630&4 = %T;2+O(T;4) , (4.45¢)

with 7, = 1 — €. These asymptotic forms for the coefficients 7 (in the double limit
ng — 0 aﬁd rp — 00) are accurate over a remarkably wide range of aspect ratios
(Kim, 1986). Fig. 4.7 shows that they also provide rather good estimates of 7,
and 7, even for quite concentrated systems, since the apparent viscosity is well
fitted by the line papp = p(1 + 2¢) for ¢ up to about 10% if r, > 4.1 Note that this
expression for papp is only valid for flows which do not have extensional components
in the direction of the rod axis (i.e., E* : dd = 0) since 1y contributes otherwise.
The coefficients 7, and 1, are indistinguishable on the plot, but a comparison of
the numerical values teaches that n, < n, at low concentrations, and vice-versa at
high volume fractions.

A look at pext in Fig. 4.8 reveals a richer dependence on concentration and
aspect ratio. The dramatic augmentation of the extensional viscosity which can
be achieved by adding less than 1000 ppm of fibrous material to the dispersion is
obviously of tremendous practical importance. Note also the strong effect of the
aspect ratio on the resistance of the suspension to stretch. For comparison, the
extensional viscosity of an fec-lattice of spheres has also been drawn, together with
the expansion to O(4'%/%) due to Zuzovsky et al. (1983). The deviation of the
simulation results from this theoretical prediction at the higher volume fractions
is real, as supported by the exact calculations of Nunan & Keller (1984), with
which our data agree very well. The asymptotic formulae obtained from (4.45a),
Pext = p(1 — 127*}2)(;5015), have also been penciled in for spheroids of aspect ratio 4,
16, and 300. This brings to bare that dispersions containing 0.1% by volume of
short rods may be called dilute, but that hydrodynamic interactions cause signif-

icant deviations from dilute suspension behavior for spheroids of aspect ratio 300

1 Similarly, it has been noted by others that the Einstein correction to the vis-

cosity of a suspension of spheres, peg = p(1 + %qﬁ), holds well up to 10% by volume.
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- at the same concentration. Indeed, as first suggested by Batchelor (1971), the rele-
vant measure of concentration for a fibrous dispersion is nga® in probiems for which
hydrodynamic interactions are relevant. This is roughly the volume “fraction” of
the spheres which circumscribe the rods (the apostrophes emphasizing that this
fraction mé,y exceed unity). For instance, it is about 20 for the 0.1% dispersion of
spheroids of aspect ratio 300 cited above. In 1990, Shagfeh & Fredrickson calculated
the hydrodynamic stress in a suspension of rods by evaluating the first and dom-
inant term in a diagrammatic series representing multiple scattering events of the
momentum propagator in the fibrous dispersion. Their rigorous treatment confirms
Batchelor’s main findings, and extends them to arbitrary orientation distributions.
(Batchelor restricted his analysis to dispersions of parallel fibres.) The analysis
rests, however, on the assumption that the locations of the centres of the particles
are uncorrelated. Nevertheless, it is instructive to examine our numerical results in
the light of their theory. We have therefore recast the data as shown in Fig. 4.9,
where we plot the inverse of the stresslet component S : dd for uniaxial extension
about the z-axis of an efc-lattice, versus the logarithm of the volume fraction. (By
definition, see (4.43), the ordinate is equal to (8ma®uns) ™" = [(pext/p — 1)/ng] )
For aligned identical slender ellipsoids of revolution, Shagfeh & Fredrickson (1990)

obtained

Pext | _ 8raing (1 _Inln(1/¢) 1.4389) ( nea ) . (4.46)

po T 3l(1/9)\ T In(1/¢)  In(1/9) In*(1/¢)

They also proved that the inverse dependence on In(¢) in this expression is inti-
mately related to the occurence of hydrodynamic screening in suspensions of rods,
as intuitively hypothesized by Batchelor (1971). Screening is a phenomenon well un-
dersfood in porous media (Brinkman, 1947), where the immobile particles actively
résist the motion induced by a point force placed anywhere in the sample, thus
causing its disturbance to decay faster with distance r than the r~!-dependence
usually observed in Stokes flow. . Hydrodynamic screening in dispersions of freely

suspended rods, on the other hand, is a relatively new concept, and has led to some
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- confusion. The diagrammatic technique used to sum hydrodynamic interactions
between fibres (Shaqgfeh & Fredrickson, 1990) clearly demonstrates, however, that
the Fourier components of incident velocity fields with a wavelength of o(a) are
effectively screened by force-free rods. Physically, the rigid bodies oppose any dis-
turbance which changes direction over distances much shorter than their largest
dimension. It is well known that the screening length ( (i.e., the characteristic
length scale for the decay of velocity disturbances) varies as qﬁ—% in random disper-
sions, but that it is shorter ranged, of O(qﬁ‘%), for simple lattices. This also holds
in fibrous suspensions, and Shagfeh & Fredrickson (1990) report for random disper-
sions of rods that ¢ ~ (nd,a)‘%. To account for the difference between the screening
lengths in ordered and disordered dispersions, we naively rescale (4.46), which was
derived using the assumption that the positions of the rods are uncorrelated, by a
factor 2/3. This is obviously ad hoc, since there is no reason to believe that the
second and third terms in the expansion (4.46) should scale like the first. Yet we
take the remarkably good agreement with our simulation results noted in Fig.4.9 to
indicate that this reasoning is at least qualitatively correct. The transition from a
regime in which the mean stresslet is independent of volume fraction (as it should be
for dilute systems) to a concentration range where S : dd ~ (In(1/¢))™? is clearly
apparent and is consistent with the idea of screening. Quite fortuitously, the break
point in Fig. 4.9 corresponds almost e}%actly to %ﬂn(ﬁas’ = 0(1), as predicted by
theory.

4.6.4 Dependence on the crystal geometry

One may wonder how representative the properties of an efc-lattice are for other
crystal geometries. The fact that the maximum packing attainable for slender bod-
ies depends so critically on the arrangement, hints that the microstructure matters
much more for spheroids than for spheres. For instance, we noted earlier that sim-

ple cubic lattices cannot take up more impenetrable spheroids than &7, while efc
. P :

structures accept as much as 9\”/51. This is a considerable difference even for mod-
- 4

erate aspect ratios. In contrast, body-centered cubic cells of spheres may be filled
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up to %,‘ which is not very different from the densest (face-centered or hexag-

oﬁa,lly close packed) structure. We explained in the introduction of this section
how to construct ciose packed crystals of spheroids of arbitrary shape by stretch-
ing the corresponding unit cell for spheres by a factor equal to the aspect ratio,
and stressed that this transformation does not affect the packing fraction. We also
showed that an isotropic dilution of this dense microstructure results in uninterest-
ing “two-dimensional” configurations as a result of the anisotropy of the unit cell
at maximum packing, and introduced the alternative procedure of expanding the
lattice by keeping the surface-to-surface separation between nearest neighbors the
same in 3 non-planar directions. This guarantees that the dispersion possesses as
much “three dimensional character” as is compatible with the chosen concentration.
We apply this technique to 4 types of microstructures in what follows to investigate
the impact of the detailed crystal geometry on the macroscopic properties. One lat-
tice will also be expanded isotropically in order to judge the effect of the dilatation
technique on the transport coefficients of ordered configurations. We shall primar-
ily focus our discussion on the relation between the stress and the rate of strain
because of its primary interest in the rheology of rod dispersions. Furthermore,
this characteristic can be estimated reliably with Stokesian dynamics (keeping only
the effects of the force, torque and stresslet exerted by the spheroids on the fluid),

and is relatively insensitive to the number of particles used in the unit cell (Phillips

et al., 1988 a; Ladd, 1990).

Three of the five lattices considered here (Fig.4.10) are obtained by distorting

elementary modules of spheresb, namely:

¢ the efe-structure of the previous section, with maximum packing #, gotten

by stretching a face-centered unit cell of spheres along (111),

o the ebe-configuration, constructed by expanding the same lattice along (001).
This obviously has the same maximum density as the efc-variant. For rp =1,

both reduce to the face-centered cubic geometry, and are indistinguishable.
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(They then become descriptions of the same packing in two different frames of
reference.) Note that the ebe-crystal can be thought of as a stagger_ed arrange-
ment of spheroids placed on a square grid, just as the efc-lattice consists of
interlocking stacks of particles distributed on a hexagonal mesh. In this sense,

it is related to the body-centered crystal of spheres, hence the acronym ebc.}

¢ the esc-structure, obtained from a simple cubic cell of spheres by stretching it
along (001). This geometry resembles the ebc-lattice, but the stacks of spheroids
are now facing each other instead of being offset by half a mesh size for a
tighter packing. The gap width between the layers (i.e., the distance between
the poles of two ellipsoids in adjacent stacks) is equal to the smallest surface-
to-surface separation within the sheets, consistent with the convention used
throughout this section (except for the isc-structure discussed below). The

maximum density of this crystal is 7 /6.

A fourth crystal is built so as to bear the same relation to the efc-lattice as the

esc-configuration vis-d-vis the ebc-lattice:

I A quick drawing will convince the reader that the “standard” fec-lattice is
actually a body-centered crystal in which the surface-to-surface separation between
nearest neighbors in the “xy”-plane (i.e., on the square mesh making up the face-
centered motif) is equal to the distance between adjacent spheres with different “z”-
coordinates (i.e., in successive layers). In the classical definition of a bee-structure,
on the other hand, the spheres are farther apart in the direction of the edges of
the cube [(100), (010) and (001)] than along its diagonals [(111), etc.]. In order to
dilute a bec-crystal according to the rules developed in this work, a diamond-shaped
basis pattern must be adopted with an inscribed angle of arcos(1/3) (Appendix H).
‘The only symmetry element of this grid is a rotation by 7. This implies that
6 coefficients are needed to fully characterize Ry y for a lattice of spheroids derived
from a body-centered cubic cell, In contrast, because square arrays are invariant

for rotations by I, 4 indépendent constants suffice for ebc-crystals as defined here.
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¢ in the smc-structure, honeycomb layers of spheroids are stacked directly on
top of one another in a manner similar to the square arrays of Iz;articles in the
esc-configuration.. This packing is somewhat less efficient than that achieved
in the efc-and ebe crystals, and accommodates at most 7/(3v/3). The abbre-
viation smc was chosen because this geometry is reminiscent in a crude way of
the molecular arrangement in a smectic A (a liquid crystalline phase character-
ized by a two-dimensional ordering of the molecular centres of mass in planes
perpendicular to the direction of alignment of their directors).
The fifth and last structure to be defined is
¢ the isc-crystal, which is identical to the esc-configuration when the particles
touch (i.e., it is a stretched simple cubic cell at closest packing), but is then ex-
panded to lower volume fractions by dilating isotropically, instead of respecting
the usual convention which stipulates that the surface-to-surface separation is
the same in at least three non-planar directions.
In order to accentuate the differences in the stress response of the various crystals,
the data are presented in terms of the average stresslet n per particle (appropriately
non-dimensionalized) rather than the apparent viscosity. As shown in the previous
subsection, these quantities are related by papp = (1 + 6r2¢n). Although we shall
use the symbols 77,7, and 1, to denote the flow conditions illustrated in Fig. 4.6,
the tensor Ry does not in general have the form (4.43). Figure 4.11 summarizes
our findings for dispersions of spheroids of aspect ratio 8. The coefficient 7, is
obviously the least sensitive to the detailed features of the crystal geometry. A
closer look reveals however, that the microstructures with the smallest 1, at a
given volume fraction (i.e., the lattices which offer the least resistance to shear
flows having a velocity gradient parallel to the direction of alignment, see Fig. 4.6)
display the highest extensional viscosity (i.e., the largest 7,). In fact, the ordering
of the lattices according to 7, is exactly the reverse of the order obtained using 7.
This correlation is not surprising since both coefficients are associated with flows

straining the spheroids in a plane containing their axes.
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The staggered configurations (ebc and efc) display the largest Un (Fig. 4.11a).
This reflects the steric hindrance to rotation brought about by interlacing the stacks
of spheroids. This reduced orientational freedom (confirmed by comparing the “sed-
imentation rates” V° of the various crystals (data not shown)) increases the stress
response of the dispersion to any shearing flow which induces a rotation in a plane
containing d. This phenomenon is proper to non-spherical particles, for which a
strong coupling exists between the stress and the rotation rate (i.e., Rsq # 0). In-
deed, a close inspection of the grand mobility tensor clearly demonstrates that the
origin of the larger n, for staggered configurations resides in the larger Mgy for
these systems. This effect is more pronounced for the ebc-lattice than for the efc-
geometry because each particle has 8 out-of-plane neighbors which hinder its rota-
tion in the former crystal (and 4 in-the-plane neighbors which reinforce its motion),
as opposed to 6 out-of-plane neighbors and 6 in the same layer for the efc-lattice.
Finally, the isc-geometry, which leaves the largest gaps between the layers, clearly
has the lowest 1, , in accordance with the arguments above.

Despite the aforementioned correlation between 7, and ns, the physical mecha-
nism responsible for the decreased extensional viscosity in staggered lattices cannot
be traced to the coupling between the rotation rate and the stress (Mg ), since this
is irrelevant for uniaxial extension. (This can best be seen by observing that the
spheroid does not reorient when the principal direction of strain coincides with its
axis.) Instead, the stronger resistance to axisymmetric extension of the sme and
esc-configurations is directly related to a reduction of the diagonal elements of My
compared to their values for efc and ebc-lattices at the same volume fraction. Phys-
ically, this arises because the secondary flow generated by spheroids when they
oppose the elongational deformation, more strongly affects the vicinal spheroids
when these are perfectly aligned with them, than when they are slightly to the side.
The analysis by Shagfeh & Fredrickson (1990) and the qualitative argument justi-
fying the cell model used by Batchelor (1971) to calculate the extensional viscosity

of a suspension of uniformly aligned rods emphasize the importance of the smallest
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distance between the fibres (measured perpendicular to the particles’ axes, and not
between their geometric centres), since this is the length scale for ‘hyd_rodynamic
screening. This is the least for isc-crystals, which have to compensate for the loose
-stacking of the layers by packing the spheroids more tightly within the sheets. This
lattice correspondingly has the highest ny.

The response of the dispersions to simple shear in the zy-plane, finally, depends
mostly on the shortest distance between the fibres along the principal directions of
the strain (i.e., the compressional and extensional axes of the flow). These distances
are listed in table 4.1 for all lattices at ¢ = 0.1, and can be seen to correlate
well with 7. For crystals with hexagonal rather than square symmetry in the
plane of shear, the separation given is the centre-to-centre distance between nearest
neighbors. The spacing of the particles, averaged along both the compressional and
extensional axes of the shear, will certainly be larger for these configurations, which
explains why the efc and the smc-lattices display lower apparent shear viscosities

than suggested by the distances of Table 4.1.

Table 4.1: Shortest centre-to-centre distance along the principal directions of

strain of a simple shear flow in the plane perpendicular to the axis of the particles

for several crystal geometries at ¢ = 0.1 (r, = 8).

efc smec esc esc ebc ebe 1Isc  isc
I ki T T T
v i2 12 4 0 rl 0 4 0

m(x10%) 599  6.06  7.57 503  7.08 506 941 507
r/a 592 369 .35 757 570 .806  .429 .606

7/a is the shortest distance between the centres of the spheroids for the given configuration, mea-
sured at £ or %7.' relative to the direction of flow in the plane of shear (i.e., along the compressional
and extensional axes of the straining field). As always, a denotes the particle half-length. The

angle J = 0 if the undisturbed velocity lies along the shortest basis vector of the lattice (Fig.4.10).

See also Fig. 4.11.
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4.6.5 Comparison of spheroids with strings of beads

One of the major advantages of the simulation technique is that it oﬁly uses 11 un-
knowns per particle, yet claims to reproduce hydrodynamic interactions between
the rods quite well. In order to check how adequately Stokesian dynamics rep-
resents the effect of the spheroids on the flow, we compared the properties of a
crystal of spheroids with those of a lattice of spheres rigidly connected into strings.
Since each bead of the arrangement has 11 degrees of freedom associated with it,
this representation of an "elongated” body captures more stress moments than only
the total force, torque and stresslet exerted by the composite object on the fluid.
We then constructed a ”smectic” crystal of strings by placing arrays of 19 aligned
spheres on hexagonal grids, and stacking these sheets directly on top of one an-
other. We then calculated the properties of this lattice using a version of Stokesian
dynamics dedicated to spherical particles (and verified the results with our pro-
gram in the limit of zero eccentricity). The single string contribution 74 to the
extensional viscosity is given by the solid line in Fig. 4.12. We then matched this
component of the stresslet for the string of beads at infinite dilution to that ex-
erted by two isolated spheroids, one having the same length as the composite rod
(20 sphere diameters), but a different aspect ratio (r, = 11.4), the other having the
same aspect ratio (r, = 20), but a longer axis (a = 21.93R, with R the radius of
the spheres). Both spheroids are displayed in the insert of Fig.4.12. The properties
of smec-crystals of these spheroids were then computed using Stokesian dynamics.
Since the two ellipsoids are considerably more voluminous than the string of beads
(even the slender spheroid takes up about 40% more room), it is important to com-
pare 7 at the same number density of rods, rather than at equal packing fractions.
One can then see from Fig. 4.12 that the data for the lines of spheres lie in between
those for the lattices of spheroids. At each concentration, there therefore exists an
ellipsoid whose geometry approximates that of the string of beads, and which has
the same extensional {fiscosity at infinite dilution and at the chosen number density.

More importantly, the version of Stokesian dynamics which truncates the moments
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expansion of the stress density after the first two terms (keeping only the effect of
the force, torque and stresslet) seems at the very least to capture the qualitative
features of the concentration dependence of the transport properties for crystals
of rod-like objects. This represents a considerable computational advantage, since
only 11 unknowns describe the spheroids in this example, as opposed to 209 for the
string of 19 spheres. As the time required to carry out the matrix inversion (which
yields M~! ~ R; see (4.25)) grows with the cube of the number of unknowns, this
is very significant. Figure 4.12 also shows that the results for the spheroids agree
quite well with each other when plotted ws. the actual volume fraction too, and
that the calculations were carried out to nearly close packing, even though the cor-
responding density of spheres was only moderate (~ 15%). In other words, at the
point where the upper curve crosses the data for the string of beads in Fig.4.12, the
sphéroids are nearly touching and lubrication stresses, if they would be accounted
for, would undoubtedly increase the extensional viscosity above that of the line of

spheres. The agreement thus remains very good up to the highest possible density.

4.7 Hydrodynamic transport properties of equilibrium

hard-spheroid dispersions

As shown in the previous section (§4.6.3 especially), a fibre influences the hydrody-
namics of the suspension over a fluid volume of O(a?), with a the particle half-length.
Thus, nga® is the relevant measure of concentration for all hydrodynamic transport
properties (as well as for the thermal conductivity (Shagfeh, 1988) and the dielec-
tric constant, by mathematical analogy (see Bonnecaze, 1991)). The density, on the
other hand, scales with nga®/ 7‘%. For spheroids of aspect ratio 10, these scales differ
by two orders of magnitude. It is therefore conceivable that a sample with an ex-
tremely low volume fraction is relatively concentrated as far as viscous interactions
are concerned, with characteristics differing radically from those of isolated particles.
Furthermore, the excluded volume of rods varies as a®/r,, a scaling intermediate

between that of hydrodynamic effects and that of the volume actually occupied by
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the fibre. At least three concentration regimes can thué be distinguished in disper-
“sions of hard rods (Doi & Edwards, 1986): dilute systems (nga® << 1) in which the
spheroids are essentially isolated, semi-dilute samples (1 < nga® < r,), where hydro-
idynamic interactions are dominant, and concentrated rod dispersions (nga® > r,)
“with noticeable excluded volume effects. The transition from dilute to semi-dilute
can be though‘tb of as the onset of entanglements; i.e., the separation between the
fibres becomes smaller than their largest dimension. We already saw that this leads
to hydrodynamic screening in the semi-dilute region. The concomitant reduction
in the rods’ motional freedom (as observed by the drop in the long-time rotational
diffusivity for instance) is often graphically explained in terms of a “caging” effect
(Doi & Edwards, 1986). The crossover from semi-dilute to concentrated dispersions
is even more dramatic in a sense, since the microstructure changes appearance, with
the formation of liquid crystalline domains. This phase transition is accompanied
by discontinuities in the macroscopic properties of the suspension. In particular,
the systém is no longer isotropic. (The hallmark of liquid crystalline phases is long-
ranged molecular orientational order. This confers a directional dependence to all
tensorial observables, such as diffusivities, stress/rate-of-strain relations, permeabil-
ity, conductivity, refractive index, etc.)

In this section, we report on numerical simulations tracking the properties of
suspensions of hard spheroids as a function of the solid content. The effect of hydro-
dynamic interactions is always visible as a deviation from the single-particle behav-
ior. Any non-linearity in the concentration dependence betrays the importance of
viscous interactions. In some instances, we shall also detect the isotropic-to-nematic
transition. (“Nematic” is the liquid crystalline phase favored thermodynamically
by systems of hard spheroids at sufficiently high densities.) Although external fields
;either electromagnetic (for susceptible particles) or mechanical (an imposed con-
tinuous deformation for example)- can induce orientational order, in effect lowering
the isotropic—to—nemafic boundary (Thirumalai, 1986; See et al., 1990), we shall

focus on equilibrium microstructures only in this work. The effect of the flow on
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the configuration of the particles is not accounted for. As explained in §4.6, this
- amounts to calculating the short-time or higthrequency limit of the frapsport prop-
’ erties; vT'he microstructures may be thought of as being represenfative of Brownian
- dispersions (at zero Péclet number), even though the spheroids in our simulations
are not subject to thermal motion and Brownian stresses are not computed.

We pointed out in the previous paragraph that the excluded volume due to the
presence of a rod exceeds its actual volume by a factor proportional to the aspect
ratio. This implies that it is much harder to generate an “isotropic” configuration
of rods than a random assemblage of spheres at the same volume fraction. The
equilibrium hard-ellipsoid configurations discussed in this section were generated
by a Monte-Carlo method (the energy function being infinite whenever two parti-
cles overlap, and indifferent to particle location and orientation otherwise). The
spheroids were initially placed on an efc-lattice at the desired concentration. The
unit cell was made “as cubic as possible” within the constraint of the imposed num-
ber of particles by taking optimal combinations of the elementary basis vectors of
the lattice (i.e., of the vectors joining nearest neighbors in the crystal). For exam-
ple, a run with 48 particles might start with 3 layers of 16 spheroids arranged on a
4 x 4 grid, or with 2 sheets of 24 rods in 4 rows of 6, depending on the relative size
of the elementary basis vectors of the lattice. (For very concentrated systems of
highly elongated particles, the distance between the stacks of spheroids is so much
larger than the separation within each layer, that the “best” building block for the
initial efc-lattice may very well be one 6 by 8 hexagonal pattern of spheroids.) A
box shape standardization algorithm (discu’ssed in Ch.V) guarantees that all angles
inscribed between the edges of the unit cell lie between 7 and 2?", thus preventing
the accidental use of very skewed modules which would complicate the geometric
analyses, and might bias the particle configuration. This places absolutely no re-
striction on the type of microstructures that can be examined. The particles are
then subject to random translaﬁional and rotational displacements in the manner

proposed by Frenkel & Mulder (1985), rejecting all moves which cause spheroids
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to overlap. The “quick” Perram-Wertheim criterion (Perram & Wertheim, 1985;
~ Allen et al., 1989) was used to screen most of the potentially offending pairs, fol-

lowed by the more elaborate test for overlap due to Vieillard-Baron (1970) if the first
| check was inconclusive. (The six conditions satisfied by non-intersecting spheroids
were derived by Vieillard-Baron for identical particles only, but the analysis lead-
ing to his equations can be adapted for unlike ellipsoids, resulting in a set of six
similar criteria.) The Monte-Carlo procedure can be proven to sample configura-
tion space evenly (Metropolis et al, 1953), producing representative snapshots of
the equilibrium microstructures of hard-particle dispersions. We double-checked
our method by verifying that the centres of mass of the spheroids wander diffu-
sively as a function of the number of random displacements. We also found that
hard-sphere suspensions generated in the same manner possess radial distribution
functions in excellent agreement with the Percus-Yevick equation (Smith & Hen-
derson, 1970; Perry & Throop, 1972; Verlet & Weis, 1972), except of course for
the effects of periodicity. The values of the transport coefficients given below are
averages over at least 6 to 8 different realizations of each dispersion of spheroids (at
every concentration and for each aspect ratio). Only monodisperse samples were
considered.

Before diving into- the results, let us pause for a moment and consider the ge-
ometric problem of placing N spheroids inside the unit cell. Orientational order
spontaneously appears in the samples at concentrations such that ng,a®/r,~1
(Doi & Edwards, 1986). The scaling with inverse aspect ratio obviously follows
from the fact that excluded volume is the driving force for the thermodynamic
transition to liquid crystalline states. Nematics are thus formed at lower volume
"fra‘ctions for slender fibers than for short rods, since the critical concentration ¢, =
‘n¢c47ra3/3r§ = O(47r/3rp), a decreasing function of aspect ratio. On the other
hand, it is advisable to work with unit cells which are large enough to accom-
modate the spheroids in any orientation they may choose, so as not to bias the

resulting microstructure by the shape and size of the periodic building block. It
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- follows that its volume V..,> O(8a®). Hence the number of particles needed to
simulate dispersions in the transition region from isotropic to liquid crystalline is
N = O(ng Veey) = O(87,). The inversion of the grand mobility matrix to get a far-
field approximate to the resistance tensor (as required by the algorithm of Stokesian
dynamics (§4.3)) is an O(N?®) operation,} and evaluating the mobility interactions
is a costly O(Ng) step (see §4.4). It is therefore computdtionally advantageous to
examine spheroids of moderate aspect ratio if we are primarily interested in the
behavior near the phase boundary. Note that hydrodynamic interactions, on the
other hand, change the character of the response at ng = O(a™?), and can therefore
be studied using N = O(8), a very manageable number, and independent of aspect
ratio. A second incentive to restrict the simulations to moderate aspect ratios (even
though most theories have been developed in the limit 7, — o0, as mentioned in
the ‘introduction) was touched upon in §4.4 when we explained that M gets increas-
ingly ill-conditioned as the particles become more slender, making the computations
more critically sensitive to numerical inaccuracies. In view of these arguments, we
concentrated most of our efforts (and available share of CPU-time) to the study of
dispersions of hard ellipsoids of aspect ratio 6. However, the method was found to
work well even at the highest aspect ratio considered (r, = 100).

4.7.1 Diffusivities

The diffusion tensor of an isolated axisymmetric rod is fully determined by 4 coeffi-
cients, which characterize its translational and rotary mobilities for motions parallel
and perpendicular to the centreline. In an arbitrary dispersion however, each fibre’s
environment is locally anisotropic and this simple structure for the diffusivity tensor
is lost for each particle individually. By virtue of Lorentz’ reciprocal theorem (which
in this case is equivalent to an Onsager relation), the diffusivity tensor is still sym-

metric and hence can be diagonalized. Its eigenvectors, however, do not necessarily

I Methods are presently evaluated to reduce this step to an O(N?) operation by

taking advantage of d prior: knowledge about the relative strength of interactions.
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coincide with the principal axes of the ellipsoid, and so the eigenvalues cannot be
‘associated with diffusion either parallel or perpendicular to the rod. In many cases,
interactions with immersed objects nearby will actually produce a coupling between
translations and rotations, so that the eigenvectors represent a complex concerted
motion involving some tumbling with each displacement. On a global, macroscopic
scale however,kthe microstructure of an isotropic suspension is homogeneous and
the particles do not diffuse in any preferred direction on average; there also isn’t any
systematic correlation between centre-of-mass motions and reorientations. From a
macroscopic perspective, the translational and rotational transport processes can
each be described by a single scalar. Yet we can define an average self-diffusivity
parallel to the rod axis, Dlt‘r, as the mean projection of the diffusion tensor of each

rod onto its director. With the Stokes-Einstein relation (see (4.38)), we thus set:

(D) = KT((R51). : dyd,) (4.4Ta)

UF '

and, for motions perpendicular to the fibre,
(DY) = skT((R54)r, : (6 — dpdy)) - (4.47b)

The rotational analogues obviously use the QL (bottom-right) portion of (R;;)P P,
For an infinitely dilute monodisperse random dispersion, these definitions agree with
the single particle characteristics.

Figure 4.13 shows for equilibrium dispersions of spheroids of aspect ratio 6 that
rotational diffusivities decrease less rapidly with concentration than their transla-
tional counterparts. This was to be expected since the disturbance velocity for a
tumbling particle decays faster with distance than that due to a translating body.
At a given concentration, motions perpendicular to the rod axis are also affected
fnore significantly by hydrodynamic interactions than motions parallel to it. This
is in tune with intuition, since they displace more fluid, creating a stronger flow
field which is opposed by the surrounding particles. In essence, this expresses the

notion that the “hardest” motions in an unbounded fluid (characterized by the
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- smallest value of the diffusivity) are also most sensitive to increases in the viscous
Vresistance of the medium due to the presence of obstacles. Upon freezing of the
‘microstructure to calculate hindered diffusion coefficients, this effect is accentu-
ated and the sharpest drops are noted for H r and H'°. This may seem to agree
with the basic assumption of reptation theory (de Gennes, 1971; Doi & Edwards,
11986), but it must be emphasized that only the short-time limits of the transport
properties are calculated here. The reduction in the mobility is due solely to hy-
drodynamic interactions, ‘not to the “caging” effect on which reptation theory is
founded. Steric hindrance only enters the simulation through lubrication stresses,
for the given instantaneous configuration of the particles. In addition, it is apparent
that the assumption that H}* remains equal to its free solution value (independent
of concentration) is unwarranted, since it has already decreased to half that number

in a dispersion containing 10% by volume of solid material.

The system of ~ 50 periodically replicated prolate spheroids of aspect ratio 6
considered here undergoes a phase transition to a nematic crystal (with a long-
ranged orientational order) at a concentration of about 30%.f This (imperfect)
alignment of the rods does not greatly influence the mobility of the particles, how-
ever, and only the translational self-diffusivities seem to increase slightly at the
phase bouﬁdary. The upward shift is indicative of the tube dilatation associated
with the ordering of the fibres (Doi & Edwards, 1986). Although not nearly as
spectacular, it is reminiscent of the jump and maximum observed for the density

variation of D| in molecular dynamics simulations of fluids of hard ellipsoids past

i The volume fraction at the transition lies slightly below the phase boundary
fpund by Monte-Carlo methods for fluids of hard ellipsoids (Frenkel & Mulder, 1985;
Allen (1990) reports ¢. =~ 0.36 for r, = 5). This lowering of the critical concentra-
tion is presumably a weak periodicity effect, enhanced by the relatively small size of

the periodic box. For comparison, several hundred particles were used in the Monte

Carlo and molecular dynamics studies.
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the isotropic-to-nematic transition (Allen, 1990). That work, of course, neglected
all viscous interactions and aséumed free-flight dynamics between Eollisions. The
influence of the order parameter on the motional freedom of the particles may be
analogous in both systems, however.

Just as in the previous section (see Fig.4.5), the translational self-diffusivity of
the spheroids in equilibrium dispersions increases with the number of particles per
unit cell because the backflow generated by the periodically replicated unit force
diminishes. The effect of N on the rotary diffusion is less pronounced, and masked
by the statistical uncertainty (Fig.4.13 and Table 4.2). The dependence on N is also
weaker in fibrous media, because the fixed network tends to screen the disturbance
velocities, as explained in §4.5.

Table 4.2: Effect of the number of particles N per unit cell on the calculated

diffusivities of equilibrium dispersions of spheroids of aspect ratio 6 at ¢ = 0.15.

N Dt D D Dre
25 1.35 2.27 4.82 49.3
30 1.56 2.48 5.06 49.9
50 1.59 2.53 1 5.00 48.7
60 1.61 2.55 4.98 48.7
64 1.71 2.68 5.10 49.9
N Htr H Hro Hr
25 822 1.67 3.92 47.2
30 1.02 1.87 3.86 477
50 977 1.84 3.75 46.3
60 982 1.83 3.72 46.2

See also Fig.4.13. The transport coeflicients are made dimensionless by kT /(87ua™), with n = 1 for

the translational components and n = 2 for the rotary motions. For comparison, the corresponding
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diffusivities at infinite dilution are D'F = 2.991, Di‘l" = 4.069, DT° = 5.939, Dﬁh° = 51.67; in this
limit, the hindered mobilities are equal to the self-diffusion coefficients.

For very dilute isotropic dispersions of identical spheroids, one may write un-
~equivocally that the laboratory frame diffusion tensor (D) = D}*(dd)+ D' (6 — dd)
- (%D;f + gpf,_r) §. Although (D)# (Dir)(dd)+ (D%)(§ — dd) in general, we have
verified numerically that this relation holds well for isotropic suspensions up to the
transition to the nematic state. Thus the variation of D ~ (3D}" 4+ 2D¥)é with
volume fraction can easily be deduced from Fig. 4.13.

Several functional forms have been proposed for the ¢-dependence of the trans-
lational diffusion coefficients. A simple exponential decline often fits the data
reasonably well over a fairly wide range of densities (White & Dorion, 1961),
but stretched exponential decays are more commonly used (Wheeler et al., 1987,
Phillies, 1987), in part because they afford a greater flexibility. A semi-logarithmic
plot of our results also reveals a span of volume fraction for which the decrease is
approximately exponential, but an extrapolation to ¢ = 0 from this region grossly
underestimates the diffusivity at infinite dilution (not shown). By contrast, the law

set forth by Cuckier (1984) on semi-heuristic grounds for the diffusivity of a sphere

in a network of fibres, namely

tr __ grtr e A41/2
H 0= H =0 exp(—k¢ '), (4.48)

gives quite a satisfactory fit for the hindered translational mobility in a dispersion
of spheroids (Fig. 4.14). (The coefficient « depends on the component considered
and the shape of the particles.) Since fibrous beds can be described by a Brinkman
equation (Spielman & Goren, 1968), the observed dependence on ¢'/? can be inter-
preted as a manifestation of hydrodyhamic screening. Indeed, Cuckier’s derivation
of (4.48) relied on the concept of a screening length proportional to ¢~1/2. The re-
sults of Fig. 4. 14 thus confirm that our simulation technique adequately captures the
many-body effects responsible for screening in fibrous media, as advertised in §3.2

(see also Durlofsky & Brady, 1987). The influence of the particle shape on the
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degree of retardation (i.e., on & in (4.48)) is investigated in Fig.4.15. Concentration
has been expressed as r2¢ = ng4fa®. For rods of the same length, this may be
thought of as the number density of spheroids. Alternatively, the abcissa can be
interpreted as a count of the particles which interact hydrodynamically with the
diffusing ellipsoid éince, as repeatedly mentioned earlier, a® is the relevant scaling
for transport properties in dispersions of fibres and hence V%’la3, the “volume of the
circumscribing sphere,” is a measure of the flow domain over which the presence of
the fibre is felt. We have chosen to illustrate the effect of the particles’ eccentricity
by means of the hindered translational diffusivity perpendicular to the rod axis, but
the main characteristics of Fig. 4.15 are the same for all mobility coefficients. At
a given number density, one notes from Fig. 4.15 that the most slender spheroids
hinder each other’s motion the least. In other words, hydrodynamic interactions
betﬁeen two rods of fixed length a at a set centre-to-centre separation are weakest
for the most slender particles. This should be clear intuitively since they occupy the
least space and displace the smallest amount of fluid as they move. Note however
that in terms of volume fractions, the trend is opposite, with the steepest drop in
HY (relative to the value at infinite dilution) being noted for the most elongated
fibres. Indeed, at n¢4?"a3 = 10, the dispersion of spheroids of aspect ratio 6 contains
28% solid fnaterial, compared to 0.1% for the rod suspension with r, = 100. Also,
the diffusivity of ellipsoids of aspect ratio 20 has dropped by half at ¢ = 0.025, but
it takes twice this concentration to reach a similar decrease in a suspension of rods
with length-to-width ratio 6.

Recall from §4.5 that the influence of the number of particles N per unit cell de-
cays quite slowly, as N™1/3_for the self-diffusivities. The data displayed in Fig.4.13
have not been corrected for this periodicity effect, and hence do not represent the

thermodynamic limit. As stated in §4.5, the procedure proposed to extrapolate

to N — oo (Phillips et al., 1988a; Ladd, 1990) subtracts the contribution of the

- periodically replicated images cosedimenting with the diffusive tracer. This effect

is known asymptotically for dilute arrangements of spheres on a cubic lattice (Hasi-
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- moto, 1959), but not for ellipsoids. Indeed, the numerical factor multiplying the
‘O(gbl/ %) correction then not only depends on the shape of the unit cell (which is not-
cubic in general), but also on the orientation of the spheroidal axis relative to the
basis vectors. We can, however, estimatei the magnitude of the periodicity effect

from our computations on efc-lattices and adjust the data of Fig. 4.13 according to

the expression .

T r T | r /‘L(qSO/NO)
Do =00} = Digonoy + (Dt{¢—>0} - V{t¢=¢o/No;efC}> ) (4.49)

¢o is the concentration of interest, and Ny the number of particles in the simulation
cell. The sedimentation rate V is understood to be that of an efc-crystal with
density ¢o/Ny, corresponding to the volume fraction of the images of the diffusing
spheroid. As explaihed by Ladd (1990), the factor p(¢o/No)/u(¢o) is introduced
because the Ny — 1 intervening particles attenuate the periodicity effect without
altering its functional form (i.e., the images of the diffusive tracer sediment in a
medium of higher effective viscosity than a dispersion with concentration ¢q/No).
Figure 4.16 shows that the adjustment is substantial, especially at the lowest volume
fractions (reflecting the dependence on ¢!/3), and that the spread on the data
obtained with different values of N is reduced by the correction formula (4.49) (see
also Table 4.3). Figure 4.16 also strongly suggests that the steep decline of D'
with ¢ noted for dilute dispersions in Fig. 4.13 merely reflects the periodicity of
the microstructure introduced by the boundary conditions, and is absent in truly
random systems. Indeed, the extrapolated values of DY decrease approximately

linearly with concentration, as observed experimentally for spheres (Ottewill &

I The configuration of the periodically replicated images of the diffusing ellip-
soid does not in geheral constitute an efc-crystal, even though it forms a subset
of the efe-lattice chosen to position the Ny particles prior to the Monte-Carlo ran-
domization. The sedimentation rate of the efc-structures used in the corrective
formula (4.49) should thus be interpreted merely as a representative collective mo-

bili»ty of crystalline dispersions of spheroids with concentration ¢q/Ny.
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Williams, 1987; Pusey & van Megen, 1983; van Megen & Underwood, 1989; see
“also Phillip et al., 1988a), and does not depeﬁd as critically on ¢ as&the, short-time
hindered diffusivity (see (4.48)). The variance reported for the self-diffusivities in
Fig. 4.16 is representative for all the transport properties and reflects the actual
spread on the individual mobilities as a result of the differing local environments
experienced‘by each particle. The average values themselves are reproducible to

within two significant figures (or within 5% in some cases), a much tighter bound
than that suggested by the error bars.
Table 4.3: Corrected values of the translational self-diffusion coefficient of equi-

librium dispersions of spheroids (r, = 6).

No o DiN=n, DN oo
0.05 30 2.31 3.049
0.05 50 2.4 3.047
0.15 25 1.66 2.45
0.15 30 1.87 2.61
0.15 50 1.90 253
0.15 60 1.92 2.5
0.15 B 2.03 2.62

Formula (4.49) was used to extrapolate the simulation results to the thermodynamic limit N — oo
at a fixed concentration ¢g.

Within the scatter of the data in Fig. 4.13b, the rotational self-diffusivities,
for which periodicity effects are much less pronounced, depend linearly on con-
centration. This behavior was also observed in suspensions of hard spheres upon
suppression of lubrication interactions (Phillips et al., 1988b). Note that lubri-
éation_ effects are relatively weak in our simulations, since the dispersions are not
at all close-packed. Moreover, recall that the minimum separation betvéeen the
rods must be smaller than their shortest dimension, i.e., o(a/r,), in order for the

asymptotic formulae of Ciaeys & Brady (1989), which we use here for lack of better
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information, to apply. Hence, in an arbitrary microstructure, only very few pairs
of particles are ever close enough to experienée lubrication forces. ‘

4.7.2 Resistivity of fibrous media

The permeability of fibrous packings —in preparative chromatographic columns for
instance, or as support for catalysts in special reactors—is of great concern in
the chemical and related industries, since it ultimately determines the flow rate
achievable with a given pump, and hence the throughput and productivity of the
installation. The pressure drop across filters and membranes is equally important
in other processes. As explained in §4.5, Stokesian dynamics offers a way to calcu-
late these quantities at virtually no extra cost along with the diffusivities discussed
in the previous subsection and the rheological properties of suspensions (examined
below). Figure 4.17 depicts some simulation data on the resistivity of equilibrium
dispersions of spheroids. The mean pressure gradient over the fixed bed of fibres
increases with the packing density, as expected. Since a straightforward superposi-
tion of single-rod contributions would yield a linear variation with &, the curvature
in Fig. 4.17 must result from hydrodynamic interactions, which cause the depen-
dence on concentration to steepen. Hence randomly stacking the rods amplifies
their resistive response. This can be rationalized by noting that the streamlines
through staggered configurations of fibres become more tortuous as the density of

obstacles increases, resulting in dissipation rates which grow faster than linearly

with concentration.

Although isolated slender fibres offer less viscous resistance to flow than thick
rods, the pressure drop across a bed of particles of high aspect ratio is larger than

that across a medium consisting of fatter spheroids at the same volumetric concen-

I The O(€®) correction to these formulae, with € the non-dimensionalized gap
width between the nearly touching surfaces, is unknown. Some of the implications
of this shortcoming were explained in Ch.IIL. The errors it introduces are not severe

at any but the most dense packing fractions.
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tration (Fig. 4.17). This, of course, is a consequence of the higher number density
~ of ellipsoids in the former case. (

The dashed lines in Fig. 4.17 show the equivalent pressure gradients, nyF,
calculated for spheroids of aspect ratio 6 from the mean component of the force
along the rod’s axis (ng(F}), lower curve) and perpendicular to it (ng(F), upper
bound). The net resistivity of isotropic dispersions lies between the two extremes,
albeit somewhat closer to the highest limit (as might be expected from the approx-
imate relation K™'= ng{(F;)(dd) + (F.)(6 — (dd))}, which in this case becomes
K™~ ng(3(F)) + 2(F1))§. The permeability K was defined in (4.40).) Also
noted at concentrations above the isotropic-to-nematic transition are the pressure
drops for flow in the direction of alignment and at right angles to it. These values
differ from the bounds because the ordering of the rods in the nematic phase is
imperfect. It is easy to understand why structural deviations from ideality affect
the permeability in the direction of the fibres the most, since any misalignment
raises the pressure gradient in this case. The resistance to cross-flows, on the other
hand, is relatively indifferent to disorder in the plane perpendicular to the stream
vector. The phase change at ~30% also influences the bounds on the pressure gra-
dient (the dashed curves of Fig.4.17) inasmuch as the spread between them widens
considerably more rapidly with increasing concentration past the phase boundary.
This behavior follows from the definition of (Fy) and (F1) as (3°, RE, : dpd,)
and (3 REL : (8 — dpd,)) respectively (see also (4.41)). In isotropic dispersions,
the fibres are arbitrarily oriented, and the influence of the rods ¢ on the force exerted
by p is statistically uncorrelated. In nematics, d, and d, are nearly aligned and
all the spheroids of the dispersion act consistently on the resistance of particle p.
Hence the difference between flows parallel and perpendicular to the fibre axis are
accentuated in the liquid crystalline phase, and the bounds diverge.

4.7.3 Viscosity and stress/rate-of-strain relations ‘
If the fibres are fo‘rcie-free rather than immobile, the rheology of the suspension

is of interest. In disordered dispersions, for which all rod orientations are equally
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probable,; the stress response to a rate of strain is Newtonian and can be charac-
’terizedi,by one scalar, the effective viscosity. This quantity is plotted in Fig. 4.18
for equilibrium microstructures of spheroids with aspect ratio ranging from 3 to 50.
The values reported are means of the particle stresslets over several realizations at
each concentration. Typical simulations used 50 to 64 particles per unit cell. In
addition, the 6 pertinent components of (Rzz) = (Rsy - R>1 -Rsg — Rsp) were
also averaged as independent measures of the viscosity.} The disproportionate en-
hancement of the viscoéity' by the addition of a few fibres to the medium (notice the
steep slope of the concentration dependence for r, = 50 in Fig.4.18) is explained by
the fact that there are always some rods in an isotropic suspension which lie along
the principal axes of extension of the flow. These components of the straining field
are then very eﬂ'ectively counteracted by the rigid, unstretchable rods, generating
the large stress response (c¢f. the discussion of Fig. 4.8 in §4.6.3 for crystalline ge-
ometries, and the theoretical analyses of the hydrodynamic stress in suspensions of
rods by Shagfeh & Fredrickson (1990)). The contribution of the fibres to the resis-
tance of the suspension increases with the aspect ratio of the particles (Fig. 4.18),
but the enhancement is not quite as dramatic as for efc-lattices (Fig. 4.8). In the
regular, perfectly aligned arrays of Fig. 4.8, the effectivity of slender spheroids in

raising the extensional viscosity could be attributed almost exclusively to their high

1 These components give the responses to each of the five independent elements
of the rate-of-strain tensor and correspond to the “diagonal” of (Ryz). The sixth
non-zero constituent of this tensor, which expresses a coupling between the stress
and the rate of strain in mutually orthogonal directions, was found to be subject to a
much greater statistical uncertainty than the other components, and was sometimes
not included in the averaging process (if deemed unreliable based on its variance).
The other, “irrelevantf’ elements of (Ryy) were usually at least ten times smaller
than the diagonal terins, and their error estimate was always more than their average

value, indicating that they would indeed converge to zero as N — oo.
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number density in t‘hey dispersion. Indeed, ng grows as’ r?, (at equal volume frac-
“tion), while the average stresslet per particle; nr, is relatively indei)endent of the
particle shape as a first approximation (see (4.45a)). The coeflicients n, and n,
~on the other hand, which describe the resistance of the suspension to other types
of flow (see Fig. 4.6), decrease roughly as T, 2, thus cancelling the effect of the
number density on the macroscopic shear stress (see (4.45b-c) and Fig.4.7). In an
isotropic suspension, the rods are arbitrarily oriented with respect to the principal
axes of the rate of strain and consequently the single-particle contribution 7 to the
effective viscosity —recall that e = p(1 + 8ma3nyn)—is a mix of nr, 7, and 1, .1
Thus (pesr/p — 1) does not quite increase with the square of the aspect ratio at a
given ¢, unless 7y >> 0 + 1., i.e., the fibres are very slender. The data in Fig.4.18
support this assertion, since the relative increase in the effective viscosity is larger
from r, =10 to rp, = 20 than from 7, =3 to r, =6 at any given concentration,
even though neither increase is even close to a quadrupling. This is also illustrated

in Fi .‘4.19, where the particles’ contribution to the effective viscosity is plotted
g p

T We consider the coefficients 0,7, and 7, as distinct here, yet argued in §4.6.3
that they all become equal for isotropic dispersions. This apparent contradiction
stems from a different interpretation of thé defining relation (4.43). Earlier, we
took d to mean the average orientation vector in the dispersion, i.e., (d). (Alter-
natively, it is the axis of cylindrical symmetry of the microstructure.) The coef-
ficients 7z, n. and 7, therefore represented the average stresslet in the dispersion
due to flows having the particular orientation relative to (d) shown in Fig. 4.6.
Now, d denotes the actual direction of the spheroidal axis, and the relation (4.43)
must be averaged to obtain the macroscopic response. Since (dd) = (d)(d) etc.
for efc-crystals, the two interpretations were equivalent in §4.6. For isotropic sus-
pensions, however, the former option suggests that nr = n. = 9, =n, while the
latter yields n = %ryT:-&— %n" + %—7] .- The asymptotes (4.45) implicitly assume the

second meaning for the coefficients.



-188-

vs. the number density of particles. For rods of very high aspect ratio, the curves
| should almost collapse since their stresslet is then dominated by nr, which depends
only Weakly on r, (namely as log™ 1(rp) to a first approximation for dllute systems
of very slender fibres). We see a much stronger dependence on the shape of the
spheroids in Fig. 4.19, reflecting the non-negligible effect of n; and 7, on the rheol-
ogy of these dispersions. Although the curves in this figure seem perfectly straight,
the linear plot of Fig. 4.18 clearly show a slight upward bend, indicating modest
deviations from dilute suspension behavior. Figure 4.20 more explicitly demon-
strates that our simulations captﬁre the nascent semi-dilute concentration regime
at the highest volume fractions. Somewhat surprisingly, the dispersion containing
1% rods of aspect ratio 50 still responds hydrodynamically as if it were dilute, even
though n¢§1a3 = 25. Ekamining the rheological properties of more concentrated
systems for this aspect ratio would require the use of a prohibitively large number
of particles per unit cell. (The density of a suspension with 64 spheroids of r, = 50
in a periodic box of side 2a is 0.0134. Any increase of the volume fraction beyond
this value at fixed NV violates the constraint that the smallest box dimension must
be larger than the particle length.) Also drawn in Fig. 4.20 is the theoretical pre-
diction of Shagfeh & Fredrickson (1990) for the hydrodynamic stress in semi-dilute
suspensions of slender rods. Our data are consistent with their result, but do not
support it conclusively either. We note, however, a definite transition from a dilute
concentration range, where the stresslet is independent of the volume fraction, to a
semi-dilute regime, in which the particle’s resistance grows with ¢.

We mentioned earlier that equilibrium dispersions of hard spheroids with as-
pect ratio 6 uﬁdergo a phase transition to a liquid crystalline state above 30% by
volume. Fig. 4.21 demonstrates that the accompanying structural change causes
an abrupt increase in the extensional viscosity (assuming the principal direction of
strain lies along the director of the nematic phase). This is easily explained by the
fact that all particles are now oriented (on average) so as to oppose the attempted

stretch most effectively. (The small graph appended to Fig.4.21 shows (P(d, - d,)) |
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as a function of density, with Ps(z) the second order Legendre polynomial. The
“average runs over all pairs of rods in the unit cell. For an isotropic orientation
distribution, (P2) = 0, and (P;) =1 if all rods are perfectly aligned. The transi-
tion to a nematic phase is clearly visible.) The jump, however, is not nearly as
large as might have been expected from a comparison with the extensional viscosity
of efc-lattices (dashed line in Fig. 4.21). In order to test.the hypothesis that this
was due to the‘incomplete alignment of the rods, we also calculated the rheologi-
cal properties of a few dispersions of parallel spheroids whose centres of mass were
statistically uncorrelated, thus isolating the effect of orientational disorder. The
results shown in Fig.4.21 prove that translational mixing alone accounts for a large
fraction of the difference in the extensional viscosities of nematics and efc-lattices,
possibly because of the disruption of the very regular columnar structures typical of
the latter geometry. The partial misalignment of the spheroidal axes in the liquid
crystalline phase however ((P,) ~ 0.55 at ¢ = 0.33), is the dominant cause for the
lower Trouton viscosity of equilibrium configurations compared to that of arrange-
ments of parallel rods. Also included in Fig. 4.21 for illustrative purposes is the
effect of lubrication interactions on the calculated viscosity. It is seen to be modest,
increasing monotonically with density as eipected.

Milliken et al. (1989) measured the efféctive viscosity of isotropic rod suspen-
sions by falling ball theometry. Unlike more traditional rheometric techniques, this
method offers the advantage that the microstructure of the dispersion may not be
significantly perturbed by the measurement. Thus the orientation distribution of
the rods remains essentially at its initial state during the experiment (Powell et al.,
1989). The effective viscosities are calculated from the sedimentation rate of a
spherical probe through the dispersion (Milliken et al., 1989). Data are reported
up to‘ra concentration of 5% in Fig. 4.18 for isotropic dispersions of polymethyl
methacrylate (PMMA) rods of aspect ratio 19.83, and rayon fibres of aspect ra-
tio 18.5. Although Milliken et al. (1989) claim a very good agreement with dilute

suspension theory (Brenner, 1974; Haber & Brenner, 1984), our simulation results
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appear to underestimate p.g by a factor of almost 2. Since the particles used in the
- study were cylindrical, an equivalent spheroidal shape must be aséumed to make

the comparison meaningful. Traditionally, the effective aspect ratio is defined as the
- elongation of a spheroid with the same period of rotation in simple shear flow as the
rod. Using the formula for slender blunt-ended bodies given by Brenner (1974), one
easily finds req = 14.2 for the PMMA sample, and req = 13.5 for the rayon fibres.
The particle dimension can also be adjusted to improve the fit. We determine the
length of the major semi-axis by matching the stresslet of the cylindrical rods to
that of the equivalent spheroids‘at infinite dilution. By means of the material con-
stants tabulated in the above mentioned reference (Brenner, 1974), one calculates
a small correction, (@eq/@r0a)® = 1.11 for both test particles. As shown in Fig.4.18,
these refinements do not significantly reduce the discrepancies between simulation
and experiment, since the data seem to lie closer to the curve for r, = 20 than
along req = 14. Even at the lowest volume fraction for which measurements were
made, the agreement is unsatisfactory. How can this be reconciled with the fact
that we equated the stresslets of the particles and of the equivalent spheroids at in-
finite dilution, and why do Milliken et al. (1989) find a much better agreement with
theory (their Fig. 5) than we can offer ? Milliken et al. use the expression for the
intrinsic viscosity [n] = (pesr/p — 1)/ from the work by Haber & Brenner (1984)
on dilute monodisperse suspensions of centrosymmetric particles at small rotary
Péclet number (i.e., under the assumption that the disorienting effect of Brownian

motion overwhelms the tendency for alignment due to the imposed rate of strain):

1 5 N7
M =35(Q1+Q:+Q3)+ (g1 +g2+q3)— 5.
; 3 6 IXT

(4.50)

‘All the symbols on the right hand side are purely geometric material constants
‘WhiCh, for spheroids, are functions of the aspect ratio only (see Haber & Brenner
(1984) for their definition). In their derivation of (4.50), Haber & Brenner (1984)

emphasize that the last term arises from two contributions to the stress at steady

state:
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1. the mismatch between the angular velocity of the particle and the local vorticity

of the flow, and

2. the Brownian couple tending to restore the orientation distribution to a fully

random state, annihilating the perturbation introduced by the straining field.

For axisymmetric bodies, in the limit of strong Brownian motion, these two effects
cancel each other identically (Nt = 0). This indicates thaf they are of comparable
magnitude, and hence that it is inconsistent (at steady state and for small Péclet
numbers) to neglect one and retain the other. In essence, if a rod is easily ro-
tated by the flow (and therefore alleviates the stress by “yielding” to the straining
field), its motion will create an anisotropic orientation distribution which, in turn,
generates a Brownian stress. In our simulations, only the hydrodynamic contribu-
tions to the stress are evaluated; the Brownian part is not,i but for the isotropic
microstructures considered here, this is exactly zero, and the entire stress in the
dispersion is hydrodynamic (in the absence of interparticle forces). Bear in mind
that these configurations were obtained by a Monte-Carlo technique, and that their
orientation distribution is not a solution of the evolution equation in the presence
of an imposed flow field, in contrast to the underlying assumption of (4.50). Alter-
natively, we calculate the properties of isotropic suspensions of non-Brownian rods,
i.e., in the limit of infinite Péclet number, for which (4.50) does not hold. Indeed,
our simulation results are in very good agreement with dilute suspension theory,
provided that one recognizes that all orientations are equally probable, identically,

and hence that the Brownian contribution to the viscosity is zero. Equation (4.50)

1 ‘The expression for the Brownian stress involves the divergence of a combination
of N-particle resistance tensors, V - [Rgsy - R;}] (Brady & Bossis, 1988; Bossis &
Brady 1989), and its evaluation is intrinsically a computationally expensive opera-

tion. This problem, and other complications associated with thermal motion form

a subject for further study.
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then becomes

o | 5(N! N2 NZ\
[n] _ g(Ql + Q2 + Qs) + (ql‘+ g2 +¢q3) — 6<T.K1 + ™K, + Ky )’ (4.51)

“as first calculated by Batchelor (1970 b) for dilute suspensions of triaxial ellipsoids
(see also Haber & Brenner (1984), their equation [8.8]). (One can also use Brenner’s
equation [4.25] (Brenner, 1974), since it does not assume steady state and is correct
for any orientation distribution function, whether or not it satisfies the appropriate
stationary convection-diffusion equation in orientation space.) The excellent fit of
the data of Milliken et al. (1989) by equation (4.50) is misleading because it suggests
that their experiments measure both the hydrodynamic and the Brownian stress
in the suspension, even though the rotary Péclet number Pe >> 1.9 x 10° for the
centimer-sized rods which they use. The authors.recognized this and state that “the
effect of Brownian forces was negligible.” Yet they rely on (4.50) for comparison with
theory, arguing erroneously that this formula should apply for random dispersions
of axisymmetric particles, whether this randomness is caused by Brownian motion
or by “whatever means” (Powell, 1991). This is untrue, and in using (4.50) rather
than (4.51) they neglect a contribution from the hydrodynamic forces to the effective
viscosity. Hence the excellent agreement noted by Milliken et al. (1989) must be
called fortuitous. Powell et al. (1989) report data for millimeter-sized rods of aspect
ratio 10 using falling ball rheometry, and find that eq. (4.50) overestimates the
viscosity, in accord with our expectations. Although the authors blame the deviation
on the use of slender body theory in the derivation of (4.50), it is clear that the
Brownian contribution to the stress, which is included in (4.50), should be negligible
in their experimental system as well as in that of Milliken et al. (1989). As shown
in Fig. 4.18, however, their viscosity measurements (performed at ¢ = 0.05 only)
also yielded values higher than those predicted by our simulations on equilibrium
hard-rod dispersions. (The equivalent aspect ratio of their cylindrical particles

is 8.2.)

A possible explanation for the discrepancy between the experimental results
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~ and the (correct) theory assumes that the perturbation, however slight, of the orig-
inal microstructure by the falling ball is important and contributes s{lbstvantially to
the measured viscosity (as testified by the significant difference between simulation
and experiment in Fig, 4.18). As shown in Fig. 4.21, an alignment of the parti-
cles, even if incomplete, can cause a sizable increase in the extensional resistance of
the dispersion, i.e., in 7. Both theory (Shaqgfeh & Fredrickson, 1990) and simula-
tion (vide supra) indicate that this component of the stresslet dominates the effec-
tive viscosity for sufficiently slender bodies. A partial ordering of the rods during
the measurement, as suggested by simulations using boundary elements methodst
(Phan-Thien & Graham, 1991; Phan-Thien et al., 1991), may therefore lead to an
overestimation of [n]. The extensional components of the velocity disturbance gen-
erated by the falling sphere (which acts as a point force to a first approximation)
bring about this partial orientational order in the dispersion (Fig. 4.22). Addition-
ally, the mechanism that lead Koch & Shaqgfeh (1989) to propose that sedimenting
suspensions of spheroids are unstable, could cause an increase of the particle den-
sity in the vicinity of the falling ball. In essence, the rods immediately above the
sphere experience a straining field which aligns them in the main direction of the
flow, and hence they are carried along by the fluid more readily than the fibres
below the sphere, which are oriented perpendicular to gravity by the velocity field
(Fig. 4.22). This results in a crowding of the particles near the sedimenting ball,
with a concomitant increase in its drag (and therefore in the apparent viscosity).
Milliken et al. (1989) have shown, however, that the dependence of the sedimen-
tation rate on the diameter of the container can be factored out by using Faxén’s
correctioh, derived for a Newtonian fluid (Bohlin, 1960). Hence, they argued, the

suspension can be characterized by a scalar viscosity, and its microstructure must

t Although the constitutive equation assumed by Phan-Thien & Graham (1991)
for the fibre suspension is somewhat ad hoc, their simulation should capture quali-

tative features such as flow-induced alignment.
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be isotropic. It is not clear whether the inducement of a preferred rod orientation by
‘the falling ball would suffice to explain the magnitude of the discrepancy between
the measurements and our data, nor why Faxén’s correction would then apply, but

it seems the most plausible hypothesis.i

It should be clear that steady state experiments at low Péclet numbers cannot
dissociate the Brownian component of the stress from the -hydrodynamic contribu-
tions. In order to isolate the latter, one must thus resort to transient measurements
of the viscosity, which probe the dispersion while it is still fully isotropic. (Equiva-
lently, low-amplitude high-frequency oscillatory rheometry can be used.) Since the
hydrodynamic stress is independent of the Péclet number for a given microstructure,
and ¢ fortior: for isotropic samples, the issue whether the dispersion is Brownian
or not should be of no concern for measurements of the suspension viscosity at the
inception of shear flow. A set of such experiments was performed by Bibbo et al.
(1985) on nylon fibres of aspect ratio 16.7 and 22.7 (req = 12.3 and 15.9 respec-
tively). Their data are superposed on the simulation results in Fig. 4.19. Also
shown are the same values, adjusted for the cylindrical shape of the particles (as
above). Although the scatter in the measurements is quite large, the agreement is
reasonable, and most of the experimental points fall between the curves for r, = 10
and for r, = 20. The reliability of the data for the high aspect ratio particles, how-

ever, is somewhat questionable due the small gap width of the rheometer compared

I It is unlikely that the excellent agreement of the measured intrinsic viscosities
with the formula (4.50) signifies that Brownian forces play a role in the experiments
of Milliken et al. (1989) because the PMMA particles were more than 3cm in
length. Yet a Brownian contribution to the effective viscosity would also explain
the cubic dependence on density noted by Milliken et al. (1989) above ¢ = 0.125,
since reptation theory for rigid Brownian rods predicts a similar variation of the

stress with volume fraction in the semi-dilute concentration range (Doi & Edwards,
1986).
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to the length of the 5 mm fibres (Powell, 1991).

'4.8 A look ahead

The study of the crystalline configurations and equilibrium structures of hard el-
lipsoids reported here is certainly worthwhile, and has clearly illustrated the im-
portance of controlling the microstructure in order to achieve desired macroscopic
properties. Yet the most exciting research, we believe, still lies ahead, when the
method developed in this chapter will be applied for dynamic simulations, so that
phenomena such as flow induced alignment and possibly the dynamic creation of lig-
uid crystalline domains can be observed and investigated. The intimate connection
between microstructure and flow type, absent in the “static” simulations discussed
in this chapter, will then become of great interest. As explained in Ch.I, both facets
of the problem —the relation between the microstructure and the macroscopic prop-
erties on the one hand, and the interplay of dynamics and geometry on the other—
must be addressed in order to understand the behavior of flowing fibre suspensions.
Although some improvement in the computational efficiency of our program is still
required to make time-integrated simulations of unbounded dispersions practical,
these numerical difficulties will soon be overcome, opening the door for many in-
teresting applications. The prospect of simulating suspensions of rod-like particles
under extensional flows seems especially attractive since the spheroids should then
achieve a steady state orientation distribution. Some aspects concerning the com-

patibility of simulation cells with these straining flows will therefore be addressed

in the next chapter.
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APPENDIX F

Convergent formulation of particle velocities

in unbounded dispersions of ellipsoids

In this appendix, we shall first derive (4.13), an absolutely convergent expression
for the translational velocity of a tracer ellipsoid in an unbounded, statistically
homogeneous suspension of hydrodynamically interacting particles. Next, we shall
discuss the correspondence between this formulation (based on O’Brien’s method
(1979)) and the Ewald summed mobility coefficients (4.22) for periodic dispersions
of ellipsoids. In particular, we demonstrate that the origin must be omitted from
the lattice sum performed in Fourier space in order to capture the contributions
arising from the “backflow” integral in (4.13).

'O’Brien’s “renormalization” technique (1979) has been applied previously to
surmount the convergence difficulties associated with the long-ranged nature of
hydrodynamic interactions in Stokes flow (Glendinning & Russel, 1982; Brady et al.,
1988). The result, equation (4.11), is an absolutely convergent expression for the
fluid velocity everywhere in the dispersion, involving the difference between the
cumulative effect of all particles (labeled 1 through N) and an integral contribution
representing the “backflow” of fluid in response tc a non-vanishing average force,

torque, stresslet or quadrupole exerted by the solid inclusions:

u(x) — (u(x)) = 2n¢[ 2Q' : 8) — (5 Z/ J.o-dA (F.1)
87
—8%% {(FY-J+(T)-R+(S): K+ (Q) @*VVI}dV .

The derivation of this equation has been sketched in §4.2. A more complete dis-
cussion of O’Brien’s method and its application to hydrodynamically interacting
suspensions can be found in Brady et al. (1988). We now relate the Veloci.ty U, of
an ellipsoid placed in the dispersipn to the ambient fluid velocity ug, which includes

any externally imposed flow as well as the disturbances due to all other particles in
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the suspension. Hence ug is given by (F.1), with the caveat that p must be excluded

from the sum. Brenner (1966) has shown that
sinhD,
D,

with D, = /D2 and D2 =A,:VV. (F.2b)

The symmetric positive definite second rank tensor A, characterizes the surface 4,

U, =

ug(x,) , (F.2a)

of the ellipsoid: x € A, <= A;':(x —x,)(x — xp) = 1, with x, the centre of the
particle. The easiest way to derive the desired expression (4.13) for U, is simply
to apply (F.2a) to (F.1). In an ‘unbounded statistically homogeneous dispersion,
(u) is either constant or a linear function of position. Hence, since D? is a linear

combination of second derivatives with respect to particle location (see (F.2b)),

D?*(u) = 0, and

Si‘jgfp (=3 — D)= (1+ éDQ + =D 4 )(u) = (w) . (F.3)

= (2n +1)! 120
Also, from the definition (4.10a) of the second moment of the force density Qg,
. 1
Qq:'—'i/; ng - oly — xlly — x,]d4y , (F.4)
it follows that
, 1 1
(V)ilV,)i (@ ixms, ), = 5 (FIebiabim + 5(F)ebims . (E5)
Therefore D2((Q':6)) = A, :VV((Q': 8)) = (A, : 6)(F) (F.6a)
and DZ((6:Q)=A,:VV(:(Q)=A,-(F). (F.6a)

All higher derivatives (in particular D*™ with m > 1) give zero. The quadrupole Q'

as defined above is not irreducible (Appendix D). We isolate the part which scales

with the force and introduce I? = Q = Q' — éFA to find
sinhD ,
i £(2(Q": 6) — (6:Q")]
b

—2A, (F) — Z(A-F). (F.7)
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The transition to irreducible moments also converts the term (Q')@3*VVJ in the last
integral of (F.1) into (Q)®*VVJ +1(D?F)-J. Combining the information above,

we now calculate the motion of an ellipsoid p in the flow field (F.1) as

Up—(u(xy)) = Kb, - Fy + 122 2(Q6) — (85 Q) + 3(A, : 6)F)

6 87"#%& Aq 2

ng 1 5 2
- — D F)-J F.8
s |, A+ GDEE) T 4 (D). (F.8)

+(T)-R+(S): K+(Q) 0*VVI}dV .

Owing to the linearity of the Stokes equations (4.1), one may simply superimpose the
effect of any external force to which the particle may be subject (such as gravitation)
on the translation due to the flow pattern in the dispersion. This explains the first
contribution on the right hand side of (F.8). Terms which decay as O(|x, — y|™*),
with y a generic position vector within V — V,, have been suppressed in the “back-
flow” integral for consistency. In the derivation of (F.1) (§4.2), it is clear that this
piece arises from applying the divergence theorem to the contribution of a smooth
surface I' encircling a large portion of the dispersion around the particle p. Return-
ing to the original formulation, it is evident that effects of O(]x, — y|™*) may be

neglected as the surface I' recedes to infinity. We therefore omit them in (F.8).

Equation (F.8) is absolutely convergent as the number of particles N grows
unbounded (at a fixed average concentration N/V) because their contribution is
offset by the backflow; mathematically, the difference between the sum and the
integral in (F.8) remains finite. Using an analogous procedure, similar expressions
can be derived for the angular velocity of an ellipsoid in an infinite dispersion and

for its (zero) rate of deformation relative to the imposed rate of strain.

The application of (F .8) to the motion of a force free ellipsoid p through a
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lattice of particles ¢ yields

2 1 1
U, = ”¢ [zqq §—6:Q,+ (A . 6)F, —6AP-Fq+§(Aq:6)Fq—'gAq~Fq]

- 1' ZsthP/ J.o-dA | (F.9)
8mu {z} Dy a+{z}

1
_5% {(1+6D§+6D§)Fq-J+Tq~R+Sq:K-%—Qq@svv‘]}dv'

The sum over all .} (see (4.3)) is most rapidly evaluated using Ewald’s technique
(Ewald, 1921; see also §4.4). Beenakker (1986) was the first to apply this method to
the Oseen tensor J, but imposed‘the restriction Fy = (F) = 0 in order to eliminate
the singular contribution of the origin in the summation over reciprocal space. As
pointed out later by Brady et al. (1988) this constraint is artificial and unnecessary,
since the omitted term is cancelled exactly by the other contributions from F,
in (F.9) (i.e., ultimately, by the “backflow” of fluid in response to the pressure
gradient balancing the non-zero average force exerted by the particles ¢). We shall
prove this explicitly for spheroids in what follows.

The Ewald summation of the mobility coupling ﬁ{’,‘? between two ellipsoids p
and ¢ is discussed in sections 4.3 and 4.4. We shall now warrant the omission

of k =0 from the lattice sum of M” ? in the expression for MU » given in (4.22).
The Fourier transform ng of M%9 is (see (4.31)):
1 k2 k2 k4

v kB 9 smA smA
MY = o exp(— ) (14 g5 + gar ) (8 — ki { N (F.10)

1—e2 1 d sinA,.,sinA 1—e2, 1 d sinA,  sinA
2 (- ¢ L2p 12¢y 2 | 2 gt 9 ' = AVR:
? 26?’ (Ap dA, A, >( Aq ) T 263 (Aq dA, A, )( Ay ) }

+c

where k = |k| and Aq = c,d, - k. As we are interested in the limit of small k, we

expand the various functions in (F.10) into Taylor series about the origin. A little

algebra yields

lim M2? :;2—(1 + O(k“))(«S - ekek){l — 2y 07 4 (dy kP ]

2 q 2 4
p—__ﬁe 2 63 K+ 00k} . (F.11)
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The unit vector ex = k/k. Recognizing that limy_.oexex = 6 and similarly
that limi—o exexexer = (86 + 88 + 86), with 86 and 68 defined by (4.44), the

expression (F.11) is easily evaluated as

101 o2 2
MPI ) 1§ — 29§ — %426 — d d
tin N3¢ =L (6 — eew) = 226 - dydy) - S )
2 (1—e2) cZ (1 —€2)
S S L4 S | i’8 F.12
9 e 9 €2 } ’ (F.12)
which can be rearranged into
lim M2? = 1{ 5 Da,d,+ 2% Cig g 4 1=
Ko l—ee) tigddy t i S pdidit o
2 23—263 2 23—263
5% 2 6 =i Z } (F.13)

1 1 2
{k2(5——ekek)-}- —A, +45A 45(Ap.8)6—E(Aq.6)6}

The last step uses the definition of Ay = aZd,dy + b2(6 — d,d,) = (cg/e,)?d d +
c2(1—e2)/e2 (6 —dydy).
From (F.9), the contribution of the force F, to the translational velocity of

particle p can be written as

MY = 41% [2(A, : 6)8— A, +2(A, : 6)6 — Aq] (F.14)
1 < sinhD, sinhD, 1. 2
" S 5 D Dy 16 ) g 87m v-v. G+§Dr+s D IV

In (4.22), on the other hand, we claimed that

Mpq = ZMF lat+{=}] + = | | Z cos(k{c} (xp — xq))M’;q(k{C}) . (F.15)
{=} {¢}£0

By construction (see also (4.30)),

1 sinhD, sinhD,
J(x, —x;—2(,3) = F.16
S7u2 "D, D, (xp = xg = 2(5)) (F.16)

DM oS cos (ke - (xp = x,)) M (k)
(=} {¢}
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Hence we must demonstrate that the contribution to the second sum from {(} =0

accounts for the remaining terms in (F.14). It is easily shown that

s . 8w '
/V Jav = Jim 3(K) = Jim 276 — exer) (F.17a)
(Brady et al., k1988‘), and thati
VVIdV =0. (F.17b)

V-V,

The first term in (F.13) therefore cancels the backflow integral of (F.14). (Note
that ng = 1/|B|.) The rest is trivial by comparison of (F.13) and (F.14).

Along the same lines, one can find a one-to-one correspondence between all
other Ewald-summed mobility interactions (MUT,ﬁuq,ME s, etc.), and each of
the terms in O’Brien’s absolutely convergent expressions for the translational and
angular velocities of the particles in a dispersion, and for the rate of strain at their
locator points. The origin of the reciprocal lattice must be omitted in each case.
In a sense, the agreement with O’Brien’s results validates the Ewald technique for
the evaluation of the conditionally convergent sums occurring in the rheology of

suspensions at zero Reynolds number.

I It is essential to exclude V, from the volume of integration; the singularity
would give a finite contribution, but this has been accounted for explicitly in (F.14).

Integrating over a domain containing the point disturbance would count its effect

twice.
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APPENDIX G

Optimal value of the convergence parameter £

in the Ewald summation

In an effort to estimate the cohesive energy of ionic crystals, Ewald (1921) developed
a numerical technique designed to accelerate the calculation of slowly converging
lattice sums by splitting them into two complimentary parts, one of which con-
tains terms which decay rapidly with distancei (exponentially or faster), and the
other being easily evaluated, after Fourier transformation, by means of the Poisson
summation formula (4.30). (See Nijboer & De Wette, 1957, for a very lucid presen-
tation of this method.) We explained in §4.3 how to apply this procedure to M?S,
in order to calculate the mobility interactions between an ellipsoid p and a lattice
of spheroids ¢ (see (4.21)t), and introduced a parameter £ controlling the relative
rate of convergence of the sums in real and in reciprocal space. Beenakker (1986),
in the first application of the Ewald summation technique to hydrodynamic inter-
actions, recommended that £ = v/7//|B| for optimal convergence in the case of a
simple cubic lattice. (|B|is the volume of the elementary unit cell). We commented

in §4.4 that it is favorable in some instances to deviate from this suggestion if the

1 The concept “distance” is appropriately defined here as (22 + 22 + 22)1/2, with

{z;} the integer coordinates of the lattice points (see (4.3)).

T The formulation (4.21) is not the only way to apply Ewald’s ideas, and per-
haps not the most straightforward one either. Breaking up the sum after the
mobility interaction between each pair of particles has been evaluated, however,
seems impractical since one would then have to calculate the Fourier transform
of M{% (rpq) erf(Erpq), aformidable task considering that M%%(r,,) is known only as
a double integral too complex to be worked out in closed form (cf. equation (4.16a)).

The use of an auxiliary function different from the error function does not alleviate

the difficulty.
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computational cost of evaluating the summand is considerably different before and
‘after Fourler transformation. We shall now substantiate this assertion.

Ewald’s technique converts the original triply infinite sum (see (4. 19)) into two

other lattice sums:

Mpg = Myt g | 2 cos (kiy - (e = %)) MB((gy) . (G.D)
{z} {¢}#0

These are truncated in practice after a number of terms appropriate for the accu-
racy demanded. In order to estimate MU %~ within the specified tolerance in the
minimal amount of time, the truncation error should be equal for both sums. (This
intuitive argument can be justified formally by using Lagrange multipliers to in-
corporate the constraint on accuracy explicitly in the optimization scheme below.)
Assuming a cutoff distance R for the sum over My, such that all terms with r,y =
|Xg + T{:} —Xp| > R are neglected, and introducing a similar radius K for the sum

in reciprocal space, we estimate the truncation errors €1, e, as:

>y Mrletisl] ~n1/ lerfc(f,'r)r2 dTNnI/ leXp(—EZrQ)dr
R T r €

r{z}>R
~ —g%erfc(SR) ~ ;—1R6_82R2 , (G.2a)
1 v o e 1
€2 = B Z MPe B 12 exp(— 182 Vk?
ki >K

IX n2 45 _}(2/(452)
2<€'erfc(28) B K e ,  (G.2b)

T B
with ni,ny the number density of lattice points in real and reciprocal space re-
spectively. These scalings are intended as order of magnitude estimates only and
are based on (4.21b), (4.31) and the asymptotic expansion of the “erf” function
(Abramowitz & Stegun, 1970). To get e12ve9, we set K = 2E2R (subject to verifica-
tion later on that ny /€% = (|B|€3)™! = O(1)). Also note that, for a predetermined
accuracy €, the cutoff diétance R is inversely proportional to £, while K grows

linearly with it.
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We now need to optimize £ to minimize the required computation time. Let A
be the number of arithmetic operations required to calculate M?? at onie lattice point
(ie., fo.1~ one image of the spheroid ¢), and denote by N3 the equivalent number for

one term in the series over reciprocal space. The CPU cost C will scale as
4
C N1‘31R37‘111 +./\f24?7r 1’3712 . (GS)

Setting dC/d€ = 0, we find with a little algebra that

1 MNMin
§ = G4
gopt 8N2n2 ' ( )
Per definition, ny = (|B])™! and ny = |B|/(87?%) (see (4.22)) whence
3
o T M

which is the result quoted in §4.4. For Nj ~ A (as in the case of sphere-sphere
interactions), we recover Beenakker’s result (1986). This is true independently of
the lattice type, provided that the series are truncated at a cutoff distance R (or K)
rather than at a specified number of “shells”, as is often done for convenience (i.e.,
one retains all terms in the sum over M?? for which |z;| < zmax with i = 1,2 and 3).
Both approaches are different in general, but almost equivalent for cubic unit cells.
Even though £ ~ {/m , a relatively weak dependence, the CPU cost was found

in practice to be influenced rather strongly by the choice of £, justifying the need

for this analysis.
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APPENDIX H

Basis vectors and symmetry properties of

crystalline configurations of spheroids

Each advance in scientific research, whether a novel experimental technique, a new
numerical method or the extension of an existing theory, must be tested against
established results in order to ascertain its validity. In every field, benchmarks
are available which help determine the accuracy of the proposed improvement and
its efficiency in comparison with the procedures it attempts to replace, mimic or
supplement. In the (theoretical) rheology of suspensions, one such standard is the
concentration dependence of the hydrodynamic transport properties of face-centered
cubic lattices of spheres (Zick & Homsy, 1982; Zuzovsky et al., 1983; Nunan &
Keller, 1984; Brady et al., 1988; Ladd, 1988). We propose that the regular arrays of
prolate spheroids discussed in §4.6, in particular the efc-crystal, can serve a similar
purpose for dispersions of elongated particles. Their geometry is unambiguously
defined, and among the simplest which accept the maximumi packing fraction 3%5
while retaining a fully three dimensional character at lower concentrations (see §4.6
in that regard). Their high degree of symmetry allows general predictions to be
made concerning their properties and may make them amenable to some kind of
analytical treatment against which present and future simulations can be tested for

consistency. (The calculation of the dielectric constant of a regular array of prolate

I This statement has not yet been mathematically proven. Even for spheres, it
has not been demonstrated rigorously in three dimensions that the maximum vol-
umetric concentration compatible with the mutual impenetrability of the particles
is 3—%, the density of a close packed face-centered lattice (Gruber & Lekkerkerker,
1987), but this is generally accepted. The problem is even more complex for prolate
spheroids, as there is an additional degree of freedom associated with each particle,

yet the same maximum packing fraction is usually assumed (Frenkel & Mulder,

1985).
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spheroids (Lam, 1990) offers hope that the advent of new mathematical tools will
soon allow a closed-form expression for the extensional viscosity of efé-crystals to be
derived, for instance.) We therefore consider it appropriate to carefully characterize
these lattices here, and to discuss some of their properties.

The close-stacked efc-lattice is derived from a face-centered crystal of touching
spheres by stretching it by a factor equal to the aspect ratio in a direction perpen-
dicular to the hexagonally packed planes (i.e., along the (111)-diagonal of the cubic
cell). This transformation maps spheres onto ellipsoids without altering the volume
fraction of the array. We shall réfer to the direction in which the spheroids point
(which is also the direction of stretch) as the e3-axis, and introduce an orthonormal
Cartesian coordinate system (e;, eg, e3), with origin at the core of a particle, such
that e; lies along a line of centres (Fig. 4.23a). Non-dimensionalizing distances by
the length a of the major semi-axis of the spheroids, the matrix B defining the

lattice (see (4.3)) can be chosen as

2/r,  1/rp 0
B=| 0 3/r, 2V3/rp, | . (H.1)
0 0 22/3

The three columns of B form a set of basis vectors {b;, by, b3} for the crystal. The
unit cell defined by (H.1) contains only one particle, but more can be included by
taking appropriate integer linear combination of the b; to construct a new module.
This yields a different description of the crystal, and does not affect the system
itself in any way, of course. The volume of a spheroid is ‘% / r?), and that of the unit
cell, |B| = 4\/5/7"%, giving a packing fraction ¢ = 7/(3v/2), the theoretical regular
close-paéked limit for dispersions of ellipsoids.

In order to study “face-centered” suspensions at concentrations other than the
maximum, we proposed in §4.6 to expand the crystal from closest packing in such
a way that the minimum surface-to-surface separation § between nearest néighbors
is the same in three non-planar directions. This procedure maintains the “three-

dimensional” character of the dispersion at all volume fractions, and is taken as
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the definition of an efc-lattice. The most obvious alternative, an isotropic dilation
of the crystal, preserves the anisotropy present in the unit cell at closest packing,
ie., b3 -e3/by ey = \/grp. For slender particles, this rapidly degeherates into
rather uninteresting “two-dimensional” structures consisting of sheets of hexago-
nally packed spheroids, separated by wide gaps of fluid. Efc-crystals, on the other
hand, converge to face-centered cubic lattices at infinite dilution, independent of the
aspect ratio of the particles. For a chosen §, the appropriate expansion factors A; in
each of the three directions e; can be determined as follows. It is easy to see from

the hexagonal pattern in the e; e; plane (Fig. 4.23a) that

6= (hi—1)2/rp (H.2)
and that h; = hy. To find hs, imagine a cross-section of the dispersion along the
e e3 plane, and isolate for consideration two neighboring particles in adjacent
hexagonal layers (Fig. 4.23b). Label the midpoint of the line joining their cen-
tres m = hz/(\/grp)ez + +/2/3hses, and call z the point of closest approach on the

spheroid at the origin. Since z belongs to the surface of the ellipsoid, we know that
(z-es)’+rilzhes)’=1. (H.3)
The normal at that point is parallel to (z - e3)es + r2[z — (z - e3)es], which equals
(z - es)es + rf,(z - ey)ey since z lies in the e; e3 plane. By symmetry, it must pass
through m. Hence, letting z - e3 = 23 and z - ey = 23,
(m—z) + €3 _ \/2/3h3 — 23 . zZ3
(m—2z)-e2  hy/(\/3r,) —2zy T222

The shortest distance between the ellipsoids is measured along this normal, so that

%2- = (\/—ghs - 23)2 + (\};p - 22)2 . (H.5)

Squaring (H.4) and eliminating 23 using (H.3), we obtain, after a little rearrange-

ment of (H.5), that

(H.4)

also

i 2,2 2 _q
}‘ 6% z4 2____12%_7‘192 2 (H.6)
4 (ha/(V3rp) — 22) "p "p
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The right hand side has a slope of less than 1 when plotted as a function of 22, and

hence (H.6) can be used to generate a stable iterative scheme for z; as lmg oo zék)
with
’ 2/ (k+1)y2 2 _1

2 6 (2 )k N2 'IZ + T 2 (ng))z = (H.7a)
L/ (Brp) =)

L) o he/(V3rp)
’ 1+ 6/(2VE®)

From z2, it is trivial to calculate z3 and hs.

(H.7b)

From Fig. 4.23a, it is apparent that the lattice is invariant under a set of
coordinate transformations. These symmetry elements imply a certain structure
for its material properties. Consider for instance a fourth rank tensor Y, which is a
function of the particle configuration only, and denote Y % eiere;e; by Yijr. The
reflection symmetry about the origin then stipulates that Y; ikt = 0 whenever an odd
number of the coordinate labels 1, 2, or 3 appear in the indices :jkl. Assuming that
Y is symmetric in its first and last two indices and that Y; ikt = Yri; (a consequence
of Lorentz’ reciprocal theorem in the case of Ryg), this reduces the number of
independent coefficients characterizing the material property to 9. The invariance of
the crystal structure under a rotation by 3 in the e; e; plane imposes the additional

relations

Y1133 = Y2233 }/’1313 = Y'2323 Yllll = Y2222 (HS&)

Y111 = Yii2 + 2Y1012 . (H.8b)

These can be shown by standard techniques to hold for every geometry which is
indifferent to a rotation in the e; e, plane, except if it concerns 90° turns (or the
special cases 0° and 180°). The fourth rank tensor Y is now fully determined by
only 5 components. If furthermore we require tracelessness in its first and last
two indices, only 3 independent elements remain. In Ry, we called these 3 co-
efficients nr, n, and ﬁL (éee (4.43)). For cubic face-centered crystals, one more

invariance relation exists, and the number of independent coefficients drops to 2
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- {Nunan & Keller, 1984). Both the efc and the smc-lattices satisfy the symmetries
used in this paragraph and their stress/rate-of-strain coupling is conséque_ntly char-
acterized by 3 constants. The ebc, esc and isc-dispersions however, must be rotated
by I rather than I to return to the same orientation. This invalidates (H.8b) so
that 4 components are needed to specify Ry for these configurations.

The construction of the five lattices defined in §4.6 is fairly simple (see Fig.4.10),
and an appropriate set of basis vectors can easily be found. Yet it may not be
obvious how to expand a body-centered cubic crystal of spheres so as to satisfy the
criteria proposed above for the reference geometries. The first step of the procedure
is to identify three pairs of touching particles in the close packed configuration
whose centre-to-centre vectors are linearly independent. Referring to the standard
description of the “bec” unit cell for spheres (Fig. 4.24a), these vectors might be
V2/3(1,1,1), /2/3(1,-1,1) and V/2/3(=1,1,1). Any two define a “close-packed”
plane. For bec-lattices, the mesh formed by the particle centres in this plane is
diamond shaped, with an inscribed angle of arcos(1/3) (~ 70°) (Fig. 4.24b). In
order to retain as many invariance relations as possible in the crystal of spheroids,
it 1s best to stretch the unit cell for spheres in the direction perpendicular to this
close-packed grid (so as to preserve the mirror symmetry across that plane). The
resulting structure consists of parallel stacks of spheroids arranged on a pattern
of isosceles triangles in the plane perpendicular to their direction of alignment.
Adjacent layers are staggered so as to fit in each other’s interstices (Fig. 4.24b).
Unfortunately, the only symmetry element in the close-packed plane is a rotation
by m. Six independent components are therefore needed to fully characterize Ry,

which is why this crystal was not considered in §4.6.
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APPENDIX J

Coeflicients « and v characterizing

the material properties of isolated prolate spheroids

)}
o zzez{ze + (3¢ — )log (1 = >}
e
| v e (25))
. { ze+(1+62>1°g(1+z>}—1
a;zezvé{ze( 2% _1>+<1—62>1°g(1+z>}
{oiaa -2 res (1))
oo e ()}

-1
ay =2e*(1 — 62){26(3 - 56?) —3(1 —€*)?log (i f Z)}

The results for spherical particles can be recovered by noting that

Following the notation of Kim (1985)

a =62{_ 2e + (1 + €*)log (

. ) 3 _1
lim oy =lim ag = —e~ !
e—0 e—0 8
3
lim~y = hm Zed
e—0 i e—0 7 4
. 5 _ X 15 _ ) —
lim oy =— —¢73 imas =——¢® lima*=—=¢73
e—0 8 e—~0 e—0 4

(J.1)

(1.2)

(1.3)

(J.4)

(J.5)

(1.6)

(3.7)

(3.8)
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Fig.4.1 : Expansion of a face-centered cubic lattice of spheres into an efc lattice of spheroids.
The particles are not drawn as touching for the sake of clarity. The direction of stretch is
perpendicular to the hexagonally packed plane.
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Fig.4.2: Sedimentation rates of efc lattices of spheroids of aspect ratio 6.
The sedimentation rates are normalized by their value at infinite dilution .
The maximum packing fraction compatible with the mutual impenetrability
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Fig.4.3 : Illustration of the mechanism leading to enhanced rotational diffusivities
perpendicular to the spheroidal axis in efc-crystals of ellipsoids.
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Fig.4.4: Asymptotic dependence of the sedimentation rate of efc crystals
on the volume fraction of particles.

The aspect ratio of the spheroids is 6. For reference, note that the diagonal
of the graph has a slope of 1/3.
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Fig.4.5: Hindered diffusivity vs. volume fraction for efc crystals of prolate
spheroids of aspect ratio 6.

(normalized by AT / 8npa”, with n=1 for H” and n=2 for H®)

Only the results for the diffusivity perpendicular to the rod axis are shown.

The dotted lines represent data for one particle per unit cell and correspond to
the sedimentation rate and its rotational analog. The unit cell forN =4 ( ¢ )
was constructed by including the images closest to the origin in the hexagonally
packed plane. These were then replicated one basis vector away to build a unit

cell with 8 particles ( © ). This procedure was repeated to obtain N = 16 ( A )
~and 32( O).
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Fig.4.6 : Shear fields associated with the 3 coefficients characterizing

stress/ rate of strain relation for efc-lattices.
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Fig.4.7: Apparent shear viscosities i, and 1,
of efc-lattices of spheroids.

The symbols are explained in the legend of the next figure. Lubrication interactions
have been suppressed. The data for both viscosities are almost indistinguishable.
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Fig.4.9: Verification of hydrodynamic screening in efc suspensions of spheroids
(plot of the inverse of the stresslet vs. the logarithm of the volume fraction).

See text for details. The dotted line represents eq.(4.46) multiplied by 32 to
account for the perfect correlation of the centres of mass in this system.
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Fig.4.10 : Projection of the lattice geometry onto the close packed planes (i.€., along the
spheroidal axis). The white and shaded particles are in different layers.
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Fig.4.11a: Coefficient N, of the stress / rate of strain relation for
a variety of crystalline configurations of spheroids of aspect ratio 8.
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Fig.4.11c: Coefficient M, of Ry for lattices
of spheroids of aspect ratio 8.

The number in parentheses indicates the angle 6 between the shortest basis
vector of the lattice and the direction of the shear flow (see Fig.4.10).



-232-

/ 8npa’E

10N

in uniaxial extensi

Stresslet

0.08

I
P~
0.06 - P ,
4
QQ
L4
L4
“ \QQ
\\\ \s\\
.\x\
0.04 o 7
< i
]
]
0.02
0.00 =T 71 I T T § 7 5 31 I I
. 0.01 0.1
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Fig.4.14: Semi-logarithmic plot of the hindered translational diffusivity in equilibrium
dispersions of spheroids of aspect ratio 6 vs. the square root of concentration.
The diffusion coefficient is normalized by its value at infinite dilution.
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The diffusion coefficient is normalized by kT / 87pa. The open circles show the
data from the simulations. The results, extrapolated to the thermodynamic limit
by means of eq.(4.49), are given by the solid symbols.
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Fig.4.17: Resistivity of fibrous media.

The resistivity (normalized by 61 / az) is plotted for equilibrium dispersions of spheroids.
The insert, for aspect ratio 6, clearly shows that the difference between the average
component of the force supported by the rods along their axis and perpendicular to it is
emphasized past the isotropic to nematic phase transition (at 29%).
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Fig.4.18: Viscosity of equilibrium dispersions of spheroids.
The experimental measurements reported are from Milliken er al. (1989)

and Powell er al. (1989). The solid symbols are their raw data; the ones
in outline have been adjusted to fit the "equivalent” spheroid.
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Fig.4.19: Double logarithmic plot of the viscosity of isotropic dispersions of spheroids
vs. volume fraction for various aspect ratios.
Also included are the viscosity increments relative to pure solvent measured at the inception
of shear by Bibbo et al. (1985). The filled symbols represent the data from their Fig.2.
The open symbols account for the presumed cylindrical shape of the rods.
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Fig.4.20: Transition from dilute to semidilute behavior in isotropic dispersions.

The stresslet in the principal direction of strain (normalized by 8nua’E, with

"E" the rate of uniaxial extension and "a" the particle half-length) gradually increases
with volume fraction as the suspension deviates from the dilute limit. The symbols are
as in the two previous figures. Also shown is the theoretical prediction due to

Shagfeh & Fredrickson (1990) (dotted line).
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Fig.4.21: Concentration dependence of the extensional viscosity of equilibrium
dispersions of spheroids of aspect ratio 6.
In the nematic region, the principal axis of strain lies along the director of the
liquid crystal. The asterisks are results for random microstructures of parallel
ellipsoids. The dotted line shows data for efc-lattices. Lubrication interactions
have been suppressed for the open symbols.
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Fig.4.22 : Influence of the velocity field caused by a sedimenting sphere

on the microstructure of a dispersion of spheroids.

This schematic drawing illustrates the partial order induced in a suspension of
rods by the extensional components of the disturbance velocity. The spheroids
are drawn in their preferred orientation.



- 243 -

a) b)

Fig.4.23 : Definition of an efc-crystal of spheroids.

a) Projection onto the "1-2" plane. The spheroidal axis (in the "3" direction) points out

of the paper. The white particles are stacked on top of the shaded ones. The layer below

is staggered with respect to both of the sheets shown, in the customary "ABCABC"
“repeat structure of face-centered crystals.

b) Cross section of the dispersion in the "2-3" plane.
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a)

b)

Fig.4.24 : Expansion of a bcc-cell into a configuration satisfying the criteria
proposed in appendix H.

a) Standard body centered cubic cell of spheres. Touching pairs are
indicated by bold lines.

b) Close packed plane orthogonal to the direction of stretch.
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" Chapter V

Towards dynamic simulations: the unit cell

5.1 Introduction

In the previous chapters, we have focussed primarily on developing an accurate
representation of hydrodynamic interactions between prolate spheroids in Stokes
flow, and illustrated the effectiveness of the computational scheme by calculating the
short-time limit of various transport properties in unbounded dispersions. Dynamic
simulations, which track the evolution of the microstructure in time, are not more
complicated conceptually, since they only involve one additional step, namely the
temporal integration of the velocities U and rotation rates £2 calculated via the
grand resistance tensor R for the instantaneous configuration of the particles from

the imposed forces F, torques L and the straining field E:

F U-Us Rry Riv Rsy U-Ux
L = R ® 9 - 'Qoo = an RLn Rsn ® 9 - Qoo . (51)
S "Eoo RFE RLE RSE _-Eoo

The tensors Uqo,i 2 and E fully characterize the macroscopic rate of deforma-
tion by specifying the ifnpressed uniform velocity, the bulk vorticity and the rate of
strain respectively. Since it is inconsistent in unbounded, statistically homogeneous
suspensions to consider any global motions other than plug flows or linear shear
flows, higher derivatives of the ambient velocity field vanish. In periodic systems
(such as the ones generated by periodic boundary conditions on a unit cell suffi-
ciently large to imitate the randomness of a “real” dispersion), the lattice must,
by symmetry, deform affinely with the flow. As discussed by Adler and Brenner
for regular crystals of spheres (Adler & Brenner, 1985; Adler, 1984, 1985), purely

i The vector U in (5.1) groups the ambient fluid velocity at the locator points x,

of all the particles (see Ch. III and IV).
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kinematic considerations therefore imply the existence of a maximum packing frac-
tion compatible with each deformation; beyoﬁd this density, particles collide and
eventually interpenetrate (or deform). In addition, only few lattices accept the
limiting concentration, and many cannot accommodate any solid material under
certain flow conditions. These considerations are important during the set-up of
dynamic simulations, and we briefly touched upon this issue in §4.1. We return to
it here, and derive unit cells compatible with various types of velocity fields in §5.3.
First, however, we comment on a basis (or “box”) standardization algorithm, and

illustrate its advantages for search operations which recur frequently in the course

of a simulation.

5.2 Box standardization algorithm

A microstructure is spatially periodic if, Vz € Z3,
X €V <= x+12z(, €0V, with z3=B-z. (5.2)

0V denotes the union of all solid boundaries in the system (i.e., the ensemble of
all particle surfaces in the dispersion); Z3 is the space of all ordered sets of three
integers, and B contains the basis vectors of the unit cell (see Ch.IV, equation (4.3)).
The collection of all points zy,y constitutes a lattice £; the vector z holds the three
coordinates of 2,3 in thé reference frame defined by the columns b; of B. Evidently,
B is not unique, and many unit cells exist for a given microstructure. Each of
them, however, can be derived from the basis vectors {b;} by a set of integer linear
combinations. We shall focus in particular on transformations of the type b} =
b; £b;, or

B'=B-A, (5.3)

where the matrix A consists of 1’s on the diagonal and one non-zero off-diagonal
element equal to 1 (the element ji in the example above). A change of basis
from B to B’ preserves the volume of the simulation box since |A| = 1, and hence

the number N of particles used to describe the system is unaltered. Furthermore,
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every combination of basis vectors which conserves N can be derived by successive
' applications of (5.3). Thus we do not restrict our analysis in any way by considering

these transformations only.

Consider two arbitrary vectors b; and b;, for which we assume |b;| > |b;|, and

examine
bl = |b; £ bj| = (b} £2b;-b; +b?)!/% = (|b;[* £ 2|b;||bj| cos 6+ |b;[*)'/? . (5.4)

It is apparent that b} can be made smaller than b; if | cos 8| > £|b;|/|bil, i.e., if the
angle 0 inscribed between the two vectors deviates sufficiently from 7. We define as
“standard” or “minimal” any basis cell for which this is impossible; i.e., for every

pair of indices (3, ), with ¢ # 7, the basis vectors b{ and bj must satisfy

. (Ibj] bl
S . bd < Lips)? < L [b; . .
|b; - bj| < 51bjl or |cosf;;| < 2mm(lbi‘, |bj|) (5.5)

This definition guarantees that the basis vectors are as short as possible, and that
the angles inscribed between any two of them lie between 3 and 231'- In other words,
the simulation box is as compact and as “straight” as possible. Moreover, the more
anisometric it is, the less skewed. For a given lattice, the standard unit cell is
unique,] except in the degenerate case that two (or all three) of its basis vectors are
of equal length and make an angle of 60° or 120° with each other. We have assumed
in the coded version of Stokesian dynamics for prolate spheroids (Claeys, 1991) that
the working cell always satisfies (5.5). (If it deforms with the flow, it needs to be
“reset” consistently during the simulation.) This does not impose any restriction on
the type of microstructure which can be examined, but offers the advantage that the
anisotropy of the unit cell is always minimal. As explained in the next paragraph,
the standardization of the simulation box facilitates “geometric” operations such as

the search for nearest neighbors. In addition, its “nearly cubic” shape (within the

i This can most easily be proven by the geometric argument that there always

exist three non-planar points in a lattice which are closest to the origin.
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constraints of the imposed periodicity) minimizes any numerical artifacts brought
about by the boundary conditions, even if distorted cells are perfectly equivalent in
theory.

During a typical simulation, one frequently needs to find all pairs of particles
whose centre-to-centre separation is smaller than a specified distance R. This might
be to detect overlap, to extract structural information about the dispersion (such as
pair correlation functions), or to calculate hydrodynamic interactions (recall from
Ch.IV, App. G, that the construction of the grand mobility tensor involves lattice
summations which only take into account spheroids within an optimally calculated
cutoff distance from one another). This may seem an easy problem, yet the solution
is quite complicated if the lattice geometry is specified in terms of non-orthogonal
basis vectors of unequal length. Suppose for instance that one wishes to determine
whether lubrication interactions occur between a particle p and images of another
body ¢. In a first step, one considers p embedded in a lattice of spheroids ¢ and
searches for all images of ¢ with centre x4 ;) within R = ap + ag + € of x;,. (The
distance € is the maximum gap width for which lubrication interactions need to
be taken into account, and ap, a, represent the length of the major semi-axes
of the ellipsoids.) Denoting by r,, the vector connecting x, to the centre of a
“reference” particle ¢, we must minimize (r,, + E';;l z;bi)? = (rpy + B - z)? with
respect to the integers {z;} to find the image of ¢ closest to p. Suppressing for
a moment the restriction to Z2, the solution is readily found as z" = ~B™! - rp,.
The coordinates {z]}, however, are not all integers, since the centre x, of p would

otherwise coincide with an image of ¢. At first glance, it may seem that picking
zi= 2]+ 1] =2 . (5.6)

(i.e., rounding off to the nearest integer) gives the correct answer, since it is the
element of Z3 nearest to the solution z". (The notation |z | means the largest integer
smaller than or equal to z.) However, as illustrated for two dimensions in Fig. 5.1,

Xg+{-c} may not be the lattice point closest to x, if the basis vectors are not
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~

orthogonal. In other words, the metricin Z% does not define a distance in real space,
“and the simple search algorithm offered by (5.6) can lead to incorrect conclusions.
This is inconsequential, however, if all locations x, which give erroneous answers
(the shaded region of Fig. 5.1) lie farther than R from the most proximate point
on the lattice. In order to derive a criterion to decide when the “misallocation” of
nearest neighbors by use of (5.6) is insignificant, we consider the geometric puzzle
of Fig.5.1. For all intents and purposes, the search in Z? is adequate if the radius R,
of the tangent circle is larger than the maximal distance of interest R. Also, R, is
smallest (relative to |b;|) for the most slanted unit cells. The box standardization
algorithm described earlier guarantees that the angle between any two basis vectors
is always at least T. The worst scenario is thus depicted in Fig. 5.1. Elementary
trigonometry shows in two dimensions that the search (5.6) detects all sought pairs
if R<+3 /4 bmin, With bnin the length of the shortest basis vector in the standard
cell. In three dimensions, a similar calculation involving a sphere tangent to a plane
demonstrates that the search in Z3 is satisfactory if R < bmyin/ V6. We must thus

consider three cases depending on the relative size of the unit cell and the distance

of interest:

a) [R < bmin/V6] the nearest neighbor can be taken to be located at Xgt{ze}

without adverse effects;

b) [bmin/v6 < R < bmin /2] the simple scheme given by (5.6) may be inappropriate,

but there certainly is not more than one pair of particles within R of each other;

¢) [bmin/2 < R]; if the pertinent separation R is very large, many images of ¢ may
interact simultaneously with p, and it is advisable to step along the lattice in

all directions (from X, (.¢}) in order to find the relevant pairs of particles.

In case (b), the easiest procedure consists in checking the distance from x,, to each
of the four lattice points corresponding to the quadrant of Z* in which 2" lies
(i.e., Xg4{;<} and the three points adjacent to it and closest to Xp), and to stop

the search as soon as one of them is smaller than R. The appropriate direction in
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which to step can be deduced from the sense in which z] has been rounded off to 2§.
Stricter bounds than the ones given above may be derived by taking into account
other characteristics of the unit cell. The concomitant increase in complexity makes
them less suited for computer programming, however. Simplicity is the key.

It will be cleaf that the standardization of the box size and shape significantly
reduces the geometric complications associated with the type of searches described

above. Since these occur repeatedly in normal simulations, it is imperative to always

use the minimal unit cell.

5.3 Compatibility of unit cells with imposed deformations

We now return to the problem mentioned in the introduction of this chapter, the
compatibility of the unit cell with an imposed macroscopic velocity field. This ques-
tion was first addressed in a slightly different context by Adler & Brenner (1985) for
two-dimensional deformations, and by Adler (1984) for three dimensional flows. Re-
lying on concepts borrowed from the geometry of numbers (Gruber & Lekkerkerker,
'1987), they calculated the maximum volume fraction of spheres that is kinematically
allowed for all types of steady linear isochoric motions. In general, the imposition of
a macroscopic deformation decreases the admissible density below the tight packing
possible in the absence of flow because the spheres sweap a region of space larger
than their own volume and therefore come into contact at lower concentrations.
While the lower bound on ¢max calculated by Adler & Brenner (1985) for flows
with open streamlines is correct, they wrongly concluded that self-reproducing lat-
tices do not exist in such cases.! (Self-reproducing or strain-periodic lattices are

defined (see below) as lattices which are mapped onto themselves in a finite time

I Their wording is somewhat ambiguous as they distinguish the strain-periodicity
of the lattice from that of its basis; in other words, they consider different represen-
tations of the same structure as separate. This distinction unnecessarily obscures

the geometric interpretation of their conclusions, since the particles are not labeled

and therefore interchangeable.
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by the deformation.) Indeed, Kraynik & Hansen (1986) later found strain-periodic
‘networks in two-dimensional extensional flows, contradicting Adler & Brenner’s
statement (1985). Their analysis, which was restricted to hexagonal grids paral-
lel to the plane of shear, is generalized below. We then demonstrate rigorously
that there are no self-reproducing lattices in uniaxial stretching flows, and discuss
their existence in more general pure straining fields (three-dimensional but not ax-
isymmetric). We also derive the basis vectors of a lattice accepting the maximum
packing fraction compatible with biaxial extension, as calculated by Adler (1985).
This opens new avenues for dynamic simulations of axisymmetric extensional flows
in unbounded suspensions by providing a suitable unit cell. We shall draw on some
notions of the mathematical field of the geometry of numbers in the latter portions
of this chapter (related to the solution of Diophantine equations), and refer to the
paper by Adler & Brenner (1985) and the treatise by Cassels (1959) for an ele-
mentary introduction to the concepts needed. A more thorough discussion, and a
state-of-the-art survey of the existing knowledge in this matter, can be found in the
excellent book by Gruber & Lekkerkerker (1987).
5.3.1 Strain-periodicity in linear incompressible flows: problem definition
Consider a linear incompressible flow characterized by a constant tensor G specify-
ing the velocity field u as

ux)=G-x. (5.7)

(Uniform flows Uy do not need to be studied since they only induce a translation
“in the bulk” of the dispersion, and are therefore compatible with all particle con-
figurations.) The matrix G is traceless as a consequence of incompressibility. Also
consider a lattice £ constructed from a set of linearly independent basis vectors {b;}

Sucll that each point z(.y belonging to £ can be written uniquely as

D
x{z} = zz,‘bi =Bz > (5.8)

=1

with D the dimensionality of the network, z the column vector of integer coordi-
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~ nates {z;}, and B = ({b;}) the matrix of basis vectors (see Ch.IV, equation (4.3)).
By symmetry, £ deforms affinely with the flow, i.e., ¥{z;}, ‘

5:{2} =G- Tz : (5.9&)

or, integrating,

T} (t) = exp(Gt) -‘x{z}(O) = exp(Gt) - B "z . (5.9b)

The lattice £ is called strain-periodic or self-reproducing for the flow u if £(¢) = £(0)
at some finite time ¢. Each point z,)(t) of the deformed network must therefore
be mapped onto an integer linear combination of the basis vectors {b;(0)} of the
original lattice. This is clearly satisfied if and only if there exists a finite time t > 0

and an integer matrix M € ZP x ZP such that
exp(Gt)-B=B-M. (5.10)

Our goal is therefore to find a set of basis vectors B such that (5.10) can be satisfied
for a specified velocity gradient G.

We focus mainly on flows for which Vu = G has real eigenvalues, so that
G=P.-A-P'. (5.11)

The columns of P are the eigenvectors of G (the principal directions of the strain)

and A is the corresponding diagonal matrix of eigenvalues. All forms of planar and

uniaxial extension belong to this class of flows. Obviously,
exp(Gt) = P -exp(At) - P71, (5.12a)

Since G 1is traceless, and since the trace is invariant for equivalent matrices, the

sum of the diagonal elements of A must be zero. Hence

ettt 0 0 S 0 0
exp(At)=| 0 et © 0 ={0 S 0 , (5.12b)
-0 0 e~ (A1+A2)t 0 0 S—(1+v)
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- with v = X2/A;1 the ratio of eigenvalues. Without loss of generality, we shall as-
sume that A1 > 0, so that S =exp(A;t) > 1. Obviously, any lattice ‘Whi,ch is self-
reproducing for A.(i.e., for the velocity field A-x) is also strain-periodic for —A, since
time-reversal does not affect this property. Also, we may confine v to the range [0,1]
by labeling A; and )2 appropriately. The limits v = 0 and v = 1 represent planar
and uniaxial extension respectively.

Evidently, if B is strain-periodic for u = A-x then P-B is self-reproducing for G.
Thus we may restrict ourselves to the study of flows for which Vu is diagonal. In

summary, the problem consists in finding B, S and M for a given v such that

S 0 0
0 Sv 0 ‘B=B-M (5.13)
0 0 S~G+

Note that M = B! .exp(At)-B. One must thus identify an integer matrix M
whose left-eigenvalues u; are exponentials of the right-eigenvalues \; of the velocity
gradient tensor G, i.e., u; =7 with 7 =e'. The basis vectors b; of the self-
reproducing lattice are then given by the columns of the matrix B, whose rows are
the left-eigenvectors of M.

Before proceeding with the solution of (5.13), we briefly indicate the corre-
spondence between strain-periodicity and compatibility with the flow. (For a more
elaborate discussion of this issue, see Adler (1985).) This is most easily explained
in terms of the crystalline configurations considered by Adler & Brenner (1985),
who imagined an orderly dispersion constructed by placing a sphere at each point
of a three-dimensional lattice. Such a suspension is said to be kinematically in-
compatible with a specified deformation if the imposed motion causes particles to
overlap in a finite time. If this happens regardless of the spheres’ dimension (i.e.,
independently of the concentration), the lattice is incompafcibie with the prescribed
velocity field. Clearly, if a streamline carries a node of the network arbitrarily close
to the origin, incompatibility ensues; conversely, if all lattice points remain at a

finite distance from the origin at all times, a dispersion with non-zero density can
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be constructed which deforms affinely with the flow. [Note from (5.9a) that the
‘origin is stationary. Héwever, in view of the épatial periodicity of the lattice and
the linearity of the flow, all nodes are equivalent —apart from a translation and a
superimposed uniform flow— and there is no loss of generality in considering the
origin in this argument.] Because the velocity decays linearly as the saddle point at
the origin is a,pproached, it is impossible for a point to reach the origin in a finite
amount of time. Consequently, the nodes of a self-reproducing lattice remain at
a finite separation from the origin during each period, and hence forever. Strain-

periodicity thus implies compatibility with the flow, even though the reverse is not
necessarily true.
5.3.2 Planar extensional flows (v = 0)

In order to simplify the analysis, we can reduce the dimensionality of the problem

to D = 2 in this case:T

S 0
8~B=<0 1/S)-B=B-M. (5.14)

Since § and M are equivalent matrices, they must have the same invariants. We

thus immediately deduce that

tr(M) = My; + My = S+ S7 = tx(S) , (5.15a)

7 Even though the flow is two-dimensional, the restriction to D = 2 is substantial,
as self-reproducing lattices may exist which do not possess a pair of basis vectors
in the plane of shear. It is thus conceivable that our approach cannot detect the
lattice accepting the maximum density compatible with planar extension. Also,
even though the lower bound on ¢max calculated by Adler & Brenner (1985) for
these hyperbolic flows was derived assuming D = 2, there is no guarantee that the
éorresponding “critical” lattice is strain-periodic. Again, we may therefore not be
able to retrieve it. The two-dimensional analysis, however, provides quite a few
solutions to (5.13) (infinitely many, as a matter of fact), and is tractable without

recourse to detailed knowledge of Diophantine equations.
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det(M) = M11M22 — M12M21 =1= det(S) . ‘ (515b)

It follows from (5.15a) that the trace of M is at least 2, since it has to be an integer
larger than 1. Furthermore, tr(M) = 2 is only possible for the trivial case § = 1
(no motion). We thus conclude that tr(M)> 3. Of course, if M is known, equa-

tion (5.15a) is a simple quadratic equation in S which can be solved straightfor-

wardly.
We now proceed to determine the lattice geometry. Let
[ Acosb; cosb,
B = (Asin91 sinGz) ' (5.16)
Solving the eigenvalue problem then yields (making use of (5.15a)):
COS 91 S - M22

= 17
COoS 92 AM12 ’ (5 a)
sin61 M11 - S

= 5.17b
sin 92 AM12 ( )

Again these equations are easy to solve for 6,0, and A. Since any M satisfy-
ing (5.15) yields a solution, there exist infinitely many self-reproducing networks in
planar stretching flows.

As an example, we calculate a square strain-periodic lattice for planar exten-
sional flows. For a square, §; = 6, + 7/2 and A = 1. Thus

M, _ My — S
Moy — S My,

Using (5.15a) to simplify (5.18), we get M1 Mss — 1 = MZ,, which, from (5.15b)
requires M3 = My;. The simplest choice for My, is My = 1, which yields My, =

tan 91 =

(5.18)

Mis = Moy =1, My, =2, § =2.618... and 6; = —58°16'57". The choice My =0
would, from (5.15b), only give the trivial solutions M = +6 and S = 1.

~ This treatment generalizes the results obtained by Kraynik & Hansen (1986),
who limited their search to those solutions with 62 — 61 = % because of the appli-
cation they had in mind. As an aside, we also note that the set of basis vectors

(1
B= (1 ) , (5.19)

+

e

[ T
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which generate a “critical” lattice accepting the maximum density compatible with
planar extensional flows in two dimensions (Gruber & Lekkerkerker, 1987), can be
found in Adler & Brenner (1985). They apparently overlooked the fact that this

represents a self-reproducing lattice.

5.3.3 Non-existence of strain-periodic lattices in uniaxial

extension (v =1) | |
We have just shown by example that infinitely many lattices can be found which are
compatible with planar extension. We now prove that none exist for axisymmetric
straining flows.] Two eigenvalues are equal in this case. However, since {b;} forms
a basis in three dimensional space, two linearly independent eigenvectors must be

associated with the double eigenvalue. The problem (5.13) now reads

S 0 0
S B=|0 S 0 |-B=B-M. (5.20)
0 0 1/82

Note that A describes uniaxial compression rather than extension due to our con-
vention for the sign of A\; = ;. However, the two problems are interchangeable.

The equivalence of § and M again allows us to equate their invariants:
det(M) =1 (5.21a)
M1 Mag + My Mas + Maz My — Mya Myy — Moz Msy — Mz Mz = 2/S+S? (5.21b)

My + Mag + M3z =2S +1/5% . (5.21c¢)

The first relation merely states the fact that the volume of the unit cell is conserved,

a direct consequence of the isochoric nature of the deformation. We now express

1 An alternative proof of this assertion was independently developed by Reinelt &
Kraynik (1990) soniewhafc prior - to ours. We shall reproduce a version of their

derivation, which they kindly communicated to us, in the next section.
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- the basis vectors in spherical coordinates measuring the azimuth about the axis of

compression:

A;siné; cos¢; Azsinf;cos¢ds sinfz cos ¢z
B=| A;sinf;sind; Azsinfysing, sinfssin¢gs . (5.22)
Aj cos by Aj cos b, cos 83
As should be expected from the axisymmetry of the flow, the eigenvalue problems

involving the angles ¢; can be rewritten in terms of the relative positions ¢; — @9

and ¢2 — ¢3. Eliminating S and ¢; — ¢3 from these equations yields
M12A1 sin 01 sin(¢1 - ¢2) + M32 sin 63 Sin(¢3 o ¢2) =0 (523&)

My3Mo1 Ay sinéy Sin(¢1 — (}52) + Moz Msy sin 83 sin(¢3 — ¢2) =0, (5231))

which is soluble only if
MyoMasMszy = MisMsa My . (5.24)

We shall occasionally refer to this relation as the “symmetry requirement”, since
symmetric matrices obviously satisfy it. (One can prove that the exceptional
cases 0; = 0 or ¢; = ¢, in (5.23) are either incompatible with the strain-periodicity,
with the linear independence of the basis vectors, or agree with (5.24).) One obtains
three additional solvability conditions by eliminating, successively, terms involving

sin 81, sin 6 and sin f5. Elementary algebra then shows that solutions can exist only

if

1M23Af31 = Mgl(Mgg - S) s (525&)
.LM31M12 = M32(M11 - S) s (525b)
M12M23 = M13(1M22 — S) . (525C)

One can eliminate S from (5.25) to get

Mz (Myo My — MygMsy) = Mys Moy (Mg — Ms3) (5.26a)
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Ms1(Mya My — Moz Mag) = Mz Moy (Myy — Mss) (5.26b)

and S = (]\4—21]\/133 - 1M23M31)/M21 . (526C)

The remaining equations are the analog of (5.23a),
M31 Ay sin 6, sin(¢y — ¢2) + M3y sin 3 sin(éy — ¢3) =0, (5.27)
and the relations obtained from the eigenvalue problem with root 1/5%:
(1/S5%)A;1 cos By = M1 A;q cos 8y + May Ay cos by + Maq cos b | (5.28a)

(1/5%)Ay cos By = Mya A, cos 6y + Moo Ay cos by + Mg cosbs . (5.28b)

Finally, (5.21) is required to solve the entire set of equations. One will note
that (5.21), (5.23a), (5.24), (5.26), (5.27) and (5.28) determine 11 relations, while
the original eigenvalue problem (5.20) only specified 9. We shall show later that
(5.21b-c) are redundant with (5.24), (5.26a-b) and (5.21a).

Using (5.26a-b), we can eliminate M7y and M, from the expansion of the deter-
minant in terms of the elements of M, and after a little algebra, making occasional

use of the symmetry requirement (5.24), we arrive at the following factorization:

Maa Ma;

det(M) = My, — 22232031 o 5.29a
™) (M35 — =51) (5.208)
M? — — My3Msy — MosMso) .
( 55+ [ Mo, + Mo Mo | Mss 13 M3 23 32)

The first expression between parentheses on the right hand side is S (see (5.26¢)).
The second expression, with the help of (5.26a-b), can be written as

Ma3 M3,

M3y + [Maa + Myy — 2Mss +
M2y

| Mss — MisMsy — MasMsy . (5.20b)

Since det(M) = 1, the preceding expression must equal 1/S. This can be shown to
imply the solvability condition (5.21b-c). Hence a few equations are redundant, as
alluded to earlier.

We now show that S cannot be integer. Suppose it is. Then, since S =

M33 — M231M31/M21 (eq. (5260)), the fraction F = M23Al31/M21 must be integer.
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. Tt follows that 1/.S must also be integer, since (5.29b) involves integers only. Ex-
cluding the trivial case S = 1, this leads to a contradiction; therefore S -cannot be
integer, and F is a non-integer rational.

We also know that S can be written in two other ways:

My Mas M3z M2
_— = My - —. 5.30
Mo My, Moy (5.30)

S = My —
If S is purely rational, the two fractions occurring in (5.30) must also be non-integer
rational. We first show by means of an example that 6 integers can be found
such that the “symmetry requirement” (5.24) is satisfied, but none of the ratios
implicated are integer. Indeed, choose My3 =3 x 7, M3, = 2 x 11, My; = 5 x 13,
M3y =2 x T, M3 =11 x5 and Mo =3 x 13.

We now show that there are no solutions to the problem, hence that there
exist no strain-periodic lattices for uniaxial compression or extension. Indeed, since
F = Mj3 M3y /Ms; is non-integer, but Moz M3y Mo /Moy = My3Mss (see the sym-
metry requirement) is, the decomposition of My, and Ma,; into their prime factors
must have at least one prime in common. Call it Kj,. (In the numerical exam-
ple above, Ky, = 13.) Obviously, K12 and Ms3Ms; are coprime since F' is purely

fractional. By rearranging (5.26a) as

M%%A@ = Mys(Mas — May) + MiaMas | (5.31)
it is clear that the fraction on the left hand side is integer. Thus since Mjz;Ma;3
and Kjo are coprime, K;; must divide M;3. However, by the symmetry require-
ment, we can write F' = M3oMy3/M;2, so that K15 and M3,M;3 must be coprime.

Hence there is a contradiction. We can therefore conclude that there is no solution
to (5.20), and thus that strain-periodic lattices in axisymmetric straining fields do
not exist.

5.3.4 Arbitrary flow with real eigenvalues (v € (0,1))

We now consider the general problem formulation (5.13), with v specified by

the imposed flow. Supposing that we can find an integer matrix M whose left-
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. eigenvalues can be parametrized by a scalar _S > 1 such that 3 =5, puy =87,

and p3 = S~ one can solve the three problems

X; - M = HiX; | (5.32)

for the eigenvectors x;, with ¢ = 1,2, and 3, and can associate these with the row
vectors of the characteristic matrix B of the network. Writing the basis vectors in

spherical coordinates as in (5.22), it easily follows that

tan ¢; = (x2):/(X1): , (5.33a)

tan 8 = 1/ [(x2)? + (x2)7] /(x5 (5.33b)

A=)+ (x2)F 4+ (xa)7 (5.33¢)
Therefore the lattice geometry can be resolved if M can be found. We now focus
on that problem.

The characteristic equation for the eigenvalues of M has to be satisfied by S,

S¥ and §~(1+¥)| Thus we need to find a cubic equation of the form

[13 —Il,u2 +IQ/J."-]. =0 (534)

which has S and S” as roots. (Setting the last term equal to 1 guarantees that
S0+ will be a root then.) Ij is the trace of the matrix M and I, is the invariant
on the left hand side of (5.21b). Since I; = tr((M) = S + S¥ + S~(4) is an integer
larger than 2, and since I; = 3 only admits the solution S = 1, we may conclude
that I; > 3. Also, the three roots of the cubic are positive, and two of them must be
greater than 1. Hence, the value of (5.34) at 1 = 1 must be positive and I > I;. Fi-
nally, from the fact that the cubic must have real extrema, we deduce that 31, < I12.

In summary, we need to find an integer matrix M which simultaneously satisfies
det(M) =1, (5.35a)

tr(M) =1, > 3, (5.35b)
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- I < Iy = Myy Moy + Moo Mz + Mas My — MyaMay — Mos My — M3y Mys < I7/3 .
| (5.35¢)

These are necessé,ry conditions for a solution to exist. Sufficient conditions will be

derived below. An example of such a matrix is

2 3 0
M=1[|1 2 1], : (5.36a)
1 2 2
whose characteristic equation has the roots
SY =1.343379570... and S =4.490863615... (5.36Db)

Thus M determines the structure of a lattice which is mapped onto itself by an

affine transformation along the streamlines of an incompressible flow characterized

by v = .1965..., such as

838 0 0
A= 0o 1642 0 | . (5.36¢)
0 0 -1

The geometry of the unit cell can be calculated by computing the left eigenvectors
of M, as explained above.

This proves that strain-periodic solutions exist for at least some values of v.
Extending an analysis of the cubic (5.34) due to Reinelt & Kraynik (1990), it
is possible to demonstrate that solutions to (5.13) exist for an infinite number
of values v in the interval (0,1). Furthermore, their procedure indicates how to
calculate M, and hence a strain-periodic lattice, for any permissible v (i.e., for a
specified flow field), rather than “working backwards” as in the example (5.36). We
shall also show based on their work that uniaxial extension can be approximated
arbitrarily closely by flows having self-reproducing lattices. (In other words, for
any € > 0, one can find values of v € (1 — ¢, 1) for which solutions to (5.13) exist.)
However, the strain period of these networks (defined as the amount of stretch S

after which the lattice returns to its original configuration) becomes increasingly

long, tending to oo as v — 1.



-262-

Although their monograph on the existence of strain-periodic lattices in ex-
“tensional flows (Reinelt & Kraynik, 1990) has not yet been published, Reinelt &
Kraynik kindly granted me permission to reproduce their proof in my dissertation.
Their approach centers around the conditions which the integers I; and I, must
satisfy in order for the characteristic equation (5.34) to have three real and positive
solutions. The crux of their reasoning is that each set of three such roots corre-
sponds to a pure straining flow. One can therefore determine all the deformations
which possess compatible lattices by finding all pairs of integers ([;,I3) such that
the cubic (5.34) has three positive roots. Both problems are equivalent. We report
the main points of their derivation in what follows.
The roots S, S”, and S~(1+*) of the polynomial (5.34) are related to its coeffi-
cients byt
L =8+8" 450+ (5.37a)
L=S"4 8V 4571, (5.37b)
Observe that if S satisfies the cubic for a pair of integers (I, 3), then S™! is a
solution when I; and I, are interchanged. (This is another manifestation of the
fact that strain-periodicity is unaffected by time reversal.) The domain of allowable
integers (i.e., those which give three positive roots for the cubic) is thus symmetric
about the lline I; = I,. We can therefore restrict ourselves to I; < I;. (The special
case I; = I corresponds to planar extensional flow and was discussed in §5.3.2,
where we found infinitely many solutions.)

The polynomial (5.34), which we shall denote by p(u) = 0, has a local minimum
at
_ I + I12 - 31
== 5 ,

Ho (538&)

where 1t reaches the value

LL 2
ppo) = —19—2 - E(If —3L)[L ++/I2 -3L] —1. (5.38b)

7 Alternatively, one may state that the equivalent matrices & and M possess the

same invariants.
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If p(po) < 0, the cubic crosses the p-axis in ﬁhree points, and the set (Iy, 1) de-
fines a self-reproducing lattice. If p(uo) = 0, the characteristic equation possesses a
simple and a double root. This is the situation for biaxial extensional flow. Hence
axisymmetric deformations lie on the boundary between allowable and inadmissible
pairs of integers (I1,I2). By examining (5.38b) for large I;, we find that I, must

be proportional to I? /4 in order that p(p) ~ 0. In fact, if we substitute I, = I?/4
into (5.38b), we get exactly p(uo) = —1. Setting

2
L="14j, (5.39)

equation (5.38b) for the minimum becomes

s 45 12j 2 1 125

For 3 =0, the right hand side equals —1, as discussed above. Since both terms
within the braces of (5.40) decrease with decreasing j, the minimum p(ug) of the
cubic is also negative for j < 0, and there are then three positive roots to the
characteristic equation. If j > 0, we note that the factor between brackets in (5.40)
is always less than 1 and that the second term in the brace is negative, so that
p(,ug)>%{(1-}—%)+(—11—_212l—1)}——1=%hj—120. (5.41)
The last equality follows from the observation that I; > 3 and that the smallest
strictly positive value of j allowed by the integer equation (5.39) is 3/4. We conclude
that, in order for the polynomial (5.34) to have three positive roots, j must be zero
or negative. Thus, from (5.39), the relations I, = I?/4 and, by symmetry, I; = I?/4
define the boundaries between the integer pairs (I, I) that are allowed and those
that are not (Fig. 5.2). This constraint provides a tighter upper bound for I, than
the one given as a necessary condition in (5.35¢). Also, remark that the fact that
p{po) # 0 for all (I, Iz) € Z? furnishes an alternative proof of the non-existence of

strain-periodic lattices in axisymmetric extensional flows (see §5.3.3).
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Reinelt & Kraynik (1990) further point out that many integer matrices with

invariants Iy and I; can be constructed for each allowable pair. They cite the
example ‘
1 0 1
M=|\L-1IL, 1 L -1 ] . (5.42)
L-3 1 L-2
This implies that the conditions I, < I? /4 and I; < I?/4 are necessary and sufficient
conditions to insure the existence of strain-periodic lattices. This concludes the
proof by Reinelt & Kraynik (1990).
The elegant treatment of the issue of self-reproducibility in extensional flows by
Reinelt & Kraynik (1990) confirms the conclusions of §5.3.2-3, and can be used to
demonstrate that flows exist which approach uniaxial extension arbitrarily closely,

yet possess strain-periodic lattices. To investigate this further, we note that the

condition

S} —LS*+1,S-1=0 (5.43)

defines a straight line in an (I3, I;) diagram (Fig. 5.2). Recall that S = exp(\;1).
The root S is therefore a direct measure of the period ¢, in which the lattice returns
to its starting configuration.] The region of Z? between the limiting curves 4I; = I?
and 41, = I} then constitutes all points through which three lines (5.43) with S > 0
pass. This is illustrated for our example (5.36) in Fig. 5.2. In the half-domain
delimited by 4I, = I? and the symmetry axis I; = I, two roots are positive, and v
can be determined from the ratio of their logarithms. Also, although we did not

derive a closed form expression for curves of constant v,} it is obvious that they

1 S is actually a measure of strain, but one can non-dimensionalize time by A; ',
the amplitude of the largest elongational component of the rate of strain, to ob-

tain a one-to-one correspondence between the amount of deformation and the time

necessary to achieve it,

T The curve for v = 1, of course, is given by the implicit relation I;I;/9—

(I - 3L)[I + /17 - 3I2] =1, as can be seen from (5.38b).
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are continuous and cannot cross except at the trivial point I; = I3 = 3. They must
therefore fan out, away from the diagonal, as v goes from 0 to 1. The limit of biaxial
extension can consequently be approached arbitrarily closely by picking an allowable
pair of suitably large integers along the curve I, = I? /4. This geometric argument
becomes more clear perhaps if one calculates the roots of (5.34) for large I; = 2/1;.
We find, asymptotically, that

I 2 2 _
5:51+,/E_F+0(11 2 (5.44a)
1
2 2 _
S T
1
4 64 _
g—(+y) _ ptEt o(I7%) . (5.44c)
1 1

Thus, by choosing I; sufficiently large, S” can be made to approach S arbitrarily
closely; i.e., v — 1 as I — oo keeping I, = I?/4. (Note that I; must be even to
ensure that I is integer). Since however S =~ I;/2, the corresponding straining
period t; =1n(S)/A1 ~ In(I;/2)/\; also increases. Self-reproducing lattices can
thus be found in nearly axisymmetric pure straining flows, but at the expense of
long periods of replication.

Finally, let us poiﬁt out that although we have just shown that there exist
infinitely many values of v for which solutions to (5.13) exist, it is not yet clear

whether these constitute a discrete or a continuous spectrum in the interval [0,1).

This, we believe, remains an open question.

5.3.5 Self-reproducibility in flows possessing vorticity

We now briefly mention flow types for which the eigenvalues of Vu (see (5.11))
are all zero or have imaginary components. This case is fully understood for planar
deformations (Adler & Brenner, 1985). A zero eigenvalue corresponds to simple
shear, for which inﬁniﬁely many strain-periodic lattices exist. When eigenvalues are

complex in two dimensions, they must be purely imaginary and the flow is a simple
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rotation. Any lattice is self-reproducing under these circumstances. The three-
dimensional problem has been investigated by Adler (1984) to deduce the maximal
density of suspensions kinematically compatible with the deformations, but the

analysis was not complete and did not address the issue of strain-periodicity.

5.3.6 Non-self-reproducing compatible lattices and “adequate” unit cells
Although we have demonstrated in §5.3.3-4 that strairi—periodicity is impossible
under uniaxial or biaxial extension, Adler (1984) calculated a non-zero maximum
packing fraction for crystalline dispersions subject to axisymmetric stretch. Hence
non-self-reproducing compatible lattices exist. We now derive basis vectors for such
a network.
Recall from (5.9) that the trajectory of a point X, is given by x(t) = exp(Gt) - x,,

with, for biaxial extension,

3 0 0 S 0 0
G=[(0 3 o0 and exp(Gt) =10 S 0 . (5.45)
0 0 -1 0 0 S?

The length |x(t)| becomes minimal when S = (2z3/(z} + x%))l/ ® where it reaches

(0lhan = {92+ =) 58T + o (5.49)

[(z1,22,23) represent the coordinates of X,, the “3” axis being coincident with the

the value

axis of compression of the flow.] The minimum (5.46) can be made non-zero for all
points z(,} of a three-dimensional grid by finding a lattice £ admitting the star-
body B defined by |x3(2} + 22)|<1 (or some other appropriate constant). (A lattice
is called admissible for B if none of its nodes, except the origin, lie within B.) A

critical lattice for B exists (Davenport & Rogers, 1950; Cassels, 1959; Gruber &
Lekkerkerker, 1987), with basis vectors

| 6 6@
L=10 6y 26r6; , (5.47a)
1 ¢ ¢*
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where ¢ and 6. = 6 + 10 are the roots of £3A— ¢ = 1. Numerically,
$=132..  and 6y = —0.662..+i0.562... (5.47b)

The volume of this basis cell is det(L) = +/23/2. By construction, the points of this
lattice never approach the origin any closer than (/2 + 1/¥/4)%. The maximum

packing fraction of spheres which this network can accommodate under uniaxial

extension is therefore

_3VB 3t a3
Pmax = 7232 =375’ (5.48)

in agreement with Adler’s result (1984). He did not, however, give the basis vectors.
A few of the lattice points lying on the star body B, and which will therefore pass
closest to the origin, are by + bs, —4bs + 3bs, by — by, by — b3z, by + bs + bs,
Tb; — 49b; + 33bs, etc. [These were generated by a computer program, and are
not given in any special order. Many more exist which are not reported here (an
infinite number, actually, since B is fully automorphic according to the definition of
Davenport & Rogers (1950)).] The notation b; refers to the column vectors of L,
numbered sequentially from left to right. For our purposes, the vectors b; define the
edges of a unit cell suited for dynamic simulations of uniaxial extensional flows. (Of
course, repeated application of the box standardization algorithm discussed in §5.2
will be necessary.)

Finally, if L proves to be impractical, it should be noted that the discussion
in this chapter assumed that ¢t — oo to derive criteria for compatibility. Any real
simulation, however, ends after a limited time, during which the unit cell can only
have deformed a finite amount. It may therefore be possible to find “adequate” unit

cells which are not, strictly speaking, compatible with the studied flow, but suffice

for the simulation objectives.



-268-
References
Adler, P.M. (1984) Spatially periodic suspensions of convex particles ir; linear shear
flow. IV. Three-dimensional flows, J. Theor. Appl. Mech. 3, 725-T46.

Adler, P.M. (1985) Spatially periodic suspensions, J. Theor. Appl. Mech., Special
volume, 73-100.

Adler, P.M. & Brenner, H. (1985) Spatially periodic suspensions of convex particles

in linear shear flows. I. Description and kinematics, Int. J. Multiph. Flow 11,

361-385.

Cassels, J.W.S. (1959) An introduction to the geometry of numbers, Springer Verlag.

Claeys, L. (1991) SDPS, A package of subroutines to simulate systems of hy-
drodynamically interacting prolate spheroids, FORTRAN program, California
Institute of Technology 210-41.

Davenport, H. & Rogers, C.A. (1950) Diophantine equations with an infinity of
solutions, Phil. Trans. Roy. Soc. Lond. A 242, 311-344.

Gruber, P.M. & Lekkerkerker, C.G. (1987) Geometry of numbers, North Holland.

Kraynik, A.M. & Hansen, M.G. (1986) Foam and emulsion rheology: a quasistatic
model for large deformations of spatially-periodic cells, J. Rheol. 30, 409-439.

Reinelt, D. & Kraynik, A.M. (1990) Existence of strain-periodic solution for exten-

sional flow, personal communication.



- 269 -

Xgq+(z2°) b +Xq+(z°)

Fig. 5.1.: Misallocation of the nearest lattice point.

The solid lines within the unit cell bissect the vectors connecting the lattice points,
and thus define the points for which both corners are equidistant. The dashed lines
connect the points halfway between the lattice points. Both criteria give different
results if xp, is within the shaded region (as shown). For instance, X, is closer to
b, + Xg+(2¢) than to Xg..(z¢) in this figure.
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Fig.5.2: Graphical representation of the allowable pairs of integers (I;,1,).
The two parabolae delimit the domain of allowable integers. The diagonal
corresponds to planar extensional flows. The solid lines are curves of
constant straining periods S. Note that S increases as one follows the lower

bound to the right. The straight lines denoted by S, S¥ and S ™) are
drawn for the numerical example (5.36) from the text. Notice that they
intersect at (6,7).



APPENDIX K

Some hydrodynamic transport coefficients

for crystals of spheroids

As explained in Appendix H, crystals of spheroids are useful reference configurations
whose properties serve as benchmarks to test the accuracy of present and future
simulation methods. We therefore collected a few results on the hydrodynamic
transport properties of orderly arrangements of spheroids in this appendix. Some
of the tables contain the numerical values used for the figures of Chapter IV, but
others consist of new information.

We first discuss the relation Rgy between the hydrodynamic stress and the
rate of strain. Due to the tracelessness and symmetry of E and S, this tensor is in-
determinate. Following the usual convention, we define Ry uniquely by specifying
that it, too, must be traceless and symmetric in its first and last two indices. This

allows one to compact it into a 5 X 5 matrix Y such that

Y Ei1 — E33

222 Eq9 — E33

Lo | =8ralpuY - 2F, : (K.1)
Y23 2E3

X 2E3,

with 4 the viscosity of the suspending fluid and a the length of the spheroidal
semi-axis. It follows from Lorentz’ reciprocal theorem that Y is symmetric. It thus
contains only 15 independent elements, which we label as shown below.
Yinn Yiree Yine Yies Y
Yiiee Yaooo Yoo12 Yooz Yoo
Y = | Yiiie Yeor2 Yioie Yizes Yias | . (K.2)
Yiios Yazoz Yi2oz Yozaz  Yosss
Yiia1 Yaazn Yiozr Yozzr Yaia

For dispersions possessing a 6-fold axis of symmetry d, invariance laws imply that

3 components suffice to characterize Y (App. H). In terms of the coefficients 7
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introduced in Ch. IV (eq. (4.43)), and assuming that d lies along the “3” axis, it is
“easy to find in this case that

77T/3+77|| nr/3—m 0 0 0
ne/3—ny nr/3+m 0 0 0

Y = 0 0 m 0 0 , (K.3)
0 0 0 n. O
0 0 0 0 n.

By analogy, we set ny = %(}’1111 + Y1122), 7y = Y1212 and n, = Y3133 for all config-
urations in Fig. 4.11, even though (4.43) does not hold in general. This definition
of n, makes it equal to one third of the Trouton viscosity in uniaxial extensional
flows along the “3” axis. For isotropic suspensions, one sees from (K.3) that Y
has 7 non-zero elements, two of which are identical because of symmetry. The
6 remaining components were averaged appropriately to obtain the values reported
in Ch. IV.

Lubrication interactions were suppressed in all calculations concerning crys-
talline dispersions for reasons explained in Ch.IV. The non-dimensionalization used
in this appendix is consistent with the remainder of this work: diffusion coeffi-
cients scale with kT/8mrua™ (n = 1 for translational components, n = 2 for ro-
tary diffusivities), sedimentation rates with |F|/87ua and their rotational analogs
with |T|/8wua®. [F and T represent the uniformly applied force or torque respec-

tively. “k” is Boltzmann’s constant, and “T” the absolute temperature.]
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Table K.1: Rheological data for efc-crystals of spheroids with r, = 8.1

d).

0.00568
0.00791
0.01096
0.01513
0.02080
0.02850
0.03025
0.03866
0.03890
0.04931
0.05294
0.06279
0.07185
0.07985

- 0.09735
0.10145
0.12884
0.13180
0.16367
0.17854
0.20815
0.24236
0.26515
0.32999

I We demonstrated in App. H that Y7111 = Y1120 + 2Y1212 for this type of lattice.

Y—1111

2.03E-02
2.08E-02
2.15E-02
2.23E-02
2.33E-02
2.46E-02
2.48E-02
2.61E-02
2.62E-02
2.77E-02
2.82E-02
2.95E-02
3.07E-02
3.18E-02
3.39E-02
3.44E-02
3.76E-02
3.79E-02
4.12E-02
4.27E-02
4.53E-02
4.80E-02
4.97E-02
5.41E-02

Y1212

5.288E-03
5.304E-03
5.327E-03
5.357E-03
5.398E-03
5.454E-03
5.466E-03
5.527E-03
5.529E-03
5.604E-03
5.630E-03
5.699E-03
5.769E-03
5.826E-03
5.962E-03
5.992E-03
6.210E-03
6.235E-03
6.505E-03
6.632E-03
6.912E-03
7.237E-03
7.496E-03
8.234E-03

Y3131

5.506E-03
5.504E-03
5.503E-03
5.505E-03
5.511E-03
5.526E-03
5.530E-03
5.552E-03
5.552E-03
5.585E-03
5.597E-03
5.630E-03
5.669E-03
5.700E-03
5.783E-03
5.801E-03
5.945E-03
5.962E-03
6.155E-03
6.249E-03
6.466E-03
6.727E-03
6.941E-03
7.568E-03



0.33841
0.38474
0.43279
0.45074
- 0.45600
0.54094
0.55455
0.61755
0.64225
0.71180

5.48E-02
5.81E-02
6.25E-02
6.39E-02
6.43E-02
7.39E-02
7.66E-02
8.57TE-02
9.01E-02
1.08E-01
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8.388E-03
8.994E-03
9.883E-03
1.011E-02
1.021E-02
1.217E-02
1.282E-02
1.470E-02
1.576E-02
2.078E-02

7.699E-03
8.227E-03
8.997TE-03
9.201E-03
9.289E-03
1.099E-02
1.153E-02
1.315E-02
1.405E-02
1.813E-02
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Table K.2: Rheological data for ebe-crystals of spheroids with r, = 8.

¢ Y1 Y1102 Y1212
0.00535 2.94E-02 5.23E-03 5.334E-03
0.00743 3.02E-02 5.22E-03 5.371E-03
0.00879 3.07E-02 5.22E-03 5.394E-03
0.01013 3.12E-02 5.21E-03 5.418E-03
0.01027 3.12E-02 5.21E-03 5.420E-03
0.01213 3.18E-02 5.20E-03 5.454E-03
0.01376 3.23E-02 5.20E-03 5.482E-03
0.01414 3.25E-02 5.20E-03 5.489E-03
0.01667 3.32E-02 5.19E-03 5.533E-03
0.01864 3.38E-02 5.18E-03 5.568E-03
0.01941 3.40E-02 5.18E-03 5.682E-03
0.02284 3.50E-02 5.17E-03 5.642E-03
0.02518 3.57E-02 5.17TE-03 5.684E-03
0.02656 3.60E-02 5.16E-03 5.708E-03
0.02688 3.61E-02 5.16E-03 5.714E-03
0.02819 3.64E-02 5.16E-03 5.737E-03
0.03122 3.72E-02 5.15E-03 5.791E-03
0.03265 3.75E-02 5.15E-03 5.816E-03
0.03394 3.79E-02 5.14E-03 5.840E-03
0.03604 3.83E-02 5.14E-03 5.877E-03
0.03626 3.84E-02 5.14E-03 5.881E-03
0.03964 3.92E-02 -5.13E-03 5.942E-03
0.04259 3.98E-02 5.12E-03 5.995E-03
0.04567 2.77E-02 5.12E-03 1.244FE-02
0.04603 4.06E-02 5.12E-03 6.058E-03

Y3131

5.517E-03
5.518E-03
5.518E-03
5.520E-03
5.520E-03
5.522E-03
5.524E-03
5.525E-03
5.529E-03
5.533E-03
5.535E-03
5.543E-03
5.549E-03
5.553E-03
5.554E-03
5.558E-03
5.567E-03
5.572E-03
5.576E-03
5.584E-03
5.585E-03
5.597E-03
5.608E-03
5.621E-03
5.622E-03



0.04810
0.04944
0.05803
- 0.05835
0.05875

0.06141

0.06736
0.07078
0.07500
0.07908
0.08260
0.08589
0.09183
0.09580
0.10429
0.10789
0.01112
0.12250
0.12540
0.12672
0.14749
0.01501
0.15410
O.-15685
0.16965
0.17161
0.18681
0.18758
0.20113

4.11E-02
4.13E-02
4.29E-02
4.30E-02
4.30E-02
4.35E-02
4.46E-02
4.52E-02
4.58E-02
4.64E-02
4.70E-02
4.74E-02
4.82E-02
4.88E-02
4.98E-02
5.02E-02
5.06E-02
5.18E-02
5.20E-02
5.22E-02
5.41E-02
5.43E-02
5.47E-02
5.49E-02
5.60E-02
5.62E-02
5.74E-02

5.75E-02

5.85E-02
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5.11E-03
5.11E-03
5.10E-03
5.09E-03
5.09E-03
5.09E-03
5.09E-03
5.08E-03
5.07E-03
5.07E-03
5.07E-03
5.07E-03
5.07E-03
5.06E-03
5.06E-03
5.06E-03
5.06E-03
5.07E-03
5.07E-03
5.07E-03
5.09E-03
5.09E-03
5.10E-03
5.11E-03
5.13E-03
5.14E-03
5.17E-03
5.17E-03
5.21E-03

6.156E-03
6.120E-03
6.278E-03
6.332E-03
6.288E-03
6.341E-03
6.452E-03
6.555E-03
6.593E-03
6.673E-03
6.742E-03
6.802E-03
6.920E-03
6.994E-03
7.160E-03
7.236E-03
7.302E-03
7.528E-03
7.588E-03
7.620E-03
8.044E-03
8.098E-03
8.186E-03
8.244E-03
8.519E-03
8.552E-03
8.891E-03
8.875E-03
9.205E-03

5.656E-03
5.636E-03
5.675E-03
5.604E-03
5.675E-03
5.601E-03
5.720E-03
5.750E-03
5.756E-03
5.781E-03
5.800E-03
5.816E-03
5.852E-03
5.87T4E-03
5.925E-03
5.949E-03
5.971E-03
6.043E-03
6.063E-03
6.073E-03
6.218E-03
6.237E-03
6.268E-03
6.289E-03
6.388E-03
6.399E-03
6.527E-03
6.525E-03
6.648E-03



0.20209
0.02029
0.20575

0.22666

0.23539
0.24975
0.25828
0.27487
0.27525
0.27753
0.30341
0.32362
0.33213
0.33452
0.37315
0.38197
0.42763
0.47655
0.52672
0.55122
0.72754

5.86E-02
5.87E-02
5.89E-02
6.07E-02
6.24E-02
6.27E-02
6.35E-02
6.51E-02
6.51E-02
6.53E-02
6.80E-02
7.14E-02
7.12E-02
7.15E-02
7.62E-02
7.74E-02
8.42E-02
9.22E-02
1.02E-01
1.08E-01
1.64E-01
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5.21E-03
5.21E-03
5.22E-03
5.30E-03
5.33E-03
5.40E-03
5.44E-03
5.51E-03
5.53E-03
5.53E-03
5.70E-03
5.71E-03
5.90E-03
5.92E-03
6.22E-03
6.30E-03
6.84E-03
7.36E-03
8.31E-03
8.95E-03
1.55E-02

9.211E-03
9.229E-03
9.307E-03
9.773E-03
9.955E-03
1.029E-02
1.049E-02
1.082E-02
1.087E-02
1.088E-02
1.152E-02
1.206E-02
1.219E-02
1.225E-02
1.302E-02
1.322E-02
1.448E-02
1.544E-02
1.673E-02
1.755E-02
2.543E-02

6.648E-03
6.655E-03
6.688E-03
6.876E-03
6.933E-03
7.097E-03
7.182E-03
7.332E-03
7.357E-03
7.360E-03
7.668E-03
7.828E-03
8.013E-03
8.044E-03
8.507E-03
8.631E-03
9.420E-03
1.021E-02
1.131E-02
1.208E-02
1.969E-02
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Table K.3: Rheological data for esc-crystals of spheroids with r, = 8.

¢ Yiin Y1122
©0.00436 2.02E-02 9.54E-03
0.00611 2.07E-02 9.92E-03
0.00851 2.13E-02 1.04E-02
0.01180 2.20E-02 1.10E-02
0.01629 2.30E-02 1.18E-02
0.02241 2.42E-02 1.28E-02
0.03068 2.58E-02 1.40E-02
0.04185 2.77E-02 1.55E-02
0.05686 3.03E-02 1.73E-02
0.07698 3.36E-02 1.97E-02
0.10387 3.80E-02 2.27E-02
0.13970 4.40E-02 2.65E-02
0.18735 5.23E-02 3.13E-02
0.25056 6.44E-02 3.76E-02
0.33426 8.27E-02 4.56E-02
0.44492 1.10E-01 5.75E-02

y'1 212 1’3‘131
5.227E-03 5.501E-03
5.219E-03 5.497E-03
5.209E-03 5.493E-03
5.196E-03 5.491E-03
5.179E-03 5.491E-03
5.159E-03 5.496E-03
5.134E-03 5.508E-03
5.106E-03 5.532E-03
5.076E-03 5.574E-03
5.048E-03 5.641E-03
5.032E-03 5.745E-03
5.045E-03 5.904E-03
5.119E-03 6.146E-03
5.326E-03 6.521E-03
5.838E-03 7.120E-03
7.215E-03 8.142E-03
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Table K.4: Rheological data for sme-crystals of spheroids with =, = 8.

ol

0.00504
0.00705
0.00982
0.01362
0.01882
0.02587
0.03543
0.04832
0.06566
0.08889
0.11994
0.16131
0.21633
0.28932
0.38597
0.51375

One can verify the relation Y1117 = Y1190 + 2Y1212 predicted for structures with

Yiin Y1122 Yi212
2.04E-02 9.79E-03 5.288E-03
2.09E-02 1.03E-02 5.305E-03
2.15E-02 1.09E-02 5.327E-03
2.23E-02 1.16E-02 5.358E-03
2.34E-02 1.26E-02 5.399E-03
2.47E-02 1.38E-02 5.454E-03
2.64E-02 1.53E-02 5.529E-03
2.85E-02 1.72E-02 5.631E-03
3.12E-02 1.96E-02 5.770E-03
3.46E-02 2.27E-02 5.963E-03
3.92E-02 2.68E-02 6.236E-03
4.54E-02 3.22E-02 6.633E-03
5.39E-02 3.94E-02 7.236E-03
6.58E-02 4.94E-02 8.211E-03
8.30E-02 6.30E-02 9.967E-03
1.08E-01 8.08E-02 1.383E-02

cylindrical symmetry.

Y3133

5.497E-03
5.492E-03
5.488E-03
5.485E-03
5.486E-03
5.493E-03
5.509E-03
5.539E-03
5.590E-03
5.671E-03
5.796E-03
5.988E-03
6.283E-03
6.747E-03
7.510E-03
8.878E-03
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Table K.5: Rheological data for isc-crystals of spheroids with r, = 8.

9 Yiin Yii22 1212 3131
0.00102 2.02E-02 9.51E-03 5.227E-03 5.464E-03
0.00150 2.06E-02 9.87E-03 5.219E-03 5.446E-03
0.00220 2.12E-02 1.03E-02 5.210E-03 5.425E-03
0.00323 2.19E-02 1.09E-02 5.198E-03 5.400E-03
0.00474 2.27E-02 1.16E-02 5.182E-03 5.371E-03
0.00508 2.29E-02 1.18E-02 5.179E-03 5.365E-03
0.00696 2.39E-02 1.25E-02 5.163E-03 5.338E-03
0.00758 2.41E-02 1.27E-02 5.159E-03 5.330E-03
0.01021 2.53E-02 1.36E-02 5.141E-03 5.302E-03
0.01131 2.57E-02 1.39E-02 5.134E-03 5.292E-03
0.01498 2.70E-02 1.49E-02 5.115E-03 5.266E-03
0.01689 2.76E-02 1.54E-02 5.106E-03 5.255E-03
0.02199 2.92E-02 1.65E-02 5.086E-03 5.232E-03
0.02521 3.01E-02 1.72E-02 5.076E-03 5.222E-03
0.03226 3.20E-02 1.85E-02 5.058E-03 5.206E-03
0.03763 3.34E-02 1.95E-02 5.049E-03 5.200E-03
0.04734 3.57E-02 2.10E-02 5.037E-03 5.196E-03
0.05617 3.77E-02 2.23E-02 5.032E-03 5.200E-03
0.06947 4.05E-02 2.41E-02 5.034E-03 5.216E-03
0.08384 4.34E-02 2.59B-02 5.045E-03 5.243E-03
0.10194 4.69E-02 2.79E-02 5.070E-03 5.289E-03
0.12515 5.12E-02 3.03E-02 5.119E-03 5.363E-03
0.14959 5.56E-02 3.25E-02 5.189E-03 5.457E-03
0.18582 6.22E-02 3.54E-02 5.326E-03 5.629E-03
0.21951 6.78E-02 3.75E-02 5.480E-03 5.806E-03



0.27886
0.32211
0.41626
0.47267

777E-02
8.45E-02
9.85E-02
1.08E-01
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4.07E-02
4.24E-02
4.61E-02
5.15E-02

5.839E-03
6.178E-03
7.218E-03
8.139E-03

6.193E-03

. 6.534E-03

7.492E-03
8.252E-03
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Table K.6: Rheological data for efe-crystals of spheroids with r, = 4.

¢

0.00087
0.00126
0.00182
0.00262
0.03773
0.00404
0.00579
0.00825
0.01173
0.01659
0.02339
0.03284
0.04592
0.06398
0.08886
0.12305
0.17003
0.23461
0.32350
0.44610
0.61555

Yii1

4.49E-02
4.49E-02
4.50E-02
4.52E-02
4.54E-02

 4.55E-02

4.58E-02
4.63E-02
4.70E-02
4.80E-02
4.93E-02
5.10E-02
5.34E-02
5.65E-02
6.07E-02
6.62E-02
7.35E-02
8.28E-02
9.49E-02
1.14E-01

1.55E-01

Y1212

2,141E-02
2.142E-02
2.143E-02
2.145E-02
2.463E-02
2.149E-02
2.154E-02
2.161E-02
2.171E-02
2.185E-02
2.204E-02
2.932E-02
2. 970E-02
2.324F-02
2.399E-02
2.507E-02
2. 665E-02
2.907E-02
3.309E-02
4.068E-02
5.947E-02

Y3131

2.376E-02
2.375E-02
2.375E-02
2.374E-02
2.374E-02
2.373E-02
2.372E-02
2.370E-02
2.369E-02
2.367E-02
2.366E-02
2.368E-02
2.375E-02
2.392E-02
2.425E-02
2.485E-02
2.592E-02
2.781E-02
3.129E-02
3.829E-02
5.559E-02
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Table K.7: Rheological data for efe-crystals of spheroids with r, = 16.

¢

0.00027
0.00055
0.00077
0.00107
0.00139
0.00207
0.00286
0.00393
0.00538
0.00710
0.00965
0.01306
0.01763
0.02373
0.03184
0.04263
0.05697
0.07602
0.10141
0.13544
0.18158
0.24480
0.33185
0.45200
0.61807

Yllll

1.07E-02
1.09E-02
1.10E-02
1.11E-02
1.13E-02
1.15E-02
1.18E-02
1.21E-02
1.25E-02
1.30E-02
1.36E-02
1.43E-02
1.51E-02
1.62E-02
1.74E-02
1.89E-02
2.07E-02
2.30E-02
2.58E-02
2.91E-02
3.29E-02
3.66E-02
4.12E-02
4.87E-02

 6.43E-02

Yi212

1.305E-03
1.306E-03
1.306E-03
1.307E-03
1.307E-03
1.308E-03
1.310E-03
1.312E-03
1.315E-03
1.318E-03
1.322E-03
1.328E-03
1.336E-03
1.347E-03
1.361E-03
1.380E-03
1.406E-03
1.441E-03
1.489E-03
1.557E-03
1.657E-03
1.808E-03
2.057E-03
2.525E-03
3.666E-03

Y3131

1.331E-03
1.330E-03
1.330E-03
1.330E-03
1.330E-03
1.329E-03
1.329E-03
1.312E-03
1.329E-03
1.330E-03
1.331E-03
1.333E-03
1.336E-03
1.341E-03
1.348E-03
1.358E-03
1.373E-03
1.394E-03
1.425E-03
1.471E-03
1.543E-03
1.661E-03
1.866E-03
2.263E-03
3.220E-03



0.21430E-09
0.13384E-06
0.25001E-05
0.12536E-04
0.20971E-04
0.34729E-04
0.47678E-04
0.56996E-04
0.77839E-04
0.89568E-04
0.92792E-04
0.12615E-03
0.15002E-03
0.20316E-03

0.23294E-03

0.32543E-03
0.37261E-03
0.51893E-03
0.59348E-03
0.82439E-03
0.98912E-03
0.13019E-02
0.14905E-02
0.17121E-02

0.20624E-02
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Table K.8: Rheological data for efc-crystals of spheroids with r, = 300.

Yiin Y1212 Y3131
0.3785E-02 0.3704E-05 0.3704E-05
0.3789E-02 0.3704E-05- 0.3704E-05
0.3854E-02 0.3704E-05 0.3704E-05
0.4043E-02 0.3704E-05 0.3704E-05
0.4142E-02 0.3704E-05 0.3704E-05
0.4280E-02 0.3704E-05 0.3704E-05
0.4377E-02 0.3704E-05 0.3704E-05
0.4437E-02 0.3704E-05 0.3704E-05
0.4550E-02 0.3704E-05 0.3704E-05
0.4606E-02 0.3704E-05 0.3704E-05
0.4620E-02 0.3704E-05 0.3704E-05
0.4753E-02 0.3704E-05 0.3704E-05
0.4834E-02 0.3704E-05 0.3704E-05
0.4987E-02 0.3705E-05 0.3705E-05
0.5065E-02 0.3705E-05 0.3705E-05
0.5257E-02 0.3705E-05 0.3705E-05
0.5336E-02 0.3705E-05 0.3705E-05
0.5569E-02 0.3706E-05 0.3705E-05
0.5676E-02 0.3707E-05 0.3706E-05
0.5929E-02 0.3708E-05 0.3706E-05
0.6088E-02 0.3708E-05 0.3707E-05
0.6346E-02 0.3710E-05 0.3708E-05
0.6494E-02 0.3711E-05 0.3708E-05
0.6630E-02 0.3712E-05 0.3709E-05
0.6833E-02 0.3713E-05 0.3710E-05



0.22497E-02

0.23529E-02
0.20834E-02
0.32510E-02
0.39148E-02
0.51341E-02
0.67298E-02
0.77450E-02
0.88177E-02
0.10146E-01
0.13286E-01
0.17393E-01
0.22763E-01
0.29785E-01
0.38066E-01
0.50967E-01
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0.6943E-02
0.6983E-02
0.7286E-02
0.7404E-02
0.7712E-02
0.8102E-02
0.8599E-02
0.8840E-02
0.9085E-02
0.9500E-02
0.1015E-01
0.1095E-01
0.1162E-01
0.1225E-01
0.1267E-01
0.1419E-01

0.3714E-05
0.3715E-05
0.3718E-05
0.3719E-05
0.3722E-05

0.3727E-05

0.3735E-05
0.3739E-05
0.3744E-05
0.3750E-05
0.3765E-05
0.3784E-05
0.3809E-05
0.3842E-05
0.3887E-05
0.3946E-05

0.3710E-05
0.3711E-05
0.3712E-05
0.3713E-05
0.3715E-05
0.3719E-05
0.3723E-05
0.3726E-05
0.3729E-05
0.3734E-05
0.3743E-05
0.3755E-05
0.3772E-05
0.3793E-05
0.3822E-05
0.3860E-05
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Table K.9: Sedimentation rates for efc-crystals of spheroids with rp = 8.

¢ i vr vie ve

0.00000 0.4610E4-01 0.3276E4-01 0.9327E+02 0.6808E+01
0.03025 0.1783E+01 0.1221E+-01 0.9004E+02 0.9141E+401
0.03866 0.1619E4-01 0.1100E+01 0.8912E;|—02 0.9682E+01
0.04931 0.1455E+01 0.9773E+400 0.8797E+02 0.1030E4-02
0.06279 0.1293E4-01 0.8524E4-00 0.8657TE+02 0.1100E+02
0.07985 0.1135E+01 0.7273E4-00 0.8475E402 0.1176 E+02
0.10145 0.9803E+00 0.6050E+00 0.8247E+402 0.1256E+-02
0.12884 0.8321E+00 0.4909E+-00 0.7963E+02 0.1334E4-02
0.16367 0.6914E+-00 0.3939E+00 0.7607E~+02 0.1401E+-02
0.20815 0.5602E4-00 0.3303E4-00 0.7162E+402 0.1443E+-02
0.26515 0.4419E4-00 0.3219E4-00 0.6605E+-02 0.1445E+02
0.33841 0.3446E4-00 0.3976E4-00 0.5903E4-02 0.1389E+-02
0.43279 0.2836E4-00 0.5909E4-00 0.5011E4-02 0.1263E+02
0.55455 0.2762E4-00 0.9183E+00 0.3867TE+02 0.1070E+02
0.71180 0.1392E4-01 0.2385E+02 0.8134E+01

0.3404E+00
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Table K.10: Sedimentation rates for sme-crystals of spheroids with r, = 8.

¢

v vy i Ve
0.00000 0.4610E+01 0.3276E+01 0.9327E+02 0.6808E+-01
0.00538  0.2819E+01 0.2086E+01 0.9271E+02 0.7454E401
0.00705 0.2633E+01 0.1982E+01 0.9247E+02 0.7728E+01
0.00982 0.2440E+01 0.1872E+01 0.9214E+02 0.8094E+-01
0.01362 0.2240E+01 0.1755E+01 0.9169E+02 0.8572E+01
0.01882 0.2036E+01 0.1631E+01 0.9107E+02 0.9186E+01
0.02587 0.1829E+01 0.1500E+401 0.9023E+02 0.9960E+01
0.03543 0.1621E401 0.1361E+401 0.8910E+02 0.1092E+-02
0.04832 0.1416E4-01 0.1214E+401 0.8758E+02 0.1210E+02
0.06566 0.1214E+401 0.1065E+01 0.8556E+02 0.1352E4-02
0.08889 0.1020E+01 0.9096E+00 0.8288E+02 0.1521E+02
0.11994 0.8384E+00 0.7535E+00 0.7934E+02 0.1719E402
0.16132 0.6736E+00 0.6008E+00 0.7466E+02 0.1945E+02
0.21633 0.5326E+00 0.4580E+00 0.6850E+02 0.2194E+02
0.28932 0.4239E+00 0.3340E+00 0.6041E+02 0.2449E+4-02
0.38597 0.3592E+00 0.2414E+00 0.4979E+402 0.2662E+02
0.51375 0.3533E+00 0.1988E+00 0.3587TE+02 0.2695E+02




Table K.11: Hindered diffusivities for efc- crystals of spheroids with r, = 6 con-
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structed using 32 partlcles per unit cell.

¢ Hp HY ro Hre

0.0000E00  0.4099E+1  0.2991E+1  0.5167E+2  0.5939E+1
0.5007E-2  0.3530E+1  0.2406E+1  0.5164E4+2  0.5898E+1
0.6379E-2  0.3486E+1  0.2343E+1  0.5162E+2  0.5882E+1
0.8111E-2  0.3428E+1  0.2273E+1  0.5161E+2  0.5861E+1
0.1029E-1  0.3363E+1  0.2196E+1  0.5159E+2  0.5832E+1
0.1303E-1  0.3307E+1  0.2104E+1  0.5156E+2  0.5808E-+1
0.1646E-1  0.3225E4+1  0.2015E+1  0.5152E+2  0.5761E+1
0.2075E-1  0.3135E+1  0.1919E+1  0.5146E+2  0.5700E+1
0.2611E-1  0.3037E+1  0.1817E+1  0.5139E+2  0.5621E+1
0.5626E-1  0.2630E+1  0.1433E+1  0.5089E+2  0.5171E+1
0.9500E-1  0.2284E+1  0.1135E+1  0.5013E+2  0.4673E+1
0.1597ECY  0.1879E+1  0.8356E00  0.4865E+2  0.4000E+1

The basis vectors for this lattice at ¢ = 0.056259 are given by the column vectors

of
2 -2 4
B=| —2/v3 vi3 o] .
—4.77631 0 O

The spheroids are aligned with the “3” axis and are arranged in two stacks of 4 by 4.

For comparison, at the same concentration,

tr T TO TO

D“ DY D|| Drp
2.9792 2.0210 51.394 5.8188

vie vy vi© VI
1.2797 0.87518 48.415 7.6835

These properties have not been corrected for the periodicity effect.
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APPENDIX L

A sample of simulation results

for unbounded equilibrium dispersions of spheroids

This appendix groups a few of the numerical results obtained for “random” con-
figurations of prolate spheroids of aspect ratio 6 and 20. The list is by no means
exhaustive, and perhaps not even fully representative of the capabilities of our sim-
ulation method. (Polydisperse systems for instance are not discussed.) We hope,
however, that this information will be useful for comparison with experiments or
with data obtained by different techniques.

Entries in parentheses indicate the variance on the single-particle data. This
spread is caused mainly by the difference in the local environments of the spheroids
in the dispersion, and is usually much larger than the uncertainty about the mean
values. Variables are non-dimensionalized as in Appendix K. The data are not
corrected for periodicity effects brought about by the finite number N of parti-
cles in the unit cell. Lubrication interactions were included below a threshold gap
width €nax = 0.08 (made dimensionless using the harmonic mean of the radii of cur-
vature at the points of closest approach). The number of accepted moves between
data acquisition in the Monte-Carlo procedure depended on the concentration and
on the aspect ratio of the spheroids. The magnitude of the translational and rota-
tional displacements was adapted to achieve a mean rejection ratio of 35%. At a
volume fraction ¢ = 0.05, for r, = 6, the step size was nearly a/2, i.e., one quarter
of a particle length; each spheroid was moved successfully 1000 times on average
to generate each new configuration; 4000 displacements per particle were used to
randomize the system initially. At ¢ = 0.275, 3600 and 21000 moves/particle were
employed respectively, but the step size had to be reduced to about 0.03 a to achieve
the same rejection rate. The number of configurations over which the data has been

averaged is denoted by Np in the following tables.



Spheroids of aspect ratio 6

Table L.1: Simulation parameters

¢

.005e0
.050e0
.111e0
.150e0
.225e0
.275€0
.300e0
.333e0
.333e0
.375e0
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50
50
50
60
50
50
50
60
63
60

ot Ot

(3 I JC RN ORGSO JUR O



Table 1..2: Self- diﬁ'usivi’pies
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¢ Dy DY
0.005E+00  0.369E-+01  (0.80E-01)  0.262E4+01  (0.30E-01)
0.050E+00  0.311E+01  (0.70E-01)  0.207E+01  (0.40E-01)
0.111E400  0271E+01  (0.15E+00)  0.173E+01  (0.80E-01)
0.150E+00  0.255E+01  (0.16E+00)  0.161E4+01  (0.80E-01)
0.225E4+00  0.222E401  (0.21E400)  0.134E+01  (0.12E+00)
0.275E+00  0.198E+01  (0.21E+00)  0.120E+01  (0.11E-+00)
0.300E+00  0.209E+01  (0.22E+00)  0.127E+01  (0.10E+00)
0.333E+00  0.175E401  (0.21E+00)  0.112E+01  (0.12E+00)
0.333E+00  0.203E+01  (0.19E+00)  0.123E+01  (0.90E-01)
0.375E+00  0.164E+01  (0.16E+00)  0.108E+01  (0.80E-01)
é Dre D

0.500E-02  0.515E+02  (0.10E+01)  0.389E+01  (0.15E+00)
0.500E-01  0.510E+02  (0.14E+401)  0.563E+01  (0.10E-+00)
0.111E+00  0.495E+02  (0.28E+01)  0.523E4+01  (0.24E+00)
0.150E+00  0.487E+02  (0.31E+01)  0.498E4+01  (0.30E400)
0.225E+00  0.460E+02  (0.48E+01)  0.445E+01  (0.41E+00)
0.275E+00  0.439E+02  (0.49E+01)  0.405E+01  (0.48E+00)
0.300E+00  0440E+02  (0.46E+01)  0.389E+01  (0.46E+00)
0.333E+00  0.422E+02  (0.61E+01)  0.398E+01  (0.48E+00)
0.333E+00  0.435E+02  (0.49E+01)  0.377E4+01  (0.42E400)
0.375E4+00  0.422E+02  (0.53E+01)  0.397E+01  (0.40E+00)
0.375E+00  0.422E+02  (0.53E+01)  0.397E+01  (0.40E-00)
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Table 1..3: Hindered diffusivities

¢ i HY
'0.50000E-02 0.334E+-01 (0.30E+00) 0.229E+01 (0.21E+00)
0.50000E-01 0.248E4-01 (0.19E+4-00) 0.149E+01 (0.14E+00)
0.11100E4+00  0.202E+01  (0.22E+00)  0.111E4+01  (0.15E+400)
0.15000E+00  0.183E401  (0.21E4+00)  0.982E+00  (0.14E+00)
0.22500E+00  0.153E401 (0.23E+400) 0.762E4+00  (0.16E4-00)
0.27500E+00  0.135E+01  (0.21E+00)  0.653E+00  (0.13E+00)
0.30000E+00  0.136E+01 (0.20E+-00) 0.607E+00  (0.12E-+00)
0.33300E+00  0.124E+01  (0.20E+00)  0.560E+00  (0.14E-+00)
0.33300E+00  0.133E401  (0.19E+00)  0.554E+00  (0.10E+00)
¢ Hye HY

0.500E-02  0.513E4+02  (0.13E4+01)  0.572E401  (0.34E-+00)

0.500E-01 0.500E+02 (0.17E+401) 0.484E+01 (0.29E+00)
0.111E400  0.475E4+02  (0.33E401)  0.409E+01  (0.39E+00)
0.150E+00  0.462E+02  (0.36E+01)  0.372E+01  (0.44E+00)
0.225E+00  0.420E+02  (0.53E+01)  0.315E+01  (0.53E+400)
0.275E4+00  0.405E+02  (0.52E+01)  0.275E+01  (0.57E+00)
0.300E-+00 0.397E+02 (0.48E+01) 0.276E+401 (0.44E4-00)
0.333E4+00  0.380E+02  (0.62E+01)  0.254E4+01  (0.51E+400)
0.333E4-00 0.385E+02 (0.48E+401) 0.269E4-01 (0.39E-+00)
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Table L..4: Sedimentation rates

¢ Vtr

L005E-+00 284E+01 (.55E+00)
.050E+00 176E-+01 (.48E+00)
111E+00 117E+01 ~ (.3TE+00)
150E-+00 962E-+00 (.30E+00)
225E+00 685E+00 (.21E+00)
275E+00 554E-+00 (.17E+00)

tr tr
¢ Vi Y

300E+00  .527E+00  (.35E+00)  .626E+00  (.16E+00)
333E+00  458E+00  (.15E400)  .502E400  (.12E+00)
333E+00  428E4+00  (.26E+00)  .539E+00  (.11E+00)
375E400  .389E+00  (.14E400)  .463E+00  (.12E+00)

V1" refers to the sedimentation rate when gravity acts perpendicular to the director

of the nematic phase. The corresponding velocity when the spheroidal axes are

approximately aligned vertically is V”“.
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Table L.5: Relation between the stress and the rate of strain

¢

.005E+00
.050E+00
.111E4-00
.150E4-00
225E+00
.250E4-00
.275E4-00

¢

.300E4-00
.333E+00
.333E4-00
.375E+00

For the isotropic samples (top table), the column labeled Y711; contains the average
of Y1111 and Y2222, and the column Yi212 gives the mean of the three other diagonal
elements of Y (see App. K). In the nematic phase (with director aligned in the

“3” direction), Yi212 is distinct from Ys323 and Y3131, and is tabulated separately.

Note that }3212 jad

invariance. The data for Y7122 are subject to large fluctuations, and their variance

}3111

232E-01
.254E-01
274E-01
.294E-01
.328E-01
327E-01
372E-01

Yiiu

.334E-01
.354E-01
.346E-01
.346E-01

}3122

-.795E-02
-.230E-01
-.884E-02
-.199E-01

Yi122 Y1212
8T0E-01 180E-01
.138E-01 .190E-01
169E-01 204E-01
214E-01 217E-01
243E-01 247E-01

-.126E-01 230E-01
9254E-01 263E-01
y3323 }3212
276E-01 194E-01
.300E-01 206E-01
278E-01 176E-01
.335E-01 204E-01

(not shown) suggests that they are not very reliable.

%Ynn in the isotropic dispersions, as required by rotational
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Spheroids of aspect ratio 20

Table L.6: Simulation parameters

@ N Ng
.0100e0 60 8
.0250e0 64 7
.0375¢0 64 4
.0500e0 64 6
.0560e0 64 6
Table L.7: Self-diffusivities
’ Dy Dy
0.100E-01 0.532E+01 (0.14E+00) 0.318E+01 (0.67E-01)
0.250E-01 0.492E-+01 (0.20E+00) 0.285E+01 (0.86E-01)
0.375E-01 0.462E+01 (0.19E4-00) 0.263E+01 (0.95E-01)
0.500E-01 0.440E+01 (0.24E+00) 0.246E+4-01 (0.12E+00)
0.560E-01 0.432E4-01 (0.22E+00) 0.239E401 (0.12E4-00)
¢ Dy Dy
0.100E-01 0.594E+03 (0.91E+01) 0.922E4+01 (O.22E+00)
0.250E-01 0.592E+03 (0.94E+01) 0.882E4-01 (0.32E+00)
0.375E-01 0.590E+03 (0.11E+02) 0.852E401 (0.39E+00)
0.500E-01 0.585E+03 (0.27E402) 0.822E+01 (0.40E-+00)
0.560E-01 0.586E+03 (0.16E+02) 0.805E+01 (0.50E+00)
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Table L.8: Hindered diffusivities

y By Y
0.100E-01 0.446E+01 (0.31E+00) 0.249E+01 (0.19E4-00)
0.250E-01 0.396E+01 (0.28E4-00) 0.211E401 (0.16E+00)
0.375E-01 0.369E+01 (0.27E+4-00) 0.193E+401 (0.17E+00)
0.500E-01 0.346E4-01 (0.35E+-00) 0.178E+01 (0.22E4-00)
0.560E-01 0.342E+401 (0.28E+00) 0.175E+01 (0.19E+00)
: ° B
0.100E-01 0.591E4-03 (0.10E+02) 0.802E+01 (0.50E+00)
0.250E-01  0.587E+03  (0.11E+02)  0.719E+01  (0.49E-00)
0.375E-01  0.583E+03  (0.12E+02)  0.670E+01  (0.57E-00)
0.500E-01 0.575E+03 (0.31E+02) 0.633E+01 (0.58E+-00)
0.560E-01 0.577TE4-03 (0.17TE+-02) 0.619E4-01 (0.64E+00)
Table 1..9: Sedimentation rates
¢ Vtr
0.0100E4-00 0.3578E401 (0.89E+00)
0.0250E+4+00 0.2742E401 (0.78E+00)
0.0375E4-00 0.2452E+01 (0.72E+00)
0.0500E4+00 0.2196E4-01 (0.64E—I—00)
0.0560E-4-00 0.1943E401 (0.57E+00)



Table L.10: Relation between the stress and the rate of strain

¢ Yiin Y1122 Y1212
0.0100E+00 0.748E-02 -0.386E-02 0.599E-02
0.0200E+00 _ 0.798E-02 -0.413E-02 0.597E-02
0.0375E+00 0.853E-02 -0.653E-02 0.602E-02
0.0500E+00 0.780E-02 -0.571E-02 0.643E-02
0.0560E+00 0.832E-02 -0.558E-02 0.653E-02

The column labeled Y7177 contains the average of Y1117 and Y3292, and the col-
umn Yi212 gives the mean of the three other diagonal elements of Y (see App. K).
The data for Y7122 are subject to large fluctuations, and their variance (not shown)

suggests that they are not very reliable.



