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ABSTRACT

This thesis is devoted to consideration of finite amplitude
waves propagating into an elastic half-space in a direction normal
to the boundary. Excitation is by means of strains applied at
the boundary as stcp functions of timec.

The solutions obtained are combinations of centered simple
waves and shock waves. Longitudinal waves may appear alone
but waves with transverse displacement components are always
accompanied by longitudinal waves. The foregoing solutions
are discussed in general and are illustrated by an example
problem involving a special nonlinear, compressible, hyperelastic
material. A perturbation method, based on the use of character-
istic coordinates, which facilitates approximate solution of the
problem for arbitrarily prescribed strain boundary conditions

is described.
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CHAPTER I

INTRODUCTION

In this thesis an investigation is made of the simplest boundary
and initial value problems associated with the propagation of finite
amplitude waves in elastic solids. The direction of the investigation
is chosen in accordance with the dictates of the theofy and is designed
to illuminate the theory. The results obtained are relatively simple,
explicit, and easily understood and thus help in visualization of the
possibilities for solution of more complicated I;roblems.

As will be seen, the problems here considered are rather like
those of wave propagation in perfect gases. From the mathematical
point of view both are covered, for example, by Lax's theory of

(L 2) Because of the

hyperbolic systems of conservation laws.
similarities between plane waves in gases and in elastic solids this
study of elastic wave propagation is a natural extension of previous
studies of gasdynamics such as those discussed by Courant and

(3)

Friedrichs. The variety of phenomena which may occur in
elastodynamics is greater than that occurring in gasdynamics
because of the more general material constitution. In particular,
plane elastic waves may involve transverse displacements which do
not occur in the plane wave problems ol gasdynamics.

A major difficulty of the wave propagation problems considered

here is that, due to the generality of the class of admissible

materials, a great variety of phenomena are possible. For



exhaustive discussion of the problems it is necessary that all these
phenomena be identified, and that materials be classified in such a
way that it can be predicted which of the various possible phenomena
may occur in a given case.

Recent studies of finite amplitude elastic waves include those

of Truesdell, (4)

W. A. Green, (3) and A. E. Green, (6) which are
exact and very general but which are primarily concerned with local
behavior at the wavefronts and are therefore of a different character
from the present discussion of wave propagation problems in the
large. This problem has also been investigated by Fine and

7)

Shield( by means of a perturbation technique. Studies more like

the present one in character are those of Chu(e) and of Bland(g’ 10)
which deal with shear waves in incompressible materials aﬁd purely
longitudinal waves in compressible materials, respectively. These;
two kinds of waves are mathematically analogous and are, in turn,
analogous to the problem of propégation of plane waves in a perfect
gas. In the next chapter the work of Chu and of Bland will be
discussed further and compared with the present work. For
references to work done up to 1961 the paper of Truesde11(4) may

be consulted.

In Chapter II of this thesis the mathematical theory employed
in the discussion of plane finite amplitude waves in elastic solids is
described.

Chapters III - V are devoted to the discussion of two special

boundary value problems which are fundamental to the subject at



hand. Solutions involving shocks and centered simple waves in
various combinations are exhibited and the circumstances of their
occurrence are described.

In Chapter VI wave propagation in a specific nonlinear, com-
pressible, hyperelastic material is discussed as an illustrative
example of the theory of the previous chapters.

An approximate method of solving the problems of the previous

chapters is discussed in Chapter VII.



CHAPTER II

FORMULATION OF THE FIELD EQUATIONS AND JUMP CONDITIONS

The governing equations of the theory of propagation of finite
amplitude waves in elastic solids express: (1) the mechanical
principles of balance of linear momentum, angular momentum, and
mass, and, (2) the mechanical constitution of the material. For
reasons to be discussed later equations expressing the thermo-
dynamic principles of balance of energy and entropy arc not uscd.
The governing equations to be presented are long known. Careful
modern derivations are readily ava.ilable(ll) but are briefly included
here for completeness and as an aid in clarifying the notation.

Cartesian tensor notation with the associated summation
convention is employed in this section. Special tensors which occur

are the Kronecker delta and the alternating tensor:

0 i#j +1 ifijk is an even permutation of 123
&, = , é..k= -1 if ijk is an odd permutation of 123
J 1 isj 1 0 otherwise

In cartesian coordinates, X Gibbs!' vector operations are defined

in terms of their tensor counterparts as, for example, t. n = T

where T.=t..n.,, a. b=cwherec =ab,, ab=cwhere c..=a.b.,
i iy =" = ii? == = ij i
ax b =c where c;= éijk

comma denote partial differentiation with respect to the coordinate

ajbk. Finally, subscripts following a

bearing that subscript.



'T'he governing equations of the theory will be given in both
spatial and material form. The spatial formulation is taken as
basic and the material formulation obtained from it.

Spatial (or Eulerian ) coordinates are those denoting points
of the inertial space in which the body under consideration resides.
Material (or Lagrangian) coordinates are those denoting particles
of this body. A motion of the body is expressed as a suitable time
dependent mapping of the material coordinates into the spatial
coordinates, that is, an expression of the place at which each

particle of the body resides at each instant of time.

2. 1. Spatial Formulation

Let the material under study reside in an inertial space, the
points of which are denoted by coordinates X, in a cartesian reference
frame x. Let the particles of the body be denoted by their place X
in the x-space when the body is in some given reference configuration.

Equations of balance are written for an arbitrary fixed region
U of the x-space bounded by the fixed surface 30 . The velocity
of the material particle X which resides at the place x at the time t
is denoted by_'}g (_}5, t). The mass density of the material is denoted
by /O (%, t) and the stress field by the stress tensor t(x,t). The
traction vector on a surface with unit normal n is -E-(n) =t . n or,

in component form, t(n)i = tijnj' The situation described is

illustrated in figure 2. 1.
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Figure 2. 1

2. 1. 1. Integral Equations of Balance of Mass and Momentum

For an arbitrary fixed region of space 10 with boundary 3V,
the equations expressing balance of mass, linear momentum, and

angular momentum, respectively, are as follows in the absence of

body forces:

.ac_lt_g pd?ﬁ:'g p_}g nds,
v



%&pzdfhg (Pxx-t). nds,
" B

E‘i—g Pl x x)dx = -M[/o(z*'zb Bl n-{xxit 9]} .

0 av

These equations can be written in component form as follows:

d _ .
Tﬁ'& Pdix_- —g p xinids»
BV

av
4 X.dx = - (px.x.-t,.)Jn.ds, (2. 1)
| L *E P*i%575577;
v av

qd . - _ a5
-El-t—& P € 1.0 = S € 1%5(PE, gy )n, ds.
v ov

2.1.1. 1. Differential Equations of Balance of Mass and Momentum

Under the assumptions that P(g{_, t) and é:_(z, t) are continuously
differentiable with respect to x and to t and that _1_:_'(3{_, t) is continuously
differentiable with respect to x, one may reduce equations (2. 1) to
the following form by interchange of order of differentiation and
integration in the first member and application of the divergence

theorem to the second member:



g [gli?‘“ (3, i}df =0
Ry

3, .. . _
X (:3-{(/0::1)4-(/Oxixj—tij)’jld_:_c_-wo, (2. 2)
v
- " ok
3P . k. .
SU éijk{[ﬁt_ + (pxz),z}xjkk‘ [tkﬂ,ﬂ_/)i‘—a_t_ * xzxk,;z} 3
+ka 5 +x1xj,l}_tkj dx = 0.

In accordance with the above regularity conditions the

integrands in (2. 2) are continuous. Since V is an arbitrarily chosen

region they must vanish, giving
oL : =
at tlPx) =0,

ok,
t.. .=/a(._1_+s;.s<. ) (2. 3)
ij, J ot 7i, 5/

The case where the regularity conditions used in this section
fail to hold is of particular interest in problems of wave propagation.
It is discussed in section 2.1. 1. 2.

This thesis is devoted to the investigation of plane waves
propagating into an elastic half-space in a direction normal to the
boundary. It is convenient to choose the xl—axis to be along a normal
to this bounding surface and to be directed into the material. Since
only plane-polarized transverse displacements are considered it is

convenient to choose the xz-axis parallel to the direction of



transverse displacement. Finally, the x3-a.xis is chousen normal Lo
the plane of the other two axes, and positive directions are assigned
so that the x~coordinates constitute a right-handed system.

A motion of the type described above can be expressed

mathematically by the transformation

X

1 xl—ul(xl, t), X, = xz-uz(xl, t), X3 = Xg, (2. 4)

where u = (ul,uz, 0) is called the spatial form of the displacement
vector. The body is undeformed when u = 0.
Denote by j the Jacobian of the transformation (2. 4) for any
fixed t > O
j = det (axi/axj).
As a general mechanical principle it is required that, for each
t 2 0, the Jacobian satisfy the inequalities
0< j< oo (2.5)
For the motion (2. 4),
j=1- 8u1(x1, t)/axl. {2. 6)

Since equation (2.1), expressing balance of mass is equivalent to

the relation
P =3P, (2. 7)

where po is the (constant) density of the material in the undeformed

state, the density in the deformed state is given by='c

: Ve, =/>o(1_u1 . ). (2. 8)

1

Here and henceforth a variable, independent or dependent, written
as a subscript denotes differentiation with respect to that variable.
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As a consequence of (2. 5) the transformation (2. 4) is invertable for
each time t 2 0 and, as is seen from (2. 8), the density of the
deformed material is always finite and non-zero.

For the special motion (2. 4) the differential equations of

balance reduce to

pt ¥ (ﬂ :.xl)xl: %,

(P (P 5"12‘t11)x1 =0, (2.9)

(Pig) + (PRyt )y =0

where the subscripts denote partial differentiation and where, here

and henceforth, the tensor t is understood to be symmetrical in

accordance with (2. 3)3.

By (2. 4), the particle velocities are found to be

5{1: u /(1-—'\11 ), '3:2 =Y_ul u, +u, (1--1).1 )] /(1-111 ). - (2.10)
t X t x t X X

Because of (2. 5) and (2. 6), the denominators of these expressions

do not vanish. For convenience the following notation is introduced:

P=u q=u, , r=u , 8=u, (2. 11)
p 4 X t t
1 1
With this (2. 10) becomes
%, = r/(1-p), 5;2 =[rq+ s(l-p)} {{1-p). (2.12)

Assuming that u is twice differentiable with respect to x; and t

the two mixed second derivatives are equal, so that
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s q, =8, - (2. 13)

By (2. 11) equation (2. 8) can be written

0= /0, (1-p). (2. 14)

Substitution of (2.12), (2.13), and {2.14) into (2. 9)1, shows the latter
to be identically satisfied. Indeed, (2.14) is essentially an integrated
form of (2. 9)1.

Substitution of (2. 11), (2.12) and (2.13) into (2. 9)2’ 3 and

adjoining (2. 13) gives the following equations of motion:

2
9 X ] ) /)01' B
Et‘[ o™ 1T o LT ~fud” %,

£, a_af'[ rq + s(l-p)J + Bixl-[ P rat s(l-p) ‘t12] =0,

1-p
(2. 15)
BP or _
3 o 0,
89_8s _g
ot Bxl

2.1.1. 2. Jump Conditions Associated with Balance of Mass and

Momentum and with Continuity of Displacement

Equations (2.1) are now investigated for the case where the
displacements are everywhere continuous but where the derivatives
of the field variables /O s _}_c_ , and t may fail to be continuous
across a propagating singular surface. The field variables are

assumed to possess finite limits from either side at the singular
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surface. This situation is of great practical importance in the
theory and its study constitutes a major portion of this thesis.

For simplicity, and because it is the situation relevant to the
present investigation, the singular surface is supposed to be a plane
normal to the xl-axis and propagating in the positive direction along
this axis. The motion on either side of the singular surface is
assumed to consist of plane waves of the type described by (2. 4). Let
the region U to which the equations of balance are applied be a
rectangular solid having square faces of unit area normal to the
xl-axis and thickness h. A cross-sectional view of U is shown in

figure 2. 2.

SINGULAR SURFACE —,_

EEE e V
etz —— DV
)]
NR) — (1)
)-‘.:2) ———— e ."“‘(I)

’-céz) 1 r );'20)

".‘..(,3') S S——| SN, t”")
() (2)
"o éz' [ ‘3-:)-’- tk'(l')

el
%...v-& .—.—.l‘j' L—"%—Vt

Figure 2.2
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Let v be the local propagation speed of the singular surface. Function
values for either side of the singular surface are distinguished by
superscripts.

KEvaluation of {2. 1) for the special geometry of figure 2. 2 and

passage to the limit as h ~ 0 gives the jump conditions
Cplv=0pxl,.
. . 2
[pxdv=Cpx -] (2. 16)

Cpx,dv=[pxp,-t,] .
where

[al A2 A0

denotes the jump across the singular surface of an arbitrary field
quantity A.

As previously mentioned, the displacement has been assumed
to be continuous across the singular surface. By (2.4) this require-

ment can be written as

[.‘_’:]'—‘0' (2.17)

For the present problem a condition substantially equivalent to (2.17)
but expressed in terms of derivatives of u(x, t) is much preferable to
(2.17) itself. Such a condition can be obtained by considering the
time rate of change of u as apparent to an observer moving with

the surface of discontinuity (Ref. 11, sec. 180). This rate of

change, denoted by 3 u/ 3t can be expressed as
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3u/st=u viou .

Taking the jump of this equation and using (2.17) gives

[ Exl] v+ [u] =0 (2.18)

By (2.11), (2.12), and {2.14) the jump conditions (2. 16) and (2.18)

can be written in the form

CprT o= [ poen) ],
[/Jo.grq + s(l-p)) I[v = [{/)Dr (rq—i— s(l—p)) /(l—p)} —tlzﬂ ,

(2.19)

[p]v-&» [[r_H =0,
[q]]v+ [s:ﬂ = 0.

Equation (2. 16)1 is identically satisfied, as was the case with its
counterpart for differentiable fields.

The equations of balance (2.1) have thus been shown to yield
the differential equations (2. 9) in regions of space-time where
continuous derivatives exist, and the jﬁmp conditions {2.15) across
singular surfaces where the displacements are continuous but where

their first derivatives are discontinuous.

2.1.2. Deformation Gradients and Deformation Tensors

Associated with the motion (2. 4) are the deformation gradient

field,
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I-p 0
(X, j) = -q 1 0 s (2. 20)
0 0

the Cauchy deformation tensor,

(l-p)2+ q2 -q 0

(cij) = (Xk,i Xk,j) = -q 1 ol , (2. 21)
0 0 1
and the inverse Cauchy deformation tensor,
1 q 0
-1 1 2, 2
(c;) =—— || ¢ (I-p)+q 0 (2. 22)
(l'P) 0 0 (I—p)z

Since the motion described by (2. 4) is two-dimensional the appropriate

two-~dimensional versions of (2.18) and (2.19) are recorded as follows:

2 2
1-p) +'q°  -q 1 q
(c ) = (o)=L
op ’ @ (1-p)°© 2. 2|’
-q 1 Pl g am* g
(2. 23)
where the lower case greek indices have the range 1, 2. The above

deformation tensors measure deformation relative to the undeformed

state, u = 0.

The invariants, under rotations in x-space, of the inverse

Cauchy deformation tensor {2.22) are
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-1

I = c. =[1+q%+ 20-p?]/0-p)?,

m o= 5 (1% L, ) =[2+ &+ 1-p? Ja-p? (2. 24)
_]_ 2

II = | 55 | = va-p)“,

and the invariants, under rotations in the xlxz-plane, of (2. ZO)Z are

-1 -1
I = caa=[1+ q2+ (l—p)zj/(l—p)z, I, ={ Cup\ = 1/(1.3[,)2 . (2. 25)

2.1.3. Stresses

The material considered in this thesis is an elastic solid,
homogeneous, isotropic, and unstressed in the undeformed state.
The stresses in such a material are given in terms of the deformation
gradients by the relation

t.,.=h

5 = By Syt By Byt ey, (2. 26)

17ij

where h-l’ ho, and h1 are functions of the invariants I, II, and III
and are characteristic of the material under consideration. An
especially important class of elastic materials consists of those
called hyperelastic. For these materials a function 2, (I, II, III)

exists with the property that
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. 52,

II ==+ III (2. 27)
o '\fIII K BII olIl

89X
hy = -2 NIII 55

The function £ represents the strain energy per unit of unstrained
volume of the body under consideration.
For the case of plane deformations of the form (2. 4) equation

(2. 26) may be simplified to the following:

-1
t . =h & +h . c_, 2.28
@~ o Bt "1 S (. 28)
where
T1 ‘E(I I

2), A=-1,0., (2. 29)

For hyperelastic materials

— - __ 2
B, =2N1, 8Z/01,, &, =7 9Z /81,. (2. 30)
2

Note that the stresses tij may be regarded as functions of the
coordinates and of time, as in the preceding dynamical calculations,
or as functions of some measure of deformation, as in the
constitutive equation. Although the same symbol is used to denote
both functions these two viewpoints need not cause confusion.

The response functions, or, in the hyperelastic case, the
strain energy function, are usually subjected to various restrictions

which insure that the material will exhibit ''plausible
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behavior. (12,13,14) These restrictions are many, detailed, and
imperfectly understood, and general application of them has not
been attempted in this thesis. Instead, restrictions suggested by the

present analysis are noted at the places where they become relevant.

2. 2. Material Formulation

The material formulation of the field equations and jump
conditions is introduced because it contributes to mathematical
simplicity in two ways: (1) The field equations and jump conditions
themselves take on a simpler form, and, (2) the boundary of the body
always has the same material coordinates whatever its motion be.

As mentioned previously, the transformation (2. 4) is assumed
to be invertible at each time t. Let the inverse be written in the form

x = X

+ Ul(Xl’ t), x,= XZ + UZ(Xl’ t), x,=X (2. 31)

1 2 3 3

where U is called the material form of the displacement vector.
Introduce the notation

P=U (2. 32)

1 2
Xl Xl t t

By (2. 4), (2.11), (2.31), and (2. 32),

p=P/(4+P), q=Q/(WP), r=R/(WP), s =[S(+P)-QR]/(+P) .
(2 .33)
From (2.12), or otherwise, the particle velocities are

X =R, k,=8. (2. 34)
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2.2.1. Transformation of Field Equations and Jump Conditions
to Material Variables

The field equations (2.15) can be directly transformed into the
new variables by means of (2. 31). The resulting equations are as

follows:

(/OO.R)t -ty =0,

1
(PS8 - () =0,
1 (2. 35)
P, - RX1 =0,
Qt - SXl =0
Transformatior of the jump conditions (2. 16) gives
[Lorlv+Te, =0,
Loslv+le,l=o
po 12 (2. 36)
Celv+ [r]=0o,
Celv+[s]=o,
where
v-R
Veirp - (2. 37)

These jump conditions have the same form as those given, for

example, by Bland. (9) They are precisely the "Rankine-Hugoniot

equations' associated with (2. 35) according to the definition of

(1)

Lax.

In terms of the material variables P and Q, the Cauchy

deformation tensors {2. 23) become
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(1.+P)2 QI+ P)

Q(I+P) HQZ

(lJer)/(1+P)‘2 -Q/(+P) -1

(c o) = v (e o) =

op -Q/(1+P) 1 P
(2. 38)
while the invariants (2. 25) take the form
n =1+ Q%+ (WP)Z, 1, = (P)% (2. 39)

The stresses, computed in accordance with (2. 38), are

now regarded as functions of P and Q:

(P @) =G (P, Q).  t,(pa) = TP, Q), (2. 40)

with {p, q) and (P, Q) reclatcd by (2. 33)1 >
Using (2. 40) the field equations (2. 30) can be placed in the

standard form
U.PX + BQX = Rt’

7PX+6QX

S,,
t (2. 41)
RX =Pt’
Sx = Qt’
where
1 1
P,Q =~'U(P:Q): B(P)Q) =—-—0 P:Q:
4P, Q) = —= 05 2 Op(P. )
) ) (2. 42)
V(P,Q) =—— {o(P,Q), d(P,Q) =— T.(P,Q),
Lo P Ao Q

and where, for brevity, X has been written in place of Xl-
The equations of balance for the problem at hand are now
expressed in terms of the differential equations (2. 41), valid for

those non-negative values of X and t where the indicated derivatives
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exist, and the jump conditions (2. 36) applied across surfaces of
discontinuity. The properties of the material, insofar as they are

pertinent to the problem at hand, enter through the functions ¢ $3, 7/,

and & . The stresses are related to the response functions as
follows:
G(®.,Q =n+ (1+P)° h_; CP,Q) = QHP)E_; . (2. 43)
By (2. 42) and (2. 43},
_ R &b (ah_l ah'lﬂ
fo(Fs Q) = HBP) By + 7=+ 5y~ + (WP) \5r—+ 57/ | -
1 2 1 2
dh 2 oh 1
PP, Q) = 20| == + (HP)" = |,
o1 oL
(2. 44)

o[ wem (i 5]
/JOV(P,Q)= Lt 2(l+ P) 3, + 3T, ,

ahl

£ &§(P,Q) = (1+P)l'h + ZQ aI

These functions may be reduced further in the hyperelastic case by
substitution of the forms (2. 30) for h_; and h . Note that in the
hyperelastic case 7= .

2.2.2. Summary of the Equations of the Material Formulation of

the Problem

The material field equations are (2. 41):
GPX + ﬁQX = Rt: SX = Qt:
’)’PX +3 Qy =5,

(2. 45)
R.X = PtJ
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where
Pe= Tp(®. Q). LB =3P py=TR.Q. p6= (P Q.

(2. 46)

They are valid for X,t > 0 provided that the indicated derivatives
exist and are continuous.

The jump conditions are (2. 36):

Corlv+ [o] =o.
Cpslvs LT3 =0,

Ce] v+ (&l
[l v+[s] =o,

and are to be applied at plane surfaces of discontinuity.

(2. 47)

The stresses are related to the deformations by means of the
equations

@, =5 + W)’ , TE,Q=urE_, (2. 48)

where the functions 'EO(II, IZ) and Til(Il, Iz) characterize the material
under consideration.

In addition to the field equations and jump conditions there are
some other conditions to be considered in connection with this
subject. Solutions of the jump conditions are admitted as shocks
only if they satisfy an admissibility condition, proposed by Lax, (1)
which says that their propagation speed be supersonic with respect
to the corresponding characteristic wavespeed ahead of the shock,

and subsonic with respect to the characteristic wavespeed behind the
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shock., A detailed statement of this admissibility condition is given
later. Whether or not the above condition is satisfied depends
strongly on the constitutive equation (2. 26), and these requirements
therefore limit the class of materials for which a givgn solution of
the jump conditions is valid.

Finally, the specification of a problem involves specification of
suitable boundary and initial conditions. Since equations of the form
{2. 45) are the subject of an extensive mathematical literature, the
kinds of boundary and initial conditions which may be specified are

(2)

known in advance.

2. 3. Computation of Characteristic Wavespeeds

In order that disturbances of the elastic materials here
considered propagate through the material as waves, conditions must
be met by the coefficients in the system (2. 45) which guarantee that it
be of hyperbolic type. (2)

Formal computation of the characteristic wavespeeds gives

them as solutions a of

at (ar5) 2%+ (a5 -p7) = 0. (2. 49)
From this a.2 is given by
a2=%{ a+s 2[(a-5)%+ 4;37]1/2} . (2. 50)

In order that az be real it is necessary and sufficient that

(a-5)2+ 47 > 0 (2. 51)
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for the range of P and Q of interest. * This inequality is always
satisfied for hyperelastic materials, since B = 7 in this case (see
Eqns. (2. 44) and (2. 30) ). The inequality (2. 51) will be taken here
as a constitutive restriction on all elastic materials. In addilion

to the requirement that az be real, it is necessary for hyperbolicity
of (2. 45) that az be positive for either choice of sign in (2.50). The
necessary and sufficient condition for this is

a+5>[(a-5)2+ 4p7 ] vz (2. 52)
If (2. 51) and (2. 52) hold, there are four real wavespeeds:
1/2
1 2 i/2
a,= —al={~?:[a+§ +((e-38)+ 4p7) ]}

(2. 53)
! 2 1/2 /2
az= -a,= {-2-[(1-1-6 ((e-3)Y" + 4p7) J} .

Ags will be discussed later, these wavespeeds satisfy the relations

a; < a2<0<a3<a4. (2. 54)

The following limits are assumed to exist as P,Q —~ 0:

a=(A+2p)/p, BV 0, 5=/,  (2.55)

where A and [+ are constants. These prescriptions are enforced
so that, for small deformations, the nonlinear theory used here be-
comes consistent with the usual linear theory of elasticity. In

particular, the assumption B8,% - 0 as P,Q —0 assures that, to

All references to square root (including 1/2 - power) are understood
to mean real positive square root.
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first approximation, shear and dilitational effects are uncoupled. The
constants A and M occurring in (2. 55) are the Lammé modulii of the
linear theory of elasticity. In the linear theory it is usually assumed
(Ref. 11, sec. 30l) that 32+ 2 2> 0 and /2 0 in order that the
strain energy function be positive definite, and that A+ 2 > 0 and
M > 0 in order that the wavespeeds of that theory be real. Those
assumptions are made bere and imply

A+ >0, - (2. 56)

Use of these results leads i the limiting values

ag=N(plp), e, ND(A+2p/p ], (2. 57)

as P,0O — 0, for the wavespeeds (2. 53). 1In the linear theory
'\f((J/ﬂo) is the wavespeed for shear waves and N [ (A + Z‘LL)//JOJ is
the wavespeed Yor longitudinal waves. This terminology is carried
over into the nonlinear théory; a; and a, are called longitudinal wave~

speeds and the associated waves longitudinal waves. Similarly, a,
and ay are called shear wavespeeds and the associated waves shear
waves. As will be seen in the following chapters, this terminology,
particularly in the case of shear waves, is not so meaningful as in the
linear theory; nevertheless it is useful in certain respects and will
be used in this thesis.

By (2. 56), (2.57), and the assumed continuity of a, 8, 7 , and
8 , as functions of P and Q,

a;< a, (2. 58)

for P and Q sufficiently small. It is assumed in this thesis that (2. 58)
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is true for all relevant values of P and Q for all materials under

consideration.

2.4. Remark on the Neglect of Energy and Entropy Balance

The foregoing theory is based on the mechanical principles of
balance of linear and angular momentum, and conservation of mass
and on a statement of the mechanical constitution of the material
being considered. Two other principles which might be expected to
play a role in the formulation of a theory of elastic wave propagation
are: (1) balance of energy and, (2) balance of entropy, along with a
constitutive equation for heat conduction. These latter principles will,
for brevity, be called thermodynamic principleé to distinguish them
from the mechanical principles and constitutive hypothesis.

The theory resulting from consideration of the mechanical
principles and constitutive hypothesis alone is, ovn the face of il, a
complete theory in the sense that it consists of enough variables to
describe the motion and enough equations to permit determination of
these variables. In so far as smooth solutions are concerned this
is true, but when discontinuous (weak) solutions are admitted it is
possible to find both smooth and discontinuous solutions satisfying
the same boundary and initial conditions and an additional admissi-
bility condition becomes necessary to determine which solution shall
be used. In special theories such as that of wave propagation in
perfect gases this difficulty is remedied by inclusion of the thermo-

dynamic principles as they are understood in that context. Such
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considerations have also been attempted in recent theories of elastic
wave propagation. For hyperelastic materials the equation of
balance of energy is satisfied in regions where the fields are smooth.
At discontinuities the jump condition associated with this equation of
balance cannot be satisfied, in general, unless a thermodynamical
variable such as entropy is introduced and it is not clear even then
that an admissible jump in this variable permits satisfaction of the
jump condition for energy balance. The equation of entropy balance
is satisfied automatically in regions where the fields are smooth if
it is assumed that the material is non-heat conducting. No satisfactory
statement of this principle seems to have been made for cases of dis-
continuous fields.

Chu, in his theory of waves in non-heat conducting incompress-

ible hyperelastic solids,(s)

gives consideration to energy and entropy
balance in smooth waves, but fails to make clear statements of the
jump conditions associated with these principles and, although the
equations associated with these principles are said to be satisfied

by the entropy jump, this entropy jump is not calculated nor is it
shown to exist and to be positive. Positivity of entropy jump is not
used as an admissibility condition for shocks as is the practice in
gas dynamics; rather it is assumed that smooth solutions are proper
where they exist and jumps are admitted otherwise.

In the work of Bland(g’ 10)

energy and cntropy balance are
considered and the entropy change across a weak discontinuity

is calculated. Only jumps for which the entropy change of a
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particle upon passage of the jump is positive are admitted as shocks.
This thermodynamical admissibility condition and a condition for
mechanical stability of discontinuities are shown to be equivalent

for weak shocks.

In the final analysis the theories of Bland and Chu do not make
much use of the thermodynamical principles, Both investigators
consider isentl;opic motions where these motions are continuous. At
jumy Chu abandons thermodynamical considerations altogether;
Bland requires entropy increase of a particle u‘p'on passage of the
jump in order that it be admissible as a shock solution, but carries
out the details only for weak shocks.

Because the thermodynamical aspects of the above discussed
theories are unsatisfying and because an adequate thermodynamical
theory seems beyond reach at the present time, the course taken in
this thesis has been to ignore the thermodynamical question entirely.
The special and rather artificial admissibility condition discussed
has been introduced in place of the thermodynamical principles.

With this admissibility condition the theory obtained is, as a practical
matter, similar to the above isentropic theories of Chu and of Bland.

TruesdellH) does not employ thermodynamical principles in
his investigations of elastic wave propagation and does not study

shocks, hence has no need of admissibility conditions for them.
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CHAPTER Il

SHOCK WAVE PROPAGATION

The wave propagation problem to be studied has been set in
terms of the field equations (2. 45) and the jump conditions (2. 47),
along with the admissibility conditions for shocks and suitable |
boundary conditions yet to be formulated.

Since the jump conditions are algebraic equations, in contrast to
the differential field equations, it is natural, in the quest for simple
exact solutions for propagating disturbances, to seek solutions corres-
ponding to regions of uniform state (in which the differential equations
are trivially satisfied) separated by propagating surfaces of discon-
tinuity. Other forms of solution are considered in later chapters.

Section 3.1 of this chapter is devoted to the consideration of
these piecewise constant solutions for the initially deformed half-
space X 2> 0 when the displacement gradients at the boundary are
suddenly changed. Later sections of the chapter are devoted to
special cases of this problem. In section 3.1.1 the problem is first
simplified by leaving out the shear disturbances and in sections 3.1.1.1
and 3.1.1. 2 further simplified by considering loading and unloading
cases separately. In section 3. 1.2 the problem of application of
shear strain to the boundary of an undeformed body is considered.
Finally, in section 3. 2, a summary of results of the investigations
of this chapter is given.

Conditions on the material constitution are given under which
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each of the various solutions considered is admissible.

3.1 Sudden Application of Displacement Gradients to the Boundary
of an Initially Deformed Half-Space

This section is devoted to consideration of the problem of sudden
application of displacement gradients to the boundary of a half-space
initially deformed but at rest.

Let the displacement gradients and particle velocities in the
initial state have the constant values P =P, Q= QS’ R =S =0. The
stresses in the initial state, C 5= G(_PS, QS) and ’Zj‘5= 'Z(P5,Q5), are
assumed known in terms of the given displacement gradients. At
t = 0 let the dispiacement gradients on the boundary X = 0 be changed
from P5 and Q5 to the new constant values Po and Qo’ respectively.

The solution is assumed to consist of three regions of constant
state separated by two propagating surfaces of discontinuity. In the
region farthest from the boundary the state remains unchanged from
its initial condition. In the region nearest to the boundary the dis-
placement gradients are those given on the boundary and the stresses
are .known in terms of these given displacement gradients. The
particle velocities in this region have the unknown constant values Rl
and S;. In the intermediate region the solution corresponds to an
unknown constant state, the field quantities of which are denoted by
the subscript 3. The discontinuity separating the region adjacent
to the boundary from the intermediate region is supposed to propagate

at the constant speed v, and the other discontinuity is supposed to

propagate at the constant speed V4. This assumed form of solution
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is shown in figure 3. L

&
iR
t z ,
P’B ® Q. =ao /
R=R, ’ S=.5 I

0" O; 1 t = u

P"'Po ’ Q.‘-‘-ao

0
Figure 3.1
Clearly these fields satisfy the following boundary and initial
conditions:
P5, t< 0 QS’ t <0
P(0,t) = -, R(0,t) = ,
Po,t>0 Qo,t>0 (3. 1)

P(X,0) = PS’ QUX,0) = Q5, R(X, 0) = 5(X, 0) = 0.

Since the assumed fields are constant in the interior of each
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region the field equations are trivially satisfied there.
Substitution of the assumed fields into the jump conditions (2. 47)

and algebraic reduction gives

1l
o

(B -P T - Ty -(2,"230( 0~ 0)

(PPN T ,- T)-(Q3-R )N G5~ () =0,

v \/To— Z‘3 V. = )\/ O\3" 0_%
27 Ypte, a5 4 PoP 3 Fgl
(3. 2)

~
i

-(P3—P \A%

5V g 83 = -(Q;5-Q)V

S, = (Q4-R IV, + (R,-Qy)V,,

=
1

(P3-P0)Vz + (PS—P 3)V4,

where explicit use has been made of the inequalities VZ > 0 andv

V4 > 0 implicit in the assumed form of the solution shown in figure
3.1, and where the stresses are related to the displacement gradients
through the constitutive equations (2. 48).

Examination of (3. 2) reveals that the question of existence of
solutions of the assumed form reduces to the question of existence
of solutions P3 and Q3 of (3. 1)1, 2 and confirmation of the require-
ment V4 > VZ'

In order that any solutions of the jump conditions thus found be
admissible as shocks they must satisfy conditions given by Lax(l)
in the following operational form: At a point on a line of discontinuity
in the (X, t)-plane draw, issuing in the positive t-direction, the

characteristics with respect to the state ahead of the discontinuity
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which fall in the region ahead of the discontinuity. and those with
respect to the state behind the discontinuity which fall into the region
behind the discontinuity. A solution of the jump conditions is admissi-
ble as a shock if the number of characteristics drawn in this manner
is three.

Lax provides some analytic motivation for the use of such an
admissibility condition. In the present context it may be noted that
this admissibility condition, as applied to the longitudinal jumps, is
equivalent to the condition given by Bland(lo) based either on thermo-
dynamic or on mechanical stability considerations.

When jumps are typified as longitudinal or shear in correspon-
dence to the distinction previously made for smooth waves, and when
it is assumed, as before, that at each point the characteristic shear
wavespeed is less than the characteristic longitudinal wavespeed,
then the above admissibility condition may be given as follows:; The
propagation speed of a jump admissible as a shock is supersonic with
respect to the corresponding characteristic wavespeed evaluated
ahead of the jump and sut;s onic with respect to the corresponding

characteristic wavespeed evaluated behind the jump. For the jump II

this admissibility condition may be expressed analytically as

and, for the jump IV, as

where the subscripts denote the region in which the wavespeeds, as
given by (2. 53), are to be evaluated. In addition to the inequalities

(3. 3) and (3. 4) it is required that V, < V4. This set of inequalities
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.is equivalently, and more symmetrically, given as:
taghy < Va < {ag)

V, <V (3. 5)

2 4

(a < Vv

v < Vg < ey
It is obvious that some restrictions must be placed on the
functions O (P, Q) and T (P, Q) if solutions of the assumed form are

to exist and to satisfy the admissibility conditions. In order that the

shock speeds be real it is necessary and sufficient that -

as is seen from (3. 2)3‘ 4 The admissibility conditions (3. 5) place
further restrictions on the material constitution. The question of
establishing appropriate constitutive restrictions is the central one
of the present problem.

In the remainder of this chapter various special cases of the

general problem posed in this section are discussed.

3.1.1. Application of Normal Strains to the Boundary of a Normally

Strained Half-Space

This section is devoted to consideration of the problem of
sudden application of normal strain to the boundary of a normally
strained half-space. The problem is essentially that considered
previously by Bland, (9,10) but is included here for completeness
and because the resulls are needed in later sections of this thesis.
This problem is seen to be a degenerate case of the problem of the

previous section and its solution is obtained from (3. 2) by Substituting
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the further restrictions QO=Q5=0 of the new problem, along with their
consequences %O= ’C5=0, and by noting that in this case the jump II
must vanish, The resulting situation is as shown in the (X, t)-plane

of figure 3. 2.

]

t I, I hursl

O A
"

9

e

[

Q

o X0

Figure 3. 2

The field quantities are given in terms of the boundary and initial
conditions as
)\/O‘o" 05
V4_ = m}‘ » Rl = —(PO—PS)V4. (3. 7)
The displacement can be computed from (3. 7) if desired; the result

is
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. PoX-(Po-PS)VQt’ X-V4t < 0
1=

P_X, X-v t > 0.

5 4
For the purposes of the present discussion the positivity of the
radicand in (3. 7)1 is taken as a constitutive requirement; the

necessary inequality,

(G- 0P Py >0, (3. 8)

is precisely the T-E inequality discussed in terms of ''static

(12)

plausibility" by Truesdell and Toupin. The characteristic

longitudinal wavespeed is

a, = «/[OP(P,O)/ o1 (3.9)

In order that the jump here considered be a shock it is necessary

that the admissibility condition

geE _,0)- JPrP_,0)
)/O\P(PS’O) < «/ OPO-P5 2 4 '\/O\P(Po’o) (3. 10)

be satisfied.

This solution illustrates the fact that purely longitudinal waves
can propagate unaccompanied by any waves involving transvecrsc
displacement.

It may be observed here that if the stress-strain function
(O=0(P, O) is invertable the solutions here presented are immediately
interpretable in terms of a boundary value problem in which the
normal stress (0°, rather than the displacement gradient P, is pre-

sciibed at the boundary X = 0.
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3.1.1.1. Application of Normal Strain to the Boundary of an

Undeformed Half-Space

It is of interest to further simplify the problem of the above
paragraph to thc casc P5=0, so that in advance of the disturbance the
material is undeformed. In this case 0'5 is also zero and the

solution (3. 7) becomes
r\/mp°’0) R, =-P V (3. 11)
vV, = BFE » = - . .
4 PoFo 1 ° 4

The admissibility condition (3.10) becomes

J(A+2M < M[O(PO,O)/PO] 4L Y0P, 0, (3. 12)

where the left member is taken in accordance with the limit given by
(2. 57). The requirement (3.12) can be conveniently described as one
of convexity: |0° (P, 0)| must be convex for P > 0 or for P < 0 as the
case may be. A necessary and sqfficient condition that (3. 12) be
satisfied for all Po of interest is that G‘P(P,O) be monotone in-
creasing for P > 0 and monotone decreasing for -1 { P ¢ 0.
Materials satisfying (3. 12) for all PO > -1 can be called monotonically
hardening in uniaxial extension. If {3.12) is satisfied for P> 0

(for -1< P < 0) then the material is called monotonically hardening
in tension (compression). An example stress-strain curve for a
material monotonically hardening in uniaxial extension is given

as figure 3. 3.
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AG‘(P.O)

Figure 3. 3

This problem is clarified by considering, by way of example,

the second order theory outlined in the appendix. In this case

g{P,0) = /JOQOOP + —é- /Ooalo'PZ + ... {3.13)

where o > 0. The exact results (3.11) become

N 90 _
V,=Nga (1+ P +...], Rl--P0V4, (3. 14)

and, to first approximation, the admissibility condition (3.12)

becomes
010P0> 0 . (3.15)

The tensile jump is an admissible solution if the material is such
that a0 > 0; otherwise the compression jump is admissible. It is
seen that, for example, compression jumps are not admissible in

materials for which a, < 0. Since there is no obvious reason why
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a compressive strain could not be applied to the boundary of such a
material it is presumed that solutions oth«r than those of the presently
assumed form exist. This is indeed the case, and in a later section

it will be shown that for alOPo < 0 a smooth wave solution exists.

3.1.1. 2. Removal of Strain from the Boundary of a Normally Strained
Half-Space

The case in which the half-space is initially deformed so that
P=P5 throughout is now considered. If at t=0 the strain is removed
from the boundary, the solution (3. 7) becomes

v4=¢[0(95,0)/pop5], Ry =PV, (3. 16)

and the admissibility condition (3. 10) takes the form

Y0pP,. 0 </[TP, 0P T < ¥/ (A+2p). (3.17)

Materials having the property (3.17) for all P5 > -1 are said to be
monotonically softening in uniaxial extension.

In second order approximation (3.16) becomes

a
_ 10 _
V4-'\/a00(1+4a P5+...), R, =PV

[e29]

(3.18)

and, for satisfaction of the admissibility condition (3.17) to first
approximation it is necessary and sufficient that

a,,Ps < 0. (3. 19)

This condition is opposite to (3.15); it implies that unloading of an
clongated body takes place by means of a shock if 214 {00 If
210 > 0 a compressed body can be unloaded by a shock. It will be

seen in subsequent chapters that the remaining cases involve
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propagation of smooth waves.

From the preceeding examples one sees that, assuming the
material is admissible in the sense that the wavespeed is real
(aoo> 0), the sign of Lhe second coeifficient, that is, the curvaturc
of the stress-strain curve, is the crucial feature so far as the nature
of admissible waves is concerned. This situation will be seen to
prevail in more complicated situations where, however, the resulting
inequalities are not so easily visualized in terms of a simple experi-
ment. The fact that the admissibility conditions (3. 15) for the loading
and (3.19) for the unloading problems are satisfied by materials of
opposite character is true of the exact conditions (3.12) and (3.17) as
well and, furthermore, carries over to: problems involving shear
waves. For this reason only loading problems are considered

subsequently.

3. 1. 2. Application of Shear Strain to the Boundary of an Undeformed
Half-Space

The complexity of problems involving shear wave propagation
is such that the treatment is best restricted to conéideratiOn of
loading of an initially undeformed half-space or unloading of an
initially sheared half-space, since any more general problem is not
significantly simpler than the case of section 3.1.

In the previous sections the essential difference between the
loading and the unloading problem was seen to be in the reversal of
comparisons in the admissibility conditions for shocks. This

situation prevails in shear wave problems as well, and consequently
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only loading waves are explicitly considered in the following work.

The problem of application of shear strain to the boundary of
an undeformed half-space is covered by equations (3. 2) and figure
3.1 with the specializations

P5=Q5=0, PO:O (3. 20)

to account, respectively, for the facts that the body is initially
undeformed and that no normal strains are applied at the boundary.
Consistent with the assumption that longitudinal disturbances propa-
gate faster than shear disturbances and the observation that they

propagate into an unsheared body un accompanied by shear distur-

bances it is conjectured that »
Q3 = 0. (3. 21)

By (3. 20) and (3. 21), (3. 2) becomes

P3 ’C'0+ QO( 6\‘0" 0\3) =0

VZ 1/( To/ PoQo)’ V4 = 'l/( 03/ /OoP3)’
(3. 22)

Ry =-PVy 53=0,

PaVy=Va) 5 =-Q.V,

it

Ry
Formally, the solution of the problem is now obtained when (3. 22)1
is solved for P3 in terms of Q. the remaining equations in (3. 22)
serve to determine the remaining quantities directly. The question
of the existence of a solution P,= P3(Qo) > -1 of (3. 22.)1, and of the
admissibility of such a solution as a shock remains to be settled.

It is not to be expected that solutions of {3. 22)1 exist for all
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functions G (P, Q) and TI(P, Q) nor that all solutions which may exist
will be admissible as shocks. Indeed, if smooth wave solutions are to
exist it must be expected that there be some cases where either
solutions P3=P3(Qo) of (3. 22)1 fail to exist, or exist but are not
admissible as shocks.

Conditions (3. 5) that the jumps be admissible as shocks are that

\/TQ(P3,O) < A/[’C(O,Qo)/goj Z ,\/{% [O~P+ 'Z:Q

(o 0%+ 4G~ T )1/2} |
- (U 5- )T+ 4 )
P Q Q"F on’Q:QO

(3. 23)

WV [Two.am, ] < Wo®, ore,]

J(ae2p) <4/ [Twp0rr,] < qaye,. o

Since P3 and Qo appearing in (3. 23) are related by (3. 2.2)l these
inequalities cannot immediately be regarded solely as constitutive
restrictions. However, (3. 23)3 is certainly satisfied for a material

monotonically hardening in extension. Similarly, since, by (2. 42)
and (2. 53),

(a.) < 4/ T.(0,0),
3P=O,Q:Qo /\/ Q( o)

it is seen from the right hand inequality of (3. ‘23)1 that a material
monotonically hardening in shear is necessary in order that a
solution of the form considered may be admissible as a shock. Since
a solution of (3. 22)1 which fails to satisfy (3. 23) is of no use in the

present connection, conditions of this sort can be placed upon
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G(P,Q), and T (P, Q) as hypotheses of an existence theorem for a
solution of (3. 22)1.

Equation (3. 22)1 is now considered with a view toward
establishing some simple sufficient conditions for the existence of

a solution. With

A(P;Q ) = G(0,Q.)/P
(3. 24)
B(P:Q ) = 0(P,O)/P - T(0,Q)/Q,
(3. 22)l takes the form
A(P 5; Qo) = B(P3;Q°). (3. 25)
It is assumed, as a constitutive requirement, that
g®,o0)/P >0, T(O, Qo)/Qo > 0. (3. 26)

The limiting values of these ratios as P, Qo — 0 exist by assumption

and are given by
G(P,O)/P — Xt 2, T(O,Q)/Q U, (3. 27)

where A and P are the Lame modulii of the linear theory. Based
on the results obtained in section 3.1.1.1 convexity of |"(P, O)l is
assumed since it is necessary for the admissibility of any solution
which may exist. Also, as observed in this section, attention may
be restricted to materials monotonically hardening in shear.
Whether B(C;Qo) is positive or negative is immaterial in the present
case, but the hardening requirement implies that for sufficiently
large P, and fixed Qo’ B(P;Qo) > 0. In this case B(P;Qo) has the

form shown in figure 3. 4A and/or 3.4B. The character of the
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function A(P;Qo) varies with the sign of ( (O, Qo) as shown in
figure 3. 5. Superimposing figure 3.5 on each part of figure 3. 4
reveals that:
1) If the material is hardening in both tension and compression
there exists a solution P3 of (3. 22)1 whatever sign 0 (O, Q)
may have.
2) If the material is hardening in tension there exists a
solution P, > 0 of (3. 22); provided g (O, Q) > 0.
3) If the material is hardening in compression there exists

a solution P3(~1< P3 < 0) of (3. ‘22)1 provided 0 (O, QO) < 0.

There may be solutions in some other special circumsténces as well.
For all three cases above the left hand parts of the pairs of in-
equalities (3. 23)3 and (3. 23)2 are satisfied. If the left hand part of
(3. .?.3)1 is satisfied then (3. 2.2)2 plus the condition that the material
be hardening in shear implies the right hand part of (3. 23)3.

To illustrate this loading shear wave problem it is convenient

to consider the third order theory outlined in the appendix. According

to (A. 9) the stresses are g.iven by

1 _ 2 1 21 2 1 3
73—;0(P,Q)—aoop+za10P +-Z[3010 + = B, PO + 3 aPT
(3. 28)
l 7@, -8 o+ 5 Pa+ 8 pPigrl s o3
- 2R = S0 10 20 3 2% -
O

In terms of these stress-strain relations (3. 2.2.)l has the solution
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2
Bar R
P 01 o e, (3. 29)
2 2(ea - B
00 00
and, with this, (3. ZZ)Z 3 become
B, Y )
Nr-ums 0l "01 2
V,=~NS8 (1~ — Q"+ ...
2 00 45oo(aoo 500) °
(3. 30)

a0 B
e ol Qo-’-+...).
° aOO (o7 ] 00

It is required here, as in (2. 56), that an, > 500, hence for

2
sufficiently small Qo" (3. 30) implies VZ LV Similarly, assuming

4
a, > 500 and monotonicity, the admissibility conditions are found
to be
80P
10701
oo oo

3.2 Summary of Shock Solutions

In section 3.1 the shock waves arising as result of a change

of strain at the boundary of a deformed half-space were considered.
The problem was reduced to the solution of two algebraic equations
but these equations were not solved explicitly. In section 3.1.1 this
problem was simplified by eliminating shear effects from the initial
state of deformation and from the boundary conditions. This resulted
in an explicitly solvable problem which was considered in its
generality and also in the special cases of loading of an undeformed

body and unloading of a deformed body. Conditions for admissibility
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of shocks as solutions of these problems were seen to be that, in the
loading case, the material be of hardening type and, in the unloading
case, that the material be of the monotonically softening type. These
conditions are familiar to workers in other areas of nonlinear wave
propagation.

In section 3. 1. 2 the shear loading problem was discussed. It
was shown that the shear disturbances there considered could not
propagate alone, but were élwa.ys accompanied by longitudinal waves.
Conditions of admissibility were given which, as in the normal loading
case, could be described as requirements that the appropriate stress=-
strain curves be of hardening character. Since two jumps were
involved in the solution of this problem, separate admissibility con-
ditions had to be met on each one. For the longitudinal jump (IV) the
admissibility condition was, as before, that the material be mono-
tonically hardening in uniaxial extension. For the shear jump (II)
it was seen to be necessary that the material be monotonically harden-
ing in shear. The exact statement of the necessary and sufficient
condition for this jump is given in (3. 23)1.

Various of the above problems were illustrated by second~order
solutions which, presumably accurate for moderate deformation

gradients, have the virtue of displaying very clearly the effects of

the nonlinearities involved.
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CHAPTER IV

PROPAGATION OF CENTERED SIMPLE WAVES

In the previous chapter various problems of sudden application
of strain to the boundary of a half-space were found to be solved in
terms of shocks. Other problems, seemingly well set, could not
be solved in this manner because the admissibility conditions were
not satisfied. It is reasonable to assume that in these cases the
disturbance will propagate as a smooth wave. For the present
purpose, waves are considered to be smooth if the field variables
P,Q,R,S are coutinuously differentiable with respect to X and to t
except perhaps at certain propagating singular surfaces across which
it is required that the field variables themselvés be continuous.
Such waves must be solutions of the field equations (2. 45):

aPX+ ﬁQX =R

t)

TP+ 35Q, =S,
X Xt (4. 1)

RX - Pt:

SX = Dt.

As in the previous chapter, the problems to be considered involve
boundary conditions in which the displacement gradients P and Q are
prescribed step functions of time. In accordance with Lax's

(1

results, the fact that the boundary conditions are step functions
implies that smooth solutions are made up of centered simple waves
and regions of uniform state. The centered simple waves are

familiar to workers in other areas of nonlinear wave propagation, for
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example gasdynamics, (3) and are discussed in later sections of this
chapter.

In section 4.1 the eimplified problein involviug only longitudinal
disturbances is discussed. In sections 4.1.1 and 4.1. 2 this problem
is further specialized to cases of loading waves and unloading waves,
respectively. In section 4. 2 the problem of application of shear
strain to the boundary of an unloaded half-space is treated. The
problems of this chapter have exact counterparts in the previous and
the following chapters; the difference lies in the class of materials

to which the solutions are applicable.

4. 1. Application of Normal Strain to the Boundary of a Normally

Strained Half-Space

This section is devoted to consideration of the problem of wave
propagation occurring in a normally strained half-space when the
normal strain applied at the boundary is suddenly changed. This
problem will be seen to be analbgous to the shock tube problem of

(3)

gasdynamics and to the shear wave problem in an incompressible

(8) It has been rather completely discussed by

elastic half~space.
Bland<10) but is briefly included here for completeness and to permit
ready comparison with the results of other parts of this thesis. Only

centered simple waves are considered.

For the present problem symmetry considerations indicate that

Under this hypothesis the field equations become

Q(P)PX = Rt: RX = Pt: (4' 2‘)
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where, from (2. 46),
a(P) = a({P,0) = '\/EGP(P, 0)/ /00} .

Centered simple wave solutions are those of the form
P = P(2), R = R(Z), (4. 3)

where
Z =X/t. (4. 4)

In this case (4. 2) becomes

a(P)PZ + ZRZ= 0,

(4. 5)
ZP, + R, =0,
and elimination of R gives
2
[a(P) -z%lp, =0 (4. 6)
For a non-trivial solution of (4. 6) it is necessary that
2% = o). (4. 7)
From this equation P can be obtained in the form
P =P(2Z), V34 < Z < V45, (4. 8)

provided that «(P) is a monotone function increasing as P varies
from P0 to -PS.
The situation is as shown in the {X, t)-plane of figure 4. 1.

According to (4. 7),
v, NPy = Voo, 0/p] . v, Ne®)= JlaaP. 00/ p) .

(4. 9)
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I, . IT %

Figure 4.1

Substitution of (4. 7) into (4. 5) and integration gives

Vs

R(Z) =21 % az’ (4. 10)
4

for V,, £ Z € V45 Ry is obtained from (4.10) as R(V,,), and this

completes the solution of the problem.

As is seen from figure 4.1, Eq. (4. 7), and the monotonicity

assumption on a(P), it is necessary that V34 < NaP) < V4 for all

5

P between PO and PS:
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NOLPp 0) < NOR(P,0) <N GL(P,, 0). (4.11)

Comparison of the extreme members of (4. 11) with those of (3. 10)
shows that situations where the shock solution is admissible and
where a simple wave solution exists are complementary. In this
sense the admissibility condition here employed for shocks can be
replaced by the principle of using smooth wave solutions where they

exist and otherwise admitting shocks.

4. 1.1, Application of Normal Strain to the Boundary of an Unstrained

Half-Space
In the case of longitudinal waves propagating into a body un-
strained and at rest the solutions of the previous section hold with

P,=0. (4. 12)

With this simplification (4. 9) and (4.1l) reduce to

Vag= lop@o 0/ oL vys= a0 0 pd Y {Arzpipl,

(4. 13)

and

NOp(Pg 0)< NTLP, 0 < N(A+2[h) (4. 14)
for all P between PO and zero. Observe that (4.14) is characteristic
of softening materialé. From (4. 13)‘2 one sees that a smooth
longitudinal wave, however strong, advances into the undeformed body
at the lincar dilitation wavcaspeccd. This is to be expected, since the
continuity properties of such waves indicate that N [OP(P, 0)//JO] _

must be near to its limiting value for P=0 at the wave front.



For illustration of the results of this section an example is
given using the second order theory outlined in the appendix. By
8
(An )1:

2 :
a(P) = agg + ¢, P +O(P7), as P>~ 0. (4. 15)

Substitution of this equation into (4. 7), the exact solution in the
simple wave region, gives
2

~ 2 '
Z° = apy * alOP +0(FP7), (4. 16)

and the wave speeds of interest are

a
_ 10 _
v34_~fa00 1+-2—Eo~()_-_PO+...), v45_«/a00, (4.17)
with /00 ayy = A+ 2/l . Condition (4. 14) for the existence of a smooth
solution becomes
e;0Fo < 0.
which is complementary to (3.15), the admissibility condition for a

shock.

4. 1. 2. Unloading of a Normally Strained Half-Space

The unloading problem for a normally strained half-space is
included in the case of section 4.1. Those results are reduced to

the present situation by letting

P0 = 0. (4.19)

With this simplification (4. 9) becomes

Vi = ALz p T, Vas = {lep®s 00 Al (4. 20)
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and (4. 11) becomes

N(X+2p) < NGo(P,0) < N GL(P,, 0), (4. 21)

for all P between zero and PS’ an inequality which characterizes
monotonically hardening materials. Comparison of the extreme
members of (4. 21) with those of (3.17) shows, again, that the cases
where smooth waves exist are complementary to those where shocks
are admissible.

Calculation of a second order example can be carried out just

as in the previous section.

4. 2. Application of Shear Strain to the Boundary of an Unloaded
Half-Space

As in the case of shocks (section 3. 2. 2), smooth shear waves
cannot propagate unaccompanied by dilitation effects. This section
is devoted to investigation of smooth waves analogous tu the shocks
of section 3. 2. 2. 1.

Consider an elastic half-space X > 0 initially at rest and
unstraine_d so that-

P(X,0) = Q(X,0) =0, R(X, 0) = 5(X,0) = 0. (4. 22)

Suppose that the displacement gradients

0, t<0

P{0,t) =0, Q(0,t) = , (4. 23)

QO, t>0

are applied. Since all waves propagate with finite speed there is a

rest zone ahead of the disturbance, and since the boundary conditions
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do not change after a certain tirne there i 8 vniforw state behidud the
. : r. - (1) X . ..
disturbance. lu accordance with Lax's'™’ results the regions adjacent
to regions of uniform state are simple waves, and because the
boundary conditions are step functione of time these simple waves
are centered. A solution of this form is assumed for the prescnt

problem and is dopicted in the (X, t)-plane of figure 4. 2.

T
SIWIPLE
AKEAR T
WAVE % UNIFCRIHG MITION
44‘;;3 P=P., Q-0 /
éy A=R., S0

g€, , TeO

W
}

Figure 4.2

This assumed solution invoives a loigitudiral wave in region TV.

fellowed by a region of uniform motio:. region III. aiso not involving
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shear effects, propagating ahead of the shear disturbance into the
rest zone. This is consistent with the assumption that longitudinal
waves propagaté faster than shear waves. Region II is occupied by
the centered simple shear wave which is the main feature of the
solution. The region between the trailing edge of the shear wave
and the boundary is, again, one of uniform motion.

The process of constructing in dctail the solution decscribed
above may be broken down into several parts. The first step is to
obtain a centered simple wave solution in region IV, about which
everything is known e#cept the normal displacement gradient P3 on
the boundary between regions III and IV. Next the centered simple
shear wave of region II is constructed so that it matches the uniform
state in region I. It remains to fix Pj and the boundaries of region
III so that the field variables are continuous across these boundaries,
and, finally, to write down the conditions under which all the above

steps can be carried out.

Solution in Region IV

Under the assumption Q=0 in region IV the field equations therc

become
a(P)Py = Ry, R.= Pt, (4. 23)
with the conditions on the boundary of the region that P=0 when

X/t = V45 and P=P, when X/t = V34. This problem is seen to reduce

to one of the type considered in section 4.1.]1, except that here P3 is

not yet determined. The results of that section give
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Vs = 4/[(2+2#)//00]* V4= ‘J[GP(PTO)/PQ]' (4. 25)

As in section 4.1.1 the solution in the longitudinal wave region is

obtained from
(x/0% = a(P),
/“J[‘A"'zf‘)//Jo]
2

X/t

a(P(Z) )
AN (4. 26)

R{X/t) = “P(

by inversion of (4. 26)1, to obtain P=P(X/t), and substitution of this

rcsult into (4. 26)2. From figure 4. 2 it is seen that V34 < VA5 is a

necessary condition for existence of this longitudinal wave. When
this condition is coupled with the invertibility requirement placed

on (4. 26)1 the condition
JLope, 070, 1< Va@) < 4 liavzpiip,] (4. 27)

for all P between P3 and zero results.

Solution in Region II

Consideration of the simple wave occupying region II is more
troublesome because the full set of field equations {4. 1) is involved.
Since the disturbance in this region is a centered simple wave,
solutions are sought in the form

P = P(Z), Q=Q(Z), R=R(Z), S=S(Z), (4. 28)

where Z = X/t. Substitution of (4. 28) into (4. 1) gives
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aPZ+ BQZ+ ZRZ =0,
TP, +%Q,+ 25, =0,

Z z Z (4. 29)
R, + ZP, =0,

SZ+ ZQZ = 0.

Since @, B, 7 , and 3 are functions of P and Q alone, R and S can
be eliminated from (4. 29) to give the second order quasi-linear
system,

%)

{a-2Z PZ+ ﬁQZ = 0,

(4. 30)

2 =
?’PZ+(6 -Z )QZ-O,

which describes the solution in region II. The initial conditions for

(4. 30) are
P(V,) =0,  Q(V,)=Q,, (4. 31)

as is seen from figure 4. 2. A necessary condition for a non-trivial
solution of (4. 30) is that
2
(e-2)(3-2% - p7 = 0,

or,

2% (¢-512% % (a5-87) = 0. (4. 32)

With this (4. 30) gives

%%_=~ 2 . (4. 33)
«-7°

The solutions of (4. 32) are
Z::t{%—[a+5:t ((a-s)2+4ﬁ7’) ]} (4. 34)

For the case at hand only solutions Z > 0 are appropriate and, in
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addition, Z(0, QO) must be the wavespeed for a characteristic
associated with shear wave propagation. On this basis the signs in

(4. 34) are chosen such that
1/2
1 2, aor) 7]
Z = {5 \av5 - ((a-8)2+ 487 ) . (4. 35)
From this,

1 , 1/2 1/2
Vip = {2 [a-‘r& - ((a—&) + 47 ) }} P=0, Q=0,’ (4. 36)

Substitution of (4. 35) into (4. 33) gives

ab . -2
aQ
a-3+ (e 5)2r4p7]M

(4. 37)

which is a first order ordinary differential equation for P=P(Q). The
initial condition is

P(QO) =0, (4. 38)
and solution is to be obtained on the interval between QO and zero. In

accordance with figure 4. 2, P, is given as
P, = P(0). (4. 39)
The shear wavefront propagates at the speed

V,3 = {%—[a‘l-& - ((a— 5)%+ 4{3?’)1/2J}

which becomes, since B(P,0) =0,

1/2

P=P 3’ Q=0

Vyy =NO®, 0 = /[Ty 0/p,] (4. 40)
Substitution of the solution P=P(Q) of (4. 37) into (4. 30) gives

{ CatPi), -2 1P Q) + gPi). Q}Q, = 0. (4. 41)
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For non-trivial solution Q(Z) of (4. 41) it is necessary that

z% = o[P(@), Q) + B[P, Q] /P(Q) (4. 42)

and, providing that the right hand member of (4. 42) is a monotone
function of Q increasing as Q varies from QO to zero, it is invertable
to give a solution
Q=0Q(Z). (4. 43)

In accordance with (4. 35) and (2. 53)2, the right hand member
of (4. 42) is just the square of the shear wavespeed in region II, as
is to be expected, and the condition that it be monotonic can be
rephrased as a condition that the wavespeed be greater at the leading
edge of the wave and that it decrease through the wave to a minimum
at the trailing edge. This condition for the propagation of smooth
waves is familiar to workers in other areas of nonlinear wave
propagation. Substitution of (4. 43) into the solution of (4. 37) gives P
as a function of Z in region II:

P = P(Z). (4. 44)

With this and (4. 43) equations (4. 29)3 4 can be integrated to give

R = R(Z) and S = S(Z) in region II.

Admissibility

In order that the computed wavespeeds not contradict the

implications of figure 4. 2 it is necessary that

0 < Vip < V3 < V3y <Vys (4. 45)

where, as has been shown,
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l ) 1/2”1/2
V12:{7?-770 (o5 T~ (0 Tg) s 49, T P=0, Q=Q/’

V,ya= V[FCQ(P?’,O)//J__\, V34= '\/{GP(PyO)//D{S’ (4. 46)

v

45" 4/[(2 +2p )/f’o] .

Equations (4. 45) and (4. 46) can be rephrased as

(ag)y < (agdyp  (agdyy <(a)pp (B <))y - (4. 47)

1f account be taken of the invertability requirement on (4. 26)1 and

(4. 42), this can be extended to

(ag) < 2y <(ay)

101
(aghyp < (@i (4. 48)
(ai < Zry < (ay)y

where

1/27)Y2
ZH={—%[¢1+5—((G-S)2+ 457) ]} s

ZIV='\/-a ,

(4. 49)

with the right hand members of (4. 49) permitted to take on all values
in the appropriate wave regions. The inequality (4. 48)2 reflects
the assumption that longitudinal waves propagate faster than shear

waves. The inequalities (4. 48)1 3 eXpress the requirement that the
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wavespeed must decrease monotonically with passage of a smooth
wave. Note that the extreme members of (4. 48)1 3 form a comparison

opposite to that of the extreme members of (3. 5)1 3

Summary of shear loading problem

The exact solution of the shear loading problem in terms of
smooth waves has been obtained. The (X, t)-diagram of figure 4. 2
has been shown to be appropriate to this case. The solution in the
longitudinal wave region is given by (4. 25) and (4. 26). In the shear
wave region the solution is given by (4. 36), (4. 40), (4. 43), and (4. 44).
In order that the assumed solution be valid the inequalities (4. 48)

requiring that the material be softening in character must be satisfied.

Example calculation

As an illustration of the results of this section an approximate
solution is given.

The first step to be taken is approximate solution of (4. 37):

dP _ -28
ol 5 7z - (4. 50)
e-5+ (a-8)+ 4p7

Examination of this equation discloses that, in region II, PzO(Qoz)
2

as QO — 0. This means that a change of variable is convenient to

facilitate accurate ordering of terms.

Introduce @, &2 such that

@ = —ZP/QO2 P = -QOZQ/Z

(4. 51)
9 = QZ/QOZ Q®=q %e
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Substitution of this into (A. 13) and neglect of terms of order higher
2
than QO gives

a

10 2
> @+ aozo?) Q

0

a=a00+(- + ...

ﬁ:p(}lQO‘\/& + ...,

NG (4. 52)
7= 510Q0 2 + ...,
_ £10 ) 2
5"500+("7T @ + 5020? Qy + ...
With this, (4. 50) becomes
i Por { 1 E
—-_ = ———— 1- % PR ( 3 -a ) @
de 250" 300 Z(aoo 500) 10 710
(4. 53)
Bny &
01°10 2. 2
+ 2 e - B+ — ) }Q +
02 02 250 500 0
Suppose @ (&2 ) is representable in the form
2
P =P+ Q@+ -0 . (4. 54)

Substitution of (4. 54) into (4. 53) and equation of terms of the same

degree in QOZ gives

o Po
d-? 200~ $00
ae 8
1 01 )
@ . -5 )2((510 20'%0 (4. 55)
00~ 00

Bo1 310 }
+ 2(a -5.+_._..___)<>?
(02 02" ey 3y
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The initial condition on (4. 53) is (1) = 0, hence the conditions for

(4. 55) are
@0(1) = 0: @1(1) = O, .« a4 .

With this the solution of (4. 55)1 is

Bo
Py = (2-D,
00~ %00
and the solution of (4. 5‘3)2 is
_ Bo1 Boil 8107910 2
6)1 - 2 AQnn= § (¢ -1)
By, & ) }
01 " 10 2
+ 2{aq, 8, ——a— | (@Z7-1) |.
( 02 02 230 500
With these results (4. 54) becomes
p p Bl Bn-a14)
00~ 300 Hagg- 840 0~ %00

By & )
01710 2 2
+ 21@na~ O F —— (Qg -1 iQ + ...
02" °027¥ 7 T 5., 0

Substitution of (4. 51) into (4. 30) gives
2
Qyla-2) N@ P ,-p, =0,
Z —
QO7’«/@'(PZ-(5 -2, = 0.
Since ¢ =C(L ), (4. 60)1 can be rewritten

[Qo(a 28 NT @ -] 2, =o.

For non-trivial solution of this equation it is necessary that

(4. 56)

(4. 57)

(4. 58)

(4. 59)

(4. 60)
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or
z% - a- £ (4. 61)
QN G
2 ..
To O(Q0 ) this is
2 “10 2
Z =a00+(-— —— (PO-I- aozoz)Qo + oo
B.. 8
_ 01 °10 2
_(500+ z(aoo' 500) QO + )+
38 .8
+ls 01710 >02 2 .
( 02 " ZMayg 5490 Qg *+ - -- (4. 62)
From this
v —'f3_~[1+ - & _beiBL)CDZ
12~ 00 285, | 027 agy7 854/ "0 LR
- (4. 63)
V,,=N &, K}+ 01 10 Q 2+-...].
23 00 4840legg™ Bgg) O

The necessary condition, VlZ < V23, for the existence of a solution

of the form considered becomes

Po1 810

5., < 0L 10
250~ %00

02 < , (4. 64)

which is the complement of (3. 31)2. From (4. 59),

[301

1
— 1 1- [Z(a - 8,,)
Z50- 500{ Hago 850 02" ®02

Borlagt By } 2 }
+ 5 QO S RN I
%90~ 200

& (0) = -
(4. 65)
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This gives
2

P, =-20 poy o, 0L o2 (4. 66)
37772 ()—7‘7“00'500) o Toeeov '

The solution in thc longitudinal wave region, region IV, is much

more easily obtained. From (4. 25),

_ %10 Por 2. ) _
v _JTOO(H Fagalac 5o 0 7 ) b Vasm i [arzmip,].

(4. 67)

The requirement V34 < V45 becomes

a0 Bop < 9
the condition complementary to the admissibility condition for a

shock, (3. 31)1. Estimates of the field quantities in this region are

obtained from (4. 26).
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CHAPTER V

SHEAR LOADING PROBLEM - SOLUTIONS COMBINING
CENTERED SIMPLE WAVES AND SHOCKS

The solutions previously given for the shear loading problem
presuppose that the shear and dilitation effects both propagate ﬁs
smooth waves or both propagate as shocks. In this chapter cases
where one of the waves is smooth and the other is a shock are
considered.

In section 5.1 the solution of the problem of sudden application
of a shear displacement gradient to the boundary of an undeformed
elastic half-space is solved under the assumption that the disturbance
propagates as a smooth shear wavé preceeded by a normal shock. The
situation is relevant in connection with the special hyperelastic
material discussed in the followi"ng. chapter. In section 5.2 the same
boundary and initial value problem as above is considered, but this
time subject to the assumption that the disturbance propagates as a
shear shock preceeded by a smooth longitudinal wave. Section 5.3
is devoted to a summary of the results obtained for the shear loading
problem in Chapters III, IV, and V. Finally, in section 5. 4 an
example problem is discussed which illustrates an effect which may

occur when a monotonicity condition is violated.
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5.1. Solution Combining a Normal Shock and a Centered Shear Wave

In this section the shear loading problem is again considered.

A solution of the form depicted in figure 5.1 is assumed. This figure

shows a disturbance consisting of a normal shock followed in turn by

a region of uniform motion and a centered simple shear wave propa-

gating into the undeformed half-space.

t T I
P=0, d=d. SIMPLE
R= Rt, S'—"S.
P SHEAR
[N ) (] WAVE

P=0 3 Q‘"‘&a

Figure 5.1

Clearly the initial conditions
P(X,0) - Q(X,0) =0, R(X,0)=8(X,0) =0,

and the boundary conditions

(5. 1)
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0,
P{.t) =0, Gy t) = (5. 2)
Qg 8>V
are satisfied by the fields shown in figure 5. 1. Application of the
jump conditions (2. 47) to the jump IV gives the shock speed V4 and

the particle velocily R3 as
ve= J/[0®L0/ /P 1. R =PV, (5. 3)

where P, remains to be determined. The admissibility condition on
the jump is

Niarzp) < o/ [0(Py /P, ] < N Og(P . 0) (5. 4)

In region Il a centered simple wave solution is sought. The

analysis is the same as that carried out in the previous chapter with
the result that P and Q are related by (4. 37):
= -2p

dpP
@ - PEN Vi A (5.3
(¢-3)+ Ba-—s) + 4[37}

subject to the initial condition .

P(QO) =0, (5. 6)
P3 is given, in terms of the solution P(Q) of (5. 5), as
P3 = P(0). (5. 7)

As in section 4. 2, the leading and trailing edges of the shear wave

have the speeds
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1/2

1/2
Vip = {% %ﬁ’ - (te-31%+ 4p7) H P=0, Q=Q,°

V23 = '\f&(P3, 0),

(5. 8)

with the inequalities

V12 < V,3< V4 (5. 9)

implied in figure 5.1. The inequalitie)s (5.' 9) and (5. 4) combined with
the monotonicity condition on the shear wavespeed in the simple wave

can be written
(agh < Zp <{ag)yy s

(ady <V, <tadpys

where s /s
ZII={%EZ+8 -((a~5)z+ 467) J}‘ , (5. 11)

with Q=Q(P) in accordance with (5. 5), and P taking on all its values
in the wave region.
A third order example can be calculated as has been done in

the precvious scctions. Among the results of such a calculation are

- P12

3 Bop O
1 01 *10 2
=“5oot1+zsooaﬁ i )Qo +]

P +

0 S,

v

12
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Byy & Z

01 =10 2

V.o,=Ng§ E+ - Q +...},
23 00 4 850'eg0 So0) O

a.qB
V4='\ja00 1+8 10( 01_ ) QOZ-!-...],
“0'%0"~ 00
where it is recalled that agq=(} +2f*)/100’ and 8= 1‘*//00’ but that
the higher order elastic constants have no counterparts in the linear
theory and in the nonlinear theory have magnitude and sign depending
on the particular material under consideration. For this case the

conditions (5. 10) become

0 <appBprr 802 < By 310/(eg0™ Spo) (5.13)

5.2. Solution Combining Centered Longitudinal Wave ans Shear Shock

This section is again devoted to the shear loading problem, but
this time a solution of the form depicted in figure 5. 2 is considered.
This figure shows a disturbance, consisting of a centered simple
longitudinal wave [ollowed, i‘u turn, by a region of uniform state and
a shear shock, propagating into the undeformed half-space.

The fields shown are again seen to satisfy the boundary and
initial conditions (5.1) and (5. 2), and the field equations in the

interior of regions I, III, and V. Application of the jump conditions

to II gives
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ST

t] *
P‘O, Q’-ao
R=R, , 8=8

= c’ﬂ\ T='ta

jv4

SIMPLE LONGITUDINAL
WAVE

P=O, a=a0

Figure 5.2

P, ’L“O + Qy(C - a3) = 0,
v, = Vﬂt(o,go)/poQO], (5. 14)

S; = -V, Ry-Ry =-P,V,,

and the burden of the analysis falls on the solution of (5. 14)1. This
equation has been discussed in section 3. 2. 2. 1.
In region IV the field equations become

o(PYPy =R, Ry =P, , (5. 15)
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and, as discussed previously, the solutions are

(x/9% = a(P), R(X/t) =2 T -% iz , (5. 16)
x/t F
with
Vigs Ve 0/ L Vs [0z p] (517
R, is given by (5.16), as R(V,,). As is seen from figure 5. 2, the

3 34

wavespeeds rust satisfy the inequalities
Va2 < V34 <Vaso
that is,

/L T, Q) /0, < N 0L (P, 00 < N{A+24) . (5.18)

In addition to this, the admissibility conditions for the shock must be
satisfied. All these inequalities, together with the invertibility

condition on (5. 16)1 give the inegualities

(a ). <

ah € Frv <3y

with
Zy = N a(P) , (5. 20)

P taking all its values in region IV.

Computation of a third order example gives the results
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B 2
P, =2 Q “+
3= Hage-5gg 0 T

2

2 00 1" 4 300l%90™ 390
\ (5. 21)
a; 4P
10701 2
v =N g (1+ Q +..),
V45 = '\faoo
In terms of (5. 21) the inequalities (5.19) become
By S
0l 10
_— Y 5.22
“0P01 <0 g sy < Sz (5. 22)
provided the monotonicity condition is satisfied. If &, = 0 then

02
(5. 2.2)2 becomes 501 610 < 0 which is also sufficient for mondtonicity.

5. 3. Sliear Loading Problem - Summary

Review of sections 3.1. 2, 4.2, 5.1 and 5. 2 reveals that the
same shear loading problem has been studied in each of these
sections and a different solution obtained in each case. This does not
give rise to contradiction or ambiguity because the inequalities
controlling admissibility are different. The situation is most easily
understood by considering the extreme members of the first and
third lines of the sets of inequalities (3. 23), (4. 48), (5.10), and
(5.19). These are shown in table 5.1 where, it will be recalled, ay
and ay stand for the shear and longitudinal wavespeeds, respectively,

and where the subscripts on these quantities denote the region in

which they are to be evaluated.
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Thesis | Eqn. | Condition on and Condition on and
Section | No. Char.acter of Shear Character of
Disturbance Longitudinal Wave

3.2 | 323 (@slg <(23) (ay)y < ey
Shock Shock

4.2 | 4 48| (a3)p < (aghy (2 <(ay)y
Smooth Smooth

5.1 5.10 | (33) < (a3)y () < (a)pg
Smooth Shock

5.2 | 519 | (@3l < (830 (agh <(ayy
Shock Smooth

TABLE 5.1

It is seen from the table that shocks prevail when the wavespeed

increases upon passage of the disturbance; smooth waves prevail

when the wavespeed decreases upon passage of the disturbance.

Each of the four cases considered is different; together they exhaust
the possibilities.

The inequalities shown in the table are incomplete in the sense
that the middle part has been omitted. This middle part is the
condition that the appropriate stress-strain curve be monotonic. If
this condition fails to be met then even though the extreme members
are in the proper relation, the solution, as given, is inadmissible.
An example of the additional complexity introduced in this situation
is given in the next section.

The inequalities given in the table incompletely describe the

situation in another sense: the second inequality of each set has been
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omitted. In each case this omitted inequality reflects the assumption
that the longitudinal disturbance propagates faster than the shear
disturbance. As discussed in section 2. 3.1, this is necessarily true
{for sulficiently small disturbances. It seems probable that it is true
more generally but this is not proved. If there should be a material
for which a shear disturbance can propagate faster than a dilitational
disturbance then solutions for this case could be computed as above

but with the order of the waves reversed in the (X, t)-diagram.

5. 4. Special Example: Smooth Longitudinal Wave — Normal Shock

Combination

The example of this section is given to illustrate the difficulties
attendant upon violation of the motonicity requirements. For this
purpose a special material (not necessarily representative of any
real solid) having an inflection point in the stress-strain curve for
uniaxial extension is considered. This example also illustrates the
larger problem that for exhaustive discussion of plane waves a great
variety of phenomena must be identified and materials classified in
such a way that it can be predicted which of the various possible
phenomena can occur in a given case. This is particularly important
since the method of solution is semi-inverse in the sense that one
must begin by making a conjecture about the appropriate configuration
in the (X, t)-plane.

The stress-strain curve in uniaxial extension for the material

of this example is
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2 1 3
aP) = /00 (C1 P+~3-C3P )s (5. 23)

> > 0.
Cl 0, C3 0
Consideration is restricted to longitudinal waves, and in this case

the field equations are

«(P)Py =R, Ry =P (5. 24)

where, using (5. 23),

2y c.p?. (5. 25)

a(P) = Cl 3

The jump conditions are

[eyvi[r] =0 v- \/{[0“] //«Oo[r’]} , (5. 26)

and the admissibility condition for a normal shock is
+
Nop®p, ] < v, < Y Iep@y/p,] . (5. 27)

where P:,‘Jr and PO are displacement gradients ahead of and behind the
shock, respectively.
The boundary and initial conditions considered are

P(X,0) =P, (-1<P,<0), R(X,0)=0,
(5. 28)

0, t<0
P(0,t) = ) (P> 0).
Py t>0

It is conjectured that the (X, t)-diagram for this problem is as
depicted in figure 5. 3. This figure shows the undisturbed material
at rest in a compressed state. Expansion to the extended final state
takes place in part through the simple wave of region III and in part

through the normal shock II.
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o
SIMPLE LONGITUDINAL
WAVE : P=P(X/t)

P=F >0

Figure 5.3

In the simple wave region
7% = (X/1)° = o(P) (5. 29)

or, for the material at hand,
2 _ .2 2
Z"=C, + CyP5% (5. 30)
the subscript being adjoined to P to denote validity in region III only.

From (5. 30),



-79-

C C .

_ 3_ 2 . 3 4.2

V4= C; J 1+ —3P, } V,= G, ,\/ 1+ —5(P,")
< <y

(5. 31)

The jump condition gives

T o, [ p03
v, =C - . , (5. 32)
3¢, P; =Py

and, for agreement between (5. 31)2 and (5. 32), it is necessary that

+
P, =-Py/2. (5. 33)

In this case
C3

2 1 "\/L 4

~

],
A check of the right hand part of (5. 27) shows that the membe  aire in
the relation indicated. On the left equality prevails, as may be seen
from figure 5..3. This is a condition mathematically like the contact
discontinuity of shock tube theory and of Lax's theory(l’ 2) although,
because of the coordinates used here, II is not a contact surface in
th‘: physical seuase.

The situation here presented can be described as a shock with

a smooth precursor wave. The case C4 < 0 leads to a similar

situation except that the shock preceeds the smooth wave.
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CHAPTER VI

EXAMPLE PROBLEM: WAVE PROPAGATION IN A SPECIAL

HYPERELASTIC SOLID

As an example of the results presented in the foregoing chapters
the problem of propagation of loading waves in a special material is
solved. This material, chosen for this example solely as a matter

(15)

of convenience, was proposed by Ko, on the basis of experi-
mental observations, as a moael for static deformation of a foam
rubber. The stress-strain relation is
c,.
=].L(Si.--——y— ; > o. (6. 1)
JooNmI, -

By (2. 38), (6.1) implies

1+ Qz T Q
G(P: Q) = (1 = '3) » (P: Q) = hn— Y (6° 2)
H (1+ P) H 1+ P)~
and, from this
G 1+ QZ G Q
=3 ——, = -2l —,
P Y Q K .
a (6. 3)
T =-2 , T = H .
P . 1+ P)° Q14 p)?

By (6. 3), (2.406), and (2. 52) it is seen that the inequalily

Q%< 3 (6. 4)

must be satisfied in order that the field equations (2. 45) be of

hyperbolic type. For uniaxial extension (6. 2)1 becomes
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1
g(®,0) = (_x_(l —a;-};—)—?’—), (6. 5)

which function is plotted as figure 6.1. Materials having such a
stress-strain curve are describable as hardening in compression
and softening in tension. Expansion of (6. 5) about P=0 discloses

that
A = I_,L (6. 6)

for this material.

¥
0

-1

Figure 6,1
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In accordance with (2. 42) and (2. 53), the characteristic wavespeeds

associated with this material are
’ 1

1 —
L3z
2 2 2 2\ 2
s ao M TB@QY 1 /30% 1 )+16Q ’
377212/ me)t (P2 wP)r  wp)?)  wp)®
I
2 z
D en ) I 3(1+Q2)+ 1, 3% 1 )+ 16Q2>
L2/l weyt  (we)? BPYT (wP)Y  (1+p)°
(6. 7)

Whether longitudinal loading disturbances propagate as shocks

or as smooth waves has been seen to depend on whether the inequality
N(2+2p) < 4f |G (P, 0)/P] < NGL(P,0) (6. 8)

or one with reversed comparison holds. Substitution of (6. 2), (6. 3),
and (6. 6) into (6. 8) shows that loading disturbances propagate as:

1) Shocks if P< 0
(6.9)
2) Smooth waves if P > 0.

6. 1. Application of Normal Strain to the Boundary of an Unloaded
Half-Space

In this section the propagation of a normal loading disturbance

in the material (6. 1) is considered. In accordance with (6. 9) this
disturbance propagates as a shock for P 0 and as a smooth wave
for P > 0.

The shock situation (P < 0) shown in figure 6. 2 is considered

first.
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L, IO, I

P=FP<0 , Q=0

Figure 6.2

By (3. 11) the shock speed and the particle velocity in region I are

given by
V= J[Go/popo}, R, = -P,V (6. 10)

so that, using (6. 4),

- 1
v =W/\“‘_‘(l"—"—)] R, = -P_ V. (6. 11)
4 PoFo 1Py’ 104

To complement this solution, centered smooth wave propagation

corresponding to a loading for which P > 0 is also considered. This
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situation is as shown in figure 6. 3, and corresponds to a centered
simple wave advancing into the undeformed medium, followed by

a uniform state of tension.

I
~

y I, T
P=R , @=0
R-‘:R‘ [ S=O X,
¢= 0% T=0 N
’ S ™
SIMPLE LONGITUDINAL
o WAVE
il
3
- Q
¢ R
y >
¢ - 3
P:Q_:o
R=8=0
g = =0
— X

Figure 6.3

The solution of this problem is as given in section 4.1.1. The speeds

of the leading and trailing edges of the simple wave are given by
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Vo= 4(0p®g /R ). Ve 5/[(“2/‘)//001’

(6. 12)
respectively. In the simple wave region
Vs
(X/t)° = 0o (P, 0)/ fy, RIX/t) =2 & % az. .
X/t T (6. 13)
By (6. 4)
31
aP) = C_(P,0O)/ 0, ==L
P f%) /00 (}%P)4
SO
V= ABRpmY], v, e NERIP,) . (6.14)
and
(x/9% = 3 /P (1P, Vi, & XtV o (6. 15)
R(X/t) = -(3 p/ pt* | NV 5 N (6. 16)

In summary, the solution of the smooth wave problem is described

explicitly by

0, Region V
P =< (3 1~L/[JO)1/4 N(t/X) -1, Region IV
PO’ Regionl
(6.17)
0, Region V

R =4 -/ P app *-xM?] Region1v,

, 1/4
-(3 H/Po)l/%m‘/ /30)1/4- QH/PO(HPO)‘*X , RegionI
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where the various regions of interest are

Region I 0 ¢ X/t ¢ [ 3pipyrp? ]
Region Iv: o/ [3/ P, (+P)* ] < x/t (N (3H/ P, (6.18)
Region V: VX3}1/P0)4 X/t .

The displacement can be obtained from (6. 18) by integrating the

equations 9U/8X = P, and 8U/0t = R.

6. 2. Application of Shear Strain to the Boundary of an Unstrained

Elastic Hall~-Space

This section is devoted to investigation of the shear loading
problem for the material characterized by (6.1). According to (3. 23)1
‘a shear disturbance can propagate as a shock only if

1/2
™~ l T - - Ll 2 ) ]
“/[(’(O’QO)/Q0]<4{7[GP+ o (T T 40T, beo
Q=Q0'

For the material at hand this inequality becomes
1 2 2 4

an inequality which is not satisfied for any choice of QO. It is con-
cluded that shear loading disturbances will always be propagated

as smooth waves for the material presently considered.

It has been shown in general that shear effects propagate in
company with longitudinal effects. Until the shear wave is investi-

gated it cannot be determined whether the accompanying longitudinal
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disturbance will propagate as a smooth wave or as a shock.

The initial and boundary conditions are again taken in the
following formu

D(X,0) = Q(X,0) =0, R(X,0)=5(X,0)=0
0, t<O0 (6.19)

P(0,t) =0, Q(0,t) {
Qg t> 0

It has been shown that in the centered shear wave the ordinary
differential equation (4. 37) must be satisfied. For the present
material this can be written

2 1/2
a0% _ 3(1+0%)-(1+P)> N 31+0%) - (1+ P) 2 } . an?
=l 2(17 D) Z(F D) :

(6. 20)

The initial condition on this equation is
2 2
Q~(0) = Qq (6. 21)

where it must be recalled that, in accordance with (6. 4), Q02< 3.

Integration of (6. 20) has not been accomplished but, for the
present purpose, it is sufficient to investigate some properties of
the solution. In particular, the existence of a number P2 > -1 such
that QZ(PZ) = 0 is to be proved. The right hand member of (6. 20)
is seen to be positive if

314Q%) - (#P)° > 0, (6. 22)

a relation satisfied in the shaded region of figure 6. 4. In this

region solutions Q'2 = QZ(P) of (6. 20) are monotonically increasing

functions of P. By (6. 20) and (6. 19),
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2 1/2

2l so.

2 2+ 3Q02 (24 3QO2
— (“"2“‘“‘ t 49,

(6. 23)

In accordance with this result, the solution curve has positive slope
a+ P =0 T+ to)
Clbe o e whe & rl

2
(0, Qy ), continued into the region P < 0, will cross the line QZ=O

i annT
LS o o]

for some PZ in the interval (-1, 0).

—
N

°n

/3 -|

Figure 6.4
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Within the shaded region of figure 6. 4

Since QZ > 0, (6. 23) can be replaced by
D S o
for P in the range (-1, N 3-1). By (6. 24),
Q? < % + 2 log(1+P) + 3 -1 (1P)° (6. 26)

for -1<P < 0. This bound guarantees a zero, P, of QZ(P) in the -
interval (-1, 0). The speeds of the leading and trailing edges of the

shear wave are, in accordance with (6. 6)1,

V = J_.___‘k_.i_._
23 /JO (sz)z

1/2-
v, = \/{2% [44. 30,%- ((z v 30,5 + 16002> H

= P2=QOZ:O’

(6. 27)

That V12 < V23 is seen bY,first noting that V12 = V23

a trivial case. For Qoz small and using the fact that -1< PZ < 0 it

follows that VlZ < VZ Since these two wavespeeds depend con-

3
tinuously on QOZ and P

vanishing P, QOZ.

2 the inequality must be true for all non-
Since Pz < 0 it follows from (6. 8) that the longitudinal distur-

bance associated with this problem will be a shock, that is, the

solution of section 5.1 is applicable. The approbriate (X, t)-diagram

is that of figure 5.1. Adaptation of the results (6. 11) to the present
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notation gives

/2
Mol ( 1 n
V., = | o ] - , R, =-P.V.. (6. 28)
4 \1/’0 P, “""3(1”,2) 2 2V 4

It is readily seen that V23 { V  tor whatever value in (-1, 0) PZ may

4
have.
Substitution of P(Q), as obtained by inverting the solution of

(6. 20), into (4. 42) and procceding as indicated in the text following

that equation completes the solution of the problem.

6. 3. Wave Propagation in Harmonic Materials

: : . 16) . .
The "harmonic material" of Fritz John( ) is of some interest
in conncction with the prcsent wave propagation problems. This is a

hyperelastic material with the following stress-strain equations.

0=z ,u[<z+p) EOW) 4], T-zue Fuw)iw, (6. 29)
where
w = ¢/ [(2p)?+ Q%] (6. 30)

with F(W) a function characterizing the various materials in this

class. The function F is supposed here Lo have the following properties:
F{w) >0, F (W) > 0, for allWw,
F(2) =1, F2)=(2+2@®)/21, (6. 31)

FY(W)/W . monotonically increasing fn. of W.

Consideration of longitudinal waves in this material poses no
special problems. It is found that either smooth longitudinal waves

or normal shocks propagate into an undeformed body according as
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F1"(W) is a monotonically increasing or a monotonically decreasing
function of W.

The shear loading problem is, of course, more complicated.
For the harmonic material the equation (4. 37) is explicitly integrable
and gives the result

(e+2)*+ Q%= 4+ 0 %, (6. 32)

which implies that W is constant in the shear wave region. This, in
turn, means that the shear wavespeed is a constant in this region,
hence that the wave region degenerates to a single ray. The jump
conditions are found to be satisfied along this ray but the incqualitics
to be satisfied for admissibility do not hold; equalities hold in their
place. This gives a very special situation similar to that discussed
in section 5.4, The solution is neither a smooth wave nor a shock.
If this special disturbance is admitted then the solution to the
boundary vélue probiern can be completed by using the kind of
longitudinal wave approl-)riate to the character of F" (W), as

discussed above.
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CHAPTER VII

PERTURBATION SOLUTION OF THE FIELD EQUATIONS

It is clear from the examples included in the foregoing parts
of this thesis that a method of obtaining an approximate solution of the
wave propagation problem which possesses the qualitative features
of the exact solution would be very useful.

An obvious choice _for such a method would be some kind of
permrbation analysis. Omne such method has been proposed by Fine
and Shield(7) for general three-dimensional elastodynamic problems,
but their method is deficient for the present purpose in that it gives
its best results only for a rather short time interval, and then in a
form which somewhat obscures the qualitative aspects of thé solution.
Their approximation is obtained by subjecting the field equations and
auxiliary conditions, expressed in the physical variables (X,t) or
(x,t), to a straightforward perturbation analysis. This method fails
to provide improved estimates of the wavespeed at each stage of the
computation, and thus generates secular terms in the solution. A
similar difficulty frequently occurs in investigations of ordinary
differential equations having oscillatory s_olutiOns but is avoided
there by applying, for example, Lindsteds method of correcting the
frequency of oscillation.

A perturbation analysis is described in this chapter which,
while of less general applicability than that of Fine and Shield,

corrects the wavespeed at each stage of the analysis thus avoiding
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secular terms in the solution and giving results which are felt to be
better and more easily interpretable. This method is essentially
that proposed by Phyllis A. Fox“?) in a gasdynamical context. Slight

modification has been ncccssary to include shear wave problems.

7. 1. Application of Normal Strain to the Boundary of an Undeformed

Half-Space
In the case Q=0 the field equations (2. 45) reduce to

oP)Py =R, Ry=P, (7. 1)

with
a(P) = GP(P,O)//’O . (7. 2)

This problem has been treated fully and exactly in the literature and,
indeed, has been discussed in this thesis but is included here as an
example problem to illustrate the solution of wave broPagation
problems by perturbation methods.

(17)

Following Fox, characteristic variables s, = sl(X, t) and

1
5, SZ(X’ t) are introduced into the (X, t)-plane in such a way that

X +ANgt =0, X -Nat =0. (7. 3)
Sl S1 SZ S2

The s; =constant curves constitute an admissible set of coordinates
so long as the wavespeed N'a is finite and non-zero. In these
coordinates the problem (7.1) becomes one of solving the system of

equations
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NaP_ + =0
1 1
N/:PSz- s (7. 4)
u/'Etsl+ Xsl =0,
r\/_atsz— st =0,

subject to suitable boundary and initial conditions. If consideration
is limited to disturbances propagating into an undeformed body at
rest the boundary and initial conditions are

P(X,0) =0, R(X0)

P(0,t) = ¢ B(t), $(0)

0

H

(7. 5)
0

3

where ¢ (t) and ¢ are given and & is small. In addition to this,
initial conditions must be given which fix the parameterization of the

characteristic curves sizconstant Take

X(xl, SZ) . =0, ANa t(sl, SZ = s {7. 6)

where, as before,
aOO =¢Z(0,0) =(A+ZILL)//OO . (7' 7)

Using (7. 6) the boundary condition (7. 5)3 can be rewritten in terms

of the new variables as

P(s,s) = € §(s/aoo) . (7. 8)

The initial conditions (7. 5)1 , are not conveniently expressed in
the characteristic coordinates, but since there is a rest zone ahead

of the wave, an initial condition may be applied on the wavefront.



-95-

On this basis (7. 5)1 5 are replaced by the conditions

P(0,5,) =0, R(0,s5,) =0 > 0. (7. 9)

20 =0 5
The (X, t)-diagram of figure 7.1 illustrates the coordinates and

auxiliary conditions.

t
S Sr < 58 'Y
/foo QD‘&
c ¢ 20
(S, 5) “‘:\i G
tq “2 &"‘o
ﬁ”
REST ZONE
8. P=0, R=0
L/Oloo
— X
Figure 7.1

It is assumed that P) is expandable near P=0 as in (A. 8)1,

a(P) =gt a P+ a P2+..

00t %0 20 . (7.10)

and that P, R, X, andt are representable by the perturbation series

2
P=¢éPy+ P +.

R+ éZR +

R = cee

0 1 (7. 11)
X=Xg+ X+ ...,
t =

tgt €t ...,
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where the functions depend on the arguments S; and S5 Substitution

of (7. 10)1 into (7. 9) gives

a(P) = agg+ €ag Pyt ..o, (7.12)
and, from this,
€% )
N[a(P)zf\]ao_O l+——2—55-6—P0+... . (7.13)

Substitution of (7. 10) and (7. 12) into (7. 4) and cquation to zmcro of the

coefficient of each power of ¢ in each equation gives

0
& N agoto T X = 0, N aOOtO -Xy = 0, (7. 14)
51 51 2 %2

él: '\)QOOP +R, =0, N P -R, =0,

0 0 %00 T 0 0
Sl Sl SZ SZ
210
"jaootl + X =-——'J_-—P0to , (7. 15)
8y s1 2 240 s1
%10
N aoo tl -Xl = - —_————2,\/‘ PO to ,
82 %2 %00 52
2 %10
& Ne.,P, +R, =«—o—"ou P_ P, ,
001 1 o 0°0
51 51 200 51
(7. 16)
— %10
290 1 Ry ="2J ~ Py Py -
) 200 S2

Substitution of (7. 10) into the boundary and initial conditions (7. 6) -

(7. 9) gives
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Xi(s, s) =0, i=0,1,...,

Nan t (s, s)=s, ti(s,s)=0, i=l, 2,..

%00 ‘0
(7. 17)
P (s, s)= ﬁ(s/«/“aoo), P.(s,s)=0, i=l,2,..., :
Pi(O, SZ):O’ Ri(O, s2)=0, i=0,1,...
The solution of (7. 14) consistent with (7.16) is
tO = 1 (s1+ sz), XO ——é (sl-—sz). (7.18)
2N @
Solution of (7. 15)1 23 with due regard to (7.17), gives
P0= @(sl/\[aoo), -Na C-ﬁ (S /'\[a (7. 19)

as is readily verified. Substitution of (7.19) into (7. 15)3 4 gives

o _ %10
&t Xy 1__7?5_" ‘5(51/'\[“00)’

200 11
vo (7. 20)
(Z
(Nann t - = - é(s /N[a ) ,
%00 1 5, da,, aq0
and solutions of these equations satisfying (7.17) are
s,/Nag,
- alO /,\/’ alO A
Vagoty Tga (5178550 (s/Negg) + P (=)dz
*1"Y %00
(7. 21)
SZ/'\/-aOO
“10 I %10
X]. - = 'é'c'z_o—(_)’ (sl-sz) @ (Sl aoo) + @(Z )dz.

8V«
00 sl/N[aOO

Connections to P and R are computed from (7. 16) which now take the

form



-98-

S T A, N RO §

(Na~r PAR.)
00 1 1 Sl 4'\[a O
(7. 22)
(Nea P R)
2
The solution of (7. 22) compatible with (7. 17) is
a
P,=0, R, =- & (s /«fa (7. 23)
4’\/—0. 00
The collected results are as follows:
P= ¢&(s/Nayy) + O &),
R =-éeNay, O(s/Nay) «}g(slufa O)+0(e)
4'\[a 00
5“10
’\laoo (s +s )+ 8‘100 l-sz)é(sl/\/-aoo)
sZ/N[aOO (7. 24)
€ %0 . 2
+— ¢© (z)dz + O( €7),

8N«
00 sllJaOO

sz/'\/-aOO
€419 2
i $ (z)dz + O( €.
a
00 sl/'\[aoo

_ 1
X = —-Z(sl-sz) -

As an example problem (7. 24) is evaluated for the case

¢=Py  Bl1) = —%,— H(t) - {—%— -1) H(t- 2), (7. 25)

where T is a given positive constant. The function ¢ is displayed
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as figure 7. 2.

(8 fe e ——
Y
Ch

Figure 7.2

Substitution of (7. 25) into (7. 24) gives

P
P = —— {sl H(sl/'\fa - «/ 0 ) sy -Na "ao)}+0(1=0 )
¥ %00
Py
R =--——,g—{slH(s - -N a 'Zf)H(s '\/aoo'l‘.‘)}
2
Py e 3
- '\/__4{8 H(S)—(1 "C‘)H Ve ”C’}+O(PO)
2ot =351t 8) ¥ ———=— (s 5,) {s,H(s)) 00T E(s -Na )}
260" %00
P

+ 0 10 {szz-slz-t- (sl-"\lao H(s -N a
16ay 4N %00 T

,~NagoT) His,-Vag B} + 0P, %)
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1 T 010 H(s,)-(s,-Na g B)H s, -Na 0B}
Xz (Slasz)- 8a,,Na T(SI"SZ){SI (Bl ! 51
00" 700
00 4 20 %) 4 (s N ag)? H(s N a2
...._._..___.__.. (s ) + (s ’L‘ H s a2

~(s, «/_“e) H(s,-Na 'E’)}+O(P0)

(7. 27)
In the region'\f'.aoo?fé $,<8, (7. 27) becomes
3 — Pozam
PI=P +O(P ), R = -P a - —
0 0 0" 700
4N a
00
_1 3
N aoot = (sl+s2) + O(PO ), (7. 28)
P q
_ 1 0710
From (7. 38)3’ 4
-Na _t - 1 N 1
817V ¢go P,a, X 87 N agott P s X.
(1+2 +.-.) (1+T—-+--.)
%00 %00
(7. 29)
Along s;=constant
P a
B Naget —2+ o(p,?) (7. 30)
2 %0

and similarly for s,=constant. This shows how the present method

provides corrections to the wavespeeds beyond their values
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according to the linearized theory. In the region 0 51 < N 250 T <

5, (7. 27) becomes
° 3 oot P02‘7‘10 2 3
P=Py——— +O0(Py”), R=-—c - 2 51 +O(P, )
Vage© 4agoN e
P a .
N 250 t =% (Sl+82.) + 0 10 (sl-sz)2 + O(Poz) (7. 31)
16aOON/ %40 T
1 Po%10 2 2 2
X = -5 (s,-5,) - ———— {25 )-(s,%-s, 9+ o(P) .
21 "2 16a ,\/—(;) { 1 0

a rough figure displaying the solution (7. 27) is given as figure 7. 3.
The drawing is for Poa10 < 0, the case in which shock formation
does not occur.

The perturbation method here expounded is seen both in its
generality (7. 24) and by example (7. 27), figure 7. 3, to provide
solutions having the qualitative features of the exact solution.
Observe in equation (7. 27) and in figure 7. 3 the straight advancing
characteristics in the simple wave region, the proper fit and smooth-
ness across the wavefront, and, particularly the absence of the
secular terms obtained by Fine and Shield.

As discussed by Fox, this method can also be used to predict
shock formation.

The results shown on figure 7.3 agree, in the limit T — 0,

witii the perturbation results of section 4. 1. 1.



—————
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7. 2. Shear Strain Applied to the Boundary of an Undeformed Half-
Space

In this section perturbation solution of the field equations (2. 45)
is considered for cases in which Q # 0. These equations are
QPX + ﬁQX = Rt:

e} =
TP+ QX S

X t’
Ry = Pt: (7. 32)
Sx =%
New independent variables 5q and S5 related to the physical
.independent variables by the.equations
XS —a4ts =0, X -a3ts =0, (7. 33)

1 1 52 2

where

21y 12
a, ={%[(a+ 5)-{(a-5)%+ 4p7) H ,
- 1/2

2, ={-—21-[(a+6)+((a-a)2+ 4&7)1/2” ,

are the two positive characteristic wavespeeds are introduced.
The new variables constitute an admissible coordinate system so

long as the wavespeeds a, and a, are distinct, finite, and non-zero.

4

The advancing characteristics have been chosen as coordinates
because it is expected that the field variables associated with
advancing waves will be most easily expressed as functions of these

quantities. Differentiation is accomplished by means of the formulae

o _ 0 o _ ] 9
851 - Xsl oX N ts ot ’ 5sz - st X T tsz.a_i?’ (7. 35)
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or, equivalently,

81 9%, os

9 1[ 9 8} 3 1[ 0 0 'j
= | b e et e |, ==X = -X
X A s, 851 os 9t A s, 852 Asz 1

(7. 36)
where

) (7. 37)
$182  S2 8

Transforming (7. 32) into (Sl’ sz)-coordinates and adjoining
(7. 33) gives:
t (¢P + BQ +a,R_)-t (@@ +BQ_+a,R_)=0,
sy sy sy 3 Sp sy sy TUsy; 4s,
t (7P +8Q +a,5 )-t (7P +8Q +a,S )=0,
s, sy sy 3 s, 8 s, s, 4 55

ts (Rs ¥ a3Ps

- =0
, e )ts(Rs+aPS) ,

(7. 38)
1 81 Sz 48,

t, (Ss

, + aSQS )—‘cs (S5 + ater(s ) =0,

i 1 1 2 2

X -a,t =0, X
51 4 51

The problem of application of strains to the boundary of a

half-space initially undeformed and at rest is set in terms of the

field equations (7. 38) and the following initial and boundary conditions.
P(X,0) =Q(X,0) =0, R(X,0)=5(X,0) =0,
(7. 39)
P(0,t) =0, Q(0,t) = £¥(1),
where € and ¥are given and

£(0) = 0. (7. 40)
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In addition to (7. 39) initial conditions must be placed on X and t.
These conditions are taken as

X(s,8) =0, aot(s, 8) = s, (7. 41)
where ag is some constant having the dimensions of velocity. In
consideration of (7. 41) equations (7. 39)5’ ¢ can be rewritten in

terms of the (sl’ SZ) coordinates as

P(s,s) =0, Q(s,s)= € S[’(s/ao)- (7. 42)

Since the longitudinal wavefront is SZ=O and the shear wavefront is
sl=0 equations (7. 39)1 4 can be replaced by
P(s),0) = Q(0,5,) =0, R(s,0) =5(0,s,) = 0. (7. 43)
It is assumed that the dependent variables are representable

by the following perturbation series:

P =P+ 0O(ed,

2
Q=0 + 0,
R = .4sz+ o( €%,
3 (7. 44)

S=£51+ O(é ),

_ 2 4
t-to+ & t2+ o(#£M,

- 2 4
X =X+ é X, + Q(é ),

where the perturbation quantities are regarded as functions of 815 8

Substitution of (7. 44) into (A. 8) and simplification gives
_ 2 2
@a=agq+ e(alOPz-i- a02Q1)+...,
B =Byt ns
7 =E5 Rt .,

10717
§=8gg+ ¢ (&

(7. 45)

2
P2+ SOZQl )+ ...

H

10
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The characteristic wavespeeds are found to be

=f\/T+éZ(aP+aQ) cees

00 31 2
(7. 46)
2
=Na +( (a41P2+ a42Q1)+...,
where

. . B0 ____1___(5 _‘3_0_1__‘5_1_0_>

31 N5 o, ’ 32 s 02 ag9™ 9gp
(7. 47)

a

. L1 (a , Por %10 )
41" : 42T 2t o5 |-
2‘\[(100 &'\[aoo 00 | 00

Substitution of (7. 45) - (7.47) into (7. 38) and equation of

terms of the same degree in € to zero in each equation gives

0 _ . -
£ (XgN 500t0)sz_ 0, (X, '\/aOOtO)SI— 0, (7. 48)

]
€0ty (S “Soogl)sl'tos (S 00Q1 =0,

52 1 (7. 49)

to (N 5008 + SOOQI) 1-t0 (N a S + 8 Q1)52= 0,
52 °1

éZ: t (R2+ NS P -t

0 800F2) s 0, 2oF 2l = 0,
52. 1 1 2.
fo_ (N 8poR 2T 240 z) fo_ (N agoR, + agoP ) s,
2 1 )

1 2 2
2 501[1:0 (Ql )s -tO (Ql )s ] !
s 1 2
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2
(XZ-‘\I (1001:2')Sl = (a41P2+ a42Ql )tos s (7. 50)
1

2
(X,-N 5ootz)sZ = (agyP ok 23,0 )ty
s
2
Substitution of (7. 44) into (7. 41) - (7. 43) gives the boundary

and initial conditions

Xi(s ,8) =0, i=0,1,..., aoto(s, s) = s,
a~t.{(s,s) =0, i=1,2,... ,
01 (7.51)
= i= - &£
Pi(s, g) =0, i=1,2,..., Ql(s, s) v (s/ao),
Qi(s: S) = 0: i:Z, 3:"' )
Pi(sl’ 0) = Q. (0, SZ): 0, Ri(sl’ 0) = Si(O, SZ)=0, i=1, 2,...
The solution of (7. 48) satisfying (7. 51) is
_ Nagp 300 _Neggsp N Eg4s; _
Xa= (s,-5,), a,t, = . (7. 52)
O & Wa N5 ) 2 8 090 . Ns
0 00 00 00 00
With (7. 52), (7.49) becomes
NaggiN 8gS 500Q1)s1+ V80N 805+ N “00500‘31);;._2= %
(7. 53)
V200t 80051 200205 T Y S0 “00°1" S00Y)s, = O
The solution of these equations satisfying (7. 51) is seen to be
Q = Flsifag), 8 =-N8&, Fls/a),
(7. 54)

¥(z) =0, =z <0,

2
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With this and (7. 42), (7. 50), , become

N aglR,+ N 850P5) *“" SgolRF N aggP,), 5 =0

2

N a '\/OORZ-I-QOO 2)+'\! '\/ R+t a. P.)

“00°2" %007 25, * (7. 55)
B N g T2
The solution of (7. 55) consistent with (7. 51) is
P=--——[s§(s/a)%(s )]
2 2(a Snn)
00~ 800 (7. 56)

Bo1 — 2 2
Rz = 2ago- 3gg) [ 00 ¥ (s)/ag)-Nag, & (Sz/ao)]'

It remains to consider (7. 50)3 4 Using the previous results the

solutions of these equations consistent with (7. 51) are

(s,-s) [ ( B8 )
27°1 — 01 #31 2
t = / )
: a0(““‘00‘\[500)2 00\*32” 2(a 00~ Soo’ ¥ 51720

‘301 41

fz(s ] 1 [%13’31"[“00
JRCrrS 500) N“oo’“[éoo)z “lagg= Spo!

sz/a0

Bo1241 ) g L2
-N'& ( a42” Hagg-299) Y “(z)dz (7.57),

s/a,
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’\[a Bn.a
X =N & Ootz-‘r OO,J (a?’z-z(a 01 gl )>( -s)‘f’ s/ao)
o('“[“oo‘ 5 50! 00~ °00
s, /a
2°70
B Na .
+ 01 31 00 T %(z)dz . (7. 57),
2N ag N3 gollagy™ 84 s;/a,
As an illustration of the foregoing perturbation solution an
explicit calculation is given for the case
t t
¢ =0, £ == H@) -(-,g -1) H(t- T) . (7. 58)

where T is a given constant. Associated with this problem is the
(X’ t)_dia_gram of figure 7. 4. Evaluation of (7.54), (7. 56), and (7. 57)

in region IV of figure 7. 4 gives

2
B, s
_ _ . 01 52 )
=0 570 Ppr—— 2o o R Vo2
' 0 %00~ “00
. 1 _PorPgN &g (8 (7. 59)
2 (WayyNs 2lago™ &gg! 3 '
2
X 01""31“[“ NI ( Po1ta ﬂ S2 | Sz
2ago- E300) 42" 2agy- 500 /] 35, ao“ =
3
N Bo1231Y 200 52
500t 32
2 ago=N BgoMagy- 8yg)  2a,” €
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From this and (7. 52)

a., B

10 Po1 2

V.. =Nga (1+ , Q +J (7. 60)
34 ao 4agolegg=8gq) 0 ,

a result which agrees with (4. 67)1. Evaluation of (7. 54), (7. 56),

and (7. 57) in region II of the figure gives

2
S
s s B 1
1 1l 0l
Q. = > S, = "'\/T — Po= - - -1
1 2y T 1. 00 ag T 2 Z(QOO 500) (ao,ﬁ,)a

a~T)

2
ﬁOl 1 J
R, = NG ~———_ -Na
27 Zagy- 8,y i\ 007 ) 2 "N

1
(aO'C‘)Z

RO ]Jr 1 Bo1231V 200
2lagg~ 8p0) (WagyN8y0° X007 200!

3
: B s S

r——-—— 01741 1 2 2C

NS (422 250 500)}[ __'2_——4'—-“3—],

-s B.-a
~ 2785 — _ Poi?ay
= a zi: @ (3‘32 2

L2 (7. 61)
00 (g0 800!

3T a a0
N a ( B s, (s,-s.)
NS4 R ! 1 (5275
®00"2 a (Na..-N5 )\ 32 2egg 5y _(;(;ET

3
. ‘301"3‘31“[“00 [ % N 52 zzl
- 2 3 "a. 73 .
zwaoo-«fa 00'{%g0" 500) _3 2% 0

From (7. 61) and (7. 52),
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B 50\
1 01 °10 2

V.. =Nd® [14-_____(5 L. B L. AN Y ¢ WA SR
12 00 |1 T 75,5 \ 027 gge- 200 | 0

(7. 62)

—~ 8.5
Nrem 01710 2
Vo, =N \1+ — Q +] ,
23 00 4500(0.00 500) 0 .

results which agree with (4. 63).
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APPENDIX

Third QOrder Elastic Materials

The stress-strain equations of the theory of plane strain here

considered are (2. 28):

typ =By St Bycpg. @ B=12 (A. 1)

where _1710(11, IZ) and —E-l(ll’ IZ) are response functions characteristic
of the material. The invariants of the inverse Cauchy deformation
.tensor associated with the motion (2. 4) are (2. 39):

L =1+Q%+ (1+P)2, 1, = (4P)~. (A. 2)

1 2

Assume that h; and h_; admit the Taylor expansions

0

2
I,-1)+ c03(11-2)

hg =¢ <02

0 11—2) +

00t o1t

2 3
+ c04(Il-2)(IZ-l) + cos(Iz-l) + c06(Il—2)

+ c07(11-2)2(12—1) + c08(11-2)(12-1)2+ c e ..

09Iz
(A. 3)

= 2

21 = 10 + cll(Il—Z) + ch(IZ-l) + 013(11—2)

2 3
+ 014(11-2)(12-1) + c (Iz-l) + Clé(Il_Z)

15

I —1)3+

2
+ c17(Il-2) (IZ—l) + ¢ 19( >

4
8(11— 2)(12-1) + c

In accordance with (2. 43), the stresses are given by
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1 CP.Q) = Q+PE_; .

By (A. 3) and (A. 4)

. 2 2 2 3
0(P.Q =aP+aP +aQ +aPQ"+aP +...
TP Q)=aQ+aPQ+aP2Q+aQ3+
’ 2 4 6 8 e
where
€90t €10 = %

in order

31

22

a3

that 0°(0,0) = 0, and where

=2(c01+c + ¢t CciTC

02 10 -711° 12)

=

10

= c01+ c02+ c10+ c11+ c12+ 4(c03+ c04+ c05+ c11

+ ch+ c13+ c14+ c15)
= ¢ + 2'.(cll + ClZ)
=CuT ‘11

= 3(c11+ Clz) + 4—((:13 + c14+ Cls)

4(c03+ 013)+ 2(C11+ Cl4+ c04)

=C

1

=ega et Cpgt Oyt O Cyg o cp T Cp)

4+ 8(0064- c07+ c08+ c09+ c13+ c14+ c15

+ Cl6+ C17+ C18+ C19)'

(A. 4)

(A. 6)
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By (A. 6)
. =a, + 2a,P+ Q2+3'P2+
P = 1 a.3 3.7 a.9 e
G.=2a_Q+ 2a.PQ + .
‘Q 5 7 7 (A. 7)
tP = a4Q+ 2a6PQ+
2 2
'CQ =a,+ a4P+ a6P + 3a8Q oo
Writing
21 =Po%00 4237 %100 277 A%z %9= %200
22,7 PoBorr 227 [P 247 070 226720 7w
32g=P0 7020 2270 So0r 2470 7 017 o0 O10°
2a5= 2% %207 Po 7w 32502027 0 702+
(A. 7) becomes
e+ a P+ a0 p?
a-aoo alO czo2 + aZO + ...
8=BQ+ 20 PO+ ..
g 01 02 (A 8)
= 610Q+ 2 620PQ+
& =

S .+ 510P+ o)

2 2
00 20P + cSOzQ + o

2

and (A. 6) becomes
_ 1 2 1 2 2 1 3
G(P, Q)—/JO[CZOOP + —2- alOP + 5 ﬁOIQ + (102PQ + 5‘ aZOP + .. .]
(A.9)
_s | N 2 1 3
'C(P,Q)—/JOLGDO()Q-!- 8., PR+ 8, PP+ 15,00+ ]

The coefficients 250 and 500 may be expressed in terms of the

Lame modulii of the linear theory of elasticity:
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ago = (X+2p)/po,  Sgp= ML . (A. 10)
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