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ABSTRACT -

Minimum~energy control problems fof variocus electric propulsion
vehicles are formulated and solved using modern control theory and
systems engineering techniques., Analytical results are obtained by
making several simplifications and approximations in the dynamical
equations of each system whose: performance index is related to the
minimization of the system energy consumption for a required control
action. An attempt is made to implement the resulting control laws

using the current engineering practice.
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I. INTRODUCTION

In recent years, following the pioneering works of Pontryagin,
Bellman and Kalmen, an intense amount of research has been carried out
by many workers in the area of modern control theory. The optimization
techniques of modern confrol theory along with digital computers pro-
vide a new approach for the design of automatic control systems.

Historically, optimal control theory has been applied to the
solution of aerospace problems such as low thrust interplanetary

[15] [h1]

guidance, automatic aircraft landing, re-entry controlEhz] sof't-

~ landing of a vehicle on the surface of the moon with minimum fuel

expenditurefuB] and minimum fuel and minimum time attitude control
systemsghh] The literature on the application of optimal control theory

to non-aerospace systems is somewhat limited. More recent references
deal with optimization of natural gas pipeline systems via dynamic

[45]

progrémming, time-optimal positioning control of non-linear hydraulic
servom.echanismsE%:|

Direct-current and alternating-current electric drive systems
utilizing feedback control principles form an important class of systems
which play a vital réle in modern technology. The application areas are
numerous and include many comp;ex industrial processes, portable iﬁstruy
ments and devices, and electric propulsion vehicles,

This investigation treats the formulation and solution of minimume
energy control problems associated with electric propulsion vehicles
within the context of optimal control theory. The essential elements of

a typical electric propulsion vehicle control system are illustrated in

Figure 1,
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One of the most,challenging tasks in the formulation of a practi-
cal problem in the context of optimal control theory is the selection
of an appfopriate performance index; Even though an adequate mathemati-
cal déscription of the plant is available, the quality of the results
obtained by the application of optimal control theory is dependent upon
" the selection of a meaningful performance indek. Several contributions
are made in this study concerning the selection of meaningful perform-

- ance indices for the optbimization ﬁroblems considered,

In Chapter II the basic optimization problem for a class of
electric propglsion vehicles 1s formulated and solved under certain
assumptions. The performance index is selected to be the control
energy consumption which can be positive or negative depending on the
type of control action desired. The application of Pontrysgin's Maximum
Principle together with necessafy conditions, in general, indicate a
dual-mode controi law which may consist of bang-bang and singular
control actions during the controlling interval. The engineering real-
ization of such a controller is complex and expensive, Further assump-
tions convert the basic optimization problem to an approximate optimiza-
tion problem with a linear plant equation and a quadratic performence
index. The solution of this approximate optimization problem yields a
feedback control law which has an easily real;zable structure. From the
digital computer simulations, the salient features of the optimal
feedback controller:for the approximate optimization problem are deter-
mined and compared with thosé of classical feedback controllers under
identical conditions. Also, based on these observations, a suboptimal

feedback controller is determined whose performance closely matches that
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of the optimal feedback controller. Finally, it is shown that the
energy consumption and the performance characteristics of the actual
system under the action of the optimal and suboptimal control laws of
the approximate optimization problem are very nearly the same as those
of ‘t'the actual system under the action of the optimal control law of
the basic optimization probleq.

In Chapter III a stochastic opfimization problem, whiéh is origin-
ated from the approximate optimization problem of Chapter II, is formu-
lated and solved. It is assumed that the disturbance torque acting on
the vehicle can be modeled by & stationary, Gaussian, exponentially
correlated-noise process, The salient features of the stochastic opti-
mization problem are determined using the appropriate digital computer
simulations, The behaviour of the exact plant is studied under the
action of specific control laws using a Monte-Carlo Simulation Technique.
Finally, the effect of observational noise on the system control energy
consumption is considered. |

In Chapter IV two specific optimization problems are studied under
certain simplifying assumptions.

Tn Chapter V the practical implementation of feedback control laws
obtained in Chapters II and IV are considered in the light of current
engineering practice.

In Chapter VI the principle results of this investigaﬁion‘are
summarized and a list of electric drive systems to which these results

may be applicable are given,
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Figure 1, Essential Elements of an Electrical
Propulsion Vehicle Control System.
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II. THE BASIC OPTIMIZATION PROBIEM

2.1, Introduction,

In this chapter we present the formulation and the solution of the
_ basic qptimization problem which will eventually lead us to the deter-
mination of the minimum-energy controller for a class of electric
propulsion vehicles. The purpose of the controller is to accomplish
various control actions for the vehicle while minimizing the net energy
- flow from a rechargeable battery, The control voltage is applied to the
armature circuit of a d-c motor with fixed but reversible field excita-
tion which produces the propulsive force.

A conventional lead-acid battery has a low energy density. It
stbfes, at most, 10 watt-hours of electricit& per pound of batterygl]
Therefore, it can not be used as an economical and practical energy
source, Fortunately, the current research on new rechargeable battery
systems is very eﬁcouraging. For example, the energy density of hypo-
thetical metal-air battery is projected to be 5-7 times greater than
that of a lead-acid batterygu] High energy batteries such as sodium~
sulphur battery are still in predevelopmental stage., DNuclear energy,
solar energy and fuel cells are also possible sources of energy for
electric propulsion vehicles, Furthermore, electric energy can be trans-
ferred continuously to a moving vehicle by induction, by conduction, or
oy radiation., However, all of these methods are known to be either un-
ecénomical or impracticalE2’3]

The complete mathematical description of the plant is obtained by
applying Lagrange's Energy Method to mechanical and electrical parts of

the system, and utilizing basic principles from the theory of electric
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machines, The performance index is selected to be the electrical
énergy consumption. The integrand in the performance index represents
the electric power which can flow from the battery into the motor cir-
cult or from the motor circuit into the battery over some intervals of
time in the controlling process, A number of assumptions are made in
the blant equations for mathematical convenience, The control voltage
is bounded between zero and the battery voltage.

The exact solution of the optimization problem is obtained by using
Pontrysgin's Maximum Principle together with necessary conditions from
‘the o?timal contrﬁl theory€5] For the important case of acceleration it
is shown that the singular control[6’7] can not enter into the optimal
solution which consists of only the bang-bang solution. The engineering
realization of the bang-bang control law or in general dual-mode control
law, i,e. opfimal solution may consist of bang-bang and singular solu-
tions, 1s very difficult and expensive., To circumvent this difficulty
the following assumptions are made on the basic optimization problems

1. The control voltage is not bounded

2., The armature inductance is small,

Although the resulting optimization problem is only an approximastion of
the basic optimization problem; as it will be shown through the use of
several digital computer simulations, it yields extremely good results
from practical as well as economical points of view, The optimal control
law, i.e, feedback solution, is obtained using Bellman's invariant im-

bedding techniqueElO]
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2.2. Formulation of the Basic Optimization Problem,

The plant or the process to be controlled is described by the
[13]

following linear time-invariant differential equations.

. fe kt ' 1l
xl(t) = - jg)xl(t) + jg.xz(t) - jg)v(t) (2-1)
ﬁz(t).= —(Ziﬂxz(t) + %:Ju(t) - ;E)xl(t) (2-2)

where:

il(t) é"Angular acceleration of the electric motor,

[rad/secz]
x, () 2 Angular velocity of the electric motor, [rad/sec]
. A . .
xz(t) 2 Derivative of armature current, [amps/sec]
xz(t) = Armature current, [amps]
v(t) £ rotal disturbance torque as referred to motor,
[newton-meter]
u(t) & Armature voltage; control, [volts]
Jg 8 motal system inertia as referred to motor,
[newton-meter/rad/secz]
fe é Total system damping coefficient as referred to

motor, [newton-meter/red/sec]
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B
il

% & Motor torque constant, [newton—meter/ampg]

k is dependent on the air-gap flux density which is

constant for a separately-excited d-c machine,

b counter emf or back emf constant. [volts/rad/sec]

o
1l

&
>

Armature inductance, [henry]

e

Armature resistance, [ohms]

In the derivation of Egs,(2~1) and (2-2) the following assumptions
have been made:

1., The electric motor propulsion force is transmitted to vehicle's
rear wheels through a speed-reducer and no slipping takes place between
the tires and the surface of terrain,

2. The aerodynamic drag force is negligible,

3. The mechanical system parameters; Je’ fe and the electrical
system parameters; La’ r, are constants.,

Yy, The motor operation is unsaturated.

The performance index for this optimization problem is selected to

be the electric energy consumption of the system and is given by
o
E =-fu(t) xz(t) dt (2-3)
o _

The integrand in Eq,(2-3) represents the electric power which can flow
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from the battery into the motor circuit or from the motor circuit into
the battery over différent intervels of time during the controlling
process, ‘
Therefore energy transfer takes place to and from the battery. The
nature of electric eﬁefgy transfer may be best understood by considering
the following cases:

1. During speed-control in which it is required to maintain the

- speed of the vehicle constant while v(t) varies, whenever a positive
disturbance torque is applied to the system, i,e. up-hill movement, the
control voltage nust be Increased to keef the .vehicle speed constant.
Since the control voltage is larger than the back emf voltage, electrical
energy is transferred from thé bvattery to the motor circuit,

2. During speed-setting in which it is required to change the speed

of the vehicle while v(t) remains constant, whenever the disturbance
torque is positive and it is required to increase vehicle speed, the

control voltage must be increased in order to obtain the desired speed.
Thus, once more the energy is transferred from the battery to the motor

circuit.

3. During speed-control of the vehicle, when a negative disturbance
torqué is applied to the system, i.e, down-hill movement, the control
voltage must be reduced in magnitude in order.to maintain a constant
vehicle speed., Over the interval of time in which back emf voltage is
| greater than the control voltage plus the voltage drop across the induc-
tance, the energy is transfefred from the motor circuit to the battery.
The polarity of the armature current is reversed and its magnitude is

controlled in such a way that the sPeed of the vehicle is maintained
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constant, In some cases of speed-control, at low speeds with large
negative disturbance torques applied to the system, mechanical brakes

may be used to supplement the controller effort.

4, During speed-setting of the vehicle under positive disturbance
torques, if it is desired to reduce the speed of the vehicle by reducing
the Eontrol voltage, over the time interval in which the back emf voltage
is greater than the control voltage plus'the voltage drop in the arma-
ture inductance, the energy is transferred ffom the motor circuit to
the battery. This condition exists until the control voltage exceeds
the back emf voltage plus the voltage drbp in the armature inductance
and supplies the necessary motor drive torque corresponding to the new
desired speed, The energy is.now transferred from the hattery to the
motor circuit., The above considerations indicate that E, in general,
is a measure of net out-flow of energy from the battery in 0 <t < T,
i.e. control energy consumption.

The set of boundary conditions to be satisfied by the state vari-
ables xl(t) and xz(t) for the three céses of control action are
given below:

Case l; Speed-control.

x,(0) =

=X =0 xl(T) =0
XZ(O) = xoz ) Xz(T) = az
o, is chosen such that il(T) =0 - (2-4)
v(0-) # v(0) , v(T) =8

v(t) =B , 0<sts<T
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Case 2. Speed-setting.

x,(0) = x; Ao, x(T) =oy
x,(0) = %y, ;%1 =a,
a, is chosen such that il(m) =0 - (2-5)
v(0-) = v(0) , v(T) =8
=B - 0<ts<T

v(t)

Case 3., Speed-control and speed-setting.

xl(O) = %01 # o xl(T) = oy
x,(0) = x4, s %0 = a
a, is chosen such that il(T) =0 (2-6)
v(0-) # v(0) > v(T) =p
V(t) =B . ’ 0 < t <7
The control voitage is constrained by the inequality
0<u(t) <U . (2-7)

The statement of the control problem is as follows: Given the

linear time-invariant system, i.e. Egs.(2-1) and (2-2), the performance
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index, i.e, Eg.(2-3), a free terminél time T, an inequality con-
straint on wu(t), i.e. Eq.(2-7), determine u(t) which satisfies the
boundary conditions on xl(t) and xz(t) as described by Eq.(2-L4)
for speed-control, Eq.(2-5) for speed-setting, Eq.(2-6) for speed-
control and speed-setting and minimizes the performance index, It is
impértant to note that for t 2 T, 1t is required to maintain the
vehicle speed constant at its terminal value, i.e. xl(T) = Oy, until
a.new disturbance or a new desired speed-setting is applied to the
sysfem. This is accomplished by properly adjusting the value of the

armature voltage at t = T,

2.3. BSolubion of the Basic Optimizegtion Problem,

The Hamiltonian function H is defined by:

f

k
H= ()¢ - (39-) xq () +
e

~E) x (t) -

{ xzos)
x (t) + u(t) ( T + X (t) (2-8)

a——,

ra

QIF‘

m“"lc”

where;
xl(t) and Az(t) are Lagrange multipliers,

Application of Pontfyagin’s Meximum Principle yields:

('
£y .

U if ki( )+ x, (%)) <0
a

a(6) = { - (2-9)

t

0 if ()\i( ))+ x,(t) p > 0
a
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Equation (2-9) denotes a bang-bang type control action in which -the

control signal takes on its maximum value U or its minimum value O,

()

depending on the sign of ( |——] + x (%)) .
.2 2

A, (%)

a
When ———~—)+ xz(t) =0 over some finite intervals of time in

4
a

0 <t <T, singular controls result, If this is the case, Eq.(2-9)
’ *
yields no information about the desired optimal control function u (t),

2.3.1L. Determination of the Bang-Bang Control Law.

Assume that singular controls do not exist.over asny finite time
~interval in O <t < T, Since v(t) is constant in (0,T), from

Egs.(2=1) and (2-2) the following vector differential equation is

obtained;
i = Ay + v (2-10)
where:
REAR (x, () - @) 0
X = = .‘\_f =
y,(t) %, (t) v @
0 1
Al
- (jqhs) (g + 1)

and Ho are the eigenvalues of A and are defined as:
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= _..]—' .f_e + f‘.% + L _f_e.. + f_% - fer + _l‘ﬁ
My = 7 2T ) T\ J T T Tz
e a e a e a
(2-11)
' f r f r C fr k
S Y I -1 TR - Y Y T IR - | R i QI £
Ho = = 2117 T T\ T T T Tz |
e all e a e’a ea
(2-12)
In Egs.(2-11) and (2-12):
T r 2 fr k kb '
1
He) - () ) b (-13)
e a e g e a
T £
This is, because I$%>> 1l and- 32) is negligible, Equation
a, e

(2-13) expresses the fact that the system is overdamped which is pre-

cisely one of the advantages of using armature controlled d-c motor in

electric drive-systems. From Egs.(2-11), (2-12) and (2-13) it is clear

that the eigenvalues p, and 'y, are real, distinct and negative, -
Aktu(t) - T, - (fera + ktkb)a |

A
v (t) = T L .
e &

Making the following similarity transformationgsl

(2-14)

I<
I
I

where:
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e

In

And letting:

T ET)
z= 5
0 “T"_Tl .
where:
g, (¢)
3 A
g, (t)

The Eq.(2-10) is transformed into:

E = BE + Cv (2-15)
where:
My 0
g &
0 Ho
= (kqhs) My
¢l
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The equation for the switching curve, i.e, closed-loop solution,
' is determined in thé (gl,gz) plane rather than in the (yl,yz) plane
for the reasons given in reference [8]. From Eq.(2-15):

‘ et byt
‘g, () = E,(0) e - v (8)(1 -e ™) - (2-16)

't t
€, (0) e L - v (t)(1-e?) (2-17)

]

£, (t)

Eliminating t in Egs.(2-16) and (2-17) yields the following equations

for the switching curves:

8y = {(8,8) : &, =8, 36 >0, & >0} (2-18)
SO = {(gl} gz) : gz = 8'2 5 gl < 0 J gz < O} (2-19)
where: .
=
g+ Vﬁ,ul
?l R I vy
&
n
§l + vy 1
&y = = Vg + V¥, -
0

kU - rpp - (fry + ko) a

u J el’a.
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- T B - (fera + ktkb) o
0] J L '
e’a

The corresponding equations for switching regions are given by:

(gl’ §2) : gZ < B'l

Ryo = | (2-20)
(8, 8,)

§2 < a,

where:

For every'state (gl,gz) in the fegion RUO’ the optimal switch-
ing sequence is (U,0), i.e. u(t) = U until the switching boundary
given by Eq.(2-19) is reached,.then u(t) = 0 on this boundary until
the origin is reached. Note that §l = 0, §2 =0 in (§l,§z) plane

corresponds to Y, =0, ¥, =0 in (yl,yz)‘ plane,

(81, 8,) : g, >ag
Ryg = (2-21)
-(El’ gZ) :

Al

> 8,

Where:

For every state (§l,§2) in the region Ry

ing sequence is (0,U). Switching curves and regions are shown in -

the optimal switch-

Figure 2. Figure 3 displays the configuration of the bang-bang control -

system,

The following expression for the control energy consumed in (O,T)

is obtained by using the appropriate transformations between xl(t),
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(§l, §2) Plane for the Bang-Bang Control,
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x.(t) and §l(t), gz(t) variables and by assuming the initial condi-
[ T

tions gl(o), EZ(O) are in R

f J
- (5 e :
: k k E.(0) + v, K
S £ £l 1 ( 1 - U)(e 1% 1) -
(hy iy = 1g)) 1
£ J
"3)+ £ (0) t £
k k. J"2\[1E.(0) + v, U
i & 2 Ule 28 a)a vt | +[|<Sla+ [Bt
(ko (Bo=hq)) Ha Us Ky K 8
A S
(2-22)
where:

ts is the time at which the controller switches the battery volt-
age from .u(t) = U to u(t) = 0. Equation (2-22) can be evaluated if
T is known, since all the other terms in (2-22) are known for any

control action under consideration., From Egs.(2~16) and (2-17):

(81 (t5) + vy)
(1 L' 's U’y L

b = ul)loge [IOEED N (“z)loge (€107 + )
_ . (2-23)
At t =t , from Eqs.(2-18) and (2-19): Mo “2)
my b
g () + v T [E6) ¢ v\ T

(o) + (5O %) | eoy | = Yol

' O 0 Vo

(2-2k)

Equation (2-24) is a transcendental equation. For any given

£.(0), €.(0); E.(t.) is determined by trial and error. Substituting
1N/ 82 1' s _
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this value of gl(ts) in Eq.(2=23) yields t,. Figure 4 shows™ the
'system‘trajectories in the (yl,yz) plane for the bang-bang control

using the following system parameters:

J_ = 1.h2 newton-meter/rad/secz

f = 0.825 newton-meter/rad/sec

=
11

2.0 newton-meter/amps

2.0 volts/rad/sec

oF
U

1.0 ohm

=
]

4 0.010 henry .

&

fl

And we have assumed that:

Q
1

10.0 rad/sec

B = 0.0 newton-meter

g
1]

50,0 volts .
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2.3.2. Determination of the Singular Control Ilaw.

Tet us assume that only the singular controls exist in some time

interval. From Eq.(2-8):

° 'fe kt 1l \
%(8) = = | 53] %y (1) + | 32) x,(8) - |3~ B (2-25)
e e e
. . kb ' T \
xz(t) ==\ xl(t) - zg) xz(t) + %— u(t) (2~26)
a a a
i y
. e
i) =52 M(“*(z; A (%) - (z-27)
: kt Ib‘a.
)\.2.(1‘;) = - {5-;) )\l(t) + Z—;) )\z(t) - U(t) (2—28)
Singular controls exist whenever:
A (E) = = 4, %, (%) _ + (2-29)
M(E) = = 4, xz(t) ] ' (2-30)
Furthermore the application of transversality condition yields:
H=0 (2-31)

Using Egs.(2-29), (2-30) and (2-31) in Egs.(2-25) through (2-28)

yields the following result:



2k

L k £ f 1
u(t) =( ih&’ e . kb) xl(t) + (r +4, ( ))x (t) (—-—lg-b—;j—)ﬁ
ae e

where:

Note that, in the expression for xz(t):
+ s8ign denotes motor action

- gign denotes generator action

2

-:—{'——)5) +(( n ) Bx; (t) + ( ekb) (t)) >0 for
] a

any combination between xl(t) and B.

2.4, An Approximation of the Basic Optimization Problem,

Re-write Eq.(2-2) as
€ ).cz(t) + xz(t) = W(t) (2-33)

where:
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le

.
2
u(t) - kbxl(t)

r
a

K>

W(t)

"W(t) . is the forcing term with (N+1) continuous derivatives in

0<t <T,
The general solution of Eq.(2-33) is given by:
S
el”, 1 [ e

€
0

xz(t) =.xz(0) e W(t)ar (2-34)

After (M+1l) times integrating by parts, Eq.(2-34) yields the following

result:
N .
x,(6) 2 ) (<)) & W(5) + By(t,e) O] (2-35)
n=0 . )
where:

4 nth power of ¢

m
Il

and for fixed t, t >0 as ¢ -0

Ry(t,e) = o(c ™))
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For most practical systems of interest:
0(e?) ~ 0

Therefore:

ne

r r
a ’ a

u(t)-k %, (t) [ a(t)-k x, (t)

%, (%) . (2-36)

For small electric motors, i.e. with ratings below 20hp, Eq.(2-36)

can be assumed to be:

a(t) - K x ()
r

a

OB (2-37)

Substituting Eq.(2-37), i.e. zeroth order approximation of xz(t), into

Egs.(2-1) and (2-3) yields the following simple optimization problem:

Plant:
|f k k
x(t) = - §+T‘i}:—b x(t) - E}T-)v(t) + | 7=lu(t)  (2-38)
: e e a e e’a _
vwhere:
x(t) & x, ()

Performance index;

a

. T
z =f -i- (uz(t)- - kbu(t) x(t)jdt (2-39)
0
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Boundary conditlons:

Case 1. Speed-control.

x(0) = a ,  x(T) =«
v(0-) #v(0) , v(T)=8 (2-k0)
v(t) = B ,. 0=<t<T

Case 2. Speed-setting.
x(0) = Xy , x(T) =
v(o-) =v(0) , w(T) =8 (2-b1)
v(t) =B , O0<t<T

Case 3. Speed-control and Speed-settiﬁg.
x(0) = x5 ,  x(T) =a
v(0-) # v(0) , v(T) = B (2-k2)
v(t) =B 5 0st<T

The control voltage is not constrained in magnitude. From the observa-

tion of Eq.(2;39) it is easy to see that the performance index has the

seme fundamental characteristic as that of Eq.(2-3), i.e. the integrand

of each integral represents thelelectric power flow which is reversible,
The statement of the control problem is as follows; Given the

linear time-invariant system, i.e. Eq.(2-38), the performance index,
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i.e. (2-39), a terminal time T, and no constraints on the magnitude

of control u(t), 'defermine the control u(t) which satisfies the
boundery conditions on x(t) as described in Eq.(2-40) for speed-
control, Eq.(2-4l) for speed-setting, Eq.(2-L42) for speed-control and
speed~setting and minimizes the performance index. It is important to
note'that for t =T, it is required to maintain the vehicle speed con-
stant at its terminal value, i.,e. x(T) =aq, until a. new disturbance or
a new desired speed-setting is applied to the system.

2.4.1, Solution of the Approximate Optimization Problem,

The Hamiltonian function H fof‘this problem is given by:

k
H = %%%ﬂ- ;-Mﬂﬂﬂ+—;§+;r ﬂw-(})wm
a a e e & e
kt
+ (J T ) u(t) ) A(t) (2-43)
e a

Application of Pontrisgin's Maximum principle yields the following

results:
k .
0 (%) =(-ék2) x(t) - 57?—-) Mt) , Ot s<T (2-l)
: e
* | ka 2 f ktkb ktz 2 1
H = - F)x (t) - (-J—e-+ = )X(t)h(t) - ( 5 ) N(t) = | v (E)a(t)
a e e a hJé r, e
(2-45)

) * > .
It is seen from Eq.(2-44) that w (t) dis & linear function of x(t)
and \(t). Since the plant equation is linear, the performance index is
%
quadratic, u (t) is unique, and therefore is the optimal solution for

this approximate optimization problem,



The canonic equations are then determined to be:

x(t) = - ax(t) = bA(t) - (%-) v(t) (2-46)
A(t) = ex(t) + ar(t) (2-17)
where:
f k
5%
8 = (32 + ZJera) a>0
b = ; b>0
2Je ra
2
c = (;%— ) c >0
a
For convenience substitute:
R(t) = x(t) - a (2-48)
B = v(t) (2-49)

in Egs.(2-46) and (2-L47) to obtain:
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- - P

* ) [
x(t) | -a b || X(%) -(%;)B-aa
e
= + . (2-50)
At) ¢ a || at) ca
v— S— — — J
A, Open-Loop Solution.
The general solution of Eq.(2-50) is given by
r"'~ - r—~— - - 7 f" -
x(t) kK |
= 8(t) + | p(t) (2-51)
AE) | k

where:

& is the fundamental matrix solution of Eq.(2-50) which satisfies

the matrix differential equation

B(t) = | : 3(t) , 8(0) =1 (2-52)

where:
I 2 identity matrix.
p(t) 1s the particular vector solution of Eq.(2~50) which satisfies the

vector differential equation:



31

e -8 -1:] -H‘— B-any
e
p(t) = p(t) + , p(0) =0 (2-53)
C a, ca
L . L B
where:
0d

Null vector,

The solution of Egs.(2-52) and (2-53) yields:

—

7a

(%) = | (2-54)

(Cosh\/d_t - \% Sinh\/d_t) (- L sumﬁ’t)

Va

(%Sinhﬁ t) (Cosh/a- t + 2= 8inh/d t)

-
acl]| =

e

Sinhyd t +

)(l—CoshJP-tﬁ-r (az)(( )(1-coéh¢€'t9

p(t) =

((%I;)aaa)((g) (Coshy/@ t-l)) + (oa)( \-Hslnh\/_ t + )(COSm/_ t—l))

_ | 5
(2-55)
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where:
d = aZ -)bc
Substituting Egs.(2-54) and (2-55) into Egq.(2-51) yields the general
solution of Eq.(2-50), The constants k, and k, are determined in
such a way that the two boundary conditions on ;(t) are satisfied for

a control action under consideration. Consider the most general case:

For speed-control and speed-change

Iet:
x(0) =y (or x(0) # @)
x(T) =0 (or x(T) =q)
Hence,
kl = 'Y

X = (\_/_:) Costh) (E) _(l B + ao _l_+ a)(l—Cosh\/(_i-T)
2 ®Nsimmfa ol 1P 1Y B lova/l sinnfa T

(c
+ia

Substituting k., k, into Eq.(2-51) yields:

l-Cosh\/— T)

1-Coshyja T

Sinhfd T

1-CoshVd T) Sinf b
Sinh/a T

Sln dT

slnhvr_:> <:%.d (1-Coshyd t) -

x(t) = v Cosh\/—t COSh‘/—T Slnh\/—‘c}+ a{osh\/—t +

e

(2-56)
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\/—Smh\/_) (w>005hft (b)Coshdt

M) = v

{ b Sinhyd T
a Cos Slthr.t + O
b Slnth—T

. \/a(l-Cosh d T)Cosh\/_t a(l ~Coshvd T} n.h\/—}

Sinhfd T Slnh\/_T

\\7 bd) (1-cosna ) (bJe) (bJ Ja )(lsi:f:}" dTT)C ol .
)slnhft + (l‘C°Sh‘/-T sm.f} (257)

%slnh\/'-t ( Cosh/d t

+ de

bJ a Sinhyd T

Using Egs.(2-56) and (2=57) in Eq.(2-L44) yields the following ex-

*
pression for the optimal control function wu (t):

k a
K, 1 kb k2 oosnyd T
1, \/a) A cosn/a T k a
23 = |sinn/d ¢ - Cosh/d =+ 2 Cosh\/_t
2J‘b Sinhyd T 2J.p
k L& k \/—
+(_2k:g 1-Coshvd T)Smh\/—t N 2J Smh\/— 4 4] i (l-Cosh\/—T)
e e Sinhy/d T
2
a a k. a
Coshyd t)=- 2 (l-CoshVE.t) - i - — 1-Coshvd T
21 d 23 bd 27 d 2Je2bd Sinh/fd T
X, a ' ﬁ : ‘
Simn/d t - 2 Sinh/d t ( t ) 1-Coshyd T}Cos Tt - —L
2 b\/é' 25 "o\ simnfa T 2Jeab

(2-58)



If vy =0 in Eqgs.(2-56), (2=57) and (2-58) we obtain the corresponding
" results for speed—céntrol case, If y =0 and v(0-) = v(0) = v(T),
v(t) =B; 0=t <T, in Egs.(2-56), (2-57) and (2-58) we obtain the
corresponding results for speed-setting case.

B. (Closed-Ioop Solution.

Since the canonic equations are linear, Bellman's invariant-im-
bedding technique can be used to determine the feedback solution, Iet
r{TN, 1) be any pdrticular initial condition on x(t) for a process
starting at time + with A(T) = 1(T) and satisfying the boundary
condition r(7,T) = 0. Referring to reference [10], r(T,T) satisfies

the following first-order differential equation:

Z () + %ﬁ (T 7) g(n,"r) =£(nr) (2-59)
where:

£(n,r) & - ar(r) - v1(7) -(%g)s - et

g(r,r) & ex(r) + an(r) + ¢ a

Assume a solution of Eq.(2-59) in the form of

r(M, 7) = m(7) N(r) + n(r) (2-60)

where:
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n(r) & a(r)

From Eq.(2-60):

Z (1) = a(r) (1) + n(r) (2-61)
-g-gmf) =m(1) . o (2-62)

Substituting Egs.(2-61), (2-62) into Eq.(2-59) and collecting the

coefficients of equal powers of n(T) and equating them to zero yields:

m(T) + cmE(T) + 2am(t) + =0 (2-63)

m(T) = O (2-64)

n(7) + (cm(7)+a) n(T) + aem(T) + ao +(%—)B =0. (2-65)
el .

n(T) = 0 | | (2-66)

Equation (2-63) with its boundary condition, i.e. Eq.(2-64), is a
first-order nonlinear differential equation of the Riccati type whose

solution is glven by:

S}EhVGT(T-T) (2-67)
a SithE_(T-T) - JE-CoshJE—(T-T)

m('r) = - D

Equation (2-65) with its boundary condition, i.e. Eq.(2-66), is =
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first-order time-varying linear differential equation with a constant

'forcing term whose solution is given by:

: N
(VA Coshfd (T-7)-a Sinhy/d (T-1))

5} ' N
JeGﬁE.COShJE-(T-T)-a SithE'(T_T) (Slthan(T T)

n(T)

\?‘7_5 Sinh/@ (T-7)-Cosh/fd (T-‘T)+l)+

A, Coshda (T-T) +
d

=

al

(2-68)

Since from Eq.(2-60)

A(r) = | 20 CB nl"r))» | (2-69)

Substituting Eqs.(2-67) and (2-68) into Eq.(2-69) and then using
the resulting expression for A(r) in Eq,(2-h44) yields the following
feedback control law for this optimization problem:

kb kta

u*(t) = {-2—- + m)x(t) +

1-CosVa (7-t)) (kt‘/a_

| K,
Sinhy@ (T~t) | 12%eP *(®) ( ) P

1-CoshVd (T—Q)( ko )B .

Sinh/d (T-t)- ZJezbd

o - x(t) )(3kt d) . (2-70)

sinhfd (1-)/ | 20 b

where:
v 1is replaced by t without loss of generality. In Eq.(2-70) at.

t = T, using L'Hospital's rule yilelds the following results:

lim
t-T

1-CoshV/d (T-t)) o
Sinhfd (T-t)

(2-71)
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lim( a-x(t) }:’E(T) (2-72)

t~T | Sinhfd (T-t) Ja

k

k,a k
D, 53%,-) %(T) (2-73)
e

d*(T) = (2 + ZJeb) x(T) +( 2Jegb

B +

a-x(t)
Sinhyfa (T-t)

bance or a new desired speed-setting is applied to the system, then

If, however, lim
t-T

) =0 for t 2T until a new distur-

from Eq,(2-73):

3

5

23 %
e

a
;h + E%”E) x(T) +
e

B . (2-7h)

w (%) =(

Substituting Eq.(2-74) into Eq.(2-38) and noting that v(t) = B yields:
x(t) =0 for t =T (2-75)

If this requirement is met, the controller enters the steady-state
phase of its operation. Therefore, it is clear that some means must be
incorporated into the control system, to turn the time-varying feedback
gains on at %t = 0 and to turn them offbat t =T,

 When Eq.(2-36), i.e., first order approximation of xz(t), is .
substituted into Egs.(2-1) and (2-3), a better approximation of the.
basic optimization:problem is obtained. In this case, the solution is
- most conveniently obtained by using the so-called Lagrangian Formulae
[11] '

tion, However, the performance characteristics of the resulting

optimal system are almost identical to those of the optimal system
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studied above, even though an unrealistically high value of ¢ -is
‘assumed in the ensuiﬁg computations. For this reason, the performance
characteristics obtained from the appropriate digital computer simula-
tion for this optimal system will not be reproduced here, However, it
must be mentioned that the optimal system, in this case, requireé the
derivative of the control u*(t) to be fed into the plant.

2.4.2. Salient Features of the Minimum-Energy Controller for the

Apprbximate QOptimization Problem.

Salient features of the minimum-energy controller are studied by
simulating Egs.(2-56), (2-58) and (2-39) on the digital computer by using
the same system parameters as given in Section 2.3.1, except that &a = 0.
For t =T it has been assuﬁed that all time-varying gains of the
minimum-energy controller are made Zero by means of an auxiliary
controller.

2.4.3. Discussion on the Salient Features of the Approximate

Optimization Problem,

In reference to Figures 5 through 8, it is seen that the optimal
control u*(t), hence the optimal trajectory x(t) are greatly influ-
enced by the particular choice of T. For the case of speed-control,

x(t) =0 at t = I for all a's, PB's, and T's., The proof follows

2
from the use of Rolle's theorem[lz] which guarantees that x(t) = 0 at

time t which satisfies the inequality 0 <t < T, Using Eq.(2-56)

with vy =0, 1i.e. speed-control, yields:
a .
p
7/
%(t) = Cosh/d t - Coshyfd (T-t) (2-76)
Sinhyd T

oyd +
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Figure 5. Results for: o = 10.0 rad/sec , v(0-) = 0,0 newton-meter ,
p = 10,0 newton-meter , vy = 0,0 rad/sec (speed~-control) ,
w (0-) = 2k.2 volts.
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Figure 6. Results for: o = 10,0 rad/sec , v(0-) = 0.0 newton-meter ,
B = - 10.0 newton-meter, y = 0.0 rad/sec (speed-control) ,
u%(o-) = 2k.2 volts. ‘
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Figure 7. Results for: « = 10.0 red/sec , v(0-) = 0.0 newton-meter ,
B = 0.0 newton-meter , y = - 10,0 rad/sec (acceleration) ,
*
u (0-) = 0.0 volt,
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Figure 8. Results for: o = 10.0 rad/sec , v(0-) = 0.0 newton-meter R
B = 0.0 newton-meter , vy = 10,0 rad/sec (deceleration) ,
d*(o-) = 48,4 volts,
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From Eq.(2-76) it is clear that x(t) =0 in 0 <t <T if and only
if |

Costyfd t - Coshy@ (T-t) = 0 . (2-77)

Equation (2-77) is satisfied at t = I . Also note that at +t = O+

2
whenever (owﬁ-+ & __gl>0 then i(t)‘ < 0 since
Je\/r; ' £+0+

(CoshJE-t - CoshJE-(T-t))| <0 for T > 0. If, however,
t=0+

a\la'} = a) <0, then ;'c(t)_l > 0 . since
VY =0+
(Cosh/fd t - Coshya (T-t)| <0 for T >0, From Figures 5 and 6 it
is seen that, if the sPee§=g; not allowed to change considerably by
properly choosing T, E vs T relationship becomes linear with almost
unity slope, For the case of acceleration, i,e, Figure 7, u*(t) and
x(t) changellinearly with time in 0 <t < T for small T's. Small
T means a high acceleration requirement which in turn demands a high
control voltage u(t) and from Eq,(2-39) it is ciear thaé the control
energy consumption becomes very large. This is because the integrand
in Eq.{2-39) is dominated by uz(t) and the integral of this quantity
over (0,T) is extremely large even though T is small, The control
energy consumption E Dbecomes independent of T for large T's. This
is because, energy éaved by keeping the control voltage at a low value
for most portion of (O,T); i.e. low acceleration, is diminished by

requiring higher acceleration as t - T for large T's. Therefore, the

net gain in control energy consumption for T greater than a certain
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value is extremely negligible, For the case of deceleration, i.e,
vFigure'B, considerabie amount of energy can be saved for small T's,
However for large T's, the energy which can be gained by keeping T
small is lost by requiring very high accelerations as t - T for large
T's.,

2.4 .4, A Suboptimal Feedback Controller for the Approximate

Optimization Problen,

Consider Eq.(2-70) which consists of three time varying and two
constant gains, Two of the time varying gains are identical and satisfy

the following inequality:

l-Coshvr~(T t)
Sinh\@ (T-t)

-1x=

in 0stsT . (2-78)

*
The third time varying gain becomes infinite at t = T. Therefore;

it seems reasonable to assume a suboptimal control law of the following

form:
kK ka [ x|\ [xda )
u, (t) = ==+ ==—| x(t) + B + (a-x(t))
50 2 adp 23 27 b | \Sinh/a (T-t)
| (2-79)

Substituting Eq.(2-79) into Eq,(2-38) yields:

L] ’ J(-i- -

x(t) = (a-x(t)) (2=-80)

Sinhy/d (T-t)

* In practice, it is not possible to have an infinite gain, therefore
more correctly, we should say that the third time varying gain be-
comes very large at t =T,

2
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The solution of Eq.(2-80) is given by:

=

ol

1

2
Coshvd T+1 Coshdg—(T-t)—l + all - (coshVGT(T-t)-l)Z .

x(t) = x(0
(©) = x(0) Coshyd T-1] |Cosh/d (T-t)+1

Sinh/A T
X
(Coshyfa ,(T-t)+1)2 (Cosh/fa (T-1)

(2-81)

Note that in Eq.(2-81)

x(0)

x(t)|t=o

O as required in any control action.

It

2,4,5, Comparison of the Salient Features of the Suboptimal Feed-

back Controller with those of the Minimum-Energy Controller.

3
Using Egs.(2-79), (2-81), (2-56), (2-58) and (2-39), the following

results are obtained from the appropriate digital computer simulationms.
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0.8 188.82 212.80
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Figure 9. Results for: o = 10.0 rad/sec , v(0-) = 0.0 newton-meter ,

B = 10.0 newton-meter , y = 0,0 rad/sec (speed-control) ,
*
u (0-) = 2.2 volts,
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Figure 10, Results for: o = 10.0 rad/sec , v(0-) = 0,0 newton-meter ,

=
u*(O-) = 24,2 volts,

- 10.0 newton-meter , y = 0.0 rad/sec (speed-control) ,
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x(t) _
(rad/sec) A
10.0
8.0 = optimal
6.0 -=—== = suboptimal
k.o
2.0
0.0 L
1.5 t(secs)
u (t)
and(
u_.(t) .
s0 50.0 ——— = optimal
———=— = Suboptimal
ko.o P
30.0
20.0 T
-~
10.0
0.0 1 -
1.5 t(secs)
Energy Consumption
T Optimal Suboptimal
(sec) (watt-secs) (Watt-secs)
0.L4 237.80 238.0
0.8 185.66 186.8L
1.6 168.8k 173.43
Figure 1l. Results for: o = 10.0 rad/sec , v(0-) = 0.0 newton-meter ,

B = 0,0 newton-meter , ¥y = - 10,0 rad/sec (acceleration) ,

*
u (0-) = 0.0 volt,
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x(t)
(rad/sec)
10.0
8.0 ———— = Optimal
6.0 - = suboptimal
k.0
2.0
0.0 -
0.0 0.5 1.0 . 1.5 t(secs)
u (%)
and A
w (%) .
5 — = OPtima.l
(vc’lts)so‘0
- = suboptimal
Lo.0
30.0
20.0
10.0
0.0
o
t(secs)
Energy Consumption
T Optimal Suboptimal
(sec) (watt-seconds) (watt-seconds)
0.4 - 345,02 346.66
0.8 322.11 330.86
1.6 333.62 376.93

Figure 12. Results for: o = 10,0 rad/sec , v(0-) = 0.0 newton-meter ,
B = 10.0 newton-meter , y = = 10.0 rad/sec (acceleration) ,
* .
u (0-) = 29.125 volts.
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2.4.6. Comparison of the Performances of the Minimum-Energy

[13]

Controller and Classical Controllers.

The performance of the minimum-energy controller is compared with
the performances of the classical controllers of the following types
under the assumption of zero armature inductance:

i. A controller with a high-gain amplifier in the forward path
which continuously operates on the error signal in order to
produce the required control signal which in turn matches the
output speed with the desired speed within a permissible error.
This is called a proportional-type speed-controller,

2. A controller with an integrating amplifier in the forward path
which continuously integrates the error signal in order to pro-
duce the required control signal which in turn matches the output
speed with the desired speed exactly. This is called an
integral-type speed-controller,

A, Proportional-Type Speed Controller.

The plant equation in terms of small variations is given hy:

w—

. fe kt : kt | 1
() + |55+ 3 r) o(t) = |z u () - —) v, (t) (2-82)
e e a e a e
where: m(t) & small variation of angular speed, of the motor from

its steady-state value
a(t)

a (8)

derivative of w(t)

e

small variation of the control voltage from its

steady-state value
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vl(t) 8 small variation of the disturbance torque from its
steady-state value

We shall study Eq.(2-82) under the following conditions:

il

l. The system is operating at steady-stqte, i.e. x(0) =a, B=0
and a change in the disturbance torque, i.e. vl(t) = By, takes
place. It is required to maintain the speed near its desired
value o,

2. The system is initially at rest, i,e, x(0) =0 and B =0,

It is required to change the speed of the vehicle from zero to
.
. Using elementary tools of the classical control theory, the following

resullts are obtained;

For speed-control,

5) -7 %
oft) = - —=x (l—-e ma ) (2-83)
J T
e ma
By -T__ %
ul(t) = K = l-e (2-84)
e mg
J
.-k ul B -T T u.-k al KB
o) B o L 2
Ta al e ma a Je ma
2., 2 2
-t T KB, B -7 T
T-——J;-l-e +-'-E— 1 +ka._l T--—g—l—ema' +
Tma ra dJ 2'rz Je'rma. Tma.
e ma
1 -ZTmaT
* 5= (l—e . (2=85)
ma,
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K = Amplifier gain which is chosen such that the speed of
response and the steady-state accuracy of the system

are acceptable,

e
o]

Tma (—3 + 77 + K T
Je e a

el K )

Il

Uy steady-state value of the control voltage at t = O,

For speed-setting.

alkma ;Tmat

o(t) = = (l—e (2-86)

. ma »

k. k. o-Tt

u, (t) = Koo l-g—+—e (2-87)

ma, ma.
21 k 2 K k ) ok & m:iaka

E == K(l-T——) T-K — (1-maT+21--%k 5 -

e ma, ma, TIDBJ Tma, maT T 3
. ms, ma,

2
k -7 T k k K 27T T
K —al 11 & 2 ma b lee O . (2-88)
72 2T3 2T3
ma, ma ma,
where:

k
<)
ma J.r

€ a

The results of the proposed comparison are summarized in Figures

13 and 14 for the cases of speed~control and speed-setting, respectively.
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x(t)
anda. ,
Egig};zg) A proportional-type 0.048 rad/sec
: controller ‘
10.0 -...______:______.7_____:_.:.,._..—.—‘—-’-—
minimum-energy steady-state
T.5F controller error
5.0
2.5
0.0 ] - o
0.0 T=0.2 t(secs)
a (t)
and ,
(uy ()r15) 4o,0 | -
(volts) minimum-energy controller
| = — / .
50.0 /f proportional-type
et r controller
10.0 -
0.0 . ; S
- 0.0 T=0.2 t(secs)
Energy Consumption (watt-seconds)
T Classical Cptimal Suboptimal
(see) Controller Controller Controller

Figure 13, Results for: o = 10.0 rad/sec , v(0-) = 0.0 newton-meter,

Bl = 10,0 newton-meter , Uy = 2k,125 volts , K = 100,0,
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x (%) )
and minimum-energy
w(t) A 0.239 rad/sejf/// controller
(rad/secl o }__ —
: 0.0 7 \\ .
s steady-state proportional-type
T.5 P error controller
P
5.0
2.5
0.0 L 1 P
u*(t) 0.0 T=0.2 secs. t(secs)
ana
'Lll(t) A
(volts) 100,01
750 proportional—type controller
50.0L _-=1
- }‘_,,,minimum-energy controller
25,00 | -
0.0 1

o
0.0 T=0,2 secs., t(secs)

Energy Consumption (watt-seconds)
T Classical Optimal Suboptimal
(sec) - Controller Controller Controller
' *
0.2 3k7h.0 359.00 359.0

. Figure 14, Results for; o = 10.0 rad/sec , v(0-) = 0.0 newton-meter ,

B = 0.0 newton-meter , u, = 0.0 volt , K = 100.0.

0

*  Assuming ul(t) is not saturated.
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B. Integral-Type Speed Controller.

In order to eliminate the steady-state error without using high
amplifier gains, an integrator can be placed in front of an amplifier
with sufficient gain. Using the elementary tools of classical control
thgory the following results are obtained:

For speed-control,

-(/,) —(
(,L)('t) = e (2"89)
\/ Toa | 2
i '(—2_)
(8/5.) X ng L -(-;E)’G . T 2
ul('b) = . > k.ma - -2—-) -(2—')6 S1n; kma -(-é—-) t
\/;ma - 2 ) kma
- r 1@ -jﬂ)t | T2
- kma —(-—2—12) e 2 . cos. kma -('233) '5 .<2"9O)
wheré:

T —= +
n e Lfa
K
kéxt)
ma, IT
e a
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x(t)
and
(w(t)+ad Integral-type controller with
(rad/ ’ k=10 different gains
= -“5“

sec) 10L%EE::ZZQE“——"—"————77’* —

, \ /

8.0 F‘ \\\ K= / //

~ K=l & _
» B o Pt minimum-energy
.0 S~ _--" controller

4.0 Tt

2.0 L.

0.0 1 ] :  E—-— 1 o
. 0.0 0.5 1.0 1.5 2.0 t(secs)
u (t) and :
(uq (t)+uy)
(v%lts) f

40.9 K50

30.0

o e e iy —— . v —

-

20.0— —”” . .
I - \mlnlmum—energy
10.0 controller
0.0 ! 1 I L I
0.0 0.5 1.0 1.5 2.0 t(seecs)
{ Energy Consumption (watt-seconds)
T Classical Optimal . Suboptimal
(sec) Controller Controller Controller
414,36 (K=10) |
1.6 392.74 (K=5) 286.38 425,00
' 368.00 (K=1)

Figure 15. Results for; o) = 10 rad/sec , B; = 10.0 newton-meter ,

Yo

= 24,125 volts,




T

For speed-sefting.

7
Koy Tm Tm : Tm -(EE t
ul(t) = = |sin e + kma-'ﬁ-) cos 9 - E—)e
Tm 2
mal ma |2
sin kma-‘é—) t+e—k—§-—) e cos kma-'g- t+ 0O
(2-92)
where:
2
Tm
. k L
8 4 Tan-l“ ma_ 2

- The results of the proposed comparison are summarized in Figures
15 and 16 for the cases of speed-control and speed-setting respectively.

2.4.7. Comparisons of the Minimum-Energy and Suboptimal Solutions

with the Exact Optimal Solution.

In view of the above results, we conclude that the performances of
the minimum-energy and suboptimal controllers show a marked superiority
over the performance of so-called classical controllers during the

acceleration (and deceleration) of the vehicle, The proposed comparison



x(t) and
Gead a0
(rad/sec A

10.0
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Integral-type controller for different

K=50,0

K=10.0

K=5.0

amplifier gains

/

7 15.‘
/
5.0 ﬁi__——-minimum-energy
/ controller
2.5 //
0.C - L L
0.0 1.0 2.0 3.0 t(secs)
u(t) and
“-l(-t) A K—"—SO.O
(volts)
O Integral-type controller for different
amplifier gains
50.0 |-
Lo.0
30.0
20,0
10.0 rminimumrehergy controller
0.0 ae=Tm 7" | 1 . -
© 0.0 1.0 2.0 3.0 t(secs)
Energy Consumption (watt-seconds)
T Classical Optimal Suboptimal
(see) Controller Controller Controller
966.0 (K=50)
3.2 501,02 (K=10) 163.55 167.43
411,37 (K=5)
Figure 16. Results for: a, = 10 rad/sec , By = 0.0 newton-meter.

L
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is carried out oﬁiy for the case of acceleration, which is obviously
‘the most important control action, as follows:
~3tep 1.

Using the results of Sections 2.3.1 and 2.3.2, the system trajec-
tories are determined for the bang-bang and singular controls and shown
in ﬁigure 17, It is clear from the observation of Figure 17 that the
singular control solution can not enter into the optimal solution.
Hence, in this particular control action, the bang-bang solution is the
exact optimal solution for the basic optimization problem,

Step-Z.

Using the results of Section 2.3.1, thé system speed and control
trajectories together with the energy-consumption are determined and
shown in Figure 18.

Step 3.

The exact plant equations, i.e. Egs.(2-1) and (2-2), are integrated
using the minimum-energy and suboptimal control laws, i,e. Egs.(2-70)
~and (2-79) respectively, over the time interval (0,T) which is found
in Step 2. The sjrstem speed and control tra.jectéries are)also shown in

Figure 18 for reasons of comparison,
The physical parameters used in the computations are the same as

given before and it has been assumed that:

o = 10.0 rad/sec
B =0.0 n-m
U = 50.0 volts.

From the computer results it has been found that the energy-consumption

of the'banngang controller is about 15% higher than that of the minimum-
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system trajectory
for u(t) =U

R
la—switching boundary
Vv for u(t) =0

singular control
switching boundary

—

|
|
]
|

— = : - " -
-12 N =k 0 b 8 y
N I 1
~
\\ |
~
< v
~ |
= -20 |
~ _
~ |
~
~ |
~
“ '
~
, ~ |
switching boundary E S 1
for u(t) =U -ko H- i
-60 4
Figure 17. The Determination of the 0ptimal Solution During the
Acceleration,




(rad/sec)
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= Control Iaw Given by Eq.(2-70) is

Applied to the Exact Plant
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Eq.(2-79) is Applied to the Exact

Plant Equationsg
L

1 |
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FPigure 18.
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0.050 0.100 0.150 0.200 t(secs)
] L | ~I!
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troller
0.225 400,0 3Lk L2 3L43.85° {

Suboptimal Solutions.

Comparison of Bang-Bang Solution with Minimum-Energy and
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energy (or suboptimal) controller under the conditions specified above,
If, however, U = k5 volts, i.e. almost the average value of minimum-

enefgy control law in (0,T), the following results are obtained:

ts = 0,220 second
T = 0.225 second
E = 334.0 which is about 3% less than that consumed by the

minimum-energy controller,

2.4.8, Remarks on the Approximate Solution.

A careful study of the above results reveals that certain consid-
erations must be taken into account in the selection of T in order to
obtain a meanihgful solution to this optimization problem, For example,
during the forward motion of the vehicle at constant speed, whenever a
disturbance comes into the system, the allowable variation of the speed
from the desired value o may not be permitted to exceed certain
limits., This is, bécause, the distance moved by the vehicle in (0,T)
depends on the variation of speed during the controlling period., There-
fore, it may be required to obﬁain the desired speed as soon as
possible, For the case of speed-setting, when T is small, the control
energy consumption is large during the acceleration. And there is more
electric energy available to be fed back if T is chosen small, The
pest way of choosing T requires the_study of curves of general form
as shown in Figure 19, where a possible choice of T denoted by T*_ is
made which yields a fést response characteristic with good energy con-
sumption, Note that once the selection of T is made, the vehicle's
acceleration or deceleration times to any deéired épeed is fixed,

However, as shown in Figure 19, the energy consumption is different
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for any possible combinations between « and p. Alternatively we

éan choose T as the.time it takes to make an incremental change in
the vehicle speed and the desired speed is reached after several con-
trolling actions each of which lasts T seconds. In either case the
performance of the controller is optimal.

In the solution of the approximate optimization problem, we have
assumed that u%(t) is not constrained in magnitude. As a result of
this approximation'a closed form expression is obtained for u*(t).

’ However, as seen from the computer results thé_optimal solution may
require u*(t) to exceed 1ts maximum permissible valﬁe or to become
negative in any given control action under certain conditions,

' If the theoretical results show u%(t) <0 in 0<t<T, then'it
is assumed that the desired speed is obtained at a time greater than
the prespecified response time T provided that u%(t) = 0 whenever
u*(t) < 0 and mechanical brakes are used until xl(T) = . If the
theoretical results show u*(t) 2 U, then it is assumed that the de-
sired speed is obtained at a time which is greater than the prescribed

response time T, provided that u*(t) = U whenever uﬁ(t) 2 U and
1
Sinn/d (T-t)

the timefvarying gain ( ) is bounded by

—
| Sinh\/zi_g )
where:
g is determined on the basis of following considerations:
| 1, The physical limitation of the appropriate analog device to
generate exfremely high gains,
2. The allowable error on the desired speed.

It can be proven easily that even under the above conditions the actual

values of the energy consumption of the minimum-energy controller do not
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deviate appreciably from their calculated values..

TFrom the results of Section 2.4.2 it is known that if T is
selected appropriately, then the steady-state value of u(t)' does
not differ considerably from the optimal solution u*(t)l .tzgince,
in practice the maximum voltage needed for a control syst:;Tis deter-
miﬁed by using the steady-state form of the dynamical equations under
rated speed and load conditions, it can be concluded that the maximum
value of the control voltage for a particular system may be best deter-

mined from the computer simulation results of the form shown in

Section 2.k4k,2.
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Case 1, Speed-control,

increase o (or increase B

fix B fix a)
Positive I. Motor Action
Energy
A
B
Contro;
Energy > T
¥ II., Generator Action
Negabive 1ng§;age a (or 1n§§§as§)5
Lnergy
I
Linear
Region
Case 2, Speed-getting.
I. Motor Action
-EEEEEEEXE increase ¢
Energy fix B
A
E
Control
o T
Energy
é_ II. Generator Action
Negative
Energy

Figure 19. The Variation of Control Energy Consumption with
' Different Terminal Times,
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III. THE STOCHASTIC OPTIMIZATION PROBLEM

3.1. Introduction,

In Chapter II we have assumed that the disturbance torque remains

constant during the controlling interval, i.e. (0,T). In reality,
the- terrain profile encountered by the vehicle varies in a random
fashion., Therefore, the disturbance torque is best described.by a
stochastic process, Other random disturbances acting on the system
such as terrain irregularities and wind gustslare assumed to be negligible,
In this chapter we shall formulate and solve a stochastic optimization
problem originated from the approximate optimization problem studied in
Section 2.4, This approach has the following motivation;
In Chapter II we have shown that the solution of the approximate opti-
mization problem yields almost identical performance éharacteristics*
as given by the exact optimal solution under the same conditions.
Hence, if the stbchastic optimizatioﬁ.prdblem is originated from the
approximate optimization problem, it will certainly have the following
advanfages:

1. The ensuing analysis is mathematically tractable,

2. The desired results are easily obtained and fully justified by

using a reasonably small amount of computer time.

%  The comparison is carried out only for the case of acceleration,
since it is by far the most energy consuming operation,
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3.2. Formulation of the Stochastic Optimization Problem,

+ J::ia)u(t) (3-1)
3,(8) = = () x5(8) + §,(8) (3-2)
%y (%) = 0 (3-3)
where:

x (8) & x(t) - a
and x(t) is the speed of the vehicle,

xz(t) £a stationary Gaussian, exponentially correlated-

. . ; 2 . .
noilse process having zero mean, variance o, and correlation time
1
(L)

process

. It can be shown that x,(t) process known as Ornsteln-Uhlenbeck
[1k,15,16]

satisfies the Langevin equation given by Eq.(3-2).
And §w(t) is a stationary Gaussian, white-noise process having zero
mean and spectral density Zab ccz,

3(t) 4 ¥nown disturbance torque, i.e. (t) B in the

determlnlstlc optimization problem studied in Section 2.4,
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Performance Index:

L0 (1) -k u(t) (x. (t) +
- walz(T) +I{u ()~k u( :z( 1(%) oc)} dt (31
0

a

where:

T 1is fixed, xl(T) is free and u(t) is unconstrained.

FW A welghting factor which is artificially introduced here

| in order to facilitate the use of Bellman's dynamic programming

techﬁiquegl7]
The set of boundary conditions to be'satisfied by the state vector

x, (t)
X = xz(t) for the three cases of control action are given below:

x5(t)

Case 1. Speed-control.

Xl(O) =0 2 Xl(T) =0
XZ(O) = 0 s XZ(T) = Free (3-5)
x3(0-) £x3(0) =B, x,(T) =B
Case 2. Speed-éetting.
x,(0) =x(0) =&, % (T) =0
xz(O) =0 , xg(T) = Free (3-6)

i
w

X3:(0—) = X3(O) =B P X3(t) =
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Case 3., BSpeed-control and Speed-setting,

x,(0) = x(0) - ,  x,(T) = 0
XZ(O) =0 s XZ(T) = Free (3-7).
x3(0-) £%3(0) =B,  x(T) =p

3.3. Solution of the Stochastic Optimization Problem,

Define the optimal expected value function for this optimization

problem as follows:

: T2 (r)- x +
S(bx) - Min . wai(t[') +f{u () kb:('r)( 1(7) a)}d'r
A a

u(t) g(t)
K (3-8)
where:
e(*) a Expectation operator,
Applying the standard procedure[l7’ 18,19 to Eq.(3-8) yields:
| k
* ,
u (t) =(§k3) (2 (8)+Q) - g}-)sxl(t,zs) (3-9)

e

where:

s = 2
Xl(t,z) "% 8(t,x)

and S_ (t,x) 1is obtained by solving the following Bellman-Hamilton-
1 ’ '
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Jacobl equation:

5, (6,%) (£ )(x, (6)+0) %= a(xy ()+a) sxl<t,5>-{1;-)s§l(t,_}g>-(%j 5, (15, (6,%)-

l;jljx3(t) le(t,zs)-(wo)xz(t)sxz(t,_:_c_)+(moccz) S, (08 = 0 (3:30)

with the boundary condition: °

8(T,x) = Fx (1)

(3-11)
where:
a,b,c are defined as before and
5, (t,x) = 2 §(t,x)
g WX = 3p PILX
S (t,x) = == 8(t,x)
x =) T o, ’=
2 2
5, (5,5) = s2=—5(t,%) .
272 22
The solution of Eq.(3-10) is obtained as follows:
Let:
5 (t,x) :3% G, P(6) x) + 3 x + 2(t) - (3-12)
where:
P(t) 4 A 3 x 3 symmetric matrix

ne

G

Inner product of two vectors,
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g,é A raw vector with two components

r(t) 2 A scalar function.
Determining S, (t,x), le(t,g), sz(t,g), szxz(t,ﬁ) from Eq.(3-12)
and substituting them into Eq.(3-10), collecting the coefficients of

equal powers of x's and equating them to zero yields the following

equations:

B, () - vBE (8) - 28, (t) - ¢ = 0 (3-13)
Pll(T) = 2F,

By (8)-(a+bP (£)+ o)) Py (8) -(-}'—E)Pll(t) -0 (3-14)

BT =0

1513(t)-<a+bPll(t))Pl3(t)-(%; P (8) = 0 T Ge)
Pl3('I') = ov

B (8)-(20) P22<t>-m=§2<t>-(§: P p(8) = 0 (3-16)
1__’22(“3) =0

B0y (0)- 01, (8) P H) Gp(ebe gD 0 G

P‘23(T) =0 |



| [t
B, (4)- bPi3(t) -(%;)Pls(t) =0

Pl3(T) =0
dlgt)-(a+bpll(t)) a; ($)-(aa) Ppq(t) - oe = 0

%w»awgw{%+bagw)%w%wwrﬁw)=o

q,(T) = 0
é3(t)— act Pls(t)- bP 5 (6) q (%) -.%; q; () =0
95(T) = 0
r(t) - %)qlz(t)-(aa)_ql (%) - % o’ + (“occz)Pzz(t) _0
r(T) =0
Note that:

(3-18)

(3-19)

(3-20)

(3—21)'

(3-22)

S, (53) = P1a(8) 1 (8) + P1o(®) %(8) + By () 15(8) + @y(8)  (3-23)

where:
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Pll(t), Plz(t), Pl3(t) and qi(t) can be determined in
this case by solving analytically the Egs.(3-13), (3-1k4), (3-15) and

(3-19). The results are:

Pllgt) - _{% ‘_ (COSh\/d—- (T-'t) }} (3-24)

Sinh/d (T-t)
Plz(t) =(m} awo+d+\/c—1_(a+wo)- (e

Ja

b

- O(T-t)

- Coshy (T-t) | {5 oo
Sinhyd (T-t) ) (.3 2

Note that abz = d does not represent a singularity in Eq.(3-25) since
11? Plz(t) exists.
db -q

P (%) = -( 1 ){mﬁ (T-t) -

J b Sinhfd (T-t) 'i'(%sm/f‘l- (T-t)-lﬁ (3-26)
e . - |

7

| - Oc\/— 8 e
gy (%) =(b Sinh\/a_g(TTt) T Sinh/a (T-t) - Cosh/fa (¢-t) + 1) (3-27)
where{

d é az - be

and the operation 1lim g - ® has been performed on the expressions ob=-
tained from the solution of Egs.(3-13), (3-14), (3-15) and (3-19).

Substituting Eq.(3-23) into Eq.(3-9) yields:



e—()_‘_

k,\/d\ K

t
NN
e

(1-00shv5f(T-t))X(t) .

t
.
Sinh/d (T-t) 2 )x3( )+

2
e

% ;(kb kta

= Cl + @)X(t) +

kt a )

1-Co hJE- T-t) . Ky
ZJegbVE- s ( ))x3(t) -( Z_d)) (amb+d) +JE.(a+¢b)

SithET(T-t) ZJegb(ab

. (Tt
e o) Coshyd (T-t)
Sinhyd (T-t)

k,ﬁ)

Sl e

%)+ Sinhy3 (T-t)

wheré:
x(t) = xl(t) ra .

The optimal expected value of the control energy is obtained by
solving Egs.(3=13) through (3-22) in the computer and evaluating the

following expression:

1
s(t,g)‘ = {5 &, P(t)x+g x + r(t)] l . (3-29)
' t=0 _ t=0
Note, however, that in actual practice the state variables x,(t)
and x3(t) can not be measured separatelyf Hence the implementation
of the control law, i.e. Eq.(3-28), can not be accomplished unless a

[20]

Kalman filter is used to estimate the state vector x from the

measurable states. This follows from the concept of separation

¥ On the other hand it is possible to measure the disturbance torque
~ v(t) which is the sum of state variables xz(t) and x3(t).
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[21, 22] which allows the estimation of the state vector x
[19]

principle
"and the computation of the control law to be performed independently

We shall study this so-called estimation and control problem in

more detail later in this chapter.

3,4, Salient Features of the Stochastic Optimization Problem,

Let:
x(t) = x4(%) + x(t) (3-30)
where;
xd(t) 8 peterministic speed or e(x(t)).
x(t) A xl(t) + O = Stochastic speed
%(t) = Speed dispersion. Note that e(x(t)) = 0.
Substituting Eq.(3-30) into Egs.(3-1), (3-2) and (3-3) yields:
;(ﬁ) _ _\/E(COSh\/a (T-t));(t) - :TJ;- + __.....:.L..é._...... {w0+ a ﬂ/{ (a,+0_)o)
Sinhy3 (T-t) e J_(up-)
= (T=6)
(e 0 - COSh\/d._ (T-t))} ;c' (t) (3_31)
Sinhfd (T-t) 2
() = = ay X,(t) + & (6) (3-32)
or in matrix form:
~(3-33)

3(5) = A 2(8) + 3(v)
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where:
(Ret) )
z(t) = _
sz(tl
™ o)
(%) 4
%)

and A is the coefficient matrix of Eqs.(3-31) and (3-32).

Let:

ay,(8) @y, (t)
a(t) = e(z(t)z' (1)) 2 (3-34)
a,(t) (1)

Then it is known that the variance matrix Q satisfies the following

differential equation:

G(t) = Aa(t) + Q(t) AT + y(t) ¥ (%) | (3-35)

where;

superscript T denotes a matrix transpose, In this case:
Q{0) = A 2 x 2 zero matrix, (3-36)

The solution of Eq.(3-35) yields the following equations:



7

Sinh/fd (T-t) e (g =)

'Qll(t)' _ 2\/(; Cosh/d (T-t))Qll(t) - ?y_(l N 1 {(wo+d)+\/<_i—(a+wo)

-~y (T-%)

e - Cosh/a (T—t))} .
Sinmfd (T-t) )le( )

(3-37)

le(t) _ _(mo +\/alCosh\/E (T-‘Q))le(t) - %[;(l + ( 12' {(amo+d)+ﬁ(a+mo) ,

Sinky/fd (T-t) iy -4)
e-wo(T-t) - Cosh\/«i— (T—’Q)} Qo (%)
Sinnf@ (T-t) 2z
(3-38)
Q,(0) =0
Gp(8) = = 2 afgy(t) + 2000, (3-39)
Let
R(t) & e(@(t)) (3-10)

where:
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B(E) = (t) - u(t) (3-41)

.X.. Ax.

u (t) is given by Eq.(3-28) and ud(t) is the solution of the deter=-
ministic optimization problem, i.e., Eq.(2-70).

Hence:

kt a
ZJeb

k, kKa

) W -l w3 -

k,a
R(t)=.ék2+.é§,_6_
e

k& )

2d b
e

(Cosh\/é_ (T-t)
Sinhfd (T-t)
Cosh\/;l_ (T-t)) O(T-t)
Sinh/@ (T-t)/]\| 27 Zb(w -d)

—Cosh\/c; (T-tl\)

((aco +d)+\/— (a.+wo){ Sj_nh\/dT (7t) J

, k o | ~o(T®) va i
. +% N e - Coshvd (T—t}\)
Q1(t) 2Jezb(w02-d) (0 I (a+w0){ Sink/d (T-t) J
2wt
(l—e 2ay, ) (3-42)

Figures 20 and 21 show the Qll(t)' vs time, R(t) vs time rela=-

tionships for any control action under the following conditions:

S 1. -]-'-) = 1,0 second,
w .
0
o, = 1.0 newton-meter,
2. (l—) = 1.0 second,
®
0
o = 10.0 newton-meter,
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= is decreased the ordinates of
‘ 0
' Qll(t) vs time, R(t) vs time curves decrease for the same times but

When Gc is kept constant and

their general forms remain the same as shown in Figures 20 and 21,
The two most interesting characteristics from the observation of
Figures 20 and 21 are:

i. The speed variance Qll(t) becomes very small in the interval

E <t < T. Where:

1

Sinhfd (T-t))" Sinh/a £ '

t is the time at which lim
€ t-T

And Qll(T) = 0 as expected,
2. The control variance .R(t) is bounded at t = T. This is be-

cause in Eq.(3-28), the error term (a~x(t)) which is a stochastic

process decreases to zero fast enough as 1lim 1 ) = ® S0
% &1 | sinnVa (T-t%)
that u (t) is bounded at t = T, It can be shown easily that if

xz(t) is assumed to be a stationary Gaussian white-noise with zero mean,
the corresponding u*(t) and hence R(t) become unbounded at t = T,
The study of statistical properties of the nature shown in Figures

20 and 21 may prove to be invaluable assets in prédicting the behaviour
of the system in a pfactical situation, TFor example it may be important
to be able to answer the questions of the following types:

1, How does the variance of the speed vary in 0 <t < T for
different terrain models and what values does it take in te <t <T?

2. What is the best value of te so that a compromise between Q(tj

and the overall energy consumption is reached?
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From Eq.(3-28):

k,/d

2J Db
e

k

K, ke £ .
5 __7§)P2uy+;§t)

uso(t) =(—2—- + —ﬁ-—ﬁ)x(t) +

+

o)

e

o - x(tj )
Sinh/a (T-t)

(3-43)

Equation (3-43) is obtained from Eq.(3-28) by assuming that:

(14mav3(m¢4 = 1inm (+) = 0
sinhfd (T-t) | t-T

-wb(T—t)

- cosn/a (T-t>) = 1im {2} = - (,34)

, e
aa%rdﬁvﬁr(a+ab)( Stande (1t) Lin

The validity of the above assumptions will be justified in the next

section.

3.5. A Monte Carlo Simulation,

Re-write the exact plant equations as follows:

t () = (fé)x () - fé)a + fﬁJx (4) | =[x, (t) + x (t)) (3-4k)

1 *’Je 1 73 T i 'Je 2 3

x,(8) = - (a) x,(t) + § (%) | (3-45)

() = 0 (3-46)

%, () = - ;E)(xl(t) +al - zéqxu(t) + %—)u(t) (3-47)
&, 8, a8,
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where:
xl(t), xg(t), xs(t) are as defined in Section 3.2.
Xu(t) £ prmature current.

The Eqs.(3-44) through (3-47) which characterize the actual
systvem behaviour in response to a specific control law u*(t) are
studied by using the following Monte Carlo Simulation Algorithm:

(i) Assume the values of @y
(ii) Generate the Ornstein~-Unlenmbeck (0-U) process using the

and o,
C

equation given in reference [16]:

H

: -2 t, .~-t. -wn(t. =T,
x (t, .) =N, .0 |l-e 20{*1417%1) + x(t.)e 20(%4,27%4)
2 i+l i+l e 2V 1
(3-48)
wheres
Ni+l = output of a Gaussian random number generator with zero

mean and standard deviation with a value one. A typical
sample function of the O0-U process and its corresponding
terrain profile is shown in Figure 22.

(iii)‘ Use a specific control law to integrate Eqgs.(3-blt), (3-u6),
(3=47) over (0,T) to determine xl(t), xz(t), x3(t), Xh(t)
and. u(t). |

(iv) Using the expression:
T

E = [u(t) x, () at - (3-49)
-0
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determine the energy consumption.

(v) Repeat the steps (i) through (iv) over (0,T) for the next
sample function of the O0-u process of the same statistical
properties,

The following control laws are used:

Equation (3-28).
Casge 2, |

Equation (3-43).
Case'3.

Equation (2-70).
Where:

B 1is replaced by a stochastic process, i.e. v(t) = xz(t) + x3(t).

Note that the suboptimal control law for Case 3 is identical to Eq.
(3~43). Figures 23 through 26 display the results for the first sample
function, The results for other sample functions differ slightly since
Xz(t) is a random process;

The abrupt variation of u*(t) as t - T in some cases is due to
a - x(t)
Sinh/d (T-t)

effect of term which appears in the expression for

u*(t). Also note that the performance charécteristics in Figures 23
through 26 indicate that, in the absence of observation noise, the
control law of Case 3 yilelds resulbts which are extremely close to the |
results yielded by the optimal solution for any sample function of the
(0-U) process in (0,T). This is important because in practice we can
easily implement the control law given for Case 3 as opposed Lo that

given for Case 1, The control law given for Case 2 is the suboptimal
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TABLE 1

‘Results of the Monte Carlo Simulation for Speed-setting:

x(0) = 0 rad/sec , x(T) = 10.0 rad/sec , X3(t) = 0.0 newton-meter.

Energy Consumption Energy Consumption Energy Consumption
- for Case 1 for Case 2 for Case 3
oample
Number (l"—)=1.o (-l-(;) 1.0 | (l—) -1.0 (i—) ~1.0 (}—) ~1.0 (-1-) 1.0
(l)o w . (J)O (DO (1)0 (,00
¢ =1,0 g =10,0 o =1.0 o =10.0 o =1.0 c =10.0
(o] (o] C C C [#1
1 37h.77 | 375.09 37h.bo | 3748k 37h.76 | 375.05
2 |37h.64 | 375.05 374.26 | 375.09 | 374.62 | 375.50
3 37477 | 374.63 374.39 | 37h.k2 374,77 | 37478
i 374,81 | 375.14 37 b | 37,77 374.81 | 375.17
5 37k.9% | 376,61 374.59 | 376.49 37%.95 | 376.72
6 374.86 | 375.59 374,51 | 375.37 374,87 | 375.66
T 374,83 376.29 37447 376.12 374.82 376.26
8 374.84 | 375.36 7L | 37h.Ok 374,84 | 375.37
9 374,89 376.86 374.53 376.82 374,90 377.05
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TABLE 2

Results of the Monte Carlo Simulation for Speed-control:

x(0) = x(T) = 10.0 rad/sec , XS(t) = 10.0 newton-meter,

Sample

Fnergy Consumption
for Case 1

Energy Consumption
for Case 2

Fnergy Consumption
for Case 3

Number

%6] -1.0 (}036) 1.0 {'la%) 1.0 (01-35) 1.0 (ig) -1.0 %ﬁ -1.0

o, =1.0 | o =10.0| o =1.0 o =10.0| o =1.0| o, =10.4
1 53.70 54.56 53 .6k 55.56 53.697 54,591
2 53.69 55.751 53.709 57.8L41 53.687 55.87k4
3 53.68 54,093 53.602 54,222 53.684 54,110
L 53.66 53.850 53.51k4 53.717 53.668 53.876
5 53.724 54,572 53.500 53.818 53.727 5k, Glily
6 53.667 53.797 53.470 53.283 53.668 53.820
7 53.777 55.8L0 53.710 56.762 53.772 55.855
8 53.665 53.797 53.50 53.600 53.665 53.780
9 53.640 54,530 53.39 53.670 53 .6l S5k 6l
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control law for.both Case 1 and Case 3 and is the simplest arnd most
'economical_to implemént. Tables 1 andvz show that the control energy
consumption in a given control action for each case does not differ
much from one sample function to another which has the same statistical
properties. Hence the expected control energy consumption may be deter-
minéd by computing the arithmetic average of the energy consumptions of

all sample functions used in & particular experiment.

3.6. Estimation and Control.

In practice it is never possible to mecasure the state vector x
exactly, Let us assume that x can be measured to within an additive

error which can be modeled asba Gaussian white noise with zero mean:
y=hx+1 : (3-50)

From Egs.(3-1), (3-2), (3-50) and assumption of separating estimation

and control we determine the following Kalman-Filter equations&lS]

x(t)

A R(t) + B u(t) + K(t) N} [y-hk] (3-51)

K(t) = & K(t) + K(t) AT + DMgTT - (K (6)nT] N [nK(t) ]
" (3-52)

where:
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(%, K5
Je Jera
S e
L ° 0
R ) B
Tr 0 0
e a
B é 0 0 o
L _
5 A
F = O 1 0
o 0 o
-

E[B(t)ﬂT(T)] QNO 5(t=7)

A

MO ) (t--r)
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T

K(t) =X (t) =A3x3 matrix,

1

ne>

h = A rectangular matrix,

There are two cases of interest:

Case 1,
y=yi(t) =1 0 0] | x,(t)| + n(¢) (3-53)
x(8)
wheres

x(t) ='Xl(‘b) + Q

ﬂl(t) and %w(t) are uncorrelated  since ﬂl(t) evolves completely
independent of Ew(t).

Case 2.
r~ - = — — - r -— B
v, (t) 1L o0 o |x(t) M (6) |
y = = Xz(t) + (3—51+)
_yz(t)_J _O * l..J -_.,)_{3(1;)_, L’na(tl
where:

ﬂl(t), nz(t) and. éw(t) are uncorrelated, since x(t) and
v(t) are measured by two independent devices and ﬂl(t) and ﬂz(t)
evolve completely independent of each other and %w(t).
It is known that the optimal expected value of the control energy

is given by:

seB)| =G @O Draker®l G5
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P(t) and g are known from Egs.(3-13) through (3-21). Only the
equation for r(t) changes:

For Case 1,
2(6) - [S)al- (amn)ay (4)- (2] ) —2;3;—6 ((kil(t))Pll(t)n» 2(1s, 1 (£) ()

(80 20y, (80K 5 (80) Py (8)+ 200, (6)iy (80) By )+ (5 ()

Pzz(t) + (k32_3(t)) P33(t)} =0 ' (3-56)
r(T) =0
where:

k's are the elements of K matrix.

For Case 2.

1

3t -|)ot- (e, (0)- § (6 o.5ﬁ(ﬁi‘—x) (12 (6) 4 ==—

2
- )(klz(w i, () )

1 1
P (&) z.o«-ﬁa) <1~_:ll<t>klz<t>>+(ﬁ-o—2 <k12(t)+kl3(t>>(kzz(t>+k23<t>>)

1

;%.2.) (1, (6436 5 (8)) (i ()4, (t)))

P, (t)+ 2-0((;%]-J (e (8)kp5(8))+

;2—1-)&12mk13<t>>+(n—i;

Pl3(t)+ 2.0( (kzz(t)+k23(t))(k23(t)+k33(t))) B

1 11,2
P23.(‘t)+ ((?ﬁ) (2 (1)) + 551') Ky 5(6) +
1

{---)(k23(t)+k33(t))2)P33(t) =0 : (3-57)

—1-)(1«:22(1:)+k23<t>>2) P22<t>+(

)

Doz



96

r(T) = 0.
Iet:
0 1 1
K(0) = 1 1o 1
1 1 10

For Case 1.

e[N(E) T (r)] = 0y 6(t=7)
and Dy = 1.0

For Case 2.

0L
eln(e) i (ml = | 3(t=1)
0 no2
and
nol = 1,0
1’102 = 1.0

Equation (3-55) is then evaluated in the usual manner and the results
are summarized in Table 3 where'the results obta;ned from the exact

solution are also shown for the sake of comparison,
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Table 3.
‘ Results for: T = 0,2 second.
Energy Energy Energy
Consumption Consumption Consumption
Control for Exact for Case 1 for Case 2
Action Measuremegts
) =z0 ) =10 | (& =10 [(=1.0 | [ =1.9 [&]-1.0
0 0 “o 0 “o o)
o =1,0j0 =10.0| ¢ =l.,0| o =10.0 o =1,00 o =10.0
c c c c c c
x(0)=0 .
x(T)=10.,0 358.95 | 359.79 | 359.0 360.16 | 359.0 | 360.53
xs(t)E0.0
x(0)=x(1)=10.0| 5 203l s53.638| s52.842 54,01 52.8L| 54,37
xg(t)El0.0

The results for large 'T’s or for different measurement noise

levels have the same general naturelas shown in Table 3,

In conclusion,

from this study, it is clear that it is totally unnecessary to carry

out a Monte Carlo Simulation to investigate the behaviour of the exact

plant equations and to determine the energy consumption under the action

* . .
of u (t) which operates on the estimated states.



98

IV. EXTENSIONS TQ SPECIFIC OPTIMIZATION PROBIEMS

L.1., Introduction,

In this chapter we shall formulate and solve the following opti-

mization problems by using some of the principal results of Chapter II:

1. The minimum-energy control of electric propulsion vehicles
powered by a-c induction motors,

2. The minimum-energy control of electric propulsion vehicles
powered by d—é traction motors.
We shall not consider the stochastic control aspects of these problems.
This is because the results of Chapter III show clearly that the
minimum-energy control law obtained from the study of a deterministic
linear model will perform almost in an optimal fashion under the actual

environmental conditions.

L,2, PFormulation of Problem 1.

Plant:
f : k
x(t) = - —J_E)x(t) - %‘—)v(t) + :I-E)u(t) (4-1)
e e .e
where:

x(t), x(t), v(t), fe,'Je are as defined in Section 2.b

Ky

Motor torque constant, [newton-meter/rad/sec]
u(t) £ s1ip-frequency; control, [rad/sec].
In the derivation of Eq.(hk-1) it has been assumed that the torque of a

3=-phase squirrel-cage inductioﬁ motor is controlled by controlling its
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slip frequency while keepihg the ratip of the stator voltage to stator
frequency constant%[23’Zu’25’26’27’28’29’30’31’32] Under these condi-
tions the induction motor behaves like a separately excited and
armature-controlled d-c motorgu7] Note that, without this assumption
the solution of a well-formulated minimum-energy control problem for
an é—c drive system is a very difficult task. This ié because the
mechanical and electrical parts of such a control system are described
by nonlinear differential equations and also the corresponding minimum-
energy control problem, in general, is associated with many optimal
‘brajéctories depending on the number of ;possible combinations between
the desired speed and disturbance torgue entéring into the systen.
At‘present there exists no sétisfactory theoretical approach in -the

determination of control law for such a control problen,

Performance Index:

Performance index is selected to be:

T
E =fﬁ2(t) at . (4-2)
0 :

Tne integrand of Eq.(h-z) represents the rotor copper losses since the
rotor rms current is linearly proportional to the slip-frequency over a
small region about zero slip-frequency._ Note that zero to maximum
positive or negaiive torque can be obtained by varying the slip—frequené

cy between zero and some small positive value or between zero and some

*  Except at very low stator frequencies,
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T

small negative value respectively. The minimization of f uz(t) at
means a reduction iﬁ the rotor copper energy losses while satisfying a
given load condition. In other words, most of the energy supplied to
the machine in the motoring mode is converted into the desired mechani-
cal energy with very little rotor losses or most of the mechanical
enefgy avallable at the motor shaft is converted into electric energy
in the generating mode and transferred back to the battery with very
little rotor losses.

The set of boundary conditions to be satisfied by the state
variable 'x(t) are the same as given in Section 2.k.

In practice u(t) is forced to satisfy the following inequality

constraint:

~Usu(t) <U . | (4-3)
4

This 1s because whenever [u(t)] > U the motor torque is no longer
linearly proportional to wu(t) and the motor actually generates less
torque than its maximum rated torque which is obtained when |u(t)| = U.
For mathematical tractability and for reasons of simplicity of the
implementation of the resulting optimal solution let us assume that
u(t) is unconstrained,

4,2,1. Solution of Problem 1.

Using the same approach as outlined in Section 2.4.1 under the
assumption of no constraints on u(t), the following results are

obtained:
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A. Open-Loop Solution.

The optimal'state trajectory x(tj is determined to be:

(t) = We™® ——fj-T-—Sinh aty+ ade®Y 4|22 ° Sinh at
L) =¥ “\STnh at € T\Simh aT a
-aT
1 at 1 (1-e™® ).,
- B -T; (l—e{ ) - 'a—tj_e-(m)Slnh at (’-I-—h-)
where:
L (fé)
T \7
e
Note that in Eq.(k-k)
. T
x(t) =0 at t = 5 (=5)

The lagrange multiplier function A(t) is determined to be:

ét ae-aT l{l—e-aT B
ME) =e Y(b Sinh aT)"E\Sinh aT a“*i (4-6)
where:
2
5 i(ﬁ
= 2T

*
And the optimal control function u (t) is determined to De:
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. a(t_T) cat_ a(t-T) at La(t-T)
wit) = -y ZbJ ST aT ZbJ ST T y b ST T |°
(4-7)

Equations (4-5), (L-6) and (L4~7) hold for the general control action

of speed-control and speed setting. However

it v(0-) # v(0)

, in the above equations;

v(T) =B, Yy =0, speed-control action results and

if v(0-) =v(0) =v(T) =8, vy #0, speed-setting action results.

B. Closed=-Loop Solution.

The feedback control-law is determined to be:

of 1 a(T-t) ' 1

C. A Suboptimal Control Iaw.

For all control actions of interest:

ea(T-t)_l _
0 < eZa e 0 < 0.5 .

For T suf f1c1ently small we can assume that;

ea(T-t)-l )4.
ezaZT-ti_l = 0.5 (4-9)

Substituting Eq.(4=9) into Eq.(i-8) yields:

f E Es
1 t
a(s) = ﬁ)aw;}% T @) (1-10)
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It can be easily shown that uso(t) yields x(T) = a for any control

action of interest. When the time-varying gain in Eq.(4-10) is made

Hl

zero for t = T, then, =x{t) =O0.

L,2.2. Salient Features of the Solution of Problem 1.

Salient features of the optimal and suboptimal solutions are ob-
tained by simulating the appropriate equations on the digital computer.
The results are shown in Figures 27 through 30, For t = T, it has
been assumed that.all time varying gains are made zero by means of an
auxiliary controller. The following system parameters are used:

J = 1l.42 newton-meter/rad/sec2
f = 0.825 newton-meter/rad/sec
k, = 3.25 newton-meter/rad/sec.

The considerations necessary for the best choice of T are exactly

the same as given in Section 2.4.8.

4,3, Pormulabtion of Problem 2.

Plant;
T m
P (t) = -8 _af) 2 i _
Xl(u) = -5 )xl(t) |5 )Xz(t) -(J )v(t) (4-11)
e e e
. I'e maf l .
xz(t) = - zr)xz(t) _(I__)Xz(t) xl(t) + Zf)u(t) ,(h-lz)
e e e
where:
m o 4 Mutual inductance between the field and armature
circuits, [henry]
2 £ sum of the field and armature inductances, [henry]
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= optimal
= suboptimal
I l . -
0.0 0,0 - 1.0 2.0 3.0 t(secs)
u (t) and A
u t
sol ) 12.0 L
(rad/sec)
10.0
8.0
. 6.0
5.0 = suboptimal
0.0 1 | . I .
0.0 1.0 2.0 3.0 t(secs)
T Performance Index
(sec) . .
Optimal Suboptimal
0.2 6.2921 6.32
0.4 -12.52 12.6k4
0.8 2,66 25,28
1.6 46,67 50.56
3.2 77 .81 101.12

.Figure 27. Results for:
o = 10.0 rad/sec , v(0-) = 0.0 newton-meter , p = 10.0 newton-meter ,
*
vy = 0.0 rad/sec (speed-control) , u (0-) = 2.54 rad/sec.
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x(t) A
10.0 e S e i e —
8.0 -
6.0 | ————— = optimal
‘ —— __ = suboptimal
Lo
2.0 -
0.0 1.0 2.0 3.0  t(sec)
*, . :
u (t) and 0,0 Q0 1.0 2{0‘ 3;0‘4’t(sec)
u (t
SO( ) ~0.2 — optimal

nmon

(rad/sec) suboptimal

-0.4
-0.6 -
~0.8
~1l.0 I
v
T Performance Index
(sec) | opLimal suboptimal
0.2 0.0578 0.0600
0.4 _ 0.11519 0.1200
0.8 0.2268 0.2400
1.6 0.b201k | 0,480
3.2 _ 0.7155k 0.960

Figure 28. Results for:

a = 10.0 rad/sec , v(0-) = 0.0 newton-meter , § = -10.0 newton-meter ,

i

*
¥ = 0.0 rad/sec (speed-control) , u (0-) = 2.54 rad/sec.
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x (%) A
(rad/sec) 10.0

8.0
6!0
4.0 = optimal
* = suboptimal

2.0l

0.0.2

L
3.0  t(sec)
u (t) and A
Usolt)  o5.0
(rad/sec) y/ N
20.0k — = optima,l
15.0}- ™ T = = suboptimal
10.0F
5.0
0.0 ’ { { -
0.0 1.0 - 2.0 3.0 t(sec)
T Performance Index
(sec) Optimal Suboptimal
0.2 106.85 106.85
0.4 59.534 59.5L7
0.8 © 36.478 36.576
1.6 26.033 | 26.755
3.2 22,314 | 26.925

Figure 29. Results for:

a = 10,0 rad/sec , v(0-) = 0.0 rad/sec , B = 0.0 newton-meter ,
y = -10.0 rad/sec (acceleration) , u (0-) = 0.0 rad/sec.
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x(t)
(rad/sec)
_ A
10.0
8.0[,
6.0
L.oH, = optimal
! = suboptimal
2.04
0.0 L
* 3.0 t(sec)
u (t) and )
uso(t)_ 25.0 .
(rad/sec) , ———— = optimal
.20.0 —— = = suboptimal
l5.0;y
:10.0 — |
5.0 EFE—FE-——|- ==
0.0 ] ] 1 .
0.0 1.0 2.0 3.0  t(sec)
T Performance Index
(sec) Optimal ) Suboptimal
0.2 | 137.15 137.18
0.k 93.22 93.326
0.8 76,757 77.32k
1.6 78,2k 81.97
3.2 91.345 11h4,23

Figure 30. Results for: o = 10.0 rad/sec , v(0-) = 0.0 newton-meter ,

= 10.0 newton-meter , y = -10.0 rad/sec (acceleration) ,
u (0-) = 0.0 rad/sec.
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r, 8 Sum of the field and armsture resistances, [ohms] .
and all other variables and parameters are the same as defined in
Séction 2.2,

Equations (4-11) and (h-lz)[l3] describe the dynamical behaviour
of an electric propulsion vehicle powered by a d-c traction (series)
motér. Note that in practice the lowest value of u(t) is zero.
Hence from Eg.(4-12) it is cléar that xz(t) can not be made negative
and therefore re-generative braking action can not be obtained with a

series motor. The performance index for this optimization problem is

selected to be:

T (.2
u®(t)-m_x, (t)x, (t)u(t)

Fa =.jr a?xzr - . (4-13)

0 e
Note that from Egs.(2-3) and (L-12):
Tl (4)- t t)u(t 2\ &
5 - f . (t) maf"zi )xq ()u(t) at (-1:‘2) f u(t)x, (t)at  (b-1h)
0 . € ely

For a practical system, iz(t) is always finite., Iet:
lu(e)x,(6)| <u (L-15)

. T
Furthermore, let us assume that the major contribution in j.u(t)iz(t)dt
O

£
comes in a time interval; 0 <t < ?E . Hence,
e L )
=)
T 2 ‘ r
. u”(t)-m (t)x, (t)u(t) L .
E =f af 2 1 at - (—E) fu(t)xz(t)dt (4-16)
. r, T, 2
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Let: Ly
e
=
2 e
Ry = (EE) fu(t);cz(t)dt (4-17)
e
0
Thén: (& )
: &
r
L T v )\
el = (53] [ Iy ete = 5] 1 (1-18)
el % e
Equation (4-18) means:
, , ;
RE = O<€ ) . (h-lg)
Z
where; € é —E)
T
e
Thus ;
T 2
N u”(t)-m (t)x;u(t)
E =f "‘f:B L at + O(ez) (4=-20)
0 e
But all practical systems of interest:
2 ~
0(e?) £ 0.0 (4-21)

Therefore minimization of Eq.(4-13) is approximately equivalent to
the minimization of system energy consumption. The integrand of Eq.
(1-13) represents the electric power flow which can flow only from the

battery into the motor circuit.
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The set of boundary conditions to be satisfied by the state vari-
ables 'xl(t) and 'xé(t) for three cases of control action are the
same as given in Section 2.2.
Assume for all cases of interest the optimal solution u*(t)

satisfies the following inequality constraint:
*
0=<u(t) cu. - | (b=22)

But for reasons of simplicity let us assume that u(t) is unconstrained,

4.3.1. Solution of Problem 2.

Define the Hamiltonian function H as:

2 f. m o
H =(u_r_(_t_l)_ r—ai X (t) x, (t)u(t) + A () ( ) l(t)o(-j—-?-)x (t) -}—}a
Te o 1
) - z-) )x (0, () +|EJut))  (e23)
L e
where:
xl(t), xz(t) % Iagrange multipliers.,
Using Pontryagin's Maximum Principle yields:
u*(t) = 0.5 mafxz(t')xl(t) - 0.5(;9)&&) (4=24)
e
T P AT 1
H =-{E~)x2<t>xl(t>+x3(t> (-J--) x, (8) + ( ) (t) (5—)5+
e e
re | r 2
xh(t) (Z_)X (t) = 7 )x (t)xl(t) 7 )xh(t) (4-25)

where:
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1

x3(t) A ()

x, (8) & 2, (t)

A, Open-Loop Solution,

From Eq.(4-25) the following canonic equations are obtained:

Tar) 2, (1
i_) x5 (b) -(—J-—)a (4-26)

R )x (612, (%) (h-217)

e BLe
: fe n f2 Bar |
x3(-t) = 3;)}%(1‘:) +(2rc )x (t)x_(t) + -ZI;)xz(t)xu(t) (4-28)
r m, 2 Zm
S8 o2 } )+ e 150 - Bk (995, | o]y (995,)
‘ L (k-29)

Let us assume that a unique solution of Egs.{4-26) through (L4-29)
satisfying certain boundary conditions exists. In (k+l)st stage of
[3k]

quasilinearization method

i(k+l) _ A(k)(t) }_{.(k+l) . E(k) (4-30)

where: -
xy(2)']
x, (%)

x5 (t)
Lxu(t)

A(t) 8 coefficient matrix of the system of Egs.(L-26) through (4-29)

1%
ne>
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d = Forcing vector of the system of Egs.(L4-26) through (4-29).-

The general solution of Eg.(4-30) is given by

§(k+l) _ @(k+l)tt) 2(k+l) N £(k+l) (4-31)

where:

#¥1(t) satisfies the matrix differential equation:
F ) = a%(8) ¢ H(e) (4-32)
with 81(0) = I = Identity matrix.
(k+1) o os . . .
P satisfies the vector differential equation:
o (k+1 k k+1 k .
5 L) pkegy plL) | g (4-33)
with 2%+l| = 0 = Null vector,
t=0
c = constant vector.

The following digital computer algorithm is used in the determina-
tion of the open-loop trajectories:
1, Assume X3<O)’ xu(o) and obtain xl(t), xZ(t), x3(t), xu(t) by
integrating Eqs.(4-26) through (4-29),
2. Determine A(t) and d wusing x obtained in 1.
3. Solve Egs.(k-32) and (4-33).
L, From Eq.(k-31) determine constant ¢ in such a way that the

boundary conditions on xl(t) and xz(t) are satisfied, i.e.:



]
ta]

Xl(O)

=2
!
Q

Cx(0) =xp,y xp(T) =0

i

1l
Q

5. From Eq.(4-31) obtain the sciution of x for the first
iteration,

6. From Eq.(h-2k) determine the value of u (t) for the first
iteration.

7. Use the value of x obtained in 5, in 2 and repeat the same
procedure as above to determine x and u*(t) for the second
iteration and so on until the following set of iteration
stopping conditions are satisfied.

(i) Stop the iteration if the number of iterations are greater
than ten.

k+1

| T |
(11) Stop the iteration ir [ |u*(t)¥ I-u”(t)*|at < ¢, where ¢
O .

8

is a suitably selected small number.

B., A Suboptimal Closed-Loop Solution,

Since the plant is described by two nonlinear differential equa-
tions and the performance index contains a nonlinear term in its
integrand and also there are infinite number of trajectories éssociated
with this optimization problem the solution of the Bellman-Hamilton-
Jacobi equation for this optimization_prdblem is a very difficult task.
Therefore, let us assume a suboptimal feedback solution of thevfollowing

form:

az-xz(t)

Sinh/fa (tg-t)

u,o(8) = m g ()3 (8) + 7 x,(8) + 42, (4-34)
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where:
d is defined as in Chapter II and for the d-c traction motor it
is evaluated at the rated current, i.e, mafxz(t)} s =k =k,

t, 1s the time at which xz(tf) = o, and remains at that value

until xl(T) = 0Oy,

The motivation for the choice of Eq.(h-34) is as follows:

Lin (u0(8)) = m g (6) 1w | 22 (4-35)
im (u =1 X + r O, + d 1lim -35
s0 _ afaz 1l e’ a e : :
et tet, S:m.h\/d—(tf-t)
If the time-varying‘gain is made zero at t = to, from Eq. (4=35):
uo(t) =m ox (8) + ra, ;3 t,<ts<T . (4-36)

Substitution of Eq.(4~36) into Eq.(k-12) yields:
_ iz(t) =0 for t =>t, until a new disturbance comes into the
systemn.

Note that when Eq.{L4-3L4) is substituted into Eq.(L4-12) the follow-

ing equation is obtained:

r

- Vd
SinhVA (t.-t)

Va

Sinh/a (b-t)

) xz(t) + (

x,(t) = - a, (4-37)

The general solution of Eq.(L4-37) is given by

4,38
: 1/2 1/2 ( )
Coshvg (tf-t)-l Coshyd ts+1
Coshdg-(tf-t)+l CoshJE-tf-l

1/2 sinm/a t,

(Costhf(tf—t)+l)l/2(CoshJE-tf-l)'

Xz('t) = X2(0>

+ Op|1.0- CoshJEktf-t);l.O
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where:

Xz(t) = x and xz(t)l =, aS expected.
t=t_

oz
t=0 £

Thus when uso(t) given by Eq.(4-34) is applied into the plant and

2

t, is selected appropriately, then xz(tf) =a, in t, £t < T,

In general, T—tf >> tf since the mechanical time constant of the
vehicle is much greater than its electrical time constant, The sub-
optimal feedback control law uso(t) depends on x(t) in

in Eq,(bk=-11) yields:

?f <t < T. Substituting ngt) = Q,

H

e
J
e

£ - |
xq (%) + jz)xl(t) =7 t, <t T (4-39) -

The general solution of (4-39) is determined to be:

f f
-(-f-)(t-tf) - J—e) (t=t,)
xl(t) = xl(tf)e € + oy |1-e € (4-k40)

> —
Hence as t > t, xl(t) o .

Note that for t, <t <T, Eq.(h-;z) becomes an algebraic
equation and Eq.(l4-1l) becomes a linear equation under the action of
uso(t). The suboptimal control law .uso(t), as shown above satisfies
the boundary conditions xl(T) =a, and Xz(T) = xz(tf) =, if the

time verying gain in Eq.(4-34) is turned on at t = O and is turned

off at t = t, until a new disturbance comes into the system,
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4.,3.2. Salient Features of the Solution of Problem 2.

Salient features of the optimal and suboptimal solutions are de-
termined by simulating the appropriate equations on the digital compu-
ter. The results are shown in Figures 31 and 32, For t = tf, it
has been assumed that the time varying gain in Eq.(4-34) is turned off

at t = t, Dby means of an auxiliary controller. The following system

£

parameters are used:

2
J, = 1.k2 newton-meter/rad/sec
£, = 0.825 newton-meter/rad/sec
&e = 0,010 henry

r = 1.0 ohm

m; = 0.040 henry
£
t = —<2 - 0.010 second.
T T

In Figure 31; the energy consumed by the suboptimal controller is
129.263 watt-seconds which is slightly higher than that consumed by’

the optimal controller, The evaluation of Eq.,(k-14) yields:
E = 123.22 watt-seconds.

Hence the Eq.(Lk-13) is a very closed approximation of Eq.(4-20). For
Figure 32; the following corresponding results are obtained: Energy

consumed by the suﬁoptimal controller is 57.87 watt-seconds, and
E = 55,81 watt-scconds

Therefore, all the assumptions we made above are justified

completely for the two cases of control action considered.
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x, (%)
(rad/sec) 4

suboptimal solution
7.5 |- fl\\‘—-'optimal solution
5.0
2.5 1
0.0 : ! 1 -
0.0 : 0.1 0.2 t(secs)
T
| f’lu*(t)(k+l)-u%(t)(k)|dt
Tteration Number Performance Index 0 '
Y 725,11 - 5547.2 ’
2 288,04 . 317k.0
3 213.90 2398.7
L 143,17 741,92
5 128.52 312.71
6" 126.79 2l bk
7 ~ 126.79 ~ 0.3854

Figure 31. Results for: oy =_l0.0-rad/sec P V(O—) = 0.0 newton-meter ,

B = 10.0 newton-meter , O, = 21.40 amperes.
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xl(t) A suboptimal solution
(rad/sec) ,.-:-—"{ ——
10.0
‘u\\\__ optimal solution
1.5 I
2.0 1
2.5 |
0.0 ' ] ] -
0.0 0.1 0.2 t(secs)
T
[ 1oy ) (1) (9
Tteration Number Performance Index 0 : '
1 62.63 705.19
2 ‘ 55.19 : 130.96
3 54.82 : 6.13
i 54,82 0.05568

Figure 32. Results for: a; = 10.0 rad/sec , v(0-) = 10.0 newton-meter ,

B = 0.0 newton-meter , o, = 14,30 amperes.
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V. IMPIEMENTATION

5.1. Introduction.

In this chapter we shall comment briefly on some design techniques
which may be useful in the practical implementation of the suboptimal
control laws for the problems studied in Chapters II and IV which
exhibit the best overall characteristics with respect to other control

laws .

5.2. The Practical Implementation of the Suboptimal Control Law for

the Separately-Excited and Armature-Controlled d-c Motor Drive

System,

Re-write Eq.(2-79) as follows:

kb kta k

T 3T
e

(o=x(t))
(5-1)

() (6) +|— ) (%) (k‘ﬁx 1
[v8 = X + v +
s0 ZJezb 2d P s_inh\/ci— (T-t)

where;
v(t) & pisturbance torque, [newton-meter].

The current speed x(t) can be measured by a tachometer which produces
a voltage proportional to the speed and the disturbance torque v(t)

[33]

can be measured by a pendulum-type device which measures the terrain
slope with respect to horizontal. A detailed analysis shows that the
following functional relationship between the terrain slope g(t) and

the disturbance torque v(t) for a wheeled~-vehicle with rubber tires:

i (5-2)

TWCF)
G

v(t) = w Sin B(t) + fl)
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where:
W, = Total weight of the vehicle, [1bs]
¢(t) = Slope angle of the terrain with respect to horizontal,
[degrees]
f, = Tire resistance at zero speed [los]

fl depends on the rubber material from which tires are made

and also on the degree of inflation of tires,

T, = effective radius of the wheel-tire assembly, (ft]
kG = Gear ratio
cp = Conversion factor from ft.,-lb. to newton-meter

The time-varying gain

L ) can be realized by a simple
Sinhyfd (T-t) '
electronic system whose block diagram is shown in Figure 33. A brief
description of the function of each block in Figure 33 follows:

Input circuit furnishes a voltage Vs which is proportional to the
desired response time setting, for the electronic delay circuit whose
output voltage v, varies as a linear function of time in (0,T).

This voltage vZ is then applied to a reverse biased zener diode whose
current IZ inecreases slightly as v, increases and becomes very
large when v, becomes slightly grgater than the.rated zener voltage.

The interval of time over which v, > rated zener voltage is extremely

small and corresponds to the interval of time as t - T and the sudden

increase in IZ corresponds to lim ( L ) - o, Since
-7 | Sinhya (T-t)

is larger for smaller T's it is necessary to modify

(Sinhv%”(w-t))l=o

the bias setting in the preamplifier whose output is applied to a high
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Desired

Response

Input
Circuit
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Time

Electronic
Delay
Circuit

Z Zener
Diode

o
Bias Setting

Preamplifier

|

High Gain
Voltage
Amplifier

|

OQutput Signal Pro-
portional to

1l

Sinhfd (T-t)

Figure 33. Engineering Realization of the Time-Varying Gain Function
- of the Control Law. :



122

gain voltage amplifier which in turn yields a voltage at 1ts output

‘which is proportional to ( L ) .
| sinnda (7-t)

Desired speed is normally fed into the system by positioning a

throttle mechanism, Each throttle position corresponds to a particular

desired speed which in turn is proportional to a particular voltage.

Let:
A Current speed
kl = ( _ )’ (5'3)
Voltage proportional to the current speed
A Desired speed
Voltage proportional to the desired speed
where:
kl and k2 are constants and kl = kz R

Disturbance torque
x. 2 (5-5)
3 .
Voltage proportional to disturbance torque

Note that from Eq.(5-2) it is clear that @(t) and v(t) are related
to each other by a nonlinear relationship. Here it is necessary to
design a circuit which will make measurements on’ ¢(t) and will yileld

a signal proportional to v(t)‘ in such a way that k., 1s constant,

3

~Actual value of the time~varying gain

kh =

Voltage proportional to the actual value of the
time-varying gain
(5-6)

where ku is constant,
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Tguation (S—l) represents the value of the control voltage, at
‘each instant of time in (0,T), to bé'applied into the armature
circuit by modulating the fixed battery voltage. The problem is how do
we obtain the armature voltage according to Eq.(5-1) by using the

measurements on x(t), v(t), o and generating the time-varying gain
1

Sinhyd (T-t)

this task is as follows:

) by means of analog signals? One way of accomplishing
1. Use an apprgpriate pulse-width modulation technique[35’36] to
control the fixed battery voltage* through a d-c to d-c silicon con-
trolied rectifier (SCR) converter. In this way the armature voltage
may be controlled from a very low value; which may be a few percent of
the battery voltage, to a high value; which may be equal to the battery
voltage.. In order to cbtain the armature voltage described by Eq.(5-1)
it is necessary to supply the firing signals to SCR gates in the d-c
to d-c converter in such a way that the converter acts like a voltage
amplifier with a voltage gain of KA' |

2. The bias signal into the firing circuits of the d-c to d-c

converter can be made equal to the sum of the foilowing voltages:

k,a \lk :
EE , = ——=|} x voltage output of the tachogenerator, (5=7)
2 2d b KA
kt d klku
5= ||—g—| } x voltage output of ‘the device generating the (5-8)
\ 2J b . . .
e A time~-varying gain x error voltage,

*  Assume that the battery voltage reduction is negligible over a
time interval during which many control actions are performed.
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jizij}xvoltage output of the device measuring the | (5-9)
distu.rbance torque.

If the firing circuits are designed in such a way that any change
in the ampliﬁude of the bias signal yields a change at the output of
the -d-c to d-c converter which is KA times larger than the bias
voltage we can claim that our theoretical results may form the basis
for a practical control system that possesses many unique characteris-
tics, We must emphasize the fact that the output voltage of the d-c
to d=-c¢ controller is only an approximation of the desired armature
voltage as given by Eq.(5-1).

However, 1t is a very good approximation since in general the pulse
period, i.e. the sum of the on and off times, is much smaller than T,

The d~-c to d-c converter must also have the ability to transfer
the electrical energy from the motor circuit to the battery during ‘?he
generating mode of the operation., Therefore, while one portion of the
controller provides the control voltage uso(t) to the armature cir-
cuit at all times, the other portion of the controller must be capable
of stepping up the control voltage uso(t) by several times in order
to provide a voltage output to charge the battery during the generating
mode. This can also be accomplished by ﬁsing a suitable pulse-modula-
tion technique. Note, however, that when u,,(t) becomes small during
the regeneration mode, the amplification factor of the step-up portion
of the converter must be increased by an auxiliary controller to such a
level from which the battery can be charged. Conversely, if uso(t) is

high, the amplification gain must be decreased to limit the battery

charging voltage. Figure 34 shows the complete block diagram of the
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- control system with its auxiliary controllers.

5,2.1., Remarks on System Parameters..

All the system parameters ‘appearing in Eq.(5-l) must be specified
with reasohable accuracy for'the electric propulsion vehicle of inter-
est, The total inefﬁia of wheels, tires, brake drums, axles and motér
arﬁature may bé computed from dimensions. The torque constant, hence
the back emf constant, i.e. they are equivalent if m.k.s, system of
units is used, may be obtained from lockedlrotor testg37] Gear ratio
is easily determined by studying the required range of vehicle'speeds
with the available range of motor sfeeds.

Tire rolling resistance, viscous friction may be computed by
performihg an experiment on the vehicle under consideration and using a

[38]

parameter estimation technique;

5.3. The Practical Implementation of the Suboptimal Control Law for the

‘Slip—frequency and Constant (volt/cycle) Controlled 3-Phase

Induction Motor Drive System.

The practical implementation of Eq.(L4-10) requires the following
considerations:

1.‘ uso(t) is generated according to Eq.(4-10) where £ is replaced
by v(t). Most of the ideas presented in Section (5-2) are also
applicable and thefeforé will not be repeated here. |

Z.V uso(t), is»ﬁhen added to the current angular frequency of the
rotor to determine the stator frequency which is then applied to
é d-c to a-c SCR converter, i,e. an inverter, to yield the de-

sired inverter frequency.
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3. The statér voltage is obtained according to a pre-specified

: constant ratio of stator voltage to stator frequency to yield a
constant air gap flux. This can be accomplished by modulating
the battery voltage via a d-c to d-c converter with pulse-modu-
lation technique in such a way that the ratio of the output
voltage of the d-c to d-c converter to stator frequency of the
motor  is constant, The output voltage is then applied to an
inverter circuit which in turn produces the motor voltage at
the desired magnitude and frequency.

4; During the generating mode a reverse path must be provided from
the output of the inverter circuit back to the battery. This
may be accomplished by designing an appropriate step-up a-c to
d-c converter and placing it between the battery and inverter
output circuit.

5, Auxiliary circuits to turn the time varying gains on and off at

"t =0 and t = T respectively and fo identify the mode of
operation by measuring the sense of slip-frequency must be in-
corporated in the overall control system,

Note that practical reasons require the use of 3-phase squirrel-cage
induction motors. Hence when the command slip frequency is obtained,

it must be applied into the appropriate locations in the firing circuilts
in such a way that we obtain 3-phase a-c voltages at the output of the

“inverter.
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5.4, The Practical Implementation of the Suboptimal Control Law for
the Series-Excifed and Armature-Controlled d-c Motor Drive System,
The practical implementation of Eq.(4-34) requires the following
considerations:

1. uso(t) is generated according to Eq.(4-34) where it can be

assumed that;
, 1/2
~ f‘eQ('l + P

O, = |=—————— 5-10
z -maf _ ( )

whére B represents the mean value of v(t) in O <t <T
which is measured by sultable instrumentation.

There is no provision for the regeneration in the control system.
The controller measures'the_current speed, the current value of
the armature current, the disturbance torque v(t). The desired
speed a, is fed into the system in the same manner as described

in Section 5.2 and the desired value . is obtained according

2
to Eq.(5-10).

The same design techniques discussed in Section 5-2 are also applicable

here; therefore, they will not be repeated here.
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VI. CONCLUSIONS

6.1. Introduction.

Thelprimary aim of this investigation has been to demonstrate the
application of theoretical concepts of modern control theory into a
class of engineering problems, Any application of an electric motor
as a prime mover with electricity as the basic energy source in

variable speed.drive systems creates a need for a controller linking
the energy source to the motor for speed setting and speed control
actions. Such systems span the applications spectrum from large indus-
trial complexes to small portable devices and recently an intensive
effort initiated by several ehgineering institutions to extend them to
elédtric propulsion vehicles such as electric cars, electric trains,
electric earth-moving vehicles, electric lift trucks, submerged vehicles,
ete. waever; as'is typical of such problems solved by'classicél 2
teéhniques, the existing designs are motivated largely by experience
and in no sense are the resulting systems optimal. The recent advances
in optimal control the&ry and digital computers make it feasible to
replace all the existing empirical design techniques by a scientifically

motivated and mathematically sound design procedure.

6.2. Techniques for Developing Mathematical Models of Electric Propul-

‘sion Systems.

Developing a reasonably accurate mathematical model for a specific
electric propulsion vehicle is a necessity before the theoretical con~
cepts of modern control theory can be applied to synthesize a feedback

controller, The following procedure has been used in the determination
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of the plant equétions:

1. Obtain the expressions for the total kinetic, potential and
dissipation energies of the system which consists of several
electrical and mechanical interacting components.

2. Select the suitable,géneralized coordinates for the expressions
obtained in 1 and use the auxiliary expressions for the general-
ized forces to write down the plant equations according to

Lagrange's energy methodggg’uo]

6.3. The Selection of the System Performance Index,

The system energy consumption has been considered as the most
important performance requirement and it has been shoﬁn that by consid-
ering response time T as a fixed but arbitréry quantity other impor-
tant performance requirements can also be satisfied. This particular
approach shows a marked departure from the usual method of specifying
the performance index which in general may consist of several performance

requirements weighed according to their importance.

6.4, The Synthesis Techniques.

In general, closed-form solutions for the Bellman-Hamilton-Jacobi
.equation in nonlinear'problems can not be obtained ‘except in very
special cases, Therefore, the synthesis problem, by necessity, must be
treated as an approximation pioblemgul] Fortunately, the approximate
optimization problem of Chapter II and problem 1 of Chapter IV can be
described by linear plant equations, and thelr performance indices are

of quadratic nature, to a high degree of approximatibn. This in turn

allows us to obtain several useful analytical results by using Bellman's
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dynamic program@ing approach. The digital computer simulations- of the
‘results haye yielded‘the following response charagteristics for all the
problems considered in this investigation:
1. The response of the system is very stable in 0 <t =T for any
required contrdl action,
é. The desired speed is obtained with a high degree of accuracy in

a pre-specified response time T.

6.5. Future Efforts and Applications.

The final justification of the assumptions and approximations made
in this investigation require the prototype development of minimum-
energy controllers., If the test results on a vehicle under actual envi-
rormental conditions verify the theoretical predictions then we can claim
that we have developed a novel and powerful technique in designing the
electronic controllers for electric propulsion vehicles that minimi;?s
the system energy consumption while satisfying the performance require-
ments in any re@uired control action, Note that the design procedure
/developed in this study is also applicable to the following electric
drive systems:

a.c., source — rectifier - d.c, motor (§hunt,series)

a.c. source — rectifier-inverter - a.c. motor (induction)
or cycloconverter

The specific results obtained so far apply to electric drive
systems with (1) coﬁstant inertia, (2) constant frictional coefficients,
e.g. alr drag, viscous friction, tire rolling friction, and variable but
measurable external loads during the controlling process.

For applications. in which some or all of the constraints are
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relaxed, additional analytiéal investigations are required, Dbut” these
do not appear too difficult to perform, It is the belief of the author
that the contents of this investigation may be very useful in the
practical development of feedback controllers for the following electric
drive systems:
Eleétric Propulsion Vehicles: Electric cars, Electrically powered
Tractors and Road Bullding Machinery, Rapid Transit Systems, Electric
Trains, Submerged Vehicles, Electric Lift Trucks, Lunar Roving
~ Vehicles, etec.
Industrial Process Control: Paper Mills, Steel Mills, etc.
Miscellaneous; Antenns Drives, Cargo Winch Drives, Capstan Drives,
Welding Positioner Drives, Cohveyor Drives, Drill Press Drives, Pack-

aging Machine Drives, Printing Press Drives, Pump Drives, ete.
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