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ABSTRACT

The objective of the present inﬁestigation hés been threefold:
(1) To characterize domain wall motion in thin ferromagnetic films
experiméntally and to determine what film properties influence wall
mobility. (2) To investigate ferromagnetic resonance relaxation in
thin films over a wide range of temperature, frequency, and thickness
and to determine what physical relaxétion processes contribute to the
resonancé linewidth. (3) To correlate the losses for wall motion with

relaxation processes for ferromagnetic resonance.

Domain wall mobility for Ni-Fe alloy films has been measured as
a function of film thickness from 300 to 1650 £. Between 300 and 800 R,
the mobility decreases with increasing film thickness, ranging from
8 x 103 cm/sec+Oe at 300 £ to 3 x 1()3 em/sec-0c at 800 B. Between 900
and 1000 R, the mobility increases rapidly with increasing film thick-
ness to about 7 x 103 cm/sec*Oe. Above 1000 R, the mobility increases
slowly with film thickness. Predictions based on Lorentz microscopy
' static wall shape measurements are in good agreement with the data for
a éonstant'value of the Landau-Lifshitz damping parameter o = 0.014.
Eddy-current losses are negligible. The crosstie and Bloch line
'structures associated with domain walls in thin films do not appear to
influence the mobility. The sharp increase in mobility between 900 And
1000 £ is associated with é wall structure transition in this region.

K}
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Ferromagnetic resonance linewidth measurements have been made for
films 150 to 3200 £ thick at frequencies from 1 to 9 Gc/sec and temper-
aﬁure from 2°K to 300°% with the static field in the film plane. Line-
widths between 3 Oe (1 Gc/sec) and 50 Oe (9 Ge/sec) weré observed. For
fixed thickness, the 300°K linewidth increases monotonically with
anisotropy dispersion. To eliminate dispérsion, samples with the
smallest linewidth QAHmin) were selécted for egch‘thickness. For thick-
ness less than a critical thickness Duﬂ Aﬂmin is independent of thick-
ness, but increases with thickness for D D, The data afe in good
agreement with predictions based on two-magnon scattering between the
uniform mode and degenerate magnons. Eddy-current losses are not im-
portant. The phenomenological damping varies from 0.005 (D = 400 R)
to 0.009 (D = 3200 8) for the 300°K data. As a function of temperature,
the linewidth exhibits a maximum at about 80°K which is generally
larger in thinner films. The amplitude of the peak (as high as 15 Oe)
vis independent of frequency and the peak shifts to slightly higher
temperatures with increasing frequency. Two annealing treatments at
ISOOC, one in a vacuum and one in hydrogen or oxygen, indicate that the
temperature dependence is associated with a surface oxide layer. Two

mechanisms, valence exchange and exchange anisotropy, may be important.

Even though phenomenological damping parameters for the two pro-
cessés, wall motion and resonance, are quite different (at 300°K),
there is a definite connection between the losses. Changes in the wall
mobility between 300°K and 77°K have been measured for films -exhibiting,

to varying degrees, the above linewidth effect. From these mobility
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and linewidth data, the losses for wall motion were found to be directly
related to the losses for resonance from 300°K to 77°K. There is a
definite connection between the relaxation processes which are important

for wall motion and those involved in resonance.
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Chapter 1. INTRODUCTION

Over the past decade, thin magnetic filmé have received consider~
able attention as potential computer memory elements which incorporate
the advantages of high.speed, high packing deqsity, and ease of fabri-
catisn. A better understanding of the physical relaxation mechanisms
which control the magnetization motion during flux reversal is extremely
important if the greatest utility is to be realized from such memory
elements. Such an understanding has been the general objective of the
present investigation and is the subject of this report. The approach
has been to investigate two different extremes for mégnetization motion:
(1) A large angle process, domain wall motion, which is directly rele~-
vant to many memory devices, and (2) A small angle process, ferromagnet-

ic resonance, which is more amenable to fundamental interpretation.

The rate at which a moving domain wall can dissipate energy to the
lattice determines the magnitude of its velocity. Apart from eddy-
current losées, however, the energy dissipation mechanisms which limit
the wall velocity can best be described phenomenologically. Very
little information concerning physical relaxation processes can be
obtained. On the other hand, ferromagnetic resonance at low power
blevels represents only a small perturbation on a system magnetized to
saturation. Some understanding of the resbnance response of the System
in terms of fundamental physical processes is possible. Since both pro-

cesses simply represent different types of magnetization motion, it is
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conceivable that the physical relaxation mechanisms which come out of
the resonance investigation may be directly applicable to wall motion

in‘particular and flux reversal in general.



Chapter 2. DOMAIN WALL MOTION

2.1 INTRODUCTION

The domain theory.of Weiss (1907) provides the basis for under-
staﬂding a large number of magnetic phenomena in ferromagnetic
materials. Weiss proposed that a ferromagnetic sample contains a
large number of small regions, called domains, within which the
magnetization M is constant in magnitude and direction. A change in
the total magnetization can occur at relatively low external fields
through an increase of the volume of those domains with M nearest the
field direction, at the expense of other domains. These Weiss domains
were observed experimentally by Bitter (1931) and the increase in
total magnetization at low fields was confirmed to occur by domain

growth as Weiss predicted.

Domain growth is associated with the motion of the transition
layer or wall between adjacent domains. The magnetization in adjacent
domains will lie along directions of lowest anisotropy energy (along
eaéy axes). In traversing the wall, the magnetization will not, in
general, lie along an easy direction and the domain wall will have an
assoqiated anisotropy energy. The lowest anisotropy energy is
associated with a wall of zero width in which'the magnetization

4changes abfuptly from one easy direction to another in traversing the

wall. All magnetization would then lie along some easy direction and
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the anisotropy energy would be minimum. However, the exchange inter-
action between neighboring spins in the magnetic lattice gives rise to
an exchange energy which is proportional to the square of the angle
between adjacent spins and is minimum when all spins are aligned
parallel. 1If the wall had zero width and the magnetization changed
abrﬁptly from one easy direction to another, the exchange energy
associated with the wall would be very large. Bloch (1932) was the
first to point out the importance of exchange in calculating the width
of the domain wall. The wall width in bulk material is determined
from a balance of the anisotropy energy (which is minimum for zero
width) and the exchange energy (which is minimum for infinite width).
A theory of the walllstructure and a formula for its width and energy
was first worked out by Bloch (1932) and the domain wall is commonly
called the Bloch wall. Bloch, However, assumed that the magnetization
vanished at the center plane of the wall. The magnetization distribu-
tion which is usually associated with the Bloch wall is that proposed
by Landau and Lifshitz\{1935) and shown in Fig.2-1 for the specific
case of a 180° Bloch wall separating antiparallel domains. The magni-
tude of M is constant but the magnétization turns about an axis perpen-
dicular to the plane of the wall (the axis defined by the tail positions

of the M vectors in Fig.2-1).

Under the influence of an applied field ﬁ; domains with M oriented

nearest the field direction grow at the expense of other



Fig.2-1. Magnetization distribution for Bloch walls. The magni-
tude of M is constant but the magnetization turns about an axis perpen-
dicular_to the plane of the wall (the axis defined by the tail positions
of the M vectors). The magnetization remains in the plane of the wall.

Fig.2-2, Magnetization distribution for Néel walls. The mage-
netization rotates in the plane of the film (represented by the flat
plate). :
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domains and the total magnetic energy of the system (;ﬁ . ﬁ'integrated
over the volume of the system) is re&uced. Domain growth occurs by

the motion of Bloch walls and the associated energy loss must occur by
energy dissipation within the walls during motion. Since the energy
loss rate for the system will be determined by the velocity of the
walls (wall motion controls how fast the domains oriented near the
field direction can expand), the wall'velocity will be limited by the
rate at which energy dissipation can occur within the wall. If the
wall is not capable of dissipating energy to the lattice by its motion,
there will be no way for the.system to lose magnetic energy and the
walls will move with infinite velocity. (For a vanishingly small loss
rate, the velocity is actually limited by the amount of wall distortion
which can occur to produce the internal fields which move the wall.
These internal fields, called Becker fields, will be discussed in
section (2.2).) The domain wall velocity is loss limited and is
controlled by the individual mechanisms by which energy is transferred

from the magnetization motion within the wall to the lattice.

An understanding of the loss mechanisms by which the moving domain
wall dissipates energy to the lattice is therefore an important
prerequisite to any understanding of wall motion. Two loss mechanisms
are of importance, relaxation losses and eddy-current losses. Relaxa-
tion losses denote those processes by which the magnetization motion is

coupled directly to the lattice vibrations by various interactions



between ;he normal modes of the magnetic system (spin waves) and the
normal modes of the lattice (phonons). Defined iﬂ this way the term
"relaxation loss" can_be adapted to include a large variety of
physical interactions.. Eddy-current losses simply denote the joule
heating of the system by the macroscopic eddy currents which are
generated in the metal film because of the magnetization motion within
the moving wall. Since both the spin-wave spectrum for the normal
modes of the magnetic system and the eddy-current distribution depend
on the magnetization distribution within the moving wall, the shape of
the domain wall is expected to have a strong influence on both relaxa-
tion and eddy-current losses for wall motion. 1In order to understand
these losses, a knowledge of the magnetization distribution associated

with moving domain walls is required.

Thin ferromagnetic f£ilms are ideal structures for a study of
domain wall motion for two reasons. Because of the thinness of the
film, domain walls with their planes parallel to the film surface
cannot occur and the domain configuration at the surface is representa-
tive of the whole film. TFor bulk material, the domain configuration
deep inside the material cannot be determined with certainty. In
addition,'the magnetization distribution within domain walls (the wall
shape) for thin films is understood in some detail. However, this
information is for stationary walls in equilibrium (walls which are not

moving) and in order to understand wall motion, a knowledge of the
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magnetization distribution for moving walls is desirable. Since very
little work has been done concerning moving walls, static wall shapes
can be used as a starting point for the analysis of wall motion. If
‘the static wall shape assumption is a poor one, the velocities
predicted from the loss analysis based on static shapes may not be in
agreement with experimental observations. On the other hand, if
dynamic walls do not differ appreciablyafrom static walls, the
theoretical predictions and the experimental observations should be in

agreement.

For thin films the domain wall energy ;-i.s not determined solely
from exchange and anisotropy as is the case fof bulk material. 1If the
rectangular plate in Fig.2-1 is taken to represent the film, it can be
seen that the magnetization within the wall is discontinuous at the
film surfaces. This discontinuity in magnetization at the film
surfaces produces a magnetic field within the wall (usually called the
stray field or demagnetizing field) and a resultant magnetostatic
energy. For very thin films, when the film surfaces are separated by
only several hundred angstroms, this magnetostatié energy density for
the Bloch wall is quite large. Néel (1955) has pointed out that for

extremely thin films (less than about 1000 K thick for Ni-Fe alloy

films with 80% Ni), there exists a completely new type of wall
structure in which the ﬁagnetization is not discontinuous at the film

surface. This structure is shown in Fig.2-2 and is usually called the



Neel wall. The magnetization rotates in the plane of the film instead
of the plane of the wall. For thin £ilms (X 1000 R thick), the stray

field energy for Néel walls is lower than for Bloch walls.

- Middelhoek (1961), Brown and LaBonte (1965) and others have
calculated, with various degrees of accuracy, the detailed shapes for
both Bloch and Néel walls in thin films. In addition, an extensive
experimental iunvestigation of the Neel wall shape for Ni-Fe alloy films
(80% Ni) 100-800 £ thick has been carried out by Fuchs (1962) using
the techniques of out-of-focus electron microscopy (Lorentz microscopy).
This domain wall shape information is of extreme importance in under-

standing the losses associated with wall motion.

The first actual calculation of the domain wall wvelocity was
carried out by Landau and Lifshitz (1935) for 180° Bloch walls sepa-
rating antiparallel domains in bulk material by considering only
relaxation losses which were treated in a phenomenological manner. The
Landau-Lifshitz phenomenological equation of motion for the magnetiza-
tion has been used extensively for a wide variety of problems involving
magnetization dynamics. The landau-Lifshitz treatment was extended by
Galt (1952) to obtain the domain wall velocity for 180° walls in terms
of an arbitrary magnetization distribution within the wall. Galt's
result is particularly useful for calculating the relaxation-loss

limited velocity in thin £ilms where the wall shape and the type of
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wall (Bloch or Néel) is dependent on the thickness of the f£ilm. The
only calculation of the eddy-current loss-limited wall velocity is the
analysis by Williams, Shockley, and Kittel (1950) in which the moving
domain wall was approximated by a transition region of zero width.
The‘calculation was carried out for a long rectangular bar. Ford
(1960) has adapted their result to thin film geometry but the effect
of the zero-width wall approximation on the calculation has not been

considered.

ngeral experimental investigations have been reported, which
undertake to characterize wall motion in terms of relaxation losses or
eddy-current losses. Menyuk (1955) observed the reversal time in
Permalloy tape cores varying in tape thickness from
3 x 104 to 3 x 105 2. By observing the thickness dependence of the
reversal time he concluded that eddy-current losses were negligible
for tapes thinner than 3 x 104 R and that wall velocity was relaxation-
loss limited. Ford (1960), on the other hand, measured domain wall
velocities for films 700-4000 R thick which were consistent with
predictions based on eddy-current losses and concluded that wall
velocity was eddy-current loss limited. Recent wall motion measure-
ments by Copeland and Humphrey (1963), Il'icheva and Kolotov (1965),
Patton and Humphrey (1966a), and Middelhoek (1966) are at variance
with Ford's data and indicate that the velocity is relaxation-loss

limited.
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Both the experimental results and the theoretical treatments for
wall motion in thin films are in poor shape. Thé existing data for
wall motion by various workers are not in agreement. No consistent
interpretation of these data in terms of relaxation and eddy-current
losses has been reported. In this chapter, wall motion in thin ferro-
magnetic £ilms is examined both experimentally and theoretically. 1In
the next section, the theoretical relaxation-loss limited velocity is
calculated, taking advantage of exiatihg theoretical and experimental
wall shape information. In section (2.3), the eddy-current loss-
limited velocity is calculated. Ford's extension of the Williams
et al., result is improved by including the effect of the nonzero wall
width and the stray field on the eddy-current distribution. Once these
two loss mechanisms are understood, the wall velocity limited by both
processes can be calculated. In sectionl(Z.A) an experimental
technique for met-etSuring wall velocity in thin films is described in
detail and in section (2.5) the results of an extensive experimental
study of wall motion in thin films are compared with the theoretical
predictions based on relaxation and eddy-current losses. The results
of the present investigation, theoretical and experimental, are

summarized in section (2.6).
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2.2 REIAXATION LOSSES

2.2.1 Phenomenological Formulation

Relaxation losses for wall motion have been defined in a very
general way in terms of elementary interactions between the magnetic
normal modes and the normal modes of the lattice. Such a definition
is satisfying, from a fundamental point of view, inasmuch as it
specifies the nature of the physical processes which are involved. 1In
practice, however, this definition is of little utility. Calculations
of relaxation losses for wall motion have all been phenomenological,
not because there has been any clear connection between physical
relaxation processes and a purely phenomenological formulation but
because no technique for calculating relaxation losses from physical
principles has yet been developed. The justification of a phenomeno=~

logical formulation rests primarily in its mathematical simplicity.

The use of the phenomenological loss formulation in treating wall
motion has not been consistent. 1In the absence of any real understand-
ing of the physical processes involved, the choice as to what losses
should be included in (or excluded from) such a formulation has been
rather arbitrary. This is evident even in the first phenomenological
treatment by Landau and Lifshitz (1935) who thought that the losses
had a relativistic origin. Smith (1963) has worked backwards, by

reducing eddy-current losses {(a well understood physical concept) to
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a phenomenological formulation. Middelhoek (1966) has included the
effects of macroscopic film imperfections and impurities on wall motion

in defining the phenomenological losses.

" For the present purpose of understanding wall motion, phenomeno-
logical will be taken to denote those processes which cannot be calcu-
lated (6r at least understood) in terms of basic physical principles.
Eddy-current losses are excluded since they can be calculated from
electromagnetic theory. The losses which result from the interaction
of the walls with macroscopic film imperfections and impurities are
excluded because such losses can be qualitatively understood from
magnetostatic considerations and can be eliminated experimentally by

careful sample preparation.

The spirit of the phenomenological approach to relaxation losses
can be obtained by considering a very simple viscous damping model for
wall motioﬁ. For purposes of calculation, consider the simple domain
geometry and co-ordinate system shown in Fig.2-3. The ferromagnetic
film specimen possesses a uniaxial anisotropy along the z-axis (the
anisotropy energy is minimum when M is along the z-axis). A single
isolated domain wall is located in the film aligned with the easy axis,
separating two antiparallel domains {(labeled I and II). A magnetic
field of amplitude H is applied along the anisotropy axis (easy-axis)

causing domain I to become larger at the expense of domain II. The
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Fig.2=3. Domain geometry for wall motion. The domain wall is
oriented with its plane parallel to the easy=axis (z~direction) and
moves at a constant velocity v in the x-direction under the influence
of an easy-axis field H.

Fig.2-4., Bloch wall structure and co-ordinate system for calcu-
lating the losses associated with wall motion. The wall is moving
in the x~-direction and is shown at the instant when the center of
the wall coincides with the y:z plane.
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growth of I occurs by the displacement of the wall in the positive
x-direction with some velocity v. All interactions between the domain
wall and the edges of the film are neglected. 'More complicated
situations are possible in which the domain wéll does not lie along the
easy-axis or the velocity is not at right angles to the wall plane.
Figure 2-3, however, describes the simplest situation which can be

Obtained experimentally.

Details of the Bloch wall structure for this geometry are shown in
Fig.2-4, at the instant (t = 0) when the center plane of the wall
coincides with x = 0. For Neel walls, the magnetization rotation would
be confined to the x:z plane (film plane) instead of the y:z plane
(wall plane). Consider the magnetization of a small volume AV ini-
tially in domain II. As the wall moves past this volume, the magneti-
zation will rotate from its initial position in the z-direction at
8 = n to a final position in the negative z-direction at 8 = 0 (corre-
sponding to domain T). If this rotation is viewed as the simple motion
of a physical vector in a viscous fluid, the viscous torque associated
with the motion can be written as -C(d8/dt)AV, where C is a viscous
damping constant. .In rotating from 6 = n to § = 0, the magnetization
loses energy equal to 2ZMHAV per unit volume. The viscous damping

energy loss is given by the integral of C(d6/dt)AV from 6 = 0 to 9 = x.

Since the magnetostatic energy decrease (-2MHAV) can only occur by energy
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dissipation within the wall due to the viscous torque,

4]

2MH = fC(dG/dt)dO 2.1)
. .
If fhe wall is situated as shown in Fig.2-4, for the magnetization
within the wall at an angle 8 with the negative z axis, d8/dt is equal
to -v(d@/dx). With this substitution in Eq.(2.1), the domain wall

velocity can be seemn to be

" -1
v = (2MH/C) [ﬁdeldx)t - Ode:! . 2.2)
Ly

An important assumption implicit in the previous derivation
concerns the shape of the moving wall. In the same way that a
physical mass moving under the influence of gravity in a viscous fluid
falls with a constant velocity due toc the balance of the viscous force
against the gravitational force, the rotating magnetization vector in
the moving wall can be considered to represent & dynamic equilibrium
situation, in which all the torques acting on the magnetization sum to
Zero. Thé exchange, anisotropy, and stray field energy of the wall
each have an associated torque. The viscous torque has already been
considered and the field torque is given by (ﬁ b4 ﬁ)u Equation (2.2)
can also be derived_by assuming a balance between the field torque and

the viscous torque. Since for dynamic equilibrium the total torque
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must vanish, the sum of the exchange, anisotropy, and stray field
torques must also vanish. This static equilibrium between the
exchange, anisotropy, and stray field torques is precisely the criteria
for determining the static domain wall shape corresponding to a
Stationary wall with ﬁinimum energy. Therefore, this analysis makes
thelimplicit assumption that the moving wall has the same magnetization
distribution as a static wall. In general, amn exact balance between
the field torque and the viscous dambing torque cannot be obtained for
static wall shapes. However, the exchange, anisotropy, and stray field
torques are usually much larger than the field or viscous damping
torques for the wall motion which is of interest here and the above

Conclusions are quite accurate.

Two other important properties of this derivation should be
pointed out. The velocity is a linear function of the applied field
and is inversely proportional to the viscous loss parameter C. Both of
these properties are a result of the quadratic dependence of the energy
dissipation rate on velocity which can be demonstrated by multiplying

both sides of Eq.(2.1) by v. Then

w

2MHv = CVZ f (d8/dx)de 2.3)
]

using the substitutions noted above. The left hand side (L.H.S.)
represents the rate at which a unit area of wall moving at velocity v

reduces the energy of the system. The right hand side (R.H.S.)
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balances this energy reduction rate with the dissipation rate for the
moving wall. The linear dependence of velocity on H and the inverse
dependence on C follow directly from Eq.(2.3). 1In passing, it is
worthwhile to note that the form of Eq.(2.3) is similar to that which
willlbe obtained for eddy-current losses in section (2.3). Oaly the
coefficient of v2 on the R.H.S. will be different. This similarity

will simplify considerably the final calculation of the velocity.

The velocity in Eq.(2.2) is a linpear function of the H. For this
situation, a convenient approach is to characterize the wall motion by
a field independent parameter, the wall mobility, which can be defined
as the rate of change of velocity with respect to the applied easy-
axis field, G = 0v/OH. As derived from the viscoué damping model and
the static wall shape assumption, the wall mobility is independent of
field and depends only on the magnetization of the sample, the viscous
damping parameter and the domain wall shape (which is needed to evaluate
the integral in Eq.(2.2)). The mobility, then, is determined by the
material properties of the sample and £ilm thickness (which influences

the wall shape).

The foregoing analysis has been developed on the basis of a simple
viscous damping model. This model is useful in illustrating the basic
assumptions and results which come out of the phenomenological formu-

lation. The standard phenomenological treatments, however, do not
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utilize this simplée approach. These treatments start with the usual
undamped equation of motion of the magnetization

(dM/dt)precession = Y x Hi) 2-4)
where ﬁ; is the total intermal field acting on M and ¥ is the gyromag-
netic ratio (taken to be positive for electronms). A number of
phenomenological damping terms are in common use. These are terms
which are added to the R.H.S. of Eq.(2.4) to account for losses in the

magnetic system. One form, proposed by Landau and Lifshitz (1935)

puts the equation of motion into a form:
daM/de = -Y(M x ﬁi) + @M Mx MxH) . @2.5)
i

The damping term represents a relaxation of M toward ﬁ; with the magni-
tude lﬁi unchanged. The damping motion for the Landau-Lifshitz
equation is proportional to only the precession component of dﬁ/dt

(ﬁbx H in the last term of Eq.{(2.5)). 1In the spirit of the viscous

damping model, the damping motion should be proportional to the total

dM/dt such that

dM/at = -y(M x H;) + (@/M) (M x dM/de). 2.6)
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This equation of motion is in the form originally proposed by Gilbert
(1955). If the damping parameter o is small, (dﬁ/dt) will be nearly

equal to (dM/dt)precession and the differences between Eq.(2.5) and

(2.6) will be negligible.

Equation (2.5) has been applied to the analysis of domain wall
motion (Galt, 1952), with results which are similar to those obtained
from the simple viscous damping model. The mathematical details are
not of prime importance here but the results are relevant to this
discussion. From the magnetization distribution inside the wall (see
Fig.2-4), for an applied field in the z-direction Eq.(2.5) clearly
does not predict the magnetization rotation in the y-z plane (for
Bloch walls) assumed in the viscous damping analysis. Equation (Z2.5)
predicts, instead, that M will tip out of the wall plane, with an
x-component normal to the wall. This tendency of M in a Bloch wall to
have a component normal to the wall for an applied easy-axis field
(first pointed out by Becker, 1951) gives rise to a demagnetizing field
in the x~direction, commonly calied the Becker field. The magnetization
rotation in the wall plane about the x-axis, assumed in the viscous
damping analysis, results from the magnetization precession about this
x-directed Becker field. From Eq.(2.4) the magnetization precession

rate in the moving wall, d8/dt = v({d8/dx), requires that

= -(v/Y)(d68/dx). 2.7

HBecker
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The most important result of the Becker field treatment is that for
wall motion to occur, gdome distortion of the atatic wall shapa is
required in order to produce the internal field necessary for
magnetization rotation during wall motion. For undistorted walls, there
are no such internal fields which can act on M. Without a component

of M along the wall normal (for Bloch walls), the Becker field is zero
and no rotation can take place. This requirement appears to be imn
complete contradiction with the earlier static wall shape assumption
for the viscous damping treatment. This apparent contradiction can be
partially resolved by noting that 4mM for ferromagnetic materials is
usually quite large (53104 Qe for Ni-Fe alloys with 80% Ni) and large
Becker fields (4100 Oe) can be produced by extremely small x-components
of M. This wall distortion is extremely important in a physical
interpretation of wall motion‘in terms of Eq.{2.5), but is so small

that the static wall shape assumption is still approximately valid.

The energy dissipation rate per unit volume within the moving

wall (H-dM/dt) can be calculated from Eq.(2.5) and is approximately

2

equal to OaYM)HBecker’ if HBecker

>4 H{Galt, 1951). By integrating
this dissipation rate over the wall, a rate-balance equation identical

to Eq.(2.3) with C = Mx/y is obtained. With this substitution, the
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relaxation-loss limited mobility Qa can be written as

i -1
¢, = @v/w) /(d@/dx)t _ od® 2.8)
o

using the above expression for HBecker and G = Ov/OH. Equation (2.8)

will be used extensively to calculate the relaxation-loss limited

mobility. The foregoing discussion has been concerned with Bloch wall

motion. For Neel wall motion, a similar analysis is possible

(H in the z-direction) and the results are identical. The
Becker

damping parameter O (usually called the Landau-Lifshitz damping

parameter) is a phenomenological measure of the relaxation losses for

wall motion.

As evident from Eq.(2.8), the two particulars of the magnetic
system which are required in order to calculate the domain wall
mobility are the damping parameter & and the wall shape 8(x). The
damping is phenomenological and can only be determined experimentally.
If relaxation losses could be calculated explicitly, it would not be
necessary to resort to a phenomenological amalysis in the first place.
In fact, the determination of this parameter for wall motion is one of

the important results of this investigation.

The other important particular is the wall shape; 9(x). In the
previous discussion it has been assumed that the magnetization orienta-

tion in the wall is only a function of distance along the wall normal
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and that M remained either in the wall plane (Bloch walls) or in the
film plane (Néel walls). Even with these simplifying assumptions, the
problem of calculating wall structure is a complicated one. For some
situations, the problem is simplified by the possibility of experi-
mental determinations of wall structure. In any case, wall structure
information is an importaunt prerequisite to any real understanding in
relaxation losses for wall motion. The problem of wall structure in
thin films and its relation to the wall mobility will be considered in

the next part of this section.
2.2.2 Wall Shape Considerations

The conceptual problems connected with the phenomenological treat-
ment of relaxation losses has been considered in detail and the impor-
tance of wall shape in this treatment has been pointed out. Without a
knowledge of wall structure, the mobility expression for Gd in Eq.(2.8)
is of little use. In the remainder of this section, the preseat day
understanding of static wall structure in thin films will be reviewed
and this knowledge will be used in a further discussion of Eq.{(2.8)
and the relaxation-loss limited wall mobility. It is important to
keep in mind the fact that the static wall shape assumption is not a
trivial one, and that it can serve only as a étarting point for treat-
ing relaxation losses for wall motion. The te;t of the validity of

this assumption can come only from comparison with experiment.
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The Bloch wall energy and shape ©(x) for bulk material is deter~
mined by the balance between exchange and anisotropy energies, but in
thin films a magnetostatic energy term is also of importance. The
origin of this energy term can be understood in terms of a conceptual
magnétic charge density defined by P, = -v-ﬁ, by analogy with electro~
statics where p = —V-F‘(F is the electric polarization). In the same
way that electric fields are associated with an electrostatic charge
density, magnetic fields are associated with o For a Bloch wall,
v-ﬁ = (0 everywhere except where the wall intersects the surface of the
material. For bulk material the magnetostatic field is large only
near the surface and has little effect on the energy of walls deep
within the material. For f£ilms, however, all of the material is near
the surface. For the wall and film geometry of Fig.2-4, the positive
magnetostatic charge density at the upper film surface
pm(y = D) = M 8in® and the negative density on the opposite lower
surface pm(y = 0) = -M sinf produce a magnetostatic stray field within
the wall which has considerable influence on the wall energy and shape.
The magnetostatic charges associated with the wall intersections with
the f£ilm sﬁrfaces‘corre5pond to + signs and -~ signs on the upper.
and lower film surfaces in Fig.2-4. For the Bloch wall in Fig.2-4, the

largest component of the stray field (H y) is in the negative

stra

y~direction. The magnetostatic stray field energy density of the wall
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(per unit area of wall surface in the y:z plane) is given by
+a/2

EStray = -[ustray « M dx (2.9)

~a/f2

if a is taken to be the width of the wall centered at the origin. For
Bloch walls, it should be emphasized that the stray field results from

is. neglible)

a surface charge density and is negligible {(i.e. Estray

when the film thickness is large (D> > a).

If the stray field energy is neglected, the Bloch wall energy and
shape, determined by a balance between exchange and anisotropy, are the
same as for bulk material and a ~ q/K7E (Landau and Lifshitz, 1935).
For typical values of 10-6 erg/cm for the exchange constant A and
103 erg/cm3 for the uniaxial anisotropy constant K in 80% Ni-20% Fe
films, a ~ 13,000 g- The effect of the stray field on Bloch wall
shapes for thin films can be qualitatively ugderstood in terms of a

simple model based on Eq.(2.9) and Fig.2-4. If 6(x) is approximated by

8 =xn(xfa + 1/2) @ -a/2 <x <af2 (2.10)
and Hstray is approximated by
= - e -, < . < .
Hstray (Const) {a/(a + D)}ey af2< x< af2 2.11)
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0 for D > » a (the bulk limit), E is proportional

so that H

stray =~ stray

2 -
toa /(a +D). In Eq.(2.11), ey is a unit vector in the y-direction.
The stray field energy for Bloch walls in thin films has an effect
similar to the anisotropy energy in reducing the wall width as

discussed in section (2.1).

Because of exchange, the wall width cannot go to zero and for
sufficiently thin films there is a sizeable stray fileld energy due to
the finite Bloch wall width. As mentioned in section (2.1), the Néel
wall configuration of Fig.2-2 does not have the large EStray
associated with Bloch walls in thin films. In Fig.2-4, if the magneti-~
zation were constrained to rotate in the x:z plane instead of the
y:z plane, there would be no P associated with the wall intersection
at the film surface (since Py = -v'ﬁ;.both My and_aMy/By are zero).
However, since ﬁx is non-zero anxlbx is also non-zero (8 = 6(x)) and
there will be a volume distribution of magnetostatic charge associated
with the Néel wall configuration (in contrast with the surface charge
for Bloch walls). If the rotation of ﬁkin the x:z plane of Fig.2-4
were such that Mk = 0, this volume distribution of P could be
indicated by putting + signs in the wall for 0 <x < af2 and - signs in
the wall for -af2 < x < 0. Since a volume charge distribution is now
involved, as D==~ (0 the charges vanish and the stray field energy is
zero. For Néel walls in thin films in the limit D=0, the wall

energy and shape O(x) are determined only by exchange and anisotropy
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with results identical to those for Bloch walls in bulk material
/
(i.e. a o 13,000 X). For Neel walls, the stray field expression
analagous to Eq.(2.11) is

H pray = ~(Const){D/(a + D)}?x (2.12)
which vanishes as D=0, in line with the above reasoning. In
Eq.(2.12), E; is a unit vector in the x-direction. From Eqs.(Z2.10) and
(2.12), an argument can be developed for Néel walls which is very
similar to that for Bloch walls. For Néel walls, however,

~ @D/(a + D) which vanishes for D = 0 instead of for infinite

E eS
stray

thickness (bulk). The wall narrows (as Estray increases) with

increasing thickness.

The first calculation of the thickness dependence of the energy
and width for Bloch and Néel walls was done by Neel (1955). This
initial calculation used the linear wall shape trial function of
Eq.(2.10) (0 is a linear function of x) and the stray field
approximations of Eqs.(2.11) and (2.12). Exchange, anisotropy, and
magnetostatic energy terms were included in the calculation. More
recently, this calculation has been repeated by Middelhoek (1961),
using a slightly different constant in Eq.(2.11) and (2.12).
Middelhoek presented numerical results evaluated using material

constants typical of the films of experimental interest (80-2C Ni-Fe
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films, A = 10—6 erg/cm, K = 103 erg/cm3, 4nM = 104 Gauss). His results
for Bloch and Néel wall width as a function of film thickness are

shown in Fig.2-~5 by th¢~sofid lines. As discussed, the Neel wall width
is about 13,000 2 (the Landau-Lifshitz result for Bloch walls in bulk)
fdr zero thickness and narrows with increasing film thickness. The
Bloch wall narrows with decreasing thickness. Middelhoek's results

for the wall energy are not shown but Bloch walls are predicted for

D < 400 K and Néel walls are predicted for D > 400 .

The change in wall structure as a function of film thickness and
the existence of both Bloch and Néel walls can be understood in terms
of the simple one-dimensional 8 = 6(x) wall models which have been
considered.  The models, however, have been very restrictive, permitting
the magnetization to rotate onl& in the y:z or the x:z plane with the
6 = 6(x) only. It is entirely possible that more complicated
magnetization distributions will result in a lower stray field energy
(and wider walls) than the simple distributions discussed above. The
solid lines in Fig.2-5, then, represent a lower limit for the wall
width in thin films. If other magnetization distributions result in
, the walls will be wider. The upper limit of 13,000 &

tray

for Estray = 0 is, of course, still valid. Even for the simple one-

dimensional model discussed here, wall shape and energy calculations

reduced ES

are extremely complicated and usually must be done using numerical

methods. Several workers have carried out this same calculation using
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Fig.2-5. Domain wall width as a function of film thickness for
80-20 Ni-Fe alloy films with a uniaxial anisotropy constant of
103 erg/cm3, an exchange constant of 10-0 erg/em, and a saturation
flux density (4nM) of 104 gauss. The solid lines are after
Middelhoek (thesis, University of Amsterdam, Holland (1961)) and the
open circles are after Fuchs (Z.Angew. Phys. 14, 203 (1962)).
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more sophisticated 6(x) trial functions and different approximations
for Hst ay (Behringer and Smith, 1961; Dietze and Thomas, 1961; Brown
and LaBonte, 1965). These calculations, however, give essentially the
same results as the linear wall model. Very little progress has been
made with models which are capable of describing the magnetization
distribution in the wall more accurately than the simple one-dimensional
model. LaBonte (1966) has performed a two-dimensional calculation
with M = Mf(x,y) in which the Bloch wall shape was found to change
with penetration depth into the film. No other multidimensional
calculations for thin films have been reported. On the other hand,
several powerful experimental techniques have been used to actually
examine wall structure in thin films. The results of these investiga-
tions indicate that the simple one-dimensional Bloch and Néel models‘
are reasonably good approximations to real wall structures. .The
deviations of the actual wall structures from these simple models can

be qualitatively understood in terms of the magnetostatic stray field

energy.

An indication of wall structure can be obtained using the tech-
nique, first reported by Bitter (1931), of depositing a drop of
colloidal suspension of very fine magnetite (Fe304) particles on the
surface of a magnetic specimen. Due to Brownian motion, the particles
move in the suspension until they are captured by the magnetic stray
fields which are associated with domain walls. A visible picture of

the surface domain wall arrangement results. In Fig.2-6, photographs
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Fig.2=f. Photographs of Bitter patterns for domain walls in films
250 -~ 1650 A thick. Each photograph corresponds to a wall section
approximately 300 p long.
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of these magnetite distributions around domain walls (called Bitter
patterns) are shown for films 250-1650 R thick. For film thickness
between 250 & and 1000 g, additional structures (usually called
crossties) appear at regular intervals along the wall length. The
crosstie spacing decreases with increasing thickness. For thicker
films, the Bitter patterns are very faint. The abrupt change in the
Bitter pattern intensity at about IOOO‘K film thickness has been
associated with a Bloch-Néel transition (Methfessel et al., 1960)
qualitatively expected from the magnetostatic stray field enmergy
considerations. Since the magnetic charge distributions for Bloch
walls in thin films (surface charge distribution) are very different
from those for Néel walls (volume charge distribution), the surface
stray fields and the associated Bitter colloid accumulation should
also be very different. The intensity reduction for Bloch walls in
thick films has been qualitatively. explained by Middelhoek (1961) in

terms of flux closure for the different Bloch and Néel stray fieild

configurations.

The Bloch-Néel transition, however, appears to occur at D~ 1000 R
instead of 400 & as predicted for the one-dimensional wall models.
This unexpectedly large transition thickness is due to the existencé of
the crossties and their influence on the stray field energy of Néel
wall. The crosstie structure was first observed by Huber et al. (1958)
for 600 & thick films. They suggested that the crossties separated

7/ /7
Neel wall sections with alternating senses of rotation. For the Neel



-33-

wall configuration in Fig.2-2, M could rotate counterclockwise as well
as clockwise in going from the upper to the lower domain. The

previous discussion did not depend on a pgrticular sense of rotation.
As calculated by Middelhoek (1961), this alternation reduces the
magnétostatic stray field energy of the wall and results in an increase
in the Bloch-Nﬁel transition thickness to about 900 R. The crosstie
density decreases with film thickness (as ES — () as expected.

tray
Qualitatively, the effect of the alternation in reducing ES y is also

tra
expected to result in a widening of the Néel wall sections. Using
electron microscopy techniques, Fuchs (1962) has performed observations
on thin Ni-Fe films 100-800 & thick and obtained 6 = B8(x) experimen-
tally for the Néel wall sections between crossties. Fuchs' method is
based on the Lorentz deflection force experienced by electrons in
passing through a magnetic material. The 0 (x) observed by Fuchs for
films 100-800 R thick is sketched in Fig.2-7. His determination is in
good qualitative agreement with the linear rotation model (Eq.(2.10})
in the center of the wall but deviates markedly near the wall edges
0 <6« Gc and 7-8, <6 < ). For these edge regions, d6/dx =~ 0.
The wall width for these: data can be conveniently defined as
2’ = n(dS/dxyl)x -0 His results are indicated by the open circles in
Fig.2-5. As expected {(for 200 R < D < 800 K), the experimental widths

are larger than predicted from the one-dimensional model due to the

reduction in E tra because of the crosstie structures.
s y
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X CO-ORDINATE

Fige2=7. Typical Néel wall shape observed in thin films,
300-800 A thick (E. Fuchs, Z.Angew. Phys. 14, 203 (1962)). The mag-
netization orientation angle € with respect to the easy-axis is
plotted as a function of distance along the wall normal (x = 0 corre~-
sponds to the center of the wall).
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If the alternation of Neel sections reduces the stray field energy,
the alternation of Bloch wall sections should have the same effect for
Bloch walls in thicker films.. (Fof the Bloch wall configuration in
Fig.2-1, ﬁ'could also rotate clockwise in going from the upper to the
lower domain.) Methfessel et al. (1960) have pointed out that the
flux closure between alternating Néel sections must occur in the film
(producing crossties) while the flux closure between alternating Blocﬁ
wall sections must be in the space above {(and belqw) the fiilm. There-
fore no structures analogous to croséties separate alternating Bloch
wall sections in thick films. Smaller structures called Bloch lines
{which do not extend away from the wail for large distances) have been
observed in iron whiskers (DeBlois and Graham, 1958) and recently in
1200 K Ni-Fe films using Lorentz microscopy (Torok et al., 1965). This
configuration (alternating Bloch wall sections separated by Bloch lines)
reduces the stray field energy and results in wider walls than
predicted by the one-dimensional model. Because Bloch walls occur in
thick films (D - 1000 R), Lorentz microscopy measurements of 6(x) for
Bloch walls are difficult. Torok‘'s observations were only qualitative
insofar as no attempt to amalyze the images to obtain 6(x) was made.

/
No Bloch wall data similar to Fuchs' Neel wall data have been reported.

After this brief review of the present day understanding of static
wall structure in thin films, it is worthwhile to summarize the various
points concerning static wall shapes, which are of importance for

calculating the relaxation-loss limited mobility of Eq.(2.8). (1) The
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Bloch and Néel wall models, for which Eq.k2.8) is valid, represent
reasonable approximations to actual wall shapes in thin films. (2) cai-
culations based on one-dimensional Bloch or Néel wall models, however,
can only establish lower limits on the wall width. Actual structures
consist of wall sections with alternate rotation senses which further
reduées ESt ay and widens the walls. (3) Experimental measurements of
8(x) for Néel walls in films 100-800 £ thick have been reported which

can be used directly in Eq.{(2.8). No similar data for Bloch walls in

thick films exists.

For future reference, Equation (2.8) can be converted into an

expression for qz directly in terms of the wall width a for the linear

rotation model of ‘Eq. (2.10).
2
Ga = 2va/n a. (2.13)

The relaxation-limited mobility is directly proportional to the wall
width so that the wall width curves of Fig.2-5 can be converted to
mobility by multiplying by (ZY/ﬂza). For Fuchs'_Néel wall shape data,
d8/dx = 0 for 0 < 0 < Gc and (n - Gc) < 6 < % (see Fig.2-7). For this

wall shape, qa can be expressed as

qz = ZYa*/{n(ﬁ - 26c)a}. : 2.14)
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The depeﬁdence of Gc on film thickness can be obtained from the
3-parameter wall shape calculation developed by Feldtkeller and Fuchs
(1964) for comparison with Fuchs' electron microscopy data. These Sc
values are small (Feldtkeller, 1965) and represent only a small

correction to the qd of Eq.(2.13).

It is important to emphasize that the relaxation-loss limited
mobility calculation summarized in Eq.(2.8) and described by the above
equations does not include the effect of crossties (separating Néel
wall sections) or Bloch lines (separating Bloch wall sections) on the
mobility. If these localized transition structures along the length of
the wall do influence the mobility, the extent of this influence can

only be determined from experiment.

The list of assumptions in the present calculation of the relaxa-
tion limited mobility q} is growing long. In summary, they are:
(1) Relaxation losses can be described phenomenologically using a
viscous damping model. {2) Wall shapes for moving walls afe very
nearly equal to static wall shapes. (3) The crossties and Bloch lines
which are present in actual wall structures do not influence Qm and
only the shapes of the Bloch or Neel wall sections comprising the wall
are of importance. The test of the validity of these assumptions will

lie in the experimental mobility data to be presented in section (2.53).
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2.3 EDDY-CURRENT LOSSES

In contrast with relaxation losses for wall motion, the eddy-
current losses can be calculated explicitly, without resorting to a
phenomenological formulation. From Maxwell's equations and the wall
shapé information discussed in section (2.2), the eddy-current distri-
bution about a moving wall and the resultant losses can be calculated
in terms of known physical parameters for the material, with no adjust-
able phenomenological constants, As was the case for relaxation
losses, the static wall shape assumption is used. However, this
assumption is necessary only for the finél evaluation since some
specific wall shape must be used in order to obtain numerical results.
It is not necessary in order to calculate the current or loss expres-
sions. For relaxation losses, the static wall shape assumption was

implicit in the initial derivation. For eddy-current losses this is

not the case.

As mentioned in the introduction, section (2.1), such calculations
have been made but may be in error because the wall width was assumed
to be zero. The original calculation was carried out by Williams,
Shockley, and Kittel (1950), for a moving domain wall of zero width in
bulk material. Their predictions were in agreement with wall velocity
measurements in single crystal silicon iron. The effect of nonzero
wall width on the eddy-current losses was neglected because the sample

dimensions were much greater than the wall width. Ford (1960), however,



-39.-
extended the Williams et al. result to films on the order of 1000 X
thick, where the wall width (also:w.1000 R) is comparable to the film
thickness. (Refer to the extensive discussion of wall shape in
section (2.2)). The Williams et al. result adapted to thin films
predicts that the current density will fall off exponentially with
distance from the wall, with decay lengths which are the same order of
magnitude as known wall widths (Fuchs, 1962). Ford's use of the zero-
wall-width approximation can hardly be justified under these circum-
stances. On the other hand, no calculation has been reported which
includes the effect of finite wall width on the eddy-current losses
for wall motion in thin films. The purpose of the present section is
to present such a calculation. The current distributions associated
with both Bloch and Néel walls in thin films are calculated, including
the effect of the stray demagnetizing fields associated with these wall
structures. Using the calculated current density, the energy dissipa-
tion rate is evaluated and used to predict the eddy-current limited
wall velocity. The calculation for Bloch walls has been summarized in

a recent article by Patton et al. (1966b).

Maxwell's equations provide the basis for calculating the curreat
density associated with a moving domain wall. Assuming no charge sepa-

ration and neglecting displacement currents in a conducting medium,
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Maxwell's equations may be written

“1
i

v- - O, ’ (2-153)

v X Htotal = (4n/c)J, (2.15b)

vxJ= -(o/c)(a/at)(ﬁto - 4t , 2.15¢)

ta

v-‘ﬁ- . = mlﬁ.j‘[Vaﬁ, ' (2 ° ].Sd)

where the current density J is equal to the conductivity O multiplied
by the electric field. Gaussian units are employed throughout. An
exact solution for F'using Eqs.(2.15a-d) and the proper boundary
conditions is extremely complicated. The field ﬁ;c produced by J must
be included, in addition to the applied field and the stray demagnetiz-

, in the ﬁ;otal appearing in Maxwell's equations. Since J

L0e Hstray

is not known beforehand (the purpose of the calculation is to obtain
T, ﬁ;c is not known. However, if H_ _ 1is assumed to be small
compared to 4mM, the ved and the v x J equations can be used to
obtain an approximate solution for J within the film. This approximate

solution for J and the v X H equation can be used to calculate

total

H (only H  contributes to the curl of H) and this H can be used in
ec ec ec
the ¢y x J equation to obtain a correction to the first current solution

due to the eddy-current generated fields. However, if Hec < < M,
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such a correction will be small and the current solution obtained
neglecting Hec can be taken as an accurate representation of the

actual distribution.

The film and wall geometry for the calculation are the same as in
Fig.2-3 and discussed in section (2.2). A single isolated AOmain wall
is aligned along the easy-axis (z-axis) separating antiparallel domains.
The film is assumed to have infinite extension in the x- and z-directions.
From translational symmetry along the easy axis, d3/3z = 0. Under the
influence of an applied easy-axis field H, the domain wall is displaced
in the positive x-direction with velocity v. The Bloch wall magnetiza-
tion distribution corresponding to this domain configuration (Fig.2-3)
at the instant when the center plane of the wall coincides with x =0
.can be conveniently described as shown in Fig.2-4 and discussed in
section (2.2). For Neel walls, the magnetization rotates in the film
(x:z) plane instead of the wall (y:z) plane. For the co-ordinate
system and geometry of Fig.2-4, the following equations summdrize the
Bloch and Néel wall shape information which is necessary in order to

calculate J from the v X E.equation (neglecting the ﬁ;c contribution to

).

Htotal

H(Bloch) = - (M cosd)e, + (M sind)e, @.162)
M(Neel) = -(M cosB)e -+ (M sind)e . (2.16b)

Here (E;, E;, E;) denote unit vectors. The one-dimensional wall model
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8 = B(x) used extensively in section (2.2), will also be used in the
present development, and db8/dt = v(d8/dx). The justification for using
@ = 0(x) rests primarily in the fact thét it provides a reasonably

accurate description of real domain walls (see section (2.2)).

The z-component of the magnetization is the same for both Bloch
and Néel walls (as shown by Eqs.(2.16a, b)). Since neither wall has a

component in the z~direction ( is y-directed

significant -ﬁ
ignitican stray

stray
’

for Bloch walls and x-directed for Neel walls), the z-component of the

v X E'equation is the same for both structures and involves only Jx and

Jy- This component of Eq.(2.15c) is:
- = -J (d6/d i
BJy/ax aJx/ay JO( 8/dx)sin@,

where Jo = 41. (OVM/ec). From (v x Sﬁz and v-3.= 0 (which also involves
only Jx and Jy, since aEVaz = 0), the uncoupled differential equations

for Jx and Jy can be obtained. They are:

0, | (2.17a)

2 2 2 2
d Jx/ax +9d Jxlay

and

asz/ax2 . asz/ay2 £(x), - @.17b)
with

£(x) = -3 {(d°0/dx")sind + (40/dx)’cost} .

The necessary boundary conditions for the solution of Eqs.(2.1i7a, b) are
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that Jx and Jy vanish at large distances from the wall, Jy = () at the

film surfaces (current cannot flow out of the film), and

(be/ay)film surfaces = Jo(de/dx)sine = h(x).

It is important to emphasize the fact that these two uncoupled
equations for Jx and Jy and their boundary conditions are valid for
both Bloch and Néel wall motion. These two current density components
"will have the same mathematical expressions for both structures.
Equation (2.17a) for Jx (current normal to the wall plane) was solved
using Fourier techniques while Eq.{2.17b) for Jy (current normal to
the £ilm) was solved using Green's functions. The details for both
solutions are given in the appendix. Still for an arbitrary magnetiza-
tion distribution within the wall (no Specificie(x) has yet beea

chosen), these components are given by:

J. = (1/2w) [{cosh(Cy) - césh(C(y-D))}/(Csinh(CD))] .

(2.18a)

- o + co

/h(x')e—icxidx'eixcdc,

= 00
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| be= E ‘(ZD/nZn:Z)sin(nﬂy/D)Yn(x,D)- (2.18b)

odd n

+ o
- ]
Yn(x,D) = e anx /D b/.f(x')\emtx /Ddx'

- 0

+ ®

- ]
+ emtx/D /f(x')e nix /Dd:;°o

- X

These solutions do not yet assume any specific one-dimensional wall
shapé; 6(x) is an arbitrary function of x. For any specific 8(x), Jx

and Jy for moving Bloch or Neel walls can (in concept) be calculated.

The z-component of the current can be obtained directly from the
x- and y-components of the y x J equation, Eq.(2.15c), and the require~

ment that J (X = + ») = 0. From the simple discussion of section @.2),

. /
Hstray has either a large x-component (for Neel walls) or a large

y-component {for Bloch walls). It is, therefore, no longer possible to
neglect Hstray in Eq.(2.15c) as in the solution for Jx and Jy.

Including stray fields, the x- and y-components of v x J are given by:

an/ay (ov/c)(d /dx) {Hx (stray) + éme} (2.19a)

and

f

an/ay (av/c) (d/dx)(ﬂy(stxay) + 4.:tMy}. (2.19b)

For Néel walls, Hy(stray) and My are approximately zero so szlax =0
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and Jz =-Jz(y). From the condition Jz(x =+x) =0, Jz = 0 everywhere
for Néel walls. For Bloch walls, Hx(stray) and Mx are approximately
zero, So sz/ay = 0 and

X

J = Jz(x) = ~oy/c J/‘{Hy(x) + QnMy}dx,

K4
- o

From section (2.2), H

for Bloch walls can be written as
stray

—

Hstray = —Const{a/(a + D)}ey. in thg limit a > > D, H ;s equal

stray
to -4ﬂM'Sin9(pm = + M sinb on the upper and lower film surfaces) so
’that the next higher order approximation to Hstray is

Hstray = -4nM‘sin6{a/(a+D)}ey

and Jz can be evaluated as

b4

Jz(Bloch) = {JOD/(a-FD)}./r (d0/dx)cosbdx. {2.20)

-~ OO

In order to obtain explicit expressions for the current distribu-
tion about a moving wall, it is necessary to assume some specific
functional dependence for O(x). As discussed in section (2.2), the

linear wall shape trial function

8 = nfx/a+1/2) ' ' (2.10)

Y
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describes the magnetization rotation in Bloch and Neel walls
reasonably well. As mentioned previously, sophisticated wall shape
calculations yield results very similar to predictions based on the
so-called linear wall model. The eddy-current solutions represented
by Eqs.(2.18a,b) and Eq.(2.20) can be reduced to explicit algebraic
current expressions by using the 8 dependence of Eq.(2.10). For the
linear wall, d0/dx = n/a within the wal (-a/2 < x < a/2) and

df/dx = 0 for % > a/2. As a result, h(x) and £(x) simplify
considerably and the integrals of Eqs. (2.18a,b) can be evaluated

explicitly. The results are:

3 /3 = FG,y) - (/0 z | feos (wry//nba’a” 010, )

odd n
(2.10a)
F(x,y) = {cosh(ﬁy/a) - cosh(ﬂ(y-D)/a)}/sinh(nD/a) 0 <x<af2
F(x,y) = 0 X s a/2
Qn(x) = cosh(rmx/D)e-Ma/ZD 0 <x <a/2
-k /2D X - a/2

Qn(x) = cosh(nna/D)e
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Jy/Jo = -(4/102 [sin(mty/D)/n(1+n2a2/D2)}sn(x) (2.10b)
odd n
Sn(x) = sin(nx/a) - e_nna/ZDsinh(nnx/D) 0<cx <a/2
Sn(x) = e-nnx/Dcosh(nnaIZD) X s af2

These expréssions are valid for x 5 0, Jx is odd in x and Jy is even

in x. The expression for Jz (for Bloch walls) becomes:

{D/ (a+D)} cos (1x/a) x <a/f?

J /J
4 [
(2.22)

X > 3/2

li
(=]

J /J
Z O

For Ngel walls, Jz =0 everywhere.'

This solution can be used to estimate the magnitude of E;C in
order to examine the validity of the assumption, Hec < < 4nM, on which
the present amalysis is based. Equations (2.21a,b) and Eq.(2f22)
indicate that the magnitude of J is on the order of Jo = 4ugvM/c.
Consider the wall cross section in the x:y plane defined by the area
between x = + a/2, y = 0, and y = D. From the v x ﬁ'equation,
Eq.(2.15b), and Stoke's theorem, the circuital integral of ﬁ;c around

the perimeter of the cross section is equal to the area integral of Jz
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over the cross section and

CH (chv/cz){aD/(a+D)}4nM.
For typical values, 0 = (lﬁuﬂ-cm)—l = 0.57 x 1017 sec-l, a=D-= 10-5cm,
and v = 1O4cm/sec, the result is that Hecga LM x 1o°5. The initial
assumption that Hec < <‘4nM is therefore a reasonable one. The
current solutions and Eq.(2.15b) could be used to calculate ﬁ;c for
substitution back into the ¢ x E'equation, Eq.(2.15c), in order to get
5

the eddy-current field correction to J but.since Hec‘m 4aM x 10

this correction would be negligible.

The eddy-current solution expressed by Eqs.(2.21a,b) and Eq.(2.22)
has been evaluated numerically. The wall width was taken to be the
static width calculated by Middelhoek (1961) and discussed in section
{(2.2). The static wall shape assumption is important in calculating
the eddy-current losses, just as it is in calculating relaxation losses.
The shapes for moving walls are assumed to be approximately equal to
static wall shapes (the wall distortion which produces the Becker
field for wall motion is small). Providing that the static wall
assumption is a good one, it is important to note that the linear wall
calculation predicts only a lower limit for the width of actual walls.
Depending on whether the eddy-current losses for wall motion increase
or decrease with wall width, the present calculation will represent a

lower or upper limit on the losses. The results of the numerical
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evaluation for all three components of J for Bloch walls are shown by
the solid lines in Figs.2-8, 2-9, and 2-10. ‘The current components
are normalized to JO and the normalized magnitudes are plotted as a
function of the x~coordinate (normal distance from the center of the
wall) with film thickness D as a paramefer. The dotted lines represent
solutions for the limit a = 0 (the zero width approximation used by
Ford (1960)). For Bloch walls in the 400-2000 & thickness range
corresponding to the curves in Figs.2-8 and 2-9, the wall width is
about 500 K (see Fig.2~5). The present results are clearly different
from the predictions of the zero-width approximation and exhibit the
effect of a non;ero wall width on the current distribution. The Jx
distribution im Fig.2-8 (plotted for y = 0) deviates markedly from the
zero-width prediction for x « a/2 and approaches this prediction for
large x. The Jy distribution in Fig.2-9 (plotted for y = D/2Z; at

y = 0.or D, JY = 0) exhibits a @aximum near x = a/2 and goes to zero
for x = 0, quite different from the zero-width prediction. The Jz
distribution in Fig.2-10 (valid only for Bloch walls) exhibits a

cos (nx/a) dependence within the wall and is zero for x s a/2 (for

Néel walls, Jz = 0 everywhere).

The nonzero width has a definite effect on the current distribu-
’
tion for the moving Bloch or Neel walls and it is expected that the
eddy~-current losses for wall motion will also be influenced singifi-

cantly by the wall shape. The energy loss rate per unit volume is



20,

(in units of 4o vM£L)
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Fig.2-8. Eddy-current component J, at the film surface
(y = 0, D) as a function of x (normal distance from wall center) with
D (film thickness) as a parameter. Dotted curves represent the results

for zero wall width.
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Fig. 2-10. Eddy~-current component Jz within the lincar Bloch wall
including demagnetizing field effects. For zero wall width, J, ~ 0
everywhere.
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== 2 - . . .
-E-J = -J /o. (E is the electric field) and the eddy-current losses

per unit length can be calculated using

. p *°
W = (1/0) d dx3? 2.2
eddy N - | (2.23)
0 __“co :

" The integrand in Eq.(2.23) can be formed from Jx and Jy from Eqs.(2.21a,
b) and Jz from Eq.(2.22) (Jz = 0 for Néel walls). The integration
region is such that all the losses associated with a unit length of

wall are included in weddy" The losses grg given by:
W = (4/o) (4 M/ZI(DI D)}
eddy = o) (4novM/e) ( aq a,D)+ zsq(a’ )

-where

Isq(a,D) = (d2/ﬂ3) E {an(1+Rn2)+2(1+é'“Rn)}/[n3(l+Rn2)2}
odd n (2.24b) .

for both Bloch and Neel walls (Rn = na/D),
Izsq(a,D) = (Da/8){D/a+D)} (2.24¢)

for Bloch walls, and Izsq(a,D) = 0 for Néel walls. For a 180° domain
wall moving with a velocity v in an easy-axis field H, the rate of
energy decrease for the system (the two antiparallel domains and the

moving wall) per unit length of wall is ZDvMH. If the system energy
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decrease is due only to eddy-current dissipation, weddy = 2DVMH and the

eddy-current limited domain wall velocity is

2 2
v = HDc /[32ﬁ GM(Isq+Izsq)}
As was the case in the relaxation loss analysis, the dissipation rate
is quadratic in velocity and the velocity is a linear function of ﬁhe
applied easy-axis field. The wall mobility, G = dv/0H, is field

independent. The eddy-current limited mobility is given by

2 2
G, = Dc /{32xn OM(ISq+IZSq)}. 2.25)
It is a function of the material constants of the film and the film
thickness. No phenomenological damping parameter appéars. There are

no adjustable constants.

The mobility expressed by Eq.(2.25) is plotted in Fig.2-11 as a
function of thickness for Bloch walls (i.e. Izsq(a,DS is calculated
from Eq.{(2.24)). The resistivity used is typical for Ni-Fe alloy
films with 807% Ni (16uQ-cm, corresponding to = 0.57 x 10 ' /sec™™). The
solid line in Fig.2-11 was obtained by uéing the wall width & for the
one-dimensional linear Bloch wall model discussed in section (2.2).

The dotted line is the result obtained by letting & = 0. The

differences between the two results are not large; they are certainly

much less than expected on the basis of the large differences in the
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Fig.2-11. Eddy-current-loss limited wall mobility as a
function of film thickness, calculated using linear Bloch walls.
The material parameters were taken as those appropriate for

80-20 Ni-Fe alloy films.
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current disﬁributions which have been pointed out. A detailed

analysis indicates that the increase in losses due to Jz for the non-
zero width wall calculation (Jz and Izsq(a,D) are zero for a = Q)
nearly compensate for the reduced Jx and Jy losses, resulting in a
mobility which is not significantly different from the earlier a = Q
result. For Néel walls, Jz = O'eQerywhere, and the mobility
corresponding to the solid line in Fig.2-11 would be larger. However,
Néel walls are only important in very thin films (D <« 1000 X). In this
thickness range, J  for Bloch walls (proportional to D/(a+D)) is
negligible so that the sclid line is also a good representation of the

Vs
Neel wall mobility for D < 1000 K.

For fixed.film thickness, Ge increases with increasing wall width.
Since the calculation has incorporated theoretical wall widths which
represent only lower limits for actual wall widths (due to magneto-
static energy considerations as discussed in section (2.2)), the
mobility shown in Fig.2-11, as calculated from Eq.(2.25); represents a
lower limit on the actual eddy~cﬁrrent loss limited mobility. Since
real walls are wider than predicted from the linear model (due to the
existence of crossties or Bloch lines and a reduced magnetostatic

stray field energy), the actual eddy-current limited mobility should

be larger than calculated.

In this section, the eddy-current losses associated with 2 moving

domain wall in a thin ferromagnetic film have been considered in detail.
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The present treatment includes the effect of nonzero wall width on the
current distribution and the eddy-current losses, taking into account
the stray demagnetizing fields associated with domain walls as well.
It was found that the current distribution is essentially the same as
previously calculated outside the wall, but inside the wall the current
components normal to both the wall pldne and the film plane are reduced
significantly. There is an additional component, along the length of
the wall, which is zero for the a = 0 calculation. Even though the
current distribution is dependent on the width of the moving wall,
the reduced losses due to the smaller current coﬁponents in the plane
normal to the wall and the film compensate for the increased losses due
to the nonzero current component normal to this plane and produce an
eddy-current limited mobility which is not.significantly different from

the earlier a = 0 prediction.

2.4 EXPERIMENTAL DETERMINATION OF WALL MOBILITY

2.4.1 Introduction

Relaxation losses and eddy-current losses for domain wall motion
in thin ferromagnetic films have been considered in detail in the last
two sections. 1In these treatments a number of assumptions have been
necessary. As these assumptions were made, it was pointed out that the
test of their validity could come only from a comparison of the theoret-
ical mobility predictions with experiment. In order to compare the

results of the previous two sections with experiment, two things are
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necessary. First,it is necessary to obtain a theoretical prediction of
the wall mobility, limited by both relaxation and eddy-current losses.
Second, it is necessary to measure the domain wall velocity for thin
films as a function of easy-axis field amplitude H and use these
velocity data to obtain the empirical wall mobility. In deciding how
the wall velocity should be measured and in establishing standards as
to what measurements are meaningful, conceptual problems arise. (1) If
the wall distorts during its motiom .oxr if the motion is impeded by
macroscopic imperfections which visibly inhibit wall motion in
localized regions of a film, are the velocity determinations meaningful
in terms of the previous theoretical discussion? (2) Can the wall
velocity be'determined only by using time-of-flight techniques
(extremely difficult) and observing the wall &uring its motion, or is
a velocity determination based on the transit time between two static
wall positions (a8 quasistatic technique) equally valid? 1In the first
part of this section, these questions will be considered and aspects
of the quasistatic technique relevant to them will be discussed. In
the second part, the instrumentation which was used for quasistatic
velocity measurements will be described in detail. 1In the third part,
actual velocity data will be presented and used to justify the experi-
mental technique, and the manner in which the velocity data are used

to determine the empirical mobility will be discussed.
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2.4.2 Conceptual Problems

In this part, two points will be considered. Firét, a theoretical
prediction of the wall mobility, limited by both relaxation and eddy-
current losses, will be obtained in order that a later comparison of
theoretical and experimental mobility determinations will be possible.
This comparison will be done in the next section, section (2.5).
Second, the éonceptual problems which arise in making accurate and
meaningful velocity determinations will be discussed. The first of
these conceptual problems, concerning wall distortion during motion and
the effects of macroscopic film imperfections on wall motion, will
involve fiim preparation and selection procedures. The second problem,
concerning the validity of the quasistatic technique, will involve
physical questions (such as the acceleration time to bring a static wall
to its loss-limited velocity) as well as instrumentation problems (such
as techniques for observing domain walls). A discussion of this second
'problem will therefore involve a description of the experimental
technique. Since the emphasis here, however, is on the conceptual
rather than the practical aspects of the technique, a description of

hardware will be postponed until the next part (2.4.3).

The wall mobility limited by both eddy-current and relaxation
losses can be expressed in terms of qm and Ge’ the mobilities calcu~-
lated on the basis of relaxation losses only and eddy-current losses

only. As mentioned previously, both the relaxation loss rate and the



-59-
eddy-current loss rate are quadratic in velocity. Since the rate of

energy decrease per unit length of wall is given by 2MHDv (as before),

the total loss rate equation can be written as
2MHDY = (K + K )v° - .26
(04 e -26)

where ga and Ke are coefficients characterizing eddy-current and relax-
ation losses. If there were no eddy-current losses (i.e. Ke é 0), the
relaxation-loss limited mobility is given by Ga = ZMD/Qa. Similarly,
Ge = ZMD/Ke, The mobility for Eq.(2.26) is given by G = 2MD/(Ke + Ka)

and satisfies the relation
1/6 = 1/6, + 1/G . (2.27)

Therefore, the wall mobility, limited by both relaxation and eddy-
current losses, can be calculated in terms of the individual mobilities
for each type of losses. It is this total mobility which should be
consistent with mobility determinations from the wall velocity measure-

ments for thin fiims, if the theoretical assumptions of the last two

sections are wvalid.

The theoretical development of the last two sections depended on
the assumption that an isolated straight domain wall aligned along the
easy-axis of a uniaxial film moves at a uniform velocity in a direction

perpendicular to its length under the influence of a uniform easy-axis
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field. If any meaningful comparison of theory with experiment is to be
made, this assumption must be satisfied experimentally. Wall motion
compatible with the above description is extremely difficult to obtain.
The demagnetizing fields at the film edges have considerable influence'
on the walls near the edges and inhibit uniform wall motion. 1In
addition, films contain large numbers of internal imperfections and
non-magnetic inclusions which may inhibit wall motion in localized
regions of a film. Ail of these interactions tend to destroy the
simple wall geometry which has been assumed inbthe calculations of the
last two séctions. Only by careful film preparation, could the above

wall motion criteria be satisfied.

Before considering the mobility data, it is appropriate to briefly
summarize the technique used to prepare the samples for which the data
were taken. The film samples were vacuum evaporated from a melt of
807 nickel and 207 iron onto glass substrates heated to 300°C in a-
moderate vacuum of 107° Torr. During evaporation, & uniform magnetic
field of 40 Oe was applied in the plane of the glass substrate in order
to determine the direction of the uniaxial anisotropy. Film composition
was determined to be about 77% Ni using x-ray fluorescence techniques.
For films with a nickel content of about 83%, the magnetostriction is
zero and the mechanical stréins in the film due to the high temperature
evaporation and subsequent cooling to room temperature do not
appreciably affect the maghetic properties of the films. The particular

recipe for film preparation described above was used primarily because
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the resultant films exhibited reasonable wall motion properties. It is
important to emphasize the fact that the ability to obtain reproducible
and consistent wall velocity data depends, to a large degree, on the
ability to make films which satisfy three requirements. (1) The films
must be free of internal imperfections which inhibit wall motion.

(2) The films must be capable of supporting only a few domain walls so
'that the number of walls moving simultaneously does not interfere with
measurements én a single wall. (3) The film edges must not distort the
“wall significantly from linearity. (Some wall distortion near the edge
always exists. If the distortion is small, wall sections far from the
edges will still be straight and move uniformly.) The most effective
(and inefficient) way to satisfy these requirements was by evaporating
a large number of films and simply selecting those f£ilms (few in number)
which satisfied the above wall motion criteria. Out of approximately
300 films which were pfepared and examined, only 60 exhibited wall

motion which was sufficiently uniform for accurate measurement.

In the next section, the film thickness will be an important para-
meter in discussing the wall motion data. An accurate determination of
the thickness is therefore extremely desirable. Two methods were used
to defermine film thickness,; flux measurements and Tolansky multiple
beam interferometry (Tolansky, 1948). The amplitude of the hysteresis
ioop for thin films is proportional to the total amount of reversed
flux, which increases with thickness. When calibrated properly, the

hysteresis loop amplitude can be used to determine film thickness. The
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Tolansky interferometry technique is based on the fringe shift caused
by a step in a mirror coating on the film because of the film edge. By
using an aluminum coating on the film the fringes can be made extremely

sharp and the shift can be used to determine thickness to +20 X.

The basis for the experimental mobility determinations is the
observation of domain walls and thé measurement of their velocity. The
Second conceptual problem concerns the method of velocity measurement.
Before considering this problem, howeve'r, a discuséion of the technique
used to observe the wall in the first place is in order. Observation
of domain walls is based on the Kerr magneto-optic effect first used
by Foﬁler and Fryer (1955) for the observation of domain walls in
thin £ilms. When linearly polarized light is reflected by a ferro-

‘magnetic sample, the polarization direction is rotated through an
angle which depends on the magnetizatioﬁ direction in the sample with

Tespect to the direction of incidence for the light. For uniaxial

thiﬁ films consisting of antiparallel domains, an analyzer can be
adjusted in such a way that the light reflected from one kind of
domain is extinguished (after passing through the analyzer) bﬁt the
light reflected from the antiparallel domains is not completely
extinguished. Adjacent antiparallel domains will be light and dark
respectively, and the domain wall will be indicated by the light-

- dark boundary. In Fig.2-12, a typical arrangement for the Kerr
magneto-optic observation of domaim walle in thin films is sketehed.
Light from the source (high intensity) is converted into a parallel

beam by the condenser lens, is polarized, and is reflected by
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Fig.2~12, Typical arrangement for the Kerr magneto-~optic observa~
tion of domains in thin films.

, Fig.2~13, Instrumentation for the Kerr magneto=optic observation
of domains in thin films,.
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the film. The magnetization in the film rotates the plane of polariza-
tion in a sense depending on the domain structure. The reflected light
passes through the analyzer as well as a focusing lens, and is displayed
as a picture of the domain structure of the film (sensed by the eye in

Fig.2-12).

With the domain configuration displayed conveniently, the problem
of measuring the wall velocity as it moves under an applied easy-axis
field can now be considered. As will be shown later, wall velocities
in thin films are on the order of 1O4cm/sec (for 80-20 Ni-Fe alloy
films less than 2000 X thick). Direct velocity measurements for moving
walls, using time-of-flight techniques, would be the most straight-
forward procedure. However, for the velocity magnitudes involved, such
a procedure would require photographic techniques with megacycle per
second framing rates and nanosecond exposure times. 7Two factbrs make
this technique impractical, the short exposure times required and the
low light intensity. 1In using the Kerr effect for domain viewing, the
analyzer and polarizer are adjusted for almost complete light
extinction for one type of domain. The emerging light corresponding to
the other antiparallel domains is of low intensity because of the small
polarization rotation angles (a few degrees at most) obtained using the
Kerr effect. No standard light source is strong enough to give good
photographs for low intensity Kerr effect images and nanosecond
exposure times. If valid, a much simpler and more practical quasistatic

technique can be used to measure the domain wall velocity. By suitable
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bd15p1ay of the domain image obtained with the Kerr effect, static domain
wall positions can be measured with high accuracy. If the wall is
moved using a short duration rectangular easy-axis field pulse, the
wall displacement produced by the pulse can be accurately determined
by measuring the wall position before and after the pulse. If the wall
'is assumed to move at a constant velocity during thé pulse, this
velocity is simply the wall displacement divided by the pulse duration.
This simple pfocedure constitutes the quasistatic technique. The
remainder of thebpresent discussion will be concerned with the criteria
for its validity in wall velocity determinations. After a discussion
of the instrumentation for making quasistatic velocity determinations
in the next part (2.4.3), velocity data will be presented and‘the
quasistatic technique will be shown to be valid. The sucpessful use of
this technique for wvelocity measurements represents the main experi=--

mental accomplishment presented in this chapter.

The criteria for the validity of the quasistatic technique for
making wall velocity measurements can be obtained by examining the
details of the wall motion from the time before the application of the
easy-axis field pulse when it is at rest in its initial position to the
time after the pulse when it is at rest in its final position. A
detailed mathematical description is possible but is not necessary here.
The quasistatic technique is valid for determining the loss-limited
domain wall velocity only for rectangular field pulses of sufficient

duration so that most of the displacement occcurs at the loss~limited
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velocity. If this condition is notisatisfied, ;he velocity determina-
tion will be lower than the loss-limited velocity (the wall will not
have time to respond to a short field pulse). If the quasistatic
technique is not valid, the velocity determinations will exhibit a
dependence on pulse length Tp and the validity of the technique can be
checked by measuring velocity as a function of pulse duratiﬁn. If the
measurements really correspond to the true loss-limited velocity, v
will be independent of the pulse duration. In the next part, instru-
mentation for performing quasistatic velocity measurements will be
discussed. In the last part, the velocity dependence on Tp and other
aspects of the velocity data will be considered. The quasistatic

technique will be shown to be valid.

2.4.3 Instrumentation for Velocity Measurements

Conceptually, the quasistatic technique for measuring the domain
wall velocity is very simple. The position of a stationary domain wall
is observed before and after the application of a field pulse of known
duration. Several steps are required to accomplish the measurement.
First, the film sample is placed in the Kerr magneto-optic apparatus so
that the domain pattern can be conveniently observed. Then external
fields are utilized to form a straight, isolated domain wall in the
film, away from the film edges and aligned along the easy-axis.
Finally, an easy-axis field in the form of a rectangular pulse is

applied to the film, the domain wall is displaced, and the velocity is
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determined from the wall displacement and the pulse duration. Such a
procedure is straightforward and the instrumentation is standard. A
detailed description of the instrumentation is included in this part
for one reason and one reason only. For the first time, the quasistatic
technique has been used to obtain meaningful velocity measurements for
domain wall motion in thin films; the-author has used this technique
successfully where others have failed (Ford, 1960; Copeland and
Humphrey, 1963). This success has been due, in part, to careful
attention to sample preparation and selection. The main reason for
success, however, was the careful attention to the various details of
the instrumentation and the experimental technique, and to the taking
and analysis of the data. For this reason, a description of the
instrumentation and the measurement technique is appropriate. (It
should be noted that, simultaneously with the present reséarch, two
other workers, Il'icheva and Kolotov (1965) and Middelhoek (1966),

were able to obtain meaningful velocity data using modifications of the
same technique.) This discussion can conveniently be divided into two
parts, one concerning the Kerr magneto-optic iInstrumentation for
viewing the domain structure and measuring the wall displacements, and
one concerning the instrumentation for producing the proper fields

which influence or produce wall motion.

The use of the Kerr magneto-optic effect for viewing the domain
structure in thin films was discussed in the last part and is

schematically shown in Fig.2-12. The actual instrumentation corre-
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sponding to Fig.2-12 is shown in Fig;2-13. A high pressure short arc
mercury vapor lamp (PEK Labs, Inc. t;pe 110) was used as a light
source. The lamp was mounted.in a housing (L.H.S+ of Fig.2-13) and
its position could be adjusted for proper aligmment with the rest of
the optics. In the order shown in Fig.2-13, the items mounted on the
optical bench to the left of the sample platform tilted 30° to the
horizontal are: light housing and condensing lens, iris, light tube,
iris and polarizer prism. The polarized light is reflected from the
sample on the platform in the center of Fig.2-13, passes through the
analyzer prism, iris, focusing lens, and light tube, to the image
plane of a closed circuit television camera. The film image is then
displayed on a television screen remote from the Kerr apparatus.

Using this Kerr effect instrumentation, high contrast domain
observations on thin films are possible. 1In Fig.2Z-14, two photographs
of domain patterns on circular films 1 cm in diameter, obtained using
the Kerr effect, are shown. Domain walls are indicated I;y the
boundaries separating light and dark regions. The high contrast which
can be obtained between antiparallel domains makes the determination
of domain wall position extremely accurate. Figure 2-14 is included to
demonstrate the Kerr magneto-optic viewing of domains. Of course, none
of the wall configurations shown in Fig.2-14 consist of the single
isolated walls oriented along the easy-axis (vertical in Fig.2-14)
which are necessary for velocity measurement. With the domain config-

uration displayed conveniently on the closed circuit television screen,
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Fig.2=14. Photographs of domain patterns on circular films L cm
in diameter, obtained using the Kerr effect. Domain walls are indi-
cated by the boundaries separating light and dark regioms.

v | -

Fig.2~15. The coil assembly used to produce the required applied
fields for velocity measurements while the sample was under observation
using the Kerr apparatus. The polarizer and analyzer prisms can be
seen in the upper corners of the photograph. (A) Coils for canceling
the earth's magnetic field. (B) Hard-direction field coils. (C) Easy-
direction field coils,
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a calibrated traveling microscope was suspended in front of the screen
and used to measure the domain wall positions accurate to about
+ 0.05 mm on films 1 cm in diameter. The domain wall displacement,

&x, for the velocity determination, could be determined to about 1%.

The next phase of the instrumentation concerns the apparatus for
producing and measuring the required magnetic fields, As will be seen
shortly, the fields at which wall motion can be measured using the'
quasistatic technique are from about 1-5 Oe, depending on the
properties of the film. The earth's magnetic field, which is about
0.3 Oe, can therefore cause a considerable discrepancy between the
value of the applied easy-axis field and the total field which _
‘influences wall motion. By arranging a set of six square coils in the
shape of a cube to produce crossed fields, as shown in Fig.2-13, the
earth's magnetic field can be effectively cancelled out at the sample
position by proper adjustment of the coil currents. The coil assembly
shown in Fig.2-15 was used to produce the réquired applied fields at
the sample position (center of apparatus) while it was under observa-
tion using the Kerr magneto-optic apparatus. The polarizer and analyzer
prisms can be seen in the upper corners of the photograph. The smallest
center Helmholtz coil pair was used to produce the easy-axis field
pulses for wall motion. The other details of the apparatus will be

discussed shortly. in connection with film aligmment.
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A block diagram of the field instrumentation is shown in Fig.2-16.
This instrumentation is divided into two sections, (1) the electronics
for producing the easy-axis field pulses for wall motion, and (2) the
electronics for measuring the easy-axis field amplitude and the
pulse length Tp for wall displacement. The easy-axis field must be
applied in such a way that the optical access to the film required for
use of the Kerr effect is preserved. An easy solution is to use a
Helmholtz coil pair, as mentioned above and shown in Fig.2-15.
Helmholtz coils, however, present a problem. A coil pair wiﬁh small
dimensions is desirable in order to get the most field from the
available current sources but large dimensions are required in order
that the field be homogeneous over the film sample. If large coils
are used for field homogeneity and the number of turns is increased
to provide the necessary field strength, the increased inductance
degrades the rise time of the field pulse. Clearly a compromise is
necessary. The present design incorporated a Helmholtz pair with a
Tadius (and separation) of 2 inches, so that the homogeneity over the
1 cm diameter film sample was better tham +0.1 %. Using two turnms
per coil, the field calibration was 0.36 Oe/amp and the risetime was
0.1 psec with the coils in series with 50 ). The current source
consisted of a triggered Rutherford pulse generator with a minimum
risetime of 15 nsec and an output voltage of 50 volts imto 50 (,
driving either a one stage transistor power amplifier or a
grid-controlled electron multiplier tube driver (Tung-Sol

type 8428). Using the transistor driver, useful field pulses with
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Fig.2-16. Block diagram of the field instrumentation.
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amplitudes from 0-6 Oe, pulse lengths from 10-50 psec, and risetimes of
1 psec could be obtained. Using the grid-controlled multiplier tube,
useful field pulses with amplitudes from 0-10 Oe, pulse lengths from
1-10 psec, and risetimes of 0.1 mpsec could be obtained. Using these

pulses, the quasistatic technique can be tested for T, from 1 to

50 upsec.

For measurements using the shorter pulse lengths (=& 1 psec) and
low field amplitudes, the displacements caused by a single pulse were
usually nof large enough for accurate measurement. For this reason, a
number of pulses was applied (N pulses, for example) and the quasistatic
velocity was determined from the total displacement. A clock,
controlled by a manual gate, was used to trigger the pulser, and a
decade scaler was used to count the number of pulses. The individual
pulses were monitored on an oscilloscope from which the pulse duration
Tp was determined. By operating the oscilloscope with high vertical
gain, the pulse amplitude could be determined to + 0.0l Oe using a high
gain differential comparator. From the total wall displacement Ax
during the pulse sequence, the number of pulses N, and the pulse
duration Tp, the velocity was determined from v = Ax/(NTp) as a function

of easy-axis field amplitude H and pulse duration.

In this discussion of instrumentation and measurement technique,
it has been tacitly assumed that the easy-axis of the film was aligned

with the field direction for the easy-axis field pulse. Since film
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alignment might conceivably be very important (the theory assumed an
easy-axis field only), a definite procedure for film alignment was
established. The technique used for film aligmment is based on the
sketch in Fig.2-17. The larger Helmholtz pair in Fig.2-15 was used to
producé a hard-direction field in the plane of the film but perpendicu-
lar to the easy-axis field from the smaller coil pair, and a 20 turn
pickup coil was mounted on the rotatable film platform. 1In Fig.2-17,
the coil is shown as a winding around the film, sensitive to the time
rate of change of the magnetization component in the easy direction.

In practice, tﬁe coil was wound in the shape of a figure eight (after
Oguey, 1960) and mounted below the film so that the winding would not
interfere with the Kerr observations. In the aligmment procedure, the
film was first saturated in the approximate hard-direction. When the
hard-direction field is turned off, the magnetization in the film
relaxes to the easy-direction and induces a voltage in the coil. If

- the easy-axis of the film were aligned precisely in the easy-axis field
direction, after the hard-direction saturation exactly half the total
magnetization would relax toward one easy-direction and half would
relax toward the other. For an éligned film, therefore, the induced
voltage in the pickup loop would be zero. By rotating the f£ilm platform
until zero induced pickup voltage is observed during the easy-direction
relaxation, the easy-axis of the film can be precisely aligned (+ O.lo)
with the easy-direction field. Initially, great care was taken in this

aligmment procedure since the sensitivity of the velocity data to film
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alignment was not known. However, it was later found that aligmment

was not critical and that visual alignment using the Kerr image was

usually sufficient.

2.4.4 Conceptual Problems Resolved

The conceptual problems concerning quasistatic velocity measure-
ments have been discussed and the instrumentation for quasistatic
measurements has been described in detail. From the four experimental
parameters Ax, Tp, N and H, the wall velocity as a function of easy-
axis field amplitude can be obtained. In the last part of this section,
velocity data will be presented and used to determine: (1) The validity
of the quasistatic technique. (2) The validity of the concept of wall

'mobility for characterizing wall motion.

Wall velocity determinations were made by pulsing the film (once a
single, isolated domain wall was formed, aligned along the easy-axis)
with a series of N easy-axis field pulses, measuring the total displace-
ment Ax and pulse duration Tp, and calculating v = Lx/(NTp). In
Fig. 2-18, a series of domain wall photographs are shown. Wall
positions are shown after sﬁccessive applications of a sequence of ten
easy-axis field pulses with Tp = 2.6 psec. From the initial to final
wall position, a total of 70 pulses was applied. The film region
shown in each photograph was about 5 mm wide (horizontal direction in

the figure), and is not near the edges of the film. The easy direction



Fig.2-18. Kerr effect observations of the simple wall configura-
ations and the systematic wall displacements obtained after successive
application of seven field pulse sequences. Each sequence was identi-
cal, consisting of ten pulses, 2.6 psec long, with amplitudes of
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Fig.2-19. Domain wall velocity as a function of applied easy-
axis field. These data are typical for Ni-Fe alloy films in the
300-1650 & thickness range.
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is vertical. Even though the film used for Fig.2-18 exhibited reason-
ably straight walls and uniform motioh, some wall distortion (both in
orientétion and linearity) can be seen to occur as the wall is
displaced. Such distortion certainly introduces some error into the
data. As mentioned previously, onme of the biggest experimentél
" problems involved the preparation and selection of films which exhibited
smooth, uniform, undistorted wall motion. The wall configuration and
displacements shown in Fig.2-18 are typical of the films for which
reproducible and consistent velocity determinations could be made. As
mentioned previously, wall position could be measured to + 0.05 mm, so

that for Ax = 5.0 mm, the accuracy was about 1%.

The quasistatic technique for wall velocity determinations, for
which the instrumentation of the last part was developed, assumed that
most of the wall displacement AX measured experimentally takes place at
the loss-limited wall velocity. This assumption is not a trivial one.
In fact, both Ford (1960) and Copeland and Humphrey (1963) have
reported that the quasistatic technique of inferring wall Qelocity from
static wall position measurements did not yield consistent or reproduc-
ible velocity determinations. Neither worker, however, was able to
directly observe the domain walls as the velocity determinations were
made. It is entirely possible (and probable) that the walls were not
straight and undistorted and that the wall motion was not uniform. The
present applicationAof the quasistatic technique, performed according

to the procedures outlined in the previous parts of this section, was



-79-
found to yield consistent and reproducible velocity data. The velocity
measurements were found to be independent of the easy-axis field pulse
duration Tp for 7 between 1 and 50 psec. Velocities were the same
within 5% for the same field amplitude and the same region of a f£ilm.

Therefore, the criteria for the validity of the quasistatic technique

are satisfied and v = Ax/(NTp) can be taken as a good measure of the

loss-limited domain wall velocity.

In connection with the theoretical discussion, the quantity of
interest is the domain wall mobility, or the increase in wall velocity
per unit increase in field. From the theoretical discussion, the
velocity is expected to vary linearly with easy-axis field amplitude
according to v = GH where G is the field independent wall mobility.
Velocity determinations for wall motion in a single film as a function
of easy-~axis field amplitude are éhown in Fig.2-19. As predicted, wall
velocity is>a linear function of field amplitude so that the wall
mobility as defined above is a meaningful quantity. However, the
velocity-field data appear‘to fit a curve of the formv = G(H - Hw),
not v = GH. In other words, some threshold field exists, below which
wall motion does not occur. In light of this unexpected effect, a new

problem arises. Does this threshold field modify the interpretation of

the velocity~field data in terms of a wall mobility, as calculated in
the previous two sections? If G, as defined and calculated, is to
remain a meaningful quantity, the empirical velocity-field dependence
v = G(H - Hw) must be consistent with the total loss rate equation,

Eq.(2.26). The threshold field for wall motion can be interpreted in
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terms of an additional loss term in the total loss rate equation so

that
2MHDV = (K_ + K. ) v> + 2MH Dv
i a” e w
or
IMDV(H - H ) = (K + K )v>. @2.27)
w o’ e )

The physical origin of the additional loss term is not completely
understood and represents an interesting aspect of wall motion which is
not of direct interest here. For the present purposes, it is only
necessary to éonsider HW as an effective field opposingvthe applied
easy-axis field. The previous mobility definition G = dv/OH is not

modified by the additional loss term.

This section will be concluded with a short discussion of tﬁe
manner in which the velocity-field data were used to‘obtain an empirical
determination of the wall mobility. Since G is the slope of the line
defined by the v vs H data (see Fig.2-19), velocity measurements should
be obtained over a sufficient range of field values to determine this
slope accurately. Consistent and reproducible velocity determinations

"could only be made for a small range of easy-axis field amplitude. A
definite lower limit is set by Hw. For H <-Hw’ there is no wall motion.

The practical lower limit is actually higher than Hw. For fields
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nearly equal to Hw’ the wall velocity is quite small (less than
0.5 x 103 cm/sec for the data in Fig.2-19), the wall motion is not very
uniform over the film, and velocity measurements are difficult. An
upper limit is set by the requirement that measurements be made on
single, isolated domain walls. For high fields, additional walls form
at the film edges and inside the film which obscure the uniform motion
of the individual wall undef observation. The upper limit on the field
amplitude for meaningful velocity determinations was usually about
1 Oe greater than HW. For higher fields, isolated straight walls could
not be moved intact and undistorted over an appreciable distance in the
£ilm. They combined with other walls to form complicated domain
structures which did not satisfy the requirements for wall velocity
determination. Once reproducible velocity determinations have been
made over the field range just discussed, the field dependence of the
velocity can be fitted to v = G{H - HW) and the wall mobility G can be
obtained. The velocity-field data were fitted to v = G(H - Hw) using
the method of least squares and a chi-squared test for the
probability of a linear fit was performed in each case. For the sixty
films for which reproducible velocity determinations could be made; the
probabilities were all greater than 0.9. These determinations of the
domain wall mobility can then be compared to the theoretical prediction

of the loss-limited mobility calculated from 1/G = I/Ge + 1/Ga and the

previous two sections.



-82 -

2.5 MOBILITY AND LOSS MECHANISMS FOR WALL MOTION

In the last section, an experimental technique for determining the
mobility for wall motion in thin films was described in detail. In
this section, the empirical mobility values obtained using this tech-
nique are presented, discussed, and compared with predictions based on
the previous theoretical development concerning relaxation and eddy-
current losses. Such a comparison makes it possible to obtain several
important conclusions concerning (1) the losses limiting wall motion
and (2) the influence of wall shape on the mobility. These conclusions
go hand in hand since the relaxation-loss limited mobility is sensitive
to the wall shape (which is in turn determined by the film thickness
and the material parameters of the film) while the eddy-current-loss
limited mobility is relatively insenmsitive to changes in wall shape but
decreases monotonically with film thickness. A‘very efficient compari-
son, therefore, is one based on the thickness dependence of the
mobility, since each of the two loss mechanisms considered result in a
different mobility-thickness dependence. On this basis, in the film
thickness range D = 100 R to 1650 K, the mobility will be shown to be
limited almost entirely by relaxation losses. The eddy-current losses
are negligible. The relaxation-loss limited mobility can be fitted to
the data using a constant value of the damping parameter and the
static wall shape data discussed in the section on relaxation losses.

On the basis of this fit, it appears that: (1) The cross-tie structures
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associated‘with Néel walls in thin films with D < 900 & do not contrib-
ute directly to the wall mobility, and (2) walls for films with
D > 1000 & are much wider than predicted for Bloch walls. The present
discussion is divided into two parts. The first part will be limited
to a discussion of the experimental results and the second part will
. correlate these results with the previous theoretical discussion. This
work has been summarized in a recent publication by Patton and Humphrey

(1966c).

For the limited number of films which exhibited uniform wall
motion, the quasistatic technique discuésed in the last section was
used to determine the domain wall mobility. Mobilities were determined
"for films ranging in thickness from 300 R to 1650 £. As discussed
previously, film thickness was determined magnetically, using a 20-cps
hysteresis loop tracer, and optically, using the Tolansky multiple
beam interference technique {(Tolansky, 1948). 1In Fig.2-20, the experi-
mentally determined mobilities are displayed as a function of film
thickness. Earlier data by Copeland and Humphrey (1963) for very thin
films are also shown. Between 100 and 800 R, the mobility decréases
with increasing film thickness, ranging from 8 x 103 cm/sec~0e at 300 R
to 3 x 103 cm/sec-Oe at 800 A. Between 900 and 1000 8, the mobility
increases rapidly with increasing film thickness to about
7 x 103 cm/sec-0e. Above 1000 X, the mobility increases slowly with

£ilm thickness.
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These data are in qualitative agreement with the recent mobility
measurements (also using a quasistatic technique) by Il'icheva and
Kolotov (1965) and Middelhoek (1966). The mobility data of Il'icheva
and Kolotov, however, consist of only a few points and are lower than
the present results by a factor of five. Middelhoek's data are pre-
 sented as a mobility band and actual data points are not shown.
Middelhoek indicates that the mobility minimum occurs at D = 600 8,
not D = 900 B. Later in this section, it will be shown that the
present data are consistent with the theoretical predictions. The
present investigation improves on these two previous works in two ways.
First, the quality of the data is such that the quantitative dependence
of mobility on film thickness is obtained, in contrast to the data of
Il'icheva and that of Middelhoek. Second, the data are successfully
correlated to theoretical predictions based on eddy-current and

relaxation losses and available wall shape information.

Two points concerning the data are of interest, .the nature -

of the velocity-field dependence from which the mobility was determined,
and the origin of the scatter in the mobility data. Consider the first
point. Most of the sixty films had a wall velocity-field dependence as
shown in Fig.2-19 and discussed in the last section. The velocity
increases linearly with applied easy-axis field, and extrapolates to

v = 0 at a threshold field Hw for wall motion. However, a number of
films exhibited a different type of velocity~field dependence, as shown
by the velocity vs field curve in Fig.2-21l. At the higher field values,

the velocity departs unexpectedly from the simple linear dependence
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Fig.2-21. Domain wall velocity as a function of applied easy~-
axis field observed for several Ni-Fe alloy films. The break in the
curve shown here was not observed for most of the samples.
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v =G(H ~ Hw). The velocity remains linear with field but the slope of
the curve is reduced significantly. It should be emphasized that most
films did not exhibit this effect. The break in the linmear v vs H
curve was observed for only five or six films. A similar effect has
been reported by Middelhoek (1966) for a large number of Ni-Fe alloy
films with thickness from 100 to 3000 K. Il'icheva and Kolotov (1965),
however, reported no such behaviour for any of their velocity data. A
more extensive investigation of domain wall motion for fields at least
several oersteds greater than the threshold for wall motion is
necessary before any serious explanation can be attempted. In any case,
the wall mobility plotted in Fig.2-20 was extracted from the low field

v vs H curve for films exhibiting this effect.

The other point of interest concerns the scatter in the mobility
data, evident from Fig.2-20. The origin of the scatter is also rele-
vant to the data interpretation in terms of the loss mechanisms dis-
cussed previously. As shown in Fig.2-20, there is considerable scattér -
in the observed mobilities for films'of the same thickness. Using the

- techniques of the previous section, the reproducibility in the mdbility
for wall motion in a given region of a specific film was well within
5%, so that the scatter is not due to the experimental technique. The
'same problem that plagued the efforts toward obtaining velocity data in
the first place, sample preparation, also degrades the reproducibility
of the mobility determinations from film to film. It should be remem-

bered, that for most of the original 300 f£ilms, imperfections notice-~
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ably impeded wall motion to such an extent that meaningful velocity
measurements could not be performed in the first place. The selection
process was only designed to separate good films which exhibited
reasonably uniform wall motion (as shownlin Fig.2-18) from bad films
which showed erratic wall motion. Even for the 60 films which exhibited
reasonably uniform wall motion, and for which mobility‘determinations
were made, film imperfections still influenced the wall motion to some
degree. These film imperfectiouns introduce an additional loss term for
wall motion and since the imperfection content varies from film to film,
this loss term will cause a scatter in the mobility from film to film.
From this explanation, the upper bound of the experimental mobility data
can be taken to represent wall motion unimpeded by film imperfections,
limited only by eddy-current and relaxation losses. It should be
pointed out that in section (2.2) relaxation losses were very carefully

defined in such a way as to exclude the losses caused by imperfections.

From Fig.2-20, it can be seen that the mobility exhibits a distinct
minimum in the vicinity of 900 R film thickness. In the section on
relaxation losses, it was pointed ocut that the transition from Bloch
walls to Néel walls with crossties occurred at approximately this same
thickness. It is logical to associate the mobility minimum with the
Bloch-Néel wall structure transition. Since the eddy-current limited
mobility is relatively insensitive to the wall structure, such an

association leads to the immediate conclusion that relaxation losses
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~contribute most heavily to the losses limiting wall motion. The sharp
increase in the mobility as the thickness increases from 900 £ to 1000 &
also has some surprising implications concerning the wall width. The
large increase in mobility for D = 1000 R as compared to that for

D = 900 & indicates that the Bloch wall structure (D = 1000 ®) is much
wider than the Néel wall structure (D = 900 X). In the discussion on
wall width in section (2.2) and Fig.2-5, the Bloch structure was calcu~
lated to be slightly narrower than the Néél structure. A cursory
examination of the present mobility data therefore indicates that:

(1) Relaxation losses are most important in limiting the wall motion,
and (2) Bloch walls are much wider than expected. Both of these
implications will be discussed further as the data of Fig.2-20 is
correlated quantitatively with the theoretical predictions of section

(2.2) and (2.3).

In Fig.2-22, the same mobility data as shown in Fig.2-20 are pre-
sented once more for comparison with the mobility predictions based on
static wall shape calcﬁlations and the static wall shape measurements
discussed in the section on relaxation losses. The calculated mobilities
were obtained using @ = 0.014 for the Landau- Lifshitz phenomenological
parameter. From the close agreement between the calculated mobility
based on Fuch's Néél wall shape measurements (Fuchs, 1962) and the
experimental values in the 100 to 9OQ R thickness range, this judicious
choice of @ = 0.014 is well founded. The mobility predictions based on

the linear Ngel wall calculations of Middelhoek (1961) are not in agree-



-90-

S
>

E O THEORY-FUCHS' WALL SHAPES

r ® THEORY-MEASURED WALL SHAPE

r + EXPERIMENTAL - COPELAND + HUMPHREY
X EXPERIMENTAL POINTS

Q

LINEAR BLOCH
WALL

* WALL MOBILITY (em/sec-Oe)

(e}
o

-3 S WU T TS W TR T S T B S N R I R

500 1000 1500 '
FILM THICKNESS (IN A UNITS)

Fig.2-22. The mobility data of Fig.2-20 arc shown here along
with theoretical predictions based on cddy-current and relaxation
losses. Calculations were performed using material paraccters typival
for Ni-Fe films with 80% Ni and a phenomenological damplng paraseter

Q= 0-0140



-91-

ment with the present data. This lack of agreement is expected, since
Middelhoek's calculations did not include the effect of the crosstie
structures associated with Nlel walls on the wall shape in increasing
the wall width (and the mobility). By using measured wall shapes in
the calculation, the effect of the crossties on the wall shape is
included.” Even so, the direct influence of the crosstie structure on
the wall mobility has not been taken into account. The calculation of
G_ was based on a one-dimensional wall model (ﬁ was only a function of
position along wall normal) with no crossties or Bloch lines. 1In view
of the close agreement between the data and the predictions based on
Fuchs' wall shape measurements, it appears that the presence of cross-
ties do not directly influence the mobility. Their only influence is
indirect, in reducing the wall magnetostatic energy, thereby widening
the wall. From the fit, the damping & can be taken as 0.014 and the
relative contributions of relaxation losses and eddy-current losses
can be calculated. In this thickness range, almost 1007 of the losses
limiting the wall motion are relaxa;ion losses. Eddy-current losses
are negligible, as expected from the qualitative discussion. The
close fit of the theory to the data was pbtained using (1) 2 constant
value of the damping parameter & and (2) static wall shape information.
The first result is important in light of the fact that the damping
parameter is phenomenological. The second result appears to justify
the static wall shape assumption, used extensively in the theoretical

development.
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For film thickness in the vicinity of 950 X, the mobility increases
by a factor of five, with increasing film thickness. A similar sharp
increase in mobility near 960 R film thickness has been reported by
Il'icheva and Kolotov (1965). The photographs of Bitter patterns for
wall structures for different thickness films shown in Fig.2-6 and
discussed in the section on relaxation losses clearly show that some
type of wall transition occurs in the vicinity of 1000 K. As shown in
Fig.2-6, for film thickness less than 1000 £ the wall is of the Néel
type, characteriéed by the usual crosstie structure. For film thick-
ness greater than 1000 R, the coiloid accumulation is significantly
reduced, the Bitter patterns are very faint, and the crosstie structure
does not appear. It is reasonable to suppose that the sharp increase
in mobility nrear 950 R film thickness is associated with a wall

structure transition in this region.

For thicker than about 950 & films, the mobility appears to slowly
increase with increasing film thickness. Using @ = 0.014 {(as deter-
mined by the mobility fit for Néel walls) and the linear Bloch wall
widths from Fig.2-5, the mobility was calculated and is also shown in
Fig.2-22. As was the case for Néel walls, these calculated values are
much lower than the actual wall mobilities because the wall model used
in the calculation were one-dimensional and did not include the possi-

bility of alternating wall sections.

Real walls do consist of alternating sections. As mentioned

previously, Bloch walls with Bloch limes have been recently observed in
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1200 & films by Torok et al. (1965). However, no quantitative experi-
mental determinations of actual wall shapes analogous to Fuch's data

for Néel walls have been published, primarily because Lorentz microscopy
measurements on thick films are extremely difficult. Nevertheless, by
careful attention to sample preparation and by using extremely long
exposure gimes, such measurements are possible. Lorentz microscopy
observations have been performed on 1200 R Ni-Fe films which were
evaporated onto freshly cleaved sodium chloride substrates, floated on
water, and mounted on copper electron microscope grids. These observa-
tions reveal a wall structure consisting of short wall sections (presum~
ably of the Bloch type) separated by Bloch lines similar to that
reported by Torok et al. (1965). A typical Lorentz microscopy photo-
graph is shown in Fig.2-23. The Bloch ‘1ines, corresponding to the

light and dark stripes along the wall length, are clearly evident. The
intensity distributions of these wall images héve been analyzed and the
wall width has been estimated to be approximately 30060 R for 1200 X
films. This wall structure is much wider than expected for Bloch walls

in such films.

Using the above static wall width estimate and a damping parameter
a = 0.014, the mobility for 1200 R films was calculated and is indicated
in Fig.2-22 by the dark circle. As can be seen, this prediction agrees
quite weil with the upper bound of the experimental data. As was the
case for thinner films, almost 100% of the losses limiting the theoreti-

cal mobility are relaxation losses. Eddy-current losses are again
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Fig.2-23. Lorentz microscopy photograph of a Bloch wall with
Bloch lines in a 1200 & film. (Courtesy of T. Suzuki.)
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negligible. In fact, almost all of the conclusions which were obtained
for Néel wall motion for films below the 900 R transition thickness can
be extended to thicker films. The Bloch lines do not appear to
influence the mobility directly. Their only influence is indirect, by
reducing the wéll magnetostatic energy and incredsing the wall

width.,

The present results concerning the thickness dependence of the
domain wall mobility in thin films at room temperature, in conjunction
with available static domain wall shape information, indicate: (1) Eddy-
current losses are not important for wall motion in the 100 to 1600 K
thickness range. (2) The shapes for moving walls are very nearly equal
to those for static walls. There are no large scale changes in the
domain wall shape because of its motion. (3) Mobility can be accurately
described using a constant value of the phenomenological damping
parameter @ = 0.014 over the entire thickness range examined. (4) The
crosstie structures associated with Néél walls or the Bloch line

structures associated with Bloch walls do not directly influence the

domain wall mobility.

2.6 SUMMARY

In this chapter, an extensive investigation of domain wall motion
in thin films, both theoretical and experimental, has been presented.
In the theoretical development, two points have been emphasized: (1) The

concept of a loss-limited wall velocity, and (2) The necessity of using
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the static wall shape approximation for moving walls. The first point
provided the conceptual basis for the velocity calculation while the
second made it possible to obtain numerical predictions. Both eddy-
current and relaxation losses have been considered. In the experimental
development, the primary emphasis has been on (1) obtaining reproducible
and consistent mobility data and (2) using the data to determine the
relative importance of eddy-current and relaxation losses in limiting
the wall motion. Other important problems, concerning the validity of
the phenomenological formulation for relaxation losses, the validity of
the static wall shape assumption for moving walls, and the influence of
wall shape on eddy-current losses, were also unanswered and have been

solved in the course of this investigation.

Following the course taken by previous workers, relaxation losses
have been treated phenomenologically, utilizing the Landau~Lifshitz
equation. The motivation (or excuse) for this approach rests primarily
in the fact that no physical formulation of relaxation losses has been
possible. The phenomenological treatment is based primarily on'a
viscous drag model, as if the magnetization were a physical wector
moving in a fluid medium. The model can be appliéd to wall motion if
the domain wall shape is assumed to distort slightly. tsing a
phenomenological damping parameter and the magnetization distribution
within the wall, it is possible to characterize the relaxation losses

limiting the wall motionm. Static wall shape information is available
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and the damping parameter was determined by fitting the theory to the

data.

The eddy-~-current losses associated-with wall motion have been
calculated, taking the finite width of the domain wall into account.
The analysis has been carried out for both Bloch and Néel walls and
indicates that the losses are not significantly different from those
predicted previously, even though the actual current distributions are

significantly different.

A quasistatic technique has been developed to accurately measure
domain wall velocity in thin films and to determine wall mobility from
these data. One important factor in 6btaining meaningful data concerns
the selection df samples which exhibit uniform wall motion by straight,
isolated walls. The successful use of the‘technique shows that time-~
of-flight measurements are not necessary and that the loss-limited
velocity can be determined by measuring wall displacements produced by

field pulses of known duration, for pulse lengths greater than 1 psec.

Mobility data have been obtained as a function of film thickness
from 300 to 1650 8, for Ni-Fe alloy films with 80% Ni evaporated onto
glass substrates at 30000 in a vacuum of 10“6 Torr. Between 300 and
800 R, the mobility decreases with increasing film thickness ranging

3 8 3 &
from 8 x 10 cm/sec Ge at 300 to 3 x 100 cm/sec Oe at 800 A.
Between %00 and 1000 X, the mobility increases rapidly with increasing

£ilm thickness to about 7 x 10° cm/sec Oe. Above 1000 R, the mobility
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increases slowly with film thickness. Bitter patterns indicate that the
sharp increase in mobility between 900 and 1000 & is associated with a
wall structure transition. On both sides of this transition thickness
range, a theoretical fit to' the data was made using static wall shape
information obtained from Lorentz microscopy. For films thinner than
900 R, published wall shape information was used but for f£ilms thicker
than 1000 X, no static wall shape information was available. Lorentz
microscopy_wall shape measurements for a 1200 R film yielded a width

of about 3000 X, significantly wider than calculated wall widths. Over
the entire thickness range considered, a good theoretical fit to the
data was obtained for a constant value of the damping parameter,

a = 0.014. Eddy-current losses were completely negligible.

The domain wall mobility has been determined as a function of film
thickness from 300 to 1650 R. These data can be explained on the basis
of static wall shape information and the conéept of a loss~limited
velocity. Eddy-currents do not contribute significantly to the losses
limiting wall motion. Relaxation losses dominate. The phenomenological
formulation of relaxation losses for wall motion appears to constitute
a useful approach; the phenomenological damping parameter required to

fit the theory to the data is constant over the entire thickness range

examined.
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Chapter 3. FERROMAGNETIC RESONANCE

3.1 INTRODUCTION

3.1.1 Elementary Considerations

In a2 typical ferromagnetic resonance experiment, a sample of
ferromagnetic material is placed in'a uniform magnetic field large
enough to magnetize the sample parallel to the field direction. If
the magnetization is.disturbed slightly from this equilibrium position,
it does not return directly but precesses about the field direction.
Energy loss associated with the magnetization motion.causes the
precession to be damped with eventual alignment along the field
direction. In order to study this phenomenon, a8 small sinusoidal
magnetic field is applied perpendicular to the static field. This
sinusoidal field excites precessional motion but unless the frequency
w is nearly equal to the precessional frequency uh, the energy coupled
from the excitation field to the precessing magnetization will be small.
If uyg w the coupling is large and is limited only by the damping of

the system.

The first observations of ferromagnetic resonance (FMR) were
reported by Griffiths (1946) for electrolytically deposited films of
iron, cobalt, and nickel. The resonances were observed to occur for
values of the static external applied field H much lower than expected

from the usual resonance relation for electrons, uh = ngH/ﬁ, where g
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is the spectroscopic splitting factor (g~ 2 for electrons)\and uo is
the Bohr magneton. The apparent discrepancy between the theory and the
FMR data was first explained by assigning extremely large g values to
thé magnetic electrons for various ferromagnetic materials. This
approach, however,.yielded different g values, depending on sample
shape and field orientation. The understanding of FMR was advanéed
considerably when Kittel (1948) pointed out the role of demagnetizing
fields in determining the resonance conditioh° Such demagnetizing
fields are connected with a nonzero magnetization divergence in much
the same way as they were in the case of domain wall stray fields. For
FMR, v-ﬁ'= 0 inside the uniformly magnetized sample and the demagne-
tizing fields are produced only by surface magnetic charge. The total
field at an electronic site in the sample can be quite different from
the applied field because of the demagnetizing fields. The usual

resonance condition with g as 2 is satisfied if the demagnetizing field

is taken into account.

Just as there are losses associated with the magnetization rota-
tion which accompanies wall motion, there are losses associated with
the magnetization precession for FMR. The precession amplitude {(the
tipping angle of M away from the static field direction) is loss
limited in much the same way that the wall velocity is loss limited,
as can be understood from a simplified classical picture. An r-f field
at uh applied perpendicular to the static field pumps energy into the

system, increasing the precession amplitude. As the precession
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amplitude grows, the losses associated with the magnetization motion
also increase until the precession amplitude is such that the loss rate
equals the r-f power input. For larger precession amplitudes, the loss
rate exceeds the power input and the system loses energy by decreasing
the preéession angle. In the same way that the domain wall velocity is
determined by an energy balénce between losses and the net energy
decrease for the system, the precession amplitude for FMR is determined
by an energy balance between losses and r-f power imput to the system.
However, while the wall velocity can (in principle) be infinite for no
losses, the precession angle is limited to = (when viewed as simple
precession). Consequently, the response of the magnetic system to the
transverse r-f excitation is more conveniently characterized by a
‘transverse susceptibility XL = QL/h, rather than the precession
amplitude. Here my is the magnetization component perpendicular to the
static field but along the direction of the r-f field of amplitude h.
The transverse susceptibility describes the magnetic response (increase
of QL) per unit increase in r-f field amplitude in much the same way
that G describes the wall velocity increase per unit increase in drive
field. Similar to G, XJ_ is independent of the excitation field
amplitude h and diverges for no losses. For most physical situations,
the r-f power level is small and the precession amplitude associated
with %L (finite for nonzero losses) is extremely small. Thus, while
domain wall motion involves large angle motion of M (ﬁ rotates by 180°

for the situation discussed in Chapter 2), FMR involves only extremely
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small deviations of M from its equilibrium position along the static
field. The magnetization dynamics in each case are quite different.
Nevertheless, both processes are loss limited and can be charaéterized
by a wall mobility and a transverse susceptibility respectively, both
of which are zero for infinite losses (no response) and diverge in the

limit of no losses.

In the same way that Chapter 2 was concerned with losses for wall.
motion in thin films, this chapter is concerned with losses for ferro-
magnetic resonance. The resonance losses are reflected in the experi-
mental data for FMR in a very direct way. The usual technique for
»observiﬁg resonance is to slowly change the applied static field while
observing the energy loss at a fixed r-f excitation frequency. As the
applied field is changed and the internal field passes through the field
value for which w = W the magnetization will be driven to some
precession amplitude determined by the loss rate and energy will be
absorbed from the r-f field. For no losses, XL is infinite at w = w_

. and the energy absorption diverges for a vanishingly small excitation
field amplitude h. Off resonance, however, the r-f excitation does not
have a fixed phase relationship with the precession so that very little
energy absorption is expected. For no losses, then, the absorption
curve for resonance ( a plot of r-f energy absorption vs applied static
field) could be described by a delta function centered at the value of

the applied field for which the internal field satisfies the resonance
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condition. For nonzero losses, the amplitude of the absorption curve is
finite and its width is also nonzero. The difference between the field
values H + AH/2 at which the energy absorption is one-half the maximum
absorption at Ho is used to define the half power linewidth AH. Since
the line broadens with increasing losses, the linewidth is a measure of
the losses associated with resonance. In the same way that the wall
mobility represents a measure of the losses associated with wall motion
(losses « 1/G), AH represents a measure of resonance losses (losses

o OH) .

Several approaches are possible for calculating the resonance
linewidth in thin films. A phenomenological equation of motion for
M (such as the Landau-Lifshitz equation or the Gilbert equation) can be
used to calculate the linewidth and a resonance loss parameter just as
the Landau-Lifshitz equation was used to calculate the wall mobility
and the damping parameter &. The main interest in the FMR linewidth
for thin films, however, is not because of any possible phenomenological
interpretation but because of the fact that, for resonance, some under-
standing of the physical relaxation processes is possible. The
phenomenological formulation of relaxation losses for wall motion was
necessary because no technique for calculating such losses from physical
principles has yet been developed. For FMR, however, the magnetization
motion consists of extremely small angle precession at a single
frequency and in some cases fundamental relaxation loss calculations

are possible. 1In Chapter Z, relaxation losses were defined (for
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esthetic reasons) in terms of elementary interactions involving the
magnetic normal modes (magnons) and the normal modes of the lattice
(phonons). For FMR, this is a working definition for relaxation losses.
For many insulating ferromagnets, the contributions of various magnon
and phonon processes'to the linewidth have been calculated and are in
good quantitative agreement with experimental data. For conducting
ferromagnets, progréss has not been so rapid. At present, the most
exciting aspect of resonance linewidth investigations in thin films is
the opportunity to understand, at least qualitatively, what physical
loss processes are really relevant and which are not. The investigation
and results described in this chapter'represeht an initial step in the

direction of such an understanding.
3.1.2 Uniform Mode Relaxation

The starting point for calculating resonance losses is with the
precessing spin system. The simplest.possible situation is one in
which the field for resonance is uniform over the sample and the r-f
excitation field is uniform in amplitude, direction, and phase through-
out the sample. If these conditions are satisfied, the magnetization
precession is also uniform both in amplitude and phase over the entire
volume of the sample. This resonance mode is appropriately called the
uniform mode. Throughout this chapter, it is the uniform mode which is
assumed to be excited by the r-f field and the discussion will be

concerned with relaxation processes for uniform mode resonance. The
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assumption of uniform mode resonance is not a trivial one, even if the
fields (static and r-f) are uniform throughout the sample. Considerable
controversy exiéts concerning the efféct of the sample surfaces on the
internal fields for FMR.and magnetization motion near the surfaces.
This controversy represents another aspect of resonance phenomena in
thin films which is not of direct interest in the present investigation
of loss processes for resonance. It is sufficient to say that the
measured fields for resoﬁance satisfy the original Kittel resonance

condition (Kittel, 1948) for uniform mode resonance.

Once the uniform mode has been excited, the precession amplitude
and the susceptibility are determined by the various processes by
which energy can be transferred from the precessing spin system to the
lattice. The uniform mode is not the only normal mode of the magnetic
system. Other spin wave modes are possible for which the precession
angle and phase vary periodically through the lattice. Spin waves will
be discussed in section (3.3). The uniform mode can be viewed as a
spin-wave mode with wave number k equal to zero (infinite wavelength and
no spatial variation in ﬁ). In the same way that the normal modes for
lattice vibrations can be quantized into phonon states and treated as
particles, the normal modes of the magnetic system (spin waves) can be
quantized into magnon states with particle properties. In particle
language, it is relatively easy (at least in principle) to discuss
relaxation losses in terms of scattering processes. Uniform mode

relaxation processes can be viewed as scattering interactions between
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the magnetic modes (spin waves) and the other modes of the system

(electrons, phonons).

There are many possible scattering reactions by which the energy
pumped into the preceséing spin system (uniform mode magnons) may
finaily be transferred to the lattice vibrations (phonons) as joule
heating. The existence of losses in the first place means that uniform
mode magnons scatter,into phonon states (lattice heating) by one path
or another. Uniform mode magnons may relax directly into phonons or
scatter into other magnon states which eventually relax into lattice
vibrations: For complicated scattering sequences where several
processes may be operative, the concept of a relaxation time for each
scattering‘interaction is convenient in correlating the FMR linewidth
with fundamental loss processes. Any individual scattering reaction
can be characterized by a relaxation time which is a measure of the
average lifetime of the initial state before it suffers a transition
to the final state. If the total relaxation timé for uniform mode
magnons is long, for example, they decay into other states very slowly;
the relaxation rate and the linewidth are both small. The linewidth is

inversely proportional to the total relaxation time for uniform mode

magnons .

Individual scattering interactions which may contribute to the
total relaxation time are summarized in the block diagram of Fig.3-1

and may be characterized by their individual relaxation times. The
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‘ UNIFORM Tox | DEGENERATE | Tkkk |  THERMAL
MODE MAGNONS MAGNONS

TOL TKL TKKL

L LATTICE PHONONS

Fig.3=-1. Relaxation channels for uniform mode resonance. The
processes included are as follows:

Tok two-magnon.
T01 magnon-phonon, eddy-current, temperature-peak.
Tokk and Tkkk three-magnon.

Tkl and Tkkl multiple magnon-phonon.
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uniform mode resonance is excited by the r-f field and uniform mode
magnons eventuallf relax into lattice phonons by various channels. For
processes which occur sequentially, such as (uniform mode) —» (degenerate
magnons )= (phonons), the>individua1 relaxation times add (oaly
approximately valid unless T , > > Tkl)‘ For parallel processes which
occur simultaneously (such as the above sequence and the (uniform
mode) — (phonon) process), each pfocess represents a separate loss
channel and the linewidths (or reciprocal relaxation times) add. For
the processes mentioned above; then

).

=T AV T

Al o 1/Ttotal

The complete expression, including all the loss channels indicated in
Fig.3-1, is extremely complicated. Such an expression can in concept

be constructed on the basis of the above information and Fig.3-1.

A large number of calculations have been made concerning the
various relaxation channels sketched in Fig.3-1. The aspects of these
calculations which are directly relevant to thin films have been
summar ized by Comly (1965) and a detailed discussion of these calcula-
tions is not directly relevant to the present discussion. It is,
however, important to indicate briefly some of the physical ideas
involved and the large range of linewidths which have been obtained;
Corresponding to the classification scheme of Fig.3-1, these calcula-

tions may be grouped according to the nature of the scattering. Two
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magnon (Ték)’ multiple (three or more) magnon (T and T

okk Kk magnon-

‘phonon (T and T  .), temperature-peak (Tol)’ and magnon-

ol’ Tkl’ kkl
conduction electron (Tol) processes have all been considered and will

be touched on briefly.

Clogston et al. (1956) first pointed out the role of k # 0 magnons
degenerate with uniform mode magnons in FMR relaxation, due to sample
inhomogeneities which couple non k-conserving pairs of magnons together.
Scattering involving only two magnon states (corresponding to TOk in
Fig.3-1) is not possible in a perfect lattice since the magnons
correspond to normal modes which do not interact. Thin films, however,
are very imperfect structures. The stray fields around localized
imperfections and inhomogeneities produce a mode mixing so that the
true normal modes consist of various combinations of the mormal modes
of the perfect lattice. This mode-mixing approach is useful for
illustrating the point that two-magnon scattering is controlled by the

imperfection or inhomogeneity distribution in the £ilm.

Processes involving three or more magnons (denoted by TOkk and
Tkkk) have been calculated by many workers. Three magnon scattering
calculations by Sparks et al. (1961) and Schlomann (1961) yield
numerical values for liﬁewidth (from this process only) of 0.5 to
5.0 Oe (Comly, 1965) for parallel resonance in Ni-Fe films with 80% Ni

at room temperature and 9 Gec/sec. Pincus, Sparks, and LeCraw (1961)

have summarized calculations for four-magnon scattering, which give
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linewidths from 5.0 x 10-4 to 1.5 Oe (Comly, 1965) depending on the

details of the process.

The first proposal for magnon-phonon relaxation (denoted by Top)
was made by Akhieser (1946) who used an averaging procedure over all
spin;wave states. His calculation is not appropriate for relaxation
concerning only uniform mode or -small k magnon relaxation. Kittel and
Abrahams (1953) have estimated that the largest linewidth resulting
from the magneto-elastic scattering of magnons into phonons for nickel
at room temperature is 10“5 O0e. Kasuya and LeCraw (1961) have
considered a two-magnon-one-phonon process which gives AH = 0.1 Qe for

Ni-Fe films (Comly, 1965).

‘In several classes of insulating ferromagnets, namely the ferrites
and garnets, a characteristic linewidth maximum as a function of
temperature occurs. For YIG (ytt;ium iron garnet), this behaviour
is extremely sensitive to the substitution of various. rare-earth ions
for yttrium (Yager et al., 1955). For the ferrites, the behaviour has
been associated with an electron hopping process between Fe2+ and Fe3+
ions in the ferrite (Teale and Tweedale, 1962). Because of the
characteristic linewidth maximum, these processes are termed temperature

peak processes. The maximum usually occurs below 100°K. No similar

processes, however, have been observed or calculated for metals.

Several calculations have been made for magnon relaxation due to

coupling between the magnetic and conduction electrons. These calcula~-
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tions (Kasuya, 1954; Abrahams, 1955; Kittel and Mitchell, 1956) give
linewidths which depend on some inverse power of spin wave number (for

nonzero-k magnons), and are between 3 Oe and 700 Oe.

In spite of the large amount of theoretical work on FMR relaxation,
veryvlittle consistent information exists. By proper (if arbitrary)
selection of processes, almost any linewidth can be explained. 1In line
with the old saying that one cannot ;ee the forest for the trees, in the
present situation it ig not possible to understand resonance relaxation
because of the large number of possible relaxation processes and the

even larger number of contradictory calculations pertaining to these

processess

In spite of (or perhaps because of the confusion in )} the large
amount of theoretical work on resonance relaxation, only a small number
of experimental investigations of the FMR linewidth in thin films have
been carried out. The bulk of these investigations were performed at
room temperature, at only @ few frequencies, and using only a limited
number.of film samples. For the most part, the results of these
investigations have been inte;prefed only phenomenologically (Smith,
1958; Smith and Harte, 1962; Rossing, 1963; Nelson, 1964) using the
Gilbert equation. Values of the damping parameter for resonance wére
found to be significantly smaller than that for wall motion. Beyond

the phenomenological interpretation, very little progress has been made

in connecting the resonance linewidth for thin films with physical
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processes or film properties. Rossing (1963) and Nelson (1964) found
that the linewidth is larger for films which show large fluctuations
in the magnitude of the uniaxial anisotropy constant K (large disper-
sion) than for films with a well-defined uniéxial anisotropy. Goser
(1965a) has investigated the thickness dependence of the parallel
resonance linewidth at frequencies from 1-9 Gc/sec in order to under-
stand the role of eddy-current losses. He concluded that eddy-current
losses were not imporgant for any film thickness and that the linewidth
is independent of film thickness. Only two physical relaxation
processes have been proposed in connection with parallel resonance
linewidth data for thin Ni-Fe films. Inhomogeneity two-magnon
scattering of the sort originally proposed by Clogston et al. (1956)
has been used by Callen (1958) Comly and Penney (1963), and Berteaud
and Pascard (1965) to qualitatively explain an observed monotonic
increase of the parallel resonance linewidth with film thickness. A
similar monotonic increase of the parallel resonance linewidth with
thickness has been reported by Soohoo (1964} which he attributed to
magnon-conduction electron relaxation based on the Kittel-Mitchell
(1956) calculation. Soochoo ignores the possibility of inhomogeneity
two-magnon scattering and his adaption of the Kittel-Mitchell result
assumes that the relaxing magnons have wave numbers k = 27/D and not
k = O which is appropriate for the uniform mode. It is not clear why
this assumption is Qalid. Moreover, the original Kittel-Mitchell

result that AH « 1/k is not consistent with the data on linewidth as
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a function of k by Comly (1965) which indicate that AH is not inversely
proportional to k. The main problem concerning these linewidth
investigations is in the complete disagreement between Goser's conclu-
sion that AH_is»independent of D and the work of Belson (unpublished
but mentioned by Callen (1956)), Comley and Penney (1963), Soochoo
(1964), and Berteaud and Pascard (1965) which indicate that AH increases
%itb thickness. If the monotonic increase with thickness is correct,
Sochoo's explanation using the Kittel-Mitchell interaction can be
excluded on the basis of Comly's data (since AH is not proportional to
1/k) but there is still no quantitative justification for accepting
the tWO—&agnon inhomogeneity scattering explanation. In addition, no
work has been reported on the temperature dependence of the resonance
linewidth. Such an investigation would be of great value in under-
standing the role of eddy-current losses (since the conductivity is
temperature dependent) and the role of temperature-peak processes (such
as the rare earth impurity process) in determining the resonance line-

width.

~As is evident from the above discussion, the present day under-
standiﬁg of resonance relaxation in thin films is in a confused state,
both theoretically and experimentally. Many calculations have been
published and there is no lack of relaxation processes from which to
choose. The experimental situation is no better. The data which have
been published are contradictory and in the few cases where the data

are in agreement, the interpretations are not in agreement. The
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theoretical situation will continue to be confused until there is
sufficient experimental information to provide an indication as to the
relevant loss processes. What is needed, then, is a thorough investi-
gation of the parallel resonance linewidth for thin films as a function
of frequency, temperature, and thickness with careful attention to
minimizing the contribupion of dispersion to the linewidth. The data
on AH as a function of thickness at room temperature can be used to
determine whether there is any dependence and if so, whether the thick-
-ness dependence is really consistent with tw0-maghon inhomogeneity
scattering. The temperature dependence of AH can be used to examine

the importance of eddy-current losses and the possible existence of

magnon-phonon or temperature-peak processes.

Such an investigation is the objective of the work reported in
this chapter. The parallelvresonance linewidth has been measured for
over two hundred Ni-Fe alloy films with approximately 77% Ni evaporated
under the same conditions déscribed in Chapter 2 on wall motion. Film
thickness ranged from 150 to 3200 £. These linewidths have been
measured at frequencies from 1-9 Gc/sec and temperatures from 2% to
300°K. Such an extensive investigation represents a significant
advance in the understanding of FMR relaxation in thin metal films.

The most important rgsults of this study are: (1) Evidence for the
monotonic increase of linewidth with thickness above a critical thick-

ness. (2) Evidence for a two-magnon inhomogeneity scattering process
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associated with this thickness dependence. (3) Evidence that eddy-
current losses do not contribute significantly to the resonance line-
width for film thickness less than 1500 R, but do contribute for some=-
what thicker films. (4) Evidence for a temperature-peak process in
thin’Ni-Fe films. The first three of these results represent confirma-
tions of earlier proposals. The fourth result is completely new, one

which was unexpected and is not yet fully explained.

Iﬁ the next section (3.2), a short discussion of the phenomeno-
logical formulation of resonance losses will be presented. This will
serve as a basis for comparing linewidth data with the wall motion
results of the last chapter and for discussing earlier linewidth
results. In addition it will serve as further motivation for investiw
gating physical loss processes, without fecourse to the phenomenologi-
cal formulation. The inadequacy of the phenomenological formulation
for resonance losses will be made evident. In order to make an
effective connection between:the experimental data and the conclusions
concerning physical loss mechanisms summarized above, it will be
necessary to briefly review the relevant mechanisms in more detail.

In section (3.3), two-magnon scattering will be considered. In the
first part of this section, the relevant material concerning spin
waves in thin films will be reviewed, and two-magnon sScattering proper
will be discussed in the second part. In section (3.4) temperature-

peak processes and eddy-current losses will be considered. Each of
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these twb mechanisms, if operative, give the linewidth a definite
temperature dependence and will be important in discussing the line-
width vs temperature data. These three sections serve to provide the
theoretical background for the discussion of the present experimental
results. The theoretical ideas are developed within the context of
existing experimental information. In section (3.5) the apparatus
which was used to obtain the present linewidth data will be described
'in detail. In section (3.6), the data will be. presented and discussed
in terms of the various ideas developed in the earlier sections.

Using the phenomenological formulation of section (3.2), values of the
.dampin‘g par‘ameter o appropriate for FMR will be obtained which can be
compared to the & for wall motion. More important, the data will also
be shown to be consistent with the assumption that two-magnon
scattering is associated with the linewidth thickness dependence.
Linewidth data as a function of temperature will be presented which
demonstrate the existence of a temperature-peak process for FMR
relaxation in thin films. Possible origins for this temperature~-peak
process will be discussed. In section (3.7) the results of this

investigation of FMR relaxation in thin films will be summarized.

3.2 PHENOMENOLOGICAL LOSS FORMUIATION

In the introduction, the emphasis was on physical loss mechanisms
for FMR. While @ physical understanding is the primary objective of
this chapter, there are several reasons for considering a phenomenc-

logical approach. Physically, both domain wall motion (considered in
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the last chapter) and FMR represent a damped precessional motion of the
magnetization, a -large amplitude precession about the Becker field in
the case of wall motion and a smallbangle precession about the internal
field in the case of resonance. If the phenomenological formulation
really provides a reasonable description of the losses for magnetiza-
motion, the values of the damping parameter & should be similar for
both phenomena. In order to‘obtain & from linewidth data for
comparison with the @ for wall motion, a phenomenological calculation
based on the Landau-Lifshitz or Gilbert equation is necessary. A
second reason for having a phenomenological formulation of resonance
linewidth is simply that a large amount of data has been interpreted
phenomenologicallyvby other workers (Smith, 1958; Smith and Harte, 1962;
Rossing, 1963; Nelson, 1964) and a basis for comparison with these
earlier results wﬁuld be convenient. The fiﬁal reason for devoting the
present section to the phenomenological treatment of resonance losses
is that it provides a furthér motivation for éonsidering physical loss
processes. After the phenomenological formulation has been bresented,
it will be shown that such a treatment is .inadequate. A phenomenologi-
cal formulation is most useful for situations in which the loss
parameter is approximately constant as was shown to be the case for wall
motion. If the loss parameter for resonance turns out to be dependent
on a number of experimental parameters, the simplicity of the approach
is sacrificed and the formulation is no longer justified. Such is the

situation for FMR in thin films, as will be discussed shortly. In some
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contexts, the phenomenological formulation is still useful but it can~
not be expected to provide an adequate basis for any quantitative

description of resonance losses.

In the section on relaxation losses.for wall motion, the physical
motivation for the phenomenological equations of motion for the
magnetizatioﬁ {such as the Landau-Lifshitz equation or the Gilbert
equation) was discussed extensively. The equations were based on a
viscous damping model in which a rotating vector experiences a drag
torque during motion in a fluid medium. The Landau-Lifshitz equation
was then used to calculate the domain wall mobility in terms of a
phenomenologiqal- damping parameter O which was later determined
experimentally to be 0.014, independent of film thickness and domain
wall shape. The calculation of the resonance linewidth is usually
done using the Gilbert equation rather ﬁhan the Landau-Lifshitz

equation. In the Gilbert equation,
dM/dt = -Y(M x ’H’i) + (@/M) 1 x dM/dt), (3.1)

the loss term is written using dM/dt rather than the triple cross
product M x (M x H) as in the Landau-Lifshitz equation, and is more
convenient for handling time-harmonic fields and magnetization

components .
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Consider a right-handed xiy:z coordinate system with the static
magnetic field H in the z~direction, and a small amplitude r~f
excitation field heiwt(h < < OAH) at frequency w and in the x-direction.
For this discussion, it is not necessary to assume thin film geometry.
Let (Nx, Ny’ Nz) be the sample demagnetizing factors in the (x,y,z)
directions respectively. For small r-f amplitudes, the precession

.amplitude will be much less than M ahd to first order the z-component
of the magnetization in the static field vdirection is equal to M. If
the transverse components of M are denoted by mxeiwt and myeiut, the

total field and the total magnetization can be written as:

- T ] iwg,— iwe iwe, ~

Hi = (H N'ZM)ez + ( N&mye )ey + (he Nxmxe )ex, (3.2a)
- - iwe,— Ciwt— '

M= Mez + (mye )ey + (mxe )exy | (3.2b)

where (;x, gy’ ez) denote unit vectors. These expressions for Hi and
M can be substituted into the Gilbert equation, the x- and y-components
of which then yield two simultaneous equations for m and mys The

susceptability X,= mx/h can be obtained from the solutiom for m and is

given by’
X, =m /h = YM‘(l/X-iaw/wz)/ (1-w2/w2)-:‘Locw(x+Y)/w2 3.3)
1 X u { u U} *

where X = Y{H - (Nx - Né)M}’ Y = Y{H - (N§ ) NQ)M}: and XY = u?. The
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Kittel resonance condition (Kittel, 1948) for uniform mode resonance at
a frequency QL in an applied field H can be obtained from XY = uﬁ. As
can be seen from the denominator of the R.H.S. of Eq.(3.3), X, is

maximum for w = W and diverges if @ = 0, which is consistent with the

previous qualitative discussion.

Equation (3.3) gives the x-component of the transverse suscepti-
bility (in the field direction) of the ferromagnetic sample as a func-
tion of applied field (since X, Y, and @ are defined in terms of H).

The quantity of experimentél interest is not the susceptibility Xy but
the energy absorption rate as a function of field. The power loss for
the system (i.e. the r-f power input) can be calculated as the time
average of dB/dt = -H-dii/dt. Only the (m e™“)(he™™®) term in dE/dt
gives a real contribution whose time average is not zero. If the

" "

standard definition XL = X; - iX, is used to separate the real and

imaginary parts of Xl, the time average power loss can be calculated

to be .

2w
= -unX, /2. (3.4)

dE/dt
(@E/ >time av

In other words, the FMR absorption curve (power absorption as a
function of applied field) is proportional to the imaginary part of
the transverse susceptibility. The linewidth AH is the difference

between the field values for which X (the imaginary part of Eq.(3.3))
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has half its maximum amplitude. Half-amplitude points occur at field
values (approximately) for which (1-u?/uﬁ) = aw(X+Y)/ui which are
approximately equal to H(w = ® ) i.a“L/Y so that the linewidth is

given by AH = Zauh/y.

'Assuming that Q is a cohstant, three properties of the linewidth
are predicted from the above phenomenological treatment. First, no
shape demagnetizing factors or vector quantities appear in AH, so that
tﬁe linewidth is expected to be independent of sample shape and field
orientation. Second, the linewidth is expected to increase linearly
with r-f excitation frequency, and finally, AH should be zero in the
limit uh = Q. Only the second of these expectations has been confirmed
experimentally (Smith, 1958). Tannewald and Seavey (1957) and Berteaud
and Pascard (1965) have reported that the linewidth is a function of
field orientation with resPeét to the film plane. Soochoo (1964) and
Berteaud and Pascard (1965) also find that the parallel resonance
linewidth increases linearly with film thickness so that AH is dependent
on the sample dimensions. Smith (1958), Smith and Harte (1962), Rossing
(1963), and Nelson (1964) repoft that the linewidth is linear in

frequency but does not extrapolate to zero for zero frequency. Rather

than AH = ZG“L/Y, they find that the linewidth is better described by
LH = @ﬁH)ob+ Zauh/Y (3.5)

If Eq.(3.5) is to be consistent with the thickness dependence of the
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linewidth reported by Sochoo (1964) and Berteaud and Pascard (1965),

Q must be taken to be thickness dependent. The linewidth, however, has
been found to be dependent on other paraﬁeters besides film thickness
and excitation ‘frequency. The original data reported in conjunction
with Eq.(3.5) by Smith (1958),were correlated with dispersion in the
uniaxial anisotropy fieid magnitude HK = 2K/M. Further research by
Rossing (1963) and Nelson (1964) indicated that both QﬁH)o and O
increase with magnitude dispersion of the uniaxial anisotropy. This
situation is in considerable contrast with the situation for wall

motion, where & remains constant independent of film thickness and wall

shape.

From the previous discussion two points are evident. First, a
phenomenological description of resonance losses is straightforward
and simple. The resonance linewidth may be characterized by two
parameters, QAH)O and @. Second, and more important, it should be
evident that such a description is not adequate. A phenomenological
formulation is most useful in situations for which the loss parameter
is approximately constant (as for wall motion). The primary justifi-
cation for such an approach is in its simplicity. If the loss
parameter turns out to be dependent on film thickness, field direction,
excitation frequency, and dispersion (as for FMR), the simplicity of -
the approach is sacrificed and the phenomenological formulation is no

longer justified. In some contexts, the phenomenological formulation
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is still useful (such as for comparison of FMR with wall motion or in
discussing earlier FMR data) but it cannot be expected to provide an
adequate basis for any quantitative physical description of resonance

losses,

3.3 TWO-MAGNON SCATTERING

3.3.1 Spin Waves in Thin Films

In the introduction (section 3.1), relaxation processes were
described in terms of scattering interactions between two or more
different magnqns or between magnons and other normal modes of the
system (such as phonons). As is the case for phonons and electrons,
all combinations of W and k are not allowed for spin waves. Only
definite spin-waves states are possible which are described by a
characteristic spin-wave dispersion relation w = w(i), just as
phonons and electrons have their own characteristic dispersion rela-
tions. Before discussing two-magnon scattering, it is necessary to
know which magnon states are allowed, and a brief discussion of the
dispersion relation for spin waves in thin films is required. The
spin-wave dispersion relation for thin films can be best understood by
first considering the dispersion relation for spin waves in bulk
materialy, which can be obtained formally by a method introduced by
Holstein and Primakoff (1940). Rather than present the tedious

mathematics of this calculation, the normal modes will be constructed
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from a plausibility argument (Sparks, 1964) which demonstrates the

physical origin of spin waves and their dispersion relation.

The starting point for the development is the hamiltonian for the

magnetic system, including only the Zeeman and exchange energies.

H = -gn_ E S.°H - 2J E si-sj | (3.6)

1 1,]

— —

The Si are the spins of the magnetic electrons, H is the magnetic field,
and J is the exchange integral. The j summation in the exchange term

is over the nearest neighbors of E; and the i summations are over the

N spins of the system. The ground state (the state of minimum energy)
is the stafe in which every spin in the sample is aligned parallel to
the applied d-c magnetic fiéld. Both the Zeeman and exchange energy
are minimum for this configuration. One initial guess as to the first
excited state would be to flip one spin antiparallel to the magnetic
field. However, this state with one flipped spin corresponds to a very
high exchange energy. Since the exchange energy is proportional to
-cosd, where is the angle between neighboring spins, it can be kept
small by keeping & small. Thus, a judicious twist on the spin system
gives a much smaller exchange energy than the flip of an individual spin.
The most economical twist is shown in Fig.3-2. Each spin is tipped at
the same angle B with respect to the applied field. For small B, the
Zeeman energy is smail. This disturbance on the spin system is called

a spin wave and is a normal mode of the system. The detailed quantum-
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eclvlotel

TOP VIEW OF SPINS
8
/] :
PERSPECTIVE VIEW OF SPINS

X

Fig.3-2. Spin wave propagating_along the y-axis. The angle B
between a spin and the applied field H is the same for each spin. The
angle ® between adjacent spins is the same for each pair of neighboring
spins. Each spin precesses at frequency wk and all the spins in any
plane perpendicular to ey are parallel.
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mechanical calculation (Holstein and Primakoff, 1940) is in agreement
with this simple picture. In particular, the precession angle B is the
same for each spin and the angle befwaen neighboring spins along a
given direction is the same for all spins. The shortest distance
between parallel spins (except in the plane containing all parallel
spins, the x:z plane in Fig.3-2) defines the propagation direction
(y-direction in Fig.3-2) and the wavelength A. The wave vector k has
magnitude 2n/A (the conventional definition) and is directed along the

propagation directione.

From an understanding of the spin-wave picture discussed above and
sketched in Fig.3-2, the general shape of the dispersion relation
@ = w(k) can be obtained. The exchange energy of a magnon with

frequency w is (hw) 0
exc

.

r 2
(hw)exch &« Si'sl+l x -cosd & -(1 - %8 ) (3-7)

Since b is inversely proportional to A® ~ 2rx(a/N) if a is the spin-
separation distance) and k is also inversely proportional to A, O is

proportional to k. Thus, the exchange energy of a magnon (w,k) is

2

(hw) BK (3.8)

exch

neglecting constant terms. The coefficient B is given by 25Ja , where
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S is the electron spin, and a is the nearest neighbor distance in the
magnetic lattice. (B is related to the exchange éonstant A of
Chapter 2 bbe = ZAYh/M.) From the rigorous calculation, it caan be
shown that for a single magnon corresponding to a spin-wave (w,k) with
an energy of hwk‘(i.e. the magnon occupation ﬁumber 0, is 1), each
spin is tipped by an angle B from the field such that the total change
of the magnetic moment in the field direction is the same as if one
spin were completely flipped. For one mégnon (W, k, = 1),

(hw)

= a . )
Zeeman ngH nd the total magnon energylls

ﬁwk =gn H + B . (3.9)
This dispersion relation, however, is still incomplete. The direction
of propagation for the magnon has not been taken into account (the

above equation has no directional dependence on'E). In the same way
that a nonzero v-ﬁ'produced a demagnetizing field energy term for domain
walls, the magnetization divergence associated with spir waves propa-
gating at right angles to the applied field raises the energy for these
transverse directed spin waves. For spin waves propagating parallel to
the applied field (and M), v - M = 0 and there is no additional
demagnetizing field energy. The effect of the demagnetizing field

energy, therefore, is to add a term to hu& which is proportional to

H x (ﬂ]k). If the angle between the wave vector k and the applied

field H is denoted by 8, the spin wave dispersion relation w = w(k, 6)
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can be displayed as shown in Fig.3-3, including Zeeman, exchange, and
volume demagnetization energies. The set of dispersion curves for all
values of 6, 0 « O < /2 are contained in the region between the

6 = 0 and the 6 = x dispersion curves. Considered collectively, these
curves represent a continuum of magnon states (8 can have any value
between 0 and n/2) which is called the magnon or spin-wave manifold.
The exact expression for w = w(k,f) is given by (Holstein and Primakoff,

1940):
Aw =[(Bk2 + )y B + he, + hw sin® @ )]é (3.10)
k i i m k :

where huh = 4x"YM and hwi = hYHi. The internal field ﬁi (in the
z-direction) is equal to H - 4nNZM (the sample is assumed to be satur-
ated in the direction of the applied field) where H is the applied
field and Nz is the sample demagnetizing factor along the z-axis. For
FMR in thin films with the applied field in the plane of the film

(parallel resonance), Né = (0 and ﬁ; = H.

It should be néticed that the sketch of the spin-wave manifold in
Fig.3-3 does not extend to k = 0. The dispersion relation of Eq.(3.10)
and Fig.3-3 is not valid for very small values of k where the spin-wave
wavelength is greater than the film thickness because of surface
demagnetization fields which are induced by the divergence of ﬁ at the
surfaces of the sample. The surface demagnetization field of a magnon

whose wavelength is much smaller than the dimensions of the sample can
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K

Fig.3-3. Spin-wave dispersion relation including Zeeman,
exchange, and volume demagnetization energy terms. The lower bound of
the manifold (8 = 0) corresponds to spin waves with Kk along the field
direction while @ = n corresponds to k perpendicular to the field

direction.
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be neglected because the divergence of M oscillates very rapidly along
the surface of the sample, thus integrating to zero except for the
magnetostatic component which produceé the static shape demagnetizing
field. However, when the wavelength of the magnon is no longer much
smaller than the sample size, this surface demagnetization must be taken
into account. Walker (1957) has calculated the normal modes for a
spherical sample when this surface demagnetization field is included.
The resulting modes, called magnetostatic modes, Were.discovered in
experiments by White and Solt (1956a, 1956b; Dillon, 1956) prior to
Walker's calculations. Walker solved the problem for modes with k= 0
and neglected exchange. Damon and Eshbach (1961) have repeated

Walker's calculations for thin film geomettry, again neglecting exchange.
Both of these calculations are therefore valid only for k=~ 0 where the
exchange contribution to the dispersion and the slope dw/dk are small.
Harte (1964) has recently calculated the spin-wave spectrum for thian
films taking into account Zeeman, exchange, volume demagnetization, and
surface demagnetization energies. Although the detailed predictions of
these three calculations vary, they all predict that the dispersion
relation is very similar to the bulk dispersion for A less than the film
thickness, but for wavelength such that A » D the dispersion is

modified significantly. The magnetostatic mode modification of the
spin-wave dispersion relation for thin film is sketched in Fig.3-4. The
modified magnon manifold is shown for three situations, an extremely

thick f£ilm (D~ 10,000 8), a thin film (D &~ 1000 8)’ and a very thin
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k /0y K 2770 &
a) Thick Film b) Thin Fiim c} Very Thin Film

Fig.3-4. Magnetostatic mode modification of the spin-wave
dispersion relation for thin films with the applied field H parallel
to the film plane. (a) Thick film where D 5 s D, (b) Thin film where
D = Dw' {(c) Very thin f£ilm where D « <« Dw' The critical thickness
D, is“about 1000 & for 80-20 Ni-Fe films dnd FMR from 1 to 9 Gc/sec.

/
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film (D= 100 £). For the thick film case, the dispersion is very
similar to the relation for bulk material for k 5 2n/D. For k < 2xn/D,
however, the dispersion does not follow the bulk relation. Instead,
the boundaries of the manifold convergé to the uniform mode resonance
frequency w, at k = 0. The situation is the same for thinner films
(Case (b) and (c) in Fig.3-4) except that the convergence begins at
1arger k (the transition point kD = 27t/D moves to larger k with
decreasing thickness).  The thickness dependence of the thin film
dispersion relation, qualitatively sketched in Fig.3-4, is the primary
result of this discussion. The thSi;al origin of the bulk dispersion
relation and the thin film magnetostatic modifications have been
discussed and mathematical details have been avoided. The information

in Fig.3-4 will be of considerable importance in discussing two-magnon

scattering.

3.3.2 Two-Magnon Scattering

One scattering interaction which will prove to be of interegt in
connection with the experimental data is the process in which a
uniform precession magnon (at frequency uh with k = 0) scatters into
another magnon at the same frequency (uh = wk) but with k # 0. 1In the
relaxation scheme of Fig.3-1 discussed in the first section (3.1), this
is a T process. 1t is important to realize that this u-+k procesé
is only one reaction in the total relaxation scheme and will influence
the'linewidth significantly only if the subsequent relaxation channels

following (u =~k) have fast relaxation times compared to T " and
u
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parallel relaxation channels which do not involve (u ~sk) have slow
relaxation times compared to Tuk' The Tuk process can be viewed as
the destruction of 2 uniform mode magnon (so that the uniform mode
magnon occupation number n, goes to nu-l) and the creation of a magnon
with k # 0 (so that some n, goes to nk+1). By this process, one
quantum of energy is removed from the uniform mode and appears in some

other spin-wave state.

On the basis of the spin-wave dispersion for thin films, discussed
above and sketched in Fig.3-3, an understanding of two-magnon scatter-
ing is possible. Suppose that uniform precession is excited in a thin
film containing a spherical pore, imperfection, or some other magnetic
inhomogeneity. The magnetization vector will have a transverse
component wﬁich rotates with time and the resultant demagnetization
field ﬁb is a dipole field (for a spherical inhomogeneity). Suppose
that\in addition to the uniform precession there is also another magnon
% excited in the film. In addition to the dipole field E£ from the
uniform precession, there is a magnetization ﬁ? from the k magnon.
Classically, there is energy transferred from the uniform mode into
k magnons at a rate given by j.d;.ﬁb'(dﬁ?/dt)- Using quantum- |
mechanical transition probability theory, Sparks (1961) has calculated
the relaxation time for such a process. The energy transfer mechanism
described above, however, is an oversimplification. The transition

probability per unit time TPk (i.e. the rate) for going from a given
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state |n, n > to a state Ink +1,n -1 > containing one less

uniform mode magnon and one more k # O magnon is given by
T2, = @x/h) < n-l|H' |n, nu) Bhw - hu) | (3.11)

where the quantum-mechanical scéttgring hamiltonian }{'is :/E3rﬁs-ﬁ£.
Even this formulation is an oversimplification. In the actual calcula-
tion the magnetization ﬁk must be taken as the total magnetization when
all magnons are present, the demagnetization field must be taken to be
the total demagnetization field for all magnons present, and a self-
energy factor of % must be included in}{l; also, the inverse process in
which a uniforﬁ precession magnon is created and a E magnon is
annihilated must be included in Eq.(3.11). The total time rate of
change of uniform precession magnons is then given by the sum of

Eq.(3.11) over all k.

Spark's original calculation was carried out for a spherical
sample, assuming spherical pores and an applied field large enough to
hold the magnetization in thé field direction even in the vicinity of
the pores where demagnetizing fields arevquite large. The details of
the calculation are not appropriate for parallel resonance in thin
films at 1-9 Gc/sec,for two reasons. (1) The inhomogeneity distribution
and geometry are not precisely known. (2) For parallel resonance at

1-9 Gefsec, H < <« 4nM. However, several of the qualitative results are
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of generél validity and are directly applicable to two-magnon scatter-
ing for resonance in thin films. The first result is immediately
evident from Eq.(3.11). Because of the S(ﬁuh—ﬁuk) term, scattering
can occur only betweenvdegenerate states with w = wk. In order for
two-ﬁagnon scattering to contribute to the linewidth, magnon states
must exist which are degenerate with uh. Because of the magnetostatic
mode modification of the spin-wave dispersion relation for thin films,
such a degeneracy is possible only for sufficiently thick films. As
discussed previously and shown in Fig.3-4, for a thick film

(D ~ 10,000 8, Case (a) in Fig.3-4) there are many magnon states
degenerate with uh (indicated by the dotted line). For extremely thin
films (D < 100 8, Case {c) in Fig.3-4) there are no magnon states
degenerate with uh and two-magnon scattering cannot contribute to the
linewidth. The thickness Dw corresponding to the dispersion of Case (b)
in Fig.3-4, (D= 1000 K) represents a critical value. For D s Dw, two~-
magnon scattering is allowed and for D <« Dw’ two-magnon scattering is
not allowed. The ability to eliminate two-magnon scattering from the
relaxation scheme by selecting films with D <« Dw will be very important

in the interpretation of the experimental data to follow in section

(3.6).

If two-magnon scattering actually does contribute to AH, some
change in the linewidth as a function of thickness should be evident
near D = Dw' For D - Dw’ where two-magnon scattering is allowed, two

factors determine whether or not a (u=-+k) process will actually occur.
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The first of these concerns the nature of the scattering centers (the
voids, pores, or other magnetic inhomogeneities). This factor is ounly
of academic interest primarily because the geometry and distribution of
these scattering inhomogeneities in thin films are not well understood.
As sheown by Sparks (1961), scattering will occur from uniform pre- |
cession magnons to degenerate magnons corresponding to spin waves with
wavelengths on the order of the dimensions of the scattering centers.
Since the degenerate magnons (corresponding to the dotted line in

Case (a) of Fig.3-4) exist for 0 < k < 105 cm_l for FMR at 1-9 Ge/sec,
the only scattering centers which can be of importance for two-magnon
scattering must be larger than about 1000 R in size. Evaporated Ni-Fe
films are known to contain a large number of imperfections (non-magnetic
inclusions, voidé, grain boundaries, dislocations) so that some inhomo-

geneities greater than 1000 R in size are certain to exist.

The density of‘magnon states degenerate with uh is the other factor
which determines whether or not a (u -»k) process will actually occur.
It is this density which can}provide a qualitative prediction of the
linewidth thickness dependence based on two-magnon scattering. Since
two-magnon scattering is possible between the uniform mode.and any
degenerate magnon state (assuming scattering centers with the
appropriate dimensions exist), the total relaxation rate is the sum of
the individual rates for single scattering interactions {given by TPk
in Eq.(3-4)) over all magnonlz states degenerate with “h' The

relaxation rate due to two-magnon scattering and the resultant line-
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width will be a function of the density of magnon states degenerate
with W, No quantitative calculation for the density of states
degenerate with the uniform mode for parallel resonance in thin films
has been reported (except, of course, for the point that there are no
degenerate states for D « Dw’ as discussed above). Nevertheless, a
qualitative idea of the thickness dependence of this density of states’
can be obtained by again considering the thin f£ilm dispéfsion relations
shown in Fig.3-4. The portions of the magnon manifold corresponding to
bulk material spin-wave states (i.e. for k s 2n/D) represent a high
density of states since 8 can take almost any value 0 <« 0 <« n/2. The
portions of the manifold corresponding to magnetostatic modes (i.e. for
k < 2x/D) do not even approximately correspond to continuum states. For
k < 27n/D, only discrete (w, 'l-c_) combinations (corresponding to the allowed
magnetostatic modes) are allowed and only a relatively small number of
these states are degenerate with W . As the film thickness increases
beyond Dm (for D <« Dm there are no continﬁum states degerierate with uh),
the continuum region of the manifold containing states degenerate with
the uniform mode increases, as kD = 2n/D becomes smaller. In other
words, the density of magnon states degenerate with “h is zero for

D <D, and increases with thickness for D s Dw' This dependence of
the density of states degenerate with uh should be reflected in the
linewidth~thickness dependence if two-magnon scattering is important.v
For D < D, the linewidth should be independent of thickness

(assugigg none of the other processes contributing to AH are

thickness dependent) and should increase with thickness for
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'D > Dw'

On the basis of the above discussion, experimental linewidth data
can be used to determine whether two-magnon scattering is operative to
any large extent. The first step is to positively identify (or elimi-
natej a two-magnon scattering process in the FMR relaxation scheme for
parallel resonance in thin films. 1In this regard, progress has already
been made, as previously discussed, but some of the results are
contradictory. Goser (1965b) has reported that AH is independent of D
(which indicates that no two-magnon process is operative). On the other
" hand, Callen (1958), Comly and Penney (1963), Soohoo (1964), and
Berteaud and Pascard (1965) have observed a linear increase in line-
width with thickness for parallel resonance in 80-20 Ni-Fe films at
9 Gec/sec a&d thickness from 500 to 6000 & (consistent with two-magnon
scattering). In addition, Berteaud and Pascard (1965) have measured
linewidths on the same samples for resonance with the applied field
perpendicular to the film plane. For this field orientation uh falls
at the k = 0 extrapolation of the bottom of the spin-wave manifold of
Fig.3-4, where there are no degenerate magnon states for any thickness
so that two-magnon scattering is eliminated for all thickness values.
Consequently, the perpendicular resonance linewidth would be expected
to be independent of thickness, which is exactly what Berteaud and
PascardvobServeda Except for Goser's data, all of the experimental work
which has been reported support the two-magnon scattering hypothesis.

The crucial test would lie in the experimental observation of the
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critical thickness effect for parallel resonance; AH should be indepen-
dent of thickness for D « Dw and increase with thickness for D s Dw'

.As can be seen from the dispersion relations in Fig.3-4, D, can be
estimated by solving for kw’ the value of k for which 6 = 0 and

o = since D = Zﬁ/kw. The bulk dispersion relation (Eq.3-10)) can
be used for this calculation and Dw will be obtained as a function of
uniform mode excitation frequency. LIf the critical thickness effect
can be observed experimentally and empirical Dw values extracted from
the linewidth data, the dependence of Dw on r-f excitation frequency
will provide a crucial test of the two-magnon scattering hypothesis.

The experimental results will be discussed in section (3.4) concerning

the room-temperature linewidth data.

3.4 TEMPERATURE DEPENDENT REILAXATION PROCESSES

The two-magnon process discussed in the last section has no
significant temperature dependence for FMR at room temperature and
below because of the high Curie temperatures for Ni-Fe alloys (from
about 350°C for 100% Ni to about 750°C for 100% Fe). The data, however,
indicate that the thin fiim linewidth does exhibit a significant
temperature dependence. In preparation for a discussion of these data,
it is important.to discuss several processes which appear to be
relevant. The major portion of this section will be concerned with
eddy-current losses. If important, these losses should result in a

linewidth contribution which has a temperature dependence related to
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the temperature dependence of the conductivity of the sample. For NinFe
alloys, this conductivity increases with decreasing temperature from
about 16ﬁQ-cm at 300%K to 9nQ-cm at 770K and then levels off. The
linewidth data indicate'that, in addition to eddy currents, another
proceés may be important. 1In some cases, the linewidth shows a peak as
a function of temperature. Several processes which are well known in
connection with relaxation in insulating ferromagnets and which predict
a linewidth temperature dependence similar to the present data will be

considered briefly.

In FMR, as in wall motion, eddy-current losses simply denote the
joule heating of the system by the eddy currents which are generated
because of the méghetization motion. An understanding of the eddy-
current contribution to the linewidth will be important in the discus-~
sion of the data, to follow in section (3.6). Two previous investiga-
tions, an order of magnitude calculation by Smith (1963) and an experi-
mental study by Goser (1965a,b), will be discussed briefly and the

results of a very recent calculation by Schlomann (1967) will be

presented.

Smith (1963) calculated that the linewidth in thin films due to
eddy curreants should vary linearly with conductivity and frequency, and
quadratically with £ilm thickness. He predicted that the eddy-curreng
contribution to the linewidth would be comparable to the relaxation loss

contribution for D~ 3,000 £. On the other hand, Goser (1965a,b) has
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observed FMR in thin films 200 K, to 150,000 & thick and reported no
change in linewidth. He concluded that eddy currents do not influence
the linewidth for any thickness. Smith assumed that the r-f field was
uniform throughout the film sample even though the on-resonance skin
depth is on the order of 1000 R (to be discussed shbrtly). He also
assumed that the magnetization precession cone consisted of a flat
ellipse with ﬁtessentially in the film plane, which is justified at
1 Gc/sec where the eccentficity of the elliptical precession cone is
almost umity but is not valid at higher frequencies. At 9 Ge/sec, for
example, the ratio mx/my is greater than.1/3. On the other hand, the
linewidths-repofted by Goser are an order of magnitude greater than
previous measurements on Ni~Fe films (Smith, 1958; Nelson, 1964). His
méasurements were carried out for films which were electrolytically
deposited on brass tubes, quite a different situation from vacuum
deposited films on glass substrates. Various additives in the
electrolyte for the electro-deposition of Ni~Fe films are necessary to
obtain good films (uniform composition, low dispersion, low coercive
force) as reported by Luborsky (1966) and these additives may well
result in line broadening. 1In any case, Goser's linewidths are an
order of magnitude greater than reported in the literature for vacuum
deposited films on glass. Neither Smith's predictions or Goser's data,
therefore, can be used to obtain any general definitive conclusions

concerning the eddy-current linewidth for thin films.
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Schlomann (1967) has calculated the eddy-current loss contribution
to the linewidth without invoking the assumptions which limited the
validity of Smith's earlier treatment. He considers the situation in
which the thin film forms part of the side wall of a microwave cavity
or transmission line (such as a ground plane of a stripline). The
microwave excitation field and the static magnetic field were taken to
be orthogonal and in the plane of the film. The extent to which the
electromagnetic field penetrates the £ilm (the skin depth B) depends
upon the applied field strength; since the microwave permeability n
goes through a maximum at resonance (0 « u’%). Off resonance, the
penetration depth is larger than near resonance. The absorption is
therefore reduced near resonance (less of the film feels the microwave
excitation) and the net effect is a broadening of the absorption line.
For film thicknéss such that D is always much less than the skin depth

5, eddy-current broadening is not important. For D < < O, then, the

2
1inewidth is determined almost completely by relaxation losses and the
absorption curve is Lorentzian, as predicted from the phenomenological
formulation of relaxation losses in section (3.2). When the film
thickness approaches or becomes greater than the on-resonance skin
depth, the absorption curve is broadened and is no longer Lorentzian.
The influence of film thickness on the shape and width of the FMR
absorétion curve was obtained, in Schlomann's calculation, by

simultaneously solving Maxwell's equations with the proper boundary

conditions and the Landau-Lifshitz equation of motion for the magneti-
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zation. Once the solutions for the electromagnetic modes of the
system were obtained, the absorption curve was extracted as the
imaginary part of the frequency for the solution which corresponds to
the uniform mode in the limit D=0 (in this limit, the r-f field is

uniform through the film so that the uniform mode criteria are

rigorously satisfied).

The algebraic details of the calculation are not of direct
interest here but the results will be important in the discussion to

follow in section (3.6). Schlomann obtains an absorption curve of the

form:

Im(w) = {p sinh(dp) - q sin(dq)}/{cosh(dp) - cos(dq)} (3.12)
where

p = {(f2+1)'%' + (f2+l)'l}%,

qa = ((EE - EphE,

d = p/D_,

f = 2(H—Hres)[AHo;

Here Hres is the field for resonance, AHO is the linewidth in the

D = 0 limit (no eddy-curreant losses), and D0 is a characteristic thick~
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ness given by

D0 = (c/2) @nowl) t

with- -&
U = (lmM/AHO) 1+ l:l + (Zw/wM)z] :

where w = 4nYM. Since the resonance losses are proportional to Im(w),
the absorption curve is given by Im(w) as a function of applied field.
From the absorption curve, the haif-power linewidth can be determined

as the field separation of the points on the curve at half maximum.
Experimentally, a more convenient linewidth parameter for the present
purposes is the field separation for inflection points on the absorption
curve. Both are indicated as a function of normalized film thickness in
Fig.3-5. For very thin films, AH is quadratic in film thickness and the
lineshapes are Lorentzian. For thick filmé, the linewidth approaches

a constant value of about 2.4 times AHO (for the half-power linewidth).
For 80-20 Ni-Fe alloy films and resonmance at 1-9 Gc/sec, Do’¥ 1000 K.
These predictions will be discussed in more detail in conjunction with

the experimental data in section (3.6).

In section (3.6), another aspect of the data will be discussed
which is directly relevant to the present discussion of eddy-current
losses. For thick films (D~ 5000 ), the observed linewidth is

sometimes highly asymmetric. A similar asymmetry in the resonance line-
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shapes, oBserved for FMR in metal single crystals, has been associated
with the Ament and Rado (1955) exchange conductivity mechanism
(Rodbell, 1965). The Ament-Rado theory indicates that the asymmetric
broadening is a reSult of the exchange field produced by nonparallel
Spiné within the skin depth. Since exchange was neglected in
Schlomann's calculation, no asymmetry is predicted. Based on present
indications, however, it is entirely possible that exchange is important
for thick films (D s 5000 R). Both Schlomann's calculation and line-
width asymmetry will be discussed further in section (3.6). In closing
this discussion of eddy~-current losses for FMR in thin films, it is
important to repeat the point, stated earlier, that for any eddy-
current process the linewidth should exhibit a temperature dependence

related to the temperature dependence of the conductivity.

Another class of loss mechanisms give rise to a linewidth tempera-
ture dependence in which the linewidth shows a peak as a function of
temperature. Two such processes, valence exchange and slowly-relaxing

impurity, are well known in connection with linewidth data in ferrites

and garnets (Yager et al., 1955; Teale and Tweedale, 1962) which exhibit
a large maximum below lOOoK. These particular processes are of interest
because, as will be shown later, linewidth data for thin Ni-Fe films
exhibit a similar temperature dependence. It is appropriate to
summarize briefly the' aspects of these processes which are relevant to

the present results.
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Both processes depend on a coupling'between the uniform mode and
the electronic levels of the system. Valence exchange is important in
high conductivity spinel ferrites where the coupling is primarily a
combination of spin orbit coupling and crystalline electric field
interactions between Fez+ and Fe3+ ions. Impurity relaxation appears
to be important for rare earth impurities in yttrium iron garnet where
the coupling is exchange coupling between the iron lattice and the rare
earth impurity ion. A quantitative analysis yields a comtribution to
the linewidth of the form (Sparks, 1964)

M__ = cwt /(1 + e 2) - (3.13)
TP r r
where C depends on the details of the particular process. The time
constant tr has a temperature dependence

e, o eﬂAE/KT

where AE is a measure of the level splitting due to the coupling des-
cribed above (0.1 eV < AE < 0.5 eV for valence exchange; Smit, 1959,
p.235). The maximum occurs at the temperature for which we = 1. On
the basis of the above discussion, two properties of the linewidth tem-~
peratﬁre dependenée can be obtained. (1) The amplitude of the tempera-
ture dependence is constant, independent of frequency. (2) The peak in
the linewidth is expected to shift to slightly higher temperature for

increasing frequency. It has been mentioned several times previously
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that effects similar to the predictions of these theories have been
found in metal Ni-Fe alloy thin films. Several points must be kept in
mind in applying these ideas to metais. First, it is necessary to
establish the presence of the appropriate impurities or ions involved
in the temperature peak process. Second, the role of the conduction
electrons must be taken into account. The above discussion is
appropriate for electronic transitions in insulators. In metals, the
sea of conduction electrons which surrounds the relaxing ions or
impurities conceivably has an effect on the relaxation process. These

points will be considered in the discussion of the experimental results.

This section has been concerned with those processes which result
in a temperature dependent linewidth and which appear to be relevant to
the present data. Eddy-current processes have been considered in
detail and both the thickness dependence and temperature dependence of
the eddy-current linewidth have been discussed. In addition, several
processes which result in a linewidth which exhibits a maximum as a

function of temperature have been discussed briefly.

3.5 EXPERIMENTAL DETERMINATION OF THE LINEWIDTH

In this section, the experimental techniques and the instrumenta-
tion used in making the linewidth measurements will be described. This
section will be considerably more brief than the corresponding experi-
mental section in Chapter 2 on domain wall motion. The section on wall

mobility measurements represented a major part of the previous chapter
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because simiiar attempts at such measurements had proved unsuccessful.
In contrast, linewidth measurement techniques for various resonance
phenomena have become rather standard over the past decade and it is
important only to present the aspects of the technique which are

peculiar to this particular investigation.

A block diagram of the instrumentation is shown in Fig.3-6. A
microwave oscillator drives a nonresonant stripline section containing
the f£ilm. As the field is swept through resonance, the absorption
curve is obtained ﬁsing phase sensitive detection. The system can be
discussed conveniently in three parts, concerning the microwave
instrumentation, the field inétrumentation, and the phase sensitive

detection scheme.

Microwave power (about 5 mw) was supplied to the stripline from a
bank of klystron sources covering the frequency range from 0.8 Gc/sec to
9.3 Gc/sec. Frequency was measured using a transfer oscillator and a
high frequency counter. The stripline was designed to provide a good
50 () match with the input transmission line. A cross section of the
stripline is shown in Fig.3-7. The ground plané spacing and the strip-
line dimensions were chosen to provide a 50 () impedence and a microwave
excitation field uniform to better than 0.1% over the 1 cm diam film
samplé, which was placed directly under the center conductor against one
ground plane. The impedance match provides for a large excitation field

for resonance and r-f field uniformity is necessary to satisfy the
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criteria for uniform mode resonance.

The static magnetic field for resonance was applied using a
Helmholtz coil pair with a calibration coﬁstant of 53.0(+0.1) Oe/amp.
Field calibration and homogeneiﬁy measurements were accomplished using
a rotating coil gaussmeter. The homogeneity was better than 0.017%
over the film. The static field was swept using a voltage ramp
generator and a high current (20 amp) programmable power supply. The
voltage across a 0.1 () 150 watt resistor in series with the field coils
was used to sweep the field axis of the recorder used to plot the
absorption curve. A second Helmholtz pair applied the 1 k¢ modulation
field for use in the phase sensitive detection scheme. The peak-to-
peak amplitude of the modulation field was nominally 0.5 Oe, much less

than the smallest measured linewidth (3 Oe at 1 Ge/sec for D <« 1000 X),

The microwave power transmitted through the stripline was measured
using a crystal detector and the output from the crystal was fed to a
phase sensitive detector. The voltage output from the phase sensitivev
detector is proportional to the derivative of the absorption curve.

This voltage was recorded as a function of static applied field using

an X-Y recorder and a plot of the derivative of the resonance absorption
curve was obtained. The time constant on the filter for the phase
sensitive detectqr was nominally 100-30Q msec and the sweep time for

the field range covering the absorption line (nominally 5 to 50 Oe) was

on the order of 3 minutes. Absorption curves taken for smaller time
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constants and slower sweep rates were identical to those taken under
the above conditions, so that these parameters did not introduce any

significant distortion into the data.

The system shown in Fig.3-6 and described above can be seen to
satisfy three requirements which are important in the present experi-
ment. (1) The system involves few critical adjustments so that line-
width measurements can be made for a large number of films efficiently
and rapidly. (2) The system is broadband and linewidth measurements can
be made over a large frequency range. (3) The stripline section is
compact and can be easily contained in a cyrogenic system so that low
temperature linewidth measurements can be made. These points are
concerned primarily with the stripline design which was touched on
briefly in conjunction with the microwave instrumentation. The strip-
line is shown in Fig.3-8 with one ground plane removed. Several points
are evident from the figure. First, changing films is a relatively
simple operation. All that is required is the partial removal of one
ground plane. (The film seats in the square slot in the center of the
stripline in Fig.3-8.) Second, the film is mounted on a rotatable plat-
form which forms part of the stripline dielectric and the platform can
be rotated by means of an attached lever arm. Because the film samples
exhibit a uniaxial anisotropy, the field for resonance is a function of
film orientation with respect to the applied field and a mechanism to
rotate the film in situ by 90° is useful (the uniaxial anisotropy con-

stant can be measured by FMR at different film orientations). Using the
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Fig.3-8. Photograph of stripline with one ground plane removed.
A thin film is mounted in the square slot in the center of the strip-
line.
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stripline design discussed above, FMR linewidth measurements were
possible at frequencies up to 9 Gc/sec and for easy-axis orientations
from 0° to 90° with the applied field. The sensitivity of the entire
system was such that linewidth measurements could be obtained for

films thinner than 100 A.

For measurements at low temperatures, the stripline sketched in
Fig.3-7 and shown in Fig.3-8 was suspended in a double dewar cyrogenic
system. Measurements could be performed from ZOK to room temperature.
Temperature measurements were made using a calibrated carbon resistor
and a pulsed resistance bridge. For measurements between 300°K and
770K, the outer dewar was filled with liquid nitrogen and measurements
" could be made while cooling since the rate of cooling was only about
1.5°K per minute. Similarly, measurements between 4.2°K and 77°K could
be made as the system warmed up, since the warming rate after the
helium level fell below the stripline was only about 1%k per minute.

Measurements below 4.2°K were made by pumping on the liquid heliumr

The usual linewidth measurement is the width of the absorption
curve at half power (as discusséd in the introduction). As indicated
above, the instrumentation was such that the derivative of the
absorption curve was obtained as a function of static applied field.
From the data, the most convenient width measurement is the field
separation between the peaks of the absorption derivative. This width

measurement will be taken as what is meant by "linewidth" in the
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remaining portion of»this chapter. This linewidth can be converted to
the usual half-power linewidth by multiplying AH by /3, if the absorp-
tion curve is Lorentzian. TFor broader non-Lorentzian line shapes, the
correction factor is larger. The derivative peak-to-peak linewidth,
obtained using the instrumentation described imn this section, is the
parameter on which the discussion of results in the next section is
based. Experimental linewidth determinations will be presented and
diséussed in conjunction with the theoretical background developed in

‘the three previous sections.

3.6 LINEWIDTH AND REILAXATION PROCESSES

In this section linewidth data obtained using the instrumentation
described in section (3.5) are presented and discussed in terms of the
theoretical material developed in the previous three sections. Tﬁis
investigation is one of the first to obtain and interpret thin film
linewidth data over a wide range of temperature, frequency, and film
thickness, even though the conclusions.concerning physical relaxation
processes for FMR which are obtained from the present data are qualita-
tive. The details of the various physical processes which appear to
contribute to the linewidth are not developed since the primary purpose
of the present study is to obtain some indication as to what processes
are important. Such information should be extremely useful in evalu-
ating the validity of existing calculations, of which there are many,

and in guiding new (and hopefully correct) calculations. The discussion
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centers afound the three physical relaxation processes, two-magnon
scattering, eddy-current losses, and temperature-peak processes. The
phenomenological formulation of relaxation losses, two-magnon
scattering and eddy-current losses are discussed in conjunction with
the fobm—temperature data. Eddy-current losses and temperature-peak
processes are discussed further in conjunction with the low temperature

data. The results of the investigation are summarized in section (3.7).
3.6.1 Room Temperature Linewidth

Linewidth data for two hundred samples at 2 Gc/sec are shown as a
function of thickness in Fig.3-9. One striking feature of the data is
the large scatter in the measured linewidths for films which were all
evaporated under nearly identical conditions as described in Chapter 2,
section (2.4). Briefly, the films were evaporated from a melt of
80% Ni and 207 Fe using r-£ induction heating, onto glass substrates at
300°%¢ in'a moderate vacuum of 10-6 Torr, in the presence of a uniform
magnetic field in the plane of the substrate. Film thickness was
determined magnetically, using a 20-c§s hysteresis loop tracer, and
‘optically,‘utilizing the Tolansky ﬁultiple—beam interference technique
(Tolansky, 1948). Linewidth measurements were made using the technique
described in the previous section and the linewidths could be deter-
mined to better thanm 5%. The scatter evident in Fig.3-9 cannot be due

to experimental exror.
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Recéntly, Nelson (1964) has performed an extensive investigation of
the influence of anisotropy dispersion on the linewidth for thin films.
His results indicate that the quality of individual film samples is
extremely important. In order to examine the influence of anisotropy
dispersion on the scatter in the present data, measurements of the 7
magnitude dispersion of the uniaxial anisotropy were made for a number
of films with thickness between 750 X and 950 &, the range in Fig.3-9
where the largest amount of linewidth scatter is evident
5 Oe <0H < 9.5 0e). Aﬁ approximate measure of the dispersion was
obtained using a torque magnetometer (Humphrey and Johnston, 1963) and
a technique developed by Hasegawa et al. (1964). 1In Fig.3-10, A90
(a dispersion parameter which is roughly a measure of the fractional
film volume with a local Hk different from the average Hk by more than
10%) is displayed as a function of linewidth for films 750 to 950 &
thick. The correlation is quite good. Films with large anisotropy
dispersion have broad resonance linewidths. Extrapolated to A@O =0
(no anisotropy dispersion), from Fig.3~10 the zero dispersion linewidth
can be seen to correspond to about 5 QOe, which is the smallest linewidth
indicated in Fig.3-9. Itltherefore appears that the scatter in the

linewidth data of Fig.3-9 can be explained on the basis of anisotropy

dispersion.

At the start of this discussion it was emphasized that the film
samples were prepared uander nearly identical conditions. If the films

are néarly identical, except for thickness, what is the origin of the
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large linewidth fluctions and the large range of anisotropy dispersion
with which these fluctuations have been connected? No definite or
conclusive answer to this question is presently possible but several
remarks are in order. First, for a number of films in the same range
of thickness the linewidths for older films tend to be larger than the
linewidths for freshly evaporated samples. Second, for the films
corresponding to the data in Fig.3-9, small reductions in the linewidths
(™ 1 Oe) for those films with the larger linewidths could be accom-
plished by annealing the samples in a hydrogen atmosphere at 150°¢ with
a 50 Qe easy-axis field. Linewidth increases resulted from similar
treatments in air. From the first remark, it is evident that the line-
width and dispersion are related to some film aging process. From the
second, this aging process is apparently connected with oxidation-
reduction effects. These hydrogen and oxygen annealing.treatments will
be discussed in more detail in the next part, in connection with the

low temperature data.

In order to minimize the contribution of dispersion to the line-
width, samples which exhibited the smallest linewidth were selected for
each thickness. These linewidths correspond to the lower boundary of
the experimental data in Fig.3-9. This selection is analogous to the
procedure in Chapter 2 on wall motion where the upper boundary of the
mobility data was taken to represent the relaxation-loss~-limited
mobility. Both selection procedures attempt to eliminate the eontribu=

tion of film imperfections to the dynamic process under investigation.
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By virtue of the large number of films examined, the selection
procedure provided an accurate determination of the linewidth in the
ideal film limit. The remaining porfion of this section will be con-
cerned with films corresponding to the lower boundary of the data in

Fig.3-9, the so-called minimum linewidth samples.

As discussed in section (3.2), a phenomenological formulation
based on the Landau-Lifshitz or Gilbert equation can be applied to FMR

and the damping parameter can be obtained from
AH = QAH)O-+ 2aw/Y) (1//3). (3.14)

The (1//3) factor is due to the fact that the data yield derivative

linewidths and not half-power linewidths. Linewidth measurements have
been made for the minimum linewidth samples as a function of frequency
from 1 to 9 Ge/sec. Data for a 280 A film are shown in Fig.3-11. The

linewidth increases linearly with frequency and extrapolates to =~ 1l Oe

for zero frequency. This frequency dependence is in good agreement
with Eq.(3.1). Similar data have been obtained for all of the minimum
linewidth samples corresponding to the lower boundary of the data in
Fig.3-9. By fitting the data to Eq.(3.1), the damping parameter O was
evaluated as a function of film thickness and the results of this
evaluation are shown in Fig.3-12. The phenomenological damping parame=
ter for ferromagnetic resonance with the static magnetic field in the
plane of the film increases linearly with film thickness from 0.005 at

250 R to 0.009 at 2500 £. 1t should be emphasized that these numerical
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values for & (resonance) are significantly lower than the value for wall
motion, @ = 0.01l4. Moreover, & (resonance) exhibits a definite increase
with thickness while @ (wall motion) in independent of thickness. (See
Chapter 2.) Therefore, the physical relaxation processes involved in
wall motion are not identical with those which are important for FMR

relaxation.

The minimum linewidth data indicate that the losses for FMR in
thin films increase with thickness. This conclusion is apparent from
the minimum linewidth data in Fig.3-9 and the thickness dependence of
the phenomenological damping parameter extracted from the frequency
dependence of the data (Fig.3-12). Two-magnon scattering and eddy~
current losses are physical loss processes which correspond qualita=-
tively to this behaviour. Both mechanisms predict apn increase in the

resonance losses with thickness.

The minimum linewidth data of Fig.3-9 is not in agreement with the
quantitative predictions of Schldmann's eddy-current calculation. For
FMR at 2 Ge/sec in 80-20 Ni-Fe films with a resistivity of 16 pQ-cm
(corresponding to a conductivity of 0.45 x 1017 sec—l), the transition
thickness D,g in Schldmann's caleculation of section (3.4) is 800 k.
From Fig.3-9, the zero thickness linewidth AHO is 5 Oe. From these
paramcters and Schlomann's linewidth.vs thickness curve in Fig.3-5, fhe

linewidth is expected to exhibit a peak at about 2600 £ film thickness

and level off at about 6.25 Oe for thicker films. The lower boundary
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of the linewidth data increases monotonically from 5 Qe at 800 X to a
value greater than 11 Qe at 3000 8, in complete contradiction with the
behaviour expected on the basis of eddy-current losses. Eddy-current

losses clearly cannot explain the present data.

A more reasonable explanation of the data is based on two-magnon
scattering, which was discussed. in detail in section (3.3). Two-magnon
scattering is a process in which a uniform mode magnon at frequency uh
scatters into another magnon at the same frequency but with k # 0. For
film thickness less than some frequency dependent critical value D s
magnons with k # 0 at uh do not exist and two-magnon scattering is not
allowed. For thicker films, the density of magnon states degenerate
with the uniform mode increases with thickness and approaches the bulk
limit for extremely thick films (D > 6000 ). On the basis of two-
magnon scattering, the linewidth should be independent of f£ilm thickness
for D < D, and increase monotonically with thickness for
D, <D < 5000 R. For thicker £ilms, the linewidth should be indepen-

dent of film thickness.

As can be seen from Fig.3-9 the thickness dependence of the
minimum linewidth data is qualitatively consistent with the dependence
predicted by two-magnon scattering., To further investigate this
point, linewidth data for the minimum linewidth samples were obtained
at frequencies from 1 to 7 Gc/sec. These data are shown in Fig.3-13.

As indicated by the solid lines, the linewidth is independent of thick-
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ness for D less than some critical thickness and increases with thick-
ness for thicker films. The critical thickness is clearly frequency
dependent and shifts to smaller valués for increasing frequency. The
theoretical critical thickness Dw can be calculated from the spin-wave
dispersion relation for thin films, as discussed in section (3.3), and
compared with the experimental values corresponding to the break points
in the data of Fig.3-13. This comparison is shown in Fig.3-14. The
theoretical and experimental values of the critical thickness are dis-~
played as a function of frequency. The agreement between the break-
points for the minimum linewidth data and the predictions based on two-

magnon scattering is quite good.

Scattering will occur from uniform precession magnons to degenerate
magnons corresponding to spin waves with wavelengths on the order of the
dimensions of scattering centers. The only scattering centers which can
be of importance for two-magnon scattering must be larger than about
1000 & in size. Berteaud and Pascard (1965) have proposed that the
edges of the film serve as scattering centers for two-magnon scattering,
in much the same way that surface pits are scattering centers for FMR
in YIG spheres. This proposal has been tested in a very straightforward
manner by selecting a film thickness and a frequency where two-magnon
scattering gives a large contribution to the linewidth, and scratching
through the film with a diamond scribe to increase the effective edge
leagth in the sample. The results of such an experimeat are shown in

Fig.3-15. By scratching through a 1600 £ film with a diamond scribe,
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the effective edge length was increased by 600% with only a 15% increase
in the linewidth at 2 Gc/sec. Therefore the two-magnon process con-
nected with the linewidth thickness dependence is not associated with
inhomogeneous scattering at the film edges. 1If edge scattering is not
important, as these results indicate, the inhomogeneities which are
responsible for the scattering are not understood. The obvious film
inhomogeneities (such as surface irregularities, crystallites, grain
boundaries, and dislocations) are all much smaller than required for a
large scattering amplitude. However; the density of these inhomogene-
ities is é#tremely high in polycrystalline, evaporated films, and it is
entirély possible that the total scattering amplitude is large, in
spite of the small brobability for a single interaction. In any case,
the important point to be made here is that the nature of the inhomo-
geneities responsible for two-magnon scattering is not completely

understood.

It would be misleading to close this discussion of the room temper-
ature data without noting that: (1) the theoretical basis for two-
magnon scattering is not as sound as indicated by Fig.3-14, and (2) it
appears, én the basis of preliminary data, that two-magnon scattering is
not the only contribution to the linewidth thickness dependence.’
Although the evidence for two-magnon scattering is extremely convincing,
several minor difficulties still exist. The evidence consists primarily
of the good agreement between the calculated critical thickness values

and the observed break points in the thickness dependence of the
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minimum linewidth data. The theoretical Dw values were calculated on
the basis of a very crude model. Recently, Harte (1964) has calculated
a modified spin-wave manifold f&r thin films which could form the basis
for a precise density-of-states calculation for degenerate two-magnon
scattering. Qualitatively, Harte's results indicate that the theoreti~-
cal D , values should be lower than indicated by the theoretical curve
in Fig.3-13 and that the transition‘should be considerably less sharp
than indicated by the solid lines in Fig.3-13. Both of these points
are supborted by the present data. The Dw data indicate that the
transition is lower than shown by the theoretical curve (Fig.3-14).

The minimum linewidth data show that the transition from no thickness

dependence to a monotonic increase with thickness is not sharp.

Preliminary data indicate that the linewidth does not continue to
increase with thickness for films thicker than 6000 K but levels off
»and is essentially constant. These results are consistent with two-
magnon scattering, except that the lineshapes are sometimes asymmetric.
Such asymmetry is characteristic of lineshapes for FMR in bulk single
crystal iron whiskers and nickel platelets which have been successfully
correlated with the Ament-Rado (1955) exchange conductivity mechanism .
(Rodbell, 1965). 1In other words, eddy-current effects appear to be
important for extremely thick films. Exchange-conductivity will be
discussed further in the next part. While the present data clearly
constitute sound evidence for the importance of a two-magnon relaxation

process for FMR in thin films, other processes also appear to be impor-
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tant.
3.6.2 Linewidth Temperature Dependence

By measuring the linewidth as a function of frequency for different
temperatures, the temperature dependence of the damping parameter O can
be obtained. In Fig.3-16, linewidth data as a function of frequency
are shown at 300°K, 77°K, andv4.2°K. At all frequencies, the linewidth
is larger at 77°K thaun at the two extremes. The data in Fig.3-15 are .
typical of films from 150 R to 3000 & thick. The linewidth increase at
77°K was generally larger in thinner films, but in all cases the slope
of the linewidth vs frequency curve was nearly Cemperature independent.
Since O ié proportional to the slope of the data (Eq.(3.1)), it appears
that the @amping is extremely insensitive to temperature between 4.29&
an33000K.even though the linewidth exhibits a definite temperature

dependence.

These data indicated that the linewidth exhibits a significant
temperature dependepce which is not reflected in the damping parameter
of Eq.(3.1). 1In order to obtain a mere accurate picture of this depen-~
dence, the linewidth for a 150 8 film was obtained as a function of
temparature frem 4.2% to room temperdture, at 2, 4, 'ana 6 Gefsse,

These. data are shown in Fig.3-17. Linewidth data at 2 Gc/sec could not
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be obtained below 70°K." For the other two frequencies, the linewidth
exhibits a maximum in the vicinity ofISOOK. For all frequencies, the
linewidth is almost independent of temperature down to about 1500K,
increases rapidly below 150°K to 2 maximum in the vicinity of 800K,

and decreases again for lower temperatures. It should be noted that the
amplitude of the linewidth peak is almost constant, independent of
frequency. Also, the temperature at which the maximum occurs appears

to shift to slightly higher temperature with increasing frequency.

These two features are characteristic of the linewidth temperature
dependence predicted by two well known temperature peak-processes,

valence exchange and impurity relaxation, discussed in section (3.4).

Before considering temperature-peak processes, however, it is
important to dismiss eddy-current losses as a possible explanation of

these data. From Schlomann's calculation of the eddy-current losses for

FMR, in the situation where the film thickness is much less than the
skin depth, the resonance linewidth due to eddy-current losses is
linearly proportional to the frequency and film conductivity, and is

quadratic in film thickness. None of these dependences are consistent

* The disappearance of the 2 Ge/sec resonance below 70°K may be
associated with the anomalous increase in the anisotropy field at low
temperatures reported by Mitchel and Briscoe (1966). Hawever, the
anisotropy increase should shift the hard-direction resonance to higher
field and it should still be observable. Both the easy- and hard-direc-
tion resonances disappeared off the low end of the field sweep at
temperatures below 70 K. ’
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with the present data. If the temperature dependence were due to eddy-
current losses, the linewidth change between two fixed temperatures
should increase with frequency. In addition, if eddy-current losses
‘were important, the linewidth vs temperature curve should have the same
shape as the conductivity vs temperature curve, which is inversely
proportional to temperature down to about 100°K- and levels off for lower
temperature. The conductivity does not exhibit a maximum as a function
of temperature as do the present data. Finally, the change in line-
width with temperature should be larger for thicker films, not smaller.
These data substantiate the conclusion obtained from the room tempera-
ture data. Eddy-current losses do not contribute significantly to the

linewidth for thin films thinner than about 3000 R.

The linewidth temperature dependence of Fig.3-16 is quite similar
to that predicted by valence exchange and slowly relaxing impurity
processes. Several difficulties occur in applying either of these two
theories to the present data. 1If an impurity-relaxation mechanism is
to be taken seriously, a quantitative understanding of the contribution
of specific impurities to the peak in linewidth is required. 1In
previous applications of this process to relaxation in ferromagnetic
insulators, the only relevant impurities (in the theoretical treat-
ments) have been rare earth ions. The presence of rare earth impurity
ions in the proper crystalline enviromnment to make an impurity-relaxa-
tion process possible appears to be highly unlikely. Admittedly,

evaporated Ni-Fe alloy films are very imperfect and dirty structures,
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containing many foreign substances. In order to make any conclusive
connection between the present data and a slowly relaxing impurity
process, it will be necessary to isolate the relevant impurities and
determine their role in the relaxation. On the other haund, an explana-~
tion based on valence exchange must provide for the formation of the
appropriate ionms in the proper crystalline eunvironment for charge
transfer to occur. In addition to these problems, possible modifica=-
tions of the theory for the various temperature-peak processes due to
the presence of conduction electrons must be considered. It is one
thing to passively call attention to the éimilarity between the present
linewidth data and the linewidth predictions based on known temperature-
peak processes and it is quite another to substantiate quantitatively
any connection between the two. To do so would involve a much better
knowledge of the film properties which influence the temperature depen-

dence of the linewidth than is now available.

A starting point in obtaining a better understanding of the specif-
ic film properties which influence the temperature-peak effect is with
the observation that the effect is larger for thinner films. Another
influential factor is the age of the film. A larger increase in from
300°K to 77OK occurs in old films (several years) than in freshly
evaporated samples. These two observations indicate that some form of
surface contamination may be connected with the linewidth behaviour,

such as oxidation or diffusion of impurities through the film surface.

For this reason, the influence of two annealing treatments on the line-
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width change from 300 K to 77 K QSH77°K - AH3000K) was investigated.
The initial objective was to attempt to control the contamination in
such a way that some understanding of the process could be obtained

from the annealing data.

‘The first annealing treatment consisted of simply heating the film
to 150°C in a poor vacuum of 10“3 Torr, with an applied field of 50 Oe
in the plane of the film along the easy axis. It was hoped that this
vacuum annedling procedure would slow the contamination sufficiently,
compared to annealing at atmospheric pressure, so that the increase of

(&H - AH3000K) could be observed at progressive stages of the pro-

770K
cess. If the linewidth enhancement were due simply to volume diffusion
through the film surface, from a simple analysis of diffusion through a
plane surface of fixed impurity concentration, one would expect the

time required for the enhancement to saturate to vary as the square of
the film thickness. In Fig.3-18, the linewidths at 77°K and 300°K are
shown as a function of annealing time for f£ilms 190, 290, and 1350 R
thick. The enhancement in the 77°K linewidth above the room temperature
value is greatest for the thinnest sample, but the saturation time for
the enhancement is about 80 hours for all three films. The saturation
time is clearly not quadratic in thickness. The change in linewidth in
going from 300°K to 770K is enhanced by vacuum annealing but the
enhancement is not the result of a volume diffusion process. If the

enhancement is due to contamination, a surface effect, not a volume

effect, must be important.
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The second annealing procedure which has been investigated could be
better termed an oxidation-reduction treatment. The f£ilm was heated to
about 150°C in a hydrogen atmosphere (reduction) or in air (oxidation)
with an applied field of 50 Oe along the easy axis. In Fig.3-19, the
linewidths at 77°K and room temperature are shown after successive
oxidation and reduction treatments. The first oxidation treatment for

12 hours increased AH77OK by over 2.0 Oe and had a much smaller

influence on AH Next the f£ilm was reduced for 10 hours. After

300°K"°

this treatment, AHBOOOK and AH77°K

than the initial room temperature linewidth. Heating the film in a

were equal and almost 0.5 Qe lower

hydrogen atmosphere at 1500C for 10 hours, therefore, made the FMR
linewidth independent of temperature and the temperature-peak effect was
completely eliminated. As shown in the figure, repeated oxidation and
reduction treatments produced the same result. Oxidation reproducibly
enhanced the linewidth change from 300°%k to 77°K and reduction made the
effect vanish. The ease with which the linewidth enhancement can be
accomplished and removed by alternate oxidation and reduction at low
temperatures indicates that a surface effect is involved, consistent
with the conclusions based on vacuum annealing. These data clearly
indicate that the contamination process which causes the temperature-
peak in the linewidth data reported hére is associated with a surface

layer, presumably an oxide layer.

Two possible mechanisms are suggested by the apparent importance of

surface oxidation in producing the linewidth maximum as a function of
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2+ +
temperature. Valence exchange, or the Fe - Fe3 charge transfer

mechanism, as discussed previously, is known to be an important relaxa-
tion process in high conductivity spinel ferrites which contain both
Fe2+ and Fe3+ ions on a single type of crystalline site. In Ni-Fe alloy
films, surface oxidation may well result in a similar situation. More-
over, if the relevant ions do result from the surface oxide layer, the
conduction electrons in the bulk of the metal film may have little
effect on the charge transfer relaxation. An alternate explanation of
the present temperature-peak data may be connected with an effect

which has not been mentioned heretofore and which, up to the present,
has been in no way associated with resonance relaxation—exchange
anisotropy. The motivation for making such an association here is two-
fold. First, the oxidation-reduction treatments discussed above are
very similar to the treatments discussed by Hagedorn (1967) in conjunc-
tion with his observation of anomalous hysteresis loops in Ni-Fe alloy
films at low temperatures. Hagedorn proposed the formation of an
antiferromagnetic oxide on the f£ilm surface and attributed the. loop
behaviour to exchange anisotropy. Second, in several alloy systems, a
maximum in the rotational hysteresis loss as a function of temperature
is observed below 100°K which has also been connected with exchange
anisotropy (Kouvel and Graham, 1959). The rotational hystere;is loss
for the Fe-FeO system also exhibits a rapid increase below 120°%K
(Meiklejohn, 1958), similar to the increase in linewidth in Fig.3-15.
However, complete data at low temperatures are not available to show

whether there is a peék. It is entirely possible that exchange
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anisotropy may also be connected with the linewidth data reported here.
It should be emphasized that this discussion of the possible importance
ofkthese two processes for ferromagnétic relaxation in metal films is
only qualitative. The most important results of the present tempera-
ture study are: (1) the discovery of a temperature dependent linewidth
in thin films which exhibits a maximum in the vicinity of 80°K and

(2) the identification of this dependence with a surface oxidation

process.
3.7 SUMMARY

In this chapter, the results éf an extensive investigation of
ferromagnetic resonance linewidths and relaxation processes in thin
Ni-Fe films have been presented. The experimental results are pre-
-sented and discussed in terms of the previous theoretical development.
It has been found that dispersion in the uniaxial anisotropy
has a considerable influence on the thin film linewidth. This disper-
sion contribution was minimized by simply selecting films in each
thickness range which exhibited the smallest linewidth. For these
minimum linewidth samples, the phenomenclogical damping parameter for
resonance at 300°K increased with thickness, from about 0.005 at 400 R
to 0.009 at 2500 K, in contrast with the damping for wall motion which
was a constant (0.014) independent of thickness. The linewidth for the
minimum linewidth samples exhibits a very definite thickness dependence,
For film thicknéss less than a frequency dependent critical thickness

D AH is independent of thickness. For thicker films, AH increases
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linearly with thickness. The observed D, values (about 1000 K) are in
good agrcement with predictions based on magnon scattering involving
spin waves degenerate with the uniform mode. Because of the magneto-
static mode modification of the spin-wave dispersion relation for thin
films there are very few spin waﬁe states degenerate with the uniform
mode for D <« Dw and maghon scatte?ing cannot contribute significantly
to the linewidth. The present data indicate that two-magnon scattering
is important. Moreover, eddy~-current losses cannot explain the
observed room temperature linewidth data for D < 3000 8. Preliminary
evidence does indicate that eddyQCurrent effects may be important for

thicker films.

While the room temperature data provided some conclusions concern-
ing relaxation mechanisms which had been previously proposed in
connection with FMR in thin films, the low temperature data has provided
some entirely new information concerning thin film resonance relaxation.
The damping parameter extracted from the linewidth temperature depen-
dence does not have any significant temperature dependence. The line-
width, however, does exhibit a distinctive and unexpected temperature
dependencé. The linewidth exhibits a maximum in the vicinity of 80°K
and the effect is generally larger in thinner films. The amplitude of
the linewidth temperature dependence is independent of frequency and the
maximum shifts to slightly higher temperatures with increasing
frequency. The amplitude can be enhanced by heatiﬁg the film at 150°C

in air (oxidation) and removed by a similar treatment in hydrogen
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(reduction). The enhancement removal cycle can be repeated reproducibly.
The time required for saturation of the enhancement when the oxidation
treatment was performed in a poor vaéuum of 10"3 Torr was observed to
be independent of film thickness, indicating that a volume diffusion
process is not involved. The apparent importance of surface oxidation
suggests two possibie mechanisms, valence exchange and exchange anisot-
ropy, which may ‘contribute to the linewidth temperature dependence.
‘The relevant aspects of these processes are discussed. The discovery
of a temperature dependent linewidth in thin films which exhibits a
maximum in the vicinity of 80°k and the identification of this depen-
dence with a Suyface ﬁxidation process are the primary results of this

low temperature study.
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Chapter 4. WALL MOTION AND FERROMAGNETIC RESONANCE - A CONNECTION

From the phenomenological formulation of the losses for wall motion
and FMR presented in thevprevious two chapters, it would appear that -the
correlation between the two processes is extremely poor. Damping param-
eters at room temperature for the two processes are shown as a function
of film thickness in Fig.4-l. For wall motion, the damping parametér is
a constant, independent of film thickness. For resonance, the damping
is a linear function of thickness and is significantly smaller than the
wall motion damping parameter. 1In spite of this apparent lack of corre-~
lation, at least some of the losses which contribute to the FMR line-
width also influence the domain wall mobilit§. The correlation is only
qualitative and in no sense can be taken to imply that the total relaxa-
tion process is the same for both phenomena. .The fact that the phenomeno-
logical approach givés different results for wall motion and FMR is
dramatic éroof that the losses are not didentical. Some, but not all, of

the relevant relaxation processes contribute to both phenomena.

The basis for the present correlation is the temperature dependence
of the FMR linewidth. As discussed in Chapter 3, the linewidth at 77°K
could be significantly enhanced over the room temperature value by means
of an oxidation treatment. In addition, a reduction treatment could be
used to render the linewidth temperature independent. In other words,.
a procedure was available to make the resonance losses greater at 77°K

o
than at 300 K or to make the losses at both temperatures identical. A
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clear test for a correlation between the losses for wall motion and the
losses for resonance would bevto measure the domain wall mobility for
a number of films in both categories at 300°K and 77°K. 1If there is a
correlation between the losses associated with the two phenomena, films
which exhibiﬁed a significant linewidth enhancement at 770K compared to
the room temperature value should show a reduced wall mobility at 77%
compared to the mobility at 300°K, and films for which the linewidth

did not change should have the same mobility at both temperatures.

In Chapter 2, a technique for measuring domain wall velocity in
thin films was described in detail. The technique was based on static
wall observations utilizing the Kefr magneto optic effect. Such an
optical technique is not easily adaptable to use at 77°K where the film
must be immersed in liquid nitrogen. On the other hand, a considerable
amount of information pertaining to wall motion can be obtained without
directly observing the domain walls using the Kerr effect. As shown by
Copeland and Humphrey (1963), switching data for flux reversal by domain
wall motion can be related to the wall mobility if the wall configura-
tion during flux reversal is known. If switching data is taken at
different temperatures, the ratio of the wall mobilities at the two
temperatures can be obtained directly from the data. No knowledge of the
wall configuration is necessary. A modification of this technique was
first used by Patton and Humphrey (1964) in an investigation of the
effect of hard direction fields on the Néel wall mobility in 300 2 films.

The same technique is used in the present investigation, with temperature
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as the variable instead of hard direction field.

Since the emphasis in this concluding éhapter is on the connection
between wall motion and resonance, the details of the technique used for
low temperature mobility determinations will not be discussed. Only the
generél aspects of the technique will be touched on briefly. Even
though the present description is quite brief, the successful use of it
in making low temperature mobility measurements is a significant
accomplishment, comparable to the technique described in Chapter 2 and
many of the ideas presented in the section on wall mobility measurements

in Chapter Z are directly applicable.

The apparatus for such an experiment is shown in Fig.4-2. The
small Helmholtz pair is used to apply a long duration easy-axis field
pulse which switches the film from saturation antiparallel to this field
to saturation along the field. For field amplitudes slightly larger
than the coercive force, flux reversal will occur by wall motion. As
this reversal proceeds, a voltage is induced in the pick-up coil
beneath the film, similar to the winding discussed in section (2.4). An
additional coil is conneeted in series to cancel pick-up due to the flux
change during the rise time of the field pulse. The amplitude of the
ramp function obtained by integrating the voltage pulse is proportional
to the total magnetization reversed during the switching. The switchiug
time can be conveniently defined as the 10% to 90% rise time for the

integrated pick-up voltage. As reported by Copeland and Humphrey (1963),
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plots of the inverse switching time as a function of easy-axis field
amplitude exhibit linear regions for small intervals of field amplitude
an& the slopes of these linear sectiéns are proportional to the wall
mobility. The proportionality constant involves the film geometry and
a knowledge of the wall configuration auring flux reversal which, in
general, is not known.v The ratios of slopes for switching curves taken
for a single film under slightly different conditions should correspond
to the ratio of wall mobilities for the two differeﬁt conditions, if
the wall configurations were the same in both cases. A qualitative test
for this last requirement is to compare the shapes of the unintegrated
voltage pulses for flux reversal in each case. 1If the shapes are
similar, the wall configurations in each case are also similar. By
mounting the switching apparatus of Fig.2-2 in a dewar, measurements
could be made at 77°K as well as 300°K and the mobility ratio
G(77OK)/G(3000K) could be obtained from the slopes of the two curves.
Since G(3OOOK), the mobility at room temperature, is known from the
investigation described in Chapter 2, it is a simple matter to calcu-

s/
late G(77 K).

Using the above technique, switching data at 77°k and 300°K were
obtained for a number of films which exhibited linewidth increases at
77°% over the 300°K linewidth by amounts ranging from 2 to 16 Oe

(for AH From these switching data, the ratio of the

770k~ A3p00K) *
mobility at 77°K to the mobility at BOOOK was obtained. The mobility

0 , i 3 ’ o
at 77 K was evaluated using this ratio and the room temperature mobility
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data of Chapter 2. The correlation between the chapge in losses from
300°K to 77°K for wall motion and resonance is showa in Fig.4-3. The
loéses for wall motioun are inversely proportional to the mobility so
that (l/G(77OK) - 1/G(3000K)) represents the increase in the losses
from }000K to 77°K. The lossés for resonénce are directly proportional
to the linewidth so that CAH(770K) - AH(BOOOK)) represents the increase
in the losses from-BOOOK to 77°K. The correlation between the loss
increase in the two cases is quite good. Those films which exhibit an
increase in the losses for resonance (in the form of a larger linewidth
at 77°K) also exhibit an increase in the losses for wall motion (in the

form of a reduced mobility at 770K).

It appears, then, that the physical processes which contribute to
the linewidth change also influence the domain wall mobility. In
Chapter 3, the various physicdl wmechaunisms which may contribute to the
linewidth increase were described in detail and it is not necessary to
discuss them further here. The important point to be emphasized is
that these same mechanisms, be ﬁhey valence exchange, excﬁange
anisotropy, or whatever, also appear to contribute to the losses
limiting domain wall motion. Such a result is both surprising and
satisfying. It is surprising beéause the form of the magnetization
motion for wall motion and resonance are quite different. Wall motion
is a large angle process in which a localized moving boundary (the |
wall) propagates through the film accompanied by a sequential
rotation of the magnetization by 1800. Ferromagnetic resonance, on

the other hand, represents anyextremely small but uniform precessional
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perturbation on a mégnetic system whiéh is completely saturated in the
direction of an applied static magnetic field. It is surprising that
some of the same physical relaxation mechanisms are important in both
situations. The connection between the two processes is satisfying
because it affords the possibility of understanding, in terms of
physical relaxation phenomena, the mechanisms which limit wall ﬂotion
as well as other modes of large angle flux reversal where previous

understanding has been limited to a phenomenological formulation.
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Chapter 5. SYNOPSIS

The objective of the present investigation has been three-fold:
(1) To characterize domain wall motion in thin ferromagnetié films
experimentally and to determine what film properties influence wall
mobility. (2) To investigate ferromagnetic resonance relaxation in
thin films over a wide rénge of temperature, frequency, and thickness
and to determine what physical relaxation processes contribute to the
resonance linewidth. (3) To correlate, as far as possible, the losses

for wall motion with relaxation processes for ferromagnetic resonance.

The domain wall mobility for Ni-Fe alloy films has been measured
~over a wide range of film thickness (300 to 1600 8). The velocity mea-
surements were made using a qﬁasistatic technique successfully for
the first time. The mobility determinations have been interpreted on
the basis of theoretical eddy-current loss calculations and a phenome-
nological formulation of relaxation losses, utilizing available statiﬁ_
wall shape information for domain walls in thin films. It has been
found that the eddy-current losses associated with wall motion are too
small to explain the observed wall mobilities and that only relaxation
losses are important. Furthermore, it.has been found that the mobility
data can be explained on the basis of static wall shape information and
a conétant value of the damping parameter in the phenomenological
equation of motion. ‘Moving domain walls have very nearly the same

magnetization distribution as stationary walls. The present results
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also indicate that the crossties and Bloch lines associated with domain.
walls in thin films have a negligible influence on the wéll mobility.
The initial results of this study indicated that Bloch walls in films
are much wider than expected on the basis of simple calculations. This
indication has been counfirmed experimentally and correlated to the

mobility data.

Ferromagnetic resonance linewidth data have been obtained in thin
films over a wide range of temperature (4.2 - 300°K), frequency
(L - 9 Gec/sec), and thickness (100 to 3000 X). The linewidth has been
successfully correlated with anisotropy disperéion in thin films.
ireated phenomenologically, the linewidths are best described in terms
of a damping parameter which increases with film thickness and is tem~
perature independent. From the thickness and~temperature dependence of
the linewidth, it appears that eddy currents do not contribute to the
losses for resonance, for films less than several thousand angstroms
thick. The present data indicate the importance of two-magnon Scatter-
ing in resonance relaxation. Several features of the linewidth (hick-
ness dependence are explained remarkably well on the basis of such
scattering.' For thicker films, eddy-current effects appear to be
important. For a large number of films; the linmewidth exhibits 8 peak
as a function of temperature at about 80K and the effect is larger fqr
thicker films. Annealing ekperiments indicate that the temperature
dependence is connected with the formation of an oxide layer on the

film surface. Two possible mechanisms for this dependence are proposed,
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valence-exchange and exchange anisotropy. The most important results of
this resonance study are (1) the extensive amount of experimental line-
width data which are now available, aﬁd (2) the conclusions concerning
the importance of two-magnon scattering, eddy-current losses, and

temperature peak processes in resonance relaxation.

In addition to these two parallel but separate investigations of
wall motion and resonance phenomena, an attempt has been made to connect
the relaxation mechanisms for the two processes. An experiment has been
devised to correlate the temperature dependence of the resonance line-
width with the temperature dependence of the wall mobility. Films which
exhibit an increase in the losses for resonance from 300K to 77°K also
exhibit an increase in the losses for wall motion. The temperature-peak
process  connected with resonance relaxation is involved in the losses
tor domain wall motion as well. This connection between the two pro-
cesses affords the possibility of understanding large angle flux
reversal in terms of the physical relaxation mechanisms for ferro-
magnetic resonance where previous efforts have been limited to & phenom-

enological characterization.
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APPENDIX

Solution for Jx: It is necessary to solve Eq.(2.17a) subject

to two boundary conditions, one given by (aJx/ay) = h(x),

film surfaces

and the other that Jx vanishes at x = + . Since the range of the
variable is * » and the function vanishes at these limits, one can
make use of Fourier transforms. Taking the Fourier transform of

Eq.(2.17a) with respect to x, one obtains
2= 2 2
oI Cy /ey - ¢TI (C,y) = 0. @.1)
Eq.(A.1) has a solution of the form
T =A™+ e, ~ @.2)

where A(C) and B({) are arbitrary functions of (.

Applying the above boundary condition, and solving for A({) and

B(C), one obtains

AQ) = 1(C) (e*P-1)/2Cs1nh (CD) @.3)

and

B(C) = n(C) (e *P-1)/2Cs1inn (CD), A.4)
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where : . + o

K(Q) =/h(x')ei€x'dx'.

- o0

Eq.(2.18a) is obtained by taking the inverse transform of EX(C,y).

Solution for Jy: It is necessary to solve Eq.(2.17b) subject to
the boundary conditions that Ey vanishes at y = 0, y =D, and x = + .
A common technique of solving icnhomogeneous partial differential
equations is to obtain the Green's function which satisfies the

equation
@*apxt) + P*QRYY) = d(x-x") 4.5)

subject to the given boundary conditions.

The solution is

:E:: 2 2. -nmx'
Qx,x',y) = -(2D/n ﬂz)e nx /Demrx/D sin(any/D) for x < x'

odd n (A.6)
- D
- 2 2 nmx'/p "0/ _
Q@x,x',y) = E -2D/n " )e e sin{nny/D) for x 5 x'.
odd n
Consequently, one obtains the solution to Eq.(2.17b).
-+ (2]
Jy(x,y> =.j/”f(X')Q(x,X',y)dX‘o ~ Aa.7)

- O

Eq.(2.18b) is obtained by substituting Eq.(A.6) into Eq.(A.7).
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