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Abstract

Wireless communications have gained much currency in the last few decades. In

this thesis we present results regarding several wireless communication systems, in

particular, wireless networks.

For some time now, it has been known that in an ad hoc network in which nodes

share the wireless medium, and the connection strengths between nodes follow a

distance-based decay law, the throughput scales like O(
√

n), where n is the number

of nodes. In Chapter 2 we introduce randomness in the connection strengths and

examine the effects of this on the throughput. We assume that all the channels are

drawn independently from a common distribution and are not governed by a distance-

decay law. It turns out that the aggregate information flow depends strongly on the

distribution from which the channel strengths are drawn. For certain distributions,

a throughput of n
(log n)d with d > 0 is possible, which is a significant improvement

over the O(
√

n) results known previously. In Chapter 3, we generalize the network

model to two-scale networks. This model incorporates the distance-decay law for

nodes that are separated by large distances, while maintaining randomness in close

neighborhoods of a node. For certain networks, we show that a throughput of the

form n
1

t−1 / log2 n is achievable, where t > 2 is a parameter that depends on the

distribution of the connection at the local scale and is independent of the decay law

that operates at a global scale.

In Chapter 4, we consider a model of an erasure wireless network, in which every

node is connected to certain other nodes by erasure links, on which packets or bits

are lost with some probability and received accurately otherwise. Each node is con-

strained to send the same message on all outgoing channels, thus incorporating the
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broadcast feature, and we assume that there is no interference in the network, other

than through the possible correlation of erasure occurrences. For such networks and

in certain multicast scenarios, we obtain the precise capacity region. This region has a

nice max-flow, min-cut interpretation and can be achieved using linear codes. We do

require the side-information regarding erasure locations on all links to be available to

the destinations. Thus, we have the capacity region for a non-trivial class of wireless

networks.

Recent results for wireline networks show that in several scenarios, it is optimal

to operate these networks by making each link error-free. In Chapter 5, we con-

sider Gaussian networks with broadcast and interference, and erasure networks with

broadcast, and show that in the presence of these wireless features, it is suboptimal to

make each link or sub-network error-free. We then consider these networks with the

constraint that each node is permitted to either retransmit the received information

or decode it and retransmit the original source information. We propose a greedy

algorithm that determines the optimal operation for each node, such that the rate

achievable at the destination is maximized. Further, we present decentralized imple-

mentations of this algorithm that allow each node to determine for itself the optimal

operation that it needs to perform.

In Chapter 6, we consider a point-to-point communication system, involving mul-

tiple antennas at the transmitter and the receiver. These systems can give high data

rates provided we can perform optimum, or maximum-likelihood, decoding of the

received message. This problem typically reduces to that of finding the lattice point

closest to a given point x in N -dimensional space. This is an integer least-squares

problem and is NP-complete. The sphere decoder is an algorithm that performs

decoding in an efficient manner by searching for the closest point only within a spher-

ical region around x. In Chapter 6, we propose an algorithm that performs decoding

in a sub-optimal manner by pruning the search region based on the statistics of

the problem. This algorithm offers significant computational savings relative to the

sphere decoder and allows us to tradeoff performance with computational complexity.

Bounds on the error performance as well the complexity are presented.
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Chapter 1

Introduction

The problem of communicating information has been approached in many novel and

creative ways in the past few centuries. Before the 1800s, methods such as fires,

drums, mirrors and carrier pigeons were commonly used to send messages. In the

1800s, our understanding of electromagnetic phenomena advanced rapidly and made

inventions such as the telephone and telegraph possible. When Marconi sent his

radio signal across the Atlantic in 1901, wireless communication first became a viable

approach to the problem of sending data from one point to another.

In the past century, and especially in the past forty years, we have seen many

advances in the area of communication. Today, communication systems come in

many, and increasingly sophisticated, flavors. Systems can range from one sender

and one receiver using walkie-talkies, to millions of users interacting with each other

through a network as in the internet, the telephone system or the cellular system.

Thanks to the wide range of sizes, functionalities, precise models and performance

measures of interest, a rich field of research has come to be associated with these

systems.

Many communication systems that are deployed in the world today are either

entirely or predominantly wireless. In the future, we expect the wireless phenomenon

to continue to flourish as these systems become ubiquitous. Also, we have begun

to expect data such as video and multimedia to be transmitted over these systems,

rather than just voice. This means that the bit-rate and reliability of the transmission

must increase as we go into the future.
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Figure 1.1: Depiction of a wireless network. It is a shared medium with broadcast
and interference. The strength of the links fluctuates with time.

1.1 Features of Wireless Systems

In order to efficiently design and operate the communication systems of today and

tomorrow, we first need to characterize and analyze them in sufficient depth. The

features associated with the wireless medium need to be understood and exploited.

One prominent feature of the wireless medium is that it is shared by many users and

there is no allocation of resources enforced by the medium to begin with. Properties

of broadcast and interference are also important. The former implies that when any

user transmits a message, many other users are likely to hear it. On the flip side, when

two or more users are simultaneously transmitting to their respective destinations, the

destinations hear the messages not intended for them in addition to those intended

for them, leading to interference. Finally, the most unique feature of the wireless

connection is that its strength varies over time. The connection between two nodes

can be very strong at some times and very weak at other times. This phenomenon,

called fading, is largely because of the random fluctuations in the medium and is

enhanced by factors like the mobility of users. In addition, since there may be several

paths for the message to reach the destination, each with different delays, multiple



3

copies of the message can reach the destination at different times, leading to the

multipath effect.

Thus, the wireless connection has an inherently probabilistic nature. This makes

the connections unreliable, but recently developed techniques turn this into an advan-

tage using the concept of “diversity.” Put very simply, this is done by transmitting

messages over several links simultaneously. Since the probability of all the links being

simultaneously weak is very small, this increases the reliability of the system. Thus,

one can view the randomness introduced by fading as an advantage. Other advan-

tages of wireless systems are that they require less investment in infrastructure and

allow mobile systems to be connected temporarily.

1.2 Some Important Issues

There are many issues that merit attention in the analysis of a communication system.

The rate at which bits get across from a sender to a receiver is an important issue.

This can be characterized by the throughput or the capacity of the network. Another

important feature is the error performance or the rate-distortion behavior of the

system. Systems in which performance degrades gracefully as the channel conditions

deteriorate are preferred over systems that are very sensitive to the quality of the

channel.

Other practical issues that are of interest involve delay or the time between the

transmission and reception of the message. Systems in the real world usually have

strict constraints on the delay that can be tolerated. These systems also have to

be robust to the failures of certain links or nodes. In addition, we may require the

different nodes in a system to be able to make their own decisions and operate in a

decentralized manner.

Thus, there are many competing requirements that have to be met in a well-

designed system. For the purposes of analysis, however, it often becomes necessary

to find a suitable model of the system that enables us to focus on a small number of

issues. At the same time, in order for the model to be relevant, it has to be close to
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reality. Thus, modeling and characterizing a system is the first challenge in analyzing

it.

A large part of this thesis involves proposing new models for wireless networks that

mirror real networks closely, yet remain tractable. For these models, several issues

that are important from a theoretical as well as practical point of view are investi-

gated. These include capacity, decentralized operation, scheduling and throughput.

Results of a problem involving point-to-point systems are also presented. In these,

a method of reducing the receiver complexity of space-time systems is proposed. An

understanding of various probabilistic tools as well as mathematical concepts, such

as random graphs, matrix analysis and Markov chains has facilitated many of these

results.

1.3 Problems and Contributions

What follows next is a brief summary of the various questions addressed in this thesis

and the contributions made towards answering them.

1.3.1 Wireless Networks with Random Connections

Current multiple user wireless systems (e.g. cellphone networks) typically employ

some centralized infrastructure (e.g. basestations) in order to operate. Ad hoc net-

works deal with the issue of facilitating communication between pairs of nodes in

the absence of such infrastructure. The work of Kumar and Gupta in 2000 [35] has

provided great insight into the behavior of these networks.

They considered a network with n nodes distributed over a certain area, where the

channel strength between any two nodes was inversely proportional to some power

of the distance between them. With this model, as n increased, only about
√

n

messages could be simultaneously transmitted across randomly chosen transmitter-

receiver pairs. This meant that the per user throughput actually decreased as
√

n
n

=

1√
n
, indicating that large ad hoc networks were not practically feasible. Since then,

most other work based on similar network models has only reinforced this conclusion.
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The question we ask in Chapter 2 is whether these results can be improved in any

way using a different network model. We propose a model in which the geographical

location of nodes does not play a role in determining connection strength. Instead,

connection strengths are independently and identically distributed (i.i.d.) accord-

ing to a particular probability distribution function (pdf). Recent research on the

connectivity of ad hoc networks supports such a model. This model is also suitable

for indoor networks, where obstructions and reflections cause scattering which dom-

inates the line-of-sight component. This random model is amenable to analysis and

can improve throughput to n/ logc n for some constant c [51, 54].

We develop a general approach that works for any pdf that the connections may

be drawn from. For example, if the pdf is a simple Bernoulli, we find that the value

of the Bernoulli parameter that maximizes throughput is log n
n

, which is surprisingly

low. This means that each node has only log n neighbors out of a potential n − 1; in

fact, this is just enough to ensure connectivity of the network. At this connectivity

the throughput scaling is quite encouraging. It increases as n/ log2 n, which is only

slightly sublinear.

In order to compare performance with the Kumar and Gupta model, we consider

the distribution of received signal powers when a single node transmits in their net-

work setting. Assuming that the i.i.d. connections in our random model are drawn

from this distribution, we show that throughputs of the form n/ logc n are achievable,

for constant c. This is significantly better than the
√

n obtained in their deterministic

model and tells us that randomness in the connections offers great advantages. The

maximum benefit comes from the fact that only around log n hops are required in our

model, as against the
√

n required in theirs.

In reality, the distance-decay effects that are represented in the Kumar-Gupta

model are far field effects and only set in over long distances. On the other hand,

the i.i.d. connections are expected to model reality over shorter distance, where

the far field effects are not set in. Thus, though a network with i.i.d. connection

strengths can behave very differently from one with entirely deterministic connection

strengths, a realistic network model should incorporate both random and location-
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dependent features. A possible model for such a network is one in which nodes within

a certain radius enjoy i.i.d. connections with each other, but face a distance-decay

law with nodes outside that radius. Such a model is proposed in Chapter 3. For this

model, we use a combination of the techniques used by Kumar and Gupta and those

developed in Chapter 2 in order to find suitable schedules of relays. More specifically,

we develop a skeleton of a schedule using the ideas of tessellations proposed in [35]

and then fill up the rest of the schedule using ideas from the purely random model.

We are able to obtain a result regarding the achievable throughput for a general

combination of the distance-decay law and the pdf for the random connections. For

example, we show that an aggregate throughput of the form n
1

t−1 / log2 n is achievable,

where t > 2 is a parameter that depends on the distribution of the connection at the

local scale and is independent of the decay law that operates at a global scale. For

t < 3, this offers a large improvement over the O(
√

n) results that are known for the

purely distance-based models.

1.3.2 Wireless Erasure Broadcast Networks

The results for the ad hoc networks of Chapter 2 are in the form of scaling laws and

hold for asymptotically large networks. For smaller networks we are interested in

characterizing the capacity exactly. This problem has proved to be quite challenging

– no complete solution is known even for the simple relay channel which consists of

three nodes. Outer bounds on the capacity region are known and are usually obtained

using cut-capacities [71]. To obtain these bounds the nodes of the network are divided

into two parts. Assuming that nodes within each part can cooperate fully we obtain

the mutual information between the two parts. Until recently, no non-trivial networks

were known in which these bounds were achieved.

Thus, we are faced with the problem of finding a model that is realistic yet

tractable. We consider a packet-based network modeled by a directed acyclic graph

with several independent information sources that are desired by several destinations.

All nodes can act as relays. Each edge erases packets with some probability. The
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network is wireless in that the same message has to be broadcast on all outgoing

edges of a node. However, we assume that some multiple access scheme is in place

that eliminates interference among incoming edges.

For general channels and in the absence of the broadcast property this forms the

wireline multicast problem. This was solved in 2000 by Ahlswede et al. [68] whence

the field of network coding took off. They showed that the cut-capacity outer bounds

were achievable and that it was optimal to operate each edge at or below its capacity

in an error-free manner.

From our other work (described in the next section) we know that wireless net-

works differ significantly from wireline networks in that it is sub-optimal to make each

link or sub-network operate without error. Therefore, we do not attempt to make

each erasure channel error-free. Instead, nodes use random encoding functions that

are known to the destinations. In addition, we assume that the erasure locations are

also known to the destinations as side-information. We show that with this setup,

the cut-capacity outer bounds can indeed be reached (Chapter 4).

Due the available side-information, the destinations are in a position to simulate

the network for every possible combination of messages that the sources might be

transmitting. It turns out that, with probability going to one, only one combination

of messages can produce the observed output, leading to successful decoding. Thus

we have a capacity region for wireless erasure broadcast networks [1, 63]. Note that

this result is valid for any size and topology of the network.

We have also generalized this result. We show that restricting ourselves to linear

random encoding functions is sufficient for achieving capacity. Capacity results for

correlated erasures are also obtained. Changing the packet erasure channels to era-

sure channels with any discrete input alphabet (e.g., binary) leads to similar results.

However, for packet erasure channels, the overhead of providing side-information re-

garding erasure locations is small, especially for long packets. More interesting results

for broadcasting over our network model have also been obtained [2].
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1.3.3 Optimal Policies for Decode/Forward Networks

The network problems described above consider throughput and capacity and are

of a fundamental theoretical nature. In Chapter 5 we look at a practical problem of

concern in real networks. While capacity regions provide us with the absolute bounds

on how much information a network can support, ways of reaching those bounds are

often very expensive in terms of time, computation and memory. Also, a simple and

cheap node that is part of a large network may be incapable of performing the required

operations. Therefore, we consider wireless networks with only one source and one

destination in which other nodes act as relays and are restricted to performing one of

only two operations. These are retransmitting the received information or decoding

it and transmitting the original codeword. We find the optimal operation for each

node such that the rate from the source to the destination is maximized.

Had this been a wireline network, the optimal operation for each node would be to

decode, and each link would operate error-free. However, we show through examples

that for a network with the broadcast property, it is sub-optimal to make links or

sub-networks operate error-free [20, 62].

The networks we consider are of two types. One is a Gaussian network, modeled

by a directed acyclic graph, where there are channel coefficients associated with each

edge. Broadcast and interference act in the usual way. Each node has a power

constraint and experiences additive Gaussian noise. To forward, a node scales the

received message appropriately and retransmits. The second network differs from the

wireless broadcast erasure network described in the previous section in one way. In

order to be able to forward, we assume that links can take erasures as inputs and

that these are received as erasures. In both networks we ask a node to decode only if

it can do so without error. That is, if it can support the rate that the source is trying

to deliver to the destination. Thus, asking a node to decode puts a constraint on the

rate.

If there are V nodes in the network and each relay node is permitted one of two

operations, there are 2V −2 policies possible. We present a greedy algorithm that goes
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over at most V −2 policies and returns the optimal one, thus avoiding an exponential

search [19]. We have also developed decentralized implementations of this algorithm

that converge to the maximum rate iteratively. These require one bit of feedback at

every iteration. Furthermore, the algorithm can apply to a wider class of networks

than the two mentioned here.

1.3.4 Efficient Near-ML Decoding via Statistical Pruning

While multiple antenna systems promise high rates [28, 37], reliable decoding is im-

portant to fully realize this benefit. Unfortunately, decoding in these systems usually

involves high computational complexity and is currently recognized as the major bot-

tleneck in the design and use of space-time systems. Though there exist sub-optimal

decoding algorithms that run in cubic time, the error performance of these is sig-

nificantly worse than that of the optimum decoder. Therefore, finding efficient and

accurate decoding algorithms is important.

For a typical multiple antenna system, the optimum, or maximum-likelihood

(ML), decoding problem that the receiver has to solve is a minimization over the

discrete signal space, the size of which is exponential in the problem dimension. In

fact, it has the form of a standard integer least-squares problem, which is known to be

NP-hard. This often means that the best way of performing the required minimization

is by exhaustively searching over the discrete signal space.

The sphere decoder is an algorithm that tries to avoid the exhaustive search by

restricting the search to points within a specific sphere that is certain to contain the

minimizer. While the sphere decoder decreases complexity to a reasonable extent,

further reduction, especially in regimes of low SNR and high problem dimension is

desirable.

In Chapter 6, we propose a decoder that increases efficiency by restricting the

search to a non-spherical region that is much smaller than the sphere of the original

algorithm. Though this reduces the search space, there is a price to pay in terms of

performance. Because of the asymmetry of the new search region there is a small
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probability that the decoder output will not be the ML-output, thus making the

decoder sub-optimal.

However, the new search region is statistically pruned in a careful manner keeping

in mind the stochastic nature of the channel and the noise. Therefore, with high

probability, we manage to simultaneously get the benefits of low complexity and high

performance. We are able to quantify and control the sub-optimality and can often

design a search region that operates at a desired trade-off between complexity and

performance [97, 96, 98]. Our schemes can reduce complexity (with respect to a state-

of-the-art sphere decoder) by a factor of 240 for a 50 antenna system with 4-QAM.

With fewer antennas we expect smaller gains – a factor of 7 reduction for a 12-antenna

system with 64-QAM. This is achieved while keeping performance within 0.1 dB of

the optimal.

In the presence of coding, the size of the problem depends on the exact coding

scheme as well as the number of antennas. This number of virtual antennas is expected

to be much larger than the number of actual antennas. Thus, the decoding problem

has to be solved in a high dimensional setting. The real benefits of the pruned decoder

materialize in this regime.

Each of the problems considered in this thesis raises interesting issues that can be

investigated further. We present discussions, summary and directions for future work

in Chapter 7.
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Chapter 2

Achievability Results for Random
Wireless Networks

The model of wireless ad hoc networks in which connection strengths are based on the

distances between nodes is well-studied. In this chapter, we motivate and propose a

substantially different model, in which channel connections are entirely random. We

assume that, rather than being governed by geometry and a decay-versus-distance

law, the strengths of the connections between nodes are drawn independently from a

common distribution. We show that the throughput behavior, as a function of the

number of nodes n, is strongly dependent on the channel distribution. For certain dis-

tributions, a throughput of n
(log n)d for some d > 0 is achievable, which is significantly

greater than the O(
√

n) results obtained for many geometric models.

2.1 Introduction

An early study of traffic flow in shared-medium wireless networks appears in the

seminal work of Gupta and Kumar [35]. They show that in a grid network of n

nodes on the plane having a deterministic power-scaling law, O(
√

n) transmitters

can talk simultaneously to randomly chosen receivers. Similar results for networks

with randomly placed nodes can also be obtained (see, for example, [34] for a recent

account). Different models can yield somewhat different conclusions [25, 27, 29, 33,

36, 38, 39, 40, 41]; nevertheless, if we do not permit the transmitter/receiver pairs

to approach one another [30], or for very low attenuation laws [39], the model of a
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power decay law (as a function of distance) seems to yield a network in which the

number of nodes that can talk simultaneously grows much slower than n. Network

models that incorporate channel fading as well as geometric path loss have also been

proposed [47, 46] but the scaling behavior of these is not much different from that of

[35]. We wish to study networks with a different connectivity model.

The O(
√

n) result in [35] has the following heuristic explanation. If a node wishes

to transmit directly to a randomly chosen node (whose distance is approximately

O(
√

n) away on average), it has two choices: talk directly, or talk through a series of

hops. If it tries to talk directly, the transmitter generates energy in a circle of radius

O(
√

n) around itself. However, this energy, which is seen by the intended receiver

becomes interference for the O(n) other nodes in the circle. Thus, some constant

fraction of the entire network of n nodes is bathed in interference; an undesirable

consequence. If it decides instead to talk through hops, the transmitting node can

pass its message to a neighbor, who in turn passes it to a neighbor and so on for

O(
√

n) hops to the intended receiver. This strategy limits interference to immediate

neighbors but ties up O(
√

n) nodes in the hopping process. Although this turns out

to be the best strategy, only O(
√

n) simultaneous messages can be passed before all

n nodes in the network are involved.

We change the model of the wireless medium from a model based on distance to

one based on randomness. In multi-antenna links, a linear increase in capacity (in the

minimum of the number of transmit/receive antennas) is obtained when the channel

coefficients between the transmit and receive antennas are independent Rayleigh-

distributed random variables [28, 37]. It is therefore now generally believed that a

rich scattering environment, once thought to be detrimental to point-to-point wireless

communications, may actually be beneficial. We show that a similar effect may

hold for the expected aggregate data traffic in a wireless network; certain forms of

randomness can be helpful.

There are several reasons why one may choose a random model over one that

is based on distance. While distance effects on signal strength are important for

nodes that are very near or far from each other, many networks are designed with
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minimum and maximum distances in mind. Decay laws of the form 1/rm for a fixed

m > 0 may not be relevant for networks of small physical size. Additionally, through

the use of automatic gain control, a radio often artificially mitigates distance effects

unless the node is saturated (too close) or “dropped out” (too far). Many first-

order signal-strength effects in such networks are then due to random fluctuations in

the medium, such as Rayleigh and shadow fading. A distance-power model cannot

readily account for shadow-fading since signal strength at the receiver is determined

more by the presence of an obstacle blocking the path to the transmitter than by

distance. In addition, recent investigations show that the connectivity of ad hoc

networks with channel randomness, such as that caused by shadow-fading, is similar

to the connectivity in a random graph [48]. Some models that consider channel

randomness are studied in [49, 50], where it is shown that the resulting random

network has some realistic connectivity properties lacking in a purely deterministic

model. We are concerned not just with connectivity but also throughput.

We adopt the premise that randomness can have a first-order effect on the behavior

of a network. We assume that the channels between nodes are drawn independently

from an identical distribution. We allow the distribution of the channel between nodes

to be arbitrary and allow it to vary with the number of nodes n. Our model covers

environments where the signal strength at a receiving node is governed primarily by

a random event (such as the existence of an obstacle). We believe that the study of

such wireless networks with random connections is important for three reasons: First,

many real wireless networks have a substantial and dominant random component;

second, we show that such networks may have qualitatively different traffic scaling

laws than the scaling obtained in geometric models; finally, our results give insight

into the connectivity that a network should have to allow large aggregate traffic flows.

In general, any realistic model of a large network should have a model of connec-

tivity that has a balance of randomness and distance-based effects. In [52] one such

model is proposed and its throughput is analyzed. Also, [32] uses a “radio model”

to show that in the presence of obstructions and irregularities, channels become ap-

proximately uncorrelated with one another, and the probability of good links between
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nodes that are far apart increases in wireless local area networks (WLANs). The radio

model in [32] essentially uses the same independence assumption that we do, but uses

distance to determine the probability of a connection link. We show in Section 2.8.1.1

how to apply our traffic-flow conclusions to this radio model to determine a favorable

distance between nodes.

2.1.1 Approach

We suppose that the connection strengths between the n nodes of the wireless network

are drawn i.i.d. from a given arbitrary distribution. In geometric networks such as

[35] a node may communicate its message in hops to nearby neighbors so that it

ultimately reaches the intended destination. In our random model, although there is

no geometric notion of a near neighbor, we can find an equivalent of a near neighbor

by introducing the notion of “good paths,” where connections stronger than a chosen

threshold β are called good. Transmissions to relays and destinations occur along

only good paths. By figuratively drawing a graph whose vertices are all the nodes in

the network, yet whose edges are only the good paths, we obtain a specific random

graph model called G(n, p), where an edge between any pair of the n nodes exists

with probability p. (In our case, p is simply the probability that the connection

strength exceeds βn.) G(n, p) is a very well-studied object and we leverage some

of its known properties to establish node-disjoint routes between sources and their

intended destinations. However since we are analyzing a wireless network, we must

also account for the effects of interference between all nodes, including those that

do not have good connections between them. Fortunately, our use of the goodness

threshold β also makes the analysis of message-failures (due to interference and/or

noise) tractable. Our analysis yields an achievable aggregate throughput which is

a function of the chosen threshold β. A judicious choice of β can maximize this

achievable throughput. To complement our achievability results, we also present some

upper bounds on aggregate throughput that show that our results are sometimes tight.
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2.2 Model of Transmitted and Received Signals

We assume that the wireless network has narrowband flat-fading connections whose

powers are i.i.d. according to an arbitrary distribution f(·). Thus, if hi,j is the

connection between nodes i and j, then γi,j = |hi,j|2 are i.i.d. random variables with

marginal distribution f(γi,j). For maximal generality, we allow f(γ) = fn(γ) to be a

function of the number of nodes n. As an example, consider

f(γ) = (1 − p) · δ(γ) + p · δ(γ − 1) (2.1)

where δ(·) is the Dirac delta-function. This distribution is a simple model of a shadow-

fading environment where, for any pair of nodes, with probability p there exists a good

connection between them (fading causes no loss), and with probability 1 − p there

exists an obstruction (fading causes a complete loss). In a general network of n

nodes, we may let p = pn be a function of n to represent changes in the geography

or network topology as the network increases in size. Although γ = 0 and γ = 1 are

the only possibilities in the distribution (2.1), we may also introduce values of γ that

depend on n. Figure 2.1 pictorially displays an example of wireless terminals whose

connections may obey the model (2.1).

The behavior of such a network varies dramatically with p. At the extreme of

p = 1 no paths are ever blocked and all nodes are fully connected to each other. While

this situation permits any node to readily talk to any other node in a single hop, the

overall network throughput is low because talking pairs generate an enormous amount

of interference for the remaining nodes. If many nodes try to talk simultaneously, the

overall interference is overwhelming. At the other extreme of p = 0, everyone is in

a deep fade; now interference is minimal. However, no nodes can talk at all (we

assume a transmission power limit). Thus we have competing effects as a function

of p: Increasing p benefits the network by improving connectivity thus allowing for

shorter hops, but hurts the network by increasing interference to other receivers. We

are led to ask: What p is optimal? What is the resulting network aggregate traffic?
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Figure 2.1: Nodes are able to establish connections with each other if there is no object
in their path. Equation (2.1) models the presence of an object as a random event
where each path has a connection of strength one with probability p, and otherwise
has a connection of strength zero.

Is this optimal p likely to be something we encounter naturally? If not, can we induce

it artificially? We answer some of these questions but, more generally, we look at how

an arbitrary fn(γ) affects the traffic.

2.2.1 Detailed Model

Let the network have n nodes labeled 1, . . . , n. Every pair of nodes {i, j} (i 6= j) is

connected by a channel that is denoted by the random variable hi,j = hj,i; there are
(

n
2

)
channel random variables. The channel strengths, γi,j = |hi,j|2 are drawn i.i.d.

according to the pdf fn(γ). Once drawn, these channel variables do not change with

time.

Node i wishes to transmit signal xi. We assume that xi is a complex Gaussian ran-

dom process with zero mean and unit variance. Each node is permitted a maximum

power of P watts.

We incorporate interference and additive noise in our model as follows: Assume
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that k nodes i1, i2, . . . , ik are simultaneously transmitting signals xi1 , xi2 , . . . , xik re-

spectively. Then the signal received by node j(6= i1, . . . , ik) is given by

yj =
k∑

t=1

√
Phit,jxit + wj (2.2)

where wj represents additive noise. The additive noise variables w1, . . . , wn are i.i.d.,

drawn from a complex Gaussian distribution of zero mean and variance σ2 (wj ∼
CN (0, σ2)). The noise is statistically independent of xi.

2.2.2 Successful Communication

In equation (2.2), suppose that only node i1 wishes to communicate with node j and

the signals xi2 , . . . , xik are interference. Then the signal-to-interference-plus-noise

ratio (SINR) for node j is given by

ρj =
Pγi1,j

σ2 + P
∑k

l=2 γil,j

.

We assume that transmission is successful when the SINR exceeds some threshold

ρ0. If the SINR is less than ρ0 we say that transmission is not possible. Thus, even

though ρj ≥ ρ0, we use log(1 + ρ0) as the transmission rate. Using log(1 + ρ0) as the

rate, rather than the more precise log(1 + ρj), simplifies our analysis.

2.3 Network Operation and Objective

We suppose that k nodes, denoted by s1, . . . sk, are randomly chosen as sources. For

every si, a destination node di is chosen at random, thus making k source-destination

pairs. We assume that these 2k nodes are all distinct and therefore k ≤ n/2. Source

si wishes to transmit message Mi to destination di and has encoded it as signal xi.

We wish to see how many source-destination pairs may communicate simultaneously.

The sources may talk directly to the destination nodes or may decide to communicate

in hops through a series of relay nodes.
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2.3.1 Communicating with Hops

In general, we suppose that the source-destination pair (si, di) communicates us-

ing a sequence of relay nodes ri,1, ri,2, . . . , ri,h−1. (h = 1, 2, . . . represents the num-

ber of hops.) Define ri,0 = si and ri,h = di. The path from si to di is then

ri,0 = si, ri,1, ri,2, . . . , ri,h−1, ri,h = di. In time slot t + 1 we have nodes r1,t, r2,t, . . . , rk,t

transmitting simultaneously to nodes r1,t+1, r2,t+1, . . . , rk,t+1 respectively. We have

nodes r1,t+1, r2,t+1, . . . , rk,t+1 decode their respective signals x1, x2, . . . , xk and trans-

mit them to the next set of relay nodes in the (t + 2)th time slot, and so on. A

natural condition to impose is that the relay nodes that are receiving (or transmit-

ting) messages in any time slot be distinct so that the messages do not collide. In

addition, impose the constraint that relay nodes cannot receive and transmit at the

same time. In the rest of the chapter, we refer to these conditions together as the

no collisions property. In general, we allow ri,t = ri,t+1 for any i. This means that a

relay can effectively hold on to a message in a time slot; hence h effectively represents

the maximum number of hops needed for all the source-destination pairs.

d1r1,h−1

s2 r2,1 r2,2 r2,h−1

r1,1 r1,2

d2

s1

rk,2rk,1sk rk,h−1 dk

Figure 2.2: Schedule of relay nodes: Source si communicates with destination di using
relays ri,1, . . . , ri,h−1. The solid lines indicate intended transmissions and the dashed
lines indicate potential interference. A schedule is valid if it meets the no-collision
conditions that a node can receive or transmit at most one message in any time slot
and that no node can transmit and receive simultaneously.

2.3.2 Throughput

With the above procedure, we have k simultaneous communications occurring in h

time slots. Message Mi reaches the intended destination di successfully if it can be
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decoded by each relay ri,t. Assume that a fraction 1 − ε of messages reach their

intended destinations in this way. Then we define the throughput as

T = (1 − ε)
k

h
log(1 + ρ0), (2.3)

where ρ0 is the SINR threshold, and we are using the natural logarithm. Thus,

log(1 + ρ0) is the sustainable throughput per user if the users do not collide. We

multiply this factor by the number of non-colliding source-destination pairs k, divide

by the number of hops, and subtract the fraction of dropped messages ε. The resulting

throughput T depends on n and we sometimes add subscripts to the variables involved

to indicate this: kn, εn, ρ0,n and Tn. Typically, we force εn to go to zero as n grows.

We demonstrate a scheme for choosing the relay nodes and analyze the throughput

performance of this scheme. Thus, we give an achievability result for Tn. We now

state this result.

2.4 Main Result

Theorem 2.1. Consider a network on n nodes whose edge strengths are drawn i.i.d.

from a probability distribution function fn(γ). Let Fn(γ) denote the cumulative distri-

bution function corresponding to fn(γ) and define Qn(γ) = 1−Fn(γ). Choose any βn

such that Qn(βn) = log n+ωn

n
, where ωn → ∞ as n → ∞. Then there exists a positive

constant α such that a throughput of

T = (1 − εn) αkn(βn)
log(nQn(βn))

log n
log

(
1 +

anβn

σ2

P
+ (kn(βn) − 1)µγ

)
(2.4)

is achievable for any positive an such that an ≤ 1 and any kn(βn) that satisfy the

conditions:

1.

kn(βn) ≤ αn
log(nQn(βn))

log n
(2.5)
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2.

εn ≤ a2
n

α(1 − an)2

(kn(βn) − 1)σ2
γ

(σ2

P
+ (kn(βn) − 1)µγ)2

log n

log(nQn(βn))
→ 0 (2.6)

where µγ and σ2
γ are the mean and variance of γ respectively. The SINR threshold ρ0

is given by anβn

σ2

P
+(kn(βn)−1)µγ

.

The parameter βn satisfying Qn(βn) = log n+ωn

n
is the goodness threshold men-

tioned in Section 2.1.1. By figuratively drawing an edge when γ > βn, we obtain a

random graph that fits the well-studied model G(n, p). Condition (2.5) is needed to

obtain a non-colliding schedule in this random graph. This issue is discussed in detail

in Section 2.5. Once the schedule is obtained, we incorporate the effects of inter-

ference between non-colliding transmissions and provide an error analysis in Section

2.6. Condition (2.6) forces εn to go to zero. In Section 2.7 we combine the results

of Sections 2.5 and 2.6 to prove the theorem. Note that the theorem indicates an

achievable throughput and does not preclude that higher throughputs are possible.

Although it is not evident from the theorem statement, it turns out that the

optimum number of hops h grows at most logarithmically with n. The throughput

therefore depends most strongly on the number of simultaneous transmissions kn and

the SINR threshold ρ0.

The throughput expression (2.4) is general and accommodates an arbitrary fn(γ).

The parameter kn is the number of non-colliding simultaneous transmissions. We

discuss the constant α and the parameter an later. The joint selection of βn, kn,

and an that maximizes the achievable throughput (2.4) is not easily expressed in

closed-form as a function of the pdf fn(γ). In general, these parameters need to be

determined on a case-by-case basis. We show how to find the necessary parameters

in Section 2.8 where we give several examples.

Since (2.4) holds for any kn satisfying (2.5), we may choose kn as large as possible

(achieving equality in (2.5)) and optimize only over an and βn. In fact, when σ2

P
−µγ ≥

0, it is possible to show that the optimum kn is the maximum possible. We hence

state a more specific achievability result.
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Corollary 2.2. In the network of Theorem 2.1, if σ2

P
− µγ ≥ 0 the throughput (2.4)

is maximized by choosing kn as large as possible.

At this point we would like to refer back to the problem setting of [35] and note

that their model of a random network, where nodes wish to send information at

the rate of λ(n) bits per second to a randomly chosen destination is closest to the

problem we consider here. For the random network, an aggregate throughput capacity

of O(
√

n/ log n) is obtained in [35]. (This is only slightly worse than the transport

capacity of O(
√

n) for the somewhat different model of arbitrary networks, which

has been discussed in the introduction to this work.) In the example presented in

Section 2.8.2 we examine the scaling behavior of the throughput with a pdf fn(γ)

that is obtained based on a distance-decay law. The effects of doing away with the

geometric model become more clear with that example.

2.5 Scheduling Transmissions

With a view to meeting a minimum SINR of ρ0 at every relay node at every hop, we

impose the condition that each transmitting link be stronger than some threshold βn.

We require that γri,t,ri,t+1
≥ βn, where βn is a design parameter. We denote links that

satisfy γi,j ≥ βn as good. We require the path from si to di to use only good links.

The threshold βn is a parameter that we may choose as a compromise between

quantity and quality of the connections. By making βn large we increase the quality

of the link. However, if we make it too large we risk not being able to form an

uninterrupted path of good links from the source to the destination. In this section,

we determine the relation between βn and the lengths of source-destination paths.

Define pn = P(γ ≥ βn) (for convenience, we drop the subscript n in the rest of this

section). Using our wireless communication network, we define a graph on n vertices

as follows: For (distinct) vertices i and j of the graph, draw an edge (i, j) if and only

if γi,j ≥ βn in the network. Call the resulting graph G(n, p). The graph G(n, p) then

becomes an instance of a model called G(n, p) on n vertices in which edges are chosen

independently and with probability p [26]. This graph shows the possible paths from
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the various sources to the various destinations using only good links, but does not

show the possible interference encountered if these paths are used simultaneously. We

examine this interference in Section 2.6.

Graphs taken from the model G(n, p) have many known properties. For instance,

the values of p for which the graph is connected is well-characterized. As p increases,

the probability that the graph is connected goes to one. If p = log n+c+o(1)
n

(where

c > 0 need not be a constant) the probability of the graph being connected is e−e−c

[26]. This implies that there is a phase transition in the graph around p = log n
n

.

For p less than this the probability of connectivity goes to zero rapidly and for p

greater than this it goes to one rapidly. Another property that is well-studied is the

diameter. The diameter of a graph is defined as the maximum distance between any

two vertices of the graph, where the distance between two vertices is the minimum

number of edges one has to traverse to go from one to the other. Results in [26] and

[42] tell us that for p in the range of connectivity the diameter behaves like log n
log np

. (It

is also known that the average distance between two nodes has the same behavior.)

This tells us that a message can be transmitted from one node to another using at

most log n
log np

hops. What it leaves unanswered is the question of how to establish k such

transmissions simultaneously and on non-colliding paths.

The problem of obtaining a non-colliding schedule can be thought of more gener-

ally as a problem of avoiding or reducing interference. Not surprisingly, several works

that study throughput scaling in large networks encounter the same issue, sometimes

for other network models. For instance, in [35] the number of routes that pass through

a certain small area of the network (which they call a cell) can be thought of as the

bottleneck that determines the overall throughput. Similarly, in [34], the number of

disjoint paths that can be found in a certain area can be perceived as the limiting fac-

tor. Various techniques are used in these works to enable this calculation. While [35]

uses results relating to the Vapnik-Chervonenkis dimension, [34] uses ideas inspired

by percolation theory and random geometric graphs [53]. In the setting of this work,

it is most natural to use random graph theory and we use a relatively recent result

regarding vertex-disjoint paths by Broder et al [43] in order to find a satisfactory
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non-colliding schedule.

2.5.1 Scheduling using Vertex-Disjoint Paths in G(n, p)

Two paths that do not share a vertex are called vertex-disjoint. Note that any

two paths that are vertex-disjoint satisfy our “no-collisions” property; however, the

reverse statement is not true. Thus, the vertex-disjoint condition is stronger than our

requirement of non-colliding paths. For a set of k (disjoint) pairs of vertices (si, di),

the question of whether there exists a set of vertex-disjoint paths connecting them is

addressed in [43]. Their result states that with high probability, for every (sufficiently

random) set of k pairs (si, di) and k not greater than α1n
log np
log n

, where α1 is a constant,

there exists a set of vertex-disjoint paths. This result is within a constant factor of

the best one can hope to achieve since the average distance between nodes in G(n, p)

is log n
log np

, and thus we can certainly have no more than n log np
log n

vertex-disjoint paths.

Also stated in [43] is an algorithm that finds k paths using various random walk and

flow techniques. Here we reproduce their main result.

Theorem 2.3. Suppose that G = G(n, p) and p ≥ log n+ωn

n
, where ωn → ∞. Then

there exist two positive constants α1, α2 such that, with probability approaching one,

there are vertex-disjoint paths connecting si to di for any set of pairs

F = {(si, di)|si, di ∈ {1, . . . , n}, i = 1, . . . , k}

satisfying

1. The pairs in F for i = 1, . . . , k are disjoint.

2. The total number of pairs, k = |F |, is not greater than α1n
log np
log n

;

3. For every vertex v ∈ {1, . . . , n}, no more than an α2-fraction of its set of

neighbors, N(v), are prescribed endpoints, that is |N(v)∩ (S ∪D)| ≤ α2|N(v)|,
where S = {si} and D = {di}.
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Furthermore, these paths can be constructed by an explicit randomized algorithm in

polynomial time.

In fact, the existence of the paths is proved by stating and analyzing a randomized

algorithm that finds them. However, we use this theorem only as an existence result

to demonstrate achievable throughputs. Some comments about their randomized

algorithm can be found in Sections 2.6 and 2.10.1.

In our communication network, Condition 1 that (si, di) be disjoint pairs is already

met. The second condition imposes a restriction on how large k can be. Since the

k source-destination pairs are chosen at random, the third condition is also met.

(In fact, the third condition is imposed in [43] to prevent someone from choosing

the (si, di) pairs in a particularly adversarial manner using knowledge of the graph

structure.)

We can restate the theorem for our purposes.

Theorem 2.4. Suppose that G = G(n, p) and p ≥ log n+ωn

n
, where ωn → ∞. Then

there exists a constant α > 0 such that, with probability approaching one, there are

vertex-disjoint paths connecting si to di for any set of disjoint, randomly chosen

source-destination pairs

F = {(si, di)|si, di ∈ {1, . . . , n}, i = 1, . . . , k}

provided k = |F | is not greater than αn log np
log n

.

The constant α in this theorem is the same α required in Theorem 2.1. It is

not explicitly specified. We examine the lengths that these k paths can have in the

following lemma.

Lemma 2.5. Almost all of the k = αn log np
log n

vertex-disjoint paths obtainable under

Theorem 2.4 have lengths that grow no faster than log n
α log np

.

Proof. Suppose that some fraction of paths, say cnk where cn > 0 have average lengths

of the form log n
log np

(1 + ω′
n) where ω′

n goes to infinity. Since there are n nodes in the
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network, we have

n ≥ cnk × log n

log np
(1 + ω′

n) = cnαn
log np

log n
× log n

log np
(1 + ω′

n) = cnαn(1 + ω′
n).

This implies that 1 ≥ αcn(1 + ω′
n) and therefore cn must go to zero. Therefore we

conclude that at most a vanishing fraction of the k paths can have lengths that grow

faster than log n
log np

and, asymptotically, all the paths have lengths that grow no faster

than log n
α log np

.

Hence the number of hops h is (asymptotically) at most log n
α log np

. We use this fact

in the error analysis in the following section.

2.6 Probability of Error

Consider a schedule of k ≤ αn log np
log n

non-colliding paths. Theorem 2.4 shows that

such a schedule exists. One possible (but often impractical) way to obtain such a

schedule is to use an exhaustive search that first lists all the paths between every

source-destination pair and then randomly chooses a set that satisfies the vertex-

disjoint property. Because we thereby choose a path based on vertices rather than

edges, we are assured that any edges that might exist between vertices along one

path to vertices along another are i.i.d., Bernoulli distributed with parameter p. We

also conclude that the channel connections between nodes along different paths in the

network are i.i.d. with distribution fn(γ).

More generally, randomized algorithms that choose non-colliding paths without

using edge information between such paths also have the property of generating i.i.d.

interference between the paths. An example of such a randomized algorithm that

avoids an exhaustive search is [43].

We now consider the probability that a particular message fails to reach its in-

tended destination. Destination di fails to receive message Mi if the SINR falls below

ρ0 at any of the h relay nodes ri,1, . . . , ri,h = di. Denote by Et the event that relay

node ri,t has SINR greater than ρ0. Note that the events E1, . . . , Eh are identically
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distributed. Therefore we have,

P(Mi is received successfully) = P(

h⋂

t=1

Et) = 1−P(

h⋃

t=1

∼ Et) ≥ 1−
h∑

t=1

P(∼ Et) = 1−hP(∼ E1)

(2.7)

where the inequality comes from the union bound. We now compute P(∼ E1). This

is the event that node ri,1 has an SINR lower than ρ0.

P(∼ E1) = P(ρri,1
≤ ρ0)

= P

(
Pγsi,ri,1

σ2 + P
∑

j 6=i γsj ,ri,1

≤ ρ0

)

= P

(
∑

j 6=i

γsj ,ri,1
≥ Pγsi,ri,1

− ρ0σ
2

Pρ0

)

≤ P

(
∑

j 6=i

γsj ,ri,1
≥ Pβn − ρ0σ

2

Pρ0

)

= P

(
1

k − 1

∑

j 6=i

γsj ,ri,1
− µγ ≥ Pβn − ρ0σ

2

(k − 1)Pρ0
− µγ

)

≤ P

(∣∣∣∣∣
1

k − 1

∑

j 6=i

γsj ,ri,1
− µγ

∣∣∣∣∣ ≥
Pβn − ρ0σ

2

(k − 1)Pρ0
− µγ

)

≤ σ2
γ/(k − 1)

(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

(2.8)

where the first inequality follows because γsi,ri,1
≥ βn and (2.8) comes from the

Chebyshev inequality and the fact that the variance of 1
k−1

∑
j 6=i γsj ,ri,1

is σ2
γ/(k − 1).

The second inequality requires the condition Pβn−ρ0σ2

(k−1)Pρ0
− µγ ≥ 0, or

ρ0 ≤
βn

σ2

P
+ (k − 1)µγ

. (2.9)

This condition on ρ0 is intuitively satisfying: if we assume that k is large, then we

expect the interference term in the denominator of the SINR to be approximately

(k − 1)µγ. This would imply that setting the threshold ρ0 to less than βn

σ2

P
+(k−1)µγ

would be sufficient to ensure that most hops would exceed this threshold.



27

Note that in the above analysis for P(ρri,t ≤ ρ0), we have assumed that there are

(k − 1) interference terms. This would be true if all k messages are transmitted in

that particular time slot. However, this may not be the case, if some of the messages

have already reached their destinations successfully by that time or have already

failed to be decoded at some relay node. In such a case, there will be fewer than

(k− 1) interference terms. This means that the calculation above is conservative and

the actual probability of error may be smaller than that obtained above. However,

from the relevant theory involving random graphs as well as from the simulations, we

expect the path lengths to fall in a narrow range of values. Thus, most messages reach

their destination within very few time slots of each other. Therefore, we believe that

the above error analysis is not too conservative and hence do not expect a significantly

lower error probability in practice.

We define εn to be the probability of failing to meet the SINR threshold along one

or more of the hops. From (2.7), εn ≤ hP(∼ E1). We force hP(∼ E1) to go to zero.

From Lemma 2.5, h is at most log n
α log np

and we have

εn ≤ hP(∼ E1) ≤
log n

α log np

σ2
γ

(k − 1)(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

(2.10)

and we require the right-hand side to go to zero.

The inequality (2.10) requires γ to have a variance that does not go to infinity.

There are several distributions of practical interest in which the variance does go to

infinity, but the mean is finite. (For example, f(γ) = c
(1+γ)m for m > 2 is considered in

[52].) In this case, an alternative inequality can be obtained by applying the Markov

bound to P(∼ E1) rather than the Chebyshev bound. The result is

εn ≤ hP(∼ E1) ≤
log n

α log np

(k − 1)µγPρ0

Pβn − ρ0σ2
. (2.11)

An achievable throughput can be obtained using either the Chebyshev bound of (2.10)

or the Markov inequality above. Theorem 2.1 is obtained using the Chebyshev in-

equality. Theorem 2.6, presented at the end of Section 2.7, is an achievability result
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obtained using the Markov inequality (2.11). In general, we expect the Chebyshev in-

equality to be tighter than the Markov inequality and therefore prefer to use Theorem

2.1 whenever γ has finite variance.

2.7 Proof of Theorem 2.1

We now combine the results of Section 2.5 on the maximum number of non-colliding

paths and Section 2.6 on the probability of successful transmission along these paths.

We need p = P(γ ≥ βn) = Qn(βn) = log n+ωn

n
in order to do scheduling. In addition,

we need:

1. To have non-colliding paths (Theorem 2.4),

k ≤ αn
log np

log n
.

2. To meet the SINR threshold (equation (2.10)),

εn ≤ log n

α log np

σ2
γ

(k − 1)(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

→ 0.

3. To apply the Chebyshev inequality (equation (2.9)),

ρ0 ≤
βn

σ2

P
+ (k − 1)µγ

.

To satisfy the third condition above we set

ρ0 =
anβn

σ2

P
+ (k − 1)µγ

where 0 ≤ an ≤ 1. Substituting for this in the second condition, we get

εn ≤ a2
n

α(1 − an)2

(kn(βn) − 1)σ2
γ

(σ2

P
+ (kn(βn) − 1)µγ)2

log n

log(nQn(βn))
→ 0.
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This and the first condition above are the only conditions on k. For any k satisfying

these two conditions we get an achievable throughput. This gives us Theorem 2.1.

The theorem gives an achievable throughput as a function of βn, an and kn but does

not attempt to optimize these parameters. Because εn goes to zero and h is determined

by βn, to find the optimum k we need to maximize k log(1+ρ0) = k log(1+ anβn

σ2

P
+(k−1)µγ

)

over k. In the particular case when σ2

P
−µγ is positive, the expression is non-decreasing

in k (the first derivative is non-negative). Hence satisfying (2.5) with equality is

optimum. This proves Corollary 2.2.

Finally, we state without proof an achievability result obtained using the Markov

inequality (2.11) to bound the error, rather than the Chebyshev inequality (2.10).

This result can be used in place of Theorem 2.1 for distributions that have a finite

mean but an infinite variance.

Theorem 2.6. Consider a network on n nodes whose edge strengths are drawn i.i.d.

from a probability distribution function fn(γ). Let Fn(γ) denote the cumulative distri-

bution function corresponding to fn(γ) and define Qn(γ) = 1−Fn(γ). Choose any βn

such that Qn(βn) = log n+ωn

n
, where ωn → ∞ as n → ∞. Then there exists a positive

constant α such that a throughput of

T = (1 − εn) αkn(βn)
log(nQn(βn))

log n
log

(
1 +

βn

σ2

P
+ bn(kn(βn) − 1)µγ

)
(2.12)

is achievable for any positive bn such that bn ≥ 1 and any kn(βn) that satisfy the

conditions:

1.

kn(βn) ≤ αn
log(nQn(βn))

log n
. (2.13)

2.

εn ≤ 1

αbn

log n

log(nQn(βn))
→ 0. (2.14)

where µγ is the mean of γ. The SINR threshold is ρ0 = βn

σ2

P
+bn(kn(βn)−1)µγ

.
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2.8 Examples and Applications

In this section we apply Theorem 2.1 to some particular channel distributions. Since,

as in geometric models, the throughput is often interference-limited, we find that

densities that lead to significant interference per transmitter generally underperform

those that generate only a small amount of interference.

2.8.1 Shadow-Fading Model

We revisit the model (2.1)

fn(γ) = (1 − pn)δ(γ) + pnδ(γ − 1) (2.15)

where δ(·) is the Dirac delta-function. This pdf models the situation where strong

shadow-fading is present. The signal power is zero in the presence of an obstruction

and is one otherwise. We find the value of p that maximizes the throughput. (We

drop the subscript n.) A natural choice for the goodness threshold βn is 1, which

gives Q(β) = p. We need to satisfy p ≥ (log n + ωn)/n (where ωn → ∞) in order to

use Theorem 2.1.

Note that we have µγ = p and σ2
γ = p(1 − p). It is possible to check that unless

p → 0, the throughput is at most constant. With p → 0 and sufficiently large n, the

condition σ2

P
− µγ = σ2

P
− p ≥ 0 is satisfied. Therefore, according to Corollary 2.2 the

maximum possible k achieves maximum throughput. Hence we consider k = αn log np
log n

.

Since p = log n+ωn

n
, k → ∞ and we may replace k − 1 by k in (2.6) and the SINR

threshold. Since kp also goes to infinity, (2.6) becomes εn ≤ a2
n

α2(1−an)2
log2 n

log2(np)
1
n
→ 0.

Therefore an may be any positive constant a < 1. With this, the SINR threshold

becomes ρ0 = a
σ2

P
+αnp log np

log n

≈ a

αnp log np
log n

which goes to zero. Thus log(1 + ρ0) ≈ ρ0 and

we have k
h

log(1 + ρ0) = aα
p

log np
log n

. This is maximized when p is as small as possible, or

p = log n+ωn

n
. The result is summarized in the corollary below.

Corollary 2.7. Consider a network on n nodes where edge strengths are drawn i.i.d.
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from the distribution in (2.15). Then for large n the maximum throughput is

T =

(
1 − a2

α2(1 − a)2

log2 n

log2(log n + ωn)

1

n

)
aα

log(log n + ωn)

(log n + ωn) log n
n

as n → ∞, which is achieved when p = log n+ωn

n
and where ωn is any function going

to infinity and 0 < a < 1 and α < 1 are constants.

This throughput is almost linear in n and requires the network to be sparsely

connected; with a connection probability of (log n)/n, each node is connected with

only approximately log n other nodes. For example with n = 1000 nodes, we have

(log n)/n = 0.0069 and each node connects on average to only seven other nodes.

Perhaps surprisingly, increasing or decreasing this connectivity has a detrimental

effect. While it is clear that it is possible for a network to be under-connected, it

is apparently also possible for a network to be over-connected. The simulations in

Section 2.10.2 also demonstrate this effect.

2.8.1.1 Implications for a Certain Radio Model

In [31, 32] a wireless connectivity model is introduced where the probability of a good

link is expressed as

p(r̂) =
1

2

[
1 − erf

(
3.07

log r̂

ξ

)]
(2.16)

where r̂ is a (suitably normalized) distance between the transmitter and receiver and ξ

is a parameter that depends on the degree of shadow fading and the distance pathloss

exponent. Usually ξ ∈ [0, 6] where large values indicate a strong shadow component.

The links between different sources or destinations are modeled as statistically inde-

pendent.

For nodes approximately r̂ from each other, the model (2.16) is equivalent to our

model of shadow-fading (2.15) with p = p(r̂). As we show in Section 2.8.1, maximum

throughput is attained for p ≈ (log n)/n. The “equivalent distance” for nodes is

found by solving

p =
log n

n
=

1

2

[
1 − erf

(
3.07

log r̂

ξ

)]
(2.17)
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for r̂. Nodes approximately this distance from each other then have the excel-

lent throughput promised in Corollary 2.7. Because we cannot have a large net-

work of nodes exactly equidistant from each other, equation (2.17) has operational

meaning only if the link probability is relatively insensitive to the distance r̂ when

p ≈ (log n)/n. We show that it is.

As the number of nodes n increases, the optimal link-probability (log n)/n de-

creases, or, equivalently, the distance r̂ between nodes increases. For large r̂, we may

approximate 1
2
(1 − erf x) ≈ 1/(2

√
πx) exp(−x2), and thus (2.17) becomes

p =
log n

n
=

ξ

10.88 log r̂
e−3.07 log2 r̂/ξ.

The sensitivity of p as a function of r̂ is very low when p is small. We show this in

Figure 2.3, where we display p versus r̂ for various values of ξ. The dotted lines in

the figure shows the approximate optimal operating point p for networks with 100

and 1000 nodes. We see that the optimal p is generally very small and relatively

insensitive to r̂, and therefore the best network performance is generally obtained

when the nodes are relatively far apart, with a wide range of acceptable distances.

This suggests that a large high-throughput network of nodes with optimal (small) p

is possible.

We comment that the authors in [32] also consider how shadow fading can reduce

the hop-count in a network and they use some graph-theoretic concepts in their

arguments. They do not, however, attempt to obtain a throughput result by finding

simultaneous non-colliding paths, nor do they incorporate the detrimental effects of

interference to show that a network can be “too connected.”

2.8.2 Density obtained from a Decay Law

In this example we construct a pdf from the marginal density of the channel strengths

in a geometric model. For every node, the channel coefficients to the remaining nodes

follow a deterministic law based on distance. If we group these coefficients according

to their magnitude γ, we obtain a certain number of coefficients whose magnitude
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Figure 2.3: Link probability p versus distance r̂ as given by (2.17) for ξ = 2, 3, 4. Also
shown are dotted lines at p = (log 100)/100 ≈ 0.046 and p = (log 1000)/1000 ≈ 0.0069
indicating the optimum throughput point for shadow-fading with 100 and 1000 nodes,
respectively. As a function of r̂, p is relatively insensitive for large r̂.

falls in the interval (γ, γ + dγ). We seek a pdf whose average number of magnitudes

matches this deterministic law.

In an actual geometric model the distribution of channel magnitudes depends on

the location of the nodes. We make a simplifying assumption: We suppose that the

nodes are in a circular disk and consider the node at the center of the disk to derive

the density. We thereby ignore the effects of the disk boundary. We assume the nodes

are dropped with density ∆ (nodes per unit area) but ensuring a minimum distance

of d from the center. The area of the entire disk is n/∆.

In deriving the density of the channel coefficients, we use a power law g(r), where

a node transmitting with power P is received by another node at distance r with

power Pg(r). We assume that g(·) is monotonically decreasing. The most significant

difference between our model and the standard geometric model is that our channel

coefficients are independent which does not happen in the geometric model. The ge-

ometric model has a correlation structure in the coefficients where channels of similar

strength are clustered in rings around the center node. In our model, coefficients of
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similar strength, although the same in number as the geometric model, are distributed

randomly and are not necessarily geometrically colocated.

Consider a node at the center of the disk transmitting at power P . The fraction

of nodes receiving power ≤ γP is given by 1 − ∆
n
2π((g−1(γ))2 − d2) where γ ∈

[g(
√

n
2π∆

+ d2), g(d)] In particular, if we have a decay law of the form g(r) = 1
rm , the

fraction of nodes receiving power ≤ γP is given by

1 − ∆

n
2π(

1

γ2/m
− d2)

for γ ∈ [
(

2π∆
n+2π∆d2

)m/2
, 1

dm ].

This is a cumulative distribution function and by differentiating it with respect

to γ we obtain the pdf for the edge strengths seen by the central node as

fn(γ) =
4π∆

nm

1

γ1+ 2
m

, γ ∈
[(

2π∆

n + 2π∆d2

)m/2

,
1

dm

]
, m > 0. (2.18)

We assume that connections are drawn i.i.d. from this distribution.

We apply our results to this network and obtain the following corollary.

Corollary 2.8. Consider a network on n nodes where edge strengths are drawn i.i.d.

from the distribution

fn(γ) =
4π∆

nm

1

γ1+ 2
m

, γ ∈
[(

2π∆

n + 2π∆d2

)m/2

,
1

dm

]
, m > 0

Then the following values of εn and throughputs are achievable:

εn ≤





a2

α2(1−a)2
( (2−m)2

4(1−m)
− 1) log2 n

log2(log n+ωn)
1
n

m < 1

a2

4(1−a)2
log3 n

log2(log n+ωn)
1

α2n
m = 1

a2(2π∆)1−m(2−m)2

4(1−a)2(m−1)d2(m−1)
log2 n

log2(log n+ωn)
1

α2n2−m 1 < m < 2

a2

2π∆(1−a)2d2
1

α2 log2(log n+ωn)
m = 2

1
w2

n

2π∆P 2

(m−1)d2(m−1)ασ4 m > 2

(2.19)
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T =





(1 − εn)a(2−m)α
2

log(log n+ωn)

log n(log n+ωn)m/2 nm/2 m < 1

(1 − εn)aα
2

log(log n+ωn)

log n(log n+ωn)1/2 n1/2 m = 1

(1 − εn)a(2−m)α
2

log(log n+ωn)

log n(log n+ωn)m/2 nm/2 1 < m < 2

(1 − εn)aα log(log n+ωn)

log2 n(log n+ωn)
n m = 2

(1 − εn)Pα2(2π∆)m/2

σ2wn

log2(log n+ωn)

log2 n(log n+ωn)m/2 n m > 2,

(2.20)

where a < 1 and α < 1 are constants and ωn and wn are functions going to infinity.

This corollary gives almost linear throughput for m ≥ 2. This differs substan-

tially from the O(
√

n) or O(
√

n/ log n) results obtained for the structured determin-

istic model with the same decay law. Our results show that it is not the marginal

distribution of the power that impedes the throughput in a geometric power-decay

network, but rather the spatial distribution of these powers. We notice that in the

geometric model, nodes transmit to their nearest neighbors and therefore messages

take up to
√

n hops to reach their intended destinations. In the random model, nodes

talk across their good links and only log n hops are necessary to send a message

across. This is due to two factors: the first is that far fewer nodes get drowned out

in the interference when one node transmits, thus permitting more nodes to transmit

simultaneously, and the second is that any two nodes in the random graph are only

log n hops away, rather than
√

n hops as in the deterministic model.

It is easy to see that both advantages come about from the absence of the geometric

constraints. If we think of the example of this section in terms of the network of [35],

but with the spatial constraints removed, it is not surprising that the throughput

scaling is much more favorable than O(
√

n/ log n). This improvement arises from the

introduction of randomness in the network model.

2.8.3 A Distribution with Constant Mean and Variance

Consider a general distribution fn(γ) that has a constant mean and variance. For

such a distribution, one can show that choosing k → ∞ is the best choice and leads

to the following corollary.
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Corollary 2.9. Consider a network on n nodes where edge strengths are drawn i.i.d.

from a distribution fn(γ) where the mean µγ and variance σ2
γ of γ are independent of

n. Then the throughput is given by

T =

(
1 − a2σ2

γ

α2(1 − a)2µ2
γ

log2 n

log2(nQn(βn))

1

n

)
aα

µγ

βn log(nQn(βn))

log n

and the optimum βn maximizes βn log(nQn(βn)) while satisfying Qn(βn) ≥ log n+ωn

n
.

Perhaps surprisingly, distributions with constant mean and variance, while al-

lowing us to apply Corollary 2.9, can have widely different throughputs. This is

illustrated by the next few examples.

2.8.4 An Exponential Density

Let fn(γ) = e−γ . For this pdf, the mean and variance are constant, and we can apply

Corollary 2.9. The obtained throughput is summarized below.

Corollary 2.10. Consider a network on n nodes where edge strengths are drawn i.i.d.

from a distribution fn(γ) = e−γ . Then a throughput of

T =

(
1 − a2

α2(1 − a)2

4

n

)
aα log n

4

is achievable as n → ∞ where α < 1, a < 1 are constants.

The throughput grows only logarithmically with n. This network has good con-

nectivity since the number of hops is small, but is also unfortunately dominated by

interference. Thus, few transmissions can occur simultaneously. We show in Section

2.9 that this throughput is tight to first-order in n.

2.8.5 A Heavy-Tail Distribution

Consider a network on n nodes where edge strengths are drawn i.i.d. from fn(γ) =

c
1+γ4 , γ ≥ 0 where c is such that fn(γ) integrates to 1. The mean and variance of
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fn(γ) are constant with respect to n. Therefore we apply Corollary 2.9. The optimal

βn equals n1/3

(log n+ωn)1/3
c1/3

31/3 .

Corollary 2.11. Consider a network on n nodes where edge strengths are drawn i.i.d.

from the distribution fn(γ) = c
1+γ4 , γ ≥ 0. The throughput is

T =

(
1 − a2σ2

γ

α2µ2
γ(1 − a)2

log2 n

log2(log n + ωn)

1

n

)
a(c/3)1/3α

µγ

log(log n + ωn)

log n(log n + ωn)1/3
n1/3

≈ a(c/3)1/3α

µγ

log log n

log4/3 n
n1/3.

2.8.6 Lognormal Fading

Consider a network on n nodes where edge strengths are drawn from a lognormal

distribution. Thus fn(γ) = 1
S
√

2πγ
exp(−(log γ −M)2/2S2), γ ≥ 0 where M and S are

parameters of the distribution. We have µγ = eM+S2/2 and σ2
γ = eS2+2M(eS2 − 1).

Because the mean and variance are constant, we may apply Corollary 2.9 and get the

following result.

Corollary 2.12. Consider a network on n nodes where edge strengths are drawn i.i.d.

from the distribution fn(γ) = 1
S
√

2πγ
exp(−(log γ − M)2/2S2), γ ≥ 0. The throughput

is then

T =

(
1 − a2σ2

γ

α2µ2
γ(1 − a)2

log2 n

log2(log n + ωn)

1

n

)
aα

µγ

eMe
√

2S
√

log n log(log n + ωn)

log n

≈ aαeM+
√

2S

µγ

log log n

log n
e
√

log n.

We see that the throughput grows as e
√

log n, which can also be written as n
1√

log n

or (log n)
√

log n
log log n . Thus the througput is considerably better than log n obtained with

the exponential density (Rayleigh fading).
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2.8.7 Tradeoff between k and ρ0

In most of the examples above we notice that the optimal k goes to infinity; hence

the optimal ρ0 = aβn

σ2

P
+(k−1)µγ

goes to zero. In these cases we approximate log(1 + ρ0)

by ρ0. In addition, if kµγ goes to infinity, we can further approximate ρ0 as aβn

kµγ
.

In this case, we have k
h

log(1 + ρ0) ≈ aβn

hµγ
. This expression depends only on βn and

is independent of k and ρ0. We can therefore increase (decrease) k, thus decreasing

(increasing) ρ0 = aβn

σ2

P
+(k−1)µγ

and (as long as kµγ → ∞) the throughput remains

unaffected. Hence it is sometimes possible to trade off the number of simultaneously

communicating source-destination pairs with the SINRs at which they communicate

without affecting the aggregate throughput.

2.9 Upper Bounds

Our method of finding the throughput relies on finding good edges along which the

desired communication can take place. Other methods may do better. In the cases

where the throughput is of the form n
logd n

the optimal throughput cannot be better

by more than the factor logd n because the maximal throughput cannot scale more

than linearly (unless the channel density is somehow chosen such that the maximal

received power increases as the number of nodes increases – we exclude such densities

here).

However, when the throughput we compute turns out to be of the order of nd

for d < 1, or log n as with the exponential density, it is not clear that we cannot

do better. In this section we present an approach to computing an upper bound on

throughput that shows that we sometimes cannot do better.

The throughput is given by (1−ε) k
h

log(1+ρ0). We ignore the h in the denominator

and find an upper bound for k log(1+ρ0). Thus, we allow ourselves to choose k source-

destination pairs from a given network and find the highest SINR threshold that can

be met for all of them simultaneously. This is equivalent to finding a bound for the

best single hop communication. By doing this, our achievability results are certain to
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be at least a factor of h away from the upper bound. However, we know that h can

be no larger than log n
log(log n+ωn)

, which is often a small factor.

There are
(

n
k

)(
n−k

k

)
k! ways of choosing k source-destination pairs in a network.

Assume that a threshold ρ0 is fixed. Then, for a randomly drawn set of source-

destination pairs, there is a probability, say ps, that a received message satisfies

the SINR threshold and is decoded successfully. The probability that all k received

messages satisfy the threshold is pk
s . Therefore, for a given pair (k, ρ0), the expected

number of sets of k source-destination pairs that satisfy the threshold ρ0 is

Mn(k, ρ0) =

(
n

k

)(
n − k

k

)
k!pk

s .

Note that ps depends on ρ0, k and the pdf fn(γ) from which the connections are

drawn. We say that a (k, ρ0) pair is feasible if there exists at least one set of k source-

destination pairs such that each of the k SINRs exceeds ρ0. We bound the probability

that a particular (k, ρ0) pair is feasible as.

P((k, ρ0) is feasible) = P(# of k-pairs that satisfy the threshold ρ0 is ≥ 1)

≤ E(# k-pairs that satisfy the threshold ρ0)

= Mn(k, ρ0)

where the Markov inequality is used.

If for a particular choice of (k, ρ0) we have Mn(k, ρ0) going to zero then that choice

is infeasible. Otherwise (k, ρ0) may be feasible. We can thereby characterize all (k, ρ0)

pairs that may be feasible. The largest value of k log(1 + ρ0) taken over these pairs

gives us an upper bound on the throughput.

Note that this approach is general and can be used for any pdf, but requires a

calculation of

ps = P

(
Pγ1

σ2 + P
∑k

i=2 γi

≥ ρ0

)

where all the channel coefficients in the SINR expression are drawn i.i.d. according
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to fn(γ). For certain densities, such as the exponential, we may compute ps and get

an upper bound as follows.

If fn(γ) = e−γ , then

ps = P

(
Pγ1

σ2 + P
∑k

i=2 γi

≥ ρ0

)
=

e−
σ2

P
ρ0

(1 + ρ0)k−1
.

With this,

Mn(k, ρ0) =

(
n

k

)(
n − k

k

)
k!

e−
σ2

P
kρ0

(1 + ρ0)k(k−1)
.

We now want to characterize (k, ρ0) pairs for which Mn(k, ρ0) does not go to zero.

We have

Mn(k, ρ0) =
n!

(n − 2k)!k!
pk

s ≤ n!

(n − 2k)!
pk

s ≤ n2k e−
σ2

P
kρ0

(1 + ρ0)k(k−1)

≤
(

n2 1

(1 + ρ0)k

)k

= ek(2 log n−k log(1+ρ0)).

If k goes to infinity (with n) and 2 log n−k log(1+ρ0) is negative then Mn(k, ρ0) goes

to zero. Therefore, for k going to infinity, we have k log(1 + ρ0) ≤ 2 log n as a bound

on the throughput. If k is constant, it is easy to see that 1 + ρ0 cannot grow faster

than n2, hence the throughput is again limited by k log n2 = 2k log n where k is now

a constant. Thus we have shown an upper bound of c log n on the throughput. This

coincides (to within a multiplicative constant) with the throughput obtained in our

achievability result (Section 2.8.4). In our scheme it turns out that using two hops is

optimal for any n. Hence, although the upper bound derived here is on k log(1 + ρ0),

it matches the achievability result for k
h

log(1 + ρ0) very closely.

2.10 Simulations

Theorem 2.1 gives a very specific achievability result but equation (2.4) involves a

constant α that is not explicit. This constant has its origins in Theorem 2.4 where

the number of vertex-disjoint paths is computed. When we are confronted with a
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specific network with a finite number of nodes n, we would like an explicit estimate

of the number of non-colliding paths. In this section we provide such an estimate; we

also briefly introduce the notion of “bad” edges, discuss decentralized algorithms for

attaining our achievability results, and provide computer simulations of some of the

networks analyzed in Section 2.8.

2.10.1 Non-colliding paths

In Section 2.5 we use a result of [43] to establish the existence of non-colliding paths.

In this section, we present a constructive method of obtaining these paths and analyze

the expected number of non-colliding paths thereby obtained. The algorithm we

present is used extensively in Section 2.10.2.

We begin by choosing nodes 1, . . . , n/2 as source nodes and nodes n/2 + 1, . . . , n

as their respective destination nodes. For the first source-destination pair, a shortest

path connecting them (using only links that exceed β) is found. This is done using a

standard breadth-first search algorithm [44] in which a rooted tree is constructed. All

of the nodes begin by being “undiscovered.” The source node acts as the root of the

tree (at depth zero) and is labeled as “discovered.” We then find all the nodes that are

its neighbors and call them discovered. These are at distance one from the source and

hence at depth one in the breadth-first search tree. The nodes at depth one are then

processed successively. All of the neighbors of each node that are still undiscovered

are put in the tree at depth two and their labels are changed to discovered. The

process continues till there are no undiscovered nodes. Clearly, each node appears at

most once in the tree. A shortest path from the source (root) to the destination is

obtained by simply finding that node in the tree and moving up the tree to the source

node. If the destination does not appear in the tree it has no path to the source.

Once the shortest path for the ith source-destination pair is established it is

recorded and all n nodes are relabeled as “undiscovered”; the entire process is re-

peated to find the shortest path for the (i+1)st source-destination pair. This is done

till paths are found for all n/2 pairs.
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We then eliminate colliding paths on this list, starting with the first source-

destination pair. If a node used on the path between s1 and d1 collides with a node

on some other path, we eliminate path 1, otherwise we keep it. We proceed in order

and eliminate the ith path if it collides with any of paths i + 1, i + 2, . . . , n/2 and

keep it otherwise. Note that since we start with shortest paths, a relay never appears

more than once on a particular path.

Let us bound the probability that paths i and j collide for i 6= j. Without loss of

generality we can set i = 1 and j = 2. We now have

P(path 1 collides with path 2)

= P

(
(s1 = r2,1) ∪

h−1⋃

j=1

(r1,j = r2,j−1 ∪ r1,j = r2,j ∪ r1,j = r2,j+1) ∪ (d1 = r2,h−1)

)

≤ P(s1 = r2,1) +

h−1∑

j=1

P(r1,j = r2,j−1) +

h−1∑

j=1

P(r1,j = r2,j) +

h−1∑

j=1

P(r1,j = r2,j+1) + P(d1 = r2,h−1)

=
3h − 1

n − 2
(2.21)

The inequality is a standard union bound and the last equality is because the h − 1

relay nodes on the ith path are drawn uniformly at random from the set of all nodes

of the graph (excluding si and di). (We assume that the algorithm that chooses the

shortest path for (si, di) does not use any knowledge of the previously chosen i − 1

paths.)

Denote by Di the event of keeping the ith path. This event comprises the inter-

section of the events that the ith path does not collide with the (i + 1)st through

(n/2)th paths. These n/2 − i events are identical although they are not necessarily

independent. However, for the purposes of an approximation we may assume they
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are independent and compute P(Di) as follows.

P(Di) ≈
n/2∏

j=i+1

P(paths i and j do not collide)

= (P(paths i and i + 1 do not collide))n/2−i

= (1 − P(paths i and i + 1 collide))n/2−i

= (1 − P(paths 1 and 2 collide))n/2−i

≥
(

1 − 3h − 1

n − 2

)n/2−i

.

The inequality is a consequence of (2.21). We expect the inequality to be an approx-

imate equality when h is small. The expected number of successful paths is then

Expected # non-colliding =

n/2∑

i=1

P(Di)

≈
n/2∑

i=1

(
1 − 3h − 1

n − 2

)n/2−i

=
n − 2

3h − 1

(
1 −

(
1 − 3h − 1

n − 2

)n/2
)

(2.22)

≈ n − 2

3h − 1
(2.23)

because (1 − x/n)n/2 ≈ e−x/2 decreases rapidly with x. This calculation, although

based on an incorrect independence assumption is often useful to get an estimate of

the number of non-colliding paths that we can expect to find.

We observe that in [43] vertex-disjoint paths are found successively and the nodes

that are used in paths for source-destination pairs 1, . . . , i are eliminated entirely from

the graph before finding the path for the (i+1)st pair. The paper adroitly proves that

at each stage the remaining graph has edges that are “approximately” i.i.d. (from

the appropriate distribution). The approximation we use above deals with the loss of

the i.i.d. property by simply ignoring it. Figure 2.4 shows that the approximations

(2.22) and (2.23) can be very accurate. The figure shows the number of computer-

found non-colliding paths obtained in the shadow-fading model in Section 2.8.1 with
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Figure 2.4: Number of computer-found non-colliding paths versus n for a shadow-
fading model with connection probability 2(log n)/n (solid curve) versus n. Also
shown are the approximation (2.22) (dashed curve closest to solid curve) and the
approximation (2.23) (next-closest dashed curve) using values of h obtained in
the computer simulation. The dash-dotted curve is (2.22) computed using h =
log(n)/ log(np).

link probability p = 2(log n)/n. (We provide more details about this simulation in

Section 2.10.2.) The most accurate approximation is obtained when the number of

hops h in (2.22) and (2.23) is also taken from the simulation. However, we may always

approximate the number of hops before the simulation as h = log(n)/ log(np). This

final approximation is presented as the dash-dotted curve.

2.10.2 Simulations

We revisit some of the examples analyzed in Section 2.8 to see how well our analytical

predictions match computer-generated simulations. We begin with the shadow-fading

network analyzed in Section 2.8.1.

Figure 2.5 shows the aggregate throughput and minimum SINR of a shadow-fading

network as a function of the number of nodes n in a computer-generated simulation

where the channel connections are chosen as in Section 2.8.1. The analytical results
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suggest that for best throughput we should choose p = (log n + ωn)/n for ωn going

to infinity arbitrarily slowly. We therefore choose p = 2(log n)/n. The computer

simulation begins by establishing a network of n connections whose channels are

drawn i.i.d. according to (2.15). Non-colliding paths (using the method described in

Section 2.10.1) are established and the minimal SINR obtained along the ith path,

denoted ρ0,i, is found. We are assured that an SINR of ρ0,i can be supported by

the path and we use this rather than the threshold of ρ0 that has been used in

the analysis. Although the threshold of ρ0 is significant in obtaining the analytical

throughput guarantee, we believe that the notion of the minimum SINR along a path

is more useful in a practical system. The quantity log(1 + ρ0,i) is then computed,

weighted by the number of hops on path i, summed over i, and then normalized

by the total number of hops contained in all paths. This gives a measure of the

throughput per path, where paths that are longer (have more hops) count more

heavily in the average. This throughput-per-path is then multiplied by the number

of non-colliding paths and divided by the average number of hops to provide the

aggregate throughput. Typically, we expect and observe only a small variation in

the path lengths. Therefore, whether we divide by the average or largest path length

does not make much difference.

The throughput shown in Figure 2.5 is an increasing function of n whose y-axis is

labeled on the left. The minimal SINRs obtained along the ith path ρ0,i are averaged

over i and displayed as a decreasing curve whose y-axis is labeled on the right. As

predicted in Section 2.8.1, the aggregate throughput grows nearly linearly. We see

that the average SINR per path, decreases slowly with n, especially when n is large;

Section 2.8.1 shows that the SINR should go to zero as 1/ log log n.

The following applies to all simulations described in this section: (i) Computer

simulations were repeated and averaged approximately 100–200 times, depending

on the size of the network and variability of the results; (ii) The nodes have unit

transmit power P = 1 and noise variance σ2 = 0.1. Hence, on a unit channel and

in the absence of interference, the SNR is 10 dB; (iii) We do not prescribe an SINR

threshold. Rather, we accept any non-colliding path and use its resulting SINR
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in our averages. We believe this to be reasonable in practice (the threshold ρ0 is

only the guaranteed minimum); (iv) The figures often show two plots; the aggregate

throughput generally given by an increasing function of n and whose scale is on the

left y-axis, and the average minimum SINR generally given by a decreasing function

of n and whose scale is on the right y-axis; (v) Although the analysis uses logarithms

with base e, the throughputs in the figures are given in bits/channel-use.
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Figure 2.5: Aggregate throughput and minimum SINR versus number of nodes n
in a shadow-fading network with connection probability p = 2(log n)/n. The left
y-axis contains the scale for this increasing function of n. We see that the aggregate
throughput increases nearly linearly. The average SINR obtained along the paths (see
scale on the right y-axis) drops with n, and according to the results in Section 2.8.1
should go to zero as 1/ log log n.

Figure 2.6 shows the aggregate throughput and minimum SINR of the same

shadow-fading network, this time as a function of p for a fixed n = 1000 nodes.

We see from the figure that the maximum throughput is attained when p ≈ 0.008.

Section 2.8.1 predicts that the maximum throughput is achieved when p = (log n +

ωn)/n = 0.0069 + ωn/n. Ignoring the ωn term, we see a good match between the

theory and the simulation.

Figure 2.7 shows the aggregate throughput and minimal SINR of a network with

exponential fading analyzed in Section 2.8.4 as a function of n. For large enough n
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Figure 2.6: Aggregate throughput and minimum SINR versus connection probability
p in a shadow-fading network of 1000 nodes. We see that the throughput is maximized
at p ≈ 0.008, which is not far from (log 1000)/1000 ≈ 0.0069, the large-n maximizing
p predicted in Section 2.8.1.

the optimum threshold is β = (log n)/2 and k should be chosen as large as possible.

For purposes of illustration, we therefore choose k as large as possible, even for the

relatively small values of n that we consider. (In this particular example smaller values

of k can yield higher total throughput when n is small.) The result is a throughput

that grows approximately logarithmically with n, as predicted theoretically. The

figure also shows that choosing a β that is constant has a detrimental effect on the

throughput. Similarly, choosing a β that grows faster than logarithmically would also

be detrimental.

Figure 2.8 shows the aggregate throughput and minimum SINR of the decay-

density network (as a function of n) described in Section 2.8.2. The parameters used

in the simulation are d = 1, ∆ = 1, and m = 3. This is equivalent to placing

nodes with unit spacing in a two-dimensional lattice and assuming a power-decay

that decreases as 1/r3. The figure shows that the throughput grows approximately

linearly, as predicted by equation (2.20).

These simulations show that Theorem 2.1, although designed for large n, is also
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Figure 2.7: Aggregate throughput and minimum SINR versus number of nodes n in a
network with exponential fading. We see that the throughput grows logarithmically
using the optimum β computed in Section 2.8.4. The average SINR obtained along
the paths decays approximately as (log n)/n. Shown in dashed lines is the detrimental
effect of choosing a constant β = (log 100)/2.

an accurate predictor for finite n.

2.11 Conclusions

Our model for shared-medium wireless networks uses channels chosen according to

a common distribution. We have devised a method of operating this network using

relays and provided an achievable aggregate throughput as a function of the distri-

bution. Distributions that have a certain sparsity of “good” connections seem to

fare best and provide near-linear throughputs. We show that there exists an optimal

amount of shadow-fading—any more or any less degrades the throughput. We hope

that these results provide guidelines to the design of networks including, paradoxi-

cally, possible obstacle placement if the network is “over-connected.”

We have given a brief description of an upper bound on the achievable throughput.

In general, we do not know how sensitive our throughput results are to relaxing the

i.i.d. assumption on the channel coefficients. The sensitivity to distance is low when
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Figure 2.8: Aggregate throughput and minimum SINR versus number of nodes n in
the decay-density network analyzed in Section 2.8.2. Equation (2.20) (for m > 2)
predicts that the throughput should grow approximately linearly.

the channel coefficients are independent but have a distribution that depends on

distance, as discussed in Section 2.8.

More practical issues remain to be addressed. For instance, the scheduling al-

gorithm used in the simulations requires centralized knowledge of the channel con-

nections. In a practical network we would expect sources and destinations to have

knowledge of their own connections and determine suitable relaying paths. Ideally,

we would then like the network to generate a non-colliding schedule in a decentral-

ized manner. Another issue of interest is that of modeling a network that has both

randomness and geometric distance-decay laws. One such model is proposed in [52]

and presented in the next chapter.
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Chapter 3

Two-Scale Models for Ad Hoc
Networks

In the previous chapter, we proposed a network model in which connection strengths

were independent of distance and were drawn independently and identically from

some distribution. This model is very different from the purely geometric models like

those of Kumar and Gupta, in which connection strengths depend entirely on the

locations of nodes. In practice, we expect networks to have some local randomness

properties in addition to the distance-decay effect that kicks in over longer distances.

In this chapter we try to characterize such networks.

We propose a new model of wireless networks here, called “two-scale networks.”

At a local scale, characterized by nodes at most distance r apart, channel strengths are

drawn independently and identically from a distance-independent distribution. At a

global scale, characterized by nodes more than distance r apart, channel connections

are governed by a Rayleigh distribution, with the power satisfying a distance-based

decay law. Thus, random effects like obstacles and scatterers dominate local channel

strengths while global scale channel strengths depend on distance.

For such networks, we propose a hybrid communication scheme, combining ele-

ments of [35] (for distance-dependent networks) and the previous chapter (for random

networks [54]). For a particular class of two-scale networks with N nodes, we show

that an aggregate throughput of the form N
1

t−1 / log2 N is achievable, where t > 2 is

a parameter that depends on the distribution of the connection at the local scale and
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is independent of the decay law that operates at a global scale. For t < 3, this offers

a significant improvement over the O(
√

N) results of [35].

3.1 Introduction

As described in the introduction to the previous chapter, sensor and ad hoc networks

have seen much research activity in recent times. The first major result of the field

was by Kumar and Gupta [35] where a network of n nodes was studied. Strengths of

the connections between two nodes were determined entirely by the distance between

them and followed a deterministic power scaling law. With this model, it was shown

that a throughput that scaled like
√

n was the best possible. This implied that the

throughput per user fell like 1√
n

which was quite discouraging. Except when nodes

were allowed to approach each other [30], similar scaling laws were shown to hold

[34, 29, 33, 39, 36].

From the research on multiple antenna systems, we know that rich scattering en-

vironments, leading to independent channel coefficients between transmit and receive

antennas help achieve capacity linear in the number of antennas [28, 37]. Taking a cue

from this, a network model with random connections was proposed in [51, 54]. (This

is presented in the previous chapter.) In this, the channel strengths are independent

of distance and geometry and are instead drawn identically and independently (i.i.d.)

from a probability distribution function (pdf). This model is suitable for networks

over a small area, where multipath and physical obstructions dominate and the decay

laws associated with far-field effects do not kick in.

While the throughput that was possible with this model depended very strongly

on the distribution that the channel strengths were drawn from, several distributions,

including the Bernoulli and some heavy-tailed distributions led to throughputs that

were almost linear in n. Thus the introduction of randomness changed the behavior

of the system significantly.

In practice, we expect neither the deterministic model of [35] nor the random

model of the previous chapter, [54], to hold. A combination of distance-dependent
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connections and random connections would perhaps make for a better model. In

this chapter, we propose and analyze such a model. We assume that N nodes are

randomly and uniformly distributed on a sphere of radius R. Nodes that are within a

distance r from each other are connected by channels that are distance-independent.

These channel strengths are assumed to be drawn i.i.d. from a distribution, f(·).
For nodes that are further apart than r, the channel connections obey a Rayleigh

distribution with a mean power that depends on the distance between them and

follows a distance-decay law, say g(·).
Such a model incorporates the far-field effects at a global level through the decay

law, but also recognizes that obstructions play a role at a local scale. Furthermore,

appropriate choices of r and R can help model a full scale of networks, from the purely

geometric ones of [35] to the purely random ones of the previous chapter. A precise

description of the model and the problem statement is in Section 3.2. Sections 3.3

and 3.4 study the scheduling and error-free communication properties of this model

and the main result is stated in Section 3.5. Examples and conclusions are presented

at the end. Not surprisingly, a combination of the techniques found in [35] and [54]

are employed throughout this chapter.

3.2 Network Model

Consider a network with N nodes that are uniformly and randomly distributed on the

surface of a sphere of radius R. We use a sphere rather than a planar disk to separate

edge effects and have symmetry between all nodes. Also, the standard convention of

measuring distances along great circles will be followed.

The channel between nodes i and j is denoted by hi,j = hj,i. Define the chan-

nel strength to be γi,j = |hi,j|2. The average channel strength is assumed to be

distance-dependent for nodes that are more than a certain distance, say r, apart and

independent of distance for nodes that are within a distance r.

More precisely, for nodes that are within a distance r, the channel strengths are

drawn i.i.d., according to a p.d.f., say f(γ). Let the expected value corresponding to
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this be denoted by µγ.

If nodes i and j are at a distance l(i, j) > r from each other, we model hi,j to be

a Rayleigh distributed random variable with its power (or second moment), E|hi,j|2,
given by cg(l(i, j)) where g(x) is used to model the distance-dependence and c is a

constant. This gives us that the corresponding γi,j is drawn from an exponential

distribution with cg(x) as its mean, i.e., cg(x) exp(−γ/cg(x)). Typically, g(x) is a

decreasing function such as 1
xm with m > 2 or e−δx

xm and c is chosen such that cg(r)

equals µγ. This is done to ensure that the expected value of γi,j does not change

abruptly as the distance between i and j changes from being less than r to being

greater than r. Therefore, c = µγ

g(r)
.

Denote by px(γ) the distribution from which the channel strength between two

nodes with distance x between them is drawn. Then we have

px(γ) =





f(γ) if x ≤ r

µγg(x)
g(r)

exp(−γ g(r)
µγg(x)

) if x > r

.

3.2.1 Successful Communication

The concept of successful communication is identical to that stated in the previous

chapter. We repeat it here for completeness. Assume that node i wishes to transmit

signal xi. We assume that xi is a complex Gaussian random process with zero mean

and unit variance. Each node is permitted a maximum power of P watts.

We incorporate interference and additive noise in our model as follows. Assume

that l nodes i1, i2, . . . , il are simultaneously transmitting signals xi1 , xi2 , . . . , xil re-

spectively. Suppose that node j is the intended receiver of the signal xi1 . Then, the

signal received by node j(6= i1, . . . , il) is given by

yj =

l∑

t=1

√
Phit,jxit + wj (3.1)

where wj represents additive noise. The additive noise variables w1, . . . , wN are i.i.d.,

drawn from a complex Gaussian distribution of zero mean and variance σ2 (wi ∼
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CN (0, σ2)). The noise is statistically independent of xi.

In equation (3.1), assume that only node i1 wishes to communicate with node j

and the signals xi2 , . . . , xil are interference. Then the signal-to-interference-plus-noise

ratio (SINR) for node j is given by

ρj =
Pγi1,j

σ2 + P
∑l

t=2 γit,j

.

Note that some of the interference terms will come from the exponential distribution

and the others will be drawn from f(γ), depending upon the distance of the interferer

from j. We assume that transmission is successful when the SINR exceeds some ρ0.

If the SINR is less than ρ0, we will say that an error has been made.

3.2.2 Network Operation and Throughput

We suppose that K nodes s1, . . . sK are randomly chosen as sources. For every si,

a destination node, say di, is chosen at random, thus making K source-destination

pairs. We assume that these 2K nodes are all distinct and therefore K ≤ N/2. Source

si wishes to transmit message Wi to destination di and has encoded it as signal xi.

Communications are assumed to occur using a series of hops. Every source-

destination pair (si, di) uses a sequence of relay nodes, each of which are expected to

decode the message xi and retransmit it in the next time slot, using power P . We

expect several messages to be making hops simultaneously and therefore the relay

nodes have to decode in the presence of interference. With this in mind, we impose

the constraint that no relay node be asked to decode two messages simultaneously.

We also assume that no relay node can receive and transmit in the same time slot.

These properties will define a non-colliding schedule of relaying.

Assume that all K messages reach the intended destinations in (at most) H time

slots. Assume that a fraction ε of messages fail to reach the intended destination due

to decoding or scheduling errors. Each message contains at least log(1 + ρ0) bits of
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information since ρ0 is the SINR threshold. Therefore, we define the throughput as

T = (1 − ε)
K

H
log(1 + ρ0) (3.2)

Note that all the quantities above may depend on N . Typically, we force ε to go to

zero. In the rest of this chapter, we present a scheme of scheduling and communicating

and analyze the throughput as well as performance of this scheme. Our concern will

primarily be with arbitrarily large values of N . Thus, we will obtain an asymptotic

achievability result for the throughput T .

3.3 Relaying Scheme

In this section we determine the scheduling of the relay nodes for the multihop pro-

tocol. We do this through various constructions, including Voronoi tessellations, a

superschedule and many subschedules. We will borrow techniques from [35] and

the previous chapter ([54]), and put them together in a suitable manner to perform

scheduling for the proposed hybrid model.

3.3.1 Tessellations and Cell-aggregates

Recall the concept of a Voronoi tessellation, used extensively in [35]. Lemma 4.1 of

[35] establishes the existence of a Voronoi tessellation of the surface of the unit sphere

where each Voronoi cell contains a disk of radius δ and is contained in a disk of radius

2δ for any δ > 0. We will use this result for the surface of the sphere of radius R.

(This can be done by using the original result for δ/R rather than δ and then scaling

the obtained tessellation by a factor of R.) Denote by T (x) a tessellation of the

surface of the sphere of radius R where each Voronoi cell contains a disk of radius x

and is contained in a disc of radius 2x. In particular, consider a tessellation T (r/12)

where r is the radius within which channel strengths are distance-independent and

are drawn i.i.d. from f(γ). Cells of this tessellation will be labeled Si. It is easy

to show that in such a tessellation, for any cell, Si, it and all its neighboring cells
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are contained in a disk of diameter r. (A similar, though slightly different, result is

shown in Lemma 4.2 of [35].) Thus, every connection within this set of cells is drawn

i.i.d. according to f(γ). Recall that the area of a circle of radius x on the surface of

a sphere of radius R is given by A(x) = 4πR2 sin2 x
2R

. Using this fact, it is possible

to show that the number of cells that are neighbors of a given cell is bounded by a

constant, say c1.

3.3.2 Determining a Superschedule

Assume that such a tessellation of the surface of the sphere is done once and fixed.

We refer to this as T0(r/12). Every node belongs to some Si. (Nodes lying on cell

boundaries are assigned arbitrarily.) Consider the source-destination pair (si, di).

Denote by Li the line segment connecting them. This segment passes through several

cells in order as it traverses from si to di. Note that the maximum number of cells it

can pass through is M = c2
R
r

for some constant c2. Denote these cells, in sequence,

by si ∈ Si,0, Si,1, Si,2, . . . , Si,M 3 di. (Some sequences may, in actuality, be shorter

than M .) We will refer to the set of cells S1,t, S2,t, . . . , SK,t as the tth layer of cells.

The schedule described above tells us the cells that each message must pass

through in a particular layer. We now decide which node in each cell is responsi-

ble for each message in each layer of transmission.

There are at least 4πR2

A(r/6)
= 1/ sin2 r

12R
cells in T0(r/12). The K sources are assumed

to be uniformly distributed on the surface of the sphere. Therefore, each cell has at

most K sin2 r
12R

= k1 sources. (This can be made more rigorous.) Thus, that cell

occurs in the zeroth layer around k1 times. In general, a cell occurs in the tth layer

around k1 times.

We require that the K nodes that act as relay nodes in one layer be distinct from

each other as well as the K nodes occurring in the previous layer. This is equivalent

to requiring the k1 relay nodes in each cell of the tth layer to be distinct from each

other as well as the k1 nodes from the same cell occurring in the previous layer. In

the zeroth layer of transmission, this condition is trivially met since the K distinct
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original source nodes (around k1 of them occurring in each cell) start out having the

messages that need to be relayed and there is no previous layer. We wish to have

such distinct nodes for the ith layer assuming that such nodes for each layer up to

the (i − 1)th have already been determined. Let us determine the conditions under

which this is possible.

Consider a specific cell in T0(r/12). This is expected to have k1 distinct nodes

that are the chosen relays in the (i− 1)-th layer. This cell also occurs k1 times in the

i-th layer and we wish to assign a further k1 distinct relay nodes for each occurrence.

The total number of nodes in this cell is at least N/(maximal number of cells) =

N/(4πR2/A(r/12)) = N sin2 r
24R

= n1. Therefore our condition of distinct nodes can

be met if 2k1 ≤ n1. After simplification, this gives

K ≤ N/(8 cos2 r

24R
).

Once this condition is satisfied, we can assign a distinct relay node for each of

the K messages in each layer. The relay node in layer t that is responsible for

message i will be called si,t. (Clearly, si,t ∈ Si,t.) We refer to the K sequences

si = si,0, si,1, . . . , si,M = di for i = 1, . . . , K as the superschedule.

3.3.3 Non-colliding Subschedules

It now remains to decide how to route the message i from its relay node in layer

t, namely si,t, to its relay node in layer (t + 1), namely si,t+1. We refer to this

as subscheduling. We consider time slots in blocks of size h, where h denotes the

(maximal) number of hops required for a message to be transmitted from si,j to si,j+1.

In a specific block of time slots, say from vh+1 to (v +1)h, some constant fraction c3

of all cells are chosen at random and called active cells. We choose c3 < 1/c1 where

c1 is an upper bound on the number of neighbors of a cell. Denote the set of chosen

cells by Tv. Consider the cells that are not in Tv. Let j be such a cell. If one of the

neighbors of j is in Tv, assign j to it. If more than one of the neighbors of j are in Tv,

this assignment can be done randomly. Thus, for each of the |Tv| originally chosen
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cells, we now have |Tv| cell-aggregates that are active. (Some of these may consist

of just one cell, namely, the originally chosen cell.) Figure 3.1 demonstrates this. In

the v-th block of time slots, communication occurs only within the Tv cell aggregates

and not across one aggregate to another. Since any cell and its neighbors can be put

inside a circle of diameter r, connections with an aggregate are drawn i.i.d. from

f(γ). We make use of this fact in determining h and a non-colliding subschedule in

Lemma 3.1.
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Figure 3.1: Cells 1, 2, 3, 4 (circled) are originally chosen to be in Tv. The remaining
cells are then assigned as indicated in parentheses. For example, 13 gets assigned
to 1 and 6 to 3. Cell 10 remains unassigned. The aggregate corresponding to cell 3
consists of cells 3, 6, 7, and 9.

A particular choice of Tv leads to some pairs of adjacent cells not being in the

same cell-aggregate. For a pair that gets split into two cell-aggregates, the relays in

one cell that have the next relay in the other cell are unable to communicate with

each other in the v-th block of time slots. However, there is a probability that in

another set, say Tw, this pair does not get split up. Let B be the number of sets we

have to choose in order for every pair of adjacent cells to have been chosen in the

same aggregate at least once.

Let i and j be adjacent cells. They can be in the same cell-aggregate in a randomly

obtained Tv if (i ∈ Tv, j /∈ Tv and j gets assigned to i) or vice versa. By symmetry,
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both cases are equally likely. Therefore,

P(i, j are in the same cell-aggregate)

= 2 P(i ∈ Tv, j /∈ Tv, j gets assigned to i)

= 2 P(i ∈ Tv)P(j /∈ Tv|i ∈ Tv)P(j is assigned to i|i ∈ Tv, j /∈ Tv)

≥ 2 c3(1 − c3)
1

c1
.

The last expression follows since a fraction c3 of cells is chosen at random to be in Tv.

Therefore i is in Tv with probability c3 and j is not in Tv with probability (1 − c3)

independently of i. Finally, j has at most c1 neighbors, including i. If some x of them

are chosen in Tv (and i is one of them), the probability of j being assigned to i is

1/x ≥ 1/c1.

Let c4 = 2c3(1 − c3)
1
c1

. Any choice of c3 < c1/2 ensures that c4 < 1. Therefore,

the probability that i and j are not in the same cell-aggregate in B choices for sets

of cell-aggregates is bounded above by (1 − c4)
B = eB log(1−c4). If we choose B to be

log N , this behaves as N log(1−c4) which goes to zero as N goes to infinity. (It is clear

that B can be chosen to be any function that goes to infinity for large N .)

Consider a block in which a particular cell-aggregate is active. Assume that it

consists of c5 ≤ 1 + c1 cells. Each cell has around k1 relays that wish to transmit

and k1 relays that wish to receive in a particular layer. Thus, we expect there to be

no more than c5k1 transmissions that need to take place while that cell-aggregate is

active. We denote the actual number of transmissions by k. In addition, the cell-

aggregate lies entirely in a circle of diameter r; therefore all the connection strengths

within it are drawn i.i.d. from the distribution f(γ). Let n = c5n1 be the total

number of nodes in the aggregate.

In this subnetwork of n nodes with i.i.d. connections we seek a schedule of k

non-colliding paths from the set of transmitting relays to the set of receiving relays.

This is exactly the problem that is addressed in the previous chapter, or [54].
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3.3.4 Good Edges and Vertex-Disjoint Paths

We reproduce the solution presented in the previous chapter. The channels that are

stronger than a chosen parameter β are called good. All communications take place

over good channels. Since channels are drawn i.i.d. from f(γ), for every channel, there

is a probability p = P (γ ≥ β) of its being good. We now construct a graph on n

vertices where each vertex represents a node of the network. An edge is drawn between

two vertices if the channel between the corresponding nodes is good. Thus, we obtain

a graph on n vertices where edges are drawn i.i.d. from a Bernoulli distribution of

parameter p.

Such a graph fits a standard random graph model called G(n, p). This model is

well-studied and we appeal to an existing result in the literature to help us with our

scheduling. We seek k non-colliding paths that go from the set of tth layer relay nodes

to the respective (t + 1)th layer relay nodes. In [43], an identical problem is studied,

but the condition on the paths is stricter still – no two paths can share a vertex. In

other words, the paths must be vertex-disjoint. We state here the result of [43] as it

applies to our problem.

Lemma 3.1. Suppose that G = G(n, p) and p ≥ log n+ωn

n
, where ωn → ∞. Then

there exists a constant α > 0 such that, with probability approaching one, there are

vertex-disjoint paths connecting xi to yi for any set of disjoint, randomly chosen node

pairs

F = {(xi, yi)|xi, yi ∈ {1, . . . , n}, i = 1, . . . , k}

provided k = |F | is not greater than αn log np
log n

.

The xis of the result above are the transmitting relays (from the tth layer) and

the yis are the corresponding receiving relays (from the (t+1)th layer). From Section

3.3.2, we know that these are all distinct nodes. We have k = c5k1 = c5K sin2 r
12R

and n = c5N sin2 r
24R

. Therefore the above theorem establishes the existence of the
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required non-colliding paths if c5K sin2 r
12R

≤ αc5

(
N sin2 r

24R

) log c5N sin2 r
24R

p

log c5N sin2 r
24R

or

K ≤ αN
log c5N sin2 r

24R
p

log c5N sin2 r
24R

1

cos2 r
24R

.

Recall that for every block of h time slots, we have certain active cell-aggregates.

Each time a cell-aggregate is active, we can appeal to the above theorem to get a

satisfactory schedule. Additionally, it is possible to show that the lengths of the

vertex-disjoint paths grow no faster than log n
α log np

. Therefore, the time slots required,

h, are bounded above by h ≤ log n
α log np

=
log c4N sin2 r

24R

α log c4N sin2 r
24R

p
.

Putting the results of this section together, we have the following result.

Theorem 3.2. All K communications can be scheduled in H = hMB = log n
α log np

· c2
R
r
·

log N time slots using non-colliding paths of length hM = log n
α log np

· c2
R
r

provided the

following conditions hold.

1. K ≤ N/(8 cos2 r
24R

).

2. K ≤ αN log np/(log n · cos2 r
24R

).

Here, log n+ωn

n
≤ p ≤ 1 is a probability, n = c5N sin2 r

24R
, α and c5 are constants, and

ωn can be any function that goes to infinity.

Thus, the hybrid model allows us to schedule non-colliding paths using a com-

bination of ideas from the deterministic model of [35] and the random model of the

previous chapter. The next question to investigate is that of an appropriate SINR

threshold, ρ0 that determines the rate of the transmissions.

3.4 Probability of Error

All transmissions take place in the presence of noise and interference. The SINR

threshold ρ0 has to be carefully set so that it is not too low, but is low enough to

ensure that most communications are successful. Let us investigate the SINR at any

particular hop. Let us assume that node a is transmitting to node b. The power of
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the transmission is P . All communications take place on channels that are good; that

is, where γ ≥ β. Therefore, the signal power is at least Pβ. The additive noise power

is σ2. There is interference from all other transmissions that occur in the same time

slot. Some of these transmitting nodes lie within a distance r of the receiving node b

and others lie farther.

Consider the interferers lying within a distance r. There are around k2 = K A(r/2)
4πR2 =

K sin2 r
4R

of them, say u1, . . . , uk2 and the interference from them is given by

Iinside = P

k2∑

i=1

γui,b.

The expected value of this is easily calculated and EIinside = Pk2µγ = PK sin2 r
2R

µγ.

The other interferers lie farther than a distance r from the b. Let us assume that

there are K such interferers. (This in an overestimate since we have K paths in

total and do not expect them all to be active at the same time.) Therefore, the total

interference from them is given by

Ioutside = P

K∑

i=1

γui,b

where the γui,b are exponential random variables with mean µγg(l(ui,b))
g(r)

and l(ui, b) is

the distance between ui and b.

We now calculate the expected value of Ioutside. Let us represent the density of

these interferers by κ = K/4πR2. Consider an infinitesimally thin annulus of radius

t > r and width dt centered at b. Since we are on the sphere, the area of this annulus

is less than 2πtdt and the number of interferers in this annulus is κ2πtdt. In the

expression for Ioutside above, there are around these many terms with mean µγg(t)
g(r)

.

Therefore we have

EIoutside ≤
∫ ∞

r

Pκ2πt
µγg(t)

g(r)
dt = PK

r2µγ

2R2

in the case where g(t) = 1/tm, m > 2.
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We have this bound on the SINR for node b.

ρb ≥
Pβ

σ2 + Iinside + Ioutside

.

The probability that the SINR falls below some threshold ρ0 is bounded as follows.

P(ρb ≤ ρ0) ≤ P

(
Pβ

σ2 + Iinside + Ioutside

≤ ρ0

)

= P

(
Iinside + Ioutside ≥

Pβ

ρ0
− σ2

)

≤ E(Iinside + Ioutside)
Pβ
ρ0

− σ2

≤ K sin2 r
4R

µγ + K r2µγ

2R2

β
ρ0

− σ2

P

(3.3)

where the Markov inequality and the expected values of the interferences have been

used in the last line.

We will set the SINR threshold to

ρ0 =
Pβ

σ2 + a(Pkµγ + PK r2µγ

2R2 )
(3.4)

where a ≥ 1 can be suitably chosen to make transmissions error-free. This value of

ρ0 is chosen keeping in mind that the interference terms are expected to behave like

their expected values for large networks. We use a to keep the threshold conservative.

Finally, we know that every message makes hM = log n
α log np

c2
R
r

hops as described

in Section 3.3. At each hop, the probability that the SINR falls below the threshold

ρ0 is as calculated above. With a simple union bound, similar to equation 2.7 of the

previous chapter, it is possible to show that a message fails to reach its destination

with probability ε where

ε ≤ # hops · P (ρb ≤ ρ0) ≤
log n

α log np
c2

R

r

1

a
(3.5)

The value of ρ0 as given in (3.4) and the expression of (3.3) have been used.
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3.5 Deriving the Main Result

We now have all the pieces we need to obtain the final result. Section 3.3 tells us the

conditions for the existence of a non-colliding schedule and Section 3.4 tells us the

conditions for communications to be successful with this schedule. We thus have the

following result.

Theorem 3.3. Consider a network of N nodes, uniformly and randomly distributed

over the surface of a sphere of radius R. For two nodes within a distance r, channel

strengths are drawn i.i.d. from a pdf f(γ) with mean µγ. Otherwise they are drawn

from an exponential distribution with a mean of µγr
m/xm, where x > r is the distance

between them. Let F (γ) denote the cumulative distribution function of f(γ) and

Q(γ) = 1 − F (γ). Let n = c5N sin2 r
24R

where c5 is a known constant. Choose any β

such that p = Q(β) = log n+ωn

n
, where ωn → ∞ as n → ∞. Let A(x) = 4πR2 sin2 x

2R
.

Then a throughput of

T = (1 − ε)

αKr log np · log

(
1 + Pβ

σ2+a(PK sin2 r
4R

µγ+PK
r2µγ

2R2 )

)

log n · c2R · log N

is achievable where α and c2 are constants and K and a ≥ 1 are chosen such that the

following conditions are satisfied.

1. K ≤ N/(8 cos2 r
24R

).

2. K ≤ αN log np/(log n · cos2 r
24R

).

3. ε ≤ log n
α log np

· R
r
· 1

a
→ 0.

Proof. From Theorem 3.2 we know the number of hops required for a non-colliding

schedule and the necessary conditions. From (3.4) and (3.5) in Section 3.4 we know

ρ0 and the condition for successful communications. Recalling that the throughput

is T = (1 − ε)K
H

log(1 + ρ0), we get the above theorem.

Example 3.5.1. Consider f(γ) = 1
(1+γ)t with t > 2 as the distribution from which

the channel strengths are drawn i.i.d. for nodes within a distance r from each other.
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We need t > 2 for µγ to be finite. We will assume that the other connections are

exponential with the mean following a distance decay law of g(x) = 1/xm for m > 2.

Choosing p = 2 log n
n

, we get a β that behaves like (n(t−1)/2 log n)
1

t−1 −1. Since r and

R are fixed, we can approximate sin2 r
4R

with c6
r2

R2 . Therefore, n = c5c6N
r2

R2 = c7N

and β ≈ N
1

t−1 / log
1

t−1 N . One can choose K to be of the form N/ log N and a of the

form log log N log n
α log np

R
r
. This satisfies the required conditions of the theorem and we

get a throughput of T = N
1

t−1 / log2 N . For t just greater than 2, this is almost linear

but for t > 3, it falls below
√

N . It is interesting to note that m plays no role in this

analysis.

3.6 Conclusions

We have proposed a two-scale network model in which local connections are drawn

at random and global connections depend on a distance-based decay law. We have

analyzed the throughput for this network and found that depending on the chosen

parameters it can give a wide range of throughputs. Further generalization of this

model is also possible. For instance, we can think of a three-scale model in which

connections between nodes are i.i.d. within a distance r1, become distance-dependent

beyond a distance r2 and are either distance-dependent or random for distances be-

tween r1 and r2. For this model, the connection strengths, γ, would be described

by

px(γ) =





f(γ) if x ≤ r1

r2−x
r2−r1

f(γ) + x−r1

r2−r1

µγrm
2

xm exp(−γ xm

µγrm
2

) if r1 < x ≤ r2

µγrm
2

xm exp(−γ xm

µγrm
2

) if x > r2

. (3.6)

Approaches similar to those used for two-scale models are expected to be useful for this

model as well. We can also think of a mixture model, in which connection strengths

change gradually from being i.i.d. to being distance-dependent. The connection
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strengths for these are described by

px(γ) =
R − x

R
f(γ) +

x

R

1

xm
exp(−γxm). (3.7)

We see that the probability of i.i.d. connections decreases gradually (linearly) with

distance and that of distance-dependent connections increases simultaneously. De-

veloping approaches for the analysis of these networks is an interesting line of future

work.
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Chapter 4

Capacity of Wireless Erasure
Networks

In the previous two chapters, we studied a network in which connections between

nodes were drawn at random from a particular distribution or were dependent on

distance. For such networks, we presented a throughput result that held for asymp-

totically large networks. In this chapter, we take a different view of the matter by

introducing a class of networks called wireless erasure networks. These networks have

a fixed number of nodes and each node is connected to a set of nodes by possibly

correlated erasure channels. The network model incorporates the broadcast nature of

the wireless environment by requiring each node to send the same signal on all outgo-

ing channels. However, we assume there is no interference in reception. Such models

are therefore appropriate for wireless networks where all information transmission is

packetized and where some mechanism for interference-avoidance is already built in.

We study multicast problems for these networks. We obtain the capacity under the

assumption that erasure locations on all the links of the network are provided to the

destinations.

This result has a very different flavor from the result of the previous chapter, in

that it gives capacity for any particular network, for any number of nodes and any

precise topology. This capacity is not asymptotic or inexact. The expression for

the capacity takes into account the topology of the network and can be written for

networks with any number of nodes. The restriction is that the network has to consist
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of erasure links, with broadcast and no interference. Thus, the model is more specific

than the random network model of the previous chapter and also gives a more precise

result. We thus see that having a more restrictive, and thus simpler, model gives us

tighter results, while more general models, like that of the previous chapter, force us

to take a more approximate approach and perform an asymptotic analysis.

Coming back to the wireless erasure networks studied in this chapter, it turns out

that the capacity region has a nice max-flow min-cut interpretation. The definition

of cut-capacity in these networks incorporates the broadcast property of the wireless

medium. We also show that linear coding suffices to achieve the capacity region.

4.1 Introduction

Determining the capacity region for general multi-terminal networks has been a long-

standing open problem. An outer bound for the capacity region is proposed in [71].

This outer bound has a nice min-cut interpretation: The rate of flow of information

across any cut (a cut is a partition of the network into two parts) is at most the cor-

responding cut-capacity. The cut-capacity is defined as the maximal rate that could

be achieved if the nodes on each side of the cut could fully cooperate and also use

their inputs as side-information.

This outer bound is not necessarily tight, in general. For instance, for the single

relay channels introduced in [3], no known scheme achieves the min-cut outer bound

of [71].

However, the max-flow min-cut outer bound is tight for wireline multicast prob-

lems [4, 5, 58]. A multicast problem comprises one or more source nodes (at which

information is generated), several destinations (that demand all information avail-

able at the source nodes), relay nodes and directed communication channels between

some nodes. Each channel is statistically independent of all other channels and the

communication between different nodes is done through physically separated channels

(wires). This means that the communication between two nodes does not affect the

communication between other nodes. In this setup, the maximal achievable rate is
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given by the minimal cut-capacity over all cuts separating the source nodes and a des-

tination node. Because of the special structure of wireline networks, the cut-capacity

for any cut is equal to the sum of the capacities of the channels crossing the cut.

This remarkable result for wireline networks is proved by performing separate

channel and network coding in the network. First, we perform channel coding on

each link of the network, so as to make it operate error-free at any rate below its

capacity. This way, the problem is transformed into a flow problem in a graph where

the capacity of each edge is equal to the information-theoretic capacity of the cor-

responding channel in the original network. If there is only one destination node,

standard routing algorithms for finding the max-flow (min-cut) in graphs [66] achieve

the capacity. However, when the number of destinations is more than one, these

algorithms can fail. The key idea in [4] is to perform coding at the relay nodes. By

[5, 58], linear codes are sufficient to achieve the capacity in multicast problems. These

ideas are formulated in an algebraic framework and generalized to some other special

network problems in [58]. Since then, there has been a lot of research on the bene-

fits of coding over traditional routing schemes in networks from different viewpoints

such as network management, security, etc. [6, 67]. In a wireless setup, however,

the problem of finding the capacity region is more complicated. The main reason

is that unlike wireline networks, in which communication between different nodes

is done using separated media, in a wireless system the communication medium is

shared. Hence, all transmissions across a wireless network are broadcast. Also any

communication between two users can cause interference to the communication of

other nodes. These two features, broadcast and interference, present new issues and

challenges for performance analysis and system design. The capacity regions of many

information-theoretic channels that capture these effects are not known. For instance,

the capacity region for general broadcast channels is an unsolved problem [7]. The

capacity of general relay channels is not known. However, there are some achievable

results based on block Markov encoding and random binning [8]. These ideas have

been generalized and applied to a multiple relay setup in [9, 10].

In this chapter we look at a special class of wireless networks that only incorporates
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the broadcast feature of wireless networks.1We model each communication channel

in the network as a memoryless erasure channel. We will often assume that the

erasure channels are independent; however, we show that the results also hold when

the various erasure channels are correlated. We require that each node send out the

same signal on each outgoing link. However, for reception we use a multiple access

model without interference, i.e., messages coming into a node from different incoming

links do not interfere. In general, this is not true for a wireless system. However, this

can be realized through some time, frequency or code division multiple access scheme.

This simplification is important in making the solution of the problem tractable. Even

the capacity of a single relay channel is not known.

Finally, we assume that complete side-information regarding erasure locations on

each link is available to the destination (but not to the relay) nodes. If we assume that

the erasure network operates on long packets, i.e., packets are either erased or received

exactly on each link, then this assumption can be justified by using headers in the

packets to convey erasure locations or by sending a number of extra packets containing

this information. By making the packets very long, the overhead of transmitting the

erasure locations can be made negligible compared to the packet length. We should

remark that provided that the side-information is available to the destinations, all

the results in this chapter hold for any packet length.

We should mention that our model is appropriate for wireless networks where all

information transmission is packetized and where some form of interference-avoidance

is already in place. Channel coding within each packet can be used to make each

link behave as a packet erasure channel. Although our model does not incorporate

interference (primarily because it is not clear what interference means for erasure

channels) one way, perhaps, to account for interference is to allow the erasure channels

coming into any particular node to be correlated (something that is permitted in our

model).

The main result is that a max-flow min-cut type of result holds for multicast

1[11, 12] have considered applications of network coding at the network layer for cost (energy)
minimization in lossless wireless ad-hoc networks. In this chapter, we look at wireless features of
the network in the physical layer.
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problems in wireless erasure networks under the assumptions mentioned above. The

definition of cut-capacity in these networks is such that it incorporates the broadcast

nature of the network. We further show that similar to the wireline case, for multicast

problems over wireless erasure networks, linear encoding at nodes achieves all the

points in the capacity region. Working with linear encoding functions reduces the

complexity of encoding and decoding. Building on the results presented here and

using ideas from LT coding [13], it is shown in [14] that it is possible to reduce

the delay incurred in the network. In their scheme, instead of using linear block

codes, which is what we do here, the nodes send random linear combinations of their

previously received signals at each time. This way nodes do not need to wait for

receiving a full block before transmitting, which reduces the delay.

We once more need to emphasize the importance of the side-information on the

erasure locations (or any other mechanism that provides the destination with the

mapping from the source nodes to their incoming signals) for our result to hold.

Interestingly, all the cut capacities of the network remain unchanged by making the

above described side-information available to the receiver nodes. Thus, in some sense,

what is shown in this chapter is that with appropriate side information made available

to the receivers, the min-cut upper bound on capacity can be made tight. It would

therefore be of further interest to see whether for other classes of networks it is possible

to come up with the appropriate side-information to make the min-cut bounds tight.

This chapter is organized as follows. Section 4.2 defines notation used in this

chapter and reviews some graph-theoretic definitions of importance. We introduce

the network model in Section 4.3 and the problem setup in Section 4.4. Section 4.5

states the main result for multicast problems over wireless erasure networks with

side-information available at destinations. Section 4.6 includes proofs of these re-

sults. Section 4.7 demonstrates the optimality of linear encoding. We mention future

directions and conclude in Section 4.8.
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V node set
E edge set
S the set of source nodes
D the set of destination nodes

[Vx,Vy] x − y cut-set described by x-set Vx

Xi symbol transmitted from node i
Xn

i a transmitted block of n symbols from node i
Yij channel output of edge (i, j)
Yi symbols received at node i from all incoming channels

w(s) message transmitted from source s
W(s) message index set at source node s

ŵ
(s)
di

estimate at destination di of the message transmitted from s

P
(n)(s)
di

prob. of error in decoding source s at destination di

Table 4.1: Some important notation in this chapter

4.2 Preliminaries

4.2.1 Notation

Throughout this chapter, upper case letters (e.g., X, Y , Z) usually denote random

variables and lower case letters (e.g., x, y, z) denote the values they take. Underlined

letters (e.g., x) are used to denote vectors. Sets are denoted by calligraphic alphabet

(e.g., A, B, C). The complement of a set A is shown by Ac. The transpose of matrix

x is shown by x†. exp(x) is used to denote 2x.

Subscripts specify nodes, edges, inputs, outputs and time. For instance v2 and

X3 could denote node number 2 and the output of node number 3 in the network re-

spectively. Unless otherwise mentioned, commas are used to separate time subscripts

from other subscripts. Superscripts are also used to refer to different sources. For

example, w(s) could denote the message sent by node s.

Consider a sequence of numbers x1, x2, x3, . . . . We use notation xn to denote the

sequence x1, x2, . . . , xn. We also use notation (xi, i ∈ I) to denote the ordered tuple

specified by index set I. Finally, |X | is the cardinality of set X . Table 4.1 summarizes

our notation.
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4.2.2 Definitions for Directed Graphs

In this part, we briefly review the concepts and definitions from graph theory used in

this chapter [73].

A directed graph G = (V, E), has vertex set V and directed edge set E ⊂ V × V.

Without loss of generality, let

V = {1, 2, . . . , |V|}.

We assume that the graph is finite, i.e., |V| < ∞. For each node v ∈ V, NO(v) and

NI(v) are the set of edges leaving from and the set of edge going into v, respectively.

Formally,

NO(v) = {(v, u)|(v, u) ∈ E}

NI(v) = {(u′, v)|(u′, v) ∈ E}.

The out-degree dO(v) and in-degree dI(v) of v are defined as dO(v) = |NO(v)| and

dI(v) = |NI(v)|. A sequence of nodes v0, v1, . . . , vn such that (v0, v1), (v1, v2), . . . , (vn, v0)

are all in E is called a cycle. An acyclic graph is a directed graph with no cycles.

An x− y cut for x, y ∈ V is a partition of V into two subsets Vx and Vy = Vc
x such

that x ∈ Vx and y ∈ Vy. The x-set Vx (or y-set Vy) determines the cut uniquely. For

the x− y cut given by Vx, the cut-set [Vx,Vy] is the set of edges going from the x-set

to y-set, i.e.,

[Vx,Vy] = {(u, v)|(u, v) ∈ E , u ∈ Vx, v ∈ Vy}.

We also define V∗
x as

V∗
x = {v|∃ u s.t. (v, u) ∈ [Vx,Vy]}.

V∗
x is the set of nodes in the x-set that has at least one of its outgoing edges in the

cut-set.

Example 4.2.1. Consider the acyclic directed graph shown in Figure 4.1. V =

{1, 2, 3, 4} is the set of nodes and E = {(1, 2), (3, 2), (1, 3), (3, 4), (2, 4)} is the set of
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2

d = 4s = 1

3

d-sets-set

Figure 4.1: A directed acyclic graph with four nodes and five edges. The cut-set
{(3, 4), (3, 2), (1, 2)} is shown by the dashed line.

edges. The source and destination nodes are s = 1 and d = 4, respectively. The

out-degree of node 3 is 2, i.e., dO(3) = 2. Looking at the s − d cut specified by s-set

Vs = {1, 3}, the cut-set [Vs,Vd] is the set {(3, 4), (3, 2), (1, 2)} and V∗
s = {1, 3}.

4.3 Network Model

Wireless Packet Erasure Networks

We model the wireless packet2 erasure network by a directed acyclic graph G = (V, E).

Each edge (i, j) ∈ E represents a memoryless packet erasure channel from node i to

node j. For most of this chapter, we assume that erasure events across different links

are independent. However, as described later in the chapter, the results go through

for correlated erasure events. For independent erasure events, a packet sent across

link (i, j) is either erased with probability of erasure εij or received without error. We

denote the input alphabet (the set of possible packets) of the erasure channel by X .3

Let Zij,t be a random variable indicating erasure occurrence across channel (i, j)

at time t. For independent erasure events, Zij,t has a Bernoulli distribution with

2Throughout this chapter a packet can be of any length. When the length of packets is one, the
channel is a binary erasure channel.

3For simplicity and without loss of generality we consider X = {0, 1} in our analysis and proofs.
However, we should remark that all the results and analysis hold for an input alphabet of arbitrary
length.
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parameter εij. If an erasure occurs on link (i, j) ∈ E at time t, the value of Zij,t will

be one, otherwise Zij,t will be zero. Note that the behavior of the network can be

fully determined by the values of Zij,t for all links and all times and the operation

performed at each node.

We assume that transmissions on each channel experience one unit of time delay.

The input of all the channels originating from node i is denoted by Xi chosen from

input alphabet X . Note that with this definition we have required that each node

transmit the same symbol on all its outgoing edges, i.e., all channels correspond-

ing to edges in NO(i) have the (same) input Xi (See Figure 4.2.) This constraint

incorporates broadcast in our network model. The output of the communication

channel corresponding to edge (i, j) ∈ E is denoted by Yij; Yij lies in output alphabet

Y = X ∪ {e}, where e denotes the erasure symbol. We also assume that the outputs

of all channels corresponding to edges in NI(i) are available at node i. This condition

is equivalent to having no interference in receptions in the network. Having this,

let Yi = (Yji, (j, i) ∈ NI(i)) be the symbols that are received at node i from all its

incoming channels. We have Yi ∈
∏

j:(j,i)∈E Y. The relation between the Yis and Xis

defines a coding scheme for the network.

Based on the properties of the network mentioned above, if we consider the inputs

and outputs up to time t, then the conditional probability function of the outputs of

all the channels (edges) up to time t given all the inputs of all the channels up to

time t and all the previous outputs, can be written as follows for all t:

P

(
(yij,t, (i, j) ∈ E)

∣∣∣∣(x
t
l , l ∈ V), (yt−1

ij , (i, j) ∈ E)

)

= P ((Yij = yij,t, (i, j) ∈ E)|(Xl = xl,t, l ∈ V)) .

For independent erasure events, we further have

P

(
(yij,t, (i, j) ∈ E)

∣∣∣∣(x
t
l , l ∈ V), (yt−1

ij , (i, j) ∈ E)

)
=
∏

i∈V

∏

j: (i,j)∈NO(i)

P(Yij = yij,t|Xi = xi,t).

(4.1)
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2

d = 4ε32

ε24

ε13

s = 1

3

ε12

Y24

Y34

X3

ε34
X3

Figure 4.2: (i) An erasure wireless network with the graph representation of example
4.2.1. Probability of erasure on link (i, j) is εij. Each node (e.g., node 3) transmits the
same signal (X3) across its outgoing channels. Since the network is interference-free,
node 4 receives both signals Y24 and Y34 completely. (ii) In this network, cut-capacity
for s-set Vs = {1, 3} is C(Vs) = 1 − ε12 + 1 − ε32ε34.

Multicast Problem

In this chapter, we consider a class of network problems called multicast problems.

Any network problem is characterized by a collection of information sources, a col-

lection of source nodes at which one or more information sources are available, and

a collection of destination nodes. Each destination node demands a subset of infor-

mation sources. The class of network problems that we consider in this chapter is

the multiple source/multiple destination multicast, where each of the destinations

demands all of the information sources. This problem can be further specified by the

following sets:

• S = {s1, s2, . . . , s|S|} ⊂ V denotes the information source nodes. We assume

that each of the source nodes generates an information (message) which is mod-

eled by an i.i.d. uniformly distributed random process. Information sources at

different nodes are assumed to be independent.

• D = {d1, d2, . . . , d|D|} ⊂ V denotes the set of destination nodes.

Note that S ∩D may not be empty, i.e., a node can be a destination node for one

information source and a source node for another. Also destination nodes can act as

relay nodes for other destination nodes in the network.
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Side-information at Destinations

In most parts of the chapter we assume that each destination node d ∈ D has complete

knowledge of the erasure locations on each link of the network that is on a path from

the source set to d. In other words, d knows values of the zij,t, for all (i, j) ∈ E
and all times t, for which (i, j) is on at least one path from one of the sources to d.

This serves as channel side-information provided to the destinations from across the

network. In the case when we consider large packets (alphabet), this side-information

can be provided using negligible overhead. More discussion of this model appears in

Section 8.

Cut-capacity Definition

Consider an s − d cut given by s-set Vs as defined in Section 4.2.2. We define X(Vs)

and Y (Vs) as

X(Vs) = {Xi|i ∈ V∗
s } (4.2)

Y (Vs) = {Yij|(i, j) ∈ [Vs,Vc
s ]}.

At the end of this section, we define the cut-capacity for wireless erasure networks.

In wireline networks, the value of the cut-capacity is the sum of the capacities of

the edges in the cut-set [58]. Such a definition of cut-capacity in wireline networks

makes sense because the nodes can send out different signals across their outgoing

edges. However, this is not the case for wireless erasure networks where broadcast

transmissions are required. The following definition of cut-capacity is different from

that in the wireline network settings, and it incorporates the broadcast nature of

transmission in our network.

Definition 1. Consider an erasure wireless network represented by G = (V, E) and

probabilities of erasure εij as described in Section 4.3. Let s and dl be the source

and destination nodes, respectively. The cut-capacity corresponding to any s − dl cut
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s = 1

2

3

4

5

d = 6ε32

ε12

ε13

ε54

ε24

ε35

ε56

ε46

Figure 4.3: For the cut-set specified by the s-set Vs = {1, 3, 4} the cut-capacity is
C(Vs) = 1 − ε12 + 1 − ε46 + 1 − ε35ε32.

represented by s-set, Vs is denoted by C(Vs) and is equal to

C(Vs) =
∑

i∈V∗
s

(
1 −

∏

j: (i,j)∈ [Vs,Vdl
]

εij

)
. (4.3)

Example 4.3.1. Consider the network represented by the directed graph of example

4.2.1. (See Figure 4.2.) For the s − d cut specified by the s-set Vs = {1, 3}, the

cut-capacity is

C(Vs) = 1 − ε12 + 1 − ε32ε34.

Looking at this example, we see that all edges in the cut-set that originate from a

common node, i.e., edges (3, 2) and (3, 4), together contribute a value of one minus

the product of their erasure probabilities, i.e., 1 − ε32ε34 to the cut-capacity. This

observation holds in general for wireless erasure networks.

Example 4.3.2. As another example, consider the network shown in Figure 4.3 with

one source s = 1 and one destination d = 6. The cut-capacity corresponding to the

s − d cut specified by Vs = {1, 3, 4} is C(Vs) = 1 − ε12 + 1 − ε46 + 1 − ε35ε32.
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4.4 Problem Statement

We next define the class of block codes considered in this chapter. A (d2nR1e, . . . , d2nR|S|e, n)

code for the multicast problem in a wireless erasure network described in the previous

sections, consists of the following components:

• A set of integers W (si) = {1, 2, . . . , d2nRie} for each source node si ∈ S. W (si)

represents the set of message indices corresponding to node si. w(s) denotes the

message of source s ∈ S. We assume that the messages are equally likely and

independent.

• A set of encoding functions {fi,t}n
t=1 for each node i ∈ V, where

xi,t = fi,t(w
(i), yt−1

i )

is the signal transmitted by node i at time t. Note that xi,t is a function of

the message w(i) that node i ∈ V wants to transmit in the current block 4 and

all symbols received so far by node i from its incoming channels. If i is not a

source node, we set w(i) = 0 for all blocks and all times.

• A decoding function gdi
at destination node di ∈ D,

gdi
: W(di) × Yn

di
× {0, 1}n|E| →

∏

s∈S
W(s)

such that

ŵdi
= (ŵ

(s)
di

, s ∈ S) = gdi
(w(di), yn

di
, (zij,t , (i, j) ∈ E , 1 ≤ t ≤ n)) (4.4)

where ŵ
(s)
di

is the estimate of the message sent from source s ∈ S based on

received signals at di, information source available at di
5, w(di), and also the

erasure occurrences on all the links of the network in the current block.

4The value of w(i) does not change in one block.
5If di /∈ S without loss of generality we set w(di) = 0 and W(di) = {0} for all blocks.
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Note that Xi, Yij and Yi all depend on the message vector w = (w(s), s ∈ S),

that is being transmitted. Therefore we will write them as Xi(w),Yij(w) and Yi(w)

to specify what specific set of messages is transmitted.

Associated with every destination node d ∈ D and every information source s ∈ S
is a probability that the message will not be decoded correctly.6

P
(n)(s)
d = Pr(Ŵ

(s)
d 6= W (s)), (4.5)

where P
(n)(s)
d is defined under the assumption that all the messages are independent

and uniformly distributed over W (s), s ∈ S. The set of rates (Rs, s ∈ S) is said to

be achievable if there exists a sequence of (d2nR1e, . . . , d2nR|S|e, n) codes such that

P
(n)(s)
d → 0 as n → ∞ for all s ∈ S and d ∈ D. The capacity region is the closure of

the set of achievable rates.

4.5 Main Results

In this section we present the main results of this chapter

Theorem 4.1. Consider a single source/single destination wireless erasure network

described by the directed acyclic graph G = (V, E) and the assumptions of Section 4.3.

Let s ∈ V and d ∈ V denote the network’s source and destination, respectively. Then

the capacity of the network with side-information at the destination is given by the

value of the minimum value s-d cut. More precisely, we have

C = min
Vs:Vsan s−d cut

C(Vs). (4.6)

Remark 1. The results derived in this chapter are stated for erasure wireless net-

works with broadcast property (and no interference). However, based on the results

of this chapter, it is possible to derive the capacity of multicast problems over error-

free networks (with the broadcast property and without interference), with or without

6Note that if d is a source node, we assume without loss of generality that P
(n)(d)
d = 0.
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capacitated links.

Remark 2. Although we have assumed that the erasure events across the network

are independent, the capacity results of this chapter also hold for the case when the

erasure events are correlated, i.e. Zij, (i, j) ∈ E are dependent on each other. In that

case the definition of the cut capacity should be modified as described in (4.22). (See

Remark 4 in Appendix A.)

Example 4.5.1. Recall the single source/single destination network of example 4.3.1.

(See Figure 4.2.) By Theorem 4.1, the capacity of this network is

C = min{1 − ε12 + 1 − ε32ε34, 1 − ε34 + 1 − ε24, 1 − ε12ε13, 1 − ε13 + 1 − ε24}

The following theorems generalize the single source/single destination result to

general multicast problems.

Theorem 4.2. Consider a multiple source/single destination wireless erasure network

described by directed acyclic graph G = (V, E) and the assumptions of Section 4.3.

Suppose that the destination requests all of the information from all of the sources.

Let S ⊂ V and d ∈ V denote the set of source nodes and the destination node,

respectively. The capacity region of the network with side-information provided at the

destination is given by

C(G,S, d)
4
=

{
(Rs, s ∈ S)

∣∣∣∣0 ≤
∑

s∈V ′∩S
Rs ≤ C(V ′) ∀ V ′ ⊂ V − {d}

}
. (4.7)

In other words, the total rate of information transmission to d across any cut [V ′,Vd],

should not exceed the cut-capacity of that cut.

Example 4.5.2. Consider the network shown in Figure 4.4 with two sources {1, 2}
and one destination {3}. Then according to Theorem 4.2, the capacity region is

{(R1, R2) ∈ R+ × R+|R1 ≤ 1 − ε12ε13, R2 ≤ 1 − ε23, R1 + R2 ≤ 1 − ε23 + 1 − ε13}.



82

Theorem 4.3. Consider a multicast problem with multiple sources and multiple des-

tinations. Let S,D ⊂ V denote the set of source nodes, and destination nodes, re-

spectively. The capacity region of the network with side-information is given by the

intersection of the capacity regions of the multicast problem between the sources and

each of the destinations, i.e,

C(G,S,D) =
⋂

d∈D
C(G,S, d). (4.8)

Corollary 4.4. Consider a multicast problem with one source denoted by s and mul-

tiple destinations denoted by d1, . . . , d|D|. The capacity of the network is given by the

minimum value of the cuts between the source node and any of the destinations, i.e.,

C = min
di∈D

min
Vs:s−dicut

C(Vs).

Example 4.5.3. Consider the network shown in Figure 4.2. Suppose that we are

decoding at node 2 and 4, i.e., D = {2, 4}. Based on Corollary 4.4, the capacity of

this network is

C = min{1 − ε12 + 1 − ε32, 1 − ε34 + 1 − ε24, 1 − ε12ε13, 1 − ε13 + 1 − ε24}.

The above results show that the capacity region for multicast problems over wire-

less erasure networks has a max-flow min-cut interpretation. This result is similar to

multicast problems in wireline networks [4], however the definition of the cut-capacity

is different. Recall from [4] that in wireline networks, the cut-capacity is the sum of

the capacities of the links in the cut-set. Since wireless erasure networks incorporate

broadcast, the cut-capacity is the sum of the capacities of each broadcast system that

operates across the cut.

The next theorem states that linear network coding is sufficient for achieving the

capacity region.

Theorem 4.5. Consider a multicast problem with multiple sources and multiple desti-
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s2 = 2

d = 3

ε12

ε13

s1 = 1 ε23

Figure 4.4: A wireless erasure network with two source, S = {1, 2} and one destina-
tion, D = {3}.

nations. Then any rate vector in the capacity region C(G,S,D) of the network defined

in Theorem 4.3 is achievable with linear block coding.

In the next section, we prove Theorems 4.1, 4.2 and 4.3. In Section 4.7, we look

at the performance of the network using random linear coding and prove Theorem

4.5.

4.6 Proof of Theorems

4.6.1 Proof of Theorems 4.1 and 4.2

In this section we prove the results stated for multi-source/ single destination network

problems. We start by proving the converse.

4.6.1.1 Converse

We prove the converse part by considering perfect cooperation among subsets of

nodes. Consider the cut specified by d-set Vd. Let all of the nodes in Vd and all of the

nodes in Vc
d cooperate perfectly, i.e., each node has access to all of the information

known to nodes in its set. In this case, we have a multiple input, multiple output

point-to-point erasure channel. Consider all source nodes in V c
d. Then clearly, the

sum-rate of these source nodes must be less than the capacity of the multiple input
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multiple output point-to-point erasure channel. The capacity of this point-to-point

communication channel is

Ccol = max
P (xi, i∈Vc

d
∗)

I((Xi, i ∈ Vc
d
∗); (Yij, (i, j) ∈ [Vc

d,Vd])).

Since the channels are independent and memoryless, the mutual information is max-

imized when the different Xis are i.i.d. and uniform on the input alphabet X . In

this case, the above mutual information equals the cut-capacity corresponding to the

cut-set [Vc
d,Vd], i.e.,

Ccol = C(Vc
d).

Therefore, for any cut-set [Vc
d,Vd] the sum-rate of the information sources in set V c

d

satisfies
∑

s∈S∩Vc
d

Rs ≤ Ccol = C(Vc
d).

The complete analysis appears in Appendix 4.9.1. The proof follows the same lines as

the max-flow min-cut upper bound of Cover and Thomas for multi-terminal networks

[71, Sec. 14.10].

4.6.1.2 Achievability

In this section we prove that all of the rates arbitrarily close to rates in the capacity

regions given in Theorems 4.1 and 4.2 are achievable for a multiple sources/single

destination multicast problem. We next use random coding techniques to show this

result.

We employ random block codes in the network. Each node transmits the next

block of n symbols only after it has received all n symbols corresponding to the

present block from each of its incoming channels. Let Lmax denote the length of the

longest path from a source to the destination in the network. Since each transmission

introduces one unit of time delay, the maximal delay between the transmission of a

message from one source and to its receipt at the destination using block codes of

length n is nLmax. We do not use any information from previously decoded blocks
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to decode the current set of messages. Also note that since our model assumes that

the reception is interference-free, there is no confusion up among different blocks at

any node. Therefore, if the network operates for nB units of time (i.e., B blocks of

length-n symbols) then the destination has received all of the information required

for decoding the B − Lmax first messages transmitted from each source s ∈ S, i.e.,

w
(s)
b , b = 1, . . . , B − Lmax. Since the network size is finite, as B → ∞, for fixed n,

the rate Rs
B−Lmax

B
approaches Rs.

7

The same codebook and encoding and decoding functions are used for all the

blocks. We explain the coding scheme for transmitting one set of messages from the

sources to the destination. Below we describe the encoding and decoding processes.

• Codebook Generation and Encoding: For each node i ∈ V, the encoding

function

fi : W(i) × Yn
i → X n

is generated randomly as follows. For each yn ∈ Yn
i and for each w(i) ∈ W (i) we

draw the symbols of fi(w
(i), yn) ∈ X n randomly and independently according

to a binary Bernoulli distribution with parameter 1/2 . Thus the channel input

at node i ∈ V is Xn
i = fi(w

(i), yn) when the message at node i is w(i) and the

incoming sequence is yn ∈ Yn
i . The destination has perfect knowledge of all the

encoding functions fi(.), i ∈ V thus generated.8

• Decoding: The destination “simulates” the network to decode the messages.

Suppose that message vector w0 = (w
(s)
0 , s ∈ S) is transmitted and yn

d (w0)

is received at destination d. By assumption, the receiver is knows the erasure

locations on all the links of the network, i.e., (zn
ij, (i, j) ∈ E). Having all of the

7We could also consider the case when different sources transmit different numbers of messages
in B block uses. In that case, if Ls denotes the longest path from s ∈ S to the destination, we could
transmit B − Ls messages from information source s to the destination. However, for simplicity
of notation and analysis we assume that all of the nodes send the same number of messages in a
synchronized fashion.

8Note that the encoding functions thus constructed satisfy a causality condition that is more
strict than what is defined in Section 4.4. Here each transmitted block is only a function of the
immediately previous block of received symbols. In Section 4.3, each transmitted symbol could be
a function of all previous symbols.
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erasure locations and all of the encoding functions applied at different nodes

in the network,9 the destination can compute the values of Xn
i (w), Y n

ij (w) and

Y n
i (w) for all nodes and edges for any w ∈ ∏s∈S W(s). If there exists a unique

message vector w ∈ ∏s∈S W(s) such that the computed value of Y n
d (w) equals

the value yn
d (w0) of the received signal at the destination, then w is declared as

the decoder output. Otherwise, the decoder declares an error.

Since the computed value of Y n
d (w0) for transmitted message w0 always matches

the received signal at the destination, an error occurs if and only if there is

another message vector w 6= w0 for which Y n
d (w) = Y n

d (w0) = yn
d (w0). In the

next section we compute the probability of this event and show that for large

blocks this probability can be made arbitrarily close to zero provided that the

rate vector (Rs, s ∈ S) is inside the capacity region described in Theorems 4.1

and 4.2.

4.6.1.3 Probability of Error

Let Pr(err) be the probability of error averaged over all possible functions fi. In

other words, if P
(n)
e is the probability that ŵ

(s)
0 , the destination’s estimate of the

transmitted message w0, is not equal to w0, then Pr(err) is the expected value of

P
(n)
e over all possible encoding functions at all nodes.10 More precisely,

P (n)
e = Pr(∃s ∈ S s.t. ŵ

(s)
0 6= w

(s)
0 ),

and Pr(err) = E P
(n)
e . Because of the symmetry of the code construction

Pr(err) = Pr(err|W = w0 is transmitted) (4.9)

where W = (W (s), s ∈ S). Therefore we will find the average probability of error

when message vector w0 is transmitted from the sources. Recall the notation Xn
i (w0)

and Y n
i (w0) and Y n

ij (w0), (i, j) ∈ E . For each w ∈ W 4
=
∏

s∈S W(s), w 6= w0, define

9We also assume that the destination knows the topology of the network.
10Note that if P

(n)
e goes to zero as n grows larger, so will P

(n)(s)
d of (4.5) for every s ∈ S.
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the following event:

E(w) = {Y n
d (w) = Y n

d (w0)}. (4.10)

Let A(n)
δ (i) be the event that the erasure locations on the channels going out of node

i are jointly δ-strongly typical, i.e.,

A(n)
δ (i) = {(zn

ij, j : (i, j) ∈ E) are jointly δ-strongly typical}

[1, eq. (13.107)] and define

A(n)
δ =

|V|⋂

i=1

A(n)
δ (i).

Note that by the weak law of large numbers [71], Pr(A(n)
δ (i)) → 1 as n → ∞, and

hence for all δ > 0

Pr(A(n)
δ ) ≥ 1 − |V|δ, for n sufficiently large.

Using the definition of the above events, Pr(err) can be written as

Pr(err) = Pr(err|W = w0)

= Pr

( ⋃

w∈W−{w0}
E(w)

)

= Pr

( ⋃

w∈W−{w0}
E(w)|A(n)

δ

)
Pr(A(n)

δ ) + Pr

( ⋃

w∈W−{w0}
E(w)|A(n)

δ

c
)

Pr(A(n)
δ

c
)

≤
∑

w∈W−{w0}
Pr(E(w)|A(n)

δ ) + |V|δ. (4.11)

Therefore, using strong typicality and the union bound on the probability of events,

we only look at network instantiations that are “strongly typical.” We next bound

the conditional probability of E(w) given A(n)
δ .

Corresponding to each cut in the network, represented by d-set Vd 3 d, define the
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following event:

B[Vd] =

( ⋂

i∈Vd

{Y n
i (w) = Y n

i (w0)}
)⋂( ⋂

i∈Vc
d

{Y n
i (w) 6= Y n

i (w0)}
)

(4.12)

The interpretation of the above event is as follows. By definition of E(w), we know

that the received signal at the destination is the same for w and w0, but w 6= w0.

Therefore we can partition the nodes of the network into two sets: the “distinguish-

able” and the “indistinguishable” set. The “distinguishable” set contains all nodes for

which the signal received at those nodes when w is transmitted differs from the signal

received when w0 is transmitted. All the other nodes, for which the received signals

for w and w0 are the same, are in the “indistinguishable” set. Clearly, these two sets

define a cut. Event B[Vd] corresponds to the case when the “indistinguishable” set

(containing d) is equal to Vd ⊂ V. Note that these events are all disjoint and also

E(w) =
⋃

Vd:d-set B[Vd].

Define

M(w) = {s|s ∈ S, w
(s)
0 6= w(s)} (4.13)

to be the subset of source nodes for which the corresponding messages in w and w0

are different. Set M(w) is not empty since w0 6= w by assumption. In what follows we

bound the probability of event B[Vd] by considering the edges in the cut-set [Vx,Vc
x]

where Vx
4
= Vc

d ∪M(w). Note that Vc
x is a d-set since if the destination is a source of

information, it is aware of the message it has transmitted and so d /∈ M(w).

Consider any edge (i, j) ∈ [Vx,Vc
x]. We know that the transmitted signal Xn

i =

fi(W
(i), Y n

i ) from node i is a function of the message it wants to transmit , W (i), and

the received signal at its incoming edges, Y n
i . For any node i in Vc

d∪M(w), either the

received signal Y n
i or message w(i) is different for message vectors w and w0. Thus,

for a randomly designed code, the transmitted signal by node i for message vector w

is independent of the corresponding Xn
i for message vector w0. Using this observation



89

we next bound the probability of the event E(w) conditioned on A(n)
δ .

Pr(E(w)|A(n)
δ )

= Pr

(
⋃

Vd:d-set

B[Vd]|A(n)
δ

)
=
∑

Vd:d-set

Pr(B[Vd]|A(n)
δ )

=
∑

Vd:d-set

Pr



( ⋂

j∈Vd

{Y n
j (w) = Y n

j (w0)}
)⋂( ⋂

i∈Vc
d

{Y n
i (w) 6= Y n

i (w0)}
)
|A(n)

δ




(a)

≤
∑

Vx:M(w)⊂Vx

Pr(
⋂

i,j:(i,j)∈[Vx,Vc
x]

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), Y n
ij (w) = Y n

ij (w0)}|A(n)
δ )

(b)
=

∑

Vx:M(w)⊂Vx

Pr(
⋂

i∈V∗
x

⋂

j:(i,j)∈[Vx,Vc
x]

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), Y n
ij (w) = Y n

ij (w0)}|A(n)
δ )

(c)
=

∑

Vx:M(w)⊂Vx

Pr

( ⋂

i∈V∗
x

⋂

j:(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ ,

⋂

i∈V∗
x

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0))}
)

·Pr((w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), ∀ i ∈ V∗
s )

≤
∑

Vx:M(w)⊂Vx

Pr

( ⋂

i∈V∗
x

⋂

j:(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ ,

⋂

i∈V∗
x

{(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0))}
)

(d)
=

∑

Vx:M(w)⊂Vx
d/∈Vx

∏

i∈V∗
x

Pr

( ⋂

j:(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ , {(w(i), Y n

i (w)) 6= (w
(i)
0 , Y n

i (w0))}
)

.

(4.14)

Here

(a) follows since Pr(A, B) ≤ Pr(A) for any events A and B. Instead of looking at

equalities on every edge and every node of the network, we are looking at the

nodes having an edge from [Vx,Vc
x] connected to them, where Vx = Vc

d ∪M(w).

(b) is clear from the definition of V∗
x.

(c) follows from the definition of conditional probability.

(d) follows from the fact that averaged over all possible functions fi, the conditional

events shown in the equation are independent for different i’s in V∗
x.

Now we bound the expression given in (4.14) for any node i ∈ V∗
x. Note that since

(w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)) at node i, Xn
i (w) = fi(w

(i), Y n
i (w)) and Xn

i (w0) =
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fi(w
(i)
0 , Y n

i (w0)) are chosen independently and uniformly from {0, 1}n. Therefore the

probability that they are the same in at least αi specific locations is at most 2−αi .

Looking at a fixed node i, Y n
ij (w) = Y n

ij (w0) for all j such that (i, j) ∈ [Vx,Vc
x] only if

all the locations that Xn
i (w) and Xn

i (w0) differ get erased on all these edges. Because

of the δ-strong typicality of the erasure locations on edges (i, j) ∈ [Vx,Vc
x], the number

of locations at which erasure occurs on all the edges of interest, say αi(Vx), satisfies

∣∣∣∣
1

n
αi(Vx) − Pr(Zij = 1, j : (i, j) ∈ [Vx,Vc

x])

∣∣∣∣ ≤
δ

2|{j:(i,j)∈[Vx,Vc
x]}| ≤ δ.

Therefore Xn
i (w) and Xn

i (w0) cannot differ in more than n(Pr(Zij = 1, j : (i, j) ∈
[Vx,Vc

x]) + δ) locations and the probability of this event is no more than

exp (−n(1 − Pr(Zij = 1, j : (i, j) ∈ [Vx,Vc
x]) − δ)) = exp (−n(1 −

∏

j:(i,j)∈[Vx,Vc
x]

εij − δ)).

(4.15)

Combining this with the last equation of (4.14) gives 11

Pr(E(w)|A(n)
δ ) ≤

∑

Vx:M(w)⊂Vx

∏

i∈V∗
x

exp (−n(1 −
∏

j: (i,j)∈[Vx,Vc
x]

εij − δ))

=
∑

Vx:M(w)∈Vx,d/∈Vx

2n|V∗
x|δ · exp (−n

∑

i∈V∗
x

(1 −
∏

j: (i,j)∈[Vx,Vc
x]

εij))

≤ 2n|V|δ
∑

Vx:M(w)⊂Vx,d/∈Vx

2−nC(Vx). (4.16)

11Using (4.15) it can be easily verified that the arguments that follow will exactly go through for
correlated erasure events with cut-capacity, C(Vx), defined as in 4.22.
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Combining (4.11) and (4.16) together gives

Pr(err) ≤ |V|δ + 2n|V|δ
∑

w∈W−{w0}

∑

Vx:M(w)⊂Vx
d/∈Vx

2−nC(Vx)

= |V|δ + 2n|V|δ
∑

M⊂S

∑

w∈W−{w0}
M(w)=M

∑

Vx:M(w)⊂Vx
d/∈Vx

2−nC(Vx)

= |V|δ + 2n|V|δ
∑

M⊂S

∑

Vx:M⊂Vx
d/∈Vx

∑

w∈W−{w0}
M(w)=M

2−nC(Vx)

= |V|δ + 2n|V|δ
∑

M⊂S

∑

Vx:M⊂Vx
d/∈Vx

∏

s∈M
(d2nRse − 1)2−nC(Vx)

(a)

≤ |V|δ + 2n|V|δ
∑

M⊂S

∑

Vx:M⊂Vx
d/∈Vx

2−n(C(Vx)−P

s∈M Rs)

(b)
= |V|δ + 2n|V|δ

∑

Vx:Vx⊂V−{d}

∑

M⊂S∩Vx

2−n(C(Vx)−P

s∈M Rs)

(c)

≤ |V|δ + 2n|V|δ
∑

Vx:Vx⊂V−{d}
2|Vx∩S|2−n(C(Vx)−P

s∈S∩Vx
Rs), (4.17)

where we have used the inequality d2nRse − 1 ≤ 2nRs in (a). Also (b) is derived

by changing the order of summation and (c) follows from bounding
∑

s∈M Rs by
∑

s∈Vx∩S Rs in (c). Now by assumption the rate vector (Rs, s ∈ S) is inside the

capacity region given in Theorem 4.2. Therefore for any partition of the nodes into

Vx and Vc
x 3 d we have C(Vx) −

∑
s∈S∩Vx

Rs > 0. Therefore the exponent in the last

term of the above summation is negative. The above result holds for any δ > 0 and

n sufficiently large. By letting n → ∞ and δ → 0, we can make the upper bound on

the probability of error arbitrarily close to zero. Now by standard coding arguments

we conclude that there exists some deterministic choice of encoding functions that

has arbitrarily small probability of error for the rates in the achievable rate region

C(G,S, d).
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4.6.2 Proof of Theorem 4.3

In this section we outline the proof of Theorem 4.3. The analysis is very similar to

Theorem 4.1. The converse part is straightforward. We know that the sources can be

recovered at all the destinations, therefore we have the same argument as the converse

part of Theorem 1 for the sources and any of the destinations. In particular, for any

destination di, i ∈ D, we have (Rs, s ∈ S) ∈ C(G,S, di) Therefore any achievable

rate vector should be in the intersection of these capacity regions, i.e,

(Rs, s ∈ S) ∈ ∩di∈DC(G,S, di) = C(G,S,D).

Hence the converse part is done.

In order to prove the achievability of the above rates, we can use the random

coding argument of Section 1. Note that averaged over all the codebooks and func-

tions, the probability of error for each destination goes to zero. Therefore using the

union bound on probability of events, the probability of having an error in at least

one destination (averaged over all the functions and codebooks) goes to zero. Using

standard arguments, there exists some deterministic choice of codebooks and func-

tions for which the probability of error in the network become arbitrarily small and

that shows the achievability of the rates in C(G,S,D) of Theorem 4.3 for the multiple

destination case.

4.7 Linear Encoding

In Section 4.6.1.2 we showed the achievability of the capacity region as defined in

Theorem 4.2 by using general random coding functions at different nodes of the

network. In this section we restrict our attention to linear encoding schemes. The

advantage of using a linear encoding scheme is that the decoding process becomes

much easier. In this case, the equivalent transfer function of the network from any

source to any destination, having the erasure locations at that destination, is linear.

Hence, decoding at the destination is simply forming and solving a linear system of
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equations.

In this section we show that linear encoders achieve capacity. Let us first define

the linear block coding scheme with block length of n:

Recall that W (s) = {1, 2, . . . , d2nRse} is the message set for information source

s ∈ S. We assume that different messages are equiprobable and independent of each

other. For any w(s) ∈ W (s), let b(w(s)) be the length-nRs binary expansion of w(s)−1.

The encoding operation is as follows:

Each node i ∈ V transmits n linear combinations of the non-erased symbols re-

ceived from its incoming edges and the binary representation of the message it wants

to transmit across the network. More precisely, node i generates a random binary

matrix Bi of size n×n(dI(i)+Ri) where dI(i) is the in-degree of node i and Ri is the

rate of the codebook used at node i (in the case where i is not a source of information

Ri = 0). Each element of Bi is drawn i.i.d. Bernoulli(1/2). For a given sequence

y, let ỹ be a sequence derived by replacing every e with 0. Note that ỹ and y have

the same length.12 If node i receives Y n
i = yn

i on its incoming edges and wants to

transmit message w(i) then it sends out xi = Bi · [b(w(i)), ỹn
i ]†. (Since the input-output

relation at each node is linear, setting the erased symbols equal to zero is the same

as finding linear combinations of only the non-erased bits.)

Each destination d knows all the matrices Bi and also the erasure locations Zn

on all the links across the network. Since each received and transmitted symbol at

any node is a linear combination of the elements of vector b(w)
4
= (b(w(s)), s ∈ S).

Therefore each destination receives a collection of linear combinations of elements

of b(w). Using {Bi}i∈V and Zn, destination node d can construct the matrix that

corresponds to the linear input-output relation of the network. We denote this matrix

by F ({Bi}, Zn), giving Ỹ n
d (w) = F ({Bi}, Zn)·b(w)†. Note that matrix F is a function

of different nodes’ encoding matrices {Bi} and Zn.

Now, upon receiving Y n
d = y ∈ {0, 1, e}ndI(d), the destination node d looks (solves)

for the message vector w ∈ W 4
=
∏

s∈S W(s) such that F ({Mi}, Zn) · b(w)† = ỹ. If

12The corresponding mapping from alphabet GF(q) ∪ {e} to GF(q) again replaces e with 0. This
variation is useful for packet erasure networks.
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there is a unique w with this property, node d declares it as the transmitted message

vector, otherwise it declares an error. Note that the actual transmitted message

vector, say w0 ∈ W , always satisfies the above property. Therefore, an error occurs

only if there is another message vector w 6= w0 such that Y n
d (w) = Y n

d (w0) = y.

4.7.1 Achievability Result for Linear Encoding

Looking at the achievablity proof and probability of error analysis for general random

coding in Sections 4.6.1.2 and 4.6.1.3, it can be easily verified that the linear case

requires the same error events (4.10). Since the erasure vector Zn is available at the

destination, there is no difference between Ỹi and Yi and we can determine one from

the other. By expanding the conditional error event E(w) given A
(n)
δ for different

cuts in the network, all of the relations up to step (d) of equation (4.14) go through

for the linear case. In fact the relations up to step (d) only require the independence

of encoding functions for different nodes of the network, which holds for the linear

case. Now we look at the following probability in (4.14)

Pi
4
= Pr

( ⋂

j:(i,j)∈[Vx,Vc
x]

{Y n
ij (w) = Y n

ij (w0)}
∣∣∣∣A

(n)
δ , {(w(i), Y n

i (w)) 6= (w
(i)
0 , Y n

i (w0))}
)

.

(4.18)

As in the general random coding argument, for a fixed i we have Y n
ij (w) = Y n

ij (w0)

for all j such that (i, j) ∈ [Vx,Vc
x], only if Xn

i (w) and Xn
i (w0) differ only in locations

where an erasure occurs on all the edges of the interest. Because of strong typicality,

the number of these location is at most n(
∏

j: (i,j)∈[Vx,Vc
x] εij + δ). Therefore Xn

i (w)

and Xn
i (w0) should be the same in at least n(1 −∏j: (i,j)∈[Vs,Vc

s ] εij − δ) locations.

But by our encoding scheme this means that

Bi · ([w(i), Y n
i (w)]† − [w

(i)
0 , Y n

i (w0)]
†)︸ ︷︷ ︸

z

should be zero in at least n(1 −∏j: (i,j)∈[Vs,Vc
s ] εij + δ) specific locations. Also note

that since (w(i), Y n
i (w)) 6= (w

(i)
0 , Y n

i (w0)), z is a non-zero vector. From the above



95

argument we have

Pi ≤ Pr

(
Bi · z be 0 in at least nαi specific locations

∣∣∣∣ z 6= 0

)

(a)

≤ 2−nαi = 2−n(1−Q

j: (i,j)∈[Vx,Vc
x] εij−δ), (4.19)

where αi = 1−∏j: (i,j)∈[Vx,Vc
x] εij − δ and (a) follows from the following lemma and its

corollary. Proof of this lemma is provided in Appendix 4.9.2.

Lemma 4.6. Let X be a non-zero vector of size n × 1 from some finite field GF (q).

Suppose that A is a random matrix of size m × n with i.i.d. components distributed

uniformly over GF (q). Then the coordinates of Y = A ·X are i.i.d. uniform random

variables over GF (q).

Corollary 4.7. The probability that Y = A ·X is zero in k specific coordinates equals

q−k.

Now note that by replacing Pi in (4.18) and (4.14) with its bound from (4.19) we

get the same bound as (4.16) for random linear codes. Therefore linear operations

are sufficient for achieving the capacity.

The main advantage of this is that the decoding operation can be carried out

without exhaustive search of the exponential-sized codebook. The destination(s) only

has to solve a system of linear equations, which can be done in polynomial time. This

allows for faster and more efficient network operation.

4.8 Conclusions

We have obtained the capacity for a class of wireless erasure networks with broadcast

and no interference at reception. We have generalized some of the capacity results that

hold for wireline networks [4, 58] to these networks. Furthermore, we have shown that

linear encoding suffices to achieve the optimal performance. We see from the proof

that it is not necessary to perform channel coding and network coding separately from

each other. In fact in [19, 62] we show that decoding at the relay nodes and operating
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below the capacities of each link can actually significantly reduce the achievable rate.

Therefore, unlike the wireline scenario where each link is made error-free by channel

coding, and network coding is then employed on top of that, our scheme only requires

a single encoding function. Only the destination has to decode the received signal.

Many problems related to wireless networks remain open. Generalizing the results

in this chapter for other network problems is one possible extension of this work. As a

first step, in [2], the problem of a single source wanting to send the same information

to several destinations is considered. For these problems it can be shown that unlike

wireline networks, the capacity region is not given by min-cut bounds. It is shown in

[24] that the capacity region of multiple input erasure broadcast channels is given by

time-sharing between users at different inputs. This result gives tighter outer-bounds

on the capacity region of broadcast problems in erasure wireless networks.

It will also be interesting to see if similar results can be obtained for other types

of networks, such as erasure wireless networks in which interference is incorporated

in the reception model, networks involving channels other than erasure channels, etc.

4.9 Appendix

4.9.1 Proof of Converse

We have to show that any sequence of (d2nR1e, . . . , d2nR|S|e, n) codes with P
(n)(s)
d1

→ 0

satisfies the bounds given in Theorem 2 (and Theorem 1). Let W = (W (s), s ∈ S)

be a random vector drawn i.i.d. from a uniform distribution over the set of message

indices W . Let Zn be the random vector describing the erasure locations, i.e., Zn =
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(Zij,t, (i, j) ∈ E , t ∈ {1, . . . , n}). Consider an s-d cut given by s-set Vs. We have,

n
∑

s∈Vc
d∩S

Rs

= H(W (s), s ∈ S ∩ Vc
d)

= I((W (s), s ∈ S ∩ Vc
d); Y

n
d , Zn) + H((W (s), s ∈ S ∩ Vc

d)|Y n
d , Zn)

(a)

≤ I((W (s), s ∈ S ∩ Vc
d); Y

n
d , Zn) + nεn

(b)

≤ I((W (s), s ∈ S ∩ Vc
d); Y

n(Vc
d), Z

n) + nεn

(c)
= I((W (s), s ∈ S ∩ Vc

d); Y
n(Vc

d)|Zn) + nεn

= H(Y n(Vc
d)|Zn) − H(Y n(Vc

d)|Zn, (W (s), s ∈ S ∩ Vc
d)) + nεn

(d)
= H(Y n(Vc

d)|Zn) + nεn

(e)

≤ H(Y n(Vc
d)|(Zn

ij, (i, j) ∈ [Vc
d,Vd])) + nεn

(f)

≤
n∑

t=1

∑

i∈Vc
d
∗

H(Yij,t, j : (i, j) ∈ [Vc
d,Vd]|Zij,t, j : (i, j) ∈ [Vc

d,Vd]) + nεn

(g)

≤
n∑

t=1

∑

i∈Vc
d
∗

H(Yij,t, j : (i, j) ∈ [Vc
d,Vd]) − H(Zij,t, j : (i, j) ∈ [Vc

d,Vd]) + nεn

(h)
=

n∑

t=1

∑

i∈Vc
d
∗

H(Yij,t, j : (i, j) ∈ [Vc
d,Vd]) − H(Yij,t, j : (i, j) ∈ [Vc

d,Vd]|Xi,t) + nεn

=
n∑

t=1

∑

l∈Vc
d
∗

I(Xl,t; (Ylj,t, j : (l, j) ∈ [Vc
d,Vd])) + nεn (4.20)

(i)

≤
n∑

t=1

∑

l∈Vc
d
∗

(1 − Pr(Zlj = 1, j : (l, j) ∈ [Vc
d,Vd])) + nεn (4.21)

(j)

≤
n∑

t=1

∑

l∈Vc
d
∗

(1 −
∏

j: (l,j)∈[Vc
d,Vd]

εlj) + nεn

= nC(Vc
d) + nεn

where

(a) follows from Fano’s inequality since message W (s) can be decoded at node d

from Y n
d and the erasure locations Zn across the network.

(b) follows from the properties of the block code defined in Section 4.4 and data
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processing inequality. The causality of the block code and also the determin-

istic structure of the relaying functions can be used to inductively show that

(W (s), s ∈ S∩Vc
d)−Y n(Vc

d)−Y n
d forms a Markov chain for any cut. Applying

the data processing inequality gives inequality (b).

(c) follows since messages and erasure locations are independent from each other.

(d) follows since the output of every channel is a deterministic function of the era-

sure locations Zn and the transmitted messages (W (s), s ∈ Vc
d ∩S). Therefore

the second conditional entropy is zero.

(e) follows from the fact that conditioning reduces the entropy.

(f) follows from the fact that conditioning reduces the entropy and H(X1, . . . , Xm) ≤
∑m

i=1 H(Xi) for any collection of random variables.

(g) follows from the fact that (Zij,t, j : (i, j) ∈ [Vc
d,Vd]) is a deterministic function

of (Yij,t, j : (i, j) ∈ [Vc
d,Vd]).

(h) follows since H((Yij,t, j : (i, j) ∈ [Vc
d,Vd])|Xi,t) = H(Zij,t, j : (i, j) ∈

[Vc
d,Vd]).

(i) follows from the capacity of the memoryless erasure channel. Here the trans-

mitter transmits Xl,t and the receiver has access to Ylj,t , (l, j) ∈ [Vc
d,Vd]. The

receiver experiences an erasure only if all channels (l, j) ∈ [V c
d,Vd] simultane-

ously suffer an erasure. Therefore the equivalent channel’s erasure probability

is Pr(Zlj,t = 1, j : (l, j) ∈ [Vc
d,Vd]).

(j) follows since in the case of independent erasure events Pr(Zlj,t = 1, j : (l, j) ∈ [Vc
d,Vd])

is equal to
∏

j: (l,j)∈[Vc
d,Vd] εlj

Remark 3. As we observe from (4.20), the upper bound is in terms of the mutual

information between the input and outputs of every broadcast system (i.e., a node and

its outgoing edges) in the network. We should also mention that the same kind of
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upper bound of (4.20) holds for more general networks (not necessarily erasure) that

have interference-free and broadcast property.

Remark 4. From (4.21), we see that in the case of correlated erasure events, i.e.,

when Zijs are dependent (however still data-independent), we can find an upper bound

for the maximum achievable rate for each cut. Furthermore, as mentioned in the

footnote of page 20, it can be verified that the probability of error analysis of Section

4.6.1.3 is valid for the correlated erasure events with the following definition of the

cut-capacity

C(Vs) =
∑

i∈V∗
s

(
1 − Pr(Zij = 1, j : (i, j) ∈ [Vs,Vc

s ])

)
. (4.22)

Therefore, the capacity results of this chapter go through for the correlated erasure

events as well.

4.9.2 Proof of Lemma 4.6

First note that if x and y are independent uniform random variables over GF (q)

it can be easily verified that x + y is also uniformly distributed over GF (q). By a

simple induction it is straightforward that sum of any number of independent uniform

random variables is uniformly distributed. By assumption different rows of A are

independent from each other. Also each element of Y is a linear combination of

elements of one specific row. Therefore different elements of Y are independent from

each other. Now we show that elements of Y are uniformly distributed. Without loss

of generality look at first element, i.e.,

y1 =

n∑

i=1

a1kxk.

Note that for non-zero xks, the a1kxks are independent uniformly distributed random

variables. Hence y1 is a sum of a number of independent uniform random variables

over GF (q), and, based on the above discussion y1 is uniformly distributed.
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Remark: Using Bayes rule, we can easily check that if X is a non-zero uniform

random vector over GF (q) and it is independent of A, then A ·X is a uniform random

vector.
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Chapter 5

A Practical Scheme for Wireless
Network Operation

In the previous chapter, we obtained an exact capacity result for a certain class of

networks called wireless erasure networks. The strategies used to achieve capacity

included a random codebook and random encoding by the relay nodes. In addition,

side-information regarding erasure locations and encoding functions is required at the

destination(s). In many practical systems, it is not possible to use these strategies

because of the complexity of computation and the delays involved. Therefore, in this

chapter, we consider networks in which nodes are restricted to performing a fixed

collection of very simple operations. We consider directed and acyclic networks with

either Gaussian fading links or erasure links. In the former case, we incorporate

broadcast and interference in the usual way, and in the latter case, the model is

largely identical to that of the previous chapter.

On the face of it, the simplest operation that every node can do is try and decode

the received message, possibly without error, and send it on. This would make every

link or subnetwork act in an error-free manner. In fact, in many problems in wireline

networks, it is known that this leads to optimal operation, that is, achieving capacity

on each link or sub-network is optimal for the entire network operation. In this

chapter, we will see that the same is not true for wirless networks. We present

examples of wireless networks in which decoding and achieving capacity on certain

links or sub-networks gives us lower rates than other simple schemes, like simply
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forwarding the data, with erasures or noise. This implies that the separation of

channel and network coding that holds for many classes of wireline networks does

not, in general, hold for wireless networks.

We then consider the question of optimal operation of Gaussian and erasure wire-

less networks where nodes are permitted only two possible operations – nodes can

either decode what they receive (and then re-encode and transmit the message) or

simply forward it. We present a centralized greedy algorithm that returns the opti-

mal scheme from the exponential-sized set of possible schemes. This algorithm will

go over each node at most once to determine its operation and hence is very efficient.

We also present a decentralized algorithm whose performance can approach the op-

timum arbitrarily closely in an iterative fashion. It is important to note that once

nodes know the appropriate operation that they need to perform, the schemes do not

require any channel side-information at the destination.

5.1 Introduction

In a wireline network with a single source and a single destination, we can think of

information flow as fluid flow and obtain a max-flow min-cut result to get capacity.

This treatment closely follows that of the Ford-Fulkerson [66] algorithm to give a

neat capacity result. This has been well-understood for many years. However, until

recently, similar max-flow min-cut capacity results were not known for any other

class of network problems. Before we describe the recent results obtained in network

problems, let us understand the general network problem. This can be stated in the

context of a multi-terminal network [71] as follows. We have a set of nodes and the

“channel” between these is specified by a probability transition function that governs

the relationship between the signals transmitted by the nodes and signals received by

the nodes. Every node can have messages that it wants to send to every other node.

Because of the generality of this model, it can be tailored to describe many practical

systems easily. For instance, several wireless as well as wireline systems, (stationary)

ad hoc and sensor networks, etc., can be modeled by choosing a suitable probability
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transition function.

In recent years large ad hoc networks have received a lot of attention, starting

with the work of Gupta and Kumar [35]. Most results involving these networks use

relaying as a tool and consider issues like throughput, power efficiency and distortion.

In addition, cooperation is a technique that has been shown to be very effective [70].

However, these methods study asymptotically large networks and give scaling laws

rather than exact results for the performance measures that they study. In fact,

finding the exact capacity region in this general setting is extremely challenging. In

[71] outer bounds on the capacity region can be found. These have the form of

“min-cut” upper bounds. Such an upper bound formalizes the intuitively satisfying

notion that the rate from node a to node b cannot exceed the rate that any cutset

of edges from a to b can support. However, determining whether schemes of network

operation that reach this upper bound exist or not has proved to be very difficult.

Even in simple relay networks, i.e., networks having one source node, one destination

node and a single other node (called the relay node), the answer to this question is

not known in general [71]. Only in special cases of the probability transition function

(defined as “degraded” distributions) do we know of schemes that can reach the upper

bounds and thus attain capacity.

In this context, the results in [68, 64] are remarkable. They say that, in a wireline

network setting, we can achieve the min-cut upper bounds for multicast problems

where one source node sends the same message to several sink nodes. It turns out

that using network coding techniques we can achieve the min-cut capacity of the

network. Further, [58] put this problem in an algebraic framework and presented

linear schemes that also achieved this capacity. In addition, for some more general

multicast problems, capacity has been shown to be achievable using linear network

coding [58]. The work of [74, 65, 55] demonstrates the strengths of this algebraic

approach.

In all these capacity-achieving schemes, the min-cut upper bounds are reached

through separate channel and network coding: each link in the wireline network can

be made error-free by means of channel coding and then network coding can be
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employed to determine which messages should be transmitted on each link. This

is quite unexpected and leads us to wonder if such a separation is optimal in more

general network settings.

In investigating this question, we first present simple wireless networks where this

principle of separation fails. Thus, in these networks, it is suboptimal for each relay

to decode prior to retransmission. This observation was first made in [62, 20]. We

will also suggest some schemes of operation that will outperform those that require

the ability of relay nodes to decode.

We focus attention on two wireless network models: Gaussian wireless networks

and erasure wireless networks. The first model has Gaussian channels as links and

incorporates broadcast as well as interference. The second model has erasure chan-

nels as links and incorporates broadcast but not interference. For these models, we

show that making links error-free sometimes prohibits optimal performance. In fact,

sometimes it is better for nodes to forward their data unchanged.

We propose a scheme of network operation that permits nodes only two operations.

One is decoding to get the original data and then resending the same message as the

source. The other is forwarding the data as received. Since each node has two options,

we have an exponential-sized set of possible operations. We present an algorithm

that goes over each node at most once to find the optimal operation among this set

of restricted operations. This algorithm is greedy and optimal. We also present an

algorithm that iteratively approaches the best rate. The algorithm is “decentralized”:

in each iteration each node needs only one bit of information from the destination

and no knowledge of the rest of the network in order to determine its own operation.

The organization of this chapter is as follows. In Section 5.2 we present the

two wireless network models. In Section 5.3 we show that with these wireless models,

making links or sub-networks error-free can be sub-optimal. In Section 5.4 we formally

state the two operations allowed at each node. We describe the full design problem

in Section 5.5. In Section 5.6 we investigate the rate implications of the decode and

forward strategies. will see how rates are calculated for all nodes in the network

and how asking certain nodes to decode and others to forward can affect the rate
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of the network. We describe our algorithm in Section 5.7 and prove its optimality

in Section 5.8. Section 5.9 contains examples showing that the gap between the “all

nodes decode” strategy and our method can be significant. In Section 5.10 we discuss

the decentralized algorithm. We present upper bounds on the rate achievable by our

scheme in Section 5.11. Conclusions and further questions are presented in Section

5.12.

5.2 Two Wireless Network Models

In this section we formalize two wireless network models. These are Gaussian net-

works and erasure networks. In both cases the network consists of a directed, acyclic

graph G = (V, E) where V is the set of vertices and E is the set of directed edges

where each edge is a communication channel. We will denote |V| = V and |E| = E.

Also, we will have V = {v1, · · · , vV } and E = {(vi, vj) : (vi, vj) is an edge}. We will

assume, without loss of generality, that s = v1 is the source node and d = vV is the

destination. The remaining nodes are the relay nodes that must aid communication

between s and d. We will assume that every edge is on some directed path from s to

d. If we have edges other than these, we remove them and what remains is our graph

G. We will denote the message transmitted by vertex vi by X(vi) and that received

by node vj by Y (vj). Figure 5.1 represents a network with six vertices and nine edges

d

v4 v5

X5

s

v2 v3

Y2

Figure 5.1: Example of a network with six vertices and nine edges. v1 is the source
s and v6 is the destination d. X(v5) is the message transmitted by v5 and Y (v2) is
that received by v2.

where v1 is the source s and v6 is the destination d. X(v5) is the message transmitted

by v5 and Y (v2) is that received by v2.
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(a) Gaussian Wireless Networks: In these networks, each edge (vi, vj) of the

network is a Gaussian channel with some fixed attenuation factor hi,j associated

with it. In a practical system, this may be some pathloss that depends on the

physical distances between the nodes. We will assume hi,j to be a non-negative

constant. We will assume that nodes broadcast messages, i.e., a node transmits

the same message on all outgoing edges. Assuming that Figure 5.1 represents a

Gaussian wireless network, X(v5) is the message transmitted on edges (v5, v3)

and (v5, v6). We will also assume interference, i.e., the received signal at node

vi is the sum of all the signals transmitted on edges coming into it and additive

white Gaussian noise ni of variance σ2
i . Therefore, in general, we have

Y (vi) = ni +
∑

vj :(vj ,vi)∈E
hj,iX(vj).

All nis are assumed independent of each other as well as of the messages. For

Figure 5.1 this implies that Y (v2) = h1,2X(v1)+h4,2X(v4)+n2. We will assume

that all transmitting nodes have a power constraint of P .

(b) Erasure Wireless Networks: In these networks, each edge (vi, vj) of the

network is a binary erasure channel with erasure probability εi,j. In addition,

we assume that nodes (other than the source node) can transmit erasures and

they are received as erasures with probability one. Denoting erasure by ∗, this

assumption means that edges can also take ∗ as input and this is always received

as ∗. In short, the channel for edge (vi, vj) (for vi 6= s) is modified as in Figure

5.2. We incorporate broadcast in the model, i.e., each transmitting node must

send out the same signal on each outgoing edge. Now assuming that Figure 5.1

represents a wireless erasure network, v5 transmits X(v5) on edges (v5, v3) and

(v5, v6).

However, we do not permit interference. This means that a node having several

incoming edges sees messages from each edge without their interfering with each

other. In general, if vi has γI(i) incoming edges, it will see γI(i) messages that
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do not interfere with each other.1 In Figure 5.1, we see that Y (v2) consists of

two received messages – the message coming in on edge (v1, v2) (which is X(v1)

with some bits erased) as well as the message coming in on edge (v4, v2) (which

is X(v4) with some bits erased).

Finally, we mention that instead of the regular binary erasure channel, we can

consider a channel with any finite alphabet A as the input alphabet and get a

more general erasure wireless network model. Our results go through for this

also, but for simplicity, we restrict ourselves to binary inputs.

(1 − εi,j)

0 0
(1 − εi,j)

1 1

εi,j

εi,j

1
∗∗

Figure 5.2: Modified erasure channel. We allow erasures to be transmitted as well as
the bits 0 and 1. Erasures are always received as erasures.

For both networks, we will assume instantaneous transmission on all links.

5.3 Optimizing over Sub-networks does not work

Theorem 5.1. For the wireless networks described in Section 5.2, making sub-networks

error-free can be suboptimal.

Proof. We give some examples to demonstrate this.

• Gaussian Relay Networks: Consider a Gaussian parallel relay network con-

sisting of two relay nodes and one source-destination pair. See Figure 5.3(a).

1There exist network models in the physical layer that incorporate interference, which, when
abstracted to an erasure network model act similarly to the interference-free model we have described
here. For instance, simple division multiple access schemes, such as TDMA, FDMA or CDMA can
be used to eliminate the interference.
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v3
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(a) Graph representation of a relay
network with two relay nodes.
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(b) Critical value of erasure
probability for k relay nodes.

Figure 5.3: Proof of Theorem 5.1. We see that for certain erasure probabilities, having
the relay nodes decode causes the rate to the destination to decrease. Thus, making
the subnetwork {s, v2, v3} error-free can be suboptimal.

All four channel coefficients are assumed to be one. The relay nodes v2 and v3

are solely to aid communication from source to destination. We assume that

the noise power at each receiver is σ2 and the transmit power at each node is

P . Let ρ , P
σ2 be the signal-to-noise-ratio (SNR).

One way to view the network is as a cascade of a broadcast channel (from s to

{v2, v3}) and a multiple access channel (from {v2, v3} to d). This is equivalent

to assuming that the relays decode their messages correctly and code them

again and transmit. If the relays are receiving independent information at rates

R1 and R2, we have R1 + R2 ≤ log(1 + ρ) as the capacity region. These rate

pairs (R1, R2) can be supported by the multiple access channel and hence the

maximum rate from s to d is no greater than log(1 + ρ). If the relays are

receiving exactly the same information from the source, the maximum rate of

this is log(1+ ρ). In this case, the multiple access channel is used for correlated

information and can support rates up to log(1 + 4ρ). In either case, asking the

relay nodes to decode limits the rate from s to d to log(1 + ρ). (We note also

that the broadcast sub-network is the bottleneck in both cases.)

Now consider another strategy in which the relay nodes do not decode but only

normalize their received signal to meet the power constraint and transmit it to
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the destination. In this case the received signal at the destination is

Y (v4) =

√
P

P + σ2
(2X(v1) + n2 + n3) + n4

where X(v1), Y (v4), n2, n3, n4 are, respectively, the transmitted signal from the

source, the received signal at the destination and the noises introduced at v2, v3

and d. Thus, the signal received by d is a scaled version of X(v1) with additive

Gaussian noise. The maximum achievable rate, denoted by Rf , is

Rf = log

(
1 +

4P 2

P+σ2

σ2 + 2Pσ2

P+σ2

)
= log

(
1 +

4ρ2

3ρ + 1

)

where ρ is as before. Here, the subscript f stands for forwarding.

Comparing Rd and Rf , we can see ρ = 1 is a critical value in the following sense.

For ρ > 1, we have superior performance in the forwarding scheme and for ρ < 1

we have better rate with relay nodes decoding and re-encoding. This implies

that making a sub-network error-free (in this case, the broadcast section, or the

links (v1, v2) and (v1, v3)) can sometimes be sub-optimal.

We note that decoding at one of the relay nodes and forwarding at the other is

always sub-optimal.

In general, if we have k(≥ 2) relay nodes in parallel rather than two, it can be

easily checked that

Rd = log(1 + ρ) and Rf = log

(
1 +

k2ρ2

(k + 1)ρ + 1

)
.

With this we get a critical value of ρ = 1
k2−k−1

below which decoding is better

and above which forwarding is better. Clearly, this goes to zero for large k.

Therefore in the limit of k → ∞ it is always favorable to forward.

It turns out that this fact is also true for Gaussian relay networks in the presence

of fading. The work of [62] shows that for fading Gaussian relay networks with

n nodes, the asymptotic capacity achievable with the relay nodes decoding (and
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re-encoding) scales like O(log log n) whereas with the forward scheme it scales

like O(log n).

Similar problems are considered in [59] and [60]. The former considers bounds

and achievable rates for the Gaussian network with two parallel links and the

latter considers a network with a single source and destination and the other

nodes acting as relays. The second result shows that the maximum rate achiev-

able is O(logn). This is the same as that achieved by forwarding in our scheme.

• Erasure Relay Network: Consider, once again, the network of Figure 5.3(a),

where, now, each link represents an erasure channel with erasure probability

εi,j = e. Since we have broadcast, node s transmits the same messages to relay

nodes v2 and v3. If the relay nodes decode and re-encode, the rate is bounded

by the sum-rate capacity of the broadcast system, which gives

Rd = 1 − e.

If the relay nodes simply forward what they receive, it is easy to see that the

destination sees an effective erasure probability of (1− (1− e)2). (We will spell

out how to do this calculation for a general network in Section 5.6.) Forwarding

erasures is possible since we are assuming the modified erasure channel of Figure

5.2. With this we have Rf = 1− (1− (1− e)2)2. Comparing Rf and Rd, we can

see that e = 3−
√

5
2

is a critical value, above which decoding and re-encoding is

better and below which forwarding is better.

Thus we see that for this network also, making the broadcast sub-network error-

free is not always optimal.

In general, if we have k relay nodes in parallel rather than two, we have

Rd = 1 − e and Rf = 1 − (1 − (1 − e)2)k

and the critical value of e is as plotted in Figure 5.3(b). Below this, forwarding
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is better and above this decoding is better. In the limit of large k, it is always

better to forward.

From this we see that making links or sub-networks error-free does not ensure optimal

network operation. It can sometimes be provably sub-optimal.

In this proof a simple operation like forwarding the received data proved to be

better than decoding it. We understand this as follows. Because of the broadcast

present in wireless networks, the same data naturally gets passed on to the destination

along many different paths. Therefore some nodes receive better versions of the data

on incoming links than other nodes and are automatically in a better position to

decode. Forcing all the nodes to decode and be error-free only imposes additional

bottlenecks on the rate. Therefore it is beneficial to carefully check the quality of the

effective signal that various nodes get to see and then decide whether to ask them to

decode or not.

5.4 A Possible Set of Network Operations

It follows from the previous discussions that to obtain the optimum rate over wireless

networks, the nodes must perform operations other than just decoding. Determining

what the optimum operation at each node should be, especially for a general wireless

network, appears to be a daunting task. We shall therefore simplify the problem

by allowing one of only two operations at every node. One will be the decode and

re-encode operation as before. The other is the far simpler operation of forwarding

the received data as is. The first operation, viz., decode and re-encode, is typically

the only operation used in multihop networks and many wireline networks. In effect,

we are attempting to attain higher rates by introducing the additional operation of

forwarding.

We will assume that the network operates in blocks of length n. We assume that

the source s has a set of message indices

Ω = {1, 2, . . . , 2bnRc}
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and an encoding function

f : Ω → X n

where X is R for the Gaussian wireless network and {0, 1} for the erasure wireless

network. To transmit message i ∈ Ω, the source transmits f(i). With this the source

operates at rate R. {f(1), f(2), . . . , f(2bnRc)} is the set of codewords or possible

transmitted messages. This set is called the codebook and is denoted by C. We

assume that all nodes have the codebook. For the Gaussian network we will assume

that the codebook meets the power constraint, i.e., E‖f(i)‖2 ≤ P .

In this chapter, we restrict the relay nodes to two operations. These have been

introduced in the examples of Section 5.3, viz., “forward” and “decode and re-encode.”

We now state them formally.

(a) Decode and Re-encode: This operation implies that when node vi receives

message Y (vi) it performs ML decoding of Y (vi) to determine which message

index was transmitted by s. Since it has the codebook, it re-encodes the message

using the same codeword that the source s would have used and transmits the

same codeword. In short, it should act like a copy of the source.

However, for this to happen, we need the decoding to be error-free. This implies

that the rate R at which the source operates should be no greater that the

maximum rate at which node vi can decode. We will see the relevance of this

constraint in Section 5.5.

(b) Forward: We will describe this operation separately for the two network mod-

els. In the Gaussian network, node vi receives message Y (vi) given by

Y (vi) = ni +
∑

vj :(vj ,vi)∈E
hj,iX(vj). (5.1)

“Forwarding” implies that the node normalizes this signal to meet the power

constraint and then transmits the message. Therefore it transmits X(vi) given
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by

X(vi) =

√
P

E‖Y (vi)‖2
Y (vi).

We will assume that E‖Y (vi)‖2 is known to vi.

For the erasure network, nodes either decode without error and transmit the

original codeword or “forward” the received data. Consider node vi which sees

data coming in on several edges, in the form of n-length blocks of bits and

erasures. For the bth bit of such a block, it either sees erasures on every edge

(and this sees an effective erasure) or gets to see the bit on at least one incoming

edge. (It cannot happen that the node sees 1 on a particular edge and 0 on

another edge for the bth position. This is because of our assumption that

whenever an earlier node decodes, it does so without error.) Therefore in our

interference free model, every relay node sees an effective erasure channel from

the source, i.e., it sees the codeword transmitted by the source with some bits

erased. “Forwarding” means broadcasting this sequence of bits and erasures.

Note that the effective erasure probability seen by node vi is a function of the

network topology and parameters, εi,j. We will see in Section 5.6.3 how this

effective erasure probability can be calculated.

By restricting ourselves to only two operations, we have ensured that all nodes in

the network see a Gaussian channel (with some effective SNR) or erasure channel

(with some effective erasure probability) with respect to the transmitted codeword.

Therefore, they can do ML decoding or typical set decoding if R is no greater than

the rate that they can support. We will always ensure that R satisfies this constraint.

We can think of both operations as specific forms of network coding. In both net-

works and with both operations, all the information coming in at a node on different

edges gets pooled together – this happens automatically in the Gaussian network and

is done by the node itself in the erasure network. But the node has the choice of try-

ing to decode, thus imposing a rate constraint, or simply forwarding the information,

hoping that some other node would have a better chance of decoding.
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Having described the two operations permitted to the relay nodes in the two

networks, we are now ready to formally state the problem.

5.5 Problem Statement

Since we allow only two operations to nodes, viz., “decode and re-encode” and “for-

ward,” and every relay node must perform one of these, it is enough to specify the set

of relay nodes that “decode and re-encode” in order to completely specify the working

of the network. The source and destination will always be excluded from this set.

If a set D ⊆ V − {s, d} is the set of nodes that “decode and re-encode,” we will

call D a policy for network operation.

Under policy D, each node of the network sees an effective (Gaussian or erasure)

channel from the source. Let the effective SNR that node vi sees under policy D

be denoted by ρD(vi) for Gaussian networks. For erasure networks we denote the

effective erasure probability seen by node vi under policy D by eD(vi). Therefore the

rate that node vi can support under policy D is log(1 + ρD(vi)) or (1 − eD(vi)) for

Gaussian or erasure networks, respectively. In general we will call this RD(vi). Nodes

in D as well as the destination must be able to perform error-free decoding. This

means that the rate at which the source transmits must be no greater than the rates

at which these nodes can decode. This tells us that under policy D, the rate R at

which we can operate the network is constrained by

R ≤ min
vi∈D∪{d}

RD(vi). (5.2)

We denote this minimum by RD.

RD = min
vi∈D∪{d}

RD(vi). (5.3)

Intuitively, asking some nodes to decode means that there are more copies of the

source in the network and hence the rate that the destination can support increases.

On the other hand, asking a node to decode introduces a constraint on the rate R.
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This is the tradeoff for any policy D. For instance, in Figure 5.1 consider nodes

v2 and v4. If v4 forwards, node v2 sees an effective erasure probability of ε4,2ε1,2 +

ε1,4ε1,2(1 − ε4,2). (We will see how this has been calculated in Section 5.6.3.) On the

other hand, if v4 decodes, node v2 is at an advantage since it sees a lower effective

erasure probability, viz., ε1,2ε4,2. However, asking v4 to decode puts a constraint on

the rate as seen by (5.2) since the rate that v4 can support is only (1 − ε1,4). This

constraint is RD ≤ 1 − ε1,4.

Our problem is to find the policy that gives the best rate, i.e., to find D such that

RD is maximized, viz.,

max
D

min
vi∈D∪{d}

RD(vi).

First we need to address the question of finding RD(vi), i.e., of finding the rate at

node vi under policy D. Recall that X(vi) and Y (vi) are the transmitted and received

messages at node vi. If we are using policy D, we will denote these by XD(vi) and

YD(vi). We may drop the subscript D if it is clear which policy we are referring to.

Note that for the source, the transmitted message is X(v1) irrespective of the policy.

5.6 Determining the Rate at a Node – RD(vi)

In this section we describe a method to find the rate at an arbitrary node vi when

the set of decoding nodes is given by D. Therefore, we need to find the effective SNR

or erasure probability of the received signal YD(vi). In order to do that, we need the

concept of a partial ordering on the nodes.

5.6.1 Partial Ordering of Nodes

Consider two distinct nodes vi and vj of the network. Exactly one of the following

three will occur:

(a) There is a directed path from vi to vj. In this case we will say that vi < vj.

(b) There is a directed path from vj to vi. In this case we will say that vj < vi.
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(c) There is no directed path from vi to vj or from vj to vi. In this case we will say

that vj and vi are incomparable.

Note that since we assume acyclic networks, we cannot have directed paths both from

vi to vj and from vj to vi. Thus we have a partial ordering for nodes in the network.

For example, in Figure 5.1, we have v4 < v3 but v2 and v5 are incomparable. Note that

the partial ordering gives us a (non-unique) sequence of nodes starting with s such

that for every vi, all the nodes vj that satisfy vj < vi are before it in the sequence [72].

Call such a sequence S. A possible sequence S for Figure 5.1 is (s, v4, v2, v5, v3, d).

Next we address the issue of determining the rate under a particular policy. We

discuss this separately for Gaussian wireless networks and erasure wireless networks.

5.6.2 Finding the Rate in Gaussian Wireless Networks

Recall that YD(vj) is the received signal at vj under policy D. Once we know YD(vj)

we can determine the signal power and the noise power in it. Denote these by PD(vj)

and ND(vj) respectively. Consider node vj. If it is decoding, XD(vj) = X(v1). If it

is forwarding,

XD(vj) =

√
P

E‖YD(vj)‖2
YD(vj) =

√
P

PD(vj) + ND(vj)
YD(vj).

We now outline a method for finding the rate for all the nodes by proceeding in

the order given by S. Without loss of generality, assume that the nodes are already

numbered according to a partial ordering. Therefore S = (v1 = s, v2, . . . , vV = d).

Then, for v2, we only have an edge coming in from s and hence

YD(v2) = h1,2X(v1) + n2.

Let our induction hypothesis be that we know YD(vj) for j = 1, . . . , i− 1. For YD(vi)
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we now have

YD(vi)

= ni +
∑

vj :(vj ,vi)∈E
hj,iXD(vj) (5.4)

= ni +
∑

vj :(vj ,vi)∈E ,vj∈D∪{s}
hj,iX(v1) +

∑

vj :(vj ,vi)∈E ,vj /∈D∪{s}
hj,iXD(vj)

= ni +
∑

vj :(vj ,vi)∈E ,vj∈D∪{s}
hj,iX(v1) +

∑

vj :(vj ,vi)∈E ,vj /∈D∪{s}
hj,i

√
P

PD(vj) + ND(vj)
YD(vj).

By our hypothesis, we know all the YD(vj) that occur in the last summation, Sub-

stituting for these, we get YD(vi). Careful observation indicates that this will be a

linear combination of X(v1) and the noise terms n2, . . . , ni.

In general, if this linear combination is given by

YD(vi) = aDX(v1) +

i∑

j=2

aD,j(vi)nj,

we have PD(vi) = a2
DP and ND(vi) =

∑i
j=2 a2

D,j(vi)σ
2
j . Once these are known, the

SNR is simply ρD(vi) = PD(vi)
ND(vi)

and the rate can be calculated as RD(vi) = log(1 +

ρD(vi)). Clearly, the complexity of this procedure is O(V ).

5.6.3 Finding the Rate in Erasure Wireless Networks

We first put this problem in a graph-theoretic setting. We are given a directed, acyclic

graph where certain nodes act as sources. For us, the set D ∪ {s} is the set of source

nodes. All the edges of the graph have certain probabilities of failing, i.e., of being

absent. For us, these are the erasure probabilities of the channel. With this setup, for

every node v in the network (excluding s, but including those in D) we need to find the

probability that there exists at least one directed path from some source node to this

node. This is the network reliability problem in one of its most general formulations

[77, 76]. This is a well-studied problem and is known to be #P -hard [76]. Although

no polynomial-time algorithms to solve the problem are known, efficient algorithms
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for special graphs are known. An overview of the network reliability problem can

be found in [75]. In the rest of this section we propose two straightforward methods

to compute the probabilities of connectivity that we are interested in. We will also

mention some techniques that can reduce the computation involved in these methods.

Assume that we have a policy D. Consider a node vi of the network. To find

RD(vi) we need to find eD(vi). A bit is erased at node vi if it is erased on all incoming

links. With each edge (vi, vj) in the graph, associate a channel random variable z(i, j).

This takes the value 0 when a bit is erased and the value 1 when a bit is not erased.

Thus, it is a Bernoulli random variable with probability (1 − εi,j).

Consider all the directed paths from s to vi. Let there be ki paths. Denote the

paths by B1, . . . , Bki
. Let path Bj consist of lj edges. We specify path Bj by writing in

order the edges it traverses, i.e., with the sequence ((vj1 , vj2), (vj2, vj3), . . . , (vjlj
, vjlj+1

)).

We know that s = vj1 and vi = vjlj+1
. Consider the set of vertices excluding vi that

are on path vj, i.e., {vji
: i = 1, . . . , lj}. Some nodes in this set may belong to D, i.e.,

they are decoding nodes. In this case we know that they transmit the original code-

word exactly. Let t be the largest index in this set such that vjt decodes. Therefore,

vi will not receive bit b along path Bj only if an erasure occurs on an edge that comes

after vjt in the path. We associate with path Bj the product of the random variables

that affect this, viz.,

Zj = z(jt, jt+1) · z(jt+1, jt+2) · · · · · z(jlj , jlj+1).

This product is zero if one of the z random variables takes value zero, which, in turn,

means that an erasure occurred on that edge.

Now, vi sees an erasure only when none of the paths from s to itself manage to

transmit the bit to it. Therefore, vi sees an erasure when Zj = 0 for all the paths
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Bj, j = 1, . . . , ki. Therefore we have

RD(vi) = 1 − eD(vi)

= 1 − P (

ki⋂

j=1

(Zj = 0))

= P (

ki⋃

j=1

(Zj 6= 0)).

One way to evaluate this is by checking all possible combinations of values that

the z variables can take and finding the total probability of those combinations that

satisfy ∪ki
j=1(Zj 6= 0). This procedure has complexity O(2E). One observation that

can make this procedure more efficient is the following – if we know that setting a

certain subset of the z variables to one is enough to make the event
⋃ki

j=1(Zj 6= 0)

happen, then for every superset of this subset, setting all the z variables in that

superset to one is also enough to make the event
⋃ki

j=1(Zj 6= 0) happen. With this,

we may have to check out fewer than the 2E possible combinations of values for the

z variables and reduce the complexity.

Another way to evaluate this is by using the Inclusion Exclusion Principle [72].

This gives us

P (

ki⋃

j=1

Zj 6= 0) =

ki∑

r=1

∑

1≤j1<···<jr≤ki

(−1)r+1P (Zj1 6= 0, . . . , Zjr 6= 0).

Since we have ki paths, the above expression has 2ki − 1 terms. A general term of

the form P (Zj1 6= 0, . . . , Zjr 6= 0) can be evaluated by first listing all the z variables

that occur in at least one of the r terms. Say these are z(i1, j1), · · · , z(iq, jq). Now

P (Zj1 6= 0, . . . , Zjr 6= 0) is given by the product (1 − εi1,j1) × · · · × (1 − εiq ,jq). This

procedure has complexity O(E2k) where k is the maxi ki. In this procedure, the

complexity of listing all the variables in a certain set of r terms can be reduced by

storing the lists that one makes for sets of (r − 1) terms and simply adding on the z

terms from the rth term to the appropriate list.
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5.7 Algorithm to find Optimum Policy

In general, since we have V − 2 relay nodes and each node has two options, viz.,

“forwarding” and “decoding and re-encoding,” we have 2V −2 policies. To find the

optimum policy we can analyze the rate for each of these policies and determine the

one that gives us the best rate. This strategy of exhaustive search requires us to

analyze 2V −2 policies.

Here, we propose a greedy algorithm that finds the optimum policy D which

maximizes the rate. This algorithm requires us to analyze at most V − 2 policies. In

the next section we will give a proof of correctness for this algorithm.

(a) Set D = ∅.
(b) Compute RD(vi) for all vi ∈ V. (Use techniques of Section 5.6.)

Find RD = minvi∈D∪{d} RD(vi).

(c) Find M = {vi|vi /∈ {s, d} ∪ D, RD ≤ RD(vi)}.
(d) If M = ∅, terminate. D is the optimal strategy.

(e) If M 6= ∅, find the largest D′ ⊆ M such that ∀v ∈ D′, RD(v) = maxvi∈M RD(vi).
Let D = D ∪ D′.
Return to 2.

At each stage of the algorithm, we look for nodes that are seeing a rate as good as

or better than the current rate of network operation. If there are no such nodes, the

algorithm terminates. If there are such nodes, we choose the best from among them.

Thus, in every iteration, the nodes we add are such that they do not put additional

constraints on the rate of the network. Therefore, the rate of the network can only

increase in successive iterations.

Note that since we assume a finite network, this algorithm is certain to terminate.

Also, since D cannot have more than (V − 2) nodes, the algorithm cycles between

steps 2 to 5 at most (V − 2) times. This is significantly faster than the strategy of

exhaustive search that requires us to analyze 2V −2 policies.

The complexity of the algorithm depends on how fast the computation of RD(vi)

can be done. We have seen techniques for this computation in Section 5.6.
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5.8 Analysis of the Algorithm

We first prove a lemma regarding the effect of decoding at a particular node on the

rates supportable at other nodes.

Lemma 5.2. When node v is added to the decoding set D, the only nodes vi that may

see a change in rate are vi > v. This change can only be an increase in rate, i.e., ∀vi

such that vi > v we have, RD(vi) ≤ RD∪{v}(vi). Every other node vj is unaffected,

i.e., RD(vj) = RD∪{v}(vj).

Proof. We give a proof for the Gaussian network. We omit the proof for erasure

networks since it uses the same ideas.

Gaussian Network : Recall the computation of ρD(vi) described in Section 5.6.2.

The computation for YD(vi) depends only on (some of) the YD(vj) where (vj, vi) is

an edge. Therefore, inductively, it is clear that YD(vi) (and hence ρD(vi)) depends

only on the nodes v where v < vi. Therefore, the only nodes that are affected when v

changes its operation (from “forwarding” to “decoding and re-encoding”) are vi > v.

The rest are unaffected.

Consider one of the XD(vj) terms in (5.4). Note that each of these is of power

P , of which some power is the signal power and the rest is the noise power. If vj

changes its operation from forwarding to decoding, XD(vj) = X(v1), i.e., the signal

power increases to P and the noise power goes to 0. If vj is forwarding, XD(vj) is

only a scaled version of YD(vj). Since it is always of power P , if the SNR at node

vj increases, the signal power in XD(vj) increases while the noise power decreases.

From (5.4) we see that in both these cases, there is an increase in the signal power of

YD(vi) and a decrease in the noise power. This implies an increase in the SNR.

Therefore, when v is added to D, by induction, for all nodes vi > v, the SNR, if

affected, can only undergo an increase. Naturally, we have the same conclusion for

the rate.

This lemma tells us that adding nodes to the set of decoding nodes can only

increase the rate to other nodes. While this sounds like a good thing, it also puts
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a constraint on the rate as indicated by (5.2). It is this tradeoff that our algorithm

seeks to resolve by finding the optimal set of decoding nodes.

5.8.1 Proof of Optimality

Theorem 5.3. The algorithm of Section 5.7 gives us an optimal set of decoding nodes.

Proof. Let S be an optimal set of decoding nodes. Let D be the set returned by the

algorithm. We will prove that RD ≥ RS. Then, since S is optimal, we will have

RD = RS .

We prove RD ≥ RS in two steps. First we show that RS∪D ≥ RS. Then we show that

S ∪ D − D = ∅, i.e., S ∪ D = D. This will complete the proof.

Step 1: In every iteration, the algorithm finds subsets D′ and adds them to D.

Denote by Di the subset that is added to D in the i-th iteration. Assuming the

algorithm goes through m iterations, we have D = D1 ∪ · · · ∪ Dm where the union is

over disjoint sets. In the algorithm, when Di is added to D, all the nodes in it are

decoding at the same rate which is RD1∪···∪Di−1
(v) for v ∈ Di. We will call this rate

Ralgo,i. Consider the smallest i such that Di * S, i.e., Di is not already entirely in S.

Claim: Adding Di to S does not decrease the rate, i.e., RS∪Di
≥ RS.

Proof. Because of the acyclic assumption on the graph, we will have some nodes

v ∈ S such that ∀u(6= v) ∈ S we either have v < u or v and u are incomparable. Let

L be the set of all such nodes v. Note that by Lemma 5.2, node v supports a rate

RS(v) = R∅(v). By (5.3), for every v ∈ L we have the necessary condition

RS ≤ RS(v) = R∅(v). (5.5)

Also note that D1, . . . , Di−1 are all in S and by the definition of L and Lemma 5.2

we have

R∅(v) = RD1∪···∪Di−1
(v). (5.6)

We now consider two cases.
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• If for some w ∈ L, we also have w ∈ Di, then from (5.5) and (5.6) we have

RS ≤ RS(w) = R∅(w) = RD1∪···∪Di−1
(w) = Ralgo,i.

• On the other hand, if none of the nodes in L is in Di, pick any node v ∈ L. We

have v /∈ Di. We now consider two subcases.

– Let v /∈ D1, . . . , Di−1. We note from steps 3 and 5 of the algorithm that

it picks out from the set of nodes not in D, all nodes with the best rate.

Since v does not get picked, we have Ralgo,i > RD1∪···∪Di−1
(v). This along

with (5.5) and (5.6) gives us RS ≤ RD1∪···∪Di−1
(v) < Ralgo,i.

– The other possibility is that v ∈ D1∪· · ·∪Di−1. Since the Dis are disjoint,

there is a unique j such that v ∈ Dj. Since v ∈ L, by Lemma 5.2,

Ralgo,j = RD1∪···∪Dj−1
(v). With the same argument as that for (5.6), we

have R∅(v) = RD1∪···∪Dj−1
(v). But since the algorithm never decreases rate

from one iteration to the next, we have Ralgo,i ≥ Ralgo,j. Putting these

together we get Ralgo,i ≥ Ralgo,j = RD1∪···∪Dj−1
(v) = R∅(v). With (5.5) this

gives us RS ≤ RS(v) = R∅(v) ≤ Ralgo,i.

Therefore, in every case, we have shown that RS ≤ Ralgo,i. This implies that adding

the rest of the nodes from Di to S will not put additional constraints on RS and

hence cannot decrease the rate. Therefore we have RS∪Di
≥ RS.

Since S is optimal, this proves that S ∪ Di also achieves optimal rate. We can

now call this set S and for the next value of i such that Di * S, we can prove that

S ∪ Di has optimal rate. Continuing like this we have that S ∪ D is optimal, or, in

other words, RS∪D ≥ RS.

Step 2: Next we wish to show that S ⊆ D, i.e., S ∪ D − D = ∅. Let us assume the

contrary. Let T = S∪D−D. Therefore, T ∩D = ∅ but T ⊆ S. Thus, D∪S = D∪T

where D and T are disjoint. Consider v ∈ T such that ∀u(6= v) ∈ T , we either

have v < u or v and u are incomparable. We have RD∪T (v) = RD∪S(v). By Lemma

5.2, RD∪T (v) = RD(v). Also, the constraint of (5.2) tells us that RD∪S ≤ RD∪S(v).

Finally, note that since the algorithm terminates without adding v to D, we have
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RD > RD(v). Putting these inequalities together we have RD > RD(v) = RD∪T (v) =

RD∪S(v) ≥ RD∪S. But this contradicts the fact that S ∪D is optimal. Thus we have

S ⊆ D, i.e., S ∪ D = D.

From steps 1 and 2 we have RD ≥ RS. But since S was an optimal policy, D is also

an optimal policy. This proves that the algorithm does indeed return an optimal set

of decoding nodes.

The only case in which this proof does not go through is when the algorithm returns

D = ∅ and S 6= ∅. In this case, consider node v ∈ L ⊆ S, where L is as defined earlier.

Since the algorithm does not pick up v, we have R∅ > R∅(v). But RS ≤ RS(v) = R∅(v)

from (5.5). Thus, RS < R∅. But this contradicts the optimality of S. Therefore, if

there exists an optimal, non-empty S, the algorithm cannot return an empty D.

Corollary 5.4. The algorithm of Section 5.7 returns the largest optimal policy D.

Proof. In the proof above, we have shown that for any optimal policy S, we have

S ⊆ D. This implies that D is the largest optimal policy.

5.9 Examples

In this section we present some examples of networks and show how the algorithm

runs on them.

5.9.1 Multistage Erasure Relay Networks

In Figure 5.4(a) we have depicted a multistage relay network. In this we have a single

source and destination and k layers of relay nodes. The ith layer consists of li nodes.

Between the ith and the (i + 1)th layer we have a complete bipartite graph where all

the edges are directed from the ith layer to the (i + 1)th. We assume that each of

these edges has erasure probability εi. The source is connected to all the nodes in the

first layer by erasure channels with erasure probability ε0 and all the nodes in the kth

layer are connected to the destination by erasure channels with erasure probability

εk. We will also call d the (k + 1)th layer and lk+1 = 1.
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Because of the structure of this network, finding the rate under a particular policy

is easier than indicated in Section 5.6.3. Denote by Qi,j the probability that in layer i

there are j nodes that do not see an erasure. This defines Qi,j for i = 1, 2, . . . , (k +1)

and j = 0, 1, . . . , li. With this, for i = 1 we obtain

Q1,k =

(
l1
k

)
εl1−k
0 (1 − ε0)

k. (5.7)

For i > 1, we can show the recursion below.

Qi,k =

(
li
k

) li−1∑

t=0

ε
t(li−k)
i−1 (1 − εt

i−1)
kQi−1,t. (5.8)

Denote by ei the probability that the at least one node in the ith layer does not

see an erasure. We can show that

ei =

li∑

k=0

Qi,k

(
1 − k

li

)
.

Note that, by symmetry, whenever a node decides to decode, all the nodes in that

layer decode. When layer i decides to decode, we set Qi,li = 1 and Qi,j = 0 for j 6= li

and continue with the recursion of (5.8) for the other layers. This also extends to the

case when more than one layer decodes.

Now, our algorithm proceeds as before, but operates on layers rather than nodes

and the effective erasure probability at layer i is ei. As an explicit example, consider

a multistage relay network with four layers between the source and destination. Let

l1 = 3, l2 = 6, l3 = 4, l4 = 5 and ε0 = p, ε1 = p2, ε2 = p, ε3 = p3, ε4 = p where p is

any number in the interval [0, 1]. For a fixed value of p, we can find the optimum

policy for the network and this will give us the optimal rate. Figure 5.4(b) shows

this optimal rate for the parameter p going from 0 to 1 (solid curve). This is not a

smooth curve. The point where the right and left derivatives do not match is where

either the optimum policy or the rate-determining layer changes. The rate with all

nodes decoding has also been plotted (dashed curve). This rate is 1 − p and we see
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Figure 5.4: Multistage relay network. Rate achieved by the optimum forward/decode
scheme is greater than the rate achieved when all nodes decode.

that the algorithm gives us dramatically higher rates.

5.9.2 Multistage Gaussian Relay Networks

We consider a multistage network similar to the one of the previous section, but in

which the the links represent Gaussian channels with fading coefficients hi and with

additive noise σ2
i at layer i. The indexing is identical to that in the erasure network.

Because of the structure of the network, it is easy to compute SNRs. Let ρ(i)

denote the SNR at layer i. Then, in the situation where all the nodes are forwarding,

the following recursion gives us the SNR. We initialize the recursion as follows.

a(1) = h2
0P b(1) = σ2

1 ρ(1) =
a(1)

b(1)
.

For the rest of the layers, i.e., i ≥ 2 we have

a(i) = a(i − 1)
h2

i l
2
i

1 + 1
ρ(i−1)

;

b(i) = b(i − 1)
h2

i li
1 + 1

ρ(i−1)

+ σ2
i i;

ρ(i) =
a(i)

b(i)
.
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As with the erasure relay network, whenever a node decides to decode, all the nodes

in that layer decode. If some layers decide to decode, a simple modification of the

above recursion gives us the new rates. If i is the smallest number such that the ith

layer decodes, then, clearly, the above recursion gives us rates for layers l1 to li. For

li+1, we set a(i +1) = h2
i l

2
i P and b(i + 1) = σ2

i+1. We have ρ(i +1) = a(i + 1)/b(i +1)

as before and we can continue with the recursion above for layers (i + 2) etc. We

repeat this modification for each layer that decodes.

Once the SNR at a layer is known, the rate is given by log(1 + ρ) as usual. With

this procedure for calculating rates, we use the algorithm of Section 5.7. It now

operates on layers rather than nodes.

As an explicit example, consider a multistage relay network with three layers

between the source and destination. Each node is restricted to using power P = 1.

Let l1 = 2, l2 = 5, l3 = 3 and h0 = 0.7, h1 = 10, h2 = 0.1, h3 = 1. We will have

σ2
1 = m2, σ2

2 = m, σ2
3 = m3, σ2

4 = m2 where m can be any positive real number. For a

fixed value of m, we can find the optimum policy for the network and this will give

us the optimal rate. Figure 5.5 shows this optimal rate for the parameter m going

from 0.5 to 1.5 (solid curve). As with the multistage erasure network, the curve is not

smooth at points where the optimum policy or the rate-determining layer changes.

We also see the advantage compared to the case when all nodes decode (dashed curve).

5.9.3 Erasure Network with Four Relay Nodes

Consider the relay network of Figure 5.6(a). All the links have the same erasure

probability p, where p is any number between 0 and 1. For this range of p, the

algorithm has been used to find the optimum rates and policies. The rate is plotted

in Figure 5.6(b) (solid curve). Throughout, the optimal policy is D = {v2, v3, v5}.
The rate with all nodes decoding is 1 − p and is also plotted (dashed curve). As

expected, the algorithm outperforms the all-decoding scheme.
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Figure 5.5: Rate for the multistage Gaussian relay network. Rate achieved by the
optimum forward/decode scheme is greater than the rate achieved when all nodes
decode.
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Figure 5.6: Erasure network with four relay nodes. Rate achieved by the optimum
forward/decode scheme is greater than the rate achieved when all nodes decode.

5.9.4 Gaussian Network with Three Relay Nodes

In Figure 5.7(a) we see a Gaussian network with three relay nodes. We assume that

each node is restricted to use power P = 1. Let the additive noise variances be

σ2
2 = m, σ2

3 = m3, σ2
4 = m2, σ2

5 = m1 where m can be an arbitrarily chosen real

number. In Figure 5.7(b) we see the rate returned by the algorithm for the optimal

policy for m ∈ [0.5, 1.5] (solid curve). The rate with all nodes decoding is also plotted

(dashed curve). In the region m ∈ [0.5, 0.58] we see that the optimal policy is in

fact that of decoding at all nodes and the two curves match. After that, the optimal
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Figure 5.7: Gaussian network with three relay nodes. Rate achieved by the optimum
forward/decode scheme is greater than the rate achieved when all nodes decode.

policy changes and hence we see that the optimal rate curve is not smooth.

5.9.5 Gaussian Network with Four Relay Nodes

In Figure 5.8(a) we see a Gaussian network with four relay nodes. Each node, includ-

ing the source, is restricted to using power P = 1. The attenuation factors associated

with the edges are h1,2 = 1, h1,4 = 2, h4,2 = 3, h2,3 = 4, h4,3 = 5, h4,5 = 1, h3,6 =

3, h5,3 = 2, h5,6 = 4. The additive noise variances associated with the nodes are

σ2
2 = m, σ2

3 = m3, σ2
4 = m2, σ2

5 = m, σ2
6 = m3 where m can be any positive real num-

ber. In Figure 5.8(b) we see the rate returned by the algorithm for the optimal policy

for m ∈ [1, 3] (solid curve). The rate with all nodes decoding is also plotted (dashed

curve). We see that the forward/decode scheme gives us significant improvements in

the rate.

5.10 A Distributed Algorithm for the Optimal Pol-

icy

The algorithm as proposed in Section 5.7 requires that the network parameters (viz.,

noise variances or erasure probabilities) be known before the network operation begins
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Figure 5.8: Gaussian network with four relay nodes. Rate achieved by the optimum
forward/decode scheme is greater than the rate achieved when all nodes decode.

so that the optimum policy is known beforehand. With the algorithm in its current

form the nodes cannot determine for themselves if they should decode or forward.

In this section we propose a scheme that can permit nodes to determine their own

operation.

The algorithm works iteratively to converge to a rate. In each iteration, the rate

of operation of the network is incremented or decremented depending on whether the

previous transmission was successful or not. In every iteration, all the nodes get to

decide their operation for themselves.

Let R∗ be the maximum rate of the network. This is not known beforehand.

We assume that parameters R, δ and N are known to all the nodes beforehand.

The blocklength n is also predetermined and known to all the nodes. In addition,

we require that the nodes have a common source of randomness so that they can

generate the same random codebook individually. With this, consider the following

algorithm.

(a) All nodes generate the (same) codebook for rate R. They all set k = 0.
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(b) s transmits a randomly chosen codeword X(v1).

(c) Every relay node vi attempts to decode the received message Y (vi).
If it can decode without error, it transmits the decoded codeword. 2

Else, it forwards the received message (with appropriate scaling, for the Gaus-
sian network).

(d) The destination attempts to decode the received message.
If it decodes without error, it sends back bit 1 to all the other nodes to indicate
successful decoding.
Else, it sends back bit 0 to all other nodes.

(e) All nodes increment k. k = k + 1.
If transmitted bit was zero, all nodes set R = R − δ/2k.
If transmitted bit was one, all nodes set R = R + δ/2k.

(f) While k ≤ N , go to step 1.

Theorem 5.5. If the maximum rate of the network, viz. R∗ is in the range [R −
δ, R + δ], the algorithm above converges to it with an accuracy of δ

2N .

Proof. The source starts by transmitting at rate R. Each relay node receives messages

on all incoming links and decodes the message if it can. If it cannot, it simply forwards

what it has received. With this procedure, nodes decide their own operation. (The

order in which they decide this is a partial order in the sense defined in Section

5.6.1.) After the destination receives all its incoming messages, it tries to decode. If

R > R∗, the destination will definitely not be able to decode. If R ≤ R∗, we claim

that the destination will be able to decode. This is because when a node decodes, it

only improves the rates for other nodes. Also, note that an arbitrary node v decides

whether to decode or not only after all the nodes before it in the partial order have

already determined if the rate they can support is greater or smaller than R. Since,

by Lemma 5.2, these are the only nodes that affect the rate for v and they decode

whenever they can, node v always gets to see the best situation it can as far as rate

R is concerned. This is true for the destination also.
2One method of error detection is for a node to perform typical set decoding, and assume an error

if it finds more than one codeword that is jointly typical with the received message. Other methods
of error detection are the introduction of cyclic redundancy checks (CRCs) or an ARQ protocol e.g.
[69].
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Therefore, depending on whether the destination can decode or not, we can say if

R∗ is greater or smaller than R. If this bit of information is transmitted back to the

source and other nodes, they can accordingly decide whether to increase or decrease

the rate for the next transmission. Thus we have a decision tree of rates such that the

ability or inability of the decoder tells us which path to traverse in that tree. With

this we can finally converge on a rate sufficiently close to the actual rate R.

This algorithm provides a very natural mode of network operation that obviates

the need for a central agent to know the entire network and decide the optimum

policy. Although some communication from the destination to the source and other

nodes is required, this is minimal and should be easily possible in a practical network

setting.

We mention that the algorithm we present can be made more sophisticated such

that it works for all values of R∗, rather than just those in the interval [R− δ, R + δ].

We omit the details in the interests of brevity.

5.11 Upper Bounds on the Maximum Rate

The algorithms of Section 5.7 as well as Section 5.10 converge to the maximum rate

possible with the decode/forward scheme, but we have no way of simply looking at

the network and saying what this maximum rate will be. In this section, we present

upper bounds on the rate achievable with the limited operations that we use in this

chapter.

5.11.1 Definitions

An s − d cut is defined as a partition of the vertex set V into two subsets Vs and

Vd = V − Vs such that s ∈ Vs and d ∈ Vd. Clearly, an s− d cut is determined simply

by Vs. For the s − d cut given by Vs, let the cutset E(Vs) be the set of edges defined

below

E(Vs) = {(vi, vj)|(vi, vj) ∈ E , vi ∈ Vs, vj ∈ Vd}
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Finally, we define X(Vs) and Y (Vs) as below.

X(Vs) = {vi|(vi, vj) ∈ E(Vs)} Y (Vs) = {vj|(vi, vj) ∈ E(Vs)}

Thus X(Vs) and Y (Vs) denote the nodes transmitting and receiving messages across

the cut, respectively.

5.11.2 Upper Bound for Gaussian Networks

For Gaussian networks, it is evident that making the additive noise zero at certain

nodes can only increase the maximum rate available at d. In particular let us make the

additive noise zero at all nodes except Y (Vs). Therefore, the received messages (and

the transmitted messages) at all nodes in Vs are exactly the same as that transmitted

by the source. Now, if we permit the nodes in Y (Vs) to decode cooperatively, the rate

at which they can decode will give us an upper bound on the rate that the destination

can get.

Note that the SNR at node vj ∈ Y (Vs) is

P

σ2
j


 ∑

vi:(vi,vj)∈E(Vs)

hi,j




2

.

Since our codebook and noise are Gaussian distributed, the optimum scheme for

decoding cooperatively is taking a suitable linear combination of received messages

and then decoding that. For optimal decoding, we find the linear combination that

gives us the best SNR. It is easy to show that the best SNR possible is the sum of

the SNRs seen by each node in Y (Vs).

Therefore, an upper bound on the rate is

R ≤ log


1 +

∑

vj∈Y (Vs)

P

σ2
j


 ∑

vi:(vi,vj)∈E(Vs)

hi,j




2


for every cut Vs.
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5.11.3 Upper Bound for Erasure Networks

As in the above section, we can obtain an upper bound on the rate for erasure networks

by making certain links perfect, or free of erasures. Therefore we can obtain an upper

bound on the rate by making all edges other than those in E(Vs) perfect. With this all

the received (and transmitted) messages in Vs are exactly the same as the codeword

transmitted by the source. Now, it is clear that the rate at which the nodes in Y (Vs)

can decode co-operatively is an upper bound on the rate available at the destination.

Clearly, the effective erasure probability seen by the set of nodes Y (Vs) is
∏

(vi,vj)∈E(Vs) εi,j

This gives us an upper bound on the rate. We have

R ≤ 1 −
∏

(vi,vj)∈E(Vs)

εi,j

for every cut Vs.

Note that in [63], a different min-cut upper bound is proposed and is shown to

be achievable. This gives the capacity of the network under the assumption that the

destination has perfect side-information regarding erasure locations from across the

network. This is very different from the setup of this chapter.

5.12 Conclusions

As the previous discussion demostrates, making each link in a wireless network error-

free is sub-optimal. Thus a multihop approach, in which every relay node decodes

the received message, is not necessarily a good approach for wireless networks. Re-

stricting attention to nodes that perform either decoding or forwarding, the proposed

algorithms include a greedy centralized algorithm for finding an optimal code and a

distributed algorithm that iteratively converges to an optimal solution without the

benefit of a central decision-making agent.

The algorithm of Section 5.7 finds the maximal rate and optimal policy for any

Gaussian or erasure wireless network. The results of Section 5.11 roughly bound

the optimal rates. However, we still do not know what policies are optimal for each
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erasure probability or SNR. The examples of Section 5.3 suggest that decoding is

better when the links are poor (high erasure probabilities or low SNR). It would be

interesting to know if this pattern holds for general networks and to find thresholds

below which a certain operation is always preferred.

Corollary 5.4 proves that the algorithm returns the largest decoding set. Since

decoding is the more costly of the two operations considered here, it would be useful

to develop an algorithm that achieves the maximal rate using the smallest decoding

set.

Both decoding and forwarding are special cases of network coding. We can also

imagine a larger set of operations and consider optimal code design for more general

code types. (In the most general case, all functions are allowed at a given node.

This puts the problem in an information-theoretic setting and a general solution for

erasure networks is proposed in the previous chapter, and [63], where network coding

techniques are used to obtain the precise capacity region for several multicast set-

tings in erasure networks, assuming certain side-information. Naturally, this capacity

region is an upper bound for the rates we have obtained in the absence of this side-

information. Finding practical schemes that reach this capacity is an interesting

avenue for future work.
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Chapter 6

Statistical Pruning for
Near-Maximum Likelihood
Decoding

In this chapter, we switch gears and present a problem in point-to-point communica-

tion, involving multiple antenna systems. In many such systems, maximum-likelihood

(ML) decoding reduces to finding the closest (skewed) lattice point in N -dimensions to

a given point x ∈ CN . This problem is known to be NP-complete in its full generality.

The expected complexity of the sphere decoder, a particular algorithm that solves the

ML problem exactly, has recently been computed, where it is shown that over a wide

range of rates, SNRs and dimensions N , the expected computation involves no more

than N3 computations. In this chapter, we propose an algorithm that, for large N ,

offers substantial computational savings over the sphere decoder, while maintaining

performance arbitrarily close to ML decoding. We statistically prune the search space

to a subset that contains the optimal solution with high probability, thereby reducing

the complexity of the search. We derive Bounds on the error performance of the new

method and give both an upper bound and an approximate analysis of its complex-

ity. The asymptotic behavior of the upper bound is also analyzed. Simulation results

show that, the algorithm compares favorably in terms of computational complexity

with the original sphere decoder without sacrificing much in terms of performance.
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6.1 Introduction

Multiple antenna communication systems are capable of achieving high data rates.

However, reliable decoding in these systems requires very high complexity. For a

wide class of space-time transmission schemes (see e.g., [78, 79, 80]) ML decoding

requires us to solve an integer least-squares problem. This is the problem of finding

the closest (skewed) lattice point in N -dimensions to a given point x ∈ CN , which

is known in general to be NP-hard. Most existing communications systems employ

approximations or heuristics and typically require O(N 3) operations (since underlying

all of the methods is the calculation of a pseudo-inverse). Zero forcing cancellation,

nulling and canceling and nulling and canceling with optimal ordering [78, 79, 81]

are common techniques. The bit error rate (BER) performance of these algorithms

is vastly inferior to that of the exact methods.

Exact methods require search over a space growing at an exponential rate. More

sophisticated exact methods such as Kannan’s algorithm [82], the KZ algorithm [83]

and the sphere decoding algorithm of [84] attempt to reduce the search space. The

branch and bound algorithm, popularly used to solve integer (usually linear) pro-

gramming problems, can also be used [85]. However, branch and bound imposes

additional constraints on the optimizing variables to reduce the size of the problem

and also requires one to estimate upper and lower bounds for the objective function

to prune the search tree. An improved sphere decoder based on the branch and bound

method appears in [86].

In the sphere decoding algorithm we first determine all lattice points lying in a

hypersphere centered at x and then determine the point closest to x. The complexity

of the algorithm is therefore a function of the amount of work that is required to

determine all lattice points inside a given hypersphere. (For some alternatives to

sphere decoding see [83, 87, 88]). The sphere decoding algorithm requires exponential

complexity in both worst-case and average analyses (see e.g., [89]). Since the noise

vector and the lattice-generating-matrix are random, we can view the computational

complexity as a random variable [90]. Analyzing the expected complexity of sphere
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decoding, as well as its second-order moment, [90] shows that, over a wide range of

rates, dimensions and SNRs, the algorithm uses no more than N 3 multiplications.

While this result is very interesting, the expected number of operations still becomes

prohibitively large for large enough N and low SNRs. This fact is formalized in

[91] which shows that for any SNR the sphere decoder has exponential expected

complexity.

In spite of this, the sphere decoder has attracted great interest and it has been

proposed as the decoder for several space-time coded systems. In addition, several

modifications to the sphere decoder have been suggested in the last few years that

attempt to reduce the computation involved [69, 93, 92, 94, 95, 96]. Implementations

of the sphere decoder in a complex setting rather than a real one are suggested in [90]

and [99]. Some of the suggested modifications solve the ML decoding problem exactly

([69, 93, 94]) and others sacrifice some performance in order to reduce complexity

([95, 96]).

The efficiency of the sphere decoder demonstrates the power of the probabilistic

viewpoint and we will continue to use it in the problem at hand. The main point

is to understand the role of the randomness underlying the problem and leverage

it suitably. We propose a modification to the sphere decoding algorithm that uses

statistical pruning to reduce the exponentially large search space to one that is much

smaller yet contains the optimal solution with high probability. This causes a signif-

icant reduction in complexity, at the price of a slight increase in the bit error rate

(BER). We bound this loss of performance and describe methods for controlling it.

We analyze the complexity in three ways. The first analysis is for asymptotically

large systems and is of theoretical interest. The other two are valid for any value of

N and can be used to design and understand practical systems.

The remainder of the chapter is organized as follows. In Section 6.2 we introduce

the integer least-squares problem and demonstrate that it arises in the ML decoding

of multiple antenna systems. In Section 6.3 the basic sphere decoding algorithm

is explained and in Section 6.4 the notion of complexity is outlined. In Section

6.5, we introduce the statistics of the problem and propose a new algorithm, called



139

the Increasing Radii Algorithm, that exploits these statistics. (This algorithm was

first presented in [96]). In Section 6.6 we bound the performance of this algorithm

with respect to the optimal, or ML, performance and in Section 6.7 we analyze the

complexity of the proposed algorithm. We then present simulations in Section 6.8.

Ideas for future work and conclusions appear in Section 6.9.

6.2 Integer Least-Squares Problem

The integer least-squares problem is the following minimization problem:

min
s∈ZM×1

‖x − Hs‖2

where x ∈ CN×1 and H ∈ CN×M are known and ZM×1 is the M -dimensional integer

lattice. Often the search space is a finite subset of the integer lattice, say A, in

which case the minimization is done over s ∈ A rather than s ∈ ZM×1. This problem

arises in several situations in communications, cryptography, etc. For a general H,

it is known to be NP-hard in the worst-case sense [100] as well as the average sense

[89, 101]. We now describe this problem in the context of ML decoding in a multiple

antenna system.

6.2.1 System Model

We assume a discrete-time block-fading multiple antenna channel model with M

transmit and N receive antennas, where the channel is known to the receiver. This

is a reasonable assumption for communication systems where the signalling rate is

much higher than the rate at which the propagation environment changes, so that

the channel may be learned (perhaps by transmitting known training sequences) by

the receiver. If S is the finite signal constellation, then during any channel use, the

transmitted signal s̃ ∈ SM×1 and the received signal x ∈ CN×1 are related by

x = Hs̃ + v (6.1)
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where H ∈ CN×M is the known channel matrix with independent, identically dis-

tributed (i.i.d.) complex Gaussian entries of variance σ2
h, i.e., CN (0, σ2

h). We assume

N ≥ M 1. v ∈ CN×1 is the unknown additive noise vector, comprised of i.i.d. complex

Gaussian entries of variance σ2
v , i.e., CN (0, σ2

v). Without loss of generality, we assume

σ2
v = 1. Thus, H and v are the only sources of randomness when s̃ is a particular

transmitted point. With this setup we have σh = σv

σs

√
ρ
M

where ρ is the expected

signal-to-noise ratio (SNR) and σ2
s is the average power of the signal constellation S.

Under the aforementioned assumptions the ML criterion requires us to find s ∈ SM×1

that minimizes ‖x − Hs‖2. This is equivalent to the integer least-squares problem

mentioned in Section 6.2 where the search space, A, viz. SM×1, is finite but has

cardinality exponential in M .

This is different from the general integer least-squares problem in that H and v are

random and hence the complexity of solving this problem is also a random variable.

Therefore it is the various moments of the complexity that are of interest to us – we

focus on the expected complexity in our work.

Also, the underlying probability distributions tell us how to prune the search space

in order to reduce the complexity of the general integer least-squares problem while

maintaining performance close to optimal.

In this chapter we only consider L2-QAM constellations with even L, i.e.,

S =

{
a + jb | a, b ∈

{
−L − 1

2
,−L − 3

2
, · · · ,

L − 3

2
,
L − 1

2

}}
. (6.2)

It is then easy to show that σ2
s = L2−1

6
. This gives us σh =

√
6

L2−1
ρ
M

.

Finally we note that the above description fits a system in which transmissions

are uncoded. In the ML decoding of systems involving space-time codes etc., we

also run into the integer least-squares problem [78, 79, 80]. In this situation, the

operational meanings of M , N and H may be different since they now involve the

coding scheme as well as the physical antennas. For instance, M and N would

1The case N < M can also be dealt with using the approach of this chapter. However, since it
inevitably requires an exhaustive search over a lattice of dimension M −N , we shall not consider it
here.
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typically be much larger than the actual number of transmit and receive antennas and

H would have entries that are functions of the coding scheme and the channel values.

(These would not necessarily be i.i.d. entries.) The algorithms mentioned in this

chapter would work for these systems also, however the analysis of the performance

and computational complexity would be different and would vary from system to

system. The analysis of the i.i.d. case is complicated as is and would become even

more intractable in the correlated case. Therefore we restrict the analysis to H

matrices with i.i.d. entries. We deal with non-i.i.d. matrices through simulations

where we run the proposed decoder on space-time coded systems that lead to an

equivalent channel with correlation.

6.3 Sphere Decoder

In this section we introduce the sphere decoder and also introduce the notation that

will be used in the rest of the chapter. In sphere decoding we search only over lattice

points that lie in a hypersphere of radius r around x, thus reducing the search space

and the computation. Therefore we first need to find all s ∈ SM×1 that lie within

this hypersphere of radius r. This is equivalent to solving

r2 ≥ ‖x − Hs‖2. (6.3)

To this end, consider the QR decomposition of the channel matrix H = Q


 R

0(N−M)×M


 ,

where R is an M × M upper triangular matrix with non-negative diagonal entries

and Q is an N × N unitary matrix. Such a decomposition is unique. Partition Q as[
Q1 Q2

]
where Q1 is N ×M and Q2 is N × (N −M). Since Q is unitary, so is Q∗.

We know that premultiplying by a unitary matrix does not change the squared-norm

of a vector. Therefore (6.3) becomes:

r2 ≥ ‖x − Hs‖2 =

∥∥∥∥∥∥
x − Q


 R

0


 s

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥


 Q∗

1

Q∗
2


 x −


 R

0


 s

∥∥∥∥∥∥

2

(6.4)
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Define

z =


 Q∗

1

Q∗
2


 x −


 R

0


 s. (6.5)

Introduce λ to denote the mod-squared entries of z.

λi = |zN−i+1|2 for i = 1, . . . , N.

Note that λ is indexed backwards relative to z. From (6.4), finding all s that satisfy

(6.3) amounts to finding all s that satisfy

λ1 + λ2 + . . . + λN ≤ r2. (6.6)

Consider the lower N − M entries of z. These are given by the vector Q∗
2x. Now, x

is known to the receiver and since it knows H, it can calculate Q and R. Therefore

Q∗
2x = [zM+1, . . . , zN ]T is known to the receiver. Hence, so are λ1, . . . , λN−M . More-

over, these are independent of s and s̃ and therefore contain no useful information for

the decoder. Therefore, solving (6.6) is equivalent to solving

λN−M+1 + · · · + λN ≤ r
′2 (6.7)

for r
′2 = r2 − (λ1 + · · · + λN−M). Note that due to the upper-triangularity of R,

λi+N−M depends only on the unknowns sM , . . . , sN−i+1 for i = 1, . . . , M . Therefore

(6.7) can be solved by successively solving

λ1+N−M ≤ r
′2,

λ1+N−M + λ2+N−M ≤ r
′2,

...

λ1+N−M + λ2+N−M + · · ·+ λN ≤ r
′2, (6.8)

for sM , sM−1, . . . , s1. This works in the following way. The first condition gives possi-

ble values for sM . For each of these, using the second condition, we obtain possible val-
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ues for sM−1. This process continues because for any predetermined sM , . . . , sM−i+2,

the ith condition gives an interval for sM−i+1. Once all s ∈ SM×1 that satisfy (6.7)

are known, we can find that s which minimizes ‖x − Hs‖2. If there are no solutions

found, we increase r
′
and resolve the problem. For more on the sphere decoder see

[90].

6.4 Computational Complexity

Computational complexity is defined as the number of arithmetical operations re-

quired before the decoder gives an output. Apart from the complexity of the QR

factorization, the major computation involved in finding the closest point is in deter-

mining all points in each lower dimension, i.e., in the successive inequalities of (6.8).

We see that the algorithm constructs a search tree where the branches at depth k in

the tree correspond to the lattice points inside the hypersphere of radius r and di-

mension k. Clearly, the total computation involved depends on the number of points

the decoder visits as it constructs the tree. For a point in the kth dimension, the

number of operations or flops required to process it turn out to be proportional to k.

(2k + 17 in [90].) Therefore we have

C =

M∑

k=1

(Expected # of points in k-sphere of radius r) · (flops/point). (6.9)

Thus, the complexity of the algorithm depends on the size of the search tree and the

computation required at each dimension. For various implementations the flops/point

can take different values and have a complicated dependence on the enumeration

method especially for hardware implementations[102]. In particular, the pseudocode

of [90] and that presented in Section 6.5.3 use a number of flops linear in the di-

mension under consideration. We will see in the analyses presented in this chapter

that this factor either plays no role (asymptotic analysis of Section 6.7.2) or remains

transparent in the final expression (Sections 6.7.1 and 6.7.3). Thus, replacing it by a

different expression presents no difficulty as far as the analysis is concerned. In the
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simulations, our particular implementation does use flops/point that are linear in the

dimension and we use that fact while presenting numerical results.

For the setup involving a real channel and 2-PAM as the signal space and with

the receiver using sphere decoding, [90] obtains the following complexity:

C =
M∑

k=1

(2k + 17)
k∑

l=0

(
k

l

)
Γ

(
r2

2(1 + 4ρ
M

l)
,
k + N − M

2

)
(6.10)

where Γ(x, a) =
∫ x

0
e−t

Γ(a)
ta−1dt is the incomplete gamma function. [90] also has similar

expressions for other constellations.

While the sphere decoding algorithm is one of the exact methods that solve the

maximum-likelihood problem without exhaustive search, even with finite constella-

tions (L-PAM, L2-QAM, etc.), it begins to take up significantly more than N 3 or N4

computations at some N that is in the range of practical interest. The reason for this

is understood as follows. The chosen radius-squared, r2, is typically proportional to

N , therefore the algorithm retains a very large fraction of the lattice points (in fact

nearly all the points) upto some dimension k before it starts to prune the tree. For

instance, if N = 100, we have r2 = αN such that up to dimension k = cN where c is

some constant less than 1, we keep nearly all the points of the lattice. This already

gives us LcN points to search over and the complexity quickly becomes exponential.

The result of [91] makes this observation rigorous and we will discuss this issue further

in Section 6.7.2.

6.5 Statistical Pruning

With a view to decreasing the computational complexity we now propose a modifi-

cation to the sphere decoding algorithm that reduces the size of the tree. We suggest

the Increasing Radii Algorithm, which defines a region around x, different from the

hypersphere, to search in. This algorithm does not perform exact ML decoding but

can perform as close to ML as desired through the choice of certain parameters. The

proposed algorithm relies heavily on the statistics of the problem (such as the distri-
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bution of the λi) for performance as well as reduction in complexity. In fact, it is the

statistics that motivate the particular pruning approach that we take.

6.5.1 Statistics

We now take a look at these statistics. For any vector s ∈ SM×1 define si ∈ Si×1

as the lower length-i subvector of s, i.e., the vector [sM−i+1, . . . , sM ]T . Define ci =

1
σ2

v+σ2
h‖si−s̃i‖2 and c0 = 1

σ2
v

= 1.

The characteristic functions and distributions for the λi random variables are

obtained in Appendix 6.10.1 and mentioned in Table 6.1. The mean and variance can

then be computed easily and are mentioned in Table 6.2.

Eejαλi pλi
(λi)

i ≤ N − M 1

1− jα
c0

coe
−c0λi

i > N − M
(1− jα

ci−1−N+M
)i−1

(1− jα
ci−N+M

)i

ci
i−N+M

ci−1
i−1−N+M

e−ci−N+M λi
∑i−1

k=0

(
i−1
k

)λk
i

k!
(ci−1−N+M − ci−N+M)k

Table 6.1: Characteristic function and pdf of λi

Eλi var λi

i ≤ N − M 1
c0

1
c20

i > N − M i
ci−N+M

− (i−1)
ci−1−N+M

i
c2i−N+M

− (i−1)

c2i−1−N+M

Table 6.2: Mean and variance of λi

We note that the λis are independent random variables. Define βi,j =
∑j

k=i λk+N−M

for 1 ≤ i ≤ j ≤ M . We denote β1,i by βi. Thus, βi is simply the sum of i independent

random variables. Therefore, its characteristic function is the product of the relevant

λj characteristic functions. Now the statistics for the βi random variables are easy to

compute and are shown in Table 6.3. Note that the βi are the quantities on the left

side of (6.8).

The sphere decoder gives exponential complexity because the first several con-

ditions of (6.8) are very loose. Thus, the tree of the points visited grows exponen-

tially for the first several dimensions. This is also clear from the fact that the sums
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Ejαβi pβi
(βi) Eβi var βi

(1− jα
c0

)N−M

(1− jα
ci

)i+N−M

ci+N−M
i

cN−M
0

e−ciβ1,i
∑N−M

l=0

(
N−M

l

) βi+l−1
1,i

(i+l−1)!
(c0 − ci)

l i+N−M
ci

− N−M
c0

i+N−M
c2i

− N−M
c20

Table 6.3: Statistics of βi, 1 ≤ i ≤ M

λ1+N−M + · · · + λk+N−M which occur in (6.8) (viz., the βks) have monotonically in-

creasing means while r′ is typically chosen on the basis of the distribution of βM , i.e.,

the full sum of all the λis under consideration. Therefore the first several conditions

do not prune the search space as much as desired. Taking our cue from this, we

propose a modification to the sphere decoding algorithm. In this modification, we

prune the search space right from the lower dimensions.

6.5.2 Increasing Radii Algorithm (IRA)

Using a schedule of radii r1 ≤ r2 ≤ . . . ≤ rM we solve for

λ1+N−M ≤ r2
1,

λ1+N−M + λ2+N−M ≤ r2
2,

...

λ1+N−M + λ2+N−M + · · · + λN ≤ r2
M , (6.11)

instead of solving for (6.8). By choosing a smaller radius for the lower dimensions and

gradually increasing it, the search space is cut down much earlier than with the sphere

decoder. We hope that this will reduce the number of points in the search region at the

lower dimensions. Denote by Dk the region in Sk×1 containing points that satisfy the

first k inequalities of (6.11). (Note that these points have been determined by finding

the values of sM , sM−1, . . ., sM−k+1 that satisfy the first k conditions.) We refer to

DM as D in the following discussion. As in the sphere decoder we can determine all

s ∈ D by solving the inequalities in (6.11) successively. Once the points within D are

determined, we find that point in D which minimizes ‖x−Hs‖ and declare it as the

decoder output.
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To reduce the complexity, we naturally try to reduce the number of points in D.

However, because of the “asymmetry” of the region it is possible that the lattice point

closest to x does not lie in the search space. For the sphere decoder, the closest point

to x inside the hypersphere is the closest point to x in the entire lattice. For the

IRA, however, the closest point to x in D is not necessarily the closest point to x in

the entire lattice. Thus, unlike the sphere decoder, we are not doing ML decoding

and are, potentially, incurring a greater BER. What we get in return is reduced

computational complexity. By increasing the asymmetry of the search region we can

decrease the computation involved, but simultaneously incur an increased BER. This

is the tradeoff inherent in the modification. As with the sphere decoder, if D is empty,

we increase the search region and run the decoder again. We note in passing that

similarly named algorithms are presented in [95]. However, they differ significantly

from this method of pruning as they rank most promising paths within a fixed radius

search in order to limit computation.

6.5.3 Pseudocode

The algorithm is in pseudocode in Table 6.4. It uses a depth-first search to construct

the tree. We use the vector r of size M × 1 to denote the schedule r1, . . . , rM that

we are using for the decoding. GetNewSchedule returns the new sequence of ris

with which we repeat the search when the region D is empty. The first schedule is

chosen so as to be successful with some probability (1 − ε1). If it fails, the second is

chosen so as to be successful with probability (1 − ε2) etc. This will become clearer

in later sections.
Clearly, for all ri being equal the IRA is the same as the sphere decoder.

6.6 Probability of Error

The algorithm repeats the search with a new sequence of ris if the solution set of

(6.11), viz. D, is empty. Let Di be the solution set at the ith iteration. The

algorithm terminates at the first i for which Di 6= ∅. We assume that Di−1 ⊆ Di
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and D∞ = SM×1.

Recall that s̃ is the transmitted point. Define εi = P (s̃ 6∈ Di). With probability

P (error) we make an error by decoding to s 6= s̃.

P (error)

=

∞∑

i=1

P (error,Di 6= ∅,Di−1 = ∅)

=
∞∑

i=1

P (error,Di 6= ∅,Di−1 = ∅, s̃ ∈ Di) +
∞∑

i=1

P (error,Di 6= ∅,Di−1 = ∅, s̃ /∈ Di)

=

∞∑

i=1

P (‖x − H(s − s̃)‖2 ≤ ‖v‖2for s ∈ Di, s 6= s̃,Di 6= ∅,Di−1 = ∅, s̃ ∈ Di)

+
∞∑

i=1

P (Di 6= ∅,Di−1 = ∅, s̃ /∈ Di)

≤
∞∑

i=1

P (ML decoder error,Di 6= ∅,Di−1 = ∅) +

∞∑

i=1

P (Di 6= ∅,Di−1 = ∅, s̃ /∈ Di)

= P ML
e +

∞∑

i=1

P (Di 6= ∅,Di−1 = ∅, s̃ /∈ Di) (6.12)

≤ P ML
e +

∞∑

i=1

P (Di 6= ∅,Di−1 = ∅, s̃ /∈ D1)

= P ML
e + ε1 (6.13)

where P ML
e is the probability of error with ML decoding. The third equality comes

from the fact that an error is certain to be made if Di 6= ∅,Di−1 = ∅, s̃ /∈ Di since

the transmitted point is not in Di while some other point is. The first inequality

comes from the fact that an ML decoder error does not require s or s̃ to be Di. We

expect that (6.12) is a tight bound relating the probability of error of the modified

algorithms to P ML
e . This is because it takes into account all the successive schedules

of ri that the algorithms may go through. However it is not clear how to evaluate

it exactly and hence we propose the simple bound of (6.13). This would be equal to

(6.12) if we chose to use only one schedule of ri and declared all bits to be in error

if the corresponding D turned out to be empty, rather than increasing the ri and

running the decoder again.
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6.6.1 ε with Increasing Radii Algorithm

For any given set of radii r1 ≤ . . . ≤ rM , D denotes the set of the lattice points inside

the search region. We now compute ε = P (s̃ /∈ D) for the Increasing Radii Algorithm.

Lemma 6.1. For the IRA, given a set of radii r1 ≤ . . . ≤ rM , ε = P (s̃ /∈ D) is given

by

ε =
M∑

k=1

e−r2
kJk−1 (6.14)

where

Jk =
k−1∑

l=0

(−1)k−l+1 r
2(k−l)
l+1

(k − l)!
Jl, J0 = 1 (6.15)

Proof. If s = s̃, we have z = Q∗v. Since Q is unitary, Q∗v has the same statistics as v,

i.e., i.i.d. entries distributed as CN (0, 1). With λi = |zN−i+1|2, we have pλi
(λi) = e−λi .

1 − ε is the probability that λ1+N−M , . . . , λN satisfy (6.11). Because the λis are

independent,

pλ1+N−M ,λ2+N−M ,...,λN
(λ1+N−M , λ2+N−M , . . . , λN) = e−(λ1+N−M +λ2+N−M +···+λN )

Therefore

1 − ε =

∫ r2
1

0

∫ r2
2−λ1+N−M

0

· · ·
∫ r2

M−(λ1+N−M +···+λN−1)

0

e−(λ1+N−M +···+λN )dλN . . . dλ1+N−M

=

∫ r2
1

0

∫ r2
2

µ1

· · ·
∫ r2

M

µM−1

e−µM dµM . . . dµ1

where the second line comes from changing variables: µi =
∑i

j=1 λj+N−M for i =

1, . . . , M . If we call this integral IM and integrate out µM we get

IM = IM−1 − e−r2
M JM−1 (6.16)

where JM−1 =
∫ r2

1

0

∫ r2
2

µ1
· · ·
∫ r2

M−1

µM−2
dµM−1 . . . dµ1. It can be shown that the Jis satisfy

the recurrence of (6.15). Thus J0, . . . , JM−1 can be computed. We define I0 = 1.

Then, using (6.16) recursively, we get IM = 1−∑M
k=1 e−r2

kJk−1. Since 1− ε = IM , we
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get (6.14).

6.6.2 Choice of ε and the Radii

Thus we obtain an exact expression for ε. Once we decide how much worse than ML

we are prepared to be, we can choose ε using the bound in (6.13). As indicated earlier,

this bound is loose, and the performance is usually much better than that indicated

by the value of ε. For the chosen value of ε, we can then use the expressions above to

determine the radii r1, . . . , rM . Note, however, that since (6.14) gives a highly under-

determined equation system involving the ris there is an entire family of schedules of

ri that give a particular epsilon. But if we choose a functional form for the radii we

can use the expressions obtained above to determine the ris. Since we want to solve

(6.11), choosing the ris in accordance with the expected values of the partial sums

that appear on the left side of each inequality is a reasonable option. But these partial

sums are precisely the βis. The statistics of these are in Table 6.3. We can see that

their expected values are i+N−M
ci

− N−M
c0

= (i+N−M)(σ2
v +σ2

h‖si− s̃i‖2)−(N−M)σ2
v .

Although ‖si − s̃i‖2 can take a range of values, we can see that Eβi increases at least

linearly with i. This motivates us to settle upon a linear schedule for the r2
i s. This

also means we have fewer parameters to choose. As indicated in the calculation of

ε, the r2
i values are chosen with the noise statistics in mind, therefore the slope of

linearity is chosen as σ2
v . (This is typically one.) It is now enough to choose the

value of r2
1 to determine the entire schedule. If we choose r2

1 = (δ log M + 1)σ2
v , then

the probability that the transmitted signal falls outside the search region at the first

dimension decays as 1
eMδ . Therefore we set r2

i = (δ log M + i)σ2
v , and choose δ such

that ε = 0.01, etc. Thus we can stay as close to the ML performance as we desire

through choice of ris.

In Table 6.5 we list some values of δ for different values of M . This means that if we

desire a value of ε for a particular value of M , a radius schedule of r2
i = (δ log M +i)σ2

v

where δ is picked from the table will do the job.
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6.7 Analysis of Computational Complexity

Recall the concept of computational complexity outlined in Section (6.4). In particu-

lar, we focus on the expression in (6.9). Since we are not searching over hyperspheres

anymore we have a modified expression for the complexity.

C =

M∑

k=1

(Expected # of points in Dk) · (flops/point). (6.17)

From the pseudocode of Section 6.5.3 we can determine that the flops/point is 8k+32.

Let us now investigate the exact computational complexity as defined in equation

(6.17). sk is as defined in Section 6.5.1. Define P (sk ∈ Dk) to be the probability

that the point sk is in the search region at dimension k, i.e., it satisfies the first k

equations of (6.11). Clearly

Expected # of points in Dk =
∑

sk∈Sk×1

P (sk ∈ Dk). (6.18)

We now need to compute P (sk ∈ Dk) and then do the sum in (6.18). Note that the

number of terms in the sum is L2k, i.e., exponential in k. Naturally, we would like

to evaluate the sum without having to explicitly evaluate P (sk ∈ Dk) for each of the

L2k values of sk. Whether this can be done or not depends on the functional form

of P (sk ∈ Dk). Therefore while determining P (sk ∈ Dk) we also keep in mind the

summation of (6.18).

For any sk ∈ Sk×1, the joint distribution of λ1+N−M , . . . , λk+N−M determines

P (sk ∈ Dk). More specifically,

P (sk ∈ Dk) =

∫ r2
1

0

· · ·
∫ r2

k−(λ1+N−M +···+λk−1+N−M )

0

pλ1+N−M ,...,λk+N−M
(λ1+N−M , . . . , λk+N−M)dλk+N−M . . . dλ1+N−M

(6.19)

We know the distribution of the λis from Table (6.1). Since the λis are independent
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we have

pλ1+N−M ,...,λk+N−M
(λ1+N−M , . . . , λk+N−M) =

k∏

i=1

pλi+N−M
(λi+N−M) (6.20)

Substituting from Table 6.1 and (6.20) into (6.19), the integral for P (sk ∈ Dk) can

be obtained exactly. However, this integral is very involved, and, moreover, even if

evaluated exactly, would not give an expression that can be summed easily in (6.18).

Therefore we now present one upper bound and one approximation to P (sk ∈ Dk)

and hence the complexity. We will also present an asymptotic analysis of the upper

bound for large dimensions.

6.7.1 A Simple Upper Bound

We upper bound the number of points in the search region at dimension k by ignoring

the fact that pruning has been done in dimensions less than k. This means that instead

of imposing the first k conditions of (6.11) for a point to be in the search region at

the kth subdimension, we only impose the kth condition. This becomes clearer in the

proof of the following result.

Theorem 6.2. For the Increasing Radii Algorithm the computational complexity is

bounded as

C ≤
M∑

k=1

(8k + 32)

2k(L−1)2∑

n=0

GL,k[n]
N−M∑

l=0

(
N − M

l

)(
1

σ2
v

− 1

σ2
v + σ2

hn

)l

×

σ2(N−M)
v (σ2

v + σ2
hn)l−N+MΓ

(
r2
k

σ2
v + σ2

hn
, k + l

)
(6.21)

where GL,k[n] is the coefficient of xn in 1
L2k

(
L +

∑L−1
j=1 2(L − j)xj2

)2k

and Γ(x, a) =
∫ x

0
e−t

Γ(a)
ta−1dt

Proof. Recall that βi,j =
∑j

k=i λk+N−M . For any s, let Bi be the event that β1,i ≤ r2
i

for i = 1, . . . , M . The statistics of the βis are mentioned in Table 6.3. sk ∈ Dk if it

satisfies the first k conditions of (6.11). This happens with probability P (B1, . . . , Bk).
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Now, if we only wanted to impose the kth condition, it would be satisfied with prob-

ability P (Bk). Naturally, P (Bk) upperbounds P (B1, . . . , Bk). Therefore,

P (sk ∈ Dk)

= P (B1, . . . , Bk)

≤ P (Bk)

=

∫ r2
k

0

pβ1,k
(β1,k)dβ1,k

=

N−M∑

l=0

(
N − M

l

)
(c0 − ck)

l

cN−M
0

cN−M−l
i Γ(ckr

2
k, k + l)

=
N−M∑

l=0

(
N − M

l

)(
1

σ2
v

− 1

σ2
v + σ2

h‖sk − s̃k‖2

)l

σ2(N−M)
v (σ2

v + σ2
h‖sk − s̃k‖2)l−N+M ×

Γ

(
r2
k

σ2
v + σ2

h‖sk − s̃k‖2
, k + l

)

where Γ(x, a) =
∫ x

0
e−t

Γ(a)
ta−1dt is the incomplete gamma function.

We now need to evaluate the summation of (6.18) with this upper bound. From

the definition of S in (6.2) it is evident that each entry in sk − s̃k can only take values

of the form x + jy where x, y ∈ {−(L− 1),−(L− 2), . . . , (L− 2), (L− 1)}. Therefore

‖sk − s̃k‖2 can take values in {0, . . . , 2k(L − 1)2}. Denote by rL
k (n) the “average”

number of solutions to ‖sk − s̃k‖2 = n. More precisely

rL
k (n) =

1

L2k

∑

s̃k∈Sk×1

(number of sk ∈ Sk×1 such that ‖sk − s̃k‖2 = n) (6.22)

We have assumed, without loss of generality, that all points are equally likely to be

transmitted. With this the summation of (6.18) becomes

∑

sk∈Sk×1

P (sk ∈ DIR,k) (6.23)

=

2k(L−1)2∑

n=0

rL
k (n)

N−M∑

l=0

(
N − M

l

)(
1

σ2
v

− 1

σ2
v + σ2

hn

)l

σ2(N−M)
v (σ2

v + σ2
hn)l−N+MΓ

(
r2
k

σ2
v + σ2

hn
, k + l

)
.
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It is shown in Appendix 6.10.2 that rL
k (n) is given by the coefficient of xn in Gk

L(x)

where GL(x) is the generating function mentioned in the statement of Theorem 6.2.

We denote Gk
L(x) by GL,k(x) and the coefficient of xn in this by GL,k[n]. This gives

us rL
k (n) = GL,k[n]. Using this in (6.23) and the expressions relating to complexity

stated in (6.17) and (6.18), we get the upper bound in (6.21).

This upper bound is very easy to evaluate, especially for small and moderate

values of M and N . It is also quite tight in this region. We further note that for

N = M , the upper bound of (6.21) simplifies to

C ≤
M∑

k=1

(8k + 32)

2k(L−1)2∑

n=0

GL,k[n]Γ

(
r2
k

σ2
v + σ2

hn
, k

)
. (6.24)

We also note that for the 4-QAM constellation, L = 2 and G2,k[n] =
(
2k
n

)
.

The upper bound of this section is valid for all values of M , N , L, and SNR. In

the following section, we fix M = N and analyze this upper bound for a fixed SNR

and asymptotically large N .

6.7.2 Asymptotics of the Upper Bound

In this section we will compare the asymptotic complexities of the sphere decoder and

the upper bound on the Increasing Radii Algorithm using some simple arguments.

We will assume M = N and that N is very large. Let r2 = N for the sphere decoder

and r2
i = i for the IRA. (It turns out that having r2 = N + δ log N or r2

i = i+ δ log N

for constant δ does not affect the asymptotic analysis.) The subscripts SD and IR

will be used when we discuss the complexities of the sphere decoder and the IRA

respectively. Although the analysis can be done for a generic QAM constellation,

we only present results for 4-QAM. This is because the expression for GL,k[n] in the

upperbound of the previous section is a simple binomial coefficient for this case and

is more complicated in the generic case.

Consider the complexity expression for the sphere decoder for the case of S being

the 4-QAM constellation. This is similar to that for the 2-PAM constellation given
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in (6.10) except for the fact that at subdimension k, we are dealing with complex

vectors of length k or real vectors of length 2k. (This issue is addressed in [90].) We

have the following expression:

CSD =
N∑

k=1

(8k + 32)
2k∑

l=0

(
2k

l

)
Γ

(
r2

1 + 2ρ
N

l
, k

)
(6.25)

where Γ(x, a) =
∫ x

0
e−t

Γ(a)
ta−1dt. From (6.24) and since G2,k[n] =

(
2k
n

)
, we have

CIR ≤ UIR =
N∑

k=1

(8k + 32)
2k∑

l=0

(
2k

l

)
Γ

(
r2
k

1 + 2ρ
N

l
, k

)
(6.26)

Note that the only difference between (6.25) and (6.26) is that, within the incomplete

Gamma function, the r2 of the former is replaced by r2
k in the latter. We now compare

CSD and UIR. Consider the following upper and lower bounds. Both expressions have

N(N + 1) terms and the maximum value for (8k + 32) is (8N + 32). For large N we

have N(N + 1)(8N + 32) ≤ 9N 3. Therefore:

max
k=1,...,N ; l=0,...,2k

(
2k

l

)
Γ

(
r2

1 + 2ρ
N

l
, k

)
≤ CSD ≤ 9N3 max

k=1,...,N ; l=0,...,2k

(
2k

l

)
Γ

(
r2

1 + 2ρ
N

l
, k

)

and

max
k=1,...,N ; l=0,...,2k

(
2k

l

)
Γ

(
r2
k

1 + 2ρ
N

l
, k

)
≤ UIR ≤ 9N3 max

k=1,...,N ; l=0,...,2k

(
2k

l

)
Γ

(
r2
k

1 + 2ρ
N

l
, k

)
.

It is easy to show that

Γ(x, a) = e−x
∞∑

l=a

xl

l!
≥ e−x xa

a!
≥ e−x xa

√
2πae

(
a
e

)a =
ea−x

√
2πae

(x

a

)a

where the second inequality comes from Stirling’s approximation for large a: a! ≤
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√

2πae
(

a
e

)a
. With this and since k ≤ N , we have

Γ

(
ν

1 + 2ρ
N

l
, k

)
≥ 1√

2πke

e
k− ν

1+
2ρ
N

l

(
k
ν

(
1 + 2ρl

N

))k ≥ 1√
2πNe

e
k− ν

1+
2ρ
N

l

(
k
ν

(
1 + 2ρl

N

))k .

Now, if we upper bound Γ
(

ν
1+ 2ρ

N
l
, k
)

using a simple Chernoff bound, we get

Γ

(
ν

1 + 2ρ
N

l
, k

)
≤ e

k− ν

1+
2ρ
N

l

(
k
ν

(
1 + 2ρl

N

))k for k ≥ ν

1 + 2ρ
N

l
.

Note that the upper and lower bounds shown above differ only in the factor of 1√
2πNe

.

Assume that k = bN and l = aN for constants a and b. Then 0 ≤ b ≤ 1,

0 ≤ a ≤ 2b. (The condition k ≥ ν
1+ 2ρ

N
l
is always satisfied for the IRA since ν = r2

k = k.

For the sphere decoder, ν = r2
k = N and the condition translates to b ≥ 1

1+2ρa
.) The

term
(
2k
l

)
then looks like

(
2bN
aN

)
and is equal to exp(2bNH( a

2b
)) for large N , where

H(p) = −p log p − (1 − p) log(1 − p) is the entropy function. This gives

(
2k

l

)
e

k− N

1+
2ρ
N

l

(
k
N

(
1 + 2ρl

N

))k
.
= exp

{
N

(
2bH(

a

2b
) + b − 1

1 + 2ρa
− b log(b(1 + 2ρa))

)}
= exp(NγSD(a, b))

where we define γSD(a, b) = 2bH( a
2b

) + b − 1
1+2ρa

− b log(b(1 + 2ρa)). Also,

(
2k

l

)
e

k− k

1+
2ρ
N

l

(
k
k

(
1 + 2ρl

N

))k
.
= exp

{
N

(
2bH(

a

2b
) +

2ρab

1 + 2ρa
− b log(1 + 2ρa)

)}
= exp(NγIR(a, b))

where we define γIR(a, b) = 2bH( a
2b

)+ 2ρab
1+2ρa

− b log(1+2ρa). Thus the bounds for CSD

become

1√
2πNe

max
0≤b≤1,0≤a≤2b,b≥ 1

1+2ρa

exp(NγSD(a, b))
.
≤ CSD

.
≤ 9N3 max

0≤b≤1,0≤a≤2b,b≥ 1
1+2ρa

exp(NγSD(a, b))
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and the bounds on UIR become

1√
2πNe

max
0≤b≤1,0≤a≤2b

exp(NγIR(a, b))
.
≤ UIR

.
≤ 9N3 max

0≤b≤1,0≤a≤2b
exp(NγIR(a, b)).

It is easy to check that there are values of a and b for which γSD(a, b) and γIR(a, b)

are positive, thus giving exponential bounds on the complexity. Therefore the terms

1√
2πNe

and 9N3 are asymptotically insignificant. Thus, the upper and lower bounds

match and we have the exact asymptotic complexity behavior. If we denote the

asymptotic complexities of the sphere decoder and the IRA by eγSDN and eγIRN re-

spectively, we get

γSD = max
0≤b≤1,0≤a≤2b,b≥ 1

1+2ρa

γSD(a, b) = max
0≤b≤1,0≤a≤2b,b≥ 1

1+2ρa

2bH(
a

2b
)+b− 1

1 + 2ρa
−b log(b(1+2ρa))

and

γIR = max
0≤b≤1,0≤a≤2b

γIR(a, b) = max
0≤b≤1,0≤a≤2b

2bH(
a

2b
) +

2ρab

1 + 2ρa
− b log(1 + 2ρa).

Both maximizations are easy to perform numerically. In Figure 6.1 we plot the gamma

values obtained from the maximizations for different SNRs. Not surprisingly, γIR is

much lower than γSD. This means that the upper bound on the IRA is much lower

than the complexity of the sphere decoder. This implies that the actual complexity

of the IRA will be even less compared to the complexity of the sphere decoder.

We note in passing that although the large deviations approach of [91] is quite

different, it gives exactly the same numerical results as the maximization for γSD

above. Furthermore, using a similar large deviations approach for the asymptotic

analysis of (6.26) leads to the same γIR as above.

6.7.3 Approximate Analysis

We now present an approximate method of computing the complexity that can be

used for larger values of M and N where the upper bound may be harder to compute.



158

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

SNR (dB)

G
a
m

m
a

γ
IR

γ
SD

Figure 6.1: For large N , the complexities of the sphere decoder and the IRA are given
by eγSDN and eγIRN , respectively, where γ is as plotted. At 20 dB, γSD is roughly 10
times γIR.

It is useful to think of the Increasing Radii Algorithm in the context of a random

walk on the positive real line. If λi+N−M is the random variable denoting the length

of the ith step, we can think of the sums λ1+N−M + λ2+N−M + · · · + λi+N−M as the

total distance covered in the first i steps. In the Increasing Radii algorithm, we are

interested in the joint probability that at the end of the ith step the distance covered

is not more than r2
i for all i = 1, . . . , M . Recall the definition of βi,j. Note that since

the λi+N−Ms are independent (and not identical) and hence independent of β1,i−1,

a parallel interpretation for the sequence β1,1, β1,2, . . . , β1,M is also that of a (non-

stationary) Markov chain in discrete time and continuous space, i.e., β1,1 → β1,2 →
. . . → β1,M . More generally, if we start at some arbitrary step k, and stop at step

k + j, j ≥ 0 we still have a Markov chain given by βk,k → βk,k+1 → . . . → βk,k+j.

Using this insight we can approximate P (sk ∈ Dk) in a simpler manner rather than

attempt the intractable integral of (6.19). We state this in the following theorem.

Theorem 6.3. For any sk ∈ Sk×1, the probability that sk ∈ Dk is given by

P (sk ∈ Dk) ≈
k∏

i=1

∫ Xi

0

pλi+N−M
(λi+N−M)dλi+N−M (6.27)
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where X1 = r2
1 and X2, . . . , Xk satisfy

∫ r2
i −r2

i−1−Xi+Xi−1

0

pλi+N−M
(λi+N−M)dλi+N−M =

1

2

∫ Xi−1

0

pλi+N−M
(λi+N−M)dλi+N−M .

(6.28)

The approximation error in (6.27) is given in equation (6.37) of the Appendix.

Proof. Recall the preceding discussion regarding Markov chains. In order to use this

point of view, we first propose the following approximation, proved in Appendix

6.10.3.1. ∫ ∆

0

f(x)g(x)dx = g(x
′
)

∫ ∆

0

f(x)dx + O

([∫ ∆

0

f(x)dx

]2)
(6.29)

which holds for any x
′ ∈ [0, ∆]. This approximation is especially good when x

′

satisfies ∫ x
′

0

f(t)dt =
1

2

∫ ∆

0

f(t)dt (6.30)

since the error term then becomes O

([ ∫ ∆

0
f(x)dx

]3)
.

In Appendix 6.10.3.2 we make use of this approximation to obtain (6.27) and

(6.28).

The above theorem helps us convert a k-fold integral into the product of k simple

integrals in (6.27). While (6.27) is always true (with equality) for some values of

Xi (using a generalized mean value theorem), the importance of Theorem 6.3 is in

obtaining good values of Xi as given by (6.28). Furthermore, in Appendix 6.10.3.1

and 6.10.3.2 it is shown that if we solve (6.28) approximately we still get an expression

similar to (6.27) but with a different error term. One simple approximate solution to

(6.28), obtained using Chernoff bounds, leads to the recursion

Xi = r2
i −r2

i−1−
1 + log 2

2ci−1

+
Xi−1

2
+

1

2ci−1

√
(1 + log 2 + ci−1Xi−1)2 − 4ci−1Xi−1. (6.31)

From the pdf of λi in Table (6.1) we see that
∫ Xk

0
pλk+N−M

(λk+N−M)dλk+N−M can

be evaluated exactly and will be a linear combination of some incomplete gamma
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functions. A faster but approximate method of evaluating this integral is

∫ Xi

0

pλi
(λi)dλi ≈ (Q(

√
2ci(µ −

√
πXi/2)) − Q(

√
2ci(µ +

√
πXi/2)))2 (6.32)

where µ =
√

(i − 1 + N − M)σ2
h|s̃i − si|2/2 and Q(x) = 1√

2π

∫∞
x

e−x2/2dx is the stan-

dard Q-function. Although the approximation error has not been rigorously analyzed,

we have found this to be a good approximation. Using (6.27) and (6.28) (with or with-

out the simplifications of (6.31) and (6.32)), we compute P (sk ∈ Dk) approximately.

Substituting for this in (6.18) and (6.17), we get an approximate value for the com-

plexity. The summation over sk ∈ Sk×1 required in (6.18) is not easy to perform

and hence we evaluate it by Monte Carlo simulations.

6.8 Simulations

In this section we present the results of simulations for different systems. Numerical

results for the i.i.d. systems analyzed in the chapter are presented, as are simula-

tions for a linear dispersion code. In all examples, we have M = N . We present

a comparison of symbol error rates and complexities for the sphere decoder (with

Schnorr-Euchner) and those of IRA, for different QAM constellations and values of

N and SNR.

We note that since H and S are complex this amounts to solving 2N dimensional

real problems. The computational complexity C is presented through the complexity

exponent CE = log C/ log N . With this, a complexity exponent of CE means that the

complexity is NCE . (Clearly, CE is different from the γ of Section 6.7.2.)

In all simulations for the sphere decoder we have used a value of r chosen to give

a particular ε. For the Increasing Radii Algorithm we have used a linear schedule of

radii, i.e., we have ri = i + δ log N where δ is chosen with some value of ε in mind.

The sequence of εis that we use is simply 0.1, 0.01, 0.001, etc. This means that we

first find r for the sphere decoder (δ for the IRA), which ensures that the transmitted

vector is not in the search region with a probability of 0.1 and run the algorithm. If
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the search region is empty we find a new value of r (δ for the IRA) that gives an ε

of 0.01, and run the algorithm again. This continues till we find a non-empty search

region.

Once we have at least one point in the search region, we find, from among those,

that point s which minimizes ‖x − Hs‖2.

The expression in (6.17) is used to compute complexity where the (Expected # of

points in Dk) is estimated by running the decoder on many random instantiations of

the problem. (8k + 32) is the flops/point.

6.8.1 Computational Complexity and BER
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Figure 6.2: Complexity exponent and SER for M = N = 50 and 4-QAM. From
Figure 6.2(a) we see that the IRA can be upto 501.4 = 240 times faster than the
sphere decoder. Figure 6.2(b) shows the symbol error rate with the IRA.

In Figures 6.2, 6.3, and 6.4 we look at the complexity exponent and symbol error

rate (SER) against the SNR for different values of N and and constellation size.

In Figure 6.2 we have N = 50 and L = 2, which is the 4-QAM constellation.

The SNR ranges from 10 dB to 14 dB. In Figure 6.2(a), we see that the complexity
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Figure 6.3: Complexity exponent and SER for M = N = 20 and 4-QAM. From Figure
6.3(a) we see that the IRA can be upto 11 times faster than the sphere decoder. From
Figure 6.3(b) we see that the symbol error rates for the two algorithms are very close
to each other, indicating no loss of performance.

exponent can be reduced significantly by using the IRA. We see a complexity that is

up to 1.4 orders of magnitude smaller, which means that the IRA can run up to 501.4 =

240 times faster. In Figure 6.2(b), we see the SER for the IRA. Unfortunately, we

have not been able to produce the SER plot for the sphere decoder for this dimension

since it would take too long to obtain accurate values.

For the BER comparison we present results of a smaller sized problem, viz., N=20

in Figure 6.3. From Figure 6.3(a) and Figure 6.3(b) we see that with computational

savings of 0.8 orders of magnitude (11 times less computation) we get a SER that is

very close to the optimal SER ensured by ML decoding.

In Figure 6.4 we use N = 12 and L = 8. This corresponds to a 64-QAM constel-

lation. From Figure 6.4(a) we see that the IRA runs around 7 times faster than the

traditional sphere decoder. From the SER curves of Figure 6.4(b) we see that there

is no loss of performance.

Not surprisingly, the savings from the IRA are more significant for large N . (This
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Figure 6.4: Complexity exponent and BER for M = N = 12 and 64-QAM. From
Figure 6.4(a) we see that the IRA can be upto 7 times faster than the sphere decoder.
From Figure 6.4(b) we see that the symbol error rates for the two algorithms are very
close to each other, indicating no loss of performance.

will be further demonstrated in a later simulation.) In fact, for systems of dimension

6 and lower we find that the gains relative to the sphere decoder are minimal. This is

because the pruning affects fewer dimensions and the overall complexity is unaffected.

Another observation to make from the above set of plots is that (6.13) is a loose bound

since for this setup it says that the proposed algorithms can give SERs that are as

much as 0.1 above the optimal. The simulations indicate that this is a gross over-

estimate.

6.8.2 Decoding in a Space-Time Coded System

In this section we consider the decoding of a system where the equivalent channel

is given by a correlated H matrix rather than an i.i.d. one. Such systems arise

commonly in space-time coded systems. We consider the linear dispersion code with

eight transmit and four receive antennas with T = 8, Q = 32 and R = 16 presented

in [79]. The constellation used is 16-QAM. The equivalent channel used for decoding
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is a matrix of size 32 × 32 with correlated complex entries. Thus, the decoder works

on a real system of dimension 64. In figure 6.5 we present curves for the complexity

exponents and the symbol error rates for the sphere decoder (with Schnorr-Euchner)

and the IRA. We see that the IRA is around 50 times faster and shows almost no

loss in performance. Thus, the IRA presents a significant complexity savings while

operating in space-time coded systems.
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Figure 6.5: Complexity exponent and SER for the linear dispersion code with eight
transmit and four receive antennas, with T = 8, Q = 32 and R = 16 with 16-QAM.
From Figure 6.5(a) we see that the IRA is 50 times faster than the sphere decoder on
average. From Figure 6.5(b) we see that the symbol error rates for the two algorithms
are very close to each other, indicating no loss of performance.

Simulations for the smaller LD code in [79] with 4 transmit and 2 receive antennas

and T = 6, R = 8, Q = 4 and 16-QAM were also done. This gave an equivalent

channel of size 12 × 12. For this, the IRA ran roughly twice as fast as the sphere

decoder with an identical symbol error rate in the SNR range of 15 dB to 25 dB.
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Figure 6.6: Dependence of complexity on N and SNR. Figure 6.6(a) plots the com-
plexities of the two algorithms against the number of antennas, N . The complexity
exponent of the sphere decoder increases much faster than that of the IRA. Figure
6.6(b) plots the two complexities against SNR. Computational savings with the IRA
are more significant at low SNRs.

6.8.3 Comparing Complexities

From the previous section it is clear that the IRA can be used to give complexities

that are much lower than that of the sphere decoder while still giving BERs close to

optimal. Therefore in this section we only compare the complexities of the sphere

decoder and the IRA.

In Figure 6.6 we compare the complexity of the sphere decoder with that of the

IRA in two different ways. In Figure 6.6(a), we set the SNR at 27 dB and L = 4,

i.e., a 16-QAM constellation. We vary N from 20 to 55 and get estimates of the

complexity by running the two algorithms sufficiently many times. We see that the

complexity exponent of the sphere decoder is increasing rapidly while that of the IRA

increases much more slowly. This bears out the analysis of Section 6.7.2 nicely.

In Figure 6.6(b), we set N = 50 and L = 2 (4-QAM constellation) and vary the
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SNR from 10 dB to 30 dB. We see that the IRA consistently gives us a computational

advantage, however, as the SNR increases, both decoders are quite fast and the

relative advantage of the IRA diminishes. In particular, at 10 dB, we see that the

IRA is around 501.5 = 300 times faster.

6.8.4 Simulations for the Upper Bound and Approximate

Analysis for the IRA

We now compare the actual complexity of the Increasing Radii Algorithm as obtained

by simulations, with the upper bound and approximation derived in Theorem 6.2 and

Theorem 6.3.
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(a) N=20, L=2. Complexity ex-
ponent vs. SNR.
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(b) N=60, L=2. Complexity ex-
ponent vs. SNR.

Figure 6.7: Complexity exponent for the IRA – simulated, upper bound, and approx-
imation. The simulations show that the complexity exponent for the IRA is tightly
upper bounded by Theorem 6.2. The approximation of Theorem 6.3 is good up to
SNRs of around 15 dB.

In Figure 6.7 we present curves that show the complexity exponent for the In-

creasing Radii Algorithm. For N being 20 and 60 and L = 2 (4-QAM constellation)

and SNR ranging from 5 dB to 30 dB we show the complexity exponent obtained

through simulation, by using the upper bound of Theorem 6.2 and the approxima-
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tion of Theorem 6.3 with (6.32). We see that the upper bound is very good in this

entire range. As for the approximation, we see that it is quite good for SNRs up to

around 15 dB and then starts to underestimate the complexity.

6.9 Conclusions

This chapter examines the integer least-squares problem in a probabilistic setting,

where the algorithmic complexity of decoding is a random variable. We use statistical

pruning to reduce the search space – and therefore the complexity – while still keeping

the transmitted point in the search region with high probability.

We have proposed a new method of doing this pruning and studied the complexity

and the probability of error of the proposed method. Our proposed IRA algorithm

achieves significant computational savings relative to the sphere decoder while still

maintaining BERs close to optimal. For example, for a real problem in 100 dimen-

sions, we observe a factor 240 savings in computation.

Many interesting questions remain to be answered. Finding an optimal schedule

for the IRA seems to be quite challenging since our complexity expressions are not

exact or analytically tractable. Simpler expressions for the complexity and BER might

help better quantify the tradeoff between performance and complexity and also give

insight into optimizing the radii schedules.

The sphere decoding technique can be used for joint detection and decoding of

block codes [104]. By analogy, the modified algorithms are also applicable in this con-

text. Analysis of performance and complexity in this scenario is interesting. Another

potentially challenging question of interest, is how to choose the radii, given H. The

smallest region around x that contains the closest point depends on H as well as v,

but the current choice of ri only takes the statistics of v into consideration.

We believe that the proposed pruning approach to the decoding problem demon-

strates promise and that further work to analyze and optimize these statistical tech-

niques will be of practical and theoretical interest.
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6.10 Appendix

6.10.1 Derivation of Table (6.1)

For any u ∈ CT×1, we define ui = [uT−i+1, . . . , uT ]T . Consider the H = Q


 R

0




decomposition where H is N × M with i.i.d. CN (0, σ2
h) entries, Q is unitary of size

N × N and R is upper triangular of size M × M . It can be shown that the non-

diagonal entries of R are i.i.d. CN (0, σ2
h) and the diagonal element R(i, i) is a scaled

χ-square distributed random variable. (Refer [103].) More specifically, 2R(i, i)/σ2
h

is χ-square with 2(N − i + 1) degrees of freedom. This means that it is the sum of

squares of 2(N − i + 1) i.i.d. standard real Gaussian random variables, i.e., variables

having a N (0, 1) distribution.

Therefore a lower right submatrix of


 R

0


 of size (i + N − M) × i, say Ri, is

statistically similar to it, i.e., it can be thought of as having arisen from the QR

decomposition of an (i + N −M)× i matrix Hi having i.i.d. CN (0, σ2
h) entries. Note

that this is not to say that the Hi matrix is a submatrix of H. However, there exists

Hi with the statistics mentioned above such that the QR decomposition of it gives us

Ri, or, Hi = Qi


 Ri

0N−M,i


 where Qi is unitary of size (i + N − M) × (i + N − M).

(For more on this, refer to [90]).

Recall z from Section 6.3. We have z = Q∗x −


 R

0


 s =


 R

0


 (s̃ − s) + Q∗v.

Define w = Q∗v. Clearly, w has the same statistics as v, i.e., i.i.d. CN (0, 1) entries.

Introduce vi = Qiw
i+N−M . Now vi is of length (i + N − M). (It is not necessarily a

sub-vector of v.) As in the case of w, vi will also have i.i.d. CN (0, 1) entries. We can

now write wi+N−M as Q∗
i vi.

Define γi =
∑i+N−M

j=1 λj for i = 1, . . . , M . Note that γi is the squared-norm

of zi+N−M . Also, we have si and s̃i as the lower length-i subvectors of s and s̃

respectively. From the above arguments, we have zi+N−M =


 Ri

0N−M,i


 (s̃i − si) +
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Q∗
i vi. Therefore

γi = ‖zi+N−M‖2 =

∥∥∥∥∥∥


 Ri

0N−M,i


 (s̃i − si) + Q∗

i vi

∥∥∥∥∥∥

2

=

∥∥∥∥∥∥
Qi


 Ri

0N−M,i


 (s̃i − si) + QiQ

∗
i vi

∥∥∥∥∥∥

2

=
∥∥Hi(s̃

i − si) + vi

∥∥2
.

But it is clear that the vector Hi(s̃
i − si) + vi has i.i.d. CN (0, σ2

v + σ2
h‖si − s̃i‖2), i.e.,

CN (0, 1/ci) entries. Therefore γi is a scaled χ-square distributed random variable.

More specifically, 2ciγi is χ-square with 2i degrees of freedom. This means that it is

the sum of squares of 2i i.i.d. standard real Gaussian random variables, i.e., variables

having a N (0, 1) distribution. The expressions for the characteristic function of these

are standard and we have Eejαγi = 1

(1− jα
ci

)i+N−M
.

For λi where i > (N − M), note that γi−N+M = λi + γi−1−N+M . Moreover,

since the λis are independent, so are λi and γi−1−N+M . Therefore Eejαγi−N+M =

Eejαλi+jαγi−1−N+M = EejαλiEejαγi−1−N+M . Thus

Eejαλi =
Eejαγi−N+M

Eejαγi−1−N+M
=

(1 − jα
ci−1−N+M

)i−1

(1 − jα
ci−N+M

)i
. (6.33)

For i ≤ (N−M) it is easy to see that λi is the squared norm of the the (N−i+1)th

entry of Q∗v. Q∗v has the same statistics as v, i.e., i.i.d. entries, each with distribution

CN (0, 1). With this the characteristic function of λi is clearly 1

1− jα
c0

.

With this and Fourier inversion we get Table 6.1.

6.10.2 Derivation of Generating Function of Theorem 6.2

Theorem 6.4. For s, s̃ ∈ Sk×1, the number of solutions to ‖sk − s̃k‖2 = n, averaged

over all possible values of s̃ (as defined by rL
k (n) in (6.22)) is given by the coefficient

of xn in (GL(x))k where GL(x) = 1
L2

(
L +

∑L−1
j=1 2(L − j)xj2

)2

. Recall that S =
{
a + jb | a, b ∈

{
−L−1

2
,−L−3

2
, · · · , L−3

2
, L−1

2

}}
.

Proof. For any complex vector x of length k define the vector xreal as a real vector of
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length 2k where xreal(2j − 1) = <(x(j)) and xreal(2j) = =(x(j)) for j = 1, . . . , k.

Let r = sk − s̃k where sk, s̃k ∈ Sk×1. Then define rreal as above. Also define

Sreal =
{
−L−1

2
,−L−3

2
, · · · , L−3

2
, L−1

2

}
.

Consider an arbitrary entry of rreal, say rreal(j). For a fixed s̃k, s̃k
real(j) is known.

Say s̃k
real(j) = t ∈ Sreal, then rreal(j) takes all values in St = Sreal − t. Define qt =

∑
j∈St

xj2 ∀t ∈ Sb. Associate with a fixed vector s̃k the product q(s̃k) =
∏2k

j=1 qs̃k
b (j).

Clearly, for this fixed s̃k, the number of solutions to ‖sk − s̃k‖2 = n is the coefficient

of xn in q(s̃k).

Since all the L2k possible s̃k ∈ Sk×1 are assumed equally likely, the ‘average’

number of solutions to ‖sk − s̃k‖2 = n is given by the coefficient of xn in

1

L2k

∑

s̃k∈Sk×1

q(s̃k) =
1

L2k

∑

s̃k∈Sk×1

2k∏

j=1

qs̃k
real(j)

=
1

L2k

∑
P

t∈Srealαt=2k

(
2k

{αt|t ∈ Sreal}

) ∏

t∈Sreal

qαt
t

=
1

L2k

(
∑

t∈Sreal

qt

)2i

=
1

L2k

(
L +

L−1∑

j=1

2(L − j)xj2

)2i

where
(

2k
{αt|t∈Sreal}

)
is the multinomial coefficient given by


 2i

α−(L−1)
2

, α−(L−3)
2

, · · · , αL−3
2

, αL−1
2


.

Finally, we define GL(x) = 1
L2

(
L +

∑L−1
j=1 2(L − j)xj2

)2

.

We note here that this is closely related to the problem of representing integers

as a sum of squares. For more on this refer to [90].
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6.10.3 Derivations for Section 6.7.3

6.10.3.1 Proof of (6.29) and (6.30)

Let I(∆) =
∫ ∆

0
f(x)g(x)dx. Let U(x) =

∫ x

0
f(t)dt. Let h(U(x)) = x. Then, changing

variables in I(∆), we have

I(∆) =

∫ U(∆)

0

g(h(U))dU = G(U(∆)) − G(0)

where dG(x)
dx

= g(h(x)). Consider Taylor expansions for G(U(∆)) and G(0) around

1
2
U(∆). We have

I(∆)

= G(U(∆)) − G(0)

= G

(
1

2
U(∆)

)
+

1

2
U(∆)

dG(U(x))

dU(x)

∣∣∣∣
U(x)= 1

2
U(∆)

+

(
1

2
U(∆)

)2
1

2

d2G(U(x))

(dU(x))2

∣∣∣∣
U(x)= 1

2
U(∆)

+ O([U(∆)]3)

−
(

G

(
1

2
U(∆)

)
− 1

2
U(∆)

dG(U(x))

dU(x)

∣∣∣∣
U(x)= 1

2
U(∆)

+

(
1

2
U(∆)

)2
1

2

d2G(U(x))

(dU(x))2

∣∣∣∣
U(x)= 1

2
U(∆)

+ O([U(∆)]3)

)

= U(∆)
dG(U(x))

dU(x)

∣∣∣∣
U(x)= 1

2
U(∆)

+ O([U(∆)]3)

= g(h(U(x′)))

∫ ∆

0

f(x)dx + O

([∫ ∆

0

f(x)dx

]3)

= g(x′)

∫ ∆

0

f(x)dx + O

([∫ ∆

0

f(x)dx

]3)

where x′ is obtained by solving U(x′) = 1
2
U(∆) or

∫ x′

0
f(t)dt = 1

2

∫ ∆

0
f(t)dt. Note that

the error term above is cubic in
∫ ∆

0
f(x)dx. By a similar Taylor expansion around

any x′′ ∈ [0, ∆], we have I(∆) = g(x′′)
∫ ∆

0
f(x)dx + O

([∫ ∆

0
f(x)dx

]2)
. Here, the

error term is quadratic in
∫ ∆

0
f(x)dx rather than cubic, which is worse than before.

In any case, for
∫ ∆

0
f(x)dx � 1 we have

I(∆) ≈ g(x′)

∫ ∆

0

f(x)dx. (6.34)
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6.10.3.2 Proof of (6.27) and (6.28)

Recall βi,j =
∑j

k=i λk+N−M for 1 ≤ i ≤ j ≤ M where λi is as defined in Section (6.3).

P (sk ∈ Dk) = P (β1,1 ≤ r2
1, . . . , β1,k ≤ r2

k) =

∫ ∞

0

P (β1,1 ≤ r2
1, . . . , β1,k ≤ r2

k|β1,1)pβ1,1(β1,1)dβ1,1

(6.35)

Note that βi,i → βi,i+1 → . . . → βi,j with 1 ≤ i ≤ j ≤ M is a Markov chain. Hence

P (sk ∈ Dk) =

∫ ∞

0

P (β1,1 ≤ r2
1|β1,1)pβ1,1(β1,1) · P (β1,2 ≤ r2

1, . . . , β1,k ≤ r2
k|β1,1)dβ1,1.

With P (β1,1 ≤ r2
1|β1,1)pβ1,1(β1,1) as f(β1,1) and P (β1,2 ≤ r2

1, . . . , β1,k ≤ r2
k|β1,1) as

g(β1,1), we use (6.34) to get

P (sk ∈ DIR,k) ≈ P (β1,1 ≤ r2
1)P (β1,2 ≤ r2

2, . . . , β1,k ≤ r2
k|β1,1 = β

′
1,1)

= P (β1,1 ≤ r2
1)P (β2,2 ≤ r2

2 − β
′
1,1, . . . , β2,k ≤ r2

k − β
′
1,1)

where the optimum β
′
1,1 is obtained by solving

∫ β
′
1,1

0 pβ1,1(β1,1)dβ1,1 = 1
2

∫ r2
1

0
pβ1,1(β1,1)dβ1,1

and the error is O
([

P (β2,2 ≤ r2
2 − β

′
1,1, . . . , β2,k ≤ r2

k − β
′
1,1)
]3)

.

Observe that the second term on the RHS is of the same form as the expression

for P (sk ∈ D) in (6.35) and can be similarly approximated. In order to formalize

this recursion, define Wi = P (βi,j ≤ r2
j −

∑i−1
l=1 β

′
l,l for j = i, . . . , k) and qi = P (βi,i ≤

r2
i −

∑i−1
l=1 β

′
l,l) where the β

′
i,is are obtained successively by solving

∫ β
′
i,i

0

pβi,i
(βi,i)dβi,i =

1

2

∫ r2
i −

Pi−1
l=1 β

′
l,l

0

pβi,i
(βi,i)dβi,i. (6.36)

The general recursion we have is Wt−1 = qt−1Wt + O(W 3
t ) for t = 2, . . . , k where

we start with W1 = q1W2 +O(W 3
2 ), then use the recursion for W2 and so on. Ignoring

lower-order terms we get W1 = q1 · q2 · · · qk(1 + O(
q2
k

qk−1
)), since Wk = qk. Note that

all the qis are probabilities and hence small numbers. Therefore P (sk ∈ Dk) = W1 ≈
q1 ·q2 · · · qk. Note that if we do not solve (6.36) exactly, this approximation still holds,

but we have W1 = q1 · q2 · · · qk(1 + O( qk

qk−1
)).
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To summarize:

P (sk ∈ Dk) =

k∏

i=1

P

(
βi,i ≤ r2

i −
i−1∑

l=1

β
′
l,l

)
(1 + O(

q2
k

qk−1
)) (6.37)

where the β
′
i,is are as obtained in (6.36). Define Xi = r2

i −∑i−1
l=1 β

′
l,l. Note that

βi,i = λi+N−M . This gives (6.27).
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function Decode(x, H, r) x: received vector, H: known channel,

r:vector of the radii schedule

1. H = Q

[
R
0

]
QR decomposition of H. R has a real diagonal

2. t = Q∗x, y = [t1, . . . , tM ] y has the first M elements of t

3. Initialize:D = ∅, y
′′

= r′ = s = 0M×1 D as the set of vectors in the search region

4. while D = ∅ Repeat till search region is non-empty

r =GetNewSchedule Obtain new schedule with smaller ε

D =Decrease(N, y, R, r, y
′′
, r′, s,D) Call subroutine

5. s∗ = argmins∈D‖x − Hs‖2 Find closest element within search region

6. output s∗ Decoder output

function Decrease(k, y, R, r, y
′′
, r′, s,D) k: subdimension, s:vector under consideration,

sM−k is known.

Subroutine finds possible values for sk.

1. if k = 0 Check if subdimension is zero

D = D ∪ {s} Conclude that s is inside the search region

return
2. elseif k = N At the highest dimension

r′k = r1, y
′′
k = y1 Initialize

3. else

y
′′
k = yk −

∑N
j=k+1 rk,jsj Calculations to find permissible values of sk

r′k =
(
(r2

N−k+1 − r2
N−k) + r

′2
k+1 − (y

′′
k+1 − Rk+1,k+1sk+1)

2
)1/2

4. LB = max

(⌊
r
′
k+y

′′
k

rk,k
− 1

2

⌋
+ 1

2
,−L−1

2

)
,

UB = min

(⌈
−r

′
k+y

′′
k

rk,k
+ 1

2

⌉
− 1

2
, L−1

2

)
Exact range of sk with L-PAM

5. for n = LB : UB For each possible value of sk

sk = n Assign that value to sk

D =Decrease(k − 1, y, R, r, y
′′
, r′, s,D) Call subroutine to find possible values of sk−1

6. return

Table 6.4: Pseudocode for the Increasing Radii Algorithm

δ M = 10 M = 20 M = 30 M = 40 M = 50
ε = 0.1 2.16 2.35 2.55 2.74 2.93
ε = 0.01 4.09 4.29 4.48 4.67 4.96
ε = 0.001 5.64 5.83 6.03 6.41 6.61
ε = 0.0001 7.19 7.19 7.48 7.77 8.15

Table 6.5: Values of δ for various values of M and ε. For a pair of values M and ε, use
the corresponding value of δ from the table and a schedule of r2

i = (δ log M + i)σ2
v .
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Chapter 7

Discussion

The problems and results presented in this thesis address wireless systems from a

variety of perspectives. In this concluding chapter, we summarize our observations

and point out directions for future work.

7.1 Models and Problem Formulation

The capacity region for a relay network, with one source, one destination, and one

relay is unknown. This is because the most general relay network can have channels

that depend on and interact with each other in very complicated ways. This tells

us that even with a small network, the problem of capacity can be quite intractable.

At the same time, the work of Kumar and Gupta [35] gives us great insight into the

working of a network with, possibly, thousands of nodes. Similarly, the results of [4]

give us precise capacity regions for a large class of networks, characterized by certain

properties.

Both these results are possible because of simplifications made in either the mod-

eling of the network, or the sort of questions that are asked about these networks. In

the case of [35], as in the case of the ad hoc networks presented in Chapter 2 of this

thesis, the models have been simplified to obtain a relatively homogeneous network.

In these models, the connection strengths between nodes do not interact with each

other in completely arbitrary manners. In the first case the interaction between them

is based on geometric location and in the second case the connection strengths either
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do not interact at all, or their interaction is based on distance. Also, the question

that is addressed is less demanding than that of a precise capacity region – we only

worry about the scaling behavior of the throughput, which is a quantity that is easier

to deal with than the capacity while, at the same time, it has practical significance.

The key to the results of [4] and those of Chapter 4 is similar. In the former,

the model is that of a wireline network with capacitated links, while in the latter the

model incorporates broadcast and, possibly, interference, but is restricted to erasure

links. In both cases, the simplicity of the models allows us to answer the question

of precise capacity regions. Also, note that the networks considered here can have

arbitrarily many nodes and topology.

Thus we see that modeling a network can make a critical difference in how

amenable it can be to analysis. At the same time, models have to be related to

physical networks and therefore cannot be simplified to the point where they have

no bearing on real world scenarios. Interesting and relevant results are possible when

a careful balancing act is done while modeling networks and asking questions about

them.

7.2 Summary and Directions for Future Work

We now summarize the main results of this thesis and present directions for future

work.

7.2.1 Ad Hoc Networks

In Chapter 2 we saw that introducing randomness in a network model can have benefi-

cial results on the throughput. We proposed a model that deviated significantly from

the distance-based model studied in the literature before us and in which connection

strengths were drawn independently from a common distribution. The aggregate traf-

fic flow turns out to be strongly dependent on the distribution that the connections

are drawn from. We find that some distributions give encouraging scaling laws for

the throughput. For instance, for n being the number of nodes in the network, the
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throughput can scale as n
(log n)d for some d > 0, which is only slightly sublinear and

significantly better than the throughputs predicted by distance-based models.

In Chapter 3 we have also seen models that incorporate a mixture of distance-

based and random effects and how these models allow us to move from the purely

distance-based models, to the purely random models. More models that incorporate a

combination of random and distance-based connections are also mentioned in Chapter

3. In particular, the three-scale and mixture models are proposed. Connections

strengths for these are described, respectively, by

px(γ) =





f(γ) if x ≤ r1

r2−x
r2−r1

f(γ) + x−r1

r2−r1

µγrm
2

xm exp(−γ xm

µγrm
2

) if r1 < x ≤ r2

µγrm
2

xm exp(−γ xm

µγrm
2

) if x > r2

and

px(γ) =
R − x

R
f(γ) +

x

R

1

xm
exp(−γxm).

Throughput analysis for these models is an interesting extension of the current results.

Many questions remain to be answered in this general area. In Chapter 2 we

have discussed upper bounds on the throughput achievable using a multihop strategy.

Finding good upper bounds that are independent of the method of network operation

is a challenge. The standard min-cut upper bounds are often too loose, therefore it

is hard to say how much we may be sacrificing by sticking to a simple multihop

strategy. Coming up with tight upper bounds as well as strategies for achieving them

is an interesting line of research.

From a practical point of view, scheduling the relays that are used in communi-

cating each of the messages should be done in a decentralized manner. Algorithms

that allow nodes to decide for themselves which messages to relay and in which time

slots are of great interest. Also, assuming that nodes start out only with the knowl-

edge of their immediate connections, finding efficient ways for them to exchange the

minimum required information in order to participate in network communication is
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an important problem.

7.2.2 Wireless Erasure Networks and Network Coding

In Chapter 4, we presented a network with erasure links and incorporated the wireless

features of broadcast and intereference. For these networks, and several multicast

scenarios, we presented exact capacity regions. These had a nice max-flow, min-cut

interpretation, and channel and network coding had to be done jointly to achieve this

capacity region. In fact, some results of Chapter 5 show that separating the two can

lead to a loss of rate. In addition, we showed that linear coding strategies, which lead

to faster decoding, can also achieve the capacity region.

However, all our results hinge on the availability of side-information regarding the

locations of erasure at the destination. What the capacity region would be in the

absence of this side-information is an open problem. Also, generalizing our results

to networks where the links are not erasure channels is of interest. One approach to

take for these problems may be to ask what the appropriate side-information is that

can give us a capacity result.

While many specific multicast problems have been solved, the most general case

where multiple destinations want arbitrary subsets of the information available at

multiple sources remains open, even in the case of wireline networks. This problem

presents a challenging line of research.

7.2.3 Achieving Capacity with Simple Operations

In Chapter 5, we considered erasure and Gaussian wireless networks with a single

source and a single destination and began by showing that operating these by making

each link or subnetwork error free is suboptimal. In other words, a loss of rate is

incurred if we constrain every link or sub-network to be error free. Next we looked

at a simple scheme in which nodes of these networks were allowed to either decode

and then forward or simply forward the messages they receive and the goal was to

maximize the rate from the source to the destination. The optimal operation for
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each node was presented, and a decentralized algorithm that allowed each node to

determine for itself this optimal operation was also proposed.

There is one difference between the erasure wireless network model of Chapter

4 and that of Chapter 5, in that the links in the latter can take erasures as inputs

(and these are received as erasures) while the links of the former cannot. Ignoring

this fact, we can compare the capacity of a network, as given by the theorems of

Chapter 4, with the rates that can be achieved by the forward/decode schemes of

Chapter 5. In Figure 7.2.3 we consider a simple network, with erasure links. The

erasure probabilities for each channel are written in terms of a parameter ε that can

vary from zero to one. The capacity of the network as well as the rates achieved by

the forward/decode scheme are plotted.
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Figure 7.1: The gap between the capacity and the rate achieved with the for-
ward/decode scheme

We see that the practical scheme does very well when the erasure probabilities

are small, but there is a gap between the rates that it can achieve and the capacity.

Finding simple operations that can take us to capacity is an open problem. In gen-

eral, given a set of simple, low complexity operations that each node is capable of

performing, finding the optimal one for each node is an interesting question.
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7.2.4 Decoding in Multiple Antenna Systems

In Chapter 6, we looked at the maximum-likelihood decoding problem for multiple

antenna systems. This is an N -dimensional integer least squares problem in a prob-

abilistic setting, where N is the number of (actual or virtual) antennas. Several

heuristic methods of solving this problem using O(N 3) operations are known, but

the only known exact methods, such as the sphere decoder, have exponential com-

plexity. We propose an algorithm that takes into account the statistical basis of the

problem and prunes the search algorithm so as to reduce complexity. The pruning

also makes the algorithm sub-optimal, and we characterize the loss of performance

so as to be able to tradeoff complexity for performance. Our schemes can reduce

complexity (with respect to a state-of-the-art sphere decoder) by a factor of 240 for

a 50 antenna system with 4-QAM. With fewer antennas we expect smaller gains – a

factor of 7 reduction for a 12-antenna system with 64-QAM. This is achieved while

keeping performance within 0.1 dB of the optimal.

Although we have characterized the loss of performance with a particular pruning

strategy, what the best pruning strategy is that allows for a certain tolerable loss

of performance remains unclear. In other words, determining the optimum tradeoff

between performance and complexity is an open problem. Another challenging ques-

tion is that of finding the best pruning schedule for a given realization of the channel,

rather than just basing it on the channel statistics.
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