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ABSTRACT

The first half of this thesis is devoted to the derivation of an
S-matrix method for calculating the effect of small perturbations on
a partial wave amplitude, and, in particular, on the positions and
residues of bound states, The method is applicable to both non-
relativistic and relativistic problems. It has, as a particular virtue,
rapid convergence of the dispersion integrals. Electromagnetic
corrections to strong interactions will be an important application
and modifications useful for handling the infrared divergence that
occurs in this case are described in detail.

The second half of this work is a detailed, quantitative
application to the neutron-proton mass difference. Neutrons and
protons are treated as bound state poles in the m-N scattering
amplitude and the mass difference is obtained by finding the electro-
magnetic corrections to their binding energies. The results are in
good agreement with experiment. No cutoffs or other purely theoreti-
cal parameters are involved. All the long range corrections to the
m-N interaction are investigated. Photon exchange turns out to be the
most important. Form factors appear as short range modifications
of the photon exchange force. The results of the calculation are not
sensitive to the detailed behavior of the form factors at large momen-

tum transfer.
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Chapter 1
INTRODUCTION

Traditionally, electromagnetic corrections to strong inter-
actions have been formulated in terms of off-mass-shell propagators
and vertex functions. For example, the usual method for calculating
the neutron=proton mass difference consists of finding the electro-
magnetic corrections to the nucleon propagator,

On the other hand, much recent progress in strong inter-
action dynamics has come from a study of the two-body scattering
amplitude on the mass shell, The first half of this thesis is devoted
to the derivation of an on-mass~shell, S-matrix formalism for
calculating electromagnetic effects, including corrections to masses
and coupling constants.

This approach has several advantages: (i) According to the
"bootstrap" hypothesis, all strongly interacting particles are bound
states or resonances, From this point of view, the mass differences
among the members of an isotopic multiplet result from electro-
magnetic corrections to the interactions which hold the particles
together. Now ih S-matrix studies, closely related methods apply
to both non-relativisitic and relativisitic problems; one can there-
fore use the understanding of bound states, resonances, and
perturbations on the interaction that one has in non-relativistic
quantum mechanics as a guide in relativistic problems which,
according to the "bootstrap"” hypothesis, possess these same

features. (ii) The customary approximation scheme in strong
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interactions emphasizes the long-range parts of the interaction.
These are the best understood parts, and there exists ample evi-
dence attesting to their importance. This approximation scheme
again appears suitable for estimating corrections due to the electro-
magnetic interactions, which are of even longer range. It is
straightforward to distinguish long range effects in the S-matrix
approach, and it seems likely that the dispersion intergrals for the
S-matrix are less sensitive to short range or high mass corrections
than are the integrals appearing in propagators or vertex functions.

Thé second half of this work is a detailed, quantitative
application to the proton-neutron mass difference., Quantitative
calculations of the elecfromagnetic corrections such as the p-n
mass difference are of fundamental importance because they can
pro%ride the only real test of the hypothesis that the strong inter-
actions conserve isospin exactly and all deviations from charge
independence are of electromagnetic origin,

The traditional propagator or "self energy" approach to the
proton-neutron mass difference has been discussed by a number

of authors. (1-5)

-Unfortunately, the dispersion integrals which
appear in this formulation of the problem are sensitive to the
unknown, high momentum transfer behavior of the nucleon electro-
magnetic form factors and no one has been able to obtain the ob-
served mass difference without introducing an undetermined "core"

parameter,

In the present work neutrons and protons are considered as
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bound states in the w-N scattering amplitude and the mass differ-
ence is estimated by finding the difference in their binding energies.
The results are in excellent agreement §vith experiment, No cutoffs
or other purely theoretical parameters are involved. As pointed
out above, we expect that, in general, long range effects will play

a very important role in the S-matrix. One indeed finds that the
dispersion integrals for the p-n mass difference are almost com-
pletely dominated by the longest range correction to the wN inter-
action, namely photon exchange. The electromagnetic form factors
of the pions and nucleons will modify the photon exchange force at
small distances. This will naturally affect our estimate for the
mass difference. However, convergence can be maintained without
form factors and the results are not particularly sensitive to the
high momentum transfer behavior of the form factors,

There are a number of other possible applications of the
present formalism which would be of immediate experimental
interest. Among the most interesting would be the mass splittings
in the other isospin multiplets. Such calculations, however, depend
on parameters which are less well known for most multiplets than
for pions and nucleons, For example, one would probably have to
know the £ magnetic moments, Further possible applications
include the electromagnetic corrections to the w-N coupling
constants and the low-energy w-N phase shifts. Here, our detailed
knowledge of pions and nucleons would give the necessary param-

eters, but the amount of labor involved would be somewhat greater
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than that required to find mass differences. Similarly, one could
obtain estimates for the corrections to low-energy N-N scattering.
Actually, our methods are not restricte.d to electromagnetic prob-
lems, and might prove useful in potential theory and other contexts.

Chapter 2 contains a general formalism for calculating
electromagnetic corrections to the strong interactions. The methods
are first developed within the framework of non-relativistic potential
scattering and then carried over to the relativistic domain., A large
part of the chapter is devoted to a study of infrared divergence prob-
lems. Chapter 3 which deals with the proton-neutron mass differ-
ence is fairly self contained. The reader who is mostly interested
in this particular application may find it advisable to read only

through Equation 6 in Chapter 2 and then proceed to Chapter 3.
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Chapter 2

ELECTROMAGNETIC CORRECTIONS IN S-MATRIX THEORY

2.1. Potential Scattering

Our first task is to develop, within the framework of non-
relativistic potential scattering, a perturbation theory which can be
extended to relativistic problems. For simplicity, we consider only

S-wave scattering and define the amplitude

A(s) = eiﬂ sin m/q (1)

2

where T is the phasc shift, q is the momentum, and s = q .
We take the mass of the particle to be 1/2 so that s is the kinetic
(7)

energy. (6) It is known' ' that, for a superposition of Yukawa
potentials, A 1is an analytic function of s with a right-hand cut
required by unitarity and a left-hand cut which comes from the
partial wave projections of the Born amplitude and double spectral
function. Given the discontinuity across the left cut, one can use
the N/D method'®) to obtain the amplitude A,

We will suppose that for some strong potential V, the
amplitude has been obtained in the form N/D and derive an expres-
sion for the first order change 6A in the amplitude when the prob-
lem is perturbed by an additional weak potential 6V. Let us also
assume that the unperturbed problem has a bound state at s = Sp

so that D(sB) =0 and A = R/s - Sp near sp; and ask for the first

order change in the position and residue 58B and &R of the bound
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state pole. By definition, we have
8A = (6n/q)e’t (2)
along the right cut and

R s + ?R
s-sp

Azﬁ(sR ) = > B (3)

“Sp (s-sB)

near the bound state pole. Since the square of the unperturbed

denominator function D2 has the phase e'Zl’f] along the right-hand

(8)

and a double zero at s = SR the function DZGA has no poles

(7)

cut
or right-hand cut. The denominator function can be chosen such
that D tends to a constant as s — o0 and a simple application of

Cauchy's theorem yields

S'O D (s') Im 6A(s?') ds! (4)

SA(s) = s B

where we have used the fact that D has no left cut. Picking out

the coefficients of the poles in Equation 3, we have

' D ( ')ImﬁA(S') '
65, = ds (5)
B R(D'(sB) R(D'(sy,) )2 “g
-2RD"(s_)6s 0 .2, , ,
§R = DT(S;,B) B, 1 Zl D (S)Im«SAz(s)ds,
B .(D'(SB)) T _ o (s' - SB)

(6)

Note that the reality of 6sB and 8R 1is guaranteed by the vanishing

of D(s') at s'= Spe
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Equations 2 to 6 are completely adequate for treating short
range perturbations. We are developing the non-relativistic for-
malism in this section, however, primarily for purposes of orienta-
tion or introduction to the calculation of electromagnetic corrections
to the strong interactions, XElectromagnetic corrections are com-
plicated by the infrared divergence associated with the massless
nature of the photon, which requires a modification of the formalism
presented thus far. To find the appropriate modification, it is
convenient to study a non-relativistic perturbation which has essential
features of the relativistic problem, including the infrared diver-
gence, Thus, we consider a perturbing potential whosec Fouricer
transform is proportional to (1/t- KZ)(mZ/t - 1'n2)2 where
t=- Zqz(l - cos O), Potentials of this type are characteristic of the
"single photon exchange" potential between two strongly interacting
particles whose form factors obey unsubtracted dispersion relations.
The constant N\ is a fictitious photon mass which must eventually
be set equal to zero.

The spatial form of the above potential is

-Ar -mr 2
_e +(>\—m

e 2
T T 2m

5V(x) = | e 7] (7

where we have introduced a strength parameter b which we assume
to be small. If the photon mass A is set equal to zero, Equation 7
becomes a modified Coulomb potential. As is well known, in the

limit M = 0, logarithmic divergences will appear in the right-hand

side of Equation 4 for 8A. This is, of course, due to the infinite
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range of the Coulomb potential. From elementary quantum mechan-
ics, one knows that when the perturbation is summed to all orders
the divergent part contributes to the phase shift a term proportional
to 4n (qr), or equivalently, 4£n (gq/\).

The divergent term is common to all partial waves., Thus,
above threshold it appears only as a phase factor exp [— i % in (qr)]
which multiplies the entire S-matrix and has no observable effect,
We find it expedient to abandon 6A and chose a new amplitude 6:%
which does not contain this divergent, unobservable phase factor for
the following reasons:

(i} The infrared factor introduces an r-dependence into the S-matrix
element eZin, which would otherwise be independent of r. In a
perturbation treatment, this r-dependence appears as a logarithmic
divergence in 06A,

(ii) Below threshold, g becomes i|q| and the r-dependence takes
the form exp [- (b/]q]) 4n (|q]| ¥)]. The residue R of a
bound state pole will therefore contain a factor which is either zero
of infinity, making OR infinite in a perturbation treatment. It is
convenient to remove such factors by a redefinition of the amplitude,
leading to a redefined residue that depends only on finite quantities.

(iii} Unlike the residue R, the binding ene rgy s should not have

B
an infrared divergence. In an approxirnate evaluation of Equation 5
for SSB, however, a spurious divergence is likely to appear.

Again, this difficulty can be avoided by a redefinition of the ampli-

tude.
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The redefinition we shall employ is obtained by removing
from the S-matrix the infrared divergent factor
exp [— i{b/q) 4n (g(s)/)\z)] where g(s) is an as yet unspecified
function with dimension (mass)Z, One readily verifies that 5A
is then given by A= 6A 1 (b/4q2)eZin&n (g(s)/)xz). For any g(s),
the resulting amplitude is well behaved in the limit X —~ 0. We
shall make use of this freedom by choosing g(s) in a way that
minimizes the sensitivity of our dispersion relations to distant
singularities, which are generally less well known than the nearby
ones.

It turns out that the best choice for g(s) corresponds to

the following 6A:

A a g2iM o 2in
A= &m = (n - dmg ) 3 (8)
&n = .1 S‘OO sin®(qr) §V(x) dr (9)
"Born q 0 d

Since 6“Born contains the same 4n A dependence as 6mn, the
infrared phase shift is indeed removed from 5;\, which is therefore
well behaved in the limit X\ — 0. One will also note that §A has the
correct threshold behavior. It remains to show that, for perturbing
potentials of the form of Equation 7, 6;\ should be quite insensitive
to the distant singularities in fhe dispersion integrals,

The argument about distant singularities runs as follows:

For short range V we can, to a good approximation, write
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1 (. 2
én = - —CIS‘ sin“{gqr +m) 6V (r) dr (10)
0

Performing a few algebraic manipulations, one finds

a~ o0
on = 6m - eng = - sin®n 50 —‘?isq—zﬂ— 5V(r) dr
— © .
- 81112 ny blnngr §V(r) dr (11)
0

For the perturbing potential Equation 7 with \ = 0 we find, for

la| >> m,
~ . 2
6m = - bm s1121 2m +0( bn; ) (12)

8q q

which is a more rapid falloff at large q than that of GﬂBorn("‘l/q).
Thus, as successively more distant singularities are included in a
dispersion-theoretic calculation, 5A is expected to converge more
rapidly than would the subtracted term (SnBorn/q)ezm.

Equation 12 was obtained from a rather special model, and
one naturally wonders which features of the result are general. It
is possible, using various simple forms for V and 6V, to show
that the good convergence of 62\ can hold even when V is not
restricted to short range. The rapid convergence does depend
critically, however, on the "smooth" r-dependence of 8§V which,
as given by Equation 7, is finite at the origin. If more singular
behavior appears at. r.= 0, 61% falls off more slowly at large q.

This is in accord with the physical notion that a rapid spatial
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variation corresponds to high Fourier components in ¢q. Of course,
we do not know the small-distance behavior of electromagnetic
corrections to the strong interaction, but at least the apparently
rapid convergence of the neutron-proton mass difference calcula-
tion in the following chapter is consistent with a smooth, cut off 6V
at intermediate range. The one contribution to the really short
range potential on which detailed information is available is one-
photon exchange, and here the recent CEA data(g) on the proton
form factor indicates a smooth behavior down to very small distances.
Another possible reason for rapid convergence of 6;& is that
in potential theory any phase shift tends to its Born approximation
at high energy. Thus when potential theory is applicable
(67 - 6“Born) approaches zero faster than EmBorn at large s,
independently of whether &8V is cut off at small distances. This
argument is less satisfactory than the arguments of the previous
paragraph, however, because: (i) it does not imply that 6&n
approaches GnBorn any faster than the unperturbed phase shift n
approaches its Born value; and ({i) unlike the potentials in ordinary
potential theory, the strong interaction depends on energy, with the
result that m may approach the Born approximation very slowly if
at alle We therefore prefer to rely primarily on the fact that when
0V is cut off at small distances, as in Equation 12, 51"; falls off

rapidly at large q no matter what asymptotic behavior the strong

interaction phase shift n may have,
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The procedure we have adopted of dropping the part of §A
which diverges like 4n (hz/g(s) ) is roughly equivalent to giving
the photon a mass g. Our method diffei's from handling the infra-
red divergence by a photon mass, however, because g(s) depends
on energy. The energy dependence is needed to make the dispersion
relation for the redefined amplitude converge rapidly.

It is simple enough to rephrase the dispersion relations in

25A, like D%5A, has no poles

terms of 6;\., Using the fact that D
or right-hand cut, one readily verifies that Equation 4 continues to
hold if 8A is everywhere replaced by 62\, Furthermore, since

62; has the same double pole RESSB/(s—sB)Z as O8A {cf. Equation 3),
one can replace Im 8§A(s') by Im 5.2;(8') in the right-hand side of
Equation 5 for ﬁsB. Finally, if we define §R as the coefficient of
the simple pole in §A (cf. Equation 3), then Sﬁ is given by
Equation 6 with Im 8A(s') replaced by Im 6:‘,(3')0 (10)

The following simple example will illustrate a number of the
points discussed above. The example involves a comparison between
a standard method for calculating GSB and the S-matrix method of
the present paper. The standard expression for ﬁsB is given by

oo
6sB=S‘ [¢]% 6V ar (13)
0
where Y is the unperturbed wave function. We take Equation 7 for

6V, and, for simplicity, assume that V is of very short range.

For short range V, we can set
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2

1612 = 2fsg M2 exp (- 2[5 [V 20) (14)

and performing the integration in Equation 13 with \ = 0, we find

fsg = zblsBll/Z [&n (m+z|qu> - m } (15)

2]qg | 2m +4|qg|

Next we make an independent calculation of 6s,, using the disper-

B
sion relation 5 with Im §A(s') replaced by Im 5A(s'). We will
keep only the nearby singularities in the dispersion integral, and
then compare the result with Equation 15. Since V is of short

range, the only nearby singularities in 6A = §A - ((’511]_3)c)1‘_n/<1)e2111

will come from the Born term in 8A and from the singularities in

GﬂBorn" Using GABornE SnBorn/q’ we find

. . ‘ in .
Im §A= (1-e*Nm (61, __/q) = - 2iq(E£-2021T ) m(sng . /a)
(16)

along the nearby part of the left cut. For the perturbing potential
Equation 7, it turns out that all of the singularities in SnBorn/q

lie in the interval - m2/4 = s = 0. Using Equation 5 and the

in

relations e sin"r]/q =N/D and q = i[ql, we can then write

0
_ 1 2 U 1 IN(s")D(s')
bog = 2 27 g NEIDEY oy 5y (o1)/g) as?
B RD'sg))? T _mz/4| e Boral*)/4) ¢

(17)

From the effective range approximation
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in . ~
e sin n/q iqB s (18)

which for short range V should be good over the range of integra-

tion in Equation 17, we extract N =1, D = iqB- ig, R=-2 ,qB l, and

D’(SB) = - 1/2{qB_ » The imaginary part of 6“Born/q is known
explicitly and it turns out that the integral in Equation 17 can be done

analytically. The result is that our S-matrix estimate 17 for 68B

is exactly the same as that given by Equation 15, Notice two impor-

tant points here: (i) We have obtained this result by keeping only
the nearest singularity in 6AA° (ii) As can be easily verified, if
we had tried to estimate dsy by using Im 6A(s’) instead of

Im 6!?(8') in Equation 5, a spurious infrared divergence would have

appeared in our expression for &s In a more complete calculation,

BC
such a divergence would, of course, be cancelled by a divergent term

coming from more distant singularities.

2. 2. Electromagnetic Corrections to the Strong Interactions

The partial wave scattering amplitudes which appear in rela-
tivistic S-matrix theory are believed to obey dispersion relations
similar to those which occur in potential scattering theory and, with
a few modifications, the results of the previous section will be
applicable to relativistic problems. For simplicity, we consider only
elastic scattering of two spinless particles of equal mass. The partial

wave scattering amplitude then becomes

A(s) = p(s)einsin n (19)
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where s is the total center-of-mass energy squared and p is a
function which removes the kinematic singularities. (p is the analog
of the factor 1/q in Equation 1. Note that s has been given a new
definition.,) The phase shift 7 is in general complex and a measure

of the inelasticity is given by
= 2in
s)=pfle“ /2 (20)

We assume that A 1is an analytic function of s with a right-hand
cut controlled by unitarity in the s-channel and a left-hand cut con-
trolled by unitarity in the t- and u-channels. In order to apply the
N/D method, we must now be given both Im A along the left cut,
and I, or equivalently Im 71, along the right cut as input information.

Again we assume that the strong interaction amplitude A has
been obtained in the form N/D and ask for the first order change
in A when the electromagnetic corrections are added to the input,
We also assume that the unperturbed and perturbed problems have
bound state poles at Sp and Sp + 5SB with residues R and R + &R
respectively.

In potential theory, the function D26A had no right-hand cut,
but it acquires one in strong interaction problems because 6n has
an imaginary part, and also because the electromagnetic mass shifts

of the scattered particles change the kinematic factor by 6p. The

analog of Equations 4 to 6 becomes
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2 1 1
5A(s) = — l[S.L D (s]) Im 8A(s) g4

D%s) " S[ -8 ’ ]
2
Im] D%s") 6A{(s")M,
+‘S\R T ds ] (21)
D (s')Im 5A(s’) .
65 = a
°B [D (s 2 'n' S\ S
+§ Im [D (s') SA(s )]ds,] (22)
R s’ - sp
-2 D"(s3)Réspy
R =D,
P %[‘S‘ D%(s') Im BALs!) 4o
‘D'(SB) L (s' - SB)
r 'l
+ y Im| D (x') 5*2“@" ds'] (23)
R (s! - sB)

where the integrals R and L run over the left and right cuts and
we have assumed that DZSA-’ 0 for large s. Along the right-hand

cut,

Im (D25A)

1

2i Re 1
1 [p? (2200 se)]
i 21

Re (D26p)
2

- |D|%61 + (24)

Calculation of the new kinematic and inelasticity corrections will be
straightforward, with no difficulty of principle.

Whenever the scattered particles are charged, infrared
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divergences occur and cause us to redefine the amplitude. The
redefinition will be carried out in the same spirit as in potential
scattering, and we shall mention only the new features,

To begin with, in addition to the "Coulomb divergence"
already encountered in potential scattering, new divergences
associated with bremsstrahlung appear. The reaction of brems-
strahlung back onto two-body scattering occurs in the form of the
diagrams where a photon is emitted by one of the initial particles
and absorbed by a particle in the final state. The net effect of all

such diagrams (11,12)

is to make the amplitude for scattering without
photon emission zero--expressing the fact that charge cannot be
accelerated without radiating, When all the soft photon emissions
are added in, however, the infrared divergence cancels and the
total cross section exhibits only a mild dependence on photon
emission. These reasons again call for a redefinition which will
allow us to express the amplitude in terms of finite quantities, and
to obtain residues, for example, which are only slightly shifted
from their strong interaction values. Since "bremsstrahlung dia-
grams" where a photon is emitted by initial charge line in the s-
channel and absorbed by a final charge line can also be interpreted
in terms of final state Coulomb interaction in the t- or u-channel,
and the Coulomb inte raction already required us to redefinc the
amplitude in potential scattering, it is hardly surprising that the
"bremsstrahlung diagrams" require a redefinition of the amplitude.

A minimum requirement for the redefinition of the amplitude
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is removal of the 4n A dependence from 6A. As in potential
scattering, the satisfaction of this requirement leaves arbitrary the
coefficient of N in the logarithm. We could choose the coefficient

in the same manner as in potential scattering:
BA = 5A - pon, e (25)
Born

Here, the Born phase shift is calculated from the electromagnetic
correction to the generalized potential defined by Chew and

(13)

Frautschi. This choice would be expected to give the best con-
vergence of the dispersion relation. On the other hand, there are
many terms to keep track of in the relativisitc case and it is tedious
to have to compute the contribution of each of them to 6nBorn and
make the subtraction in Equation 25, The practical compromise

which has been adopted in the following chapter is to define the

amplitude

o - 2in
8A' = 6A - pom,_. e (26)

where 6ninfra contains the infrared terms and the other important
high energy contributions from the diagrams in which photons con-
nect external charge lines. The definition adopted for 6A' is not
unique, and 8A' is not expected to converge as rapidly as GAA, but
the diagrams in which photons connect external lines do provide the
longest range forces and the dominant high energy corrections, (11)

so relatively little is lost by using 6A' in place of 8A.

Having redefined the amplitude, one can rephrase the dis-
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persion relations for the residue and mass shift in terms of the new
amplitude, or follow a somewhat simplified procedure which will be

described in the next section.

2,3. A Simple Method for Subtracting the Infrared Term

The mass shift and the redefined residue shift can be expressed

via dispersion relations in which a term such as pon 2in has

infra®
been subtracted out of SA in the integrand. The subtraction pro-
cedure in the integrand can become quite tedious, however, parti-
cularly in the relativistic case. We would like to describe a some-
what simpler way to subtract, which would give the same results in
an exact calculation and can be shown to give nearly the same result
in approximate calculations such as the example at the end of
Section 2.1. To see how this goes, let us suppose that the input for

Equation 21 has been calculated with a small but finite photon mass X\.-

The function paninfra has the form

pom.

infra f(s) 4n ()‘Z/g(s) )+ O()\? (27)

In the limit X ~> 0, the right-hand side of Equation 21 must therefore
be equal to SA' + esz(s) 4n ()\Z/g(s) ) + O(\). Since any function
which is logarithmically divergent as X\ — 0 can be uniquely separated
into a part which diverges like 4n ()\z/g(s) ) and a part which remains
finite as N — 0, we can calculate 6AA by carrying out the integrations,

taking the limit A — 0, and then dropping all terms which diverge like

In(\%/g(s) ).
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If we define 6R' to be the residue of the simple pole in §A'
(cf. Equation 3), 6R' can be extracted from Equation 23 by the same
prescription that has been given to find 8A' from Equation 21.

The calculation of 58B is on a rather different footing, As
we pointed out earlier, 6sB should not diverge in the limit A—0,
That the formalism is consistent with this property can be seen by

observing that, since ©6n, , we have

infra has no pole at s = s

B

lim (s-sB)ZBA‘ = lim (s-sB)ZGA = Ré&s
s™sp ssp

B

The limit involving 6A' is not infrared divergent so 6sB should be

finite. The integral in Equation 22 for §s however, is just the

B,
infrared divergent integral of Equation 21 for &8A, evaluated at s = sge

At the particular point s = s_,, the coefficient of the infrared diver-

B
gent part of this integral must vanish, but the vanishing occurs through
cancellations among long and short range contributions which are not
enforced in an approximate evaluation of Equation 22. The simplest
way to remedy this deficiency of an approximate calculation is to
drop the term containing 4n ()\Z/fg(sB) |), since its coefficient should
have vanished anyway, (14)
In previous sections we have emphasized the rapid conver-
gence of dispersion relations involving 6A'. The simple subtraction
procedure of the present section is essentially equivalent and should
also converge rapidly. The short rangec contributions to Equation 22,

then, have little effect on §s,, and act mainly to cancel the spurious

B



-21-

infrared divergence produced by integrating only over long range
parts. By subtracting the spurious divergence in the above manner,

we can avoid the hard work of calculating short range contributions,

with little loss of accuracy.
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Chapter 3

APPLICATION TO THE PROTON-NEUTRON MASS DIFFERENCE

3.1, Orientation

(15)

According to the "bootstrap" hypothesis, nucleons are
bound states containing components of #-N, K-Z, p-N and any other
system with the proper quantum numbers. In order to apply our
formalism to the neutron-proton mass difference, we must concen-
trate on a specific two-body amplitude. The w-N amplitude has
been chosen for the following practical reasons: (i) The =#-N
system is the least massive two-particle state with the proper
quantum numbers; (ii) the nucleon is strongly coupled to it {i.e.,
the m-N component of the nucleon wave function is certainly large);
and (iii) we have a fairly good understanding of the pion-nucleon
interaction,

Until now we have been Working with the scattering amplitude
for two spinless equal masé particles, The fact that nucleons have
spin and do not have the same mass as pions does not require any .
essential changes in the formalism. It does turn out, however,
that the partial wave amplitudes have kinematic singularities as a
function of s (total cm energy squared). For this reason we will
work in the W = Vs plane. In what follows the reader will not need
a detailed knowledge of the kinematics in w-N scattering. (16,17)

In the following section, the dispersion integral for the mass

difference is written down and the general nature of the input singu-

larities is discussed. We then investigate the nature of the infrared
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divergence in this particular problem. In Section 3.4 we carry out
the detailed task of estimating the mass difference from the nearby

singularities,

3.2. Formal Considerations

Let us begin by supposing that the electromagnetic inter-
actions have been turned off. Conservation of isospin will then be
exact and the nucleons will have a common mass M and the pions a
mass M. We are interested in the nucleon pole which occurs in the
analytically continued w-N scattering amplitude. This pole appears
inthe J =1/2, L =1, T =1/2 channel for which we define the ampli-
tude

A(W) = p(W)einsin iy

WZ 1

Me (Wl

p(W) = >

o=

(28)
n = phase shift

W = total cm energy

gq = c¢cm momentum

and the inelasticity factor
2in
1w = £W)le (29)

With the above choice for p, A has no kinematic singularities in

(16,17)

the W-plane and for IW-M] << M, AW)= e Msin n/qg, The

residue of the nucleon pole in the direct channel turns out to be

- 3f2/p.2; £ ~ 0. 08.
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We now turn on the electromagnetic interactions and thereby
destroy the previous equality of the T3 =+ 1/2 amplitudes. In
particular, the T, =+ 1/2 amplitude now has a pole at the mass of

the proton while the T, = - 1/2 amplitude has a pole at the mass of

3
the neutron., Since the masses of the nucleons and pions are no
longer degenerate, the kinematics become more complicated and the
kinematic factors p will be different for the two charge states.

Since we only are interested in the difference between the proton and

neutron masses, it is convenient to define

SM=M -M
P n

SA = A(+1/2) - A(-1/2)

(30)
81 = I(+1/2) - I(- 1/2)

bp = p(t1/2) - p(-1/2)

where the indices +1/2 refer to states of T =1/2 and T, =% 1/2.
(Note that the definitions of &A, ©6I, and &p are slightly different
from those used in Chapter 2.)

The perturbation techniques developed in the previous chapter
can now be used to calculate &M to order a=1/137. We suppose
that the unperturbed amplitude has been obtained in the form N/D
with D normalized such that D'(M) = 1. The analog of Equation 22

then becomes:



" 1 AW DAW') o0
6M-"3f2 Zni Jy - W' - M v
; 1—500 [DOW)|61(W') - BRe (DAW )5p(W') ) 4y (31)
k1l M+u WM

where the contour 1L encloses all the singularities of 8A which lie
to the left of Re W =M + p.

It is convenient to separate the singularities of 6A into two
classes. The first type of singularity is of purely kinematic origin.
The position of a singularity in the W-plane and the kinematic
factors which affect its strength are functions of the masses of the
scattered particles. When the nucleon and pion mass splittings are
taken into account, the original strong interaction singularities in
A(+1/2) and A(- 1/2) will have slightly different positions and
strengths, simply because the kinematics are different in the two
channels. The more distant singularities will be affected very little
but there will be an imperfect cancellation between the lower mass
part of the original singularities in A(+1/2) and A(- 1/2). The
second type of singularity in 6A comes from corrections to the

sle
X

unitarity condition for the T matrix, Im T oC T_T. . These
ab ac bc

will appear either because a new intermediate state has become

available (e.g., NN — y — 27 in the t-channel), or because of

mass shifts in an already existing intermediate state, or because of

electromagnetic corrections in a vertex or amplitude leading to one

of the original intermediate states (e.g., electromagnetic corrections

to w-N scattering in the u-channel).
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To order a, any electromagnetic correction must transform
under rotations in isospin space like I, T3, or Tg, where I is the
unit operator and T3 is the third compbnent of isotropic spin. For
nucleons 'I'3Z = I/4, and only those corrections which transform like
T3 will contribute to &§M. Two important consegquences of this
observation are: (i) since the pion mass differences transform like
2,
mediate state c¢ of the unitarity condition Im Tab cc Z TacTib will

they cannot affect 5M; (ii) a photon which appears in an inter-

not contribute to &M unless it connects one isovectorC vertex and one
isoscalar vertex. The fact that many of the electromagnetic cor-
rections to the m-N interaction do not affect 6M makes the calcu-
lations of mass difference surprisingly simple. A calculation of

the individual nucleon mass shifts would be a more formidable task.

3.3. Trcatment of Spurious Infrared Divérgences

In the last chapter it was pointed out that, in principle,
Equation 31 is con*lwergent in the limit of vanishing photon mass, but
in an approximate calculation a spurious infrared divergence will
probably appear. The prescription given there for removing a
spurious divergence runs as follows. One writes the infrared
divergent part of 6n in the form Gninfraredz f(W)an (A/g(W) ),
where N 1is the photon mass, The factor f(W) is uniquely deter-
mined and can be calculated in perturbation theory. The function
g(W) has the dimension of mass and is chosen so that Sninfrared

is a good approximation to the phase shift generated by the electro-

magnetic effects which take place outside of the strong interaction
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region, i.e., by Coulomb scattering and bremsstrahlung. One then
calculates the input for Equation 31 with a finite photon rmass A\,
does the integration, drops the part which diverges like 4n ()\/‘]g(M) I ),
and takes the limit \— 0. The calculated value of &M will no
longcr depend on N but may depend on the choice of g. This cir-
cumstance was discussed at length in Chapter 2. The relevant
points were: (i) if one keeps only a few nearby cuts in Equation 31,
the best estimate for 6M will be obtained by choosing g(W) in the
specific manner described above; (ii) if one systematically improves
his estimate by keeping more and more distant singularities in
Equation 31, the result will become independent of the choice of g(W).
The form of g(W) due to Coulomb scattering alone is obtained
as follows. The only T =1/2 state undergoing Coulomb scattering
is the m p component of the T3 = - 1/2 state which enters with a
Clebsch-Gordon coefficient (2/3)1/2'. Using &n = n(*t 1/2) - (- 1/2),

we find that omn,

equals minus two-thirds the Coulomb phase
infrared

shift for w p scattering in the . Pl/Z state. The latter can be obtained
from the photon exchange diagram and one finds, for IW—M:I<< M

(here we are interested only in the region around the nucleon pole)

2 (W-M) e |,
PMinfrared~3 @ T q in (Z—CT ) = Ol (32)
where e = 2.718,.. . From Equation 32 we extract g(W) = -2q/e.

At the nucleon pole, |qi is approximately equal to p and whenever
a 4n )\ divergence appears in our calculations we will drop the part

which diverges like 4n (\e/2p). Since the photon exchange diagram



28~

is gauge invariant, this method for removing spurious divergences
is gauge invariant,

In addition to the Coulomb terms, there are also infrared
divergent "bremsstrahlung diagrams" in which a photon connects
initial and final charge lines. We now give reasons why the
bremsstrahlung terms can be neglected in our particular problem,
In a low energy collision, the bremsstrahlung can be computed by
finding the energy which would be radiated by the classical currents
of the incoming and outgoing particles. According to the last
paragraph of Section 3. 2, we need only consider the interference
terms between the isovector and isoscalar parts of the currents.
The isoscalar current comes only from the isoscalar magnetic
moment of the nucleon and the isoscalar part of the nucleon recoil
current, The isoscalar moment is small and at low energies nucleon
recoil is of order q/M. Furthermore, the "bremsstrahlung
diagrams" are always of order a/mr so that, near the pole, the
bremsstrahlung contribution to &n, will be of order

infrared

(d/M){(a/7w) and can be safely neglected,

3.4. Approximate Evaluation of the Dispersion Relation

In the previous chapter it was indicated that if the infrared
divergent terms are removed as outlined above, there is reason to
believe that Equation 31 is dominated by low mass singularities. We
will now estimate &M by keeping only those singularities which lie
roughly in the region [W-Ml = 4p. The calculation is organized as

follows., First we estimate the contribution of the kinematic cor-
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rections and the nucleon exchange cut and then calculate the contri-
bution of the photon exchange cut. It turns out that these two cuts
plus the kinematic corrections yield a value of 6M which is in
good agreement with experiment. Finally, we estimate the effect of
the other nearby singularities and fortunately find that they have little
effect on oM.

In order to carry out the above program, we need an expres-
sion for the unperturbed denominator function D. To a first approxi-

mation, we can set
DW)=W -M (33)

A somewhat more sophisticated approximation which is better behaved
at large W can be obtained by making a one-pole approximation to

the cut in D, which gives

D(W) = (W - M) Wo - M) (34)
W_-W)

We can fix W0 by comparing Equation 7 with the denominator
function derived by Balazs. (18) Setting (Wo - M) = 9p in Equation 34
yields an expression which approximates Balazs' result to within a
(19)

few per cent throughout the range of interest,

We now proceed with the calculation of oM.

A. Singularities of Kinematic Origin

Since the pion mass differences transform like T3,2, we need
consider only the kinematic effects of the nucleon mass difference.

In the energy range under consideration, nucleon recoil can be
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neglected(zo) and in this approximation W and M enter into the
kinematics only in the combination (W - M). It is not difficult to
convince oneself that this implies that the net effect of the kine-
matically induced singularities must be to shift the mass of a proton
or neutron by an amount equal to the mass shift of its constituent
nucleons., Since the proton is two-thirds 'rr+n and one-third 1Top
while the neutron is two-thirds 7 p and one-third won, the total
contribution of the singularities of kinematic origin must be = - §M/3.
This is clearly a self consistency requirement which arises because

we have considered nucleons as bound states of nucleons and pions.

B, Corrections to Nucleon Exchange

Nucleon exchange in the u-channel gives rise to a short-cut
which, for practical purposes, can be considered as a pole at
W = M., Electromagnetic corrections to nucleon exchange will come
from changes in the w-N coupling constants and the masses of the
exchanged nucleons. Since D(M) = 0, it follows from Eguation 31
that a change in the residue of the pole will not affect 6M. The
changes in the position of the pole due to the mass shifts of the
exchanged nucleons can be easily calculated. Near the pole D= W-M
and using Equation 31, one finds that electromagnetic corrections
to the crossed nucleon pole contribute + 56M/27 to the mass differ-
ence. Again we have a self-consistency requirement. The net
contribution of the kinematic effects and crossed nucleon pole is
- 46M/27. There are no other low-lying singularities which are

proportional to &M,
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One should note that we are not trying to make the mass
difference "bootstrap" itself, In order to obtain a non-vanishing
mass difference we must introduce a driving force, i.e., electro-
magnetism. The reaction of the mass difference back on itself is

only about a 15% effect.

C. Photon Exchange

Photon exchange gives rise to the most important singularity,

This cut is contained in the photon exchange amplitude

2 2
sa, =S QWM - b womr + (WML

Y em? | (W-M)? - m 1

v1
I =S X __F_(t)F, (t)dx
1o a2 m s (35)

~] 1
L, =§ —1 5 F_(t)F (1) dx
t = - 2q%(1 - x)

where F'rr is the pion form factor, Fls is the nucleon isoscalar
charge form factor, and we have neglected the small isoscalar
anomalous magnetic moment of the .nucleon, Since the form
factors have been included in its definition, 6AY includes not only
the singularity due to the photon intermediate state but also a
number of other t-channel processes. For example, we have
included the singularity arising from NN— w — 27 with the
approximation w' — y — 21 for the w. — 2m amplitude,.

With the choice mpz/(rns - t), mpz 750 MeV, for FTT, one
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can verify that Equation 4 will be sensitive only to the low t-behavior
of Fls and a sufficiently general expression for the latter is
Fls =1l-c+ cnasz/(n’ls2 - t), where m. is some eiffective resonance
mass, The best fit to the low t-behavior(21) of Fls is obtained with
c =1 and Jrns2 = 20 p.z.

Upon inserting the above form factors into Equation 35, one
finds that all the important singularities of the functions 11 and 12
lie in the region(l4) ]W - M[ = mp/Z. In this region one of our
approximate expressions (33-34) for D should be adequate. Using

the straight line approximation 33 for D and substituting Equation 35

into 31, one finds that the photon exchange contribution to &M is

approximately(zz’ 23)
5 a p.Z mz
-5 ;2— NVl [/in (mp/>\) - cC —7—9'—2 fl’,n(mp/ms)] (36)
m - m_

According to our earlier discussion, the spurious infrared divergence
is to be removed by dropping the part proportional to 4n (e\/2p)

which yields

2 em nrl2
5 a0 p P
5 [ ey e,y ] )
P S

For msz =20 |J.2 and c =1, Equation 37 is numerically equal to
- 1.4 MeV,

The cuts in SAY are arranged such that to zeroth or.der in
1/M, the photon exchange contribution vanishes when D is approxi-

mated by a straight line. (Note that Equation 37 contains a factor
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n/M.) Because of this circumstance, the corrections to Equation 37
due to the curvature of D are not entirely negligible. Taking the
one-pole approximation (34) for D, one finds a photon exchange

¢ (22, 23)

contribution o

2

:_ff (W= M)* Jgp( (W-MISA, (W) )y _yy (38)
O

After removing the spurious infrared divergence and setting
WO =9u, ¢ =1, and n’lsz = ZO}.LZ, one finds that Equation 38 has the
numerical value - 1.6 MeV, Reasonable upper and lower bounds(lg)
on WO would be 5p = Wo - M = 15p. Variation of W0 over this
region cannot change the estimated photon exchange contribution by
more than about + 0.1 MeV,

The singularities of kinematic origin contribute - 6M/3, the
crossed nucleon pole +58M/27 and photon exchange - 1.6 MeV.
Summing these contributions, we find

(31/27) M = - 1.6 MeV
or (39)

SM= - 1,4 MeV

which is in remarkable agreement with the experimental value of
- 1.3 MeV,

In Subsection D, we will show that the remaining low mass
singularities are very weak so that Equation 39 emerges as our final
estimate for 8M. One should note that: (i) since the photon exchange
amplitude is gauge invariant, Equation 39 is gauge invariant. (ii) The

photon exchange contribution given by Equation 37 diverges if both
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m and rnp tend to infinity. This is due to the bad asymptotic
behavior of the straight line denominator function 33, With a better
behaved D such as 34, the photon exchange contribution is finite
without form factors. For this reason, Equation 38 and 39 are not
particularly sensitive to the detailed behavior of the form factors,
The form factors should, of course, be included and are necessary

to obtain the cbserved value for &M.

D. Other Low Mass Singularities

We will now make a survey of the remaining nearby singu-

larities and will find that they are very weak.

{a} t-Channel Cuts

In this channcl we havc the proccss NN — 27. We will first
consider electromagnetic corrections to p exchange. Since the p
mass differences transform like T?;Z they will not affect &M,
Furthermore, one can convince himself that electromagnetic cor-
rections to the p-w coupling constants must also transform like 1
or T32 and need not be considered. This leaves only corrections
to the p-N coupling constants. Since the p and o masses are
nearly equal, the process pO — vy —w — NN could produce unusually
large electromagnetic effects at the pNN vertex. However, by
including the form factors in the photon exchange amplitude, we
have already taken these particular corrections into account. The

effect of further corrections to the pN couplings can be estimated

as follows. It can be shown that, among the possible splittings of
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the pN coupling constants, (24) only a difference in the magnitudes

of f o and f{ o can affect 6M. We define
P nn P pp

A= |(]f o | - |f o [)/f o | and assume that A is about one
P PP P nn P PP

per cent. One can then insert the p exchange amplitude into
Equation 31 and estimate the effect on M. Keeping the nearby part
of the p cut would, for A = 1%, change the calculated value of &M
by less than + 0,05 MeV.

We must also consider the ¢ and « intermediate states.

A number of authors(25-27)

have pointed out that mechanisms like

w > y— 2r and ¢ =y — 7r could lead to anomalously large ampli-
tudes for the electromagnetic transitions w — 27 and ¢ — 27, One
will recall, however, that by including the form factors in the photon
exchange amplitude we have already taken the ($) — vy — 21 mecha-
nism into account. It is not possible to estimate the remaining part
of the w($) — 27 amplitude but there does not appear to be any
reason to believe that it is particularly large. An additional wnw

(24)

coupling of order fimr/thr ~ a would change our estimate for
6M by only a few per cent,

To round out the survey of low mass singularities in the
t-channel, we consider the w + vy intermediate state. The effect
of this cut can be estimated as follows. To contribute to the mass
difference, the photon must connect one isoscalar and one isovector
vertex. We expect that v +vy — 27 is dominated by w +y = p — 27w

which requires an isoscalar photon. On the other side of the diagram,

the amplitude for NN — 7 + (isovector v) is probably dominated by
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NN —~ =7+ y (the amplitude for ¢ — w +¥y is expected to be very

sma11(27))°

Putting the diagram together, we have NN —* o — 7 + y —
p = 2w which resembles the one photonl.exchange diagram with the
photon replaced by m ty. The relative importance of these two
diagrams can be deduced by comparing their"contributions to the‘
imaginary part of the off-mass-shell amplitude for w — p. With the

(26, 27)

usual definition for the coupling constants, one finds that the

single photon intermediate state produces an imaginary part given by

ImYT(p — w;x) = wO(x)y way/p (40)

while the w ty intermediate state yields an imaginary part of

Im, Tle—usx) = £, £ /dm) (e 14y x-1)3 /x  (41)

where we have introduced the dimensionless mass variable x = t/uz.

The product f oy p1TY/4Tr is expected( 7) to be on the order of
(0. 5)(Yp‘va‘\()/( 5 2 2) which means that Equation 41 is roughly
equal to

Imﬁ‘yT(p—»w;x) ~ (3 X10° )(y YYw/p. Wx-1)3/x  (42)

Comparing Equations 40 and 42, it is easy to see that the nearby part

of the w +vy cut will have a negligible effect on &M,

(b) s-Channel Cuts

Here we have to consider the inelastic processes N+w — N+y —

N+r and N+m — N+w+y — N+w, It follows from the last paragraph
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of Section 3.3 that the N+ +y (Bremsstraihlung) cut will be
negligible. The following physical argument will show that the N +y
cut is also weak, At low energies the w-N system can radiate a
real photon through the spin flip current of the nucleon, the recoil
current of the pion, or the formation and radiative decay of the

(3-3) resonance, The latter two photon vertices are by far the

most important but both are pure isovector; ’fhe only avéilable
isoscalar vertex comes from the nucleon spin flip current and has

a strength Va (Hp+ pn)k/ZM, where the 'J'p and b, are the nucleon
magnetic moments and k is the photon momentum. To estimate

the strength of the N +vy cut, we multiply Va (ﬁp“‘;+ pn)k/ZM by the
“strength of the isovector vertices ® Ya and the strength squared

of the =N interaction in the J =1/27, T =1/2 state. At low energies,
the latter is on the order of szVO. 08. For k =y, the discontinuity
across the cut will then be on the order of afz(pp+ pn)p‘/Z‘M = 0,005 a
which is down by a factor of 1/200 as compared to the discontinuity
across the photon exchange cut. ‘A straightforward calculation

(28) confirms the

based on the photoproductioh amplitudes of CGLN
above estimate. The nearby part of the N +vy cut could have at

most a 2% effect on 6M.

{(c) u-Channel Cuts

This channel also involves the process N+7— N+ 1 and

(20)

to estimate the ncarby

(20)

one can use the static crossing relations

part of the u-channel cuts; one finds, in the usual notation,
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1 cos Znn cos 21131
Im 6A(M-W) = 3 Im 61111 3 -4 Im 67131 —
a q
cos 27 cos 27
- 4 1Im &1, — 13 16 Im 61, , —e—33
M3 T3 337 3
q q
sin 27 sin 27
+1§ Re 4ny, “—3"'Ll -4 Re bny; — =
q q
sin 27 sin 2n
- 4 Re 6n, —=° +16 Re Bnyy —g—
q q

(43)

The first term in square brackets comes from the inelastic inter-
mediate states N+taw+y and N+y. The N+ 7 +y cut will be
weak for the same reason as in the s-channcl. Turning to the N +y
cut, we note that the sequence N + 7 — N +vy — N + 7 with both the
initial and final pions and nucleons in T = 3/2 states requires two
isovector photon vertices and cannot affect the mass difference. The
N vy intermediate state therefore contributes only to Im 61111 and
Im 61131. Since the strength of the low energy w-N interaction in
the (3,1) state is of the same order as in the (1,1) state, our estimate
for the s-channel N +y cut also holds for its u-channel counterpart
and we see the latter will have little effect on 6M.

_ The second term in square brackets on the right-hand side
of Equation 43 comes from electromagnetic corrections to elastic
nN scattering. The largest part of the Re 6M's should come from
Coulomb scattering. One can replace the Re &m's in Equation 43 by
the Born approximation to the Coulomb phase shift, remove the

infrared divergence by dropping the part which diverges like
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in (e)\/Zp) and use the observed strong interaction n's to estimate
the effect of this cut. Since sin 21133 changes sign at resonance,
the (3, 3) resonance term which usually dominates the left cut in
pion-nucleon processes has very little effect on 6M. The remaining
phase shifts ™y M3y and M3 are very small and one finds that
the crossed wN cut probably has less than a 4 or 5% effect on the
mass difference,

To summarize this section: photon exchange and corrections
to nucleon exchange and the kinematics lead to an estimate of
- 1.4 MeV for 6M. The net contribution of all the other cuts which
lie in the region I'W—M] = 4y is almost certainly less than

+ 0,1 MeV,

3.5. .Discussion.

In Chapter 2 it was argued that the high mass singularities,
which we have neglected, will contribute mostly to an infrared
divergent term which cancels the spurious divergence encountered
above. During our treatment of potential scattering, we worked out
an example in which the "strong" potential was short ranged and the
"electromagnetié" potential was cut off by form factors at small
distances, There, we were able to remove the infrared terms from
the dispersion integral and show explicitly that the remaining integral
was completely dominated by the nearby singularities. Because of
the similarity between the potential theory example and our present
calculation of 6M and because the physics which underlies the

infrared divergence is the same in both cases, one can be fairly
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confident that the above conjecture is correct. Assuming this to be
true, none of the neglected singularities in 6A is likely to have a
large effect on &M, and the agreement between the theoretical and
experimental values of the mass difference is not accidental.(zg)
In conclusion, we discuss what physical interpretation may
be placed on the calculation, We have found that the dispersion
integrals are dominated by the photon exchange term connecting
the isévector Ty vertex to the isoscalar NNy vertex. The
isoscalar anomalous magnetic moment is small, so the NNy vertex
essentially reduces to the isoscalar Dirac term. For the purposes
of the present argument, it is convenient to add in the photon ex-
change connecting the isovector wmwy vertex and the isovector NNy
Dirac vertex which, we recall, shifts both proton and neutron
masses in the same way and thus does not affect their splitting.
We now have the full Dirac vertex with charge +e for the protoﬁ
and 0 for the neutron. In terms of this vertex, the only component
of n. or p exhibiting an important one-photon exchange is = p,
which makes up two-thirds of the neutron.
Evidently the Coulomb part of the interaction is attractive
for m p. Thus one might expect the neutron to become lighter than
the proton--exactly opposite to our result, not to mention experiment!
To see what is going on here, it is sufficient to take Equation
37 as the contribution of the photon exchange cut. This formula,
which was obtained with the approximation D = (W - M), is much

simpler than Equation 38 and contains the essential physics of the
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situation. One will note that Equation 37 contains a factor 1/M and
it is not difficult to convince oneself that the only part of the photon
exchange force betweena 7 and p which can make a contribution
of order 1/M is the interaction of the Dirac (e/2M) magnetic moment
of the proton With the magnetic field produced by the moving pion.
(The ordinary electrostatic attraction does not vanish as M ~> oo

Z.,) So the main effect

and nucleon recoil effects will be of order 1/M
of the | T p /interaction is magnetic and the Coulomb term, which was
expected to make the neutron lighter, does not in fact affect the
neutron mass at all in the approximation D = (W - M)!

A heuristic explanation of this result is as follows. Loosely
- speaking, we have considered the neutron to 'be made up of a T
bound to a fixed proton, By virtue of our assumption that D is
practically a straight line, we have also assumed that the forces
which bind the © have a range which is short compared to the
inverse binding energy 1/u. This means that most of the timec the
pion will be found outside of the region in which the binding forces
operate. In this outside region the pion, with binding energy p,
has zero total energy. Now the standard expressions for the

charge and current densities of a spin zero (Klein-Gordan) particle

in a potential-free region are

p = ﬁ(@%—f - 28%— $) (44)
T = L (95 - ove™) (45)

2pi
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Zero total energy implies 08¢/8t = 0, so the charge density vanishes
and it is not surprising that the Coulomb term vanishes. On the
other hand, the pion momentum does not vanish so there will be a
current which can interact with the magnetic moment of the nucleon

to produce the mass difference.
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The favorable convergence of dispersion relations involving the
redefined amplitude has nothing particular to do with the fact
that we started with an infrared-divergent amplitude. This
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