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Abstract

TheMethod of Imprecision, or MoI , is a semi-automated set-based approach which uses mathemat-

ics of fuzzy sets to aid the designer making decisions with imprecise information in the preliminary

design stage.

TheMethod of Imprecisionuses preference to represent the imprecision in engineering design.

The preferences are specified both in the design variable space (DVS) and the performance variable

space (PVS). To reach the overall preference which is needed to evaluate designs, the mapping be-

tween the DVS and the PVS should be explored. Many engineering design tools can only produce

precise results with precise specifications, and usually the cost is high. In the preliminary stage, the

specifications are imprecise and resources are limited. Hence, it is not cost-effective nor necessary

to use these engineering design tools directly to study the mapping between the DVS and the PVS.

An interpolation model is introduced to the MoI to construct metamodels for the actual mapping

function between the DVS and the PVS. Due to the nature of engineering design, multistage meta-

models are needed. Experimental design is used to choose design points for the first metamodel. In

order to find an efficient way to choose design points whena priori information is available, many

sampling criteria are discussed and tested on two specific examples. The difference between differ-

ent sampling criteria when the number of added design points is small, while more design points do

improve the accuracy of the metamodel substantially.

The metamodels can be used to induce preferences in the DVS or the PVS according to the

extension principle. The Level Interval Algorithm (LIA) is a discrete approximate implementation

of the extension principle. The resulting preference by the LIA is presented as anα-cut, which is

the set of designs or performances with a certain level of preference. There are some limitations of

the LIA, especially for multidimensional DVS and PVS. A new extension of the LIA is proposed to
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computeα-cuts with more accuracy and less limitations. The designers have more control over the

trade-off between the cost and accuracy of the computation with the new extension of the LIA.

The results of theMethod of Imprecisionshould be the set of alternative designs in the DVS at a

certain preference level, and the set of achievable performances in the PVS. The information about

preferences in the DVS and the PVS is needed to transfer back and forth. Usually the mapping from

the PVS to the DVS is unavailable, while it is needed to induce preference in the DVS from the

PVS. A new method is constructed to compute theα-cuts in both spaces from preferences specified

in the DVS and the PVS.

Finally, a new measure is proposed to find the most cost-effective sampling region of new design

points for a metamodel. Also, the full implementation of theMethod of Imprecisionis listed in de-

tail. Then it is applied to an example of the structure design of a passenger vehicle, and comparisons

are made between the new results and previous results.
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3.29 Normal probability plot for the errors of̂Y3 of the VW model. . . . . . . . . . . . 64

4.1 The preference function of the design variabled1 or d2. . . . . . . . . . . . . . . . 71

4.2 Example result of LIA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 The performance functionp = f(d). . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.4 µd(p) for µd as in Figure 4.1, wherep = 3 d3 + 2.5 d. . . . . . . . . . . . . . . . . 75

4.5 The combined design preferences of two design variables by differentPs. . . . . . 77

4.6 P d
αk

’s in a 2-D PVS from a 2-D DVS. . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 P d]
ε andP d\

ε in a 2-D PVS from a 2-D DVS. . . . . . . . . . . . . . . . . . . . . . 81

4.8 Dd
0.5(10)’s by different aggregation functions. . . . . . . . . . . . . . . . . . . . . 85

4.9 P d2
ε (S,U) with different values ofT andU . . . . . . . . . . . . . . . . . . . . . . 86

4.10 µd1(d1), µd2(d2), µp1(p1) andµp2(p2). . . . . . . . . . . . . . . . . . . . . . . . 90

4.11 The shape ofµo(~d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.12 Do2
0.5(S) for different values ofS. . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.13 P o2
0.5 (S,U) for different values ofS andU . . . . . . . . . . . . . . . . . . . . . . . 93

4.14 P d2
0.5 (8, 16) andP o2

0.5 (8, 16) by the forward calculation. . . . . . . . . . . . . . . . 94

4.15 P o2
0.5 (8, 16) by the new method andP o2

0.5 (1, 1) andP o2
0.5 (8, 16) by the forward calcu-

lation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Testing setup of body-in-white.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Geometric model of body-in-white in SDRC I-DEAS.. . . . . . . . . . . . . . . . 102

5.3 Finite element model of body-in-white.. . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Design preferences of the VW model. . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Functional requirements of the VW model. . . . . . . . . . . . . . . . . . . . . . 105

5.6 Aggregation hierarchy of preferences. .. . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Theα-cuts of design variables at~d∗. . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.8 The cross sections ofDαo2
k

at ~d∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 111



x

5.9 Theα-cuts of performance variables at~p∗. . . . . . . . . . . . . . . . . . . . . . . 113

5.10 The cross sections ofPαo2
k

at~p∗. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114



xi

List of Tables

3.1 Data Fitting Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Selected Numerical Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Error at Maximum Response (3,364.9).. . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Ratio of ERMSE to Response Range of the 10-D Function. .. . . . . . . . . . . . 46

3.5 Ratio of Maximum Error to Response Range of the 10-D Function. . . .. . . . . . 47

3.6 Significance Levels of Different Tests on the 10-D Function. . . . . . . . . . . . . 50

3.7 Ratio of ERMSE to Response Range of the VW Model. . . .. . . . . . . . . . . . 56

3.8 Ratio of Maximum Error to Response Range of the VW Model.. . . . . . . . . . 56

3.9 Significance Levels of Different Tests on the VW Model. . . . . . . . . . . . . . . 60

5.1 Range of the Design Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



1

Chapter 1

Introduction

TheMethod of Imprecision, or MoI , is asemi-automatedset-based approach which uses the mathe-

matics of fuzzy sets to aid the designer making decisions with imprecise information in the prelim-

inary design stage [62, 28].

In the preliminary design stage,imprecisionis the design engineer’s uncertainty in choosing

among alternatives, and it arises primarily from choices not yet made because of the intrinsic vague-

ness in the design description, and the uncertainty in the specifications and requirements. Precise

information is usually impossible to obtain. As the design proceeds from the preliminary stage to de-

tailed design and analysis, the level of imprecision is reduced. Finally, the design description will be

precise, except for tolerances, which represent the allowable uncontrolled manufacturing variation.

Despite the unavoidable imprecision in the preliminary design stage, engineering design methods

and computer aids require precise information. The MoI was developed to represent and manipu-

late the imprecise information in the preliminary design stage because the designer faces the highest

imprecision, and the most expensive decisions are made, in the preliminary stage [21, 56, 60, 57].

An imprecise variable in the preliminary design may potentially take on any value within a

possible range. Although the nominal value of the imprecise variable is unknown, some values

are preferred more than others by the designer. Themethod of imprecisionborrows the notion

of membership functions in a fuzzy set to represent the preference among designs. Although the

preference function in the MoI and the membership function in the fuzzy sets both have values from

0 to 1.0, they are different. The membership function models the uncertainty in categorization. The

preference function is fuzzy in unresolved alternatives.

Many engineering design tools, such as finite element models, require precise specification.

They can be used to evaluate designs one by one. Optimization can be used to find the single
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“optimal” design. But the information is only available near that single point. In contrast, the MoI is

aset-basedmethod. Sets of designs are evaluated in the MoI. The case study of Toyota’s design and

development process shows that set-based methods enable effective communication, allow greater

parallelism, and permit early decisions based on information that is not yet precise [59, 58, 32, 55].

In the MoI , the design engineers identify preferences on each of the performance variables by

which each design alternative will be evaluated. These preferences will typically come from poten-

tial customers. The designers also identify preferences on design variables (dimensions, material

properties,etc.). These preferences will come from the designers’ experience and judgment, and

are subject to change as the design process proceeds. One of the central aspects of the MoI is map-

ping the preferences from design variables onto the performance variables, and then building an

aggregate overall preference.

Many people have contributed to the MoI , and one design tool (IDT) was built by William S.

Law [27, 28]. In his Ph.D. thesis, William asked several questions about the implementation of the

MoI based on an example in [26]. This example is the mapping of a rectangle in the plane of two

design variablesx9 andx10 to the plane of two performance variables bending stiffnessKB and

torsional stiffnessKT . The approximation ofKB is shown in Equation 1.1, and the approximation

of KT is shown in Equation 1.2.

KB = 78, 400 + 170x9 − 240x10 − 630x9
2 − 5x9x10 − 88x10

2 (1.1)

KT = 13, 300 + 130x9 − 38x10 − 620x9
2 + 5x9x10 + 4x10

2 (1.2)

The plane ofx9 andx10 is shown in Figure 1.1. The center points, the four corner points, four

center points on the boundaries, and the boundary are mapped to the plane ofKB andKT . The

results of the mapping are shown in Figure 1.2. The solid lines are the mapping of the boundary

in Figure 1.1. The dashed lines connect the mapping of four corner points. The maximum of

KB is found at(0.05 − 1.36) by optimization. Because of the nonlinearity ofKB andKT , the

boundary of the mapped rectangle is not only curved, but also crosses over itself. There are many

ways to approximate the actual mapping: connecting the mapping of the four corner points by

linear approximations ofKB and KT ; connecting the mapping of eight points on the boundary

of the rectangle ofx9 andx10 and the mapping of the center points can be used to indicate the

nonlinearity ofKB andKT ; or constructing a boundary box with the extrema ofKB andKT found
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x9

x10

2

3

4(0,2)

(-0.05,0)

(0,-2)

(0.05,0)

1

(0.05,-1.36)

center point

Figure 1.1: The rectangle in the plane ofx9 andx10.

by optimizations. Each approximation listed above has its advantages and disadvantages.

Several questions generated from this example need to be answered:

1. Is the linear approximation sufficiently accurate for preliminary engineering design?

2. Will a nonlinear approximation of the mapping functions increase the accuracy of the bound-

ary, but not increase the computation cost significantly?

3. Which approximations are the most accurate and the most flexible among the three approxi-

mations discussed above, or is there any other method to approximate the boundary?

4. Is there any way to let the designer make a compromise or trade-off between the cost and the

accuracy with which the boundary is approximated?

1.1 Organization of Thesis

This thesis builds on the work of Wood and Antonsson [61, 62, 63, 64], Otto and Antonsson [38, 40,

43, 44, 64], Law and Antonsson [27, 28, 29, 30, 31], and Scott and Antonsson [50, 49, 51, 48, 52].
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KB78,000

3

78,50077,500

13,200

13,300

13,400

1

KT

center point

2

4

(0.05,-1.36)

Figure 1.2: The mapping of the rectangle in the plane ofKB andKT .

Their work has laid a broad theoretical foundation and practical implementation for the method of

imprecision.

The work described in this thesis seeks to improve the accuracy and efficiency of the imple-

mentation of the MoI , by practical testing via specific examples. Its principal contributions are the

introduction of a multistage nonlinear metamodel into the MoI , a new extension of the LIA, and a

new method to compute the overall preference with loose constraints.

Chapter 2 introduces basic concepts and techniques in the MoI . Section 2.1 defines the basic

concepts such as variables, spaces and preferences. The overall preference, which is used to evaluate

the design, is introduced in Section 2.2. Aggregation functions and rational aggregation are also

discussed in the same section. Section 2.4 presents the family of rational aggregation functions.

Chapter 3 describes the process to construct multistage nonlinear metamodels. Section 3.1

discusses why the interpolation model is preferred. Section 3.2 focuses on the details of the interpo-

lation model structure. Section 3.3 discusses the experimental designs used to choose design points

for the first metamodel. Sections 3.4 and 3.5 choose the base functions in the metamodel. The

sampling criterion is discussed in Section 3.6. Two methods to test the improvement of metamodels

are introduced in Section 3.7. Several sampling criteria are tested on metamodels of two functions
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in Sections 3.8 and 3.9.

Chapter 4 presents the efficient and accurate computation of the overall preferences. The ex-

tension principle and the LIA are introduced in Section 4.1. Then some anomalies and limitations

of the original LIA implementation are discussed in Section 4.2. Section 4.3 introduces some ex-

tensions of the original LIA. The methods to compute overall preferences in both DVS and PVS

without ~f−1 are discussed in Section 4.4.

Chapter 5 presents the full new implementation of the MoI . The models and methods discussed

in Chapters 3 and 4 are combined into the new implementation of the MoI in Section 5.1. A measure

of the sensitivity of theα-cuts to the metamodel is also proposed in Section 5.1. In Sections 5.2

to 5.4, the new implementation of the MoI is demonstrated on a practical design problem, and the

results are compared with previous results.

Chapter 6 summarizes the contributions in this thesis and answers the questions asked at the

beginning.
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Chapter 2

The Basics of the Method of Imprecision

This chapter will focus on the basic concepts and techniques in the Method of Imprecision [62,

28]. Section 2.1 defines the basic concepts such as variables, spaces and preferences. The overall

preference which is used to evaluate each design is introduced in Section 2.2. Aggregation functions

and axioms for rational aggregation are also discussed in the same section. Section 2.4 presents a

family of the rational aggregation functions.

2.1 The Basic Concepts

The design variables, {d1, . . . , dn}, are independent variables which differentiate alternative de-

signs. There may be other attributes of the design which are not included in the design variables

because they are not required to identify different designs. The design variables can be discrete

or continuous, but they are at least ordinal in order to facilitate computations. The independence

between design variables does not imply that design variables can not be related, but means that the

value of each design variable can be freely chosen.

All alternative designs under consideration form thedesign variable spaceor DVS. The set of

valid values for the design variabledi is denotedXi. All design variables form ann-vector,~d, which

distinguishes one particular alternative design from others in the DVS.

DV S = x1 × x2 × · · · × xn [ Cartesian Set Product ] (2.1)

The performance variables, {p1, . . . , pq}, are the independent variables used to indicate the

performance achieved by all designs under consideration. Each performance variable is a function

of the ~d, pj = fj(~d). The set of valid values for a performance variablepj is denotedYj. All
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performance variables for each alternative design form aq-vector,~p = ~f(~d), which specifies the

quantified performances of a design~d. Theperformance variable space, or PVS, is the set of all

quantified performances achievable by all designs in DVS, where~f(~d) = {f1(~d), . . . , fq(~d)}. The

mapping functionfj(~d) can be any calculation, such as closed-form functions, empirical “black-

box” functions, physical experiments, or even from consumer surveys.

PV S = { ~p | ~p = ~f(~d), ∀~d ∈ DV S } ⊆ p1 × p2 × · · · × pq (2.2)

The design variables and performance variables are imprecise in nature. The final value of each

variable is unspecified, and only the range of each variable is known in the preliminary stage of the

design. But certain values in the range are preferred more than others. The preference can be used

to quantify the imprecision of each variable.

Thefunctional requirementµpj(pj) represents the customer’s direct preference for values of the

performance variablepj , which may be specified by customers, or estimated by the designers:

µpj(pj) : Yj → [0, 1] (2.3)

The functional requirements preferences are based on quantified aspects of design performances

represented by performance variables. Other unquantified aspects of design performance such as

style are usually not modeled by performance variables; the preferences of these aspects are repre-

sented by the design preferences. Thedesign preferencefunctionµdi
(di) represents the designer’s

preference for values of the design variabledi, which will be specified by the designers based on

design considerations:

µdi
(di) : Xi → [0, 1] (2.4)

2.2 The Aggregation Functions

One single scalar preference is needed to compare different designs in DVS, whereµ(~d1) > µ(~d2)

means that design~d1 is more preferred than~d2. This single preference should embody both the

design preference in the DVS and the functional requirements in the PVS. This combined preference
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is called theoverall preference, which can be expressed in the DVS asµo(~d):

µo(~d) = P
(
µd1(d1), . . . , µdn(dn), µp1(f1(~d)), . . . , µpq(fq(~d))

)
(2.5)

The overall preference of the achievable performance can also be expressed in the PVS asµo(~p):

µo(~d) = P (µd1(~p), . . . , µdn(~p), µp1(p1), . . . , µpq(pq)
)

(2.6)

TheP in Equation 2.5 is theaggregation function, which reflects how the competing attributes

of the design should be traded off against each other [40, 41], and formalizes the designer’s balanc-

ing of conflicting goals and constraints. In order to model the designer’s trade-off strategy, some

restrictions must be applied on the aggregation functions to maintain their rationality [38]. These

restrictions are described by the following five axioms, whereN = n + q.

Axiom 2.1 Commutativity:

P(µ1, . . . , µj, . . . , µk, . . . , µN ) = P(µ1, . . . , µk, . . . , µj, . . . , µN ) ∀1 ≤ j, k ≤ N

This axiom indicates the aggregation function’s independence on the order in which the indi-

vidual preferences are combined.

Axiom 2.2 Monotonicity:

P(µ1, . . . , µk, . . . , µN ) ≤ P(µ1, . . . , µ
′
k, . . . , µN ) for µk ≤ µ′k, ∀1 ≤ k ≤ N.

The monotonicity means that the change of the overall preference caused by any change in any

individual preference should not move in the opposite direction. If the monotonicity is not satisfied,

an increase in one individual preference will cause decrease in the overall preference, which is not

rational.

Axiom 2.3 Continuity:

P(µ1, . . . , µk, . . . , µN ) = lim
µ′

k
→µk

P(µ1, . . . , µ
′
k, . . . , µN ) ∀k

The overall preference should not have any discontinuities if there are no discontinuities in

individual preference.
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Axiom 2.4 Idempotency:

P(µ, . . . , µ) = µ

The idempotency will remove the artificial biasness in the aggregation function.

Axiom 2.5 Annihilation:

P(µ1, . . . , 0, . . . , µN ) = 0

A preference of zero indicates that the value of that variable is totally unacceptable. This axiom

is needed to make sure that any acceptable design does not have any unacceptable design perfor-

mance.

These five axioms are only necessary conditions for the rationality of the aggregation function.

Similar axioms are defined by Fung and Fu [20] to maintain the rationality in general decisionmak-

ing: commutativity, monotonicity, continuity, idempotency, and associativity. It is noted that the

annihilation axiom is not necessary for the rationality of general decision-making.

The aggregation functions satisfying all above axioms are considereddesign-appropriate. Al-

though there are many design-appropriate aggregation functions, the choice should be made accord-

ing to the relationship between design and performance variables as follows [42, 64].

In one type of design strategy, the overall preference of the system is determined by the lowest

preference on any variable. The increase in preference for one variable can not compensate for

the decrease in another preference. There is no trade-off between individual preferences. This is

a non-compensatingtrade-off strategy. The minimum aggregation functionPmin should be used

here:

µo = min (µd1 , . . . , µdn , µp1 , . . . , µpq) (2.7)

Pmin is the hard “and” operation in fuzzy logic [4], which will lead to the classic max-min

solution from game theory [65].

In another type of design strategy, the decrease in one preference can be counterbalanced by the

increase in another, that is, the two preferences can be traded off with each other. This is afully

compensatingtrade-off strategy. The geometric weighted mean functionPΠ is needed:

µo =


 n∏

i=1

µdi
·

q∏
j=1

µpj




1
n+q

(2.8)
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PΠ is the soft “and” operation in the fuzzy logic [4], which corresponds to the Nash solution

from game theory [65].

2.3 Weights of Preferences

The variables representing a design are not equally important with each other. The relative impor-

tance of each variable can be specified by assigningweightsto the corresponding variables:

ωdi
≥ 0

ωpj ≥ 0

Now the overall preference should be aggregated from both the individual preferences and the

individual weights. The axioms which the aggregation functions should satisfy need to be redefined

in order to include weights:

Axiom 2.6 Commutativity:

P(µ1, . . . , µj , . . . , µk, . . . , µN ; ω1, . . . , ωj, . . . , ωk, . . . , ωN ) =

P(µ1, . . . , µk, . . . , µj, . . . , µN ; ω1, . . . , ωk, . . . , ωj , . . . , ωN ) ∀j, k

Axiom 2.7 Monotonicity:

P(µ1, . . . , µk, . . . , µN ; ω1, . . . , ωk, . . . , ωN ) ≤ P(µ1, . . . , µ
′
k, . . . , µN ; ω1, . . . , ωk, . . . , ωN )

for µk < µ′k, ∀k
P(µ1, . . . , µk, . . . , µN ; ω1, . . . , ωk, . . . , ωN ) ≤ P(µ1, . . . , µk, . . . , µN ; ω1, . . . , ω

′
k, . . . , ωN )

for ωk < ω′k, where µj ≤ µk, ∀ j 6= k, ∀k

The overall preference should not decrease if the weight of the variable with the highest prefer-

ence is increased.

Axiom 2.8 Continuity:

P(µ1, . . . , µk, . . . , µN ; ω1, . . . , ωk, . . . , ωN ) =

lim
µ′

k
→µk

P(µ1, . . . , µk, . . . , µN ; ω1, . . . , ωk, . . . , ωN ) ∀k

P(µ1, . . . , µ
′
k, . . . , µN ; ω1, . . . , ωk, . . . , ωN ) =
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lim
ω′

k
→ωk

P(µ1, . . . , µk, . . . , µN ; ω1, . . . , ω
′
k, . . . , ωN ) ∀k

The aggregation function should have continuities on both preferences and weights.

Axiom 2.9 Idempotency:

P(µ, . . . , µ; ω1, . . . , ωN ) = µ

Axiom 2.10 Annihilation:

P(µ1, . . . , 0, . . . , µN ; ω1, . . . , ωk, . . . , ωN ) = 0 whereωk 6= 0, ∀k
P(µ1, . . . , µk, . . . , µN ; ω1, . . . , 0, . . . , ωN ) =

P(µ1, . . . , µk−1, µk+1, . . . , µN ; ω1, . . . , ωk−1, ωk+1, . . . , ωN ) ∀k

If a variable is assigned a weight of zero, that variable will be removed from the aggregation.

Because no upper boundaries and normalizations are specified on the weights in the definition,

an additional axiom is needed:

Axiom 2.11 Self-normalization:

P(µ1, . . . , µN ; λω1, . . . , λ ωN ) = P(µ1, . . . , µN ; ω1, . . . , ωN ) whereλ > 0

According to the self-normalization axiom, the weights can be scaled by any positive constantλ

without any change in the overall preference. A weighted aggregation function is design appropriate

if all above six axioms are satisfied.

2.4 Weighted Means

The theory of functional equations [1] has been applied to the exploration of certain aggrega-

tion functions called t-norms and t-conorms [14]. The same approach was applied to the design-

appropriate aggregation functions by Scott and Antonsson [50]. The relevant class of functions is

the weighted means:

P(µ1, . . . , µN ; ω1, . . . , ωN ) = g

(∑N
i=1 ωi g

−1(µi)∑N
i=1 ωi

)
(2.9)
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whereg is a strictly monotonic, continuous function with inverseg−1; g(0) ≤ µi ≤ g(1), ωi ≥ 0,

1 ≤ i ≤ N ; and
∑N

i=1 ωi > 0. It is shown that the weighted means satisfy all the axioms except

possibly the annihilation axiom. Then all weighted means which satisfy the annihilation axiom

are design-appropriate. Arbitrary design-appropriate aggregation functions also satisfy other prop-

erties with the assumption of strict monotonicity [50]. Any strictly monotonic design-appropriate

aggregation must be a weighted mean.

The family of weighted root-mean-power functions is generated by the functiong(µ) = µs [1]:

Ps(µ1, . . . , µN ; ω1, . . . , ωN ) =

(∑N
i=1 ωi µ

s
i∑N

i=1 ωi

) 1
s

(2.10)

wheres ∈ R. If s > 0, 0 = g(0) ≤ µi ≤ g(1) = 1. If s < 0, g−1(µ) andPs satisfies the

annihilation axiom [50].Ps≤0 is a family of design-appropriate aggregation functions because it

satisfies all the axioms in Section 2.3.

The two design-appropriate aggregation functions,Pmin andPΠ, are just limiting cases ofPs≤0

wheres → 0 & s → −∞ respectively [50]:

PΠ = Ps=0(µ1, . . . , µN ; ω1, . . . , ωN ) =

(
N∏

i=1

µωi
di

) 1
ω

where ω =
∑N

i=1 ωi (2.11)

and

Ps=−∞(µ1, . . . , µN ; ω1, . . . , ωN ) = min(µ1, . . . , µN ) (2.12)

OtherPs with −∞ < s ≤ 0 changes continuously withs betweenPmin andPΠ and represent

partially compensatingtrade-off strategies, where a change of preference for one variable can be

partially compensated for by changing the preference for another variable.

Because of the properties of idempotency and monotonicity,Pmin is the lower bound for design-

appropriate functions. Similarly,Pmax = max(µ1, . . . , µN ) might be the upper bound for design-

appropriate functions. ButPmax is not design-appropriate because it does not satisfy the annihila-

tion axiom.

ForPs with s ≥ 0, the level of compensation increases withs until Ps=+∞ = max is reached.

Ps>0 are also calledsuper-compensatingfunctions. Just likePmax, all super-compensating func-

tions do not satisfy the annihilation axiom. But they can be modified to become design-appropriate
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because of the actual implementation of the MoI [48].

The parameters defines the trade-off strategy or degree of compensation between any two vari-

ables, and is implemented by a design-appropriate aggregation functionPs(µ1, µ2; ω1, ω2). The

indifference pointsare defined as two points which have the same preference. The parameters and

the weights can be numerically calculated from indifference points [52].

2.5 Hierarchical Aggregation

If many different trade-off strategies are used to aggregate the overall preference in a design, the in-

dividual preferences should be aggregated by an aggregation hierarchy. The hierarchy is determined

by the problem. Even if differentPs’s are used in the hierarchy, the weights can be propagated freely

because of the self-normalization axiom discussed in Section 2.3. If there are only aggregations of

pairs of individual preferences in the hierarchy, a numerical method can be used to calculate the

parameters and the weights [52].

One special situation for hierarchical aggregation is aggregations with the sames that are com-

bined together. Consider three individual preferencesµ1, µ2 andµ2 with weightsω1, ω2 andω2.

Assumeµ1 is first aggregated withµ2, then aggregated withµ3 with the same trade-off strategy.

Ps(Ps(µ1, µ2; ω1, ω2), µ3; ω1 + ω2, ω3) (2.13)

=
(

(ω1 + ω2)Ps(µ1, µ2; ω1, ω2)s + ω3 µs
3

(ω1 + ω2) + ω3

) 1
s

=




(ω1 + ω2)
(

(ω1µs
1+ω2µs

2)
1
s

ω1+ω2

)s

+ ω3 µs
3

ω1 + ω2 + ω3




1
s

=
(

ω1 µs
1 + ω2 µs

2 + ω3 µs
3

ω1 + ω2 + ω3

) 1
s

= Ps(µ1, µ2, µ3; ω1, ω2, ω3)

Therefore in this case, the hierarchical aggregation is unnecessary since it is equivalent to the

single aggregation function.
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2.6 Summary

All designs under consideration form the DVS, and the design variables, are used to distinguish

alternative designs. The PVS consists of all achievable performances. The performance variables

can be mapped from the vector of design variables. All quantified preferences are specified on

the performance variables directly, usually in consultation, or by survey, of the customers. Other

unquantified preferences are determined by the designer based on judgment and experience.

The design will be evaluated by the overall preference which is aggregated from individual

preferences. A design with higher overall preference is preferred more than one with lower over-

all preference. The aggregation functions embody the trade-off strategies. All design-appropriate

aggregation functions represent rational trade-off strategies and satisfy the five axioms: commu-

tativity, monotonicity, continuity, annihilation, and idempotency, among which the annihilation is

unique to design problems.

Weights may be included in the aggregation function in order to represent the relative impor-

tance of individual preferences. In this case, all of the above five axioms need to be redefined, and

one self-normalization axiom is added for the scalability of weights.

The family of root-mean-power functionsPs with a negative parameters,P−∞<s≤0, contain

all monotonic design-appropriate aggregation functions. The root-mean-power functionPs with

positive parameters > 0 is not design appropriate, but it can be modified to be design appropriate

because of the implementation details of the MoI, as shown later. If different trade-off strategies are

used in a design, a hierarchy of aggregation is needed.

This completes the introduction to the basic model structure and techniques used in the MoI .

The computational implementation of MoI will be discussed in later chapters.
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Chapter 3

Metamodels for the Mapping between DVS and PVS

A central element of the MoI, is to approximate the mapping between the design variable space

(DVS) and the performance variable space (PVS), because the mapping will be used to induce

preferences in the PVS from the preferences in the DVS, as will be discussed in Chapter 4. Because

of the wide use of computers, this process is usually conducted by running some complex computer

analysis software package. When the DVS is high dimensional, it is prohibitively expensive to

directly use complex analysis software to explore the DVS. For example, it will require about 5

minutes to analyze a modestly complex finite element model. For a five dimensional DVS, it will

require about 10 days on a grid with 5 points on each design variable (DV). If the dimensionality of

the DVS increases to 10, then it will run about 92 years, on a grid with 5 points on each DV.

It is not necessary to pursue high accuracy at the preliminary stage of the engineering design.

So, a linear approximation can often be used to reduce the computational cost [30]. It does not

perform well on nonlinear mappings common in design, so a traditional optimization is used to

improve the accuracy [30]. It is preferred to have one single model to estimate linear and nonlinear

mappings.

A metamodelis defined as “a model of the model [24].” It should have flexible model structure

and be able to estimate the actual mapping with reasonable accuracy. A metamodel will be con-

structed by running the analysis software over a relatively small set of design points, and will be

used to explore the mapping between the DVS and the PVS. Due to the iterative nature of engineer-

ing design, multistage metamodels are helpful, because a more accurate metamodel may be needed

as the design is refined.

This chapter will introduce the model structure of the metamodel in Sections 3.1 and 3.2. Sec-

tion 3.3 will discuss the experimental design used to determine the design points for the metamodel
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at the first stage. In Sections 3.4 and 3.5, the base functions used in the metamodel will be deter-

mined by tests on two specific examples. The sampling criteria of the design points, when there is

a priori knowledge available, will be discussed in Section 3.6. Section 3.7 introduces two methods

to test the improvements between metamodel at different stages. Finally, the sampling criteria will

be tested on two specific examples in Sections 3.8 and 3.9.

3.1 Approximation or Interpolation

The difference between a computer experiment and a traditional physical experiment is that repeated

computer experiments generate the same results.

For an approximate model of a traditional physical experiment, the most frequently used method

is least-squares regression, which models the random errors in the results as identical and indepen-

dent Normal variables with mean zero and varianceσ, that is,εrandom ∼ N(0, σ2). The least-square

estimator will minimize the sum of the squared differences between the experiment results and the

predicted values. Figure 3.1 shows one set of sample data and the results of two different approxi-

mate models. The relationship between the estimate and the actual value is

y = ŷ + εsystem + εrandom (3.1)

wherey is the actual value,̂y is the estimated value,εsystem is the systematic error, andεrandom is

the random error, or call it approximation error.

Although the estimated model does not pass through the actual values, it is assumed that the

random errors are smoothed out because of the assumption ofεrandom ∼ N(0, σ2)

However, for the deterministic results from a computer experiment, the relationship between the

estimate and the actual value is

y = ŷ + εsystem (3.2)

wherey is the actual value,̂y is the estimated value, andεsystem is the systematic error.

Although the response surface method is based on least square regression, it still can be applied

to computer experiments if the dimensionality of the design space is not high and the response is

not strongly nonlinear, because of the simplicity and maturity of the response surface method.

Neural networks implement a nonlinear regression method [8]. It may be used for deterministic
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    Sample Data
    Cubic Approximation
    Linear Approximation

Figure 3.1: Two approximations of one set of sample data.
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high-dimensional computer experiments. But the fatal disadvantage of the neural networks is that

it converges slowly. To construct a good metamodel, it needs lots of training data. This makes

the neural networks not suitable for building the metamodel in the preliminary stage of engineering

design where available resources are limited.

Inductive learning draws inductive inference from obtained facts [17, 16]. This method builds

the estimation model in the form of condition-action rules, and decision trees. A matched rule is

found by a search in the decision tree for the encountered condition [25]. This method works well

if the design variables and the response are almost all discrete-valued, but it is not a good candidate

in engineering design where, in general, the responses are continuous

By probabilistic modeling of the uncertain prediction error, J. Sackset al. proposed a new in-

terpolation model which generates the best unbiased linear predictor for the deterministic computer

experiment [46]. This method is discussed in detail in the next section.

3.2 Interpolation Model

Consider the approximation ofY (x) by someŶ (x) wherex ∈ Rm. In Equation 3.2, the structure

of the systematic errorεsystem is usually unknown. In the approach proposed by Sacks, Schiller

and Welch [46], the estimate is an approximation,
∑k

j=1 βj · fj(x), andεsystem is modeled as a

stochastic process,Z(x). Now the model becomes

Y (x) =
k∑

j=1

βj · fj(x) + Z(x) (3.3)

The approximation is simple and straightforward once the choice of the base functionsfj is

made. For the stochastic processZ(x), the important part is the covariance structure, and this is

chosen to be

Cov(Z(t), Z(u)) = V (t, u)

= σ2
z · exp(−θ ·

m∑
j=1

(tj − uj)pj) (3.4)

wheret = (t1, . . . , tm) andu = (u1, . . . , um), σ2
z , pj andθ > 0 are parameters to be decided by

the designer.

It is always assumed thatE(Z(x)) = 0 and thatZ(x) is a Gaussian process. The value ofθ will
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affect the prediction ability of the model. It is harder to predict for the model with largerθ than the

model with smallerθ. The choices ofpj ’s will determine the derivatives of the correlation functions

and the response. Here thepj ’s are chosen to be2, andθ is set to1/2.

The points in the DVS used to build the estimation model are called thedesign points. With

a set ofn design points,S = {s1, . . . , sn} and corresponding responseY (s1), . . . , Y (sn), the

interpolation model is generated as follows by Sacks, Schiller and Welch [46]. First introduce the

notation:

β = [β1, . . . , βk]

V = [Cov(Y (si), Y (sj)]1≤i≤n,1≤j≤n

f ′x = [f1(x), . . . , fk(x)]

v′x = [V (s1, x), . . . , V (sn, x)]

y′ = [Y (s1), . . . , Y (sn)]

F = [fl(si)]1≤i≤n,1≤l≤k (3.5)

For the linear predictor of the response,c′ · y, its mean square error (MSE) is [46]:

E[c′ · y − Y (x)]2 = (c′ · F · β − f ′x · β)2 + [c′,−1] ·

 V vx

v′x σ2
z


 ·

 c

−1


 (3.6)

To obtain an unbiased predictor, it is needed to apply the constraintF ′·c = fx. After minimizing

the MSE for the predictorc′ · y under the above constraint by Lagrange multipliers method, the

interpolation model becomes [46]

Ŷ (x) = f ′x · β̂ + v′x · V −1 · (y − F · β̂)

β̂ = (F ′ · V −1 · F )−1 · F ′ · V −1 · y (3.7)

whereβ̂ is the generalized least square estimate ofβ.
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3.3 Experimental Design

Experimental design methods have been widely used in many areas including computer experi-

ments. It helps to learn how systems work. Careful design of experiments will result in improved

process yields, reduced development costs, etc. It also has an important role in the area of engi-

neering design. It helps the designer to compare different design configurations, to optimize design

parameters, to improve robustness of the design, etc. The design of experiment also helps to choose

design points which are used to construct the metamodel efficiently.

There are many frequently used experimental design methods for different purposes. One such

method is Latin Hypercube sampling first introduced by M.D. Mckayet. al.[35], which ensures all

portions of the design space are sampled. The Latin Hypercube method is an extension of stratified

sampling. With stratified sampling, the design space is divided into many disjoint strata. Each stra-

tum is sampled individually. The Latin Hypercube simply divides the region of each design variable

into N strata with equal marginal probability distribution. If the design variables are distributed

equally, each stratum will be divided into the same range, and then the method is called Uniform

Latin Hypercube sampling. Each stratum is sampled only once. Therefor, for theith design vari-

able, there will be N different sampling locations{dvi,1, · · · , dvi,N}. The values of theith design

variable at allN sampling points,{xi,1, · · · , xi,N}, will be a permutation of{dvi,1, · · · , dvi,N}.
Because all portions of each design variable region are covered in the Latin Hypercube sampling,

it is best used when there are only a few dominating design variables for the response. The Latin

Hypercube method usually needs a reasonably large number of samples to make the method work

well.

In a factorial design, all possible combination of the levels of each factor are evaluated [37, Page

228]. In general, factorial design is the most efficient method if it is desired to study the effects of

more than one factor. Factorial design allows not only study of the effects of the main factor, but

also the effects of the interactions between factors. The most important factorial design method

is the 2-level factorial design, which requires2k observations fork factors. It is also called the

2k factorial design[37, Page 290]. The2k factorial design works quite well in the studies of the

linear effects of the main factors and the interactions. However, the number of required observations

increases dramatically when the number of factors increases. If it can be assumed that certain high-

order interactions are negligible, then only a fraction of the2k factorial design is needed to get the

information of the main factors and the low-order interactions. The high-order interactions with
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fixed values are called the generators. WithP independent generators, the2k−p fractional factorial

designcan be constructed, which is1/2p fraction of the2k factorial design [37, Page 398]. There

are many possible choices of generators, but only some of them can generate the highest possible

resolutions. If two or more effects can not be differentiated by the observations, they are called

aliases[37, Page 374]. The resolution of a fractional factorial design is considered to beK if n-

factor effects and effects with less than (K − n)-factor are not aliases [37, Page 376]. The most

useful ones are Resolution III designs, Resolution IV designs, and Resolution V designs.

For a Resolution III design, no two or more main effects are aliases, but any main effect and

any two-way interactions may be aliases. For a Resolution IV design, no two or more main effects

are aliases, neither are any main effects and any two-way interaction. But two or more two-way

interactions may be aliases. For a Resolution V design, no two or more main effects are aliases,

neither are two or more two-way interactions. But any two-way interaction and any three-way

interaction may be aliases [9].

If the regression model is only first-order, theorthogonal first-order designs[37, Page 600] can

be used to minimize the variance of the regression parameters. A design is orthogonal if the matrix

(X ′X) is diagonal. The2k factorial design and fractional factorial design are both orthogonal.

Another type of orthogonal design is thesimplex design[11]. The simplex design is a equilateral

triangle fork = 2, and is a regular tetrahedron fork = 3.

For fitting the second-order polynomial regression model, thecentral composite design, or

CCD [37, Page 601], is the most popular design. Usually theCCD consists of a ResolutionV

fractional factorial design, the center point, and2 · k axial points fork factors. There are several

variations ofCCD. If the fractional factorial design in theCCD is only Resolution III, the design is

calledsmall composite design[37, Page 605]. Sometimes the interesting region is thek-dimensional

hypercube, then the axial points can be put at the center of each face,i.e.,±1. This design is called

the face-centered central composite design[37, Page 605].

The Box-Behnken design, proposed by Box and Behnken, is also used for the second-order

regression model [5]. It is constructed by combining the2k factorial design and the incomplete

block design. This type of design is spherical design. All the design points are on a sphere of radius
√

2, and there are no corner points included.

Among all these design methods, the right choice should be made based on the regression model

and any specific requirement. For the computer experiment at the preliminary stage of engineering

design, more weight will be put on parsimony, i.e., fewer design points for the same number of
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factors.

3.4 Base Functions

For the first part of Equation 3.3, the base functionsfj(x) are unspecified. The second part of the

Equation 3.3 models the error in the approximation of the response. The general principles of choos-

ing a good model type are flexibility and parsimony, and a trade-off is always made between them.

In the preliminary stage of engineering design, the computational cost is a significant concern, so

more weight is put on the principle of parsimony when considering the model type of base func-

tions. Also, there is the “main effects principle,” which is the empirical observation that linear main

factors are more important than high-order interactions [34]. From all of the above considerations,

several polynomial models ( from the simple linear model, quadratic model, to more complicated

nonlinear MARS model ) are candidates for the base functions in the interpolation model.

3.4.1 Polynomial Models

The linear model ofn independent variables with up tom order interactions is

ŷlinear = f̂(x1, . . . , xn) = a0 +
n∑

i=1

aixi (3.8)

The design points for the linear model are determined by a Resolution III fractional factorial design.

In piecewise linear model, the design variable space is divided into many rectangular subspaces

and each subspace has its own linear model, as above.

The (partially) quadratic model ofn independent variables with up tom order interactions adds

quadratic terms to the linear model above:

ŷquad = f̂(x1, . . . , xn) = ŷlinear(x1, . . . , xn) +
n∑

i=1

aiix
2
i (3.9)

The central composite design is used to decide the coefficients of the quadratic terms. It is simply

the factorial design plus the central points of each face.

The higher-order model ofn independent variables, with higher-order interactions determined
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by the values ofn andm, is

ŷ = f̂(x1, . . . , xn) = a0 +
n∑

i=1

aixi +
n∑

i1=1

n∑
i2=1

ai1i2xi1xi2+, . . . ,

+
n∑

i1=1

. . .
n∑

im=1

ai1...imxi1 . . . xim (3.10)

This is equivalent to a product of several linear regression polynomials. If the number of data points

is less than the number of terms in the polynomial, only the coefficients of an equal number of

lower-order terms are nonzero.

3.4.2 Nonlinear Regression MARS Model

MARS [19, 45] fits high-dimensional data to an expansion in multivariate spline basis functions.

The number of basis functions, the product degree, and the knot locations are automatically deter-

mined by, and are adaptive to, the data. The model produces a strictly continuous approximation

with continuous derivatives, and identifies the contributions from additive terms and multivariable

interactions. The method is attractive due to its low computational cost.

“The approximation takes the form of an expansion in multivariate spline basis func-

tions:

ŷ = f̂(x1, . . . , xn) = a0 +
M∑

m=1

amBm(x1, . . . , xn) (3.11)

with:

B0(x1, . . . , xn) = 1, (3.12)

Bm(x1, . . . , xn) =
Km∏
k=1

bkm(xv(k,m)|tkm). (3.13)

The{am}M
0 are the coefficients of the expansion. Each multivariate spline basis func-

tion Bm is the product of univariate spline basis functionsb, each of a single in-

put variablexv(k,m), and characterized by a knot attkm. The multivariate spline

basis functionsBm are adaptive in that the number of factorsKm, the variable set

V (m) = {v(k,m)}Km
1 , and the parameter settkm are all determined by the data.” [18,

Page 17]

The “knots” here means a nondecreasing sequence oftkm’s which determine the control (design)

points of the spline. For further details of the MARS model see Friedman (1991) [19].
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Based on modeling of five-dimensional input variables on an engineering workstation, results

can be obtained essentially immediately when 32 observations are used and a maximum of 30 base

functions are allowed. The regression computations required less than 80 seconds for modeling and

prediction based on 3125 data points with a maximum of 40 base functions.

Another advantage of MARS is that it provides methods of slicing up then-dimensional space

by assigning specific values to a subset of the design variables and obtaining the MARS model

along the slice. This is of great convenience when the shape of performance response in one or two

specific directions is needed.

3.5 Method for Selection of the Base Functions

Among the candidates listed in Section 3.4, one type of base function will be chosen. The choice will

be made based on the performance of each type of base functions on a practical problem described

below. One estimation model will be built for each type of base function using the least-squares

regression method. This finite element model has already been run on a55 grid in the DVS. There

are55 = 3125 points in the DVS and corresponding values of the response at these points. Only a

fraction of the results will be used to build the estimation model, but all data will be used to evaluate

the performance of the resulting model. All the points used to test the model are called thetest

points. For each estimation model, the empirical root-mean-square error (ERMSE) at all the design

points and all the test points, the maximum error at all design points and test points, and the error at

the point with maximum response will be computed as the measure of the performance of each type

of base function. Also, the cost of building the model will be taken into consideration. Because the

computation cost of the least square regression method is negligible when compared with the cost

of the finite element model, only the latter cost,i.e., the number of design points, will be considered.

3.5.1 Problem Description

The test function in the example presented here is the bending stiffness of a Volkswagen passenger

automobile chassis (shown in Figure 3.2) computed from a finite-element model (shown in Fig-

ure 3.3) in a design space of five variables (n = 5):

x1 = A Pillar Thickness [mm]

x2 = B Pillar Thickness [mm]
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Figure 3.2: Geometric model of body-in-white in SDRC I-DEAS.

x3 = Floor Rail Thickness [mm]

x4 = Floor Thickness [mm]

x5 = B Pillar Location [mm]

Table 3.1 lists the models that have been built to fit the actual response function. In all cases,

n=5. For the linear model (LM),m = 2 was used for 17 points which are a Resolution IV fractional

factorial design and the center point, andm = 5 was used for 32 points which are the full factorial

design. For the quadratic model (QDM),m = 2 for 14 and 19 points. The 14 points are a Resolution

III fractional factorial design, the center point, and five face-center points{d1, . . . , d5} where

dk = 1 anddl = 0, ∀ l 6= k, 1 ≤ k ≤ 5. The 19 points are a Resolution III fractional factorial

design, the center point, and ten face-center points{d1, . . . , d5} wheredk = ±1 and

dl = 0, ∀ l 6= k, 1 ≤ k ≤ 5. For the high-order polynomial model (HM),m = 4 was used for

34 and 106 points which is the combination of fractional factorial designs in each sub-hypercube

over the grid, andm = 10 for 243 points which is a 3-level full factorial design. For the piecewise

linear model (PLM),m = 2 was used for each linear model. There are 32 linear models in the PLM
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Figure 3.3: Finite element model of body-in-white.

with 243 points which is the combination of 32 2-level full factorial designs in 32 sub-hypercubes,

and 1024 linear models in the PLM with 3125 points which is the combination of 1024 2-level full

factorial designs in 1024 sub-hypercubes. The test points for each model are all points on the55

grid except the design points.

3.5.2 Test Results

Figure 3.4 shows a projection of the five-dimensional bending stiffness data surface onto 2 dimen-

sions (Floor thicknessandB pillar location). This illustrative projection was created by holding

each of the 3 dimensions not shown (A pillar thickness, B pillar thicknessandFloor rail thickness)

at a constant value. The approximations computed here fit all 5 dimensions of the design space,

however, to enable graphical comparison, the figures only show variations in bending stiffness as a

function of 2 dimensions.

The bending stiffness response in theB pillar location direction has the highest nonlinearity of

the 5 directions. The nonlinearity in that direction is reflected, to some degree, in the errors of most

regression models. Polynomial models and the MARS model were fitted to the data selected by

each design of experiment listed in Table 3.1. Figures 3.5 through 3.7 show the error surfaces of
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Table 3.1: Data Fitting Models.

No. of Design Points

Model Experimental Design for a Single Model No. of Models

QDM, MARS Resolution III 14 1

+ half central pts

LM, MARS Resolution V 17 1

+ all central pts

QDM, MARS Resolution III 19 1

LM, MARS Full 32 1

HM 34 1

HM 106 1

PLM Full 243 32

HM 243 1

MARS Full 243 1

PLM Full 3125 1024

MARS Full 3125 1
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Figure 3.4: Bending stiffness data projected onto 2 dimensions.

the polynomial and MARS models with 19,243 and 3125 evaluations. The errors are computed by

systematically computing the bending stiffness at 5 equally spaced points in each of the 5 variables,

thus producing a five-dimensional set of 3125 data points. The error is the difference between each

approximation model and the 3125 computed data points. As before, these figures are plotted by

projecting the error onto two directions (Floor thicknessandB pillar location) of the design space

while fixing the values in each of the other three directions.

Table 3.2 shows some numerical results.

Figures 3.8 through 3.10 show error statistics from the regression models. In each case, the

empirical root-mean-square error is computed as follows:

ERMSE=

√√√√ 1
m

m∑
i=1

(errori)2 (3.14)

Figure 3.8 shows the mean square error computed from the difference between the computed bend-

ing stress and the regression models at the points used to build the regression model. This illustrates

how close each regression model is to the known data. Figure 3.9 shows the mean square error com-

puted at the balance of the five-dimensional set of 3125 data points not used to build the regression
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Figure 3.5: (ERMSE/response range) of polynomial and MARS models with 19 design points.
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Figure 3.6: (ERMSE/response range) of polynomial and MARS models with 243 design points.



30

Table 3.2: Selected Numerical Results.

No. of ERMSE at

Model Design Points Max Error Design Points Test Points

LM 14 95.0222 4.0675 38.1969

QDM 14 96.5684 0.3146 37.8841

MARS 14 97.0071 26.1171 36.7300

LM 17 114.8618 8.2247 48.4791

MARS 17 -139.7960 14.3700 48.3807

LM 19 95.7740 5.1729 38.3018

QDM 19 97.0783 0.8729 37.8844

MARS 19 96.8069 24.0653 36.5292

LM 32 100.4263 0.0000 38.8571

HM 34 93.5924 0.1188 38.2424

HM 106 93.1696 0.0157 38.5856

LM 243 98.7086 6.5460 39.9432

QDM 243 92.1269 1.1224 39.4614

HM 243 93.1550 0.0000 39.4917

PLM 243 -51.3850 0.0000 7.2887

MARS 243 92.9333 0.2467 39.4931

LM 3125 77.9965 34.2793 N/A

QDM 3125 70.3151 33.7758 N/A

PLM 3125 0.0000 0.0000 N/A

MARS 3125 6.5911 1.4939 N/A
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Figure 3.7: (ERMSE/response range) of polynomial and MARS models with 3125 design points.

model. Figure 3.10 shows the maximum error at all 3125 data points. Figures 3.9 and 3.10 illustrate

how well each regression model approximates the data in areas of the design space away from the

points used to build the regression model.

Finally, the error at the point where the bending stiffness itself is a maximum is shown in Ta-

ble 3.3 and in Figure 3.11 for all models.

3.5.3 Base Functions Selected

When using the same set of design points, polynomial models can produce smaller empirical root-

mean-square error (ERMSE) at all design points than MARS models, because the polynomial mod-

els are generated by the method of the least MSE. The ERMSE of all test points is a more important

indicator of the quality of an approximation because it indicates how well the model fits the actual

function at the unknown (for this model) points. It is used as an indication of the accuracy of each

model. For MARS models, the accuracy is similar to the other models when the number of the

points used to build the model is less than or equal to 243. The MSE for all test points is, of course,

not meaningful when all 3125 points are used to generate the model (since there are no test points).

Comparing the maximum error of each MARS model, the one with 3125 evaluations is much better
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Table 3.3: Error at Maximum Response (3,364.9).

No. of Error at

Model Design Points Max Response Error/Max Response%

LM 14 92.5664 2.75

QDM 14 96.5684 2.87

MARS 14 93.9426 2.79

LM 17 111.5991 3.32

QDM 17 97.0783 2.89

MARS 17 130.299 3.87

LM 19 93.3192 2.77

QDM 19 97.0783 2.89

MARS 19 93.7131 2.78

LM 32 90.5300 2.69

HM 34 93.5924 2.78

HM 106 93.1696 2.77

LM 243 89.2554 2.65

QDM 243 93.1550 2.77

HM 243 93.1550 2.77

PLM 243 0.0000 0

MARS 243 92.9333 2.76

LM 3125 67.2762 2.00

QDM 3125 67.2762 2.00

PLM 3125 0.0000 0

MARS 3125 6.5911 0.20
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than the one with 243 evaluations.

In the same way, similar conclusions can be drawn for polynomial models. The only difference

is that the piecewise polynomial model with 243 evaluations is much better that the polynomial

model with 32 evaluations. When the number of evaluations is small (<= 32), there is no significant

difference between the polynomial models and the MARS model. However, when the number of

evaluations is increased and the piecewise linear model is used, the polynomial model is better than

the MARS model, especially with 243 evaluations.

The single linear model with 3125 evaluations is also generated (listed in tables but not plotted

in figures). The accuracy is almost the same as any other single polynomial model.

Among all the four measures, the ERMSE at design points is not important because those errors

will be compensated by the second term of the interpolation model as in the Equation 3.3.

From the other three measures for all models with design points up to 243, the piecewise linear

model (PLM) has the smallest maximum absolute error51.385, the smallest ERMSE7.2887, and

the smallest error at the maximum response0.0000. Although the error at the maximum response is

meaningless because that point is included in 243 design points of PLM, it seems that the apparent

choice should still be the piecewise linear model if the computational cost of the finite element

model is negligible. But because the design of experiment for the PLM is a 3-level full factorial

design with3n = 243 design points, the PLM with2n = 32 models is equivalent to dividing the

DVS equally into2n sub-DVS and building one linear model for each sub-DVS. And if the cost of

the computer experiment is not negligible, the number of design points should also be taken into

consideration. For a ten-dimensional DVS (n = 10), the PLM needs3n = 59049 design points,

but the linear model or quadratic model will work with only 27 design points. So the PLM is not

a feasible choice in practice. Actually, the good performance of the PLM only shows the effect of

reducing the size or volume of the DVS to be exploited.

For all other models, the three measures only differ slightly. The high-order polynomial model

and the MARS model, which includes nonlinear interactions, are not so appealing because these

complex models could not outperform the simpler models. Because the two-way interactions can

be transformed into second-order terms of main factors,

x′1 · x′2 = (x1 − x2) · (x1 + x2) = x2
1 − x2

2, if x′1
4
= (x1 − x2) andx′2

4
= (x1 + x2)

the quadratic model is balanced only with a CCD design based on a Resolution V fractional factorial
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design, otherwise it is equivalent to a linear model with interaction terms under another coordinate

system. The linear model will work well with a Resolution III fractional factorial design, which

consists at most of half the design points needed for a balanced quadratic model.

Finally, based on a balance of all of these considerations, the linear model 3.8 is chosen as the

base function.

3.6 Criteria for Sampling Design Points witha priori Information

Once the base functions and the cov structure of the interpolation model are decided, the metamodel

can be built with a set of design points and the corresponding responses. When building the first

metamodel at the first stage, in general it is not possible to assume any specific knowledge about

the objective function because of the wide range of functions in engineering systems. So the initial

design points are chosen by a experimental design method. After the first stage, some knowledge of

the objective function is obtained from the responses at design points and the metamodel. It would

be helpful if design points can be chosen based on data at previous stage or stages in order to build

better metamodels.

After constructing the metamodel of theith stage, a set ofni design points existsSi = {s1, . . . , sni}.
Now some new design points{s1+ni , . . . , sn1+i} need to be chosen according to a sampling cri-

terion, and append them toSi in order to generate the(i + 1)th set of design pointsSi+1 =

{s1, . . . , sni , s1+ni , . . . , sn1+i}.
Among many sampling criteria, the maximum entropy sampling criterion has a sound basis.

Lindley [33] introduced ideas from Shannon’s information theory into the area of experiment de-

sign, and established a measure of the information provided by an experiment. Later Shewry and

Wynn [54] defined the maximum entropy sampling criterion for the set of fixed candidate design

points.

For a random processY in the design space, letT = {X1, · · · ,XN} be the set of all possible

candidate design points and corresponding responses, andS ⊂ T be the chosen design points,

S = T \ S be the complementary set ofS. The following relation can be obtained.

Ent(Y ) = Ent(S) + ES(Ent(S |S)) (3.15)

The second term of the right side is the entropy for the conditional distribution of the unsampled

S give chosen design pointsS. The natural Bayesian sampling criterion is to minimize it. But
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because the left side, the entropy of the process, is fixed, minimizing the second term on the right

side equals to maximizing the first term, which is the entropy of the chosen design points. IfY

is a Gaussian process as assumed in Section 3.2,Ent(Y ) is, up to constants,log(det(Cov(Y ))).

So the maximum entropy sampling criterion becomes to maximize the determinant of the posterior

correlation matrix which is

D = [Cov(Y (si), Y (sj))] 1≤i≤ni+1, 1≤j≤ni+1 (3.16)

The conclusions above are based on the assumption of finite set of possible design points. By

the different use of the entropy formula, Wynnet al. proved the same conclusions while loosening

the condition of discrete design points [53].

Also there are several variations of the maximum entropy criterion. If the first term in Equa-

tion 3.3 is a constant, then the criterion becomes maximizingdet(D)·‖D−1‖ [3]. If there is random

error whose variance tends to∞ in the model, the criterion becomes minimizing‖D‖ [36]. The

operator‖ · ‖ in above criteria is the sum of all entries in the covariance matrix.

Johnsonet al. [22] proposed themaximin distance design. For the Gaussian process with the

covariance structure as in Equation 3.4, the maximin distance design is asymptotically equivalent

to the maximum entropy design under some conditions [22]. For any subsetS of T containingn

design points,S◦ is a maximin distance design if

max
S

min
s,s′∈S

d(s, s′) = min
s,s′∈S◦ d(s, s′) (3.17)

whered(s, s′) is a distance function of a pair of design points. For the model in Section 3.2,d(s, s′)

is them-dimensional Euclidean distance. By maximizing the minimum distance between design

points, this criterion tries to reduce the redundancy among design points.

Johnsonet al. also proposed the theminimax distance designin a similar way [22]. For any

subsetS of T containingn design points, we callS∗ a minimax distance design if

min
S

max
t∈T

d(t, S) = max
t∈T

d(t, S∗) (3.18)

whered(t, S) = mins∈S d(t, s).

As in the case of the maximin distance design, for the Gaussian process with the covariance

structure as in Equation 3.4, the minimax distance design is a G-optimal [23] design under some
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conditions, where the G-optimaldesign will minimize the maximum variance of the fitted response

over the design region as in the following equation:

max
t∈T

var(Yt |Ys, s ∈ S)/var(Yt) (3.19)

where Y is the random process, T is the finite set of all possible design points, and S is the chosen

design points.

Following the induction of the interpolation model in Section 3.2, the integrated mean square

error of the interpolation model,IMSE, can also be calculated:

IMSE =
1

σ2
z Ω

·
∫

X∈DV S
Eθ[( ˆY (x)− Y (x))2] · w(x) · dX (3.20)

whereθ and σ2
z are parameters of the covariance structure of the random process,w(x) is the

weighting function, andΩ =
∫
X∈DV S w(x) · dX.

Crary el al. [10] introducedIz-Optimal designs which will minimize theIMSE of the inter-

polation model for computer experiments. TheIz-Optimal design can be generated by a program

I − OPT TM which is available at http://www-personal.engin.umich.edu/crary/iopt. They also in-

troduced the BayesianI-Optimality, in whichX ′WX is used to representa priori information. Here

X is the matrix of all design points, andW is the weight matrix. The Bayesian I-Optimal design

can also be generated by the programI −OPT TM .

All above criteria will be compared with random sampling, in which all coordinates of each

design point are generated as uniformly distributed random numbers, in the tests described below.

3.7 Tests of Improvement between Metamodels

The metamodel using more design points would be expected to outperform the metamodel using

fewer design points. A quantitative measure would be helpful to know how good the performance

improvement is. To compare two metamodels, one method is to compute the errors of the meta-

model over a grid in DVS. This method will be used to compare different sampling criteria. The

disadvantage of this method is that it requires lots of evaluations of the complex software which is

just opposite of the purpose of using metamodels, so it is crucial to find a way to compare meta-

models at different stages using a limited number of evaluations.

Consider the comparison between the metamodel at stagei and the metamodel at stagej, i.e.,
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Ŷi(x) andŶj(x). Without loss of generality, assumei > j. A new set of design points is needed

to comparêYi(x) andŶj(x), and design points{sni+1, . . . , sni+1} are needed to constructŶi+1(x).

So it is convenient to use{sni+1, . . . , sni+1} to testŶi(x) andŶj(x). Let k = ni+1 − ni, then two

groups of errors,{ei,1, . . . , ei,k} for Ŷi(x) and{ej,1, . . . , ej,k} for Ŷj(x), can be obtained.

Repeated computer experiments with the same parameters generate same results, so the error

for a metamodel at any specific point in the DVS is the same if the metamodel is compared with

computer experiments repeatedly at the same point. But if the overall performance of the metamodel

in the DVS is of interest but not the performance at any specific design point, then errors of the

metamodel in the whole DVS can be considered as a population with certain probability distribution.

With this, some of the techniques in traditional experiment analysis can be applied to the metamodel

of the computer experiment.

3.7.1 Test with Assumption about the Distribution of the Error

According to the central limit theorem, the sum ofn identically distributed random variables has

an approximate normal distribution. Furthermore, the Liapunov theorem states that the sum ofn

random variables with different means and variances still has an approximate Normal distribution

if some conditions are satisfied. If the error is considered as the sum of many disturbances among

which there is no overwhelming factor, then the error random variable can be assumed to be Normal.

Let Ei be the random variable for the error ofŶi(x), andEj be the random variable for the error

of Ŷj(x). Then under the assumption of their distribution,Ei ∼ N(µi, σ
2
i ) andEj ∼ N(µj , σ

2
j ).

The sample means and sample variances ofEi andEj are

ei =
1
k

k∑
l=1

ei,l

ej =
1
k

k∑
l=1

ej,l

S2
i =

1
k − 1

k∑
l=1

e2
i,l − k · e2

i

S2
j =

1
k − 1

k∑
l=1

e2
j,l − k · e2

j (3.21)

If µi andµj are to be compared, consider the statistic
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T =
(ej − ei)− (µj − µi)√

S2
j

k + S2
i
k

(3.22)

Let the null hypothesis and alternative hypothesis be

H0 : µj − µi = 0

H1 : µj − µi > 0 (3.23)

UnderH0

T ′ =
(ej − ei)√

S2
j

k + S2
i
k

∼ tk−1 (3.24)

H0 will be rejected ifT ′ > tk−1,1−α with significance level ofα, which means that the probability

of erroneously acceptingH1 : µj−µi > 0 is α. Here the value ofT ′ is computed, then the smallest

α is chosen which will cause the rejection ofH0.

It may be useful to compareσ2
i andσ2

j , the variances of the two random variables. Then consider

another statistic

F0 =
(k − 1) · S2

j /σ2
j

(k − 1) · S2
i /σ2

i

=
S2

j

S2
i

· σ2
i

σ2
j

(3.25)

and make the following null hypothesis and alternative hypothesis:

H0 : σ2
j = σ2

i

H1 : σ2
j > σ2

i (3.26)

UnderH0

F ′
0 =

S2
j

S2
i

∼ Fk−1,k−1 (3.27)

H0 will be rejected if F0 > Fk−1,k−1,1−α with significance level ofα, which means that the

probability of erroneously acceptingH1 : σ2
j > σ2

i is α. Here the value ofF0 is computed first,

then the smallestα is chosen which will cause the rejection ofH0.

3.7.2 Test without Assumption about the Distribution of the Error

The tests in previous section are based on the assumption that the distribution of the error random

variable is Normal. Sometimes this assumption is valid, but in general the distribution of the error
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Figure 3.12: Histogram with fitted normal density ofe1 at10, 000 random test points.

is unknown or its distribution is known to be not Normal. For example, consider two random error

variables:e1 = x3
1 + x2 + · · ·+ x6 ande2 = 10 · x3

1 + x2 + · · ·+ x6. The only difference between

e1 ande2 is the weights onx3
1 are1 and10. Figure 3.12 and Figure 3.13 are histograms with fitted

Normal density ofe1 ande2 at 10, 000 uniformly random test points (The10, 000 test points used

here and later are only used to test the Normality assumption. They are not available to construct

metamodels). As is apparent, the Normality assumption is a good approximation for probability

density function (PDF) fore1, but not fore2.

Under either circumstance, if the test points{sni+1, . . . , sni+1} are randomly generated, tests

similar to those in Section 3.7.1 can be carried out with a different method. This method is called

randomization test [6]. When two random variables are considered equivalent in the sense of any

numerical characteristics, switching any pair of samples from each random variable will not affect

corresponding statistics.

To compareµi andµj, consider the statistic:
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Figure 3.13: Histogram with fitted normal density ofe2 at10, 000 random test points.
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de0 =
1
k
·

k∑
l=1

(ej,l − ei,l) (3.28)

If some pairs ofei,l andej,l are exchanged in Equation 3.28,2k possible results can be obtained.

The same hypotheses as those in 3.23 are made. UnderH0 there is no difference betweenei,l and

ej,l in Equation 3.28 because they are values of the random variables with the same mean value at

randomly generated design points. So all these2k possible results are equally likely. Comparede0

with all 2k results, suppose thatm1 results are larger thande0 andm2 results are equal tode0.

H0 will be rejected at significance level ofα, which means that the probability of erroneously

acceptingH1 : µj > µi is α, where

α =
m1 + m2

2

2k
(3.29)

To compareσ2
i and σ2

j , consider the set{ej,1, . . . , ej,k, ei,1, . . . , ei,k}, which consists of2k

errors. There arem = (2·k)!
k!2

possible ways to separate the2k errors into two sets with the same

sizek. TheF ′ for each possible partition of the2k errors can be computed using Equation 3.27

and Equation 3.21. The hypotheses are the same as those in Equation 3.26. UnderH0, there is

no difference in the result of sample variance if any pair of elements in two partitions of the set of

2k errors are switched because they are values of two random variables with the same variance at

randomly generated design points. So the sample variances of allm partitions are equally likely.

CompareF0 with all m possibleFs, it can be seen thatm1 possibleFs are larger thanF0, andm2

possibleFs are equal toF0. H0 will be rejected at significance level ofα, which means that the

probability of erroneously acceptingH1 : σ2
j > σ2

i is α, where

α =
m1 + m2

2
(2·k)!
(k!)2

=
(m1 + m2

2 ) · (k!)2

(2 · k)!
(3.30)

3.8 First Examples and Results

The first example function to be fitted is a ten-dimensional function

Y10d = α0 +
10∑
i=1

[αixi + β′i sin(β′′i xi + β′′′i ) + γ′i exp(γ′′i xi + γ′′′i )]

+
10∑
i=1

10∑
j=i

[αi,jxixj + β′i,j sin(β′′i,jxixj + β′′′i,j) + γ′i,j exp(γ′′i,jxixj + γ′′′i,j) ]
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Table 3.4: Ratio of ERMSE to Response Range of the 10-D Function.

Number of Design Points

Sampling Criterion 16 32 48 64

Entropy Criterion 13.8424% 10.7751% 8.5945% 6.8520%

Maximin Criterion 13.8424% 11.4704% 10.1075% 9.4655%

Random Method 13.8424% 12.6506% 10.9997% 10.5827%

Bayesian I-Optimal 13.8424% 8.7966% 7.0228% 6.9093%

+
10∑
i=1

10∑
j=i

10∑
k=j

[αi,j,kxixjxk + β′i,j,k sin(β′′i,j,kxixjxk + β′′′i,j,k)

+γ′i,j,k exp(γ′′i,j,kxixjxk + γ′′′i,j,k) ] (3.31)

All the α parameters are random numbers from[−16, 16]. All the β andγ parameters are random

numbers from[−2, 2].

The initial design of experiments is a Resolution III fractional factorial design with 16 corner

points in the design space. Then based on each sampling criterion, three more metamodels will be

built with 16 more design points for each metamodel.

Each metamodel will be tested at the510 points on the grid[−1,−0.5, 0, 0.5, 1]10 , and the

ERMSE is computed. Figures 3.14 and Table 3.4 contain the results of the average errors for all

metamodels. The results of maximum errors for all metamodels are in Figures 3.15 and Table 3.5.

It can be seen that the resulting design points by all four sampling criteria improve the accuracy

of the metamodel. By adding16 more design points, the ratio of the ERMSE to the response range

decreases by about2%, and the ratio of the maximum error to the response range decreases by

roughly about8%. The effect of adding16 more design points decreased when the total number of

design points increases. Among all four sampling criteria, it can be seen that the Bayesian I-Optimal

design outperforms the other three criteria with32 and48 design points, and it is only second to the

result of the entropy criterion with64 design points.

For the metamodels based on the random sampling criterion, significance levels of tests about

mean and variance are computed with the two methods described in Section 3.7. The results are

shown in in Table 3.6. The resulting significance levels indicate that the probability of erroneously

acceptingµi > µi+1 is low, and the probability of erroneously acceptingσ2
i > σ2

i+1 is also low. By
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Table 3.5: Ratio of Maximum Error to Response Range of the 10-D Function.

Number of Design Points

Sampling Criterion 16 32 48 64

Entropy Criterion 73.5424% 64.6439% 55.1691% 48.5776%

Maximin Criterion 73.5424% 64.1262% 61.4853% 59.3365%

Random Method 73.5424% 70.3027% 63.7913% 62.7712%

Bayesian I-Optimal 73.5424% 55.9763% 51.6001% 51.9713%
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Figure 3.14: Ratio of ERMSE to response range of the 10-D function.
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Figure 3.15: Ratio of maximum error to response range of the 10-D function.
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Figure 3.16: Histogram with fitted Normal density for the errors ofŶ1 of the 10-D function.

comparing the results from Normality tests and randomization tests, it can be seen that both tests

generate similar results except the test ofµ’s for the first and the second metamodels.

The histogram with superimposed fitted Normal density of errors ofŶ1, Ŷ2 andŶ3, whereŶk is

thekth metamodel constructed on thekth set of design pointsSk, is presented in Figures 3.16, 3.18,

and 3.20, respectively. The Normal probability plots (NPP) for these errors are shown in Fig-

ures 3.17, 3.19, and 3.21. From both the histograms and NPP of these errors, it can be seen that the

Normality assumption is valid for the metamodels of ten-dimensional test function.

3.9 Second Examples and Results

The second test function is the bending stiffness of a Volkswagen passenger automobile chassis

(shown in Figure 3.2) computed from a finite-element model (shown in Figure 3.3) in a design



50

−300 −200 −100 0 100 200 300

0.001

0.003

0.01 
0.02 

0.05 

0.10 

0.25 

0.50 

0.75 

0.90 

0.95 

0.98 
0.99 

0.997

0.999

Value of Error

P
ro

ba
bi

lit
y

Figure 3.17: Normal probability plot for the errors ofŶ1 of the 10-D function.

Table 3.6: Significance Levels of Different Tests on the 10-D Function.

Normality Tests Randomization Tests

Tested Models t F t F

Ŷ1, Ŷ2 on{s33, . . . , s48} 21.0153 48.8245 1.5343 48.6295

Ŷ2, Ŷ3 on{s49, . . . , s64} 29.2422 27.5828 5.04532 29.7665
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Figure 3.18: Histogram with fitted Normal density for the errors ofŶ2 of the 10-D function.
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Figure 3.19: Normal probability plot for the errors ofŶ2 of the 10-D function.
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Figure 3.20: Histogram with fitted Normal density for the errors ofŶ3 of the 10-D function.
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Figure 3.21: Normal probability plot for the errors ofŶ3 of the 10-D function.
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space of five variables (d = 5):

x1 = A Pillar Thickness [mm]

x2 = B Pillar Thickness [mm]

x3 = Floor Rail Thickness [mm]

x4 = Floor Thickness [mm]

x5 = B Pillar Location [mm]

Each design variable has been standardized to[−1, 1] before constructing the metamodel.

The initial design of experiment is a Resolution III fractional factorial design with 8 corner

points in the design space. Then based on each sampling criterion, three more metamodels will be

built with 16 more design points for each metamodel.

Each metamodel will be tested at the55 points on the grid[−1,−0.5, 0, 0.5, 1]5 , and the ERMSE

is computed. Figure 3.22 and Table 3.7 contain the results of the average errors for all metamodels.

The results of maximum errors for all metamodels are in Figure 3.23 and Table 3.8.

It can be seen that the resulting design points by all four sampling criteria improve the accuracy

of the metamodel. By adding16 more design points, the ratio of the ERMSE to the response range

decreases by about0.5%, and the ration of the maximum error to the response range decreases by

roughly about0.5%. The effect of adding16 more design points decreased when the total number

of design points increases. Among all four sampling criteria, it can be seen that the entropy criterion

outperforms the other three in the ERMSE, and the random method is the best one in the maximum

error. It should be noticed that the Bayesian I-Optimal design has almost no effect in both ERMSE

and the maximum error.

For the metamodels based on the random sampling criterion, significance levels of tests about

mean and variance are computed with two methods described in Section 3.7. The results are shown

in Table 3.9. The resulting significance levels indicate that the probability of erroneously accepting

µi > µi+1 is low, and the probability of erroneously acceptingσ2
i > σ2

i+1 is also low. By comparing

the results from Normality tests and randomization tests, it can be seen that both tests generate

similar results.

The histograms with superimposed fitted Normal density of errors ofŶ1, Ŷ2, andŶ3, are pre-

sented in Figures 3.24, 3.26, and 3.28, respectively. The Normal probability plots (NPP) are shown

in Figures 3.25, 3.27, and 3.29. From both the histograms and NPP of these errors, it can be seen
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Table 3.7: Ratio of ERMSE to Response Range of the VW Model.

Number of Design Points

Sampling Criterion 8 16 24 32

Entropy Criterion 6.2127% 5.4689% 5.0754% 4.5471%

Maximin Criterion 6.2127% 5.5805% 5.2125% 4.9149%

Random Method 6.2127% 5.8470% 5.4753% 5.3617%

Bayesian I-Optimal 6.2127% 6.2391% 6.1680% 6.1845%

Table 3.8: Ratio of Maximum Error to Response Range of the VW Model.

Number of Design Points

Sampling Criterion 8 16 24 32

Entropy Criterion 15.5695% 16.5687% 15.0072% 13.4118%

Maximin Criterion 15.5695% 16.4573% 15.2478% 14.1349%

Random Method 15.5695% 14.4502% 13.2244% 12.9143%

Bayesian I-Optimal 15.5695% 15.6412% 15.8285% 15.8930%
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Figure 3.22: Ratio of ERMSE to response range of the VW model.
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Figure 3.23: Ratio of maximum error to response range of the VW model.
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Figure 3.24: Histogram with fitted Normal density for the errors ofŶ1 of the VW model.

that the Normality assumption is invalid for the metamodels of the VW model.

3.10 Discussions and Conclusions

Because resources are limited, sometimes a metamodel must be used instead of a complicated simu-

lation software package. Two of the most important factors to consider are the metamodel structure

and the sampling criterion if multistage metamodels are needed. Experimental design is also im-

portant to increase the efficiency of the design points, but it is strongly dependent on the structure

of the metamodel. A reliable measure of the performance improvement of the metamodel is also

helpful to increase confidence about metamodels.

There are several metamodel structures for the deterministic computer experiments. Among

them, the model proposed by J. Sackset al. is the most widely used and is also suitable for the

functions in many engineering design problems. This model consists of two parts, a approximation

and a probability model of the approximation error. Sometimes the approximation is only a constant,
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Figure 3.25: Normal probability plot for the errors ofŶ1 of the VW model.

Table 3.9: Significance Levels of Different Tests on the VW Model.

Normality Tests Randomization Tests

Tested Models t F t F

Ŷ1, Ŷ2 on{s17, . . . , s24} 1.2609 2.0781 1.7578 0.7343

Ŷ2, Ŷ3 on{s25, . . . , s32} 17.3823 24.1834 15.4297 23.2129
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Figure 3.26: Histogram with fitted Normal density for the errors ofŶ2 of the VW model.
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Figure 3.27: Normal probability plot for the errors ofŶ2 of the VW model.
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Figure 3.28: Histogram with fitted Normal density for the errors ofŶ3 of the VW model.
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Figure 3.29: Normal probability plot for the errors ofŶ3 of the VW model.
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and the prediction mostly relies on the stochastic error model. But from a viewpoint based on

the “main effects principle,” which emphasizes the importance of the linear main factors based on

empirical observations, it is reasonable to use the polynomial model containing all main factors as

the approximation.

The next step should be experimental design. Among many experimental design methods, the

most attractive two are the Latin Hypercube design and the Resolution III fractional factorial de-

sign. The advantage of the Latin Hypercube design is that this type of design uses a “space-filling”

strategy which is good to study the overall performance of the response, but its disadvantage is that

it requires a few more design points and it is not the best design for the linear polynomial model.

Alternatively, a Resolution III design is the best design for the polynomial model and it only needs

a relatively small number of design points, but it may be outperformed by the Latin Hypercube

design because all the design points are corner points. Because multistage metamodels are usually

used, the lack of “space-filling” in the Resolution III fractional factorial design can be remedied by

adding noncorner design points at later stages. So a Resolution III fractional factorial design is the

final choice of the design of experiments for the first metamodel.

Because now there is some knowledge about the underlying response function, an efficient sam-

pling criterion to take advantage of thea priori information is expected. Several sampling criteria

are tested on a practical finite element model and a randomly generated analytical test function.

From the resulting errors of both test functions in Section 3.8 and 3.9, it can be seen that there

is no significant difference between these sampling criteria. The main reason is because the number

of design points is small with respect to the dimension of the DVS. If the dimension of the DVS is

1, then the function-fitting problem is almost the same as the nonparametric procedure to estimate

a probability density function. The interpolation model used here is similar to the Parzen Windows

method in estimating the probability density function without assumption about the form of the

density function [15]. With the Parzen Windows method, the estimate is good enough when there

are about 20 samples. For a five-dimensional or ten-dimensional DVS, 32 or 64 samples is far

fewer than equivalent 20 samples in a one-dimensional DVS. Because the available information

is too little, the efficiency of the sampling criterion is not so important. The second reason is that

the optimality for any criterion is always based on some assumptions. The optimal design is the

one which minimize or maximize the objective function generated from those assumptions. This

means that the chosen design is optimal only when the assumptions are valid. But the reality is

that no knowledge exists about the function to be fitted which means that the assumptions needed
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for the optimality may or may not be valid. So optimality of the chosen design is questionable.

For some criteria, there is a need to search for the minimum in a high-dimensional space. The

search ofm design points in an-dimensional DVS is not trivial. Based on the difference in the

cost and the nonsignificant difference in the efficiency, the random generated design points are a

good choice. To avoid the situation that two or more design points are too close to each other, the

constraint of minimum distance between design points should be added. At the same time, because

the increase in accuracy in the region near added design points can be inferred from the structure

of the interpolation model, the sampling range is more crucial than the sampling criterion for newly

added design points.

The last problem is how to compare two metamodels. The test with the Normality assumption

is simple, but dependent on the validity of the assumption. The distribution-free randomization

test does not depend on the distribution assumption of the error variable, but it is costly. So the

metamodels should be compared with the randomization method when the computation cost is not

high, otherwise thet andF tests with Normality assumption should be used as approximations.

From the standpoint of performance improvement, it can be seen from the resulting significance

levels in Sections 3.8 and 3.9 that although the metamodels do not improve the performance much,

the confidence in the improvement is relatively strong even with only 8 or 16 test samples for five-

dimensional and ten-dimensional DVS, respectively. Because the test design points are randomly

chosen, sometimes even when the Normality assumption is not valid as in the case of the Volkswa-

gen model, the results oft andF tests with the Normality assumption are close to those from the

randomization tests. The computation cost of the randomization test increases exponentially with

the number of test samples. To run the randomizationF test with 16 test samples, theF value must

be computed for (32)!
(16)!·(16)! = 601080390 possible cases. The C program to compute all theFs

runs about 35 minutes on a Sun Ultra 10. If the number of test samples becomes 22, the running

time is about 84 days on the same computer. So thet andF tests should be run with both methods

when possible, but the tests with the Normality assumption should only be run when the other one

is prohibitive.

Two principles underlie the choices above: the parsimony and the robustness of the metamodel.

The principle of parsimony is obvious because it is decided by the nature of the preliminary stage

engineering design. Robustness here means that the predictive ability of the metamodel should be

insensitive to violations of the basic assumption, and it is the major reason for the choice of the

linear approximation in the interpolation model and the sampling criterion. For the interpolation
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model, even if the probability model of the approximation error is invalid, the approximation still

can maintain enough predictive ability because of the “main effects principle.” For the sampling

criterion, the optimality of the set of design points does not contribute much to the performance

of the metamodel when the number of design points is small with respect to the dimensionality of

the DVS. There may also be some negative effects on the performance of the metamodel if the

assumption for the optimality is violated. So the random method with constraint on the minimum

distance between design points is the choice for the sampling criterion.

The procedure for building a multistage metamodel for one performance variable is as follows:

1. Specifyn design variables and their ranges.

2. Construct a Resolution III fractional factorial designS0 with card(S0) = 2k ≥ n.

3. Run the simulation software at design points inS0.

4. Build the first metamodel using Equation 3.7 with results from last step.

5. Seti = 1 and repeat until satisfactory results are achieved:

(a) Decide the number of design points to be added atith stage,card(Si).

(b) Randomly generate design pointsSi with constraint on the minimum distance.

(c) Run the simulation software at design points inSi

(d) Test the improvement of the(i− 1)th metamodel from the(i− 2)th metamodel.

(e) Build theith metamodel using Equation 3.7 with results fromS0
⋃

S1
⋃ · · ·⋃Si.

(f) i = i + 1.
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Chapter 4

Computation of Preference in DVS and PVS

Chapter 2 introduced some basic concepts of imprecision in engineering design problems, discussed

the details of the modeling of imprecision with preference, aggregation functions for the prefer-

ences, and discribed how to compute the overall preference. The design preferences,µdi
(di)’s, are

specified in DVS and can be aggregated into the combined design preferenceµd(~d). In similar

way, the functional requirements,µpi(pi)’s, are specified in PVS and can be aggregated into the

combined functional requirementµp(~p). The combined design preferences and the combined func-

tional requirements are specified in DVS and PVS, respectively. They have to be in the same space

in order to aggregate them into the overall preference. Usually the mapping from DVS to PVS,

~p = ~f(~d), is available but computationally expensive. Chapter 3 discussed how to efficiently build

a multistage metamodel for the mapping between DVS and PVS. So~f(~d) can be replaced by its

metamodel~f ′(~d) to reduce the computational cost. The overall preference for a designµo(~p) will

be determined ifµd(~p) can be obtained by mappingµd(~d) onto PVS. Additionally,~f−1 is generally

not available, so it is not possible to map the overall preference for a design back onto the DVS from

the PVS.

This chapter first introduces the principle of mapping preference, and an implementation of this

principle, theLevel Interval Algorithm, in Section 4.1. Then some anomalies and limitation of the

original LIA implementation are discussed in Section 4.2. Section 4.3 introduces some extensions

of the original LIA. The methods to compute overall preferences in both DVS and PVS without

~f−1 are discussed in Section 4.4.
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4.1 The Extension Principle and Level Interval Algorithm (or Vertex

Method)

The combined design preference in DVS,µd(~d), and combined functional requirement,µp(~p), can

be obtained by aggregation in the corresponding spaces. Finallyµd(~d) andµp(~p) will use a trade-off

aggregation to getµo, the overall preference. Butµd(~d) andµp(~p) are expressed in different spaces.

One of the combined preferences need to be mapped into the other space before computingµo. The

mapping functions from DVS to PVS,~p = ~f(~d), are usually available, so hereµd(~p), the combined

design preference in PVS, is considered to be induced fromµd(~d) using the extension principle [66].

If ~f−1(~p) is available, the preference in DVS can also be computed from the preference in PVS by

using the extension principle.

µd(~p) = sup{µd(~d) | ~p = ~f(~d) } (4.1)

wheresup over the null set is defined as zero.

There are many ways to implement the extension principle. One way is to solve this problem

analytically and exactly. Baas and Kwakernaak [2] consider it as a nonlinear programming prob-

lem [2]. Consider one single performance variablepj = fj(~d). The problem is to maximizeµd(pj)

with the following constraints:




µd(p) ≤ µd(di), i = 1 .. n

pj = fj(~d)
(4.2)

If some conditions are met [2], this problem can be solved. But in general it is difficult to

solve this nonlinear programming problem for arbitraryfj(~d). There are also some approximate

analytical methods to implement the extension principle. One method proposed by Dubois and

Prade [13] simplifies the equation by dividing the membership functions into the left side and right

side. This approximate method provides good results, but the accuracy decreases when extended

division is needed. Schumucker [47] proposed an approximate numerical method, which discretizes

the supports of design preferences and uses the preferences at these locations to computeµd(pj).

Because of the nonlinear nature of thesup operation, the result from the approximate numerical

method is not always good enough, and even the revised version with imposed convexity does not

work well.
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There is another approximate numerical method called theLevel Interval Algorithm, orLIA, and

sometimes it is also called theVertex Method. It was first proposed by Dong and Wong [12] in order

to solve the extended operation in the weighted average operation. This method also makes use of

discretization, but it works on the membership value instead of the support. It also uses interval

analysis to get the final solution. The LIA algorithm is summarized below.

First, a set ofM discretized preference values,αk, k = 1..M , are specified. For eachαk, an

interval,[dαk
i,min, d

αk
i,max], i = 1 .. n, will be generated for each design preference function. Theα-cut

Dd
αk

of the combined design preference are defined as

Dd
αk

= {~d ∈ DV S | µd(~d) ≥ αk} k = 1..M. (4.3)

It is assumed to be the Cartesian product of then intervals for individual design preference func-

tions.

Dd
αk

= [dαk
1,min, d

αk
1,max]× · · · × [dαk

n,min, d
αk
n,max] (4.4)

There are2n corner points ofDd
αk

, which are permutations of the end points of the individual

design preference intervals. All these corner points are mapped onto PVS withpj = fj(~d), and2n

values ofpj are obtained. Find the minimum valuepj
αk
min and the maximum valuepj

αk
max among

them, then theα-cut ofp is the interval:

[pj
αk
min, pj

αk
max] = {fj(~d) | µd(~d) ≥ αk} (4.5)

A simple example is used to illustrate the LIA. For a design problem with two design variables

d1 andd2, and one performance variablep = f(~d) = (d1 + 2)3 − 6 · d2. The preferences for both

design variables are the same as shown in Figure 4.1 with threeα levels,{ε, 0.5, 1.0}.
For eachα level,4 corner points in the DVS are mapped onto the PVS, and theα-cut of µd(p)

is specified by the minimum performance and the maximum performance. The resultingµd(p)

represented by threeα-cuts is shown in Figure 4.2.

4.2 Limitation of original LIA for the Mapping between DVS and PVS

Although the LIA is an effective implementation of the extension principle, its good performance

is based on some assumptions. If these assumptions are violated, the LIA will generate poor results
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or even wrong results. This section will discuss the limitations of the LIA.

4.2.1 Anomalies in the LIA for a Single Preference Function

To simplify the situation, consider the limitations of the LIA in the situation where it is desired to

compute one performance variable induced from one design variable,i.e., map fromµd(d) to µd(p)

with p = f(d). First, assume that the design preference functions have normality and convexity,

and are continuous over the interested region ofd. For such well-definedµd(d), there are several

possible anomalies if the LIA is used to computeµd(p = f(d)) [64].

1. µd(f(d)) will be infinite if f(d) is unbounded within the support ofµd(d). For example,

f(d) = 1/d.

2. µd(f(d)) will be difficult to compute iff(d) has singularity within the support ofµd(d). For

example,f(d) = sin(1/d). Details can be found in [64].

3. µd(f(d)) will be uninterpretable,i.e., will oscillate near some limit values, iff(d) is infinitely

multivalued within the support ofµd(d).

4. µd(f(d)) will have nonsensible results iff(d) has finite extrema within the support ofµd(d).

In the MoI , the metamodel of~f(~d), ~f ′(~d), instead of~f(~d) is used. Because of the model

structure and base functions of~f ′(d), ~f ′(d) is bounded and finite multivalued, and will not have

singularities within the support ofµd(d). So the only possible anomaly will arise when~f ′(~d) is

nonmonotonic within the support ofµd(~d).

Consider the following simple triangle preference functionµd(d) shown in Figure 4.1. The

performance function is a simple cubic polynomial as following:

p = f(d) = 3.0 · d3 − 2.5 · d

and is shown in Figure 4.3.

Using the LIA described in Section 4.1,α-levelsε, 0.1, 1 are used to compute the preference on

the performance variable,µd
d(p). The result is shown in Figure 4.4.

From the result it can be seen that theα-cuts ofµd(p) with α ≤ 0.5 are not accurate. This is

because the performance functionf(d) has local extrema for−1 ≤ d ≤ 1. Forα-cutsαk = k/10,

0 ≤ k ≤ 10, Dd
αk

= [dαk
min, dαk

max] = [−(1− 4
5 αk), 1− 4

5 αk]. The length ofP d
αk is |f(dαk

max) −
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f(dαk
min)| = |f(1 − 4

5 αk) − f(−(1 − 4
5 αk))| = 2 · |f(1 − 4

5 αk)| becausef(d) is an odd func-

tion of d. For0 ≤ k ≤ 10, |f(1− 4
5 αk)| = |f(1− 4

5 k/10)| will reach the maxima atk = 6. So

for 1 ≤ k ≤ 5, P d
α6
⊃ P d

αk
, but α6 < αk. Thus, it can be seen that the internal extrema off(d)

causes this anomaly in the results of the LIA.

4.2.2 Limitations of LIA for Multiple Design Preferences

For a multidimensional DVS, even if every single design preference,µdi
(di), does not cause any of

the anomalies listed in Section 4.2.1, there still may be some errors when the LIA is applied to the

combined design preference.

When using the LIA for a multidimensional DVS,Dαk
is assumed to be the Cartesian product

of the individual intervals of design variables. This is only accurate under some special cases, such

asP = min, αk = {ε, 1.0}, or P 6= max andαk = 1.0. Otherwise,Dα is not a hypercube as

assumed.

Consider a two-dimensional DVS. The preference functions on two design variables,d1 andd2,

are the same, as shown in Figure 4.1 withα-cuts at{ε, 0.5, 1.0}. Then theµ(d1, d2)’s are computed

by several aggregation functions:min(µd1, µd2), max(µd1, µd2), (µd1 + µd2)/2, and
√

µd1 · µd2.

All four aggregated preference functions are shown in Figure 4.5 withDαk
at αk = {ε, 0.5, 1.0}.

TheDε’s are always rectangles, as assumed no matter which aggregation function is used because

of the annihilation property. AllDαk
’s from P = min are all rectangles as assumed. In the results

of P = (µd1 + µd2)/2 andP =
√

µd1 · µd2, D1.0 are also rectangles. ButD1.0 is not a rectangle

in the result ofP = max(µd1 + µd2). And Dαk
’s with αk = 0.5 or any other0 < αk < 1.0 from

aggregation functions other thanP = min(d1, d2) are not rectangles. It can also be noticed that the

assumed rectangle will be smaller than the actualDαk
-cut if the assumption is violated.

To avoid this limitation of the LIA, the values ofα can be limited. toε and 1.0 However,

sometimes the intermediateα-levels are also necessary to find the relevant set of designs. Also,

sometimes the preference function does not reach1.0, especially for the overall preference function

µo.

4.2.3 Limitations of the LIA for Multiple Performance Variables

By using the LIA, theα-cut for the preference on any single performance variable can be computed.

If there areq > 1 performance variables, for anyα-level there will beq α-cuts for the performance

variables,{ [p1,min..p1,max], · · · , [pq,min..pq,max] }. One simple way to generateP d
αk

is to use the
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78

−3 −2 −1 0 1 2 3

−4

−3

−2

−1

0

1

2

3

4

p
1
 = d

1
+d

2

p 2 =
 d

1+
2*

d 2

Cartesian products of result intervals by LIA
Actual α−cuts from direct−mapping       

Figure 4.6:P d
αk

’s in a 2-D PVS from a 2-D DVS.

Cartesian product of theq intervals:

P d
αk

= [p1,min..p1,max]× · · · × [pq,min..pq,max] (4.6)

Even if the mappings of the design variables to the performance variables do not cause any anoma-

lies of the LIA, and the aggregation function for the design variables does not createα-cuts different

from hypercubes, the result from Equation 4.6 is accurate only when there is no dependence between

any two mapping functions from the DVS to the PV’s. Otherwise there are some distortions from

the actualα-cut.

For example, consider a simple system of two design variables,d1 andd2, and two performance

variables,p1 andp2. The design preferences are the same as those in Figure 4.1. The aggregation

function isP = min(µd1, µd2), so the resultingα-cuts are exactly the same as those in the upper-left

figure in Figure 4.5. The mappings from the DVS to the PVS are:
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 p1

p2


 =


 f1(d1, d2) = d1 + d2

f2(d1, d2) = d1 + 2 · d2


 (4.7)

Within the region[−1 .. 1] × [−1 .. 1], the mapping functions,f1 andf2, are single-valued

and bounded, have no singularities, and are also monotonic. So the results of[p1,min .. p1,max] and

[p2,min .. p2,max] using the LIA are accurate. The result is thatP ′d
αk

is a Cartesian product of the

intervals onp1 andp2.

Becausef1 andf2 are both linear functions ofd1 andd2, an alternate way to computeP d
αk

is to

map the corner points ofDd
αk

to the PVS and connect them in the same order as in the DVS. The

two sets ofP d
αk

’s for α = {ε, 0.5, 1.0}are shown in Figure 4.6. There are significant differences

between theα-cuts generated by the different methods because of the strong dependence between

f1 and f2. The stronger the dependence between mapping functions, the bigger the difference

between the results from the two methods. The situation will become more complicated if the

mapping functions are not linear, or there are other errors caused by the anomalies of the LIA or the

aggregation function in DVS.

4.3 The Revised LIA

There are many possible anomalies and limitations of the LIA described in Section 4.2. There are

also many extensions of the LIA to improve its performance.

Among all four types of anomalies listed in section 4.2.1, the first three can be avoided by using

the metamodel~f ′(~d) of ~f(~d), because its model structure and the chosen base functions ensured that

no anomalies will happen except the fourth one (f(d) has finite extrema).

Wood, Otto, and Antonsson [64] proposed an extension of the LIA to remedy the anomaly

caused by finite number of internal extrema offj(~d) within the support of anydi. This extended

method tries to find the extrema of the mapping function within or on the boundary of theα-cut of

~d. Then these extrema are used to improve theP d
αk

.

When the dimensionality of the DVS is high, it is expensive to find the extrema by solving the

equation∂pj

∂di
= 0 directly. Law and Antonsson [30, 31] proposed a simplified method to find the

extrema. First build a linear approximation for allfj ’s. Then evaluatefj at the center point of the

DVS (~dctr), and usefj(~dctr) to detect nonlinearfj ’s. Finally refine the linear approximation for all

the linearfj ’s. Then the extrema can be found by using conventional optimization method to find
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the extrema in the reduce search space of only those nonlinearfj ’s.

The linear approximation of allfj ’s can also be used to relax the assumption thatP d
α+k is a

hypercube. The linear approximation is in the form as [31]:

~f ′(~d) = A · (~d− ~dctr) + ~∆ (4.8)

=




a11 · · · a1n

...
. . .

...

aq1 · · · aqn


 ·



d1 − dctr
1

...

dn − dctr
n


+




∆1

...

∆n




A polyhedron can be generated to approximate the actualP d
αk. Consider the column vectors

in matrix A as the principle directions, and the extrema points found through linear approximation

or optimization as the corner points of the polyhedron. The result of the extension of the LIA by

principle directions of~f ′linear(~d) is denoted asP d]
αk

. For the example in section 4.2.3, the upper-right

corner points are the maxima forp1 andp2, the lower-left corner points are the maxima forp1 andp2

because both performance functions are linear. Therefor, the actualα-cuts will be found. However,

if any extremum is generated by optimization, a special adjustment is needed. The resultingα-cut

by the extension of the LIA with linear approximations and optimizations on nonlinear performance

functions is denoted asP d\
αk

.

If the f2 in Equation 4.7 is changed to make a new~f?(d1, d2) as in Equation 4.9, then the

linear approximation off?
2 is thef2 in Equation 4.7, and theP d]

ε is the same as that in Figure 4.6.

If optimization is applied on nonlinear performance functions, the extrema ofp2 will be found as

p2,min = f?
2 (−1.0,−0.75) = −3.5 andp2,max = f?

2 (1.0, 0.5) = 3.5. The extrema ofp1 are the

upper-right and the lower-left corner points in Figure 4.6. TwoP d
ε ’s from two different extensions

are shown in Figure 4.7. The optimizations add two more regions toP d]
ε , and some adjustments are

needed if convexity is desired. From the location of(f1(0.8, 0.8), f?
2 (0.8, 0.8)), it can be seen that

theP d\
ε is more accurate thanP d]

ε , because(0.8, 0.8) ∈ Dd
ε .


 p1

p2


 =




f1(d1, d2) = d1 + d2

f?
2 (d1, d2) =




d1 − d2 + 3.0 if d2 ≥ 0.5

d1 + 4 d2 + 0.5 if −0.75 ≥ d2 > 0.5

d1 − 2 d2 − 4.0 if −0.75 > d2




(4.9)
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For a mapping between a two-dimensional DVS and a two-dimensional PVS, the result gen-

erated by the extrema and principle directions with adjustment lines is highly accurate. However

for a mapping between ann-dimensional DVS and aq-dimensional PVS, ifn > q, thenP d
αk

has

q degrees of freedom and its boundary hasq − 1 degrees of freedom. Forq ≥ 3, it is difficult to

generate the boundary ofP d
αk

from the principle directions which have only 2 degrees of freedom,

and it is also difficult to add the adjustment patches for the resulting extrema from the optimizations.

Although the extension of the LIA by a linear approximation of~f(~d) can improve the per-

formance of the LIA, the resultingα-cut is not presented in a desired form. The operations on

q-dimensional polyhedron are not trivial even if the difficulty of constructing the polyhedra is ig-

nored, and patches are added, when some extrema are the results of optimizations. On the other

hand, the results from Equation 4.4 and Equation 4.6 are less accurate but expressed in a much sim-

pler form,n-cubes. Operations onn-cubes are much easier than those onn-dimensional polyhedra.

Furthermore, the errors caused by invalid assumptions about the aggregation function or the inde-

pendence betweenfj ’s and the chance thatfj ’s have local extrema within DVS are all proportional

to the size or volume of the DVS or PVS. Based on above the observations, an alternative way to

improve the performance of the LIA by dividing the DVS and PVS into smaller regions is proposed

below.

First, divide the relevant range of design variabledi into si subregions by{d�i,0, · · · , d�i,si
}, The

subregion fordi, the sub-hypercube in the DVS and its center points, are denoted by

Xi,ri = [d�i,ri−1, d
�
i,ri

] (4.10)

X ∗
~r = X1,r1 × · · · × Xn,rn

~c~r =
(
c~r,1 · · · c~r,n

)
=

(
(d�1,r1

− d�1,r1−1)/2, · · · , (d�n,rn
− d�n,rn−1)/2

)
where ~r = (r1, · · · , rn), 1 ≤ ri ≤ si, 1 ≤ i ≤ n

Now each sub-hypercube will have its local design preference, which includes the effect of the

aggregation function:

µdi,~r(di) = P ( µd1(c~r,1), · · · , µdi
(di), · · · , µdn(c~r,n)

)
(4.11)
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where ~r = (r1, · · · , rn), 1 ≤ ri ≤ si, 1 ≤ i ≤ n

Then find theα-cut of the local design preferenceµdi,~r(di) in eachX~r as[ dmin
i,ri

, dmax
i,ri

], and use

Equation 4.4 computeDd
~r,αk

. The wholeα-cut in the DVS, denoted asDd2
αk

(~s), is the union of all

Dd
~r,αk

over all sub-hypercubes in the DVS. Ifsi = S, ∀ 1 ≤ i ≤ n, the wholeα-cut is denoted as

Dd2
αk

(S).

Dd
~r,αk

= [dαk
1,r1,min, d

αk
1,r1,max]× · · · × [dαk

n,rn,min, d
αk
n,rn,max] (4.12)

Dd2
αk

(~s) =
⋃
∀~r

Dd
~r,αk

where ~r = (r1, · · · , rn), ~s = (s1, · · · , sn)

and 1 ≤ ri ≤ si, 1 ≤ i ≤ n

The P d
~r,αk

can be computed in a similar way. First, computeDd2
αk

as described above. Then

divide the relevant range of each design variablepi into ui subregions by{p�i,0, · · · , p�i,ui
}. The

subregion forpj and the sub-hypercube formed by these subregions are denoted by

Yj,tj = [p�j,tj−1, p
�
j,tj ] (4.13)

Y∗~t = Y1,t1 × · · · × Yq,tq

where ~t = (t1, · · · , tq), 1 ≤ tj ≤ uj, 1 ≤ j ≤ q

Then apply the original LIA to eachDd
~r,αk

to get theα-cut on eachpj in eachY∗~t as

[ pαk
j,tj ,~r,min, p

αk
j,tj ,~r,max ]. The endpoints of theα-cut of µd(pj) in Y∗~t are the union of theα-cuts in

all X ∗
~r ’s:

pαk
j,tj ,min = min

∀~r
pαk

j,tj ,~r,min (4.14)

pαk
j,tj ,max = max

∀~r
pαk

j,tj ,~r,max

where ~r = (r1, · · · , rn), 1 ≤ ri ≤ si, 1 ≤ i ≤ n

and 1 ≤ tj ≤ uj , 1 ≤ j ≤ q
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Then compute theα-cut in each sub-hypercube in the PVSP d
~t,αk

using Equation 4.6. Theα-cut

in the whole the PVS,P d2
αk

(~s, ~u), is the union of allP d
~r,αk

over all sub-hypercubes in PVS. And if

si = S, ∀ 1 ≤ i ≤ n anduj = U , ∀ 1 ≤ j ≤ q, theα-cut for the whole PVS is denoted as

P d2
αk

(S,U):

P d
~t,αk

= [pαk
1,t1,min..p

αk
1,t1,max]× · · · × [pαk

q,tq,min..p
αk
q,tq ,max] (4.15)

P d2
αk

(~s, ~u) =
⋃
∀~t

P d
~t,αk

where ~t = (t1, · · · , tq), ~u = (u1, · · · , uq)

1 ≤ tj ≤ uj, 1 ≤ j ≤ q

and ~s = (s1, · · · , sn),

This extension of the LIA will be demonstrated on the examples in Section 4.2.2 and in Sec-

tion 4.2.3. For the problem ofµd(~d) = P(µd1 , µd2), the support of each design variable is

divided equally into10 subregions, and the interval of each design variable is computed from

µdi,~r(di) in each sub-rectangle in the DVS. Then theα-cut is generated by Equation 4.13. The

Dd2
0.5(10)’s for 4 different aggregation functions are shown in Figure 4.8 with the actualα-cuts. For

P = min(d1, d2), the result from the LIA with the hypercube assumption is correct, so is the result

from the extended LIA. ForP = max(d1, d2), the result from the extended LIA is the same as

the actualα-cut because the boundaries of the actualα-cut are parallel to the boundaries of the

sub-rectangle. ForP = (d1 + d2)/2 andP =
√

d1 · d2, the results from the extended LIA are not

the same as the actualα-cuts because now the boundaries of the actualα-cuts are not parallel to the

boundaries of the sub-rectangle. But the the results from the extended LIA approximate the actual

α-cuts with good accuracy.

For the problem with multiple performance variables, the same dividing method is applied to

the modified~f?(d1, d2) as the one used in the beginning of this section to demonstrate the extension

of the LIA with linear approximations and optimizations. In short, the result of the new extension

of the LIA with S design variable subregions andU performance variable subregions is denoted as

P d2
αk

(S,U). Also in order to show the effects of the changes inS andU , results from different values

of S andU are shown in Figure 4.9. Because of the anticipated complexity of the~f?(d1, d2), U is

chosen as2S. The mark “×” in each figure is~p× = ~f?(−0.88, 0.48) and it can be seen~p× /∈ P d\
αk
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86

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

p
1

p 2

S = 2, U = 4

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

p
1

p 2

S = 4, U = 8

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

p
1

p 2

S = 8, U = 16

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

p
1

p 2

S = 16, U = 32

Figure 4.9:P d2
ε (S,U) with different values ofT andU .

but ~p× ∈ P d2
αk

(S, 2S), S = 2, 4, 8, 16. If P d2
αk

(16, 32) is considered as the actualα-cut, it can be

seen that evenP d2
αk

(2, 4) is much better thatP d\
αk

, andP d2
αk

(4, 8) already has acceptable accuracy,

and with almost no big difference betweenP d2
αk

(8, 16) andP d2
αk

(16, 32).

P d2
αk

(S,U) is better thanP d]
αk

andP d\
αk

with respect to flexibility of aggregation function and

dimensionality of the PVS. The anomaly thatP d2
αk

⊂ P d2
αl

whereαk < αl may still be triggered

by the nonmonotonicity of~f(~d) although the chances can be reduced by dividing the DVS and the

PVS. To solve this problem, the following operation for multi-α-cuts withk increasing from1 to

M − 1 can be added:

P d2
αk+1

= P d2
αk+1

⋃
P d2

αk
, ∀ 1 ≤ k ≤ M − 1 (4.16)

where αk < αl, ∀ 1 ≤ k < l ≤ M
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One thing that should be noticed is that this new extension of the LIA can be used to induce any

preference function from the DVS to the PVS. The new extension of the LIA improves the accuracy

at the expense of the increase in the computational cost. If the metamodel of the mapping function

is used, the increased computational cost is reasonable as demonstrated in Section 5.3.1.

4.4 The Computation of the Overall Preference

With the extension of the LIA in Section 4.3, now preferences can be aggregated in the DVS and

accurately mapped to any dimensional PVS with any aggregation function. The next step in the

method of imprecision is to compute theα-cuts of the overall preferences in the DVS and the PVS,

Do
αk

andP o
αk

.

Otto, Lewis, and Antonsson [39] proved that the maximum overall preference in the DVS is the

same as that in the PVS,max µo(~d) = maxµo(~p) = µ∗o, and~f(Do
µ∗

o
) = P o

µ∗
o
, if ~f andµd(~d) satisfy

some continuity conditions. Based on these results, Lawet al. developed a two-step method to

computeDo
µ∗

o
andP o

µ∗
o
, and demonstrated this method on the design of a turbofan engine, where the

p = f(~d) is the design cost which is generated by the Engine Development Cost Estimator provided

by the General Electric Aircraft Engines [27, 28].

• The first step of this method is called the “Forward Calculation,” which is:

– computeµd(~p) from µd(~d) by LIA

– computeµo(~p) = P(µd(~d), µp(~d))

– find µ∗o = maxµo(~p) andP o
µ∗

o

• The second step is called “Backward Path,” which is

– find Do
µ∗

o
from P o

µ∗
o

with the help of~f

The forward calculation is covered by previous sections and chapters. This section focuses on

the backward path. In general,~f−1 is needed to mapP o
µ∗

o
onto the DVS in order to getDo

µ∗
o
, but

the problem is that usually~f is not invertible. For the turbofan engine design problem, there are

three special conditions which are helpful to avoid the difficulties caused by~f−1. First, all eight de-

sign variables are discrete. So the DVS is a finite set of design alternatives, thenDo
µ∗

o
can be found by

brute-force search. Second,P(µd, µp) = min(µd, µp), which means thatµd(~d) ≥ µo(~d), ∀ ~d ∈ DV S.
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Then∀ αk ≤ µ∗o, Dd
αk
⊇ Do

µ∗
o
, becauseµd(~d∗) ≥ µ∗o ≥ αk,∀~d∗ ∈ Do

µ∗
o
. Because the larger theαk,

the smaller the size ofDd
αk

, the search space ofDo
µ∗

o
is now restricted toDd

α∗
k

whereα∗k is the largest

αk among allαk ≤ µ∗o.

Although the backward path succeeded for the engine design problem, there are some difficulties

for a general problem without the three special conditions. First, if there is compensation in the

aggregation function ofµd andµp, the search space ofDo
µ∗

o
is the whole DVS. Second, the brute-

force search is not feasible if the DVS is not a finite set of design alternatives. When there is

compensation in the aggregation function ofµd andµp, theα-cut ofµo may not be limited to theα-

cut ofµd. There are two ways to compute theα-cut ofµo from theα-cut ofµd: either by intersection

of P d
αk

andPP
αk

in which way some region ofP o
αk

is lost, or reconstructµd(~p) from P d
αk

’s which is

not trivial. Finally, if ~f(~d) is nonmonotonic, it is possible that~f−1(P o
µ∗

o
) ⊃ Do

µ∗
o
, where~f−1 is not

a single-valued function and defined as

~f−1(P ) = {~d ∈ X | ~f(~d) = ~p, ~p ∈ P} ∀P ⊆ Y (4.17)

whereY is the set of all vectors of performance variables with valid values.

Because~f(~d) is nonmonotonic,∃ d1, d2 ∈ DV S such that ~f(d1) = ~f(d2) = ~p∗. Without loss

of generality, assume thatµd(d2) > α2 > µd(d1) > α1 > 0. According to the extension princi-

ple,µd(~p∗) ≤ max(µd(~d1), µd(~d2)) = µd(~d2) > α2. Assumeα2 > µp(~p∗) > α1, then there exists

P∗ 6= max such thatµo(~p∗) = P∗(µd(~p∗), µp(~p∗)) > α2, i.e.:

~p∗ ∈ P o
α2

and ~d1, ~d2 ∈ ~f−1(P o
α2

) (4.18)

But becauseµd(~d1) < α2 andµp(~p∗) < α2, from the idempotency and monotonicity ofP,

µo(~d1) = P(µd(~d1), µp(~f(~d1)) = P(µd(~d1), µp(~p∗)) < P(α2, α2) = α2, which means that

~d1 /∈ Do
α2

(4.19)

From Equation 4.18 and Equation 4.19, it can be concluded that~f−1(P o
µ∗

o
) ⊃ Do

µ∗
o

for aggregation

functionP∗ andµ∗o > α2.

All above difficulties and errors stem from the usage of~f−1. They can be avoided if~f−1 is

no longer needed. The following method can computeDo
αk

andP o
αk

without ~f−1, and so it will

produce more accurate results with less computational cost.
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• The new method to computeDo
αk

andP o
αk

without ~f−1:

1. Specify~d, ~p, X , Y, µdi
(di)’s, andµpi(pi)’s. Decide the trade-off strategy,i.e., theP

used to compute the overall preferenceµo = P(µd, µp).

2. Computeµo(~d) the overall preference in DVS, and use the method in Section 4.3 to

generateDo2
αk

.

3. ComputeP o2
αk

with Do2
αk

by the extension of the LIA in Section 4.3.

The biggest difference between the new method and the old method is that the new method does

not need~f−1. In the old method computations are carried out in both the DVS and the PVS, and

finally P o
αk

is generated beforeDo
αk

, which is why it needs~f−1. But in the new method, although

µp(~f(~d)) can be considered computations in the PVS, the final aggregation for the overall preference

is in DVS. Computingµp(~f(~d)) for ~d ∈ X is the basis of the new method. The LIA is a discrete

approximate implementation of the extension method. When apply LIA toDo2
αk

, µo(~d) is needed to

be computed only at a finite number of points in DVS. Even if~f is not invertible over the PVS but

it can be considered invertible at any single point in the PVS because the~f−1 in Equation 4.17 is

single-valued forP = {~f(~d)} ⊆ Y. The new method can be understood as applying the two-step

old method at a finite number of design points where~f−1 is well defined. The usage of~f−1 is

avoided by transferring the information of the functional requirements in the the PVS to the DVS

by using the equivalent inverse of~f at individual points in the PVS.

To demonstrate the new method, it will be applied to the example in Section 4.3 with a two-

dimensional DVS and a two-dimensional PVS. The design preferences for both design variables are

defined in Figure 4.1. The performance function is shown in Equation 4.9. The design preferences

and functional requirements are shown in Figure 4.10. The aggregation functions for the combined

design preference, combined functional requirement, and the overall preference in the DVS are

µd(~d) = min (µd1(d1), µd2(d2) ) (4.20)

µp(~d) =
[
µp1(f1(~d )) + µp2(f

′
2(~d ))

]
/2

µo(~d) =
√

µd(~d ) · µp(~d )

The overall preference in DVS is shown in Figure 4.11. Hereαk = 0.5 is chosen, because the

α-cut will be more complicated than those forαk = ε or 1.0.
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Figure 4.13:P o2
0.5 (S,U) for different values ofS andU .

Now the new method is used to computeDo2
0.5 andP o2

0.5 . Following procedure is listed in Sec-

tion 4.4,Do2
0.5 should be computed first. Here differentT ’s are chosen as4, 8, 16 and32 to compare

the effect ofS. TheseDo2
0.5’s are shown in Figure 4.12. Among the fourDo2

0.5’s, Do2
0.5(32) is of course

the most accurate, andDo2
0.5(16) also catches many details inDo2

0.5(32), evenDo2
0.5(8) has enough

details for the use in preliminary stages. TheP o2
0.5 ’s are also induced withU = 2S as shown in

Figure 4.13. Not surprisingly,P o2
0.5 (32, 64) is the best one. And theP o2

0.5 (16, 32) is almost the same

asP o2
0.5 (32, 64). P o2

0.5 (8, 16) is the most cost-effective result among these fourP o2
0.5 ’s. Although

Do2
0.5(4) is rough,P o2

0.5 (4, 8) is still on the right track if compared with others.

Now the DVS is continuous, and~f is not invertible over the whole DVS. The backward path

can not be used to computeDo
0.5. So the result of the new method and the result of the forward

calculation can be compared.(S,U) = (8, 16) is chosen because it is the cost-effective setting.

P̃ d2
0.5 (8, 16) andP̃ o2

0.5 (8, 16) are computed by the forward calculation and are shown in Figure 4.14.
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Figure 4.14:P d2
0.5 (8, 16) andP o2

0.5 (8, 16) by the forward calculation.

In order to simplify the computation, only the subregions withinP̃ d2
0.5 (8, 16) are used to compute

P̃ o2
0.5 (8, 16), although there is compensation inµo = √

µd · µp.

Figure 4.15 shows theP o2
0.5 (8, 16) and theP̃ o2

0.5 (8, 16), along with theα-cut generated by the for-

ward calculation with the original LIA, which can be considered asP̃ o2
0.5 (1, 1). Several test points

are also drawn in Figure 4.15, where~p× = ~f ′(~d×) = ~f ′(−0.2, 0.2), ~p∗ = ~f ′(~d∗) = ~f ′(0.6, 0.4),

and ~p+ = ~f ′(~d+) = ~f ′(0.48, 0.36). µo(~p×) ≥ µo(~d×) = 0.79201 > α = 0.5 indicates the error

of P̃ o2
0.5 (8, 16) in the region around~p× which may be introduced by not including points outside

P̃0.5d2(8, 16). µo(~d∗) = 0.40825 < α = 0.5 indicates possible error of̃P o2
0.5 (1, 1) in the region

around~p∗. And µo(~d+) = 0.40825 < α = 0.5 indicates possible error ofP o2
0.5 (8, 16) at its upper-

right corner around~p+.

Among these threeα-cuts of the overall preference atα-level 0.5, the result of the forward

calculation with the original LIA,P̃ o2
0.5 (1, 1), is the least accurate one. If the LIA was replaced by

the extension with8 subregions in each DV and16 subregions in each PV, theα-cut was refined.
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But becauseµo(~p) was not calculated for~p /∈ P̃ d2
0.5 (1, 1), P̃ o2

0.5 (8, 16) will be smaller than the actual

P o
0.5. For the resultingα-cut by the new methodP o2

0.5 (8, 16), there are errors around its boundary

becauseS = 8 andU = 16. IncreasingS andU can increase the accuracy ofP o2
0.5 .

4.5 Summary

If the new extension of the LIA is added to the new method to compute theα-cuts in the DVS and

the PVS, it becomes a new method which can compute theα-cuts of the overall preference with

much higher accuracy. The procedure of this implementation in detail is

1. Specify~d, ~p, X , Y, µdi
(di)’s, andµpi(pi)’s. Decide the trade-off strategy,i.e., theP used to

compute the overall preferenceµo = P(µd, µp).

2. Divide the relevant range of eachdi into subregionsXi,ri , which formX ∗
~r the sub-hypercubes

in the DVS.

3. Constructµo,~r(di), the local overall preference in each sub-hypercube.

4. Find theDo
~r,αk

, theα-cut of the local overall preference in each sub-hypercube.

5. The union of theDo
~r,αk

’s in all the sub-hypercubes in DVS isDo2
αk

, the wholeα-cut of the

global overall preference in DVS.

6. Divide the relevant range of eachpj into subregionsYj,tj , which formY∗~t , the sub-hypercubes

in the PVS.

7. For eachY∗~t , find the interval of eachDo
~r,αk

on pj by the original LIA, whose union is the

interval of the global overall preference onpj in Y∗~t .

8. P o
~t,αk

, theα-cut of the global overall preferenceµo in each sub-hypercube, is the Cartesian

product of the intervals ofµo onpj in Y∗~t .

9. The union of theP o
~t,αk

’s in all the sub-hypercubes in the PVS isP o2
αk

, the wholeα-cut of the

global overall preference in PVS.

The above method can be used to compute theα-cut of the overall preference in the DVS

and the PVS for anyα level betweenε and1.0. If there are severalα levels in ascending order,

{α1, . . . αM}, the operations in Equation 4.17 should be added after the step 4 in the above list.
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The increase of the computational cost is reasonable if the metamodel of the mapping function

is used, which will be demonstrated in Section 5.3.1.

Dividing the DVS into sub-hypercubes and constructing local overall preference function re-

duces the error caused by the aggregation functions. If there are local extrema of~f , the anomaly will

only affect the sub-hypercubes containing the local extrema. Dividing the PVS into sub-hypercubes

can relax the requirement about the independence offj ’s. Now it only requires that thefj ’s are

independent within each sub-hypercube. Even if the independence assumption is violated, the error

is also reduced and limited within the mapping of that sub-hypercube. The existence of~f−1 is no

longer necessary because of the change of the computation order ofDo2
αk

andP o2
αk

.
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Chapter 5

Implementation of the MoI and Example

The basic definitions, the construction of the metamodel of the mapping function, the revised ex-

tension of the LIA, and a new method to compute the overall preference are discussed in previous

chapters. This chapter will introduce the implementation of the MoI which combines all techniques

mentioned above. A new measure will be proposed to test the improvement of metamodels. This

implementation will be demonstrated on the design of the structure of a passenger vehicle.

5.1 Implementation of the MoI

Chapter 4 discussed how to improve the accuracy of the LIA and how to compute the overall pref-

erence more accurately without consideration for the computation cost of~f(~d). A less expensive

metamodel of~f(~d) should be used when~f(~d) is prohibitively expensive to compute. The model

structure of the metamodel forfj(~d), and the sampling criteria for for multistage metamodels, are

discussed in Chapter 3. The empirical root-mean-square error, theERMSE, was used to evaluate the

performance of the metamodels. In the implementation of the MoI, a new single measure for the

metamodel performance instead of the ERMSE is preferable.

5.1.1 The Difference in the Volumes ofα-cuts

With a metamodel~f ′
l of ~f(~d), the results of the MoI are theα-cuts in the DVS and the PVS,Do2

α ’s

and P o2
α ’s. ~f

′
l is used to computeµo(~d) and mapDo2

α onto the PVS. The performance of the

metamodel will affect the accuracy of the final results. The ERMSE is only a general measure for

the performance of an individual interpolation function. In the MoI, set boundaries (α-cuts) are of

more interest than the value off ′j(~d), so the difference betweenα-cuts is more meaningful than the
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n-tuple of the ERMSE.P o2
α is induced fromDo2

α by the LIA. The LIA will introduce some errors

in P o2
α because the LIA is an approximate implementation of the extension principle. As discussed

above, the accuracy will decrease when some assumptions are violated even if the revised extension

of the LIA is used. Hence the difference betweenDo2
α ’s by different metamodels will be a measure

of the metamodel’s performance. The procedure to compute this difference is described below.

Consider two metamodels:~f ′
l based on the set of design pointsSl, and ~f

′
l+1 based on the set of

design pointsSl+1. Without loss of generality, it is assumed thatSl ⊂ Sl+1. The resultingα-cut

with ~f
′
l is Do2

αk,l, which consists of theDo
~r,αk,l’s in all sub-hypercubes. EachDo

~r,αk,l is also an-cube,

so it is simple to calculate its volume. First define the volume of the difference betweenDo
~r,αk,l and

Do
~r,αk,l+1:

V olume(Do
~r,αk,l

⋃
Do

~r,αk,l+1) =
n∏

i=1

[
max(dαk

i,l+1,max, dαk
i,l,max)−min(dαk

i,l+1,min, dαk
i,l,min)

]
(5.1)

V olume(Do
~r,αk,l

⋂
Do

~r,αk,l+1) =
n∏

i=1

[
min(dαk

i,l+1,max, dαk
i,l,max)−max(dαk

i,l+1,min, dαk
i,l,min)

]

V (Do
~r,αk,l+1 −Do

~r,αk,l) = V olume(Do
~r,αk,l

⋃
Do

~r,αk,l+1)− V olume(Do
~r,αk,l

⋂
Do

~r,αk,l+1)

The volume of the difference betweenDo2
αk ,l andDo2

αk ,l+1 is the sum of the volumes of the difference

between each pair of sub-α-cuts:

V (Do2
αk ,l+1 −Do2

αk,l) =
∑
~r

V (Do
~r,αk,l+1 −Do

~r,αk,l) (5.2)

Sometimes the ratio of the volume of the difference to the volume ofDo2
αk,l is preferred to

compare the improvements at differentα-levels:

rvd
(αk, l, l + 1) =

V (Do2
αk ,l+1 −Do2

αk ,l)
V (Do2

αk ,l)
(5.3)

Do2
αk1

⊆ Do2
αk2

, for αk1 > αk2 . If rvd
(αk1 , l, l + 1) > rvd

(αk2 , l, l + 1), it can be interpreted that

Do2
αk1

,l is more sensitive to the change of~f
′
l thanDo2

αk2
,l. This result suggests that more design points

should be sampled inDo2
αk1

,l for the metamodel at the next stage.
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5.1.2 Implementation Process

The method discussed in Chapter 4 will only compute oneα-cut in the DVS and the PVS. Some

modifications are needed if more than oneα-level is specified. If~f is computationally expensive to

evaluate, its metamodel~f ′ can be used to replace~f in the method. When multistage metamodels

are preferred, the measurervd
can be used to choose the sampling range of design points for the

metamodel in the next stage. With all these modifications, the implementation of the MoI becomes

1. Identify design variables{d1, . . . , dn} and performance variables{p1, . . . , pq}.

2. Specify design preferences{µd1(d1), . . . , µdn(dn)} and functional requirements

{µp1(p1), . . . , µpq(pq)}.

3. Decide the aggregation hierarchy for the overall preference and parameters of each aggrega-

tion function.

4. Specify interestingα-levels{α1, . . . αM} whereαk < αk+1, 1 ≤ k ≤ M − 1.

5. Let l = 1. Decide the design pointsS1 for the first metamodel~f ′
1 by experimental design.

6. Repeat until satisfactory accuracy is achieved:

(a) Build thelth metamodel~f ′
l of ~f with design pointsSl.

(b) Use~f
′
l to computeDo2

αk
for 1 ≤ k ≤ M .

(c) If l ≥ 2, then computervd
(αk, l − 1, l) for 1 ≤ k ≤ M , and findDo2

αs
which is most

sensitive to the change of metamodels. Otherwise lets = 1.

(d) Sample a set of points,dSl+1, for ~f
′
l+1 within the bounding hypercube ofDo2

αs
, but

outside the bounding hypercube ofDo2
αs+1

if s < M , then letSk+1 = Sk
⋃

dSl+1.

(e) l = l + 1.

7. ComputeP o2
αk

for 1 ≤ k ≤ M with the last metamodel,~f
′
l−1.

The whole procedure will be demonstrated in the following sections.

5.2 Problem Description

The problem used in the example is the preliminary vehicle structural design of a 1980 VW Rabbit,

which was an application of the MoI demonstrated to Volkswagen Wolfsburg in the summer of
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Figure 5.1: Testing setup of body-in-white.

1997 [51]. In general, the vehicle structural design is to optimize thebody-in-whiteof a vehicle,

which is the portion of the body of the vehicle that carries the loads. The design engineer needs to

refine the design in order to meet some quantified engineering targets such as stiffness or weight.

Othersoftspecifications such as style or manufacturability, which are not easy to quantify, are also

be taken into consideration.

The bending stiffness and the torsional stiffness were measured for the body-in-white. The

1980 VW Rabbit has a bending stiffness of approximately 2500 N/mm and a torsional stiffness of

approximately 4900 N-m/degree. A solid model and a finite element model were created from the

geometry data measured from the body-in-white.

5.2.1 Design Variables and Performance Variables

The problem here is to improve the overall performance10%. There are five design variables which

will represent the manufacturability and style:
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Figure 5.2: Geometric model of body-in-white in SDRC I-DEAS.

Figure 5.3: Finite element model of body-in-white.
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d1 = A Pillar Thickness [mm]

d2 = B Pillar Thickness [mm]

d3 = Floor Rail Thickness [mm]

d4 = Floor Thickness [mm]

d5 = B Pillar Location [mm]

and three performance variables:

p1 = Bending Stiffness [N/mm]

p2 = Torsional Stiffness [N-m/deg]

p3 = Weight [kg]

5.2.2 Design Preferences and Functional Requirements

The design preferences obtained from engineers and stylists [51] are shown in Figure 5.4. Because

the sheet steel used to build A-pillar is only available in certain thickness,µd1(d1) is obtained only at

certaind1 values. Thinner sheet steel is easier to form, soµd1(d1) represents the manufacturability.

The design preference for the B-pillar thickness is continuous because of the simplifications in the

finite element model. A thicker B-pillar requires more reinforcing features, so a thinner and simpler

B-pillar has higher preference. The preference of the floor thickness reflects the availability of

materials with such thickness. A thicker floor pan is easier to attach and more durable, so it has

higher preference. The preference of the B-pillar location is for the vehicle’s style. It is specified

in α-cuts at threeα-levels,{ε, 0.5, 1.0}. The continuous version of design preferences is built by

connecting discrete points with lines forµd1, µd3 , µd4 andµd5 .

The functional requirements are gathered from customers or managers by asking what is the

extreme value of a performance variable while the performance is acceptable,µp ≥ ε, or the per-

formance is ideal,µp = 1.0. Then these pairs of points are connected by straight lines. So they are

in simpler form as piecewise linear functions [51]. All three functional requirements are shown in

Figure 5.5.
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Figure 5.4: Design preferences of the VW model.
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Figure 5.6: Aggregation hierarchy of preferences.

5.2.3 Aggregation of Preferences

After the preferences are defined, the appropriate aggregation of each pair of preferences must be

established. The aggregation hierarchy is shown in Figure 5.6. Each aggregation function in the

hierarchy is determined as follows:

1. For the functional requirements of bending stiffness and torsional stiffness, there is little com-

pensation in the aggregation ofµstiffness = Ps(µp1, µp2) atµ = 0.5:

Ps(0.5, 1.0) ≈ Ps(1, 0.5) ≈ Ps(1.0, 1.0)

This means thatµstiffness = min(µp1, µp2) is reasonable.

2. For the functional requirement of measured performance,i.e., the combined functional re-

quirement,µp = Ps(µstiffness, µp3), the indifference points [52] are

Ps(0.3, 1.0) ≈ Ps(1, 0.2) ≈ Ps(0.5, 0.5)

The computation shows thats = −0.02 andw = 0.7. If they are rounded to one decimal

place,s = 0 which means thatµmeasured = PΠ(µstiffness, µp3; 1, w) = (µstiffness ·µw
p3

)
1

1+w .

3. Forµdesigner, the designer preference aggregated from the preference of the B-pillar thickness(µd2 )

and the preference of the floor pan thickness:

Ps(0.4, 1.0) ≈ Ps(1, 0.3) ≈ Ps(0.5, 0.5)
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These indifference points lead tos = −1.4 andw = 0.6.

4. The preference of the A-pillar thickness and the floor sill thickness are specified for manu-

facturability. They are aggregated into the manufacturer preferenceµmanutacturer. For this

aggregation, the indifference points are

Ps(0.4, 1.0) ≈ Ps(1, 0.1) ≈ Ps(0.5, 0.5)

The computation shows thats = −0.2 andw = 0.3.

5. The designer preference and the manufacturer preference will be aggregated into the engi-

neering preferenceµengineering. Now the indifference points are found to be:

Ps(0.25, 1.0) ≈ Ps(1, 0.25) ≈ Ps(0.5, 0.5)

This shows that the aggregation function isPΠ with weight ratiow = 1.0.

6. The next step is to get the combined design preferenceµd by the aggregation of the engineer-

ing preferenceµengineering and the preference of the B-pillar locationµd5 which represents

the style. This aggregation has the following indifference points:

Ps(0.4, 1.0) ≈ Ps(1, 0.3) ≈ Ps(0.5, 0.5)

Sos = −1.4 andw = 0.6 here.

7. Finally, the combined functional requirement and the combined design preference will be

aggregated into the overall preferenceµo. This aggregation has the indifference points:

Ps(0.2, 1.0) ≈ Ps(1, 0.3) ≈ Ps(0.5, 0.5)

The parameters for the last aggregation function ares = −0.02 ≈ 0.0 andw = 1.3.

Combining all of the above aggregation functions according to the aggregation hierarchy, the

final aggregation of the overall preference is

µd = P−1.4(PΠ(P−1.4(d2, d4; 1, 0.6),P−0.2(d1, d3; 1, 1); 1, 1), d5 ; 0.6, 1) (5.4)
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Table 5.1: Range of the Design Variables.

Design Variable d1 d2 d3 d4 d5

Minimum Value 0.7 0.9 0.8 1.0 -50

Maximum Value 1.1 1.3 1.2 1.4 150

µp = PΠ(Pmin(p1, p2; 1, 1), p3; 1, 0.7)

µo = PΠ(µd, µp; 1, 1, 3)

5.3 Results

Before the solution to the problem is computed, continuous preferences are constructed from the

discrete design preferences to facilitate computation. From previous results [51], it is known

that the maximum overall preferenceµ?
o ≈ 0.40159, so theα-levels of interest are set to{ε =

0.01, 0.2, 0.4}. If there is no previous result available, the near maximum overall preference can

be found at the end of the computation of the firstDo2
0.01. The range of each design variable is also

restricted to that in the previous work [51] as in Table 5.1. Before theα-cuts are computed, the

number of subregions of the range of each design variable is chosen asS = 8, and the number of

subregions of the range of each performance variable is chosen asU = 2S = 16,

First, a Resolution III fractional factorial experimental design is chosen as the design points for

the first stage metamodel~f ′1. Then theDo2
αk ,1’s are computed forαk = 0.01, 0.2, and0.4, and the

bounding hypercube ofDo2
0.01,1 is found to be:

0.7 ≤ d1 ≤ 1.1

0.9 ≤ d2 ≤ 1.3

0.8 ≤ d3 ≤ 1.2

1.0 ≤ d4 ≤ 1.4

−49.95 ≤ d5 ≤ 150

Another set of8 design points is sampled within above range, and added to the first8 design
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points to construct the second metamodel~f ′2. Another set ofDo2
αk ,2’s is computed with~f ′2. Now

there are two sets ofDo2
αk

’s. The measurervd
(αk, 1, 2) for each pair ofα-cuts is

rvd
(0.01, 1, 2) = 12.77%

rvd
(0.2, 1, 2) = 13.61%

rvd
(0.4, 1, 2) = 91.13%

These results show thatDo2
0.4,2 is the most sensitive to the improvement of the metamodel’s

accuracy, so the next8 design points for~f ′3 should be sampled from the bounding hypercube of

Do2
0.4,2 which is

0.7 ≤ d1 ≤ 1.1

0.9 ≤ d2 ≤ 1.05

0.8 ≤ d3 ≤ 0.925

1.0 ≤ d4 ≤ 1.275

25 ≤ d5 ≤ 100

Another8 design points are sampled within the bounding hypercube ofDo2
0.4,2 to build ~f ′3. After

computingDo2
αk,3’s, the ratio of volume of the change in theα-cuts can be found as:

rvd
(0.01, 2, 3) = 4.149%

rvd
(0.2, 2, 3) = 5.5%

rvd
(0.4, 2, 3) = 75.38%

Comparervd
(αk, 1, 2)’s andrvd

(αk, 2, 3)’s, it can be noticed that the accuracy ofDo2
αk ,2 is im-

proved at allα-levels, especially at0.01 and0.2. And the values ofrvd
(αk, 2, 3)’s indicate that the

8 design points for~f ′4 should be sampled within the boundary hypercube ofDo2
0.4,3:
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Figure 5.8: The cross sections ofDαo2
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at ~d∗.
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0.775 ≤ d1 ≤ 1.05

0.9 ≤ d1 ≤ 1.025

0.8 ≤ d1 ≤ 0.9

1.0 ≤ d1 ≤ 1.175

25 ≤ d1 ≤ 87.5

Finally, ~f ′4, the metamodel for the last stage is built, and the final results ofDo2
αk

’s andP o2
αk

’s

are computed using~f ′4. The achievable maximum overall preferenceµ? = 0.408. The point in the

DVS which can generateµ? is ~d? = (0.95, 0.9, 0.85, 1.02, 75). The corresponding point in the PVS

with the maximum overall preference is~p? = ~f ′4(~d?) = (2,803.09, 5,831.43, 149.33). The indi-

vidual design preferences and the combined design preference at~d? are(0.7, 1.0, 0.6, 0.575, 1.0)

and0.8691, respectively. The individual functional requirements and the combined functional re-

quirement at~p? are(0.235, 0.1344, 0.487) and0.2283, respectively.

HereDo2
αk

is a 5-hypercube, andP o2
αk

is a 3-hypercube. So for presentation convenience, all

α-cuts are shown on the axis of any single variable and as cross sections in the plane of any two

variables atd? in the DVS, or atp? in the PVS in Figures 5.7, 5.8, 5.9 and 5.10.

The intervals of theDo2
αk

’s on each design variable at~d? are shown in Figure 5.7 with the

maximum reachable range of each design variable at~d?. The cross sections ofDo2
αk

’s are also

shown in the plane of any pair of design variables as in Figure 5.8. The cross sections of all three

α-cuts are shown in the same figure for comparison.

The intervals of theP o2
αk

on each performance variable at~p? are shown in Figure 5.9 with the

maximum reachable range of each design variable at~d?. The cross sections ofP o2
αk

are also shown

in the plane of any pair of performance variables as in Figure 5.10. Because the shapes of the

boundariesP o2
αk

’s are not as simple as those ofDo2
αk

’s, each figure only contains one cross section.

5.3.1 Computational Cost

The computation ofDo2
αk

’s andP o2
αk

’s at threeα-levels {0.01, 0.2, 0.4} only requires32 runs of

the finite element model which will take about 32 minutes. The threeDo2
αk

’s are computed four

times for different metamodels which takes51 seconds for~f ′1, 76 seconds for~f ′2, 112 seconds

for ~f ′3, and135 seconds for~f ′4. The computation costs are increasing because of the increases
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in the complexity of the metamodels. The total time spent onDo2
αk

is 374 seconds. TheP o2
αk

’s are

only computed with the last metamodel~f ′4, which takes254 seconds forα1 = 0.01, 214 seconds

for α2 = 0.2, and3 seconds forα3 = 0.4. The computational time ofP o2
αk

is proportional to

the number of sub-hypercubes in the DVS at least partially occupied byDo2
αk

which are17674 for

α1 = 0.01, 16387 for α2 = 0.2, and27 for α3 = 0.4. The time needed for thervd
’s is negligible

when compared with above costs. The computation cost for the MoI is about 845 seconds (14

minutes). The total time needed to solve this problem is about 46 minutes.

5.4 Discussion

From the resultingDo2
αk

’s shown on one or two design variables, it can be noticed that the differences

between the lengths of the intervals or the areas of the cross sections are not significant forα-level

at0.01 and0.2. This indicates thatµo(~d) increases sharply from0.01 to 0.2, although0.2 is almost

half of the maximum achievable overall preference.Do2
0.4 is quite small compared with the other

two, but it is meaningful becauseα3 = 0.4 is close toµ?
o = 0.408. If the change betweenDo2

0.2 and

Do2
0.4 is of interest, moreα-cuts can be added atα-levels between0.2 and0.4.

This problem was also solved in a previous demonstration by using an exhaustive evaluation

over all points on a55 grid in the DVS, which takes about 3,000 minutes. The overall preference

is computed at the 3,125 points in the DVS. Although the information ofµo is only available at

the 3,125 points, the geometry ofµo(~d) can be approximated along the axis of one design vari-

able and in the plane of two design variables. The previous results areµ?
o = 0.40159 at ~d? =

(1.0, 0.9, 0.9, 1.0, 50), where the design preferences are(0.6, 1.0, 1.0, 0.5, 1.0). The~p? = ~f(~d?) is

(2,832, 5,836, 147), where the functional requirements are(0.23, 0.14, 0.62).

The new results (µ?
o,

~d?, and~p?) listed in Section 5.3 are close to the previous ones. The biggest

difference is between twod?
5’s. The previous one is50, and now it is75. This is because in

previous demonstrationµd5(d5) was simplified by connectingµd5(d5) at (−50, 0, 50, 100, 150),

which makesµd5(75) = 0.75 although it should be1.0.

5.5 Summary

In the first section, the ratio of the change in the volume of twoα-cuts is proposed as a measure to

predict the sensitivity of theα-cut to the change of the metamodel.
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The implementation of the MoI has been applied to a design problem used in a previous demon-

stration. The specification of preferences and the aggregation strategies are the same as those used

previously [51]. The new set-based implementation of the MoI uses only about1.5% of the com-

putational time required by the exhaustive evaluation, but generates almost the same results for the

maximum overall preference. Besides this result, it creates a set of design alternatives for eachα-

level of the overall preference. It also provides information about the set of achievable performances

with a certain level of overall preference.
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Chapter 6

Conclusion

In engineering design, the study of the mapping between the DVS and the PVS is necessary. Usually

a simulation model is built for computer analysis software to avoid an expensive physical prototypes.

There are many optimization methods which can find the extrema by running the simulation model

only a limited number of times. However, in the MoI , information solely about the extrema is not

enough. The whole geometry of the overall preference function, or at least its contours at certain

α-levels, is critical to obtain. When the DVS is even moderately high dimensional, the computation

to find the geometry of the overall preference function is prohibitively expensive. To implement the

MoI on a real problem, a metamodel, which is “a model of the model” [24], has to be used to reduce

the computation cost to a reasonable level.

In previous attempts of using a metamodel, linear polynomial models were used to replace the

actual linear or near-linear mapping functions on some performance variables. The simplicity of the

linear model is its biggest advantage. It works well for the original Level Interval Algorithm (LIA)

in Section 4.1, which requires monotonicity of the mapping function. However, for any extension

of the LIA which has the ability to generate more accurate results, the linear model can not satisfy

the accuracy requirement. Moreover, the linear model is not flexible enough. Increasing the number

of design points is not helpful to increase the accuracy of the linear model.

A nonlinear interpolation model is introduced into the MoI in Section 3.2. This interpolation

model can be considered as the combination of a linear approximation built by the generalized least-

square regression method, and a nonlinear compensation for the approximation error based on the

assumption that the error is an instance of a Gaussian process. Among the several base functions

listed in Section 3.4, the simplest linear polynomials are chosen in Section 3.5. The reasons for

this choice are as follows: the chosen base function preserve the simplicity of the linear polyno-
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mial approximation model, they follow the “main effects principle,” and the flexibility requirement

for the approximation is satisfied by the nonlinear part of the interpolation model. For the linear

polynomial, which contains mostly the main effect, the Resolution III fractional factorial design of

experiment is the best candidate among all the experimental design methods in Section 3.3.

The design points chosen by the experimental design are decided by the type of base function. If

more design points are added afterwards, the accuracy of the linear approximation will not change

much, but the errors in the region near the response of any design point will be reduced. It would be

helpful to find a sampling criterion for the design points after the original experimental design which

can increase the accuracy of the metamodel significantly. Many criteria are discussed in Section 3.6.

Each criterion is based on some assumptions. The optimal set of design points under any sampling

criterion is the set of design points, which maximizes or minimizes the objective function of the

sampling criterion. In engineering design, the type of mapping function is unconstrained. It is not

practical, if not impossible, to prove whether the assumption of any sampling criterion is violated

or not, so two testing examples are used to compare these sampling criteria, and the empirical root-

mean-square error is used as a measure of the accuracy of the metamodel. The test results show that

there is no evidence to back the conclusion that any sampling criterion is better than any other with

respect to improving the accuracy of the metamodel.

Two tests of the improvement in accuracy of the metamodels were also carried out at the same

time. The results suggest that the improvement of accuracy is noticeable. The indifference between

sampling criteria is not encouraging but understandable. Some researchers get similar results in

comparisons between many sampling criteria [7]. The equivalent density of8 points for a five-

dimensional DVS is equal to81/5 ≈ 1.5 points for a one-dimensional DVS. To double the equivalent

density,3 points are needed for the1-dimensional DVS, but8·25 = 256 points will be needed for the

5-dimensional DVS. With32 points in the5-dimensional DVS, the equivalent density is321/5 = 2,

which is only about1.3 times the equivalent density of8 points although the number of design

points is already4 times as much.

When the dimensionality of the DVS increases, the improvement of the equivalent density will

deteriorate compared with the absolute number of design points. When the validity of the assump-

tions of the sampling criteria is unknown, the equivalent density of the design points will dominate

the increase in the performance of the metamodel. Because the increase in accuracy in the region

near added design points can be induced from the structure of the interpolation model, the sampling

range is more crucial than the sampling criterion for newly added design points.
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After the metamodel is constructed, it can be used to induce preference in one space from that

in the other space by using the extension principle. The LIA is an efficient implementation of the

extension principle. It requires monotonicity of the mapping function to generate the correct answer.

It avoids solving a nonlinear programming problem by sacrificing accuracy. The assumption about

the aggregation function of the preferences and the assumption about the independence between

the mapping functions limits the area of its application if reasonable accuracy is required. The new

extension of the original LIA proposed in Section 4.3 relaxes these assumptions, and reduces the

errors if the relaxed assumptions are violated.

The target of the MoI is to find the set of designs that exhibit a certain level of overall preference

for their performances. The LIA is a good implementation of the extension principle for this purpose

because it approximates the overall preference byα-cuts. But when, and how, to use the LIA still

remains a question because the mapping function from the PVS onto the DVS is usually unknown

or does not even exist. In the previous computational implementation of the MoI , which consists of

the forward calculation and the backward path, the LIA is used twice. First the combined design

preference in the PVSµd(~p) is induced from the combined design preference in the DVSµd(~d) in

the forward calculation. Then the LIA is used to induce the overall preference in the DVSµo(~d)

from the overall preference in the PVSµo(~p) in the backward path. In the forward calculation, any

aggregation function other thanmin(µ1, µ2) will create many intermediateα-levels of the combined

design preference if the design preferences are divided atα-levels besides0 < ε � 1.0 and1.0.

For an-dimensional DVS, if each design preference is divided into threeα-cuts at{ε, α, 1.0} where

ε < α < 1.0, there will ben more newα-levels betweenα and1.0 in the worst case. If these new

α-cuts are ignored, some information will be discarded. If they are included in later computations,

n + 3 α-levels may be too many for the designer’s discretion. In the backward path, the LIA

requires the inverse of the performance functions, although the solution can be found without them

for problems which satisfy some special requirements [27].

A new method to compute the overall preference is presented and discussed in Section 4.4.

Because the discretization is only applied to the overall preference at the last step of the computation

after any aggregation in the new method, no newα-levels will be created. The LIA will only be used

once to induce the overall preference in the PVS from that in the DVS, in which only the forward

mapping function from the DVS to the PVS is needed. This is because the forward mapping function

~p = ~f(~d), which is used to compute the performances of a design, is used twice. The first use of

~f is in the computation of the combined functional requirement in the DVSµp(~d) = µp(~f(~d)),
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and ~f is also used to induce theα-cut of the overall preference in the PVSP o
α from theα-cut of

the overall preference in the DVSDo
α. The LIA is a discrete approximate implementation of the

extension principle. It only needs the overall preferenceµo(~d) at some individual points in the

DVS to computeP o
α. So,µp(~d) is needed only at some individual points in the DVS.~f is aN to

1 mapping from the DVS onto the PVS whereN ≥ 1. However, for the set which contains any

individual point in the DVS, it becomes a1 to 1 mapping, and hence has an inverse. The extension

principle is simplified toµp(~d) = µp(~p) = µp(~f(~d)) for the1 to 1 mapping at any individual point

in the DVS. Hence the use of~f−1 is avoided.

Now theα-cuts of the overall preference can be computed more accurately without the inverse

of the forward mapping function. If the metamodels are used in the computation, the boundary

of eachα-cut has different levels of sensitivity to the increase in accuracy of the metamodel. It

is more cost-effective to add new design points for the metamodel in the region within the most

metamodel-sensitiveα-cut but outside theα-cut at the next higherα-level, because the study in

Chapter 3 shows that where to sample the new design points is more important than how to sample

them when the equivalent density of design points is low. The difference in the volume of two

α-cuts at the sameα-level, but computed from different metamodels, is proposed in Section 5.1.1

as the measure of the sensitivity of theα-cut at a certainα-level to the change in the metamodel.

The ratio of the difference in volume to the original volume is preferred to compare the sensitivity

of α-cuts at differentα-levels.

Finally, the whole computation process of the MoI is formed from the preceding discussion

in Section 5.1.2 and is applied to the design problem described in Section 5.2 which was used

to demonstrate the MoI. The results listed in Section 5.3 includeα-cuts at{ε = 0.01, 0.2, 0.4},
and information about the maximum overall preference. Compared with previous results, the new

computation method produces almost the same maximum overall preference, but finds the design

which has the maximum overall preference within only a small portion, about1.5%, of the time

used by the previous demonstration.

There are three parameters of the computation which decide the accuracy and the cost of the

MoI:

1. The number of design points used to construct the metamodel.

2. The number of subregions of the range of each design variable.

3. The number of subregions of the range of each performance variable.
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There are mainly two contributions to the computational cost: the cost to evaluate the mapping

functions between the DVS and the PVS, which is decided by the first of the listed parameters;

and the cost to compute theα-cuts of the overall preference in the DVS and the PVS, which is

decided by the last two parameters. The accuracy of the resultingα-cuts is also affected by two

factors: the accuracy of the metamodel of the actual mapping function, which is controlled by the

first parameter; and the accuracy of the LIA, which is controlled by the last two parameters. A

larger value of any of these three parameters produces a higher computation cost but more accurate

results.

The questions posed in Chapter 1 can now be answered:

1. A more accurate approximation than the linear approximation is preferred.

2. A nonlinear metamodel is not only feasible, but is necessary for the new extension of the LIA.

3. The accuracy of the mapping of theα-cut is improved by dividing the range of each variable

into smaller regions. Besides, theα-cuts in the DVS and the PVS can be represented in more

detail than just using a hypercube.

4. With the metamodel and the new extension of the LIA, the designer has more control over the

trade-off between computation cost and accuracy.
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