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Abstract

Perception of the surrounding environment is an essential tool for intelligent naviga-
tion in any autonomous vehicle. In the context of Mars exploration, there is a strong
motivation to enhance the perception of the rovers beyond geometry-based obstacle
avoidance, so as to be able to predict potential interactions with the terrain. In this
thesis we propose to remotely predict the amount of slip, which reflects the mobility
of the vehicle on future terrain. The method is based on learning from experience
and uses visual information from stereo imagery as input. We test the algorithm on
several robot platforms and in different terrains. We also demonstrate its usefulness
in an integrated system, onboard a Mars prototype rover in the JPL Mars Yard.

Another desirable capability for an autonomous robot is to be able to learn about
its interactions with the environment in a fully automatic fashion. We propose an
algorithm which uses the robot’s sensors as supervision for vision-based learning of
different terrain types. This algorithm can work with noisy and ambiguous signals
provided from onboard sensors. To be able to cope with rich, high-dimensional vi-
sual representations we propose a novel, nonlinear dimensionality reduction technique
which exploits automatic supervision. The method is the first to consider supervised
nonlinear dimensionality reduction in a probabilistic framework using supervision
which can be noisy or ambiguous.

Finally, we consider the problem of learning to recognize different terrains, which
addresses the time constraints of an onboard autonomous system. We propose a
method which automatically learns a variable-length feature representation depending
on the complexity of the classification task. The proposed approach achieves a good

trade-off between decrease in computational time and recognition performance.
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Chapter 1

Introduction

A major challenge for autonomous robots is the perception of the surrounding envi-
ronment, so that a more intelligent planning and interaction with the terrain can be
achieved. One of the goals of this work is to develop an algorithm with which a rover
can perform assessment of forthcoming terrain and estimate the possible rover slip in
each location of the future map, before the rover actually traverses the terrain.

To realize that goal we develop an algorithm which enables slip prediction from
a distance using visual information from stereo imagery and other onboard remote
sensors. We focus on rover slip because it is an important aspect of rover-terrain inter-
action and is a key limiting factor for rover mobility [23, 78]. Remote slip prediction
will enable safe traversals on large slopes covered with sand, drift material or loose
crater ejecta, areas considered to be of significant scientific interest for future plane-
tary missions [33]. Rover slip has not been considered previously as a component to
traversability, nor have there been attempts to predict it remotely in the autonomous
robotics community:.

While the goal is to use as many visual features as possible to retrieve the best pos-
sible recognition performance, an autonomous system has computational constraints
which have to be taken into consideration. To address the problem of the limited
computational resources of a real-time system, we propose an algorithm which auto-
matically learns a variable-length representation for each terrain class. The algorithm
takes advantage of fast computation algorithms or representations whenever they are

accurate and uses more computationally expensive algorithms for harder recognition



tasks.

Another challenge in autonomous robot navigation is to enable true autonomy of
the vehicles. That is, it is desired to have vehicles which are programmed to learn on
their own without any human supervision. To that end we develop an algorithm which
provides a fully automatic learning of the terrain types and their inherent properties
using its own sensors as supervision. We further extend the framework to allow
working with high-dimensional inputs, effectively performing an automatic supervised
nonlinear dimensionality reduction over the possibly high-dimensional and redundant
sensor inputs. This novel method offers a way to take advantage of working with
high-dimensional representations and at the same time utilizing noisy and sometimes

uncertain supervision signals which are automatically obtained by the robot.

1.1 Slip prediction

Slip is defined as the difference between the commanded rover pose and the actually
achieved rover pose and is a quantity which measures the lack of progress of a wheeled
ground robot while traversing some terrain. A trivial example of large slip is when
the rover is rotating its wheels without actually moving because of lack of traction,
e.g., in deep sand or in fine drift material. Areas on the ground surface where a lot of
slip occurs need to be avoided as the rover will spend more time and energy, or in the
worst case, might get stuck. For example, one of the rovers of the Mars Exploration
Rover (MER) mission got trapped in a sand dune for several weeks, experiencing
100% slip (Figure 1.1). Such events pose a threat of mission failure because it might
not be possible to recover the rover via only teleoperation commands. Being able to
predict slip from a distance and to alert the rover before it traverses such terrains,
will have significant impact on future Mars rover missions, because slip has been
recognized as one of the key limiting factors in the current MER mission [23, 78, 83].

The science goals of future Mars rover missions will require the rovers to traverse
more challenging areas, featuring very steep slopes, loose soil, and rocky terrains [33].

The primary objective of the upcoming 2009 Mars Science Laboratory (MSL) mission



Figure 1.1: The Mars Exploration Rover Opportunity trapped in the Purgatory dune
on sol 447. A similar 100% slip condition can lead to mission failure. Image credit:
NASA/JPL, Caltech.

is to explore areas which indicate possible aqueous processes, e.g., mineral-rich out-
crops which imply exposure to water [92] or putative lake formations or shorelines,
layered deposits, etc. [84, 62], in search for conditions conducive to maintenance of
life [46]. Figure 1.2 shows examples of two of the possible landing sites for the MSL
mission. To be able to access such sites, the rover is likely to encounter steep slopes
possibly covered with loose soil, where a lot of slippage is possible. An important
engineering requirement on the rover is to be able to predict slip from a distance, so

that adequate planning is performed and areas of high slip are avoided and traversing

areas of possible slippage is both feasible and safe.

Figure 1.2: HiRISE Mars Reconnaissance Orbiter image of Nili Fossae Trough [92]
(left) and of Holden Crater Fan [62] (right) which are two of the sites under consider-
ation for the next MSL landing site. Image credit: NASA/JPL, Caltech/University
of Arizona.
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In the context of Earth-based off-road vehicles (traversing cross-country terrain),
slip is also an important component. In this scenario, too, an autonomous robot might
get stuck in deep sand or mud, so it is necessary to learn to avoid such terrains.
Another pertinent issue to off-road vehicles is slip prediction for the purposes of
optimizing vehicle speed or energy spent. In this case, it is desirable to utilize the
proposed method for learning slippage so that the rover can adapt its behavior to

what it has observed or learned from the environment.

1.1.1 Problem formulation

The goal of this work is to develop an algorithm with which the rover can predict
slip in each visible location of the map. The input for the algorithm will be only
onboard remote sensors, such as stereo imagery and inertial sensors to measure tilt.
A panorama of the Endurance Crater collected by the Opportunity rover is shown in
Figure 1.3. In this example, it is conceivable that the rover should be able to provide
assessment of the forward terrain regarding slip, using visual input in the form of
several stereo image pairs of the terrain and other onboard sensors.

To address the problem of driving the MER rovers in the presence of slip, MER
navigation engineers have acquired experience about which areas can incur possibly
large slip [23, 78]. Slip models have been previously created for a limited number
of terrain types by manually recording the amount of slip occurring on different
slopes [81]. The main focus of this thesis is to develop algorithms with which the

rover can collect slip information and learn the slip models needed automatically.

Figure 1.3: A panorama of the Endurance crater obtained by the MER rover Op-
portunity. The crater is about 130 meters in diameter. Image credit: NASA/JPL,
Caltech.
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A solution to this problem is proposed in Chapter 2. In particular, we propose
to learn the functional relationship between information about map cells observed
at a distance (appearance and slopes) and the measured slip when the rover drove
over these cells, using the experience from previous traversals [4, 7, 9]. Thus, after
learning, the expected slip can be predicted from a distance using only stereo imagery

as input.

1.1.2 Slip prediction utilization

Slip prediction is intended to be used as a traversability cost handed down to a
planner. The planner, whose goal is to select the safest and maximally efficient path
by avoiding all obstacles, can also take into consideration the slip cost and optimize
with respect to slip as well. A second utilization of the slip prediction algorithms is
to assign a set of canonical soil parameters for each soil type, which are passed to a
very detailed kinematic and dynamic simulation of the rover on the selected path to
determine its safe traversability and evaluate its cost [53]. An onboard demonstration
of slip prediction for these two purposes will be described in the thesis (Section 2.11).

These uses assume that the rover will follow the predefined path, which can
be achieved by applying a path-following algorithm or a slip-compensation algo-
rithm [54]. This is important to avoid potentially dangerous scenarios in which the
rover steers away from the predefined path due to slip. For example, it may slide
downhill and hit a rock which was originally planned to be avoided. Alternatively,
predicted slip models can be used in an inverted kinematics/dynamics model of the
vehicle so that it follows the predefined path taking into consideration the possible
expected slip on it. Howard and Kelly [59] provide a method to utilize slip models
in inverse dynamic models, but their work is limited to using very rudimentary slip
models and can benefit from more appropriate learned slip models, as proposed in

this thesis.
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1.2 Learning and dimensionality reduction from

automatic supervision

1.2.1 Learning from automatic supervision

Another question to be addressed regarding learning for autonomous vehicles is how
to learn fully autonomously. Unsupervised learning is a common machine learning
technique, but achieves inferior performance when compared to supervised learn-
ing methods. Traditional supervised machine learning approaches use human expert
knowledge to provide data labeling. However, regarding autonomous navigation, data
labeling is a formidable task, because of the huge amount of data available. More-
over, a human expert might not have the best knowledge of how a certain terrain will
affect the rover slip behavior. This is particularly true in the context of planetary
exploration, where terrains with unknown appearance are likely to be encountered
for which there is no prior slip behavior analysis done by scientists.

This problem is addressed in Chapter 3. A novel algorithm in which the robot can
use its own sensors as supervision for vision-based learning of terrains, is proposed [8].
The method is called learning from automatic supervision because the supervision is
provided by the robot’s sensors automatically. The proposed approach is applied here
for learning to recognize terrains automatically from input visual features, when the
measured rover slip is used as supervision.

The novelty of the approach is being able to exploit supervision, which can be
noisy or ambiguous, in a probabilistic framework in which the input features and the
supervision can interact. Although previous approaches have addressed learning when
the supervision is obtained by the robot, the so-called self-supervised learning [30, 80],
these methods have assumed the robot sensors are reliable, and can be definitively
clustered into well-separable classes, which is not applicable when the supervision
signals are ambiguous, as is the case with slip. Here, a principled approach to closing
the loop in a fully automatic system for vision-based learning with automatic or noisy

supervision is considered.
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1.2.2 Dimensionality reduction from automatic supervision

We further address the challenges of processing more complex terrain representations.
A novel supervised nonlinear dimensionality reduction is proposed in Chapter 4, which
can also exploit noisy and ambiguous supervision. The key idea is to let the super-
vision also affect the dimensionality reduction process [5]. Previous dimensionality
reduction approaches are generally unsupervised [43, 102, 115], with the exception
of [112, 131] which rely on known labels or known projections for some of the exam-
ples.

The importance of this method is that it allows working with better high-dimensional
feature representations of the terrain, which is a necessity when complex real-life
outdoor environments are considered. Furthermore, the method provides a general
mechanism to use partial or uncertain supervision in the dimensionality reduction
process, which can be applied to other learning problems. The novelty of this ap-
proach is combining dimensionality reduction and reasoning from uncertainty into a
unified probabilistic framework.

The impact of learning and dimensionality reduction with automatic, noisy, and
uncertain supervision is enabling the robot to learn to recognize terrains visually and
predict their potential effects on the robot mobility when the supervision has come
from its own mechanical sensors. This work will enable the robot to learn to predict
terrain characteristics fully autonomously. Although we develop the algorithms in
the context of slip learning and prediction, the methods can apply to various signals

collected by the rover to help a vision-based prediction.

1.3 Variable-length terrain classification

Recognizing the robot’s surroundings and predicting its potential interactions with
the surface depends heavily on the remote visual classification of the terrain. Accu-
rate visual recognition relies on computationally intensive processing of the images

to retrieve visual features. On the other hand, a robot navigation system has a con-
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tradictory goal of efficiently processing the input imagery. We propose an algorithm
which can achieve a tradeoff between accuracy and efficiency to meet the constraints
of an onboard system.

Previous recognition approaches use a fixed-size representation for each example
and class. Here the key observation is that the label of the class can be used actively
in selecting its feature representation. This can be exploited to build more efficient
variable-length representation and can be incorporated in a faster terrain classification
algorithm. The algorithm for variable-length feature representation [6] is presented
in Chapter 5. It can have additional applications to using onboard sensors of varying

costs in a more efficient manner or to learning of a large number of classes.

1.4 Overview of previous work

Multiple methods are available for detection or measurement of slip occurring while
driving [22, 54, 76, 95]. However, providing an estimate of the possible slip at a future
location, one which the rover has not yet traversed, has not been not attempted.

So far, slip modeling has been in the realm of terra-mechanical modeling [2, 15,
40, 71, 130] in which a simplified mechanical model of the interaction of the rover and
the terrain is created. These methods are complex and computationally intensive,
but the most significant disadvantage is that they need to be done at the location
traversed by the rover and do not generalize to future locations. In this work, by
utilizing stereo imagery as a remote forward looking sensor, we perform analysis of a
future location and predict rover slip before the rover enters the terrain.

Autonomous navigation systems use extensively forward looking sensors to avoid
obstacles and navigate in the environment [31, 67]. The range data available from
radar, laser, and stereo which provide 3D information about the terrain is used to de-
tect geometric obstacles, assigning traversability cost to sub-regions of the terrain [45].
Rover slippage, on the other hand, can be considered a non-geometric type of obstacle
and cannot be detected and predicted as a standard geometric obstacle.

A disadvantage of early navigation systems [31, 67] is that obtaining a set of
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rules to discriminate traversable vs. non-traversable regions that generalizes to more
complex outdoor scenarios is very hard. Recent methods for autonomous navigation
involve learning techniques as a way of adapting the behavior using the data observed
from the environment [77, 87, 98, 120, 128, 127]. Along this vein of work, the proposed
slip prediction method uses a learning algorithm to learn rover slip from previous
experience.

Learning for autonomous navigation has moved one step further, trying to elim-
inate the tedious human supervision, traditionally used in supervised learning sce-
narios. In learning from proprioception [89, 128] the rover uses one sensor to provide
supervision for the learning with another sensor. For example, bumper hits on the
vehicle can provide ground truth for learning of traversability based on visual fea-
tures. A similar idea, called self-supervised learning, has been used for various au-
tonomous navigation tasks and has shown much promise [30, 50, 68, 80, 110]. From
a learning perspective, the abovementioned self-supervised learning methods can be
reduced to supervised learning, since they assume the sensor used as supervision
can provide reliable labeling for a subsequent supervised learning task using another
sensor [30, 50, 68, 89]. In contrast, we work with supervision signals which can be
ambiguous and noisy, so reducing the problem to a supervised learning scenario is
not applicable.

Current applications in vision and robotics require working with rich feature rep-
resentations that are high dimensional [47, 48]. Nonlinear dimensionality reduction
has been very common for obtaining compact lower-dimensional data representa-
tions [16, 102, 115] in these cases. Traditional nonlinear dimensionality reduction
techniques are unsupervised [43, 102, 115], as they have been intended mostly for
data representation. However, in practice, some additional information, regarding
which data points are more similar and should cluster together, might be available
and could be exploited to obtain better low-dimensional representations. We show
how slip-based supervision, which can be noisy or uncertain, can be exploited in ob-
taining better lower-dimensional representations and simultaneously in learning to

recognize terrains from vision features.
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The terrain classification algorithms applied in the autonomous navigation domain
usually use simple feature representations which are preferred for their speed [19, 30].
This might compromise the final classification performance because of the limited
expressiveness of the feature representation. Here we propose an algorithm which
matches the feature representation to the complexity of the classification task and
achieves a trade-off between speed and accuracy.

Multiple successful texture classification algorithms have been developed [74, 75,
79, 121]. These methods generally apply a fixed, uniform representation for all classes
and construct the features without regard to the existence of other classes. The key
idea that is exploited here is that the labels can also take active part in building the
representation, and using them we obtain more efficient but still accurate represen-

tations.

1.5 Contributions

In this thesis we have proposed the following methods. Firstly, we show that it is
possible for an autonomous robot to provide information remotely about potential
rover-terrain interactions that affect rover mobility on forthcoming terrain. We de-
velop a method to predict the amount of rover slip remotely, prior to entering the
terrain. As a part of the proposed algorithm we introduce a novel software architec-
ture which handles the input data in a more efficient way and is specifically targeted
at processing visual data more efficiently.

Secondly, we propose a method in which the robot learns fully automatically
to recognize different terrain types from visual and onboard sensors and to predict
their inherent rover mobility. We propose a unified framework in which no human
supervision is necessary and the rover uses its own mechanical sensors as supervision
to vision-based learning of terrains. The supervision signals can be ambiguous and
noisy, which is typical of actual robot sensors.

Thirdly, we extend this framework to be able to work with high-dimensional in-

puts. We develop a novel supervised nonlinear dimensionality reduction technique,
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again using the ambiguous and noisy sensor signals as automatic supervision. This is
important as most of the robotics sensor signals are of high dimensions and being able
to work with such features makes the proposed approach very suitable for practical
applications. This is the first work that proposes automatically supervised dimen-
sionality reduction in a probabilistic framework using the supervision coming from
the robot’s sensors. The proposed method stands in between methods for reasoning
under uncertainty using probabilistic models and methods for learning the underlying
structure of the data.

Lastly, we present an approach that enables more efficient processing of the scene
for the purposes of terrain recognition, retrieving only features that are necessary to
make a sufficiently confident decision. Unlike standard texture recognition methods,
which assign the same representation to all examples independently of their class
label [74, 79, 121], we propose a method which exploits the labels and the misclassi-
fication costs to build a variable-length terrain representation, so that complex and
time consuming terrain representations are computed only in uncertain areas, or to
discriminate very similar classes, or for classes with large misclassification penalties.

The impact of the proposed work is that prediction of slip in terrain ahead will
enable the rover to plan safer and more efficient paths by taking into consideration
its mobility on future terrain. This thesis also shows how this can be done fully au-
tonomously. Furthermore, with the developed methods, rich visual or other sensor
descriptions of the terrain can be used, and the surrounding terrain can be analyzed
and information important for robot mobility obtained in a more efficient way ei-
ther by automatically building a more useful lower-dimensional representation or by
selecting the feature representation with respect to the learning task at hand.

This thesis generalizes our own work presented in [4, 5, 6, 7, 8, 9].
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Chapter 2

Slip prediction

In this chapter we present an approach for slip prediction from a distance for wheeled
ground robots using visual information as input. Large amounts of slippage which can
occur on certain surfaces, such as sandy slopes, will negatively affect rover mobility.
Therefore, obtaining information about slip before entering such terrain can be very
useful for better planning and avoiding of these areas.

To address this problem, terrain appearance and geometry information about map
cells is correlated to the slip measured by the rover while traversing each cell. This re-
lationship is learned from previous experience, so slip can be predicted remotely from
visual information only. The proposed method consists of terrain type recognition
and nonlinear regression modeling.

The proposed slip prediction from visual information is intended for improved
navigation on steep slopes and rough terrain for Mars rovers. The method has been
implemented and tested on datasets from several rover platforms and on several off-
road terrains. It has also been demonstrated onboard a Mars prototype rover in the

JPL Mars Yard.

2.1 Introduction

Slip is a measure of the lack of progress of a wheeled ground robot while driving.
Large amounts of slip can be observed on certain terrains, which can lead to significant

slowdown of the vehicle, inability to reach its predefined goals, or, in the worst case,
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getting stuck—which may pose a threat to the success of the mission (Figure 1.1).
The science goals of future Mars rover missions will require the rover to explore areas
of the planet which feature very steep and rocky terrain, where a lot of slippage is
possible [33]. It will be important to be able to predict slip from a distance, so that
adequate planning is performed and areas of high slip are avoided.

The mobility of a vehicle on off-road terrain is known to be strongly influenced
by the interaction between the vehicle and the terrain [15]. Slip is the result of this
complex interaction and, second to tip-over hazards, it is the most important factor
in traversing slopes [23, 78]. However, with a few exceptions [28, 94], slip has not
been considered as an aspect of terrain traversability in state-of-the-art autonomous
navigation systems so far, mainly because of the highly nonlinear nature of the rover-
terrain interactions and the complexity of modeling of these interactions [2, 61]. The
most commonly used approach is to represent the surrounding terrain as a geometric
elevation map, using range data from sensors, such as stereo cameras, radar, or ladar,
in which a binary perception of the terrain, i.e., obstacle vs. non-obstacle, is done [67].
This idea has been extended to detecting compressible grass and foliage, which would
otherwise be perceived as an obstacle [73, 82, 87|, but this again uses more or less
geometric concepts of penetrability of terrain. Regarding slip, a sandy slope might be
non-traversable because of large slip, whereas the same slope covered with different
material, e.g., compacted soil, could be perfectly traversable. Such areas of large
slip are called non-geometric obstacles, as they cannot be detected by software which
uses geometrical information only [78], and more advanced perception of the physical
terrain properties is needed to detect them.

Visual characteristics of the terrain, in addition to geometry, can give more clues
to its mechanical properties and the eventual rover-terrain interaction. Thus, we
propose to use stereo pair imagery as the input for slip prediction [4, 7, 9]. The
rationale behind this approach is that, from a mechanical point of view, slip depends
on physical and geometrical properties of the terrain [15], and stereo imagery provides
information about both the geometry from the range data and the visual appearance

of the terrain. So, stereo imagery contains much information which can help predict
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slip on the forthcoming terrain. The main challenge is how to interpret the vision
data to infer properties about the terrain or predict slip.

Our approach to this problem is to correlate the visual information and the cor-
responding measured slip while the rover is traversing the terrain. In particular, we
extract information about the terrain observed from a distance by using information
from a stereo pair only, measure the slip of the rover when it traverses this particu-
lar region, and create a mapping between visual information and the resultant slip
(Figure 2.1). We propose to learn this functional relationship using the experience
from previous traversals [4, 7, 9]. Thus, after learning, the expected slip can be pre-
dicted from a distance using only stereo imagery as input. A learning approach is
chosen, because 1) creating a physical slip model is extremely complicated due to the
large number of variables involved; 2) the mapping from visual input to a mechanical
terrain property, such as slip, is a complex function which does not have a known
analytical form or a physical model, and one possible way to observe it and learn
about it is via training examples; and 3) a learning approach promotes adaptability
of the vehicle’s behavior.

To address the problem of slip learning and prediction we propose a general frame-
work in which the task is subdivided into: 1) learning the terrain type from visual
appearance and then, after the terrain type is known, 2) learning slip from the terrain
geometry using nonlinear approximation. We term the latter dependence of slip on
terrain geometry, when the terrain type is known, slip behavior. The proposed de-
composition of the problem is adequate because from a mechanical point of view it is
known that different terrains exhibit different slip behavior characteristics [15, 116],
and because terrain appearance can be considered approximately independent of ter-
rain geometry. This decomposition also introduces some structure in the problem, so
that we can solve it with a reasonable amount of training data.

We have proposed to learn the slip behavior, instead of adopting a known physical
model, because such a model might be hard or impractical to obtain—as is the case
with slip for which significant experimentation is required to adjust the parameters

related to soil behavior and vehicle-terrain interaction [15, 130].
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# Location of interest

Figure 2.1: Main idea: Learning of slip output from visual information. The rover col-
lects visual information (appearance and geometry) about a future location of interest
in the forward-looking map from its stereo pair images (left). When this location is
reached by the rover, a slip measurement is taken using onboard sensors (right). Cor-
relating vision information to the corresponding slip measurement and learning this
mapping allows for prediction of slip from a distance using visual information only.

This work is the first to attempt predicting slip from a distance. We have proposed
an overall solution framework in which the slip is learned and predicted from visual
information.

For the purposes of practical realization of the proposed method we also introduce
a novel software architecture for navigation which can process data and predict slip

in a more efficient way.

2.2 Definition of slip

Slip z is defined as the difference between the velocity measured by the wheel (wr)
and the actual velocity v: z = wr — v, where w is angular wheel velocity and r is
the wheel radius [130]. It can also be normalized by the commanded wheel velocity:
z = ¥t [14, 61, 130]. Similarly, the slip for the whole rover is defined as the
difference between the actual vehicle velocity and the velocity estimated from the

kinematic model for each degree of freedom (DOF) of the rover per step (i.e. between
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two consecutive stereo pairs) [54]. It can also be normalized, to receive a unitless slip
value or express it in percentage of the step size. In this work we use the normalized
version of slip for the whole rover.

For the kinematic estimate, we use the rover’s full kinematic model, which can be
a simple differential drive model, a more complex rocker-bogie kinematic model [113,
54], or other model, as appropriate to the specific robot. The actual position (ground
truth) can be estimated by visually tracking features [86, 88], a method called Visual
Odometry (VO), or measured with some global position estimation device. VO is
the preferred method for ground truth estimation because it is a convenient, self-
contained sensor on the vehicle. By using VO, data collection and training can be
done automatically, onboard the rover, which coincides with the goals of planetary ex-
ploration missions. Furthermore, global positioning devices are not always available,
especially in planetary missions.

Validation of VO position estimation has been performed by several groups [54,
93, 96]. VO position estimation error has been measured to be less than 2.5% of the
distance traveled, compared to ground truth surveyed with a Total Station that has 2
mm precision, for runs of 20-30 meters in outdoor testing [54]. Similar results of 1.2%
position error for a 20 m traverse have been achieved by [96] while testing in different
circumstances, i.e., using a smaller robot, wide field of view cameras, different image
resolution, etc. VO path length errors of about 1%-1.6% for 180-380 m traverses in
outdoor environments have been reported by [93] with a different VO algorithm. The
results of these tests indicate that VO is a precise position estimation technique and
is adequate for use as ground truth both for computing slip per step and for precise
localization within short to mid-size (20 m) traverses (i.e., to be able to map correctly
the position of the location seen from a distance to the location traversed later on).

We measure slip with respect to the previous rover frame (corresponding to the
beginning of the step) which is defined as follows: the X coordinate is along the
direction of forward motion, Y is along the wheel axis pointing to the right, and 7 is
pointing down. We define slip in X and slip in Y as the components of slip along the

X and the Y axes, respectively. Slip in Yaw is the rotation angle around the 7 axis.
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Although some vehicles have additional kinematically observable DOFs [113, 54],
these three are the ones which matter most with regards to slip. Slip is normalized
by the commanded velocity in X and will be expressed in percent. There will be cases
in which the commanded forward velocity is 0, e.g., a purely crabbing motion of the
rover, which will make the slip value undefined. As those cases are rare, we remove
those steps from our dataset.

We have adopted a macro-level (of the whole rover) modeling of slip, in the spirit
of [54, 81]. More specifically, our assumptions are that, between two consecutive steps,
the rover will be traversing approximately locally planar and homogeneous regions,
and the weight distribution on all its wheels will be the same. These assumptions
mean that we consider slip (i.e., predict the terrain type, estimate terrain slopes, etc.)
in regions comparable in size to the size of the robot or its wheel and not at the pixel
level, for example. Naturally, those assumptions are violated in our field data, which is
taken on real-life terrains with all complications, such as uneven and nonhomogeneous
terrain, clumps on the ground, or rocks in front of the wheels. For example, when one
of the wheels traverses a rock, an unexpected slip in Yaw might occur, because the rock
creates different traction compared to the soil or can serve as an additional external
force to the vehicle. As similar events are not modeled by our system, there will
be some sources of sometimes significant noise in the slip measurements in our data.
Nevertheless, this macro-level modeling is justified, as the slip prediction is intended
to be used in a first, quick evaluation of terrain traversability to be handed down to
a planner. More complex mechanical slip modeling can be applied [63, 65, 71], but to
predict slip, information about soil mechanical properties of the forthcoming terrain
is still required. These approaches deal better with uneven terrain, e.g., if dynamic
simulation of the traverse over detailed terrain elevation models is performed [65],
but they will be considerably more computationally expensive.

Slip also depends on the commanded velocity, although for robots driving at rela-
tively small speeds, velocity variations do not affect slip significantly. For the datasets
for which the commanded velocity varies, we have factored it out by averaging con-

secutive steps, by driving at approximately constant velocity, or by normalizing slip
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stepwise by the commanded velocity. Since Mars rovers are controlled with constant

wheel velocity, only averaging of consecutive steps was needed.

2.3 Previous work

Although early work in autonomous navigation and traversability analysis based on
forward looking sensors did not use learning [67, 45|, learning-based approaches have
started to become more and more preferred [19, 68, 87, 89, 98, 120, 127]. The reason
is that intelligent autonomous behavior needs to be adaptive to the environment and
the more complex the environment is, the less likely it is that predefined rules or
heuristics will work well. This is particularly true for outdoor, off-road, unstructured
environments which offer a lot of challenges (e.g., variability in terrains and lighting
conditions, lack of structure, lack of prior information, etc.), and in which learning
approaches have proved to be more appropriate [34, 58, 77, 80, 89, 106, 120, 127, 128].

Related work on vision-based perception of the forthcoming terrain has been con-
sidered for the purposes of determining the mobility of Mars rovers [58], or the
traversability in tall grass and foliage for off-road [73, 82] and agricultural vehi-
cles [128], for detecting the drivable rural road in the context of off-road autonomous
navigation [101], or for detecting obstacles in indoor [118] and outdoor environ-
ments [13, 68].

Detecting or measuring rover slip occurring while driving can be achieved relatively
easily by comparing the commanded velocity to the actual achieved velocity. An
estimate of the actual velocity can be obtained from inertial measurements, GPS
signals [22], or by visually tracking features, i.e., VO [54]. Alternative methods based
on analyzing motor currents have also been used [95]. Providing an estimate of the
possible slip at a location not yet traversed has not yet been attempted.

From a mechanical point of view, modeling and estimation of slip has been done at
various levels of complexity and for various vehicle architectures [2, 15, 40, 71, 76, 130].
These methods are rather complicated and need to be performed at the traversed lo-

cation, as they require local sensor measurements and detailed knowledge of terrain
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geometry. They are computationally intensive and impractical in the present setup.
As slip depends also on the mechanical soil characteristics [15, 116], additional esti-
mation of soil parameters, such as cohesion and friction angle [61, 76], or modeling
of the soil behavior [2] needs to be done. Methods for online terrain parameter esti-
mation [61], for recognizing terrain types [28], and for characterizing terrain traffica-
bility [94] from onboard mechanical sensors have been proposed, but these estimates
apply to the present vehicle location. No method, to our best knowledge, is available
for predicting terrain parameters from a distance. One way to address this problem
is by using forward looking sensors, e.g., vision, as proposed in this work.

Although slip has been acknowledged as an omnipresent problem in localization,
especially in rough-terrain mobility [56], very few authors have considered counter-
acting slip for improving vehicle mobility. Among them are the slip compensation
algorithm of Helmick et al. [54, 55], in which the slip, measured at a particular step,
is taken into account to adjust the next step, compensating for the distance which
was not traversed; and the algorithm for improving traction control, proposed by
Tagnemma et al. [60]. However, those methods, again, work at the traversed rover
location and do not allow for planning at a distance, which our method enables.

Previous approaches have used manually created functions of slip as dependent
on slopes [81]. Slip measurements were performed on short traverses of the rover
on a tilt-table platform set to varying slope angles. These results showed that slip
is a very nonlinear function of terrain slopes. For example, in deep sand, slip of
about 20% on a 10° slope and of about 91% on a 20° slope was measured, when
the rover was driving straight upslope. The results of these experiments have been
used successfully to teleoperate the Opportunity rover out of Eagle Crater, but the
approach is very labor intensive, as it requires manual measurements. It also needs
careful selection of the soil type on which the tests are performed to match the target
Mars soil. Another limitation is that no slip models were available for angles of
attack different from 0°, 45°, or 90° from the gradient of the terrain slope [29]. The
results are also specific to the vehicle. For example, a small design modification in the

pattern of the wheels can change the slip behavior [14], affecting a potential physical
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model. We believe that learning slip is a more general approach, namely, the same
learning algorithm can be applied to another vehicle to learn its particular behavior
on different terrains. Moreover, the proposed method enables the vehicle to apply
the learned models dependent on what it has sensed from the environment.

The work described above concerns estimating slip from mechanical measure-
ments, or, in our case, visual information. Conversely, slip measurements have been
used to infer mechanical terrain parameters on the Mars Pathfinder Mission in a
controlled one-wheel soil-mechanics experiment [91]. Similar experiments have been
done by [10] for MER. This gives us the assertion that slip characteristics are directly
correlated to terrain mechanical properties and the intuition that if the terrain soil
type could be correctly recognized (which would entail its mechanical properties) then

slip behavior is predictable.

2.4 Experimental rover platforms

This research is targeted for planetary rovers, such as the Mars Exploration Rover
(Figure 2.2, top left). For experimental purposes we tested our algorithm on two
Mars research rover testbeds developed by NASA [104]: Rocky8 (Figure 2.2, top
right) and Pluto (Figure 2.2, bottom left). We also used extensively the LAGR
robot! (Figure 2.2, right), as it is a more convenient data collection platform.
Rocky8 is a prototype research rover with six wheels in a rocker-bogie configuration
which allows for improved mobility on rough terrain [104]. It is one of the series of
rovers created by NASA to develop and test technology for the MER mission. In
the experiments presented, we have used its hazard detection stereo cameras with 80°
horizontal field of view (FOV), its wheel encoders, rocker and bogie angle sensors, and
IMU. Stereo pair imagery is acquired after each stop of the robot or in a continuous
manner. The rover’s nominal speed of operation is 8 cm/s. Rocky8 is about 0.5 m

tall.

LAGR stands for Learning Applied to Ground Robots and is a research program funded by
DARPA.
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Figure 2.2: Robot platforms. The Mars Exploration Rover Spirit in the JPL Space-
craft Assembly Facility (top left). The Rocky8 rover in the Mojave desert (top right).
The Pluto rover in the JPL Mars Yard (bottom left). The LAGR robot on off-road
terrain (bottom right).

The Pluto rover (Programmable Logic Rover) is mechanically similar to Rocky8.
The significant difference comes from its avionics which are based on a set of dis-
tributed processors, or Programmable Logic Devices.? Pluto has similar hazard cam-
eras as Rocky8 (110° FOV). Additionally, a pair of color panoramic cameras (45°
FOV) are mounted on a ~1.5 m tall mast with additional pan/tilt DOFs. The im-
agery from the panoramic cameras will be used for slip prediction, whereas the hazard
cameras are used for VO, which is in turn exploited to compute slip and provide ego-
motion estimation.

The LAGR robot has two front differential drive wheels and two rear caster wheels.

2This difference is not directly relevant to the goals of this work.



Figure 2.3: Example images from some of the terrains collected by the LAGR vehi-
cle: sand, soil, gravel, woodchips, asphalt. The ‘grass’ class will also appear in the
sequences, although the rover has not driven on grass terrain in this dataset.

It is equipped with stereo cameras with 70° horizontal FOV, wheel encoders, IMU,
and GPS. The robot can run in autonomous mode or be manually joysticked using
a radio controller. It can achieve speeds of up to 1.2 m/s, although for some of our

experiments it was set to drive at 30 cm/s. Stereo imagery is acquired continuously

at 5 Hz. The LAGR robot is about 1 m tall.

2.5 Datasets

In this section we briefly describe the datasets collected and used in the experiments

presented in this work.

2.5.1 Dataset collected by the LAGR robot

For our slip prediction experiments we have collected several datasets on off-road
terrains with the LAGR vehicle. There are five major terrain types which the rover has
traversed: soil, sand, gravel, asphalt and woodchips (Figure 2.3). Example patches,
collected by the rover at 1-2 m distance, are shown in Figure 2.4. In addition to that,

there are two other terrain types which appear in the sequences, such as green and
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dry grass, which we considered as a single ‘grass’ class in the terrain classification in
Section 2.8.

The terrains contain irregularities, undulations of the surface, small rocks, and
grass clumps for off-road terrains or discolorations for asphalt. Although we have
good variability in the terrain relief in our dataset (level, upslope, and downslope
areas on soil, asphalt, and woodchip terrains; transverse slope on gravelly terrain; flat
sandy terrain; etc.), not all possible slip behaviors could be observed in the area of
data collection. For example, there was no sloped terrain covered with sand; besides,
the LAGR robot showed poor mobility on flat sand, i.e., about 80% slip. The gravelly
terrain available could only be traversed sideways for safety reasons; there was no
transverse slope for the soil or asphalt datasets. We have collected a total of ~ 5000
frames which are split approximately into 3000 for training and 2000 for testing. The
distance covered by the rover during the data collection is roughly about 1 km. This

data has been used extensively for testing in Sections 2.8, 2.9, and 2.10.

2.5.2 Datasets collected by the Mars prototype rovers

Several datasets have been collected with the Mars prototype rovers Rocky8 and
Pluto in the Mojave desert and in the JPL Mars Yard.

One dataset was collected with the Rocky8 rover in the Mojave desert (Figure 2.5,
left). It covers a distance of about 30 m. A single ‘sand’ terrain has been traversed
in this dataset.

A second dataset was collected with Rocky8 in JPL’s Mars Yard (Figure 2.5,
right). There are two terrain types present in this dataset: ‘Mars-like soil’ and ‘sand’.
The terrain traversed consists of slopes of various inclinations. Since only two terrains
are available, we have used this dataset primarily for evaluation of the slip prediction
performance, rather than terrain recognition (Section 2.10.3).

In a subsequent round of experiments, we have collected data again in the Mars
Yard with the Pluto rover. In this set of experiments the configuration and the terrain

types in the Mars Yard had changed, and we essentially had two types of terrains
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Sand Soil Gravel Woodchip Asphalt Grass

Figure 2.4: Example patches from each of the classes in the dataset collected by
LAGR: sand, soil, gravel, woodchips, asphalt, and grass. The best resolution patches
(i.e. taken by the robot at 1-2 m range) are shown. The data are collected at
different times of day/year, under various weather conditions. The variability in
texture appearance is one of the challenges present in our application domain.

Figure 2.5: Rocky8 rover on sandy slopes in the Mojave desert (left) and in the JPL
Mars Yard (right).

which are traversable by the rover: ‘Mars-like soil” and ‘bedrock’ (Figure 2.6, right).
The ‘bedrock’ terrain type had been installed as an analog to the bedrock terrain

type encountered by the rovers in the MER mission. A third terrain type, ‘dark
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Figure 2.6: The Mars prototype rover Pluto in the JPL Mars Yard (left). An image
showing the types of terrains available in this dataset (right).

rock’; is also present in the dataset. The rover did not drive over the rocks during
the data collection, since they are obstacles, but it may still be desirable for them
to be recognized and avoided.> This dataset contained a variety of slopes as well.
This setting is used for demonstrating the results of integrating the slip prediction

algorithm on the rover in Section 2.11.

2.6 General framework for slip learning and pre-
diction

In this section we propose a general framework to learn the functional relationship
between visual information and the measured slip using training examples.

The amount of slippage for a given vehicle depends on the soil type and the
terrain’s geometry [15], so both geometry G, captured by the terrain’s slopes, and
appearance A, e.g., texture and color, must be considered. At training time, the
information about appearance and geometry coming from the stereo imagery is cor-
related with the measured slip (in X, Y, or Yaw) as the robot traverses the cell. At

query time, geometry and appearance alone are used to predict slip.

3Since the ‘dark rock’ class constitutes an obstacle, a standard obstacle detection algorithm
should be able to recognize it.



26

2.6.1 General framework

The dependence of slip on terrain slopes, called earlier slip behavior, is known to be
highly nonlinear [81], but the precise relationship varies with the terrain type [15].
So, we cast the problem into a framework similar to the Mixture of Experts frame-
work [64], in which the input space is partitioned into subregions, corresponding to
different terrain types, and then several functions, corresponding to different slip be-
haviors, are learned for each subregion. That is, in each region one model of slip
behavior would be active, i.e., when the terrain type is known, slip will be a function
of terrain geometry only.

More formally, let I be all the information available from stereo pair images,
I =(A,G). Let f(Z|I) = E(Z|I) be the regression function of slip Z (Z can be any
of the slip in X, in Y, or in Yaw) on the input variables A, G (used interchangeably
with the image information 7). Now, considering that we have several options for a
terrain type T, each one occurring with probability P(T'|A, G), given the information

from the image in question A, G, we can write f(Z|I) as follows:

f(ZII) = f(Z]|A,G) = 3 _P(T|A,G)f(Z|T, A, G), (2.1)

where >p P(T|A,G) = 1. This modeling admits one exclusive terrain type to be
selected per image, or a soft partitioning of the space, which allows for uncertainty in
the terrain classification. We assume that the terrain type is independent of terrain
geometry P(T|A,G) = P(T|A) and that, given the terrain type, slip is independent
of appearance f(Z|T,A,G) = f(Z|T,G). Assuming independence of appearance and
geometry is quite reasonable because, for example, a sandy terrain in front of the
rover, will appear approximately the same, no matter if the rover is traversing a level

or tilted surface. So we get:

f(ZI) =>_P(TIA)f(Z|T,G). (2.2)

In summary, we divide the slip learning problem into a terrain recognition part
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(P(T|A), i.e., the probability of a terrain type, given some appearance information)
and a slip prediction part (f(Z|7T,G), i.e., the dependence of slip on terrain geometry,
given a fixed terrain type T"). For simplicity, instead of the mixing coefficients P(T|A),

we use a single winner-take-all terrain classification output:

T(A) = argmaz,.P(T|A). (2.3)

However, using the probabilistic output P(T|A), if available, has more advantages.
For example, it can implement smooth transitions between terrains and can provide
confidence intervals for the final slip prediction.

The terrain classification output T'(A) will be learned and predicted by a terrain
classifier (Section 2.8). The regression functions fr(Z|G) = f(Z|T,G) for different
terrain types 7' will be learned and predicted by a nonlinear regression method (Sec-
tion 2.9). More precisely, suppose we are given training data D = {(x;,y:), zi} Y,
where x; is the ¢-th appearance input vector, y; is the i-th geometry input vector,
z; is the corresponding slip measurement, and N is the number of training examples
(x, y are particular representations of the appearance A and geometry G information
in the image, respectively). We will independently train a texture classifier T'(x) to
determine the terrain type, using the appearance information x in Section 2.8 and
a nonlinear function approximation Zrp(y) = fr(Z|G = y) for a particular terrain
type T in Section 2.9. When doing testing we will use the full input vector (x,y),
recognize the terrain type Ty = T'(x), and then predict slip, as a function of slopes,
from the slip behavior function Zr,(y) learned for the terrain Tj.

We believe this approach is adequate for our slip prediction problem because ter-
rain types do not represent a continuum in appearance space and, in general, would
form separate regions in the input space (experts), each one of potentially different
slip behavior. In the case of making a winner-take-all decision (Equation (2.3)), the
framework implements this underlying ‘switching’” behavior of slip. The probabilis-
tic decision additionally allows several experts to be active at the same time and

can make smooth transitions in borderline terrain cases. In both cases, we have ex-
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ploited information about the structure of the problem, i.e., that the slip behavior
can change depending on terrain [15]. The alternative to introducing structure in
the problem is pooling appearance and geometry features, which will not only make
the problem more complex because of increased dimensionality, but will also require
a formidable amount of training data. This framework is general and, in principle,
allows for different ways of addressing the problems of learning to recognize terrain
types from appearance, and different algorithms for learning of slip behavior from

terrain geometry.

2.6.2 Architecture

In this section we briefly describe the architecture of our system, summarized in
Figure 2.7. We will be using the stereo imagery as input, as well as the IMU of
the vehicle and its wheel encoders (the latter is needed only for training). Stereo
imagery is used to create a 2D cell map of the environment from its range data. It
also provides appearance information for each cell in the map. The 2D map contains
geometry information about the terrain (G) and, as we are interested in terrain slopes
with respect to gravity, we use the vehicle’s IMU to retrieve an initial gravity-leveled
pose. In fact, a filtered IMU signal is used, often in conjunction with other onboard
sensors. The appearance information from color imagery (A) will be used to decide
which terrain type corresponds to a cell or a neighborhood of cells. This is all the
information necessary to perform slip prediction with our algorithm. The advantage
of such a system is that it can sense the terrain remotely and that it needs only
passive, cheap, and self-contained sensors on the vehicle, such as stereo vision.

In order to learn slip we have added slip feedback. The mechanism to measure slip
is as follows. The actual motion between two frames is estimated by VO which only
needs two consecutive stereo pairs as input [88]. The motion which the vehicle thinks
it has performed is given by the vehicle’s forward kinematics. For example, the LAGR
vehicle has a differential drive model, so the wheel encoders are sufficient to compute

its full kinematics. A more complex kinematic model, which needs additional angle
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Figure 2.7: Slip prediction algorithm framework.

sensors, is needed for a rocker-bogie type of vehicle, such as Rocky8, Pluto, or MER,
but it is well understood how to compute it [113, 54]. Differencing the actual motion
and the motion estimated by the kinematic model gives a measurement of slip for a
particular step. This feedback is used for collecting training examples to learn slip

from stereo imagery.

2.7 Software architecture

In this section we describe the software architecture of the slip prediction algorithm,
which is designed to provide efficient processing of the data from the surrounding
terrain. Since processing of visual features is generally time consuming, the focus has
been on decreasing the amount of computations devoted to terrain classification. The
utilization of the slip prediction algorithm as a part of a larger autonomous navigation
system [53] is also taken into consideration. Namely, it is expected that the following
constraints need to be satisfied:

— ‘Asynchronous’ image input. It is conceivable that receiving image se-

quences and querying for potential slip-related cost is done in an asynchronous man-
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ner. For example, a set of images might be received first, e.g., when taking a
panorama, and only after that is any query for slip cost at an arbitrary location
of the terrain invoked.

— Redundant data input. A typical scenario will obtain multiple, partly over-
lapping images of the terrain, i.e., a map cell may obtain information from multiple
images. It is also possible that slip-related cost would not be needed for some areas
of the map, e.g., in areas where obstacles have already been detected.

— Memory and computational efficiency. Although there are no specific
restrictions regarding memory usage and computational time at the research and
development stage, these two important aspects have to be taken into consideration
in view of real-time testing onboard the rover.

The software architecture is novel and is designed to accommodate the require-
ments described above. In particular, our main concern is evaluating the terrain type
per map cell, rather than evaluating the terrain type in the whole image. More specif-
ically, we create a map cell structure which contains a set of pointers to images which
have observed the cell and the corresponding rover pose (viewpoint) from which it
has been observed (Figure 2.8). In this way, the map cells can invoke the terrain
classification mechanism only if, or when, needed. A ring buffer of images which
have been recently acquired is also supported. The images can be accessed multiple
times for terrain classification purposes. Note also that it provides efficient storage
of information. That is, no additional patches, texture signatures, etc., need to be
stored explicitly.

This idea is in contrast to standard systems for autonomous navigation [19, 49],
which are based on processing the whole area of each acquired image and updating the
map with the corresponding information. We call this architecture patch-centered as
opposed to the pixel-centered processing of previous autonomous navigation systems.
Note that the proposed method does not compromise the performance of the sys-
tem, it is just a more efficient way of processing, storing, and accessing the available
information.

In the proposed paradigm, the terrain classification or slip prediction for a map
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Figure 2.8: Schematic of the software design paradigm: each map cell keeps a set of
pointers to images which have observed it. An image patch, corresponding to a map
cell, is retrieved and processed once, e.g., when terrain classification or slip prediction
needs to be done, thus avoiding redundant computations.

cell works as follows: a projection of the map cell to the image is done and an
image patch corresponding to this cell is retrieved. In this way when multiple images
observe a map cell, we can retrieve the image patch corresponding to the map cell
which contains most information about the map cell. In this case not all image
patches need to be processed, which avoids redundant computations, but at the same
time allows for obtaining of multiple decisions about a map cell, if needed. Figure 2.9
shows an example in which nine images cover the whole terrain, but by using the
proposed method, we can effectively process the data corresponding to three images
only (less processing is required in the cases when some of the map cells do not need
to be evaluated).

The main assumption made is that the regions in which slip prediction is needed
are relatively planar. An example when this assumption is violated is a portion of
the terrain which contains large rocks. In this case the projected terrain patch of a
map cell near a large rock might contain portions of the rock because of occlusions.
However, in our case this assumption will be satisfied since the slip prediction is
intended to be used after processing the terrain for geometric obstacles, e.g., large
rocks (see Section 2.11). That is, there is no need to predict slip in areas which are
known to be non-traversable due to obstacles.

This paradigm allows for stereo imagery data to be received asynchronously or
intermittently—that is, one rover step can receive multiple images, e.g., in the case of

taking a panorama of the environment, or if the rover is stalled and receives multiple



Figure 2.9: Example of full coverage of the map by only a third of the images ob-
tained. The software architecture allows for more efficient processing of the data. For
example, the elevation map shown has been built from nine panorama images, but
effectively the visual information from only three images need to be processed to fully
classify the terrain.

identical images, or if it does not receive imagery, etc. In either of the cases, the
map is updated with new information, if such is available, and whenever a terrain
classification is invoked, only the most recent terrain patch is used. The result of
the terrain classification is saved with its corresponding confidence and might be
combined with a potentially new evaluation if the confidence is insufficient. This is
in contrast to processing fully all of the incoming images, extracting visual features
and saving them to the map cells.

This design concept can give other advantages. Some speedup can be achieved,
as parts of the image do not belong to the map, e.g., the pixels above the horizon.
Additionally, the terrain classifier will not be invoked if slip prediction is not needed in
a certain area, e.g., an area which the main module has already marked as populated
with obstacles or which is otherwise deemed uninteresting. Finally, the software
architecture allows for applying different texture processing methods, e.g., of various
complexity and computational cost. For example, some map cells may not need

computationally intensive processing to be classified correctly. Since map cells at a
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close range cover large portions of the image, compared to map cells at far ranges, this
can speed up the processing without hurting the overall performance. This will be
taken advantage of later in Chapter 5 when a variable-length terrain representation
is proposed. We further discuss the slip prediction module software architecture in

the context of running it as a part of an integrated autonomous navigation system in

Section 2.11.

2.8 Terrain classification

This section describes terrain classification (T'(A)) using vision information, which is
the first step of our algorithm. For the purposes of slip prediction, we consider only the
part of the image plane which corresponds to the robot’s 2D map of the environment.
That is, for now, we are not interested in regions beyond the distance where range
data is available, because we simply cannot retrieve any reliable slope information
and therefore cannot predict slip. A reasonable map for the LAGR vehicle is of size
12x12 m or 15x15 m, centered on the vehicle. Note that the MER panoramic camera
has considerably higher resolution and look-ahead [18]. The map is subdivided into
cells, each one of size 0.4x0.4 m. Our goal is to determine the terrain type in each cell
of the map. In fact, we will be classifying the patches corresponding to the projections
of map cells to the image plane.

Although previous autonomous navigation applications have often used color fea-
tures for simplicity and speed [19, 30, 85], our approach considers also texture in-
formation because much finer distinctions between terrains of different slip behaviors
need to be made. Note that the patches at close range and at far range have consid-
erably different appearances, so a single texture-based classifier could not be used for
both. This is due to the fact that the spatial resolution decreases rapidly with range.
This could also be clarified by looking at the amount of information in the image
plane which corresponds to different areas in the 2D map. For the LAGR vehicle the
estimates are: about 70% of the image plane is mapped to ranges below 10 m, about

7% to ranges between 10 m and 50 m, and about 2% to ranges between 50 m and
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Figure 2.10: Schematic of the terrain classification algorithm [79, 123].

the horizon [89]. So, for our experiments we build five independent classifiers which
are active at different ranges (ranges up to 2 m, 2-3 m, 3-4 m, 4-5 m, and 5 m and

above).

2.8.1 Terrain classification algorithm

As we are interested in classifying patches, corresponding to map cells, the approach
we use considers the common occurrence of texture elements, called ‘textons’, in
a patch. This representation is appropriate, because a texture is defined not by a
single pixel neighborhood, but rather by the co-occurrence of visual patterns in larger
regions. The idea follows the texton-based texture recognition methods proposed
by [79, 121, 123]. The approach is summarized in Figure 2.10.

Five different texture classifiers are trained, each one specialized at different range.
For each classifier and for each terrain type class (we have six terrain classes), a set of
patches in the image plane, corresponding to the map cells at the appropriate ranges,
are collected. All the training patches belonging to some range are processed by

extracting a set of 5x5 RGB regions forming a 75-dimensional vector representation of
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a local pixel neighborhood. Those vectors are clustered with k-means and the cluster
centers are defined to be the textons for this class. We extracted k=30 textons per
class.* As a result, a total of 180 textons, called ‘texton dictionary,” are collected for
the whole training set. Working in a feature space composed of local neighborhoods
allows for building statistics of dependencies among neighboring pixels, which is a
very viable approach, as shown by [123].

Now that the dictionary for the dataset has been defined, each texture patch is
represented as the frequencies of occurrences of each texton within it, i.e., a his-

> In other words, the patches from the training set are transformed into

togram.
180-dimensional vectors, each dimension giving the frequency of occurrence of the
corresponding texton in this patch. All vectors are stored in a database to be used
later for classification. Similarly, during classification, a query image is transformed
into a 180-dimensional vector (i.e., a texton occurrence histogram) and compared
to the histogram representations of the examples in the database, using a Nearest
Neighbor method and a y?-based distance measure [123]. The majority vote of N=7
neighbors is taken as the predicted terrain class of the query patch. The result of
the classifier will be one single class. To determine the terrain type in the region the
robot will traverse (Section 2.10) we select the winner-take-all patch class label in

the cell neighborhood region. In both decisions, a probabilistic response, rather than

choosing a single class, would be more robust.

2.8.2 Terrain classification results

In this section we report results of the terrain classification algorithm on data col-
lected by the LAGR robot (Section 2.5.1). Our dataset is composed of five different
image sequences which are called soil, sand, gravel, asphalt, and woodchip after the
prevailing terrain type in them (Figure 2.3), but an additional ‘grass’ class can appear

in those sequences. As mentioned earlier, we consider patches in the original color

4As seen in the experiments later in the thesis, the number of textons can vary in a certain range
without affecting the final performance significantly.

5Instead of searching for each texton within a patch individually, each pixel location of the patch
is assigned to the texton closest in Euclidean distance.
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image that correspond to cells of the map. Each patch is classified into a particular
terrain type and all the pixels which belong to this patch are labeled with the label
of the patch (Figure 2.11). To measure the test performance we take ~30 frames in
each sequence, which are separated by at least 10 frames within the sequence, so as
not to consider images similar to one another. The test set contains a total of ~150
frames which span ~1500 frames. The ground truth terrain type in the test set is
given by a human operator. Example classification results are shown in Figure 2.11.

Summary results of the terrain classifier for the five sequences for different look-
ahead distances are given in Figure 2.12. Classification performance is measured as
the percent of correctly classified area (i.e., number of pixels) in the image plane and
the correctly classified patches corresponding to cells in the map. The drop-off in
performance, especially in terms of patches, is due to a large number of classification
errors at far range. This is expected, as the patches at far range correspond to very
small image area (with little information content) and therefore are much more likely
to be misclassified. Naturally, regarding slip prediction, a larger map is preferred, as
it allows the robot to see farther, but the terrain classification errors at far ranges
can make slip prediction unreliable at large distances. Therefore, a tradeoff between
accuracy of classification and being able to see farther must be made. To be concrete,
in our further experiments we fix the map size at 12x12 m. The confusion matrix® for
the terrain classification for the 12x12 m map, when considering correctly classified
pixels, is shown in Figure 2.12. From it we can see that grass is often misclassified
as woodchips (this happens for the areas of dry grass (Figure 2.11, top left)), soil is

sometimes misclassified as sand and vice versa, asphalt is misclassified as gravel, etc.

2.8.3 Discussion

The texton-based algorithm has been previously applied to artificial images [123],

but not to the autonomous navigation domain. Our main motivation for using it here

6The confusion matrix shows what percentage of the test examples belonging to a class have been
classified as belonging to any of the available classes. Its diagonal shows the correct classification
rate for each class and the off-diagonal elements show how often one class is confused with another.
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Gravel Asphalt Woodchip

Figure 2.11: Example texture classification results from each of the datasets. Patches
from the six terrain types considered in the texture classification, and the correspond-
ing color coding assigned are shown at top left. Each composite image contains the
original image (top left), the ground truth terrain classification (bottom left) and the
results of the terrain classification algorithm represented in two different ways (top
right and bottom right). Ambiguous terrain type in the ground truth is marked with
white. Those regions are not required to be classified correctly.

is that slip prediction requires fine discrimination between visually similar terrains,
such as soil, sand, and gravel. The texton-based approach is also robust to intra-class
variability, often observed in natural terrains.

Note that the algorithm follows the proposed software architecture (Section 2.7)
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Figure 2.12: Terrain classification results for different map sizes (left). Different ways
of representing the classification rate by counting correctly classified patches or pixels
are shown. Confusion matrix for the 12x12 m map (right). The classification rate for
each class is displayed on the diagonal.

which is patch-oriented, i.e., the classification of the terrain is done per image patch,
corresponding to a map cell. The usage of the proposed architecture provides for the
texture algorithm to be range dependent, i.e., to apply different classifiers for patches
at different ranges. The architecture also allows taking advantage of faster classifi-
cation methods, if such are available, and classifying some portion of the map cells
more efficiently, thus decreasing the overall computational time. Such an algorithm

is proposed in Chapter 5.

2.9 Learning slip behavior on a fixed terrain

In this section we describe the method for learning to predict slip as a function of
terrain geometry, when the terrain type is known, i.e., the slip behavior.

The input for slip prediction, i.e., the terrain geometry G, will be represented by
the longitudinal and lateral slopes which are the terrain slopes decomposed along the
X and Y axes of the current position of the robot, respectively. They are named
pitch and roll angles, as they correspond to the vehicle’s pitch and roll, but they
are retrieved from stereo imagery. The terrain slopes are estimated as described in

Section 2.9.2, see also [42].
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2.9.1 Learning algorithm

We consider the problem of learning of slip behavior as a nonlinear function approx-
imation. That is, the slip Z7(y), i.e., fr(Z|G =y), is approximated by a nonlinear
function of terrain geometry G. Previous experimental evidence shows that slip be-
havior is a highly nonlinear function of terrain slopes [81]. To model this highly non-
linear dependence, we use a type of Receptive Field Regression algorithm [103, 124].
The main idea is to split the input domains into subregions, called receptive fields,
and apply locally linear fits to the data to approximate a globally nonlinear function.
While there are many algorithms which can be applied to this learning task, such
as Neural Networks, Support Vector Regression, etc., our choice is mainly motivated
by our goal of eventually allowing fast online updates. The Receptive Field Re-
gression approach gives a good tradeoff between memory-based nonlinear regression
methods [51] and global function approximation methods, such as Neural Networks.

Slip Z (we have dropped the subindex T for simplicity) can be written in the

following form:

Z K(y,y.) bc+z be (dy,y (2.4)

where y are the input slopes, ¥ = (Ypitchs Yroir), K(¥,yc) is a weighting function, or
kernel, K(u,v) = exp(—|lu — v|[*/)), y. is a training example which serves as a
receptive field center, df are several local projections in each receptive field c, 0§ are
the corresponding regression coefficients, R is the number of linear projections (here
R < 2), and A is a parameter which controls the receptive field size (A > 0). In
other words, the slip Z, corresponding to a query point y, is computed as a linear
combination of C' linear functions (one per each receptive field), where the weights are
computed according to the distance from y to the centers of the receptive fields. As
the weighting functions K (y,y.) depend on the distance from the query example y
to the receptive field centers y., the final functional approximation will be nonlinear.

Now, given the training data Dy = {y;, 2;}),, where the vectors y; contain the

estimated slopes from range imagery, z; are the corresponding measurements of slip
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at this particular location, and N is the number of training examples, the learning
procedure’s task is to estimate the unknown parameters so that they fit the training
data Dy well. The parameters to be learned are the receptive field centers y.,1 <
¢ < C, the linear regression parameters bf, b%, df, 1 <r < R, 1 < ¢ < (), and the
parameter A\ which determines the receptive fields size.

For a given A\, the receptive fields are distributed to cover the input space so that
all training data belong to at least one receptive field. This is done by allocating a
new receptive field in the input space whenever an incoming training example is not
covered by other receptive fields, setting the center y, to be the new example [103]. To
estimate the parameters b¢, d¢ in each receptive field, a Partial Least Squares (PLS)
linear fit [129, 51] is performed, in which the training points are weighted according
to their distance to the receptive field center [124]. In our case of only 2-dimensional
inputs, one can also use the Weighted Linear Regression [103] or some other locally
linear projection. However, by using PLS, the algorithm can be easily extended
to working with higher dimensional inputs, because of the dimensionality reduction
capabilities of PLS [124]. As our method uses the PLS regression, it is closer to the
Locally Weighted Projection Regression (LWPR) method of [124]. We parameterize
the receptive field size by only one parameter A (which implies symmetric kernels).
More advanced structured kernels could be applied as in [124], but they introduce
additional parameters to be learned, which would require a larger sample size. We
select the parameter \ using a validation set, in order to avoid overfitting.” For
example, the best selected \ for the soil dataset, collected by the LAGR robot, renders
a kernel of local activity within about 4° in pitch and roll angles.

An important aspect of this algorithm is that, when a new example arrives during
training, only the parameters of the receptive fields in the vicinity of this example
are to be re-evaluated. This allows for fast update in online learning. It is the result

of constructing a final cost function in such a way that competition among receptive

"The purpose of the validation set is to test the generalization of a learned model independently
of its training and select the best model possible for the data. For example, in this particular case,
selecting an infinitely small receptive field size would allow for one receptive field per each example
and therefore perfect approximation of the function on the training set. However, this will result in
a very poor performance on examples outside of the training data.
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fields is promoted, i.e., a receptive field is encouraged to fully approximate the required
value of the function rather than splitting the responsibility among many receptive
fields [64]. The cost function, implicit in the Receptive Field Regression algorithms,

is the following:

. C . . .
i S ST K vy (s = 0+ Y00, b (i) (25)

In other words, the function is required to approximate well the observed output
of an arbitrary data point by an individual receptive field, rather than approximating
the data point output using multiple receptive fields. As a result of optimizing this
cost function, the updates to the parameters of one receptive field are done indepen-
dently of the parameters of the other receptive fields. This is an important point,
because when new data arrive in a subregion of the input domain, only a subset of
the parameters of the function will need to be adjusted, rather than re-evaluating all
the parameters of the function, as is done with Neural Networks, for example. This
property also prevents the ‘catastrophic forgetting,” typical of global approximation
methods, and the algorithm does not need to store training examples in memory.

For now, the training is done in a batch mode, but the LWPR algorithm has
been selected in view of future training online, onboard the rover. In particular, the
properties of the receptive field regression approach that we find valuable are: the
concept of a receptive field which makes keeping of huge amount of data in memory
unnecessary; the adaptability of creating and removing receptive fields as needed;
and the possibility of easily extending the approach to online learning. We shall
note that modeling with local nonlinear regression imposes very little restriction on
the functional dependency. It allows for it to be nonlinear but does not assume
any particular model, instead, the model is learned from the data. An experimental

comparison with a Neural Network algorithm is given in Section 2.9.3.3.
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2.9.2 Implementation details

In this section we describe in detail the information we use for training purposes.
A 2D map of the environment is built using range information from the stereo pair
images. The map has a cell representation with a cell size of 0.2x0.2 m or 0.4x0.4
m.8 The information kept per cell is its extents, average elevation, and pointers to
a set of images in a ring buffer, which have most recently observed this cell. This is
sufficient to retrieve the required inputs when needed, i.e., for prediction, and does
not overburden the system with keeping a huge volume of data per cell. In a nominal
testing scenario, where multiple images observe the same map cell, a weighted average
of their terrain classification decisions and slopes estimates can be computed. For
speedup, one can also use only the slip prediction results from a single image patch
of highest priority per map cell, e.g., of the image which has observed the map cell
from the closest range.

To collect an example for the training data we do the following: for a particular
cell in the map which is seen by the rover at a distance, we can compute information
about appearance and measure the slopes (the input vector); when the rover traverses
this cell, the slip in X, Y, or Yaw (the output value) is measured. To be more efficient,
the data collection goes in the reverse way: in each map cell the average elevation
and pointers to the images viewing it are stored, because it is not known which cells
are to be traversed. It is only after the rover traverses some region that computations
about slopes and terrain appearance are made and are added to the training data.

To estimate the slope remotely at a particular location, we do a local plane fit
to the average elevation in each cell in its neighborhood [42]. The neighborhood is
defined as the cells in a rectangle which fully covers a rover of size 1x1 m. A slope
estimate can be missing if there are not enough cells under the robot to do a plane
fit. This can happen due to missing range data, e.g., in sparse vegetation or at the

borders of the map. The slope is decomposed into a longitudinal (along the forward

8The map cell size is not a critical parameter for the individual slip prediction. The larger cell
sizes are preferred for the terrain classification algorithm because it benefits from more information.
The experiments in this section are done with 0.2x0.2 m map cell size.
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motion direction) and lateral (along the wheel axis, perpendicular to the forward
motion) component with respect to the current position of the rover, i.e., the pitch
and roll slope angles. The initial attitude of the rover, received from the IMU, is
used to transform the retrieved longitudinal and lateral slope angles from the terrain
into a gravity-leveled frame. The slope angles cannot be perfectly evaluated because
of noise in the range data and because the locally planar terrain assumption might
be violated. As each location in the map is seen by many frames while the rover
approaches it, we average the roll and pitch estimates to smooth some noise effects.
Localization is important for the success of this method. VO is used for the vehicle’s
localization. In the case of an outlying VO position estimate, the step is skipped and

the map and rover position are reinitialized.

2.9.3 Experimental results
2.9.3.1 Experimental setup

In this section we give experimental results of learning and prediction of slip from
terrain slopes when the traversed terrain type is known. Our dataset is composed
of long stereo sequences (~1000 frames) which were taken on one terrain type at
a time. We report below both training and test error. The training data are used
to learn the regression function. After learning, the function is tested on the same
data (training error) and also on data not used in training (test error). Naturally
the training error will be smaller, but the test error is a criterion for the learning
method’s generalization abilities, i.e., how well it will perform on new, unseen data.
To be able to measure the test error, we compare the predicted and measured slip
only on locations traversed by the rover, but in practice prediction will be done at
each point of the local map (wherever there is sufficient range data). So slip can be
predicted on different locations on the whole visible map, without the need for the
rover to traverse them.

To do learning, for most of the experiments in this section, we perform a sequential

split of the data into training and test sets. That is, for each terrain type we take the
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frames up till some time for training, and test on all the frames after that. Some small
portion of the data, between the training and test sets, is held out for validation to
avoid overfitting). This is a more realistic scenario than the random split commonly
used in the machine learning community, because the robot is expected to train on
some portion of the terrain first and then continue to traverse the terrain applying
what it has learned (testing). It is also more difficult because the distribution of
input variables during training might shift to unexplored regions while testing, which
makes it much harder to generalize.

Slip prediction error is measured by the average absolute error (Err) or by the

Root Means Squared (RMS) error:

Err =) _|P,—Ti|/n, (2.6)

=1

(P~ Ty, (2.7

RMS = $

i
where P; is the predicted and 7; is the target slip at a particular step i. The latter is
more adequate for measuring the error of a regression function, but is more prone to
outliers and can give an incorrect idea of the error. We do training and testing point-
wise, i.e., not considering potential correlations between consecutive points, which do
exist, and could be exploited in a more advanced prediction algorithm.

To allow for comparisons among datasets and platforms, slip will be represented

in percent, by normalizing by the average velocity at which the dataset is taken.

2.9.3.2 Slip in X for the LAGR robot on off-road terrain

The first experiment was done with the LAGR robot on five different off-road terrains
(Figure 2.3). The first 45% of the data is used for training, the next 10% for validation
and the remaining 45% is used for testing. The data were taken by either manually
joysticking the rover (soil and gravel datasets) at a speed of about 1 m/s, which
can create variability in the commanded velocity, or by autonomous driving at a

controlled straight constant velocity of 0.3 m/s (all the remaining datasets). The
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data are normalized by the average velocity for each dataset. Images were acquired
at 5 Hz in this dataset.

The results of slip prediction with the LAGR vehicle on soil, gravel, sand, and
asphalt are presented in Figure 2.13. The actual learned nonlinear function of slip
as dependent on terrain slopes for the soil terrain is shown in Figure 2.15 (left).
The soil dataset consists of going up and down a slope twice which helps the testing
because similar slope angles have been seen in training. However, this does not
happen in the gravel dataset where a lot of the input test slope angles have not been
seen during training. This is a result of the consecutive split of the data. Still, the
algorithm manages to generalize well by extrapolating to unseen examples in those
circumstances. For the gravel dataset we used the vehicle’s tilt angles (from the IMU)
instead of the ones from the visual information because of localization problems (due
to occasional large rotations between consecutive frames which resulted in incorrect
position estimates), but, with good localization, there are no significant differences
between the two [9].

Prediction of slip in X for sand and asphalt terrains is given in the bottom row
of Figure 2.13. Unfortunately, the LAGR vehicle mobility in deep sand turned out
to be extremely poor. On a flat sandy terrain the vehicle experienced a consistent
slip of about 80% (Figure 2.13; compare to the mobility of Rocky8 on sandy slopes
described later on in Figures 2.17 and 2.22) and it was not possible to collect a dataset
on sandy slopes with the LAGR vehicle. The consistent 80% slip in sand forces an
almost constant function to be learned (Figure 2.13), which is quite natural in this
case.” On asphalt and woodchip terrains, similar to sand, a constant function is
learned, because the measured slip for these datasets is approximately constant and
independent of the slope angles.

On average we get slip error of about 3%—-15% for all the datasets (except for
gravel, with 25% RMS error, which is achieved in a hard-to-generalize learning setup).

This is quite a satisfying result in this type of data where a lot of noise is involved.

9The large noise in the measured slip for the sand dataset may be caused by pulsation in the
motor controller in the vehicle. Significant controller instability has been observed for deep sand [11].
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Figure 2.13: Prediction of slip in X on soil (top left), gravelly transverse slope (top
right), flat sandy terrain (bottom left), and up- and downslope asphalt (bottom right).
Each panel contains the predicted and ground truth slip (top row) for the correspond-
ing slope angles estimated from vision (bottom row), training data (left column), test
data (right column). LAGR vehicle.

In general, our results show very promising prediction of slip in real off-road outdoor
environments.

As mentioned earlier, we are using the slope angles retrieved from stereo imagery
(i.e., vision information). We have previously compared the slip prediction results
when learning with respect to the vehicle’s tilt angles (retrieved by the vehicle’s
IMU) and with respect to the slope angle estimates which are computed from the
range data using visual information [9]. Both are, in general, noisy measurements
of the actual slope angles: the IMU-based measurement gives the tilt of the robot,
not of the ground plane, which might be erroneous if the robot traverses a rock, for

example; the geometry-based slope estimation is susceptible to outliers and can be
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Figure 2.14: Predicted slip and its 1-sigma confidence intervals for the soil dataset
(top) and the corresponding slope angles (bottom). Training mode (left); test mode
(right). Note that the uncertainty for the test set is at times larger (e.g., around step
number 600) and much more spiky than for the training set. This is because some
test examples occur away from the regions covered by the training examples. Soil
data; LAGR vehicle.

wrong if there are obstacles in the plane fit area. Our results show [9] that they give
comparable test performance.

For the purposes of using the slip prediction for planning, it is important to have a
confidence value on each prediction, in order to know how much to trust it. We have
computed the confidence intervals on individual query predictions as in [124]. The
main assumptions in computing the confidence intervals are that two independent
sources of noise are present in the case of LWPR: one coming from the locally linear
fit in each receptive field and the other from the differences between the prediction of
a local model and the final prediction. The latter measures how much local models
agree in areas of overlap; it contributes significantly less to the uncertainty of the
estimation. Figure 2.14 shows the confidence intervals for each query point for both
training and test datasets for the soil terrain. The dataset has been normalized
stepwise and is split consecutively into two equal size sets, without using a validation
set. As we can see, query examples among the training data have smaller variance,
whereas some test examples have larger variance whenever they fall into regions of
the input space not covered by training data, or where the training examples are

noisy or contradict each other. The most uncertainty (a large confidence interval)



48
LWPR Neural Network

Slip (%)

20

0
Roll (deg)

-20 20 piteh (deg) Roll (deg) —20 29 Pitch (deg)

Figure 2.15: The learned nonlinear function of slip as dependent on the two terrain
slopes. Soil data; LAGR vehicle. Learning with LWPR (left) and with a Neural
Network (right). The LWPR algorithm returns an invalid response (denoted with 0
on the plot) for regions which are far away from any receptive fields formed during
learning. The Neural Network extrapolates easily but incorrectly in areas far from
training data. Both methods manage to approximate the function in a similar way
in the domain covered by training data.

occurs on the boundary of the region within which any prediction response is given.
No prediction is available outside this region, as it is too far from any receptive fields

(see also Section 2.9.3.3).

2.9.3.3 Comparison of the LWPR method to a Neural Network

In this section we compare the results of learning with the LWPR algorithm and
with another common nonlinear approximation method (a Neural Network) on the
soil dataset (used also in Section 2.9.3.2). The Neural Network has 10 hidden nodes,
it has been trained for 10,000 epochs, uses early stopping, and does not use weight
decay. The LWPR has used 12 receptive fields to cover the input data domain.
Figure 2.15 shows the learned nonlinear function (representing slip as a function of
the longitudinal and lateral slopes, i.e., pitch and roll angles) evaluated for a range
of values for both angles.

The test results showed comparable performance of both methods with some ad-
vantage to the LWPR, (RMS of 11.89% and 12.64% for the LWPR and Neural Network
respectively, when the training is done on a sequential split of the data into equal

sizes of training and test portions, with 5% of the examples in between held out for
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validation). The training data includes pitch angles of only up to 17 degrees and
roll angles up to 8 degrees in absolute value and includes slip measurements of up to
65% with occasional outliers of up to 80%. Both methods generalize to regions which
have not been observed during training i.e., have reported slip predictions outside
the training slope ranges (pitch and roll angles larger than 17 and 8 degrees respec-
tively). However, considerably different approaches to generalization to areas of the
space which have not been seen during training can be seen in Figure 2.15. The Neu-
ral Network extrapolates incorrectly to regions where no training data is available.
For example, it predicts ~50% positive slip on a more than 20 degrees downslope
(see upper left corner on the right subplot of Figure 2.15), which is wrong because
slip on a downslope is expected to be negative or zero. Instead, the LWPR method
returns a confidence value on its prediction or in the simplest case a flag denoting that
the predicted response is invalid. The latter happens if the query point has negligible
weights with respect to all receptive fields. Naturally, if the training method had data
covering the whole input space that would not be an issue, but usually, in practice,
the available training data is not as variable or abundant as desired. The LWPR
nonlinear approximation both gives better generalization performance and alerts of
areas of the space where the result is not reliable. This adds more advantages of the
LWPR method to the previously mentioned fast online update, training in a memory
efficient way (i.e., it does not need all the training data in memory), and lack of
‘catastrophic forgetting’” when the input distribution is shifted to a new, unexplored

domain [124].

2.9.3.4 Slip in Yaw for the LAGR robot on off-road terrain

Apart from slip in the forward motion direction (i.e., slip in X), slip in the other
DOFs of the rover, Y and Yaw, can also affect the rover mobility. For example, large
amounts of slip in Y and Yaw will prevent the rover from executing a planned path
and therefore reaching the predetermined goal [54], so predicting them as well would
be very beneficial for planning.

Figure 2.16 shows the result of learning and prediction of slip in Yaw on a trans-
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Figure 2.16: Predicted slip in Yaw (in degrees) on a transverse gravelly slope (the slip
in Yaw has not been normalized). Training mode (left); test mode (right). LAGR
vehicle.

verse gravelly terrain for the LAGR vehicle. An interesting functional dependence
is learned for this dataset: large slip in Yaw, corresponding to large pitch angle, is
learned whenever the roll angle is large, but an almost zero slip in Yaw is learned
when the roll angle is small, regardless of the pitch angle. This means that the pitch
and roll angles work in conjunction to approximate the final slip well, i.e., both in-
puts are relevant for the measured quantity (here, slip in Yaw). A similar effect has
been observed in learning of slip in X, although the dependence of slip in X on the
roll angle is significantly less pronounced. On the same dataset, a small amount of
negative slip in Y, consistent with the large roll angle, could also be learned by our
algorithm (see [9] for details). No significant slip in Y or Yaw could be detected in
any of the other datasets we have for this vehicle, because there was no sideslope in

the terrain where they were obtained.

2.9.3.5 Slip in X for the Rocky8 rover in the Mojave desert

Another experiment with learning and prediction of slip in X was done for the Rocky8
rover, traversing sandy slopes in the Mojave desert. Figure 2.17 (left) shows the

terrain where the data was collected. The dataset consists of about 220 steps and
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Figure 2.17: Prediction of slip in X based on terrain slope angles. The dataset has
been collected with the Rocky8 rover on sandy slopes in the Mojave desert. Training
mode (left); test mode (middle). The test error for this run is 5%—7%.

was taken on slopes which range from -5° to 10° in pitch and up to 12° in roll. The
ground truth for this dataset was obtained with a Total Station, tracking four prisms
mounted on the rover, providing the 6-DOF pose within 2 mm and 0.2° accuracy in
position and attitude, respectively. In this experiment we have used the roll and pitch
angles provided by the ground truth. Slip is measured between steps which coincide
with stops of the rover. Each step is taken in approximately constant time. As the
step size can vary slightly, we average the slip across several neighboring steps. Here
again, we normalize slip by the average step size (~0.22 m) to represent the slip in
percent.

As the available data is rather small, we split the data randomly, rather than con-
secutively, into training and test portions (more examples are given to the training
set, about 130 examples). To achieve statistically significant results, the experiment
is performed multiple times with different random splits of the data into nonoverlap-
ping training and test subsets. The test errors from 100 trials of this experiment are
as follows: the average test RMS error is 6.5% with standard deviation of 0.6%, the
average test absolute error (Err) is 5.5% with standard deviation of 0.34%. Perform-
ing multiple trials and using the average and standard deviation prevents us from

reporting the result of a single particularly favorable or unfavorable random split of
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the data. The consecutive split of the data (as performed in Sections 2.9.3.2, 2.9.3.3,
and 2.9.3.4) is a much harder learning scenario and the split is uniquely defined, given
the sizes of the training and test datasets.

The result for learning of slip in X from one of the trials and its corresponding
errors are given in Figure 2.17. For this trial, slip prediction captures correctly (with
error for the whole data within 5%-7%) slip of about 20% for high pitch angles. Note
that in this dataset there are combinations of roll and pitch angles in the second part
of the data (if split consecutively) which have not been seen in the first half, which
precludes us from doing a reasonable sequential split. Also note that the slip signal

is much less noisy than for the LAGR vehicle.

2.10 Slip prediction in the full framework

In this section we test the full slip prediction algorithm, in which stereo imagery and
the IMU are the only input, and slip at a remote location is the output. The prediction
works as follows: given an input example (x,y), first the terrain type To = T'(x) is
estimated from appearance x (using the terrain classifier described in Section 2.8)
and then the learned slip model St (y) for the terrain type T} is activated to produce
slip results, given the measured terrain slopes y (Section 2.9). We present the final

quantitative results by comparing the actual measured slip to the predicted slip.

2.10.1 Test procedure

This experimental setup is similar to the one in Section 2.9.3.1 with the main differ-
ence that the terrain type in each patch is recognized first and a different slip model
is used dependent on the terrain. The implementation details are described in Sec-
tion 2.9.2. Some other minor differences in the final system are the change of cell size
to 0.4x0.4 m (because larger cell regions are preferred by the texture classifier), and
the mechanism for combining slope measurements about each location, obtained from
different frames that have observed it. Here we average the measurements, weighting

them by the inverse of the range at which they are obtained; no significant differences
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Figure 2.18: Slip prediction and terrain type classification errors (left) and slope
estimation errors (right), as a function of the minimum range at which prediction is
performed. Slip prediction error, if the terrain type is known, is also shown to the
left. The terrain type classification error measures the percentage of misclassified cells
along the rover traverse. This experiment is done for a 15x15 m map on a subset of
the soil terrain dataset with the LAGR vehicle.

were noticed by changing the combining coefficient in the slope estimation. The same
cell neighborhood and the same averaging scheme (1/Range) is used for both ter-
rain classification and plane fit. The slip measurements in this dataset have been
normalized pointwise by the commanded velocity, rather than normalizing all slip
measurements by the average velocity. There were no significant differences, except
that the pointwise normalized data is slightly noisier. Here, again, to measure test
performance, we predict slip only on the path which was later traversed by the rover.
VO is used for the vehicle’s localization.

There is one more issue of deciding at what range to start reporting the predicted
slip and accumulating information as a particular location is being approached (we
call it ‘minimum range’). We explore what is the farthest minimum range for this
robot. Naturally, a potential path planner would benefit more, the farther we can
make a good slip prediction. On the other hand, locations observed at a large distance
might give unreliable or nois