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Abstract

This thesis considers three issues relevant to multicandidate competition in plural-
ity rule elections — entry decisions by candidates, strategic voting, and informational
concerns.

In the first chapter, we consider a model of spatial competition with entry intro-
duced by Palfrey (1984). In the model, there are two dominant candidates and a
potential entrant. The established candidates choose positions first, anticipating the
entry decision of the third candidate. In the resulting equilibrium, this threat of entry
forces the established parties to adopt spatially separated “moderate” positions. We
develop a general model that applies to the complex institutional features of mod-
ern elections. Specifically, we introduce the winner-take-all aspects of the Electoral
College and show how these characteristics make a difference in the equilibrium pre-
dictions of the model. We find that, in one case at least, increasing diversity in the
electorate causes the established candidates to initially shift toward more moderate
positions and then back toward more extreme positions.

The second chapter examines strategic voting and Duverger’s Law. A voter whose
favorite candidate has no hope of victory may choose to avoid a “wasted vote” by
settling for a less preferred candidate with a higher chance of winning. This behav-
ior erodes the electoral support of minor candidates and results in Duverger’s Law:
“plurality rule elections favor two party competition.” Palfrey (1989) constructs an
incomplete information game among voters and shows that as the size of the elec-
torate gets large, the support for the least popular candidate vanishes. We show that
there exist equilibria in this model in which all three candidates receive votes under
plurality rule, in violation of Duverger’s Law, as suggested by Myerson and Weber

(1993). However, we proceed to demonstrate that these equilibria are unstable and
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any uncertainty by voters leads voters back toward Duvergerian equilibria. In ad-
dition, we develop a dynamic model of pre-election polls that describes how voters
react to changing information about the viability of the candidates and show that
this process leads voters to coordinate on a Duvergerian outcome. Thus, we not only
reestablish Duverger’s Law, we also describe how voters can use pre-election polls to
coordinate on a particular pair of competitive candidates.

In the third chapter we analyze the relationship between voter information and
election outcomes in a multicandidate setting. We extend a model originally devel-
oped by McKelvey and Ordeshook for two candidate elections to the multicandidate
case. In the model, voters are either informed or uninformed about the exact posi-
tions of the candidates. The uninformed voters, however, are able to make plausible
inferences about these positions based on the vote share each candidate receives. In
equilibrium, voters vote optimally, given their beliefs, and beliefs are self-fulfilling in
the sense that they are not contradicted by observable information. Our first result
is that in the unique voter equilibrium of our model, all voters, informed and un-
informed alike, vote as if they had perfect information. We then define a dynamic
process involving a sequence of polls that illustrates that this equilibrium is always
reached. In addition, we obtain results about candidate positioning equilibria when
candidates are also uncertain about the characteristics of the voters. Finally, we show
that if a small minority of voters are fully informed and use this information to vote
strategically, in equilibrium all voters, including uninformed sincere voters, act as if
they were voting strategically based on full information. The uninformed voters view
the lack of support for trailing candidates by informed voters as evidence that these

candidates are undesirable and react by voting for a more prominent candidate.



vii

Contents

1 Imtroduction

2 Candidate Positions and Institutional Features
2.1 Introduction . . . . . ... ... ...
2.2 Notation, Assumptions and Equilibrium Concepts . . . . . ... .. .
2.3 Equilibrium in a General Setting . . . ... ... ... ... .....

2.4 Conclusion . . . . . . . . .

3 Stability, Polls, and Duverger’s Law
3.1 Imtroduction . . . . . .. ... ...
3.2 TheModel . . . . . . . ...
3.3 Existence of Non-Duvergerian Equilibria . . . .. ... ... ... ..
3.4 Stability and Dynamics of Non-Duvergerian Equilibria . . . . . . . .
3.5 Polls as a Coordination Device . . . . . ... ... ... ........

3.6 Conclusion . . . . . . . . . .

4 Information, Polls, and Bandwagons

4.1 Introduction . . . . . . . .. ...



viii

4.3 Characterization and Convergence of Voter Equilibria . . . . . . . .. 98
44 Full Equilibria . . . . . . . . ... 108
4.5 Strategic Voting and Bandwagons . . . . . . . . ... .. ... ... 116
4.6 Conclusion . . . . . . . . . e 120

Bibliography 121



ix

List of Figures

2.1

3.1
3.2
3.3

4.1
4.2
4.3

Established Candidate Positions and Electoral Diversity . . . . . . . . 46
h,(v) for three valuesof n . . . . .. . ... .. ... L. 72
Sequence of Equilibria Convergingtov . . . . ... ... ... .... 74
h,(v) and the Adjustment Path of Opinion Polls . . . . . .. .. ... 84
Inference of Uninformed Voters . . ... .. ... .. ... ...... 97
Vote Response In Successive Polls . . . . . ... ... ... ... ... 104
Candidate Beliefs In A Full Equilibrium . . . ... ... ... .. .. 111



List of Tables

1.1 Notable Third-party and Independent Candidates Since 1912

3.1 Voter Types in the Electorate . . . . . . . ... ... ....



Chapter 1

Introduction

The study of multicandidate® elections, especially via formal models, has for the
most part been neglected, especially in the context of American politics. While there
are exceptions, both empirical and theoretical research has mainly focused on two
candidate elections. This is unfortunate, as multicandidate elections offer a unique
set of issues that must be considered. The three issues we address in this work are
entry decisions by candidates, strategic voting, and informational concerns. Each
topic will be developed fully in the ensuing chapters, but we give a brief overview of
each subject here.

The formal literature on multicandidate electoral competition can be divided into
three broad categories: models that focus on candidates as strategic actors, models
that concentrate on voters as rational actors, and models that include both rational
candidates and strategic voters. Models that focus on candidates as strategic actors

have a history that traces back to Hotelling’s spatial model of dualistic competition in

!Heeding the advice of Linda Cohen, we note from the outset that, according to Webster’s, the
prefix “multi” means “more than two.” Thus we distinguish between two candidate and multican-
didate elections. While on the subject, we also note our use of the closed form “multicandidate”
rather than the hyphenated form “multi-candidate.” While both usages are commonly seen in the
political science literature, we follow The Chicago Manual of Style’s recommendation in this matter.



economics and Downs’ application of this work to electoral competition. These mod-
els describe two candidate competition, and are the basis for the celebrated Median
Voter Theorem. Shepsle (1991) reviews the large body of literature, both economic
and political, extending models of spatial competition to multiple agents (Eaton and
Lipsey 1975; Cox 1987b). These models consider equilibrium strategies of spatial com-
petition of a fired number of candidates/firms. Palfrey (1984) was the first to consider
the effect of entry on political competition. In Palfrey’s model, two established can-
didates choose platforms competitively while anticipating entry of a vote-maximizing
third candidate. In the resulting equilibrium, this threat of entry forces the estab-
lished parties to adopt spatially separated “moderate” positions in reaction. Other
authors have relaxed the assumptions of Palfrey’s model (Lian 1992; Weber 1992)
and extended this approach to multiseat contests (Greenberg and Shepsle 1987).
Whatever the assumptions about the number of candidates or the sequence of
actions, these models generally assume the issue space is one-dimensional, usually
the unit interval. While this may reasonably describe some electoral institutions, it
fails to capture the particular institutional features that are often present in modern
electoral systems. American presidential elections, for example, are not national
contests, but rather are fifty-one simultaneous state elections in which a candidate
must win a plurality in a (weighted) majority of the states in order to win the election
outright. If no candidate obtains a majority of electoral votes, Congress is empowered
to choose the President. In chapter 2, we extend Palfrey’s model of spatial competition
with entry to include such institutional features of modern elections. We find that
including these characteristics makes a difference in the equilibrium predictions of the
model. We find that, in one case at least, increasing diversity in the electorate causes
the established candidates to initially shift toward more moderate positions and then

back toward more extreme positions.



A second class of formal models of multicandidate elections focus on voters as
rational actors. Research has concentrated on issues of the “wasted vote” phenomenon
and Duverger’s Law. A voter whose favorite candidate has no chance of winning may
choose to avoid a “wasted vote” by voting for a less preferred candidate in hopes
of perhaps making a difference. If this behavior is widespread in the electorate,
minor candidates may find their electoral support eroding away as voters swing their
support to more viable candidates. Thus, Duverger’s Law — plurality rule ensures
two party competition — may be a consequence of strategic calculations by voters
in the electorate. We use the term strategic voting? to describe this behavior. In
political science, strategic voting has received more attention in research on voting
on bills and amendments in committee or legislative proceedings which have well
defined agenda rules (McKelvey and Niemi 1978; Ordeshook and Palfrey 1988). In
the context of mass elections, Cox (1987a) and Palfrey (1989) examine the wasted
vote phenomenon in the context of an incomplete information game among voters and
show that as the size of the electorate gets large, the support for the least popular
candidate vanishes. Thus, they conclude that Duverger was correct and his Law can
be considered “proved.”

Myerson and Weber (1993) argue that Palfrey has overstated his case in “proving”
Duverger’s Law. They construct a quasi-Bayesian “voting equilibrium” in which all
three candidates receive votes under plurality rule, in violation of Duverger’s Law.
They also show that this equilibrium is not just a knife-edge case, as claimed by
Palfrey. In chapter 3, we attempt to resolve this controversy. We first show that
Myerson and Weber’s non-Duvergerian equilibria do exist in the model developed by

Palfrey. We then argue that these equilibria require extreme coordination and that

2This is the American terminology. In Britain, “tactical voting” is the normal usage. In addition,
“sophisticated voting” is often used in the literature in the context of committees and agendas.



any variation leads voters away from three-party equilibria. Thus, non-Duvergerian
equilibria are unstable, while two-party equilibria are not. We develop a dynamic
model of pre-election polls that describes how voters react to changing information
about the viability of the candidates and show that this process leads voters to coor-
dinate on a Duvergerian outcome. Thus, we not only reestablish Duverger’s Law, we
also describe how voters can use pre-election polls to coordinate on a particular pair
of candidates.

The final topic we address in this work is the information possessed by voters and
candidates. This issue is not unique to multicandidate elections, but it is perhaps
more relevant. As we note in chapter 4, voters with limited information may have even
more difficulty with their decisions when faced with multiple candidates. Chapter 4 is
thus concerned with how information is processed and transmitted in multicandidate
races. We extend a model originally developed by McKelvey and Ordeshook for
two candidate elections to the multicandidate case and obtain several results on the
ability of uninformed voters to gather and apply information available to them to their
voting decisions. In our model, as in the series of papers by McKelvey and Ordeshook,
voters are either informed or uninformed about the exact positions of the candidates.
The uninformed voters, however, are able to make plausible inferences about these
positions based on the vote share each candidate receives. In equilibrium, voters vote
optimally, given their beliefs, and beliefs are self-fulfilling in the sense that they are
not contradicted by observable information. We show that in the essentially unique
voter equilibrium of our model, all voters, informed and uninformed alike, vote as if
they had perfect information. We also define a dynamic process involving a sequence
of polls that illustrates that this equilibrium is always reached. In later sections,
we introduce candidates who are uncertain about the voters and show that while no

three-candidate equilibria exist, a model of third-party entry does have an equilibrium



Popular Electoral

Year Candidate Party Vote Vote
1992 H. Ross Perot Independent 18.9% 0%
1980 | John B. Anderson Independent 6.6% 0%

1968 | George C. Wallace | American Independent 13.5% 8.6%
1948 | J. Strom Thurmond | States’ Rights Democrat 2.4% 7.3%
1924 | Robert M. LaFollete Progressive 16.6% 2.4%
1912 | Theodore Roosevelt Progressive 27.4% 1.5%

Table 1.1: Notable Third-party and Independent Candidates Since 1912

even with a high degree of uncertainty among the three candidates. Finally, we show
that if a small minority of voters are fully informed and use this information to vote
strategically, in equilibrium all voters, including uninformed sincere voters, act as if
they were voting strategically based on full information. The uninformed voters see
the lack of support for trailing candidates by informed voters as evidence that these
candidate are undesirable and react by voting for a more prominent candidate. Thus,
uninformed voters end up voting strategically even though they are attempting to
vote sincerely.

The American multicandidate elections that have received the most attention are
presidential elections involving third-party or independent candidates, the most recent
example of which is H. Ross Perot in 1992. Table 1.1 lists some notable examples
in this century. A better example of multicandidate elections in American politics,
though one that has received less attention, occurs in presidential primaries. For as
long as direct primaries have been used to select presidential nominees, multicandidate
races have been the norm rather than the exception. While there has been some recent
excellent explorations of presidential primaries (Bartels 1988; Popkin 1991), it is still
an area that invites further investigation.

This research also touches on the widespread use of polls in American politics.



While polls have long been used a tool by political scientists interested in features
of the electorate, less attention has been paid to the effect that polls may have in
shaping these features. That people are exposed to and pay attention to poll results
cannot be denied. According to a recent tabulation of the number of political front-
page stories in the Washington Post and the New York Times during the last month
of the election in 1988, 42 percent of the Post’s and 48 percent of the Times’s stories
were related to polls. Moreover, polls appeared in 19 percent of the Post’s and 9
percent of the Tumes’s headlines (Ratzan 1989). In addition, citizens overwhelmingly
report hearing poll results from some source. Gollin (1980) notes that “in two parallel
surveys conducted nationally in the heat of the 1976 campaign, only 16 percent failed
to recall hearing something ‘in the news or talking with friends’ about ‘polls showing
how candidates for office are doing.” ” Thus, this work’s finding that voters may able
to gather useful information from poll results may have some basis in fact.

Strategic voting is another area that has not received a great deal of attention in
political science. Empirical findings have been inconclusive as to the level of strategic
voting in the electorate, although evidence that supporters of Perot and Anderson
made up their minds much later in the campaign is suggestive. In this area, our
findings on the effect of information may have implications on the measurement of
strategic voting in the public. In the model presented in chapter 4, based on strategic
voting by informed voters, all voters end up voting as if they were strategic. But these
decisions are based on incorrect inferences about the quality of the trailing candidates,

rather than a conscious decision to avoid a “wasted vote.”

This could help explain
why few voters report voting strategically and yet two candidate competition remains

the dominant theme of American politics.



Chapter 2

Candidate Positions and

Institutional Features

2.1 Introduction

Models that focus on candidates as strategic actors have a history that traces back
to Hotelling’s spatial model of dualistic competition in economics and Downs’ appli-
cation of this work to electoral competition. These models describe two candidate
competition, and are the basis for the celebrated Median Voter Theorem. This result
and its emphasis on “centrality” of candidate positions was taken as a kind of dogma
for many years. However, the equilibrium prediction of the Median Voter Theorem,
that both candidates adopt policy positions at the median voter’s ideal point, invites
entry by a third candidate. By picking a policy position near, but not at, the me-
dian, an entrant could receive a plurality of votes and thus win the election, assuming
that other two candidates’ positions remained fixed at the median. Thus, the pres-
ence of this third candidate provides an incentive for the two median candidates to

change strategies. In fact, it is easy to show that regardless of the configuration of



the three candidates on the policy space, at least one of them will have an incentive
to relocate. Put formally, under the usual conditions assumed by the Median Voter
Theorem, there is no pure strategy equilibrium for three competing candidates.

In an important paper, Palfrey (1984) establishes the existence of an equilibrium
in a model of candidate competition with entry and, in doing so, challenges the
centrality results of the Median Voter Theorem. In Palfrey’s model, there are two
“dominant” or “established” candidates and a prospective entrant. The two dominant
candidates choose positions first and then the entrant picks a policy position, knowing
the two positions already chosen. The dominant candidates anticipate the possibility
of entry, but are not allowed to alter their positions once the third candidate enters
the race. In this framework, Palfrey defines a limit equilibrium and proves that such
an equilibrium exists. He also shows that this equilibrium involves the two dominant
candidates diverging from the position of the median voter in order to head off the
entry of a third candidate.

Several papers have extended Palfrey’s analysis. Lian (1992) shows that the equi-
librium of Palfrey’s paper is also the equilibrium of the game in which candidates
enter sequentially, instead of having two established candidates move simultaneously,
followed by an entrant’s move. Weber (1992) generalizes Palfrey’s limit equilibrium
by defining a hierarchical equilibrium that applies to non-symmetric distributions of
voter ideal points. Weber also shows that the strategies of a hierarchical equilibrium
correspond to the equilibrium of the sequential move game. Greenberg and Shepsle
(1987) examine a model of multiseat contests in which each candidate’s objective is to
capture one of the seats available in the election. Their model considers an “incum-
bent” set of candidates faced with the possibility of entry by an additional candidate.
An equilibrium in this setting is a set of positions for the incumbent candidates such

that an entrant is unable to beat an incumbent candidate for a seat. Unlike Palfrey’s



result, Greenberg and Shepsle show that for any district magnitude greater than one,
there exists a configuration of voters such that no equilibrium exists. Other related
papers include Cox (1987b), which examines equilibria of a wide variety of voting
schemes, and Ferejohn and Noll (1988), which allows endogenous entry of candidates,
who pay a cost to enter the campaign.

Whatever the assumptions about the number of candidates or the sequence of
actions, all of the above models involve a one-dimensional issue space, usually the
unit interval, over which a single election is decided. While this may accurately
describe some electoral institutions, such as the election of legislators, it does not
capture the effect that particular ways of aggregating votes can have. In American
presidential elections, for example, a candidate must win a plurality in a (weighted)
majority of the states in order to win the election outright. If no candidate obtains
a majority of electoral votes, Congress is empowered to choose the President. This
chapter extends Palfrey’s model of spatial competition with entry to include such
institutional features of modern elections.

We begin by reviewing the entry model initially described by Palfrey. In the first
section, we define several alternative equilibrium concepts, and show that they are all
equivalent in the entry model. Using e-distinguishable equilibrium, we then generalize
Palfrey’s entry model in order to make further analysis easier. In the next section,
we apply this general framework to a model motivated by American presidential
elections in which there are several states over which the election is contested. We
discover that, in one case at least, increasing diversity in the electorate causes the
established candidates to initially shift toward more moderate positions and then back
toward more extreme positions. This multiple state model prompts us to consider an
alternative view of the voters in the standard model; technical details of this analysis

are contained in the appendix.



10
2.2 Notation, Assumptions and Equilibrium Con-
cepts

In this section, we present the mathematical framework of the models we analyze. We
begin with the entry model introduced by Palfrey. We then discuss some technical
matters regarding the specification of equilibrium. We conclude this section with
some additional notation required for the subsequent discussion. As we shall see, the
equilibrium predictions of the models we are considering are often critically dependent
on the assumptions made. This consideration motivates the analysis in the next
section, but until then, we must carefully specify the assumptions of the model.

There are two established or dominant candidates, labeled A and B, and an en-
trant, labeled C'. The two established candidates pick policy positions simultaneously,
after which the entrant chooses her! policy position. The issue space over which the
candidates choose positions is the unit interval [0, 1], and the candidate’s positions are
denoted 84, 0p and ¢, respectively. Voters have symmetric, single-peaked preferences
over the issue space and their ideal points are described by a symmetric, unimodal
density, with cumulative distribution function F(z).

As mentioned above, we must specify exactly what conditions we place on the
distribution of ideal points. Palfrey considers a class of cumulative distributions with

six properties. Reorganized and condensed, they are the following:

Assumption 2.1 F(0) =0, F(1) = 1, and F(z) is continuous, strictly increasing

and twice differentiable on [0, 1].

Assumption 2.2 F"(z) >0 ifz < § and F"(z) <0 ifz > L.

!Because we will distinguish between the two established candidates and the entrant, it is con-
venient to refer to the dominant candidates with male pronouns, and the entrant with a female
pronoun.
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Assumption 2.3 F(z)=1—-F(1 —z) for all z € [0,1].

The first assumption describes a nonatomic distribution with full support. The sec-
ond assumption requires that F be “essentially” unimodal. In other words, if the
distribution has a unique mode, it must occur at z = % However, distributions with
multiple modes are allowed,? such as the uniform density on [0,1]. The final assump-
tion requires the distribution function be symmetric, a fairly restrictive requirement,
but one that can be relaxed, as we shall see.

Due to the sequential nature of the entrant’s decision, the equilibrium in Palfrey’s
model satisfies a Cournot-Nash conjecture for each dominant candidate and a Stack-
elberg conjecture for the entrant. This means that each of the established candidates
maximizes his share of the vote, taking the other established candidate’s position as
fixed, but anticipating the response of the entrant to a different position. In other
words, in equilibrium neither candidate A or B will want to shift his position, as-
suming no reaction from the other established candidate and perfectly forecasting the
entrant’s response to a shift in his location. Thus, we can describe the equilibrium

in terms of the positions of the established candidates, denoting the vote share to

candidate k£ by vy and the best response function of the entrant by 6c:

vA(8a,08,0c(04,08)) > valba,08,0c(04,05)) Vé, € [0,1]
vp(04,08,0c(04,08)) > UB(9A,éB,90(9A,éB)) VéBE[O,l]

where the entrant’s best response, 0:(64, 05), satisfies

ve(04,08,0c(04,08)) > vo(f4,05,0c) Voo €0,1]

2See Dharmadhikari and Joag-dev (1988), p.2
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Palfrey proves that the unique equilibrium in this model is given by
F(04)=1—-2F(1/4+64/2) and 0p=1-104

In other words, instead of all candidates locating at the median, this model predicts
that they will take differentiated positions. They diverge from the median because
the established candidates must prevent the entrant from having to much “room” on

either side, or in the middle. Thus, the candidates locate in “moderate” positions.

Limit Equilibrium

We have ignored several technical details in the above discussion, details that must
be handled in our later analysis. Consider the best response function of the entrant,
8c(04,0p). First, if there are several distinct positions that will maximize candidate
C’s vote share, we assume that the entrant picks one at random. Second, there
are situations in which f¢ is not well-defined. For example, if 84 = 1/2 = @y (the
traditional Median Voter Theorem result), vc(1/2,1/2,1/2 £ o) = 1/2 for small «,
but ve(1/2,1/2,0¢c = 1/2) = 1/3. So the best response of the entrant is to try to
enter as close to the median as possible, while not actually entering on the median.
In this case, 0:(1/2,1/2) is not well-defined.

To deal with this type of situation, Palfrey defines a “limit equilibrium,” in which
the entrant “almost” maximizes votes in a sequence of perturbed games. Formally,
if va(64,0B,0c),v8(04,08,0c), and vc(84, 05, 0c) denote the expected vote to A, B,
and C respectively, then for a fixed € > 0, we define the set of e-best responses for

the entrant, given positions §4 and 6p, as

EE(GA,GB) = {ec € [0,1] l Uc(@A,eB,ec) > Uc(OA,eB,éc) — £ Véc < [0, 1]}
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With this definition, Palfrey defines the perturbed game I', for candidates A and
B by specifying the strategy spaces for both candidates as the interval [0, 1] and the

payoff functions

1
75(04,0 = / va(04,0p,2)————dzx
4(0a B) Ee(04,08) A( o )'U’E(HA’HB)

1
75(04,0 = / vg(04,0p, ) ——————dx,
50 B) E.(64,88) B< L )'U“E(HA’GB)

where p.(04,05) = |, ES(BA,GB)dx is the (Lebesgue) measure of the entrant’s e-best
responses. Thus, 75(04,0p) and 75(04,0p) represent the established candidates’
expected vote share given that the entrant is playing a randomly selected e-best
response.

Palfrey defines a limit equilibrium as follows:
Definition 2.1 A limit equilibrium is a pair of policy positions (04, 93) such that

1. for every 04 # 04, there erists a positive £(04) such that € < &(04) implies

75(04,05) < 75(04,08), and

2. for every O # Op, there exists a positive E(0p) such that € < &(0p) implies

71’%(9,4,93) < W%(éA,éB).

Hierarchical Equilibrium

Weber (1992) points out that the concept of a limit equilibrium is sensible when the set
of best responses for the entrant is empty, but it is less reasonable when a (unique) best
response exists. Weber assumes that the entrant chooses this best response when it
exists. This slight modification to Palfrey’s model also alters the equilibrium concept.

Weber calls this modified equilibrium a “hierarchical equilibrium.” He shows that a
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unique hierarchical equilibrium exists even for non-symmetric distributions of voter
ideal points, and that limit equilibria, when they exist, coincide with hierarchical
equilibria.

Once again, we must be clear as to the assumptions that Weber invokes. As with
Palfrey’s model, Weber assumes that the issue space is the closed interval [0, 1], that
there is a continuum of voters with symmetric, single-peaked preferences over the
issue space, and that voters’ ideal points are distributed according to a cumulative

distribution function F. Weber assumes that

Assumption 2.4 F(z) is continuously differentiable, strictly increasing on [0, 1] with

F(0)=0 and F(1) = 1.

Assumption 2.5 There ezists (a unique) T € [0,1] such that F(z) is strictly conver

on the interval [0,Z] and strictly concave on the interval [T, 1].

The first assumption is almost exactly the same as Assumption 2.1 above. The second
condition, however, is different from Palfrey’s in several respects. Specifically, it allows
for non-symmetric single-peaked distributions, but excludes distributions with more
than one mode. It thus is more general in some respects and more restrictive in
others than Palfrey’s assumptions. However, it should be possible to relax the strict
single-peakedness requirement and obtain the same results.

In order to define Weber’s equilibrium formally, we must first define the set of
best responses for candidate C' and prove some elementary facts about it. Recall that
we denoted the set of e-best responses of the entrant by E.(04,05). We define the

set of (strict) best responses for the entrant, given positions 84 and 05 as

Ey(04,05) = {0c € [0,1] | vc(84,08,0c) > vo(0a,05,0c) Voc € [0,1]}.
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Clearly, the following is true:

Lemma 2.1 (| Ec(04,05) = Eo(64,05)
e>0
We also collect the following facts about the entrant’s payoffs: e-best responses, and

(strict) best responses.

Lemma 2.2 If F(x) satisfies Assumptions 2.4 and 2.5, then for fivred 04 and 0p, the

following are true:

1. vc(84,08,0c) is continuous on the intervals [0,04), (64,08), and (63, 1].

2. vo(84,08,0¢) is increasing on the interval [0,04), and decreasing on the interval

(0B, 1].
3. Ey(84,0p) is either empty or a single point in |04, 08].

Proof: To show 1 and 2, we note that for ¢ € [0,604), vc(6a,05,0c) = F(%)
As F(z) is continuous and (strictly) increasing, so is vc(64, 05, 0c). A similar argu-
ment holds for ¢ € (6p,1]. Finally, if 6c € (64,05) holds, then ve(64,05,0c) =
F(%stbe) — p(fatfe) which is continuous by the continuity of F(x).

To prove 3, note that as ve is strictly increasing on [0,0,4) and strictly decreas-
ing on (Ap,1], v¢ cannot attain a maximum on either of these intervals. Thus,
8¢ € Ey(04,0p) implies ¢ € [04,05]. To show there can be only one such point,
consider three cases. If % > % and HL}BQ < %, then f¢ satisfies a first-order condi-
tion, namely, F'(%282)— F'(%43e) = (. The second-order condition is 1[F"( fatoy

" (@Q)], which by Assumption 2.5, is strictly negative. So f¢ is the unique max-

imum. If &84 and #atfe are both either bigger or smaller than 5, then it is easy
to see that vc is strictly increasing as 0¢ € [04,0p] moves toward 1. Thus, there will
either be no unique maximum, or at most one point. We conclude that Fy(04,0p) is

either empty or a single point in [64, 05]. |
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Definition 2.2 A pair (64,05) is a hierarchical equilibrium if it constitutes a Nash

equilibrium to the following game:
1. The strategy set of both players is [0, 1].

2. The payoff functions of the players are:

va(04,08,0c)  if Eo(04,08) = {0c}
Ta(04,08) if Eo(04,08) =0

va(64,0p) =

'UB(HA,HB,Hc) Zf EO(HA;HB) = {90}
WB(QA)QB) Zf E()(QA,QB) = @

vp(04,0B) =

where m4(04,08) = hl’I(l) 75(04,08) and m5(04,05) = liI% 5 (04,05).3

In his paper, Weber characterizes the hierarchical equilibrium of the model in a

very simple way. This characterization is presented in
Theorem 2.1 (Weber) If F(z) satisfies Assumptions 2.4 and 2.5, there is a unique

hierarchical equilibrium (6%, 0%), with 6% < 6%. Moreover, this equilibrium satisfies

F0,)=1-F(5)= sup vc(84,0% 0¢c)

6% <00 <6%

Proof: See Weber (1992), p. 417. |

$Weber (1992), Lemma 4.4 shows that lim._q 7%(64,0p) and lim._o 7%(64,05) exist for all
pairs (64,05).
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This makes clear the relationship between the entrant’s opportunities and the
established candidates’ strategies. The leftmost term of the characterization is the
maximum vote share available to an entrant choosing a position to the left of the
dominant candidates. The middle term is the maximum vote share on the right. The
rightmost term is the maximum vote share available to a moderate entrant. Thus, a
position can only be in equilibrium when the opportunities available to the entrant

are balanced: left, middle and right.

e-distinguishable Equilibrium

An alternative method of making the entrant’s best response function well-defined
is used by Lian (1992) in his model of sequential entry by candidates. His paper
introduces a condition termed “c-distinguishability.” This condition requires that
“la] candidate who does not move first is required to choose a position at least € away
from that of any previous candidate in order to be distinguishable, given ¢ > 0 a
sufficiently small number.”*

Since our model has only two stages, we use a modified form of this condition. As
the two dominant candidates move simultaneously, it is impossible to prevent them
from locating close together or at the same position. But the entrant observes the
dominant candidates’ positions before she chooses her position, so we can require that

“e-distinguishability” holds for her choice. We formalize this in
Assumption 2.6 For a given e > 0, 6 must satisfy |0c—04| > € and |0c —0p| > €.

Clearly this assumption, along with Lemma, 2.2, guarantees that the set of entrant
best responses, 6c(04,05), is nonempty for all #,4 and 6g. However, we must deal

with the possibility that 8¢ (04, 6p) is multivalued. If we assume that Assumption 2.5

1See Lian (1992), p. 4
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holds, then by Lemma 2.2, §-(04,0p) can contain at most three distinct points. In

fact, we can show

Lemma 2.3 For anye > 0, if F(x) satisfies Assumptions 2.4 and 2.5 and 0¢c(04,0p)

satisfies Assumption 2.6, then

0c(04,05) =LUCUR

where L is either {04 — €} or the empty set, R is either {0p + €} or the empty set,
and C' is either some point in [04 +¢,0p — €] or the empty set, and not all L,C, and

R are empty.

Proof: Lemma 2.2, part 1, and Assumption 2.6 insure that we have a continuous
function on a compact set, so vc attains its maximum somewhere on the set. Thus
6c(64,05) is nonempty for all 84 and 6. By the proof of Lemma 2.2, part 3,
0c(84,0p) includes at most one point in [f4 + &,0p — €]. But for ¢ < 04 — ¢,
ve = F((8¢ + 04)/2), which is strictly increasing by Assumption 2.4. So the only
point that could be in 0c(64,0p) if Oc < 04 —¢ is {64 — €}. Likewise, the only point
that could be in 0c(04,05) if 0c > 0p + ¢ is {0 +€}. So 0c(04,0p) must be of the
form L UC U R where L is either {84 — ¢} or the empty set, R is either {p + £} or
the empty set, and C is either some point in [§4 + ¢,0p — €] or the empty set, and

not all L, C, and R are empty. | |

Actually, this is not as complicated as it looks. In the symmetric case, for example,
L and R will be either both empty or both nonempty.
With Lemma 2.3, we can proceed to define an appropriate equilibrium notion for

e-distinguishability. As the entrant’s set of best responses is nonempty for all € > 0,
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we are able to impose the normal Nash equilibrium requirements for positive e. We

thus define an equilibrium to be the limit of the Nash equilibria as € — 0.

Definition 2.3 If0c(64,08) satisfies Assumption 2.6, then (6.4, 0p) is an equilibrium

if 04 = lir% 6% and g = liII(I) 0%, where the pair (65,0%) satisfies, for positive €:
[ d £—

54(05,0%,00(05,05) > ©4(04,05,0c(04,05)) v, € [0,1]
i5(05,0%,0c(05,05) > Op(05, 08,0065, 65)) Vs € [0,1]
where
1
5(04,05,00(04,08)) = (04,05, 6).
k(04,08,0c(04,05)) > Pot0a.09)] 1(04,08,06)

0600(0,&, ,GB)
Equivalence of Equilibrium

Now that we have defined three alternative concepts of equilibrium, we would like to
understand the relationship between them. As we show in the next theorem, it turns

out that they are equivalent. We show this in

Theorem 2.2 If F(x) satisfies Assumptions 2.8, 2.4 and 2.5, then the equilibrium

of Definition 2.8 coincides with the limit equilibrium specified by Definition 2.1.

Proof: We first prove that a limit equilibrium is a e-distinguishable equilibrium. Let
(64,08) be a limit equilibrium. By Palfrey (1984), Theorem 2, (64,605) must be of
the form F(4) =1 —2F(1/4+ 64/2) and 6 = 1 — 04. Now, let (05,0%) satisfy
F(04—¢)=1—-2F(1/4+64/2) and 6 =1 — 0,4. First, we must show such a pair
exists for sufficiently small €. Let g(64) = 1—2F(1/4+04/2) — F (64 —¢); clearly g(f)
is continuous and g(e) =1 — 2F(1/4 + ¢/2), which is positive for sufficiently small ¢,

and g(1/2) = —F(1/2 —¢), which is negative for sufficiently small ¢. Therefore, there
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must exist 8% such that g(65) = 0. So (85, 6%) satisfies F(04—¢) = 1—2F(1/4+04/2)
and 0p = 1 — §4. We must now show that (0%, 6%) satisfies Definition 2.3. Fix 05%.
Notice that the condition F(04 —¢e) =1—2F(1/4+ 04/2) implies that 0:(05,0%) =
{04 — e} U{0p +c}U{1/2}. Then

1
~ £ & 6 96 05 — 96 & 9
T4(0%,0%,00(0%,0%)) Z ‘"——*l (65, 0%)] va(0%, 0, 0)

0€0:(6%,0%)

1
= Z § 'UA(Q.E/:{: EB? 0)
8 {65, —}U{65,+c}U{1/2)

1
= 3 ['UA(H,EM 637951 - 5) + ’UA(eib EB’BEB + 6) + UA(eib 9%7 1/2)]

[(1/2 = F(63 —/2)) + F((62/2+1/4)) +1/2]

[3/2 — F(05 —€/2) — 1/2F (65 —¢)]

DO = QO b QO] = QO

L - F(8 —¢/2)]

Consider 8, # 65. There are two cases.

CASE 1: If 04 < 65, then F(d4 —¢) < 1—2F(1/4+6,4/2). So the entrant will enter
in the center. This means 4(04,60%, 0c(04,0%)) = F((04 + 0c(84,05))/2). By
the same logic as Palfrey (1984), p. 146, this implies 6A(§A,953,60(éA,0€B)) <
F(1/446%) =1/2—1/2F (05 —¢) < ©4(6%, 0%, 0c(05,0%)) for sufficiently small

£. So candidate A will not shift to the left.

CASE 2: 4 > 65, then F(§4 —¢) > 1 —2F(1/4+4/2). So the entrant will enter
to the left of the established candidates. This mean 74(84,65%,0c(04,0%)) =
F((04 + 63%)/2) — F(64 — €/2). By the same logic as Palfrey (1984), p. 148,
this implies 74(04,8%, 0c(04,0%)) <1—2F(1/4465) < 1/2—1/2F (65, — ) <
04(04, 6%, 0c(05,0%)) for sufficiently small e. So candidate A will not shift to
the right.
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A similar argument applies to 6%, so (65, 6%) satisfies

54(65,0%,00(05,05) > 04(04,05,0c(04,05)) Vé4 € [0,1]
5p(05, 05, 00(05,05) > 05(65, 08, 00065, 05)) Vo5 € [0,1]

where (0%,0%) satisfies Fi(04 —¢) = 1 — 2F(1/4 + 0,/2) and 05 = 1 — 04. The
defining condition implies lim,_¢ 8% and lim._o 6% are well-defined and, moreover,
lime_,00% = 64 and lim, ,,03 = 6p. So, we can conclude that (64,05) is a &-
distinguishable equilibrium.

Next, we show that a e-distinguishable equilibrium is a limit equilibrium. Sup-
pose (04, 0p) is a e-distinguishable equilibrium and assume that (64, 0p) is not a limit
equilibrium. By Assumption 2.3, it must be the case that g = 1 — 64. Therefore,
we concentrate on candidate A and omit the analogous argument for candidate B.
If (64,05) is not a limit equilibrium, then there exists a 04 # B4 such that for all
positive €, 75(04,05) > 75(04,05). As (04,05) is a e-distinguishable equilibrium,
then for all positive &, 94(65,0%,0c(65,05) > 94(84,0%,0c(04,605)). But by As-
sumption 2.3 and Weber (1992), Lemma 4.4, lim,_,o 7§ = lim._,o 4. But this implies
lim, 0 94(fa,08) = lim,_o75(04,08) > lim,_75(04,08) = lim,_q54(f4,05). But
this means (64, 05) cannot be a e-distinguishable equilibrium. This is a contradiction,

thus we conclude that (64, 60p) is a limit equilibrium. |

This theorem, coupled with Theorem 2.8 of Weber’s paper, proves the equivalence
of the three equilibrium concepts discussed in this chapter: limit equilibrium, hierar-
chical equilibrium, and e-distinguishable equilibrium. This is important because the
last type mentioned is much easier to evaluate than the other two. We now know that
it is legitimate to use e- distinguishable equilibrium in our further analysis, which we

now do.
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2.3 Equilibrium in a General Setting

Even if we restrict our attention to simple one-dimensional issue spaces, we find that
our equilibrium concepts and outcomes depend crucially on the specification of voter
ideal points. Needless to say, when we attempt to add institutional features that
would give our model a more “realistic” feel, the difficulties only multiply. Equilib-
rium outcomes then depend on several more layers of assumptions and specifications.
Up until now, each model must be examined and appropriate equilibria solved for
individually.

Next suppose there are three groups of voters, called “states,” over which the
election is held. As is the case in American presidential elections, we suppose that a
particular candidate “wins a state” if the candidate receives a plurality of the vote
in that state, and the winner of the election is the candidate who wins a majority
of the states. In other words, we assume that each state has one state-vote, which
is awarded to the plurality winner of that state; the winner of the election is the
candidate who receives a majority of the state-votes.> In keeping with our connection
to American presidential elections, these “state elections” all occur simultaneously
and candidates’ issue positions cannot vary across states.

In this case, the usual technique would involve specifying the candidate objective
functions on one or all of the states, the distribution of voter ideal points on the
states, the relation between candidate positions and votes received in a particular
state, and the method of aggregation of the vote shares in the states to determine the
outcome of the election.

We simplify the analysis in the following way. First, we assume that candidates

5In case no candidate wins a majority, a tie-breaking procedure, which will not be specified here,
comes into play.
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maximize the probability that they win the election. We exclude from consideration
each candidate’s preferences over the size of his electoral support or situations in which
the candidate is not elected, for example. Note that this is equivalent to requiring
candidates to maximize their utility, where we assume the utility of winning the
election is greater than the utility of losing the election. Second, we will ignore the
specific institutional features of the model and instead look directly at the probability
that a candidate k wins the election. We denote this probability, for a particular choice
of candidate positions, by px(64, 05, 6c). We will give conditions on this function that
guarantee that an equilibrium of a certain form exists.

Before we specify these conditions, we must establish the framework of the model.
We will either generalize, or use directly, the features of the entry model discussed in

the previous section. Specifically, we assume that

e There are two dominant candidates, labeled A and B, and an entrant, labeled

C.

e The established candidates pick policy positions simultaneously, after which the

entrant chooses her policy position.
e The policy space is O, a closed interval [d, 5] with midpoint %

e The candidates’ positions are denoted 64, 0 and 6c, where these are all points

in © and, for clarity, 04 < 0p.

e Voters have symmetric, single-peaked preferences over the issue space I, which

need not be equal to ©.

e A candidate’s probability of winning the election is a function of the candidates’

positions only. Formally, there exists a real-valued function for each candidate
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k, px(04,08,0c) : © x © x © — [0,1] such that ¥ p, < 1.5

The last assumption listed is the sharpest departure from Palfrey’s model of entry.

We will focus on it as we list conditions for the existence of equilibrium.

Equilibrium Conditions

In order to characterize equilibria in this general framework, we begin by analyzing

the entrant’s decision problem.

Assumption 2.7 (Continuity) For any 64, 0 € O, pc(04,05,-) s continuous on

the intervals [0,04),(04,05), and (03, 6).

Clearly, this is similar to Lemma 2.2. This is a fairly strong assumption, but we shall
see that it is satisfied in a number of useful cases.
In order to simplify the analysis, we must introduce some additional notation for

the entrant’s maximization. Define, for any ¢ > 0,

Ce(04,08) = max pc(04,08,0c).

{8c:0a+e<8c<Op—c}

That is, C.(64,0p) is the largest probability of winning the election that the entrant
can assure herself by entering the campaign between the two established candidates

and satisfying the e-distinguishability requirement. Similarly, for any € > 0, define

L.(64,05) = 04,080
(64,08) {90:(;%12@—5}2?0( 4,0B,0¢)
Re(HA,GB) = max pc(@A,QB,HC).

{8c:0c>0p+¢}

8We allow )" pi < 1 to handle ties, as discussed below.
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Thus, Lc(04,05) and R.(64,05) represent the largest probabilities possible if the
entrant enters on the left or right of the established candidates.
By Assumption 2.7, C, L., and R,, are well-defined. Moreover, the maximum of

a continuous function is continuous, so lir% C. exists. So let
E—

liII(l)CE(QA,HB) = C(@A,QB)
liII(l)LE(HA,QB) = L(@A,HB)

liII(l) RE(QA, 93) - R(HA, 93).

It will also be useful to identify the entrant’s probability maximizing position. So,

define

ce(04,08) = argmax pc(04,08,00).
{00:9,4—!—6500393—5}

This gives the entrant’s best response function, 8c(64,05), given that she enters the

campaign in the “middle.” Similar expressions are defined for entry on either wing.

1.(04,08) = argmax pc(fa,0B,0c)
{0c:0c<64—c¢}
re(04,08) =  argmax pc(04,0s,0c).

{8c:0c>0p+¢)}

Following Lemma 2.3, we assume that ¢, l., and r. are singletons.
Next we include some symmetry assumptions to capture the symmetric nature of

the voting models.

Assumption 2.8 (Symmetry) For any 04 < 0p, we assume

1. Ce(84,05) = Ce(1— 05,1 — 6,4).

2. L(04,0p) = R.(1— 05,1 — 04).
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3. CS(HA,QB):1-*05(1-(93,1_9,4).
4. l5<9A,t93) = 1—7"5(1—03,1——9A).

As above, it is immediate that

C(04,08) = C(1—0p,1—104)

L(64,05) = R(1—0g,1—464).

We are now ready to define the conditions that are sufficient for the existence of
an equilibrium.
Condition 2.1 pc(64,0p,0c) satisfies

1. For any 0p € ©, C(-,0p) is continuous and strictly decreasing on [0, 0p].

2. For any 04 € ©, C(0,,-) is continuous and strictly increasing on [A4, 1].

3. If 04 = 0, then C(04,05) = 0.

4. C(0,0) > 0.

This condition requires that the entrant’s probability of winning when she enters
in the middle must shrink as the established candidates move closer together. It also
requires that the probability of winning be positive when the established candidates
are extremely far apart, and zero when the dominant candidates adopt the same

position.

Condition 2.2 pc(64,08,60c) satisfies

1. For any 0p € ©, L(-,0p) is independent of 05, continuous, and strictly increas-

ing on [0, 0p).
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2. Forany 0, € O, R(Q_A, *) is independent of G4, continuous, and strictly decreas-

ing on [04,1].
3. Ifs =05 >0, then L(04,05) > 0.
4. L(8,6) = 0.
5. If 04 =0p <0, then R(04,05) > 0.

6. R(0,7) = 0.

This condition requires that if the entrant enters to the left, say, of the established
candidates, then her probability of winning the election must increase as the dominant
candidates move to the right. It also requires there to be a zero probability of winning
from an extremist position when the dominant candidates are already extremists and
a positive probability of winning with an extremist position when the two major

candidates adopt the same moderate position.

Lemma 2.4 If pc(04,0p,0c) satisfies Assumptions 2.7 and 2.8 and Conditions 2.1

and 2.2, then there exists a unique pair (6%, 0%) satisfying
L(04,05) = C(64,05) = R(64, 0%).

Proof: First, notice that if such a pair (6%,6%) exists, then by Assumption 2.8,
L(03,0%) = R(1—-05,1—0%) = R(6%,0%). This implies that 6% +6% = 1, which means
that there exists 6* € [0,6—1/2] such that 8% = 1/2—0* and % = 1/2+6*. So consider
64 =1/2—0and 05 = 1/2+0. Define g(f) = C(1/2—6,1/2+6)—L(1/2—8,1/2+8).
Notice that if g(f) = 0, then (84, 0p) satisfies L(d,,05) = C(04,85), which implies
by Assumption 2.8 that C(04,0p) = R(64,05). So g(f) = 0 is required for (0%, 0%).

By Condition 2.1, part 1 and 2, and Condition 2.2, part 1, g(é) is continuous and
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strictly increasing on [0,0 — 1/2]. By Condition 2.1, part 3, and Condition 2.2, part
3, g(0) is negative and by Condition 2.1, part 4, and Condition 2.2, part 4, g(6 — 1/2)
is positive. Thus, by the Intermediate Value Theorem, there exists a unique § such
that g(@) = 0. Thus, we conclude that there exists a unique pair (6%, 03) satisfying
L(93,63) = C(83,95) = R(64, 63). "

Note that we did not explicitly use part 2, 4, and 5 from Condition 2.2 in the proof
of Lemma 2.4. In fact, these parts are implied by part 1, 3, and 4 of Condition 2.2
and Assumption 2.8.

We now describe the conditions for the established candidates under which the

pair identified in Lemma 2.4 is in fact an equilibrium.

Condition 2.3 When 0% satisfies Lemma 2.4, pa(04,08,0c) satisfies

1. pa(+,0B,c:(04,08)) is strictly increasing on [0,05), and pa(-,05,1.(04,08)) is

strictly decreasing on [0,8p), for all 85 in some neighborhood of 6%.
2. pa(04, 0%, cc(0%, 05) < pa(0y, 05, 1(0%,65))-

Part 1 means that if the entrant is going to choose a policy between the two
established candidates, then candidate A’s probability of winning rises as he shifts
further toward the right; if the entrant is going to choose a policy to the left of the two
established candidates, then candidate A’s probability of winning rises as he shifts
further toward the left. Part 2 implies that if candidate A is located at what we will
show is the equilibrium position, then he is at least as well off when the entrant enters
in the middle as when she enters on the left.

When Condition 2.3 holds, by symmetry, the following condition should hold.

Condition 2.4 When 0% satisfies Lemma 2.4, pp(04,05,0c) satisfies
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1. For all 64 in some neighborhood of 0%, pp(f.4, -, ce(04,08)) is strictly decreasing

on [04,1), and pp(0a,-,7-(84,08)) is strictly increasing on [f4,1].

2. pB(QZ, g)lk?a 06(027 0}‘(3) < pB(‘gjl’ 0*B77'€(9j1, G*B))

The following theorem proves that these conditions guarantee the existence of a

e-distinguishable equilibrium.

Theorem 2.3 Ifpc(04,08,0c) satisfies Assumptions 2.7 and 2.8 and Conditions 2.1
and 2.2, pa(64,08,0c) satisfies Condition 2.3, and pp(04,05,0c) satisfies Condi-
tion 2.4, then the unique pair (0%, 0%) identified in Lemma 2.4 is a e-distinguishable

equilibrium as defined in Definition 2.5,

Proof: 'To see that this is an equilibrium, let (65, 6%) satisfy L(6%,0%) = C(65,6%) =
R(6%,0%). That such a pair exists follows by an argument precisely like the proof
of Lemma 2.4. In fact, it is true that 65 = 1/2 — 6° and 65 = 1/2 + 6°. Moreover,
lim,_,¢ 0% = &} and lim,_,c 63 = 05 Now consider candidate A. We must show that
as € goes to 0, he will have no incentive to deviate from 65. Fix ¢ > 0 and consider

04 # 65. There are two cases.

CASE 1: 64 < 5. This implies, by the first parts of Conditions 2.1 and 2.2, that
L(64,0%) < C(6%,65). Therefore the entrant will enter in the center. But
Condition 2.3, part 1, shows that pA(éA, 5, HC(éA, 0%)) < pa(05,0%,0c(6%,0%))

for sufficiently small . Thus, candidate A will not want to shift to the left.

CASE 2: 6, > #%. This implies, by the first parts of Conditions 2.1 and 2.2, that
L(64,8%) > C(65,05). Therefore the entrant will enter on the left. But Con-
dition 2.3, part 1, shows that pa(8a, 05, 0c(64,65)) < pa(05,0%,0c(64,60%)) for

sufficiently small €. Thus, candidate A will not want to shift to the right.

Therefore, (8%, 0%) is a e-distinguishable equilibrium. [
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Application to the Entry Model

In order to illustrate the application of the above analysis, we return to the entry
model described by Palfrey and formalized in Assumptions 2.1, 2.2, and 2.3. By
Theorem 2.3, in order to rediscover the equilibrium, we must only check that As-
sumptions 2.7 and 2.8 and Conditions 2.1, 2.2, 2.3, and 2.4 hold for pc(84, 05, 0c),
Ppa(04,08,0c), and pp(04,0p,0c) respectively.

Before we proceed, however, we must determine what the probability of winning
the election is for each candidate. Surprisingly, however, this is not immediately
clear. Recall that Palfrey’s entry model assumes there is a continuum of voters with
ideal points distributed according to F'(x). But if we insist on plurality rule, then by
Palfrey (1984), Corollary 2 (which says that the entrant never receives a plurality in
equilibrium) pc = 0 in equilibrium. This makes several of our conditions vacuous. It
also raises questions as to why the entrant would enter the race, knowing that her
probability of winning would be zero. A partially satisfactory reply is that the entrant
must only threaten to enter the race in order to force the established candidates to
their equilibrium positions. This answer begs the question of the incredible threat
that the entrant is making, as well as preferences the entrant has over the established
candidates’ positions, something clearly not included in the model.

An alternative but mathematically completely identical interpretation is that in-
stead of an infinite number of voters, there is only a single voter with an ideal point
that is not known by the candidates. All the candidates know is that the point is dis-
tributed according to F'(z). In this view, the “vote share” of a candidate is precisely
the probability the candidate wins the election. Thus, vote share maximization in
Palfrey’s model is equivalent to maximizing probability of winning the election. On

empirical grounds, this has its flaws. In real elections, third party candidates almost
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never win; this does not agree with the equilibrium prediction of the model.

We shall return to this critique later, but for now, we will adopt the second
interpretation, and apply the conditions and theorem of the previous section. With
the assumptions of the this section, as well as Assumption 2.6, the probabilities of

winning are as follows:

F(latte) if 04 < bc < 6p

F(ﬂ%".&) if 04 < 0p < bc

pa(04,08,00) = va(04,05,00) = < F(Q%G_B_) - F(eﬁ—‘;—eﬁ) if 0c <04 <bp
1p(latte) if 04 =05 < Oc¢

\ 11 - F(a_o_;h)) if 0o < 04 =05

'1_F(9£i2rﬁ) if 04 <0c <0p

1~ F(fattz) if 0c <04 < 0p

pB(0a;05,0c) = vB(04,08,00) = { F(l2le) — F(%atle) if 0, < 05 < Oc

%F(%) if 9,4:93 <(9(;
L %(I—F(ai?gﬂ)) if90<(9A=63
F(fatba) if 0c < 04 < 0p

pc(04,08,0c) = ve(04,08,0c) = § F(letle) - p(latle) ifg, < 6, < 5

1 — F(fefle) if 04 < 0p < b.

Now we proceed to check that the appropriate conditions and assumptions are
satisfied. In particular, Assumption 2.7 follows from Lemma 2.2 and Assumption 2.8

immediately follows from Assumption 2.3. While parts 3 and 4 of Condition 2.1 are
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obviously true, it takes a little more work to show that parts 7 and 2 hold.

Lemma 2.5 Condition 2.1 holds.

Proof: To show that part 7 holds, recall that
C(@A, '93) = 1111(1) CE(QA, (9]3)

We will first investigate the extreme case where the established candidates are on
the same side of the midpoint. For any € > 0, since F(z) is symmetric about 3, the
entrant will locate as close to % as possible when both established candidates are on

the same side of the midpoint. Formally,

(93—8 if9,4<l9]5;<l
ce(04,0p) = 2
Oa+e if 3 <04 <0p.

By definition (and the fact that c. is single-valued), it must be the case that
Ce(04,08) = pc(04,08,c:(04,08)). Thus,

F(0p - 5) - F(%¥e=5)  if 4 <05 <3
Ca(eAyeB) =
F(latipte) — P94+ %)  ifL <4< 05

As F(z) is continuous, when we take limits as € goes to zero, we get:

F(0p) — F(f4tle)  ifg, < fp < L
C(eA,eB) - 2 ?
F(QA;—GB)—F(QA) if%<9A<(93.

So suppose % < 04 < 0p. Then 0C(04,605)/004 = 1/2F’(24J2“—93) —F'(64). As F(z) is
strictly concave on [£,1], F’(%ﬁ) < F'(84). Thus, 0C(04,05)/004 < 0. A similar
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argument applies to the case 4 < 05 < % So we are left with analyzing the situation

when 04 < % < p. In this case, when 05 is fixed,

64+ 0c

C(04,08) = max F( 5 ).

04<0c<0p 2

)= F(

The maximum must satisfy the first-order condition. In other words, if ) maximizes

the function, then

98%—93

) 6A+92’
2

F( - F(=5E) = o

So we can write C(04,05) = F(%tf2) _ p(latiey, Taking a partial derivative gives
2 2

0C(02,08)/00 = F'("E220)1/2)(00%/08.) ~ /(P91 /)1 + 0000,
= (/20800 (e 52y - fatle : oy _ e
/)P (A

< 0.

Thus, in all three cases, C(04,05)/004 < 0. So C(-,0p) is strictly decreasing. A
similar argument applied to candidate B shows that C(8, -) is strictly increasing. So

Condition 2.1 holds. ]

It is much easier to show Condition 2.2 holds. If the entrant chooses a position to

the left of the established candidate, then

90+0A

pc(0a,0p,0c) = F( )-
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Since this is increasing in ¢, lc must equal 84 — . So (64,05) = 64 and
L(84,08) = F(04).

It is immediate that Condition 2.2 holds.

Finally, to confirm Conditions 2.3 and 2.4, we use
Lemma 2.6 Conditions 2.3 and 2.4 hold.
Proof: We begin by noting that

9A+CE)
2

0A+€E’
2

pa(04,08,c.(04,05) = F(

:F(

where §¢ is as defined in the proof of Lemma 2.5. So

Opa(04,08,c.(04,08))
004

- F'(HA—;F@*Q)Q /2)(1 + 86%/96,4).

Differentiating the first-order condition gives 90% /004 = 2F" (g%e*c) J(F" (Q-BJZ“—{)*C) -
F" (fﬁ;—LZQ)) With the assumptions of Condition 2.3, both the denominator and nu-
merator are negative. So 86%/00,4 > 0. Thus,

6pA(0A7 0—B7 Ca(gAa G_B))
00 4

04+ 05
2

= FY )(1/2)(1 + 865/00.4)

> 0.

This satisfies the first half of Condition 2.3. Next we look at pa(-,0p,1.(04,05)).
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From above, we know that [, =84 —¢e. So

7 : 04+0
Pa(+05,1:(64,05)) = F(Z5—) = F(6a—2).
Thus,
0 ~,(§ (0 ’é 04+ 0 /
pa( Ba(9 (04,05)) = (1/2)F A . B)*F(QA—g—).
A

As g is in some neighborhood of 0%, we have that the partial derivative described
above is negative. So Condition 2.3 holds. A similar argument for candidate B shows

that Condition 2.4 holds. | |

We now know that there is an equilibrium described by

L(0%,05) = C(64,05) = R(0},05).

Of course, as Weber (1992), Theorems 2.6 and 2.8, has shown, this condition is

equivalent to

F(0%) =1-2F(1/4+6%/2) and 05 =165

Thus, the usual Palfrey equilibrium emerges as a special case of the general model we

have developed.

Application to Multiple States

We are now ready to model some specific institutional features. Instead of represent-
ing voters by a density on [0, 1], suppose we have groups of voters distributed over

[0,1], [=6,1 8], and [6,1 + 8] according to distributions Fy(z), Fy(z), and Fy(z). As
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we are thinking of states in the Electoral College, we will denote the voters in the
first interval as state 1, those in the second as state 2, and those in the last as state
3. In order to simplify the analysis, we assume that the voters in each interval have

the same distribution F'(z). Formally,

Fi(z) = F(z)
Fy(z) = F(z+6)

Fy(z) = F(z - 96).

We also set © = (6,1 — §). This restricts the policy positions of candidates to the
(interior) overlap area of the three states. We discuss relaxing this restriction later
in this section.

Although the states in American Electoral College system have varying weights,
we simplify the analysis by requiring a candidate to receive a plurality in a simple
majority of states in order to be elected. We assume that candidates maximize the
probability of winning the election. This is the same as maximizing the probability
of a plurality in at least two states, given the election rules specified above. Let the
probability that candidate k receives a plurality of the votes in state ¢ be denoted pi.
Then we have the following expression for the probability that a candidate wins the

election:

Lemma 2.7 The probability that candidate k wins the election is pip} +pip} +pip} —

2pipipd.
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Proof:

P(candidate k wins election) = P(k wins 1, 2, and 3) + P(k wins 1 and 2)
+ P(k wins 1 and 3) + P(k wins 2 and 3)
= piPiPi + Pepi(1 = p}) + papi (1 — 1)
+ pipi(1 — 1)

= ppi + PLDE + PEDE — 2pipivE. N

Adopting the view that there is one voter in each state with an unknown ideal
point, we suppose, as in the Palfrey model, that pi = v, where v} is the vote share
that candidate k receives in a state i.

We have already derived vy, for state 1 (the unit interval). Similar expressions are

obtained for states 2 and 3 by substituting F}, for F":

F2(0A+0C> if9A<90 < g
FQ(%—;G—B) if 04 <0p < 0c

vi(eAaerec) = 9 FQ(QA;QB) — F2(Q_C_'_'§"9_A) if HC < 9A < HB

%Fz(h—;—qg) if0, =0p < ¢
L %(1—F2(QC;¢)) if 90 <9A=9}3
(11— Fy(fottn) if 04 < ¢ < 05
1—F2<0_A‘:£@) if90<9A<(93

v5(04,05,00) = § Fy(feibe) — py(2atin) if 0, < 0y < Oc
%F2(Q'B;;ﬁ) if 04 =05 < Oc

(1= Fy(fefley) if bc <04 =0p
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F2(QQ'—;0_A) if (90 < 9,4 < 03
ve(0a,05,0c) = § Fp(letin) _ Fy(latle) if g, < 6, < O
1_F2(Q§:2ﬂ9_c) if9A§93<90.

Because Fy(z) = F(z + ), we can rewrite these functions as

([ F(latic 4 g) if 4 < 6 < Op

F(fatts 4 g) if 04 < 0p < Oc

va(04,08,00) = { F(%atl 4 §) — F(feta 4 6) if 6o <04 < Op
%F(—(’A;00+6) if 04 =0p <0c

| 31— F(fetls 4 g)) if fo < 64 = 05

( 1—F(2Q;ﬂ+6) if 04 <00 < 0p
I—F(%-i-é‘) if 0c <84 < 0p

vg(04,08,00) = { F(2t 1 §) — F(L4H2 1 §) iff, < 05 < Oc

LR (%t 4 6) if 64 =0p < 0c

| 3(1— F(ftts 4 §)) if 0o < 04 =05

F(fetfa 4 ¢) if 0c < 04 < 0p

ve(04,0p,00) = { F(%etln 4 6) - P(fatbe 4 6) if 6, < e < Op
1—F(%+5) if 04 <flp < 6.

Of course, similar expressions are obtained for state 3, by replacing +6 with —§.
We will first concentrate on the entrant’s probability of winning the election, given

Lemma 2.7. It can be expressed as
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F(OC;—GA)F(QC;—OA +5) —}—F(OQ;“)

F(HQ;‘OA _5)+F(50L‘59A+5)F(%—6) ifc <04 <0p

_2F(90~2FHA )F(0c42-9A + 5)1?(20;;24 —6)

(F(Pe3tm) — F(Pagle))(F(%4in + 6)

_F(Qé_#g + 5)) + (F(9c~2f-913) _ F(GA;GC))
(F(%tl — §) - F(latle _g)) 4 (F(%HB 1+ §) if 04 < 0 < Op

~F(fafle 4 §))(F(letle - §) — F(latbe )

~2(F(fjle) — F(lagte))(P(230n + )

~F(%agle 4 5)(F(%efle - 5) - F(La3le — )

(1 - F(fede))1 - (%% + 6))

+(1 - F(2242))(1 - F(feffe —4))

+(1 = (8l 4 6))(1 - F(%atle ) if 04 < 05 < 6c
—2(1 - F(%84fe))(1 - F(%efbe 1 5))

(1 - F(%efa —5)).

We must check that this horrendous expression satisfies Assumptions 2.7 and 2.8

and Conditions 2.1 and 2.2. It is clear that Assumption 2.7 holds and careful inspec-

tion of the expression for pc shows that Assumption 2.8 holds if F(z) is symmetric.

We now turn our attention to Condition 2.2. In order to evaluate L(f4,0p), consider
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pc when 0o < 04 — ¢. Taking a partial with respect to 4 gives

8pc/89A = %{F'(mAC)[F(mAc -+ (5) -+ F(mAC — (5) — QF(mAC + 5)F(mAC — 6)]
-+ F'(mAC + 6)[F(mAc) + F(mAC — 5) — 2F(mAC)F(mAC — 6)]

+ F'(mac — 8)[F(mac + 6) + F(mac) — 2F (mac + 8)F(mac)]}

where mc = (04+0¢)/2, the midpoint of candidate A and C’s position. Applying the
fact that F'(z) is strictly increasing and thus F”(z) > 0 and the fact that 0 < F(z) < 1
implies F(z) + F(y) — 2F(z)F(y) > 0 for  # y,” we conclude that dpc/004 > 0.
Thus, if the entrant must enter to the left of the established candidates, she will
choose a position as close to them as possible. This implies that I.(04,05) = 04 —¢

and [(64,0p) = 64. From this, and the expression for pco, we can see that

L(64,08) = F(04)F(04+6)+F(04)F (04— 96)

+F (04 + 6)F (64 — 6) — 2F(0)F (04 + 6)F (6.4 — 6).

Taking a partial derivative with respect to 4 and proceeding as before shows us that
L(04,0p) is strictly increasing. Thus, part 1 of Condition 2.2 holds. Part 2 follows by
symmetry and parts 3 through 6 are obviously satisfied. Thus, Condition 2.2 holds.

We now consider Condition 2.1. Lemma, 2.5 says that Condition 2.1 holds for each

state. By comparing the expressions for p¢ in the single state model and the multiple

"This is proved as follows. Since F(z) is increasing, (F(z) — F(y))? > 0 for = # y. So F%(z) +
F?(y) — 2F(2)F(y) > 0. But 0 < F(z) < 1Vz implies F(z) > F?(z)Vz. Thus, F(z) + F(y) —
2F(z)F(y) 2 F(z) + F(y) — 2F(z)F(y) > 0.
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state model, we can verify that

C(84,08) = Ci(04,08)C2(04,08) + C1(04,05)C3(04,05)

+ C3(04,08)C3(04,08) — 2C1(04,08)Ca(04,05)C3(04,05)

where C;(04,05) is the value of C(04,05) in state i. Fixing fp, we take a partial

derivative with respect to §4. We get:

80(0A,03)/80A = C{(QA,HB)[CQ(HA,HB) —+ Cg(HA,QB) — 202(0A,03)C’3(9A,63)]
+ C5(04,08)[C1(04,08) + C3(04,08) — 2C1(04,08)C3(04,635))

+ C5(04,08)[C1(04,08) + C2(04,08) — 2C1(04,05)C2(04,03)]

By Lemma 2.5, Cj(04,05) is negative, and C; + Cy — 2C;Cy is positive because
0 < C; <1 and C; # Cy. Therefore, dC(04,65)/804 is negative. So C(-,0p) is
continuous and strictly decreasing. In other words, part 1 of Condition 2.1 holds. A
similar argument proves that part 2 holds. And clearly parts 3 and 4 hold. So we
have confirmed both Conditions 2.1 and 2.2.

Now we can invoke Lemma 2.4 to show that there exists a unique pair (6%,60%)

that satisfies

L(0%4,05) = C(0}4,05) = R(0}, 0p).

To show that this pair is also an equilibrium, we must check Conditions 2.3 and
2.4. Lemma 2.6 shows that the conditions are true in each state. Once again, by

comparing the expressions for p4 in the single state model and the multiple state
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model, we can verify that

pa(fa, 0p, ce(8a, 93)) = PaDa2 +Pa1Pa3 + Pa2Das — 2pa1DAa2P 43

where pa; = pa(0a,0p,c.(04,05)) in state i. Now we take a partial derivative with

respect to 04. We get

Opa(04,08,c.(04,085))/004 = Da1[paz + Pas — 2D 42D a3]

+ Pluo[Par + pas — 2paipas) + Pas[par + Paz — 2pa1P a2)-

By Lemma 2.6, py; is positive, and paj+pax —2p4;pax is positive because 0 < pa; < 1
and pa; # pax. Therefore, Opa /00, is positive. So pa(f4, 05, c.(64,05)) is continuous
and strictly increasing. A similar argument proves that p4(-, 0,1 (04,0z)) is strictly
decreasing. So Condition 2.3 holds. By symmetry, the analogous argument confirms
Condition 2.4.

By Theorem 2.3, therefore, the unique pair (6%, %) that satisfies

L(6%,05) = C(04,05) = (04, 03)

is a e-distinguishable equilibrium.

Equilibrium in Multiple States

Now that we know an equilibrium exists, we would like to understand more about it.

Our first result is the following:

Theorem 2.4 As 6 — 0, the equilibrium of the multiple state model converges to the

equilibrium of the single state model.
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Proof: The equilibrium in the multiple state model is the pair (6%, 0%) that satisfies
L(0%4,05) = C(034,05) = R(0%,05).
From the expressions for L(84,0p) and C(04,05) above, we see that
lim L(6.,65) = 3(L1 (04, 05))° = 2(L1 (64, 6))°
and
lim C(04,05) = 3(C1(0a, 05))> — 2(Cy(84,08))°,

where L; and C; are the L and C functions of state 1. But the equilibrium in the

single state model satisfies
Ll(HA, 03) - CI(HA, QB) = R1(9A7 03))
so it must also satisfy

3(L1(04,08))% — 2(L1(04,05))* = 3(C1(84,05))% — 2(C1(04,05))°.

This means that as 6 — 0, the equilibrium of the multiple state model converges to

the equilibrium of the single state model. [ |

Thus, when the states converge to just a triplicate of the single state model, the
equilibrium converges to the single state model’s equilibrium. This is reassuring; the

limiting case equilibrium is as it should be.
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Example: Uniform Density of Voters

In order to illustrate the other interesting feature of the equilibrium, we assume that
the density of voter ideal points is uniform. Formally, we suppose that F(z) = z.
This allows us to explicitly solve out the equilibrium for a range of § values.

It should be noted, however, that this example illustrates some additional difficul-
ties that arise in the case of increasing diversity of voter ideal points among the states.
Recall that in the preceding analysis we assumed that the policy space available to
the candidates, ©, was the (interior) overlap area of the three states, (6,1 —§). If the
states have a significant divergence in voter ideal points, this overlap area could be
small. It may be the case that a candidate may prefer to locate outside this overlap
region. We allow for this possibility in the computations that follow. We also analyze
the case of an empty overlap, which occurs if § > 1/2. If § > 1, then no two states
intersect and it is obvious that if 84, = 0 and 63 = 1, the entrant cannot win no
matter where she chooses to enter.

It is clear that there is no equilibria in which 84 < 0.8 So, for all §, we have 64 > 0

and

L(64,08) = L1(84,08)La(04,08) + L1(04,05)L3(04,08)
+ Lo(04,08)L3(04,08) — 2L1(04,08)L2(04,085)L3(04,05)
= QA(QA + 5) + 9A(max[9A — 6, 0])

+ (04 + 8)(max[fa — 6,0]) — 204(64 + 8)(max[6,4 — 6,0])

8For all 4 < 0, L(64,05) = 0, and thus candidate A could safely gain by moving back toward
the center.
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and

C(04,08) = C1(04,08)Co(04,08) + C1(04,05)C3(04,05)

+ C(04,08)C5(04,08) — 2C1(04,05)C2(04,08)C3(04,03),

where

0y + 0
C’l(eA,GB):min[ C+ B,

1] — max| 5 *,O]

2
Cs(84,08) = max[min[ec ; HB, 1+ 6] — max| A ; 90, 4], 0]
* 9*
C3(04,08) = max[min[ec ;— 93, 1-46] - max[eA * ¢ —é],0].

The optimal entry location, 6%, depends on the configuration of states, as determined
by 6. For 6 < 1/2, it is clear that by the symmetry of the equilibrium, c.(04,0p) =
1/2 = c(64,0p). If there is no overlap among the three states, then locating at 1/2
may no longer be optimal for the entrant. For example, if § > 3/4, then, as 6,4 > 0,
there is no chance that the entrant will win two or more states by locating at 1/2.
In this case, the entrant should pick a location just inside one of the two established
candidates’ positions. In fact, for all § slightly larger than 1/2,° ¢.(04,05) = {04 +
€,0p—¢} and thus 05 = c(04,0p) = {04,05}. In addition, for all §, symmetry implies
that, in equilibrium, 84 = 1 — . By using these facts, we can solve the condition
L(64,08) = C(04,05).

For § < 1/2, we cannot explicitly solve this expression, but we can calculate a

real solution which is graphed in Figure 2.1 on the following page. For § > 1/2, when

9The exact value at which the entrant should switch to locating near one of the established
candidates’ positions is approximately § = .525.
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Figure 2.1: Established Candidate Positions and Electoral Diversity

0% = {04,05}, we can solve this expression, as follows:

L(04,05) = C(04,05)
0a(0a+6) = (1/2-04)(1 =6 —04)
30,=1-6

0a=(1-0)/3

This solution is also incorporated into Figure 2.1. In the figure, the horizontal axis
measures the diversity parameter § and the vertical axis graphs 84 and 8, the candi-
dates’ equilibrium policy positions. As the figure illustrates, the equilibrium positions

for the established candidates initially shift toward the center as the level of diversity
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in the states increases, but then shift back towards the edges of the policy space
with further increase of . Specifically, 4 increases with § until a value 6* at which
04(8*) = 6* = 0.265. In this diversity region, with a uniform density, the probability
remains constant in the center and the probability available in the extreme positions
decrease. This motivates the two established candidates to shift toward the center as
the threat of entry to the sides diminishes. Above this critical value, candidate posi-
tion decreases as § continues to rise due to the shrinking vote share available to the
center. Eventually, as § goes to 1, the established candidates locate at the extreme
edges of the center state, preventing the entrant from having any chance of winning
the election.

This is an important example because it indicates that some levels of diversity in
the electorate can force the established candidates to adopt more, not less, similar
positions. However, it should be noted that this analysis is based on the special case
of the uniform density, and not on an arbitrary F(z). The extent to which the results

differ for other distribution functions is an area that remains open.

Interpretation of Voters

As we discussed previously, the standard approach admits two distinctly different
interpretations with regard to the voters. The first view is that there are, in fact, an
infinite number of voters distributed according to F'(z). As an empirical matter, this
means the entrant has a zero probability of winning the election. As a game-theoretic
matter, this means that the candidates have perfect information about both the
voter’s location and preference. The second view is that there is a single voter with
an unknown ideal point. This creates a positive probability that the entrant wins

the election, and it introduces maximal uncertainty for the candidates. However,
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the probability that an entrant wins may be too large in this interpretation. For the
standard model with a uniform distribution, for example, the entrant has a one fourth
probability of winning; a value higher than we may think is empirically supported.

In light of this, we would like to find an interpretation that predicts a positive,
but small, probability of the entrant winning the election and also incorporates uncer-
tainty into the candidates’ decisions. We can achieve these aims by supposing that,
instead of a single voter with an ideal point drawn from F'(z), the model has a large,
but finite, number of voters, each with an ideal point drawn from F(z). In this case,
the candidates do not precisely know which voters will be casting ballots, and there
is a small chance that the set of voters drawn will be clustered near the entrant’s
position and vote her into office.

Luckily, for simple one-dimensional models (such as Palfrey’s entry model), maxi-
mizing the probability of winning the election is equivalent to maximizing the proba-
bility that a randomly selected voter will vote for you, which is equivalent to maximiz-
ing vote share in the traditional sense. Thus the equilibrium analysis will not change
with this alternative view. However, in the multiple state models of the previous
section, this equivalence does not persist. Indeed, it is easy to imagine situations in
which a candidate may choose minimal support in one state in exchange for a larger
probability of receiving a plurality in the other two states. This added strategic
component greatly complicates the analysis, as we shall soon see.

In addition, such a view creates several theoretical challenges that must be dealt
with. First of all, since the set of voters can be drawn in a multitude of different ways,
it is difficult to calculate the probability that a given candidate wins the election.
Indeed, with even the smallest of support, a candidate can find some selection of
voters that will choose to elect him. Second, the probability of election can be highly

variable. When the electorate is large, the probability of winning is much higher if
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you have the sole largest support than if another candidate has a larger support than
you. Thus, a small shift in a candidate’s position can create large changes in the
probability the candidate is elected. We will attempt to deal with these difficulties in
the appendix.

Some results on approximation of the probability of winning are contained in the
appendix. While much work remains to be done, we have derived an upper bound on
the probability that a third-ranked candidate can win the election. This is presented

in
i o (S )
Lemma 2.8 If pl, < py and pl, < pl, then pc < e 2 &k %~ 7,

While this is an upper bound, the method of proof suggests that it may be legitimate
to use 1/3 or m as an approximation of probability a third-ranked candidate wins the

election. Clearly this is a fruitful area for further research.

2.4 Conclusion

The study of multicandidate elections is a crucial part of political science. While dual
candidate contests have been modeled by the Median Voter Theorem, the question
of third party entry has been largely ignored. Moreover, models that include insti-
tutional features in this context are indeed rare. This chapter has addressed several
issues relating to modeling institutional features in multicandidate elections. First,
we have shown the equivalence of three alternative equilibrium concepts. Second,
we have developed a general framework for analyzing three candidate competition.
We have applied this technique to a model motivated by the American presidential
process and discovered that, in one case at least, increasing diversity in the electorate

causes the established candidates to initially shift toward more moderate positions
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and then back toward more extreme positions. Finally, prompted by our analysis
of multiple state competition, we have suggested an alternative interpretation of the
voters in the standard model. Thus, we have made progress in the area of modeling

institutional features and have identified several areas that remain to be explored.

Appendix: Approximation Results

This section addresses the mathematical details of the alternative view of voters
presented above. We assume that the electorate consists of N voters with ideal points
randomly distributed according to F'(x). The candidates know the distribution F', but
not the actual selection of ideal points for the NV voters. In order to find the probability
of a candidate k£ winning the election, the logical place to begin is the probability that
a randomly selected voter will vote for k, given the candidates’ positions. Since the
voters are sincere, a random voter will vote for the candidate with position closest
to the voter’s ideal point. Thus, the probability a random voter votes for k is the
probability that that voter’s ideal point is closest to candidate k’s position. But this
is precisely what we termed candidate k’s “vote share” in the first section. Thus,
much of what we derived before will be applicable to the current problem.

So if we denote the probability that a randomly selected voter j will vote for a

candidate k, given candidate positions 84, g, ¢, as pi(&A, 0g,0c), we have that:

P (04,08,00) = va(84,08,00)
p]é(eAyeBaec) = UB(9A79379C')

p]é(HA,eB,Hc) = UC(QA,GB,QC)-

Also note that for fixed thetas, 0 < p{c < 1, and pil + p% + pé = 1. So for each of
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the N voters in the electorate, the probability they cast their vote for candidate k
is pi. Probability theory tells us that in this situation the number of votes cast for
each candidate can be described as a multinomial distribution or, more specifically, a
trinomial distribution.!® If we denote the number of votes that candidate k receives

as ng, then ny + np +ne = N and the likelihood is given by

N! ; ; ;
P[N4y=n4,Ng =np,N¢ = ncl = —~—,—(Pf4)”" (pJB)"B (P]c)nc

n A!n B.’nc!

where N is the random variable describing the number of votes cast for candidate k.
With this expression, we can specify the probability that candidate k wins a plurality,

which we denote py:!?

Pk = > P[N4 = na, Ng = np, N¢ = n¢]

na,ng,ncng>nlEk

Unfortunately, this expression is very difficult to evaluate and provides little guidance
in linking candidate positions with probabilities of winning.
The most useful line of analysis in this regard is to approximate the trinomial

with a more tractable expression. It is possible to achieve this with a x? distribution.

Lemma 2.9 P[N4 = na, Ng = np, N¢ = n¢| = (2rNp),plypl) 2 exp[—3X?], where
X? = >k % is approzimately distributed as x? with 2 degrees of freedom.
k

Proof: See Johnson and Kotz (1969), p. 285. |

This may not seem to be much of an improvement; we have simply found an

10See Dudewicz and Mishra (1988), p. 112

1This is the same notation used to describe the probability that candidate k wins the election.
In the standard model, winning the election is equivalent to winning a positive plurality, but in the
multiple state model it is not. In the latter case, we will denote the probability that candidate &
wins a plurality in state ¢ as pl.
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alternative expression for the probability of a particular set of votes. But this ex-
pression can be used in a more creative way. Fix a particular distribution of votes
to candidates, fi4,7ip, and fic. Then vote outcomes that are less likely than this
have higher values of X?, and vote outcomes that are more likely have lower values
of X2. Therefore, this expression allows us to argue that the probability of getting
an outcome that is equally or less likely than a given outcome is the probability that
X? is higher than the given value of X2. This allows us to get a rough approximation
of broad sets of vote distributions.

Notice that X? has the form of a sum of square deviations. We actually must be
concerned about two things. We must be satisfied that the y? random variable is a
good approximation of X? and, second, that we have an accurate expression for the
x? random variable. Luckily, in our case, we have a closed form expression for the

density of the x? random variable.

Lemma 2.10 A random variable Z with a x* distribution with 2 degrees of freedom

has density

le=2/2 f0<z< o0
fz(z)=1 *

0 otherwise

Proof: Immediate from the definition of a x? distribution. See Dudewicz and Mishra

(1988). ]

; ; ; : Ny 1
Lemma 2.11 If p}, < p’y and p}, < p%, then pc < e 2 (2 5 1),

Proof: The most likely distribution of votes in which C wins the election is ny =
N/3 41, ng = N/3 and nc = N/3. Thus, the set of all vote distributions in which

C wins the election must be a subset of the set of vote distributions that are equally
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or less likely than this. That is

N/3——Np2:)2]
Nyt
1
=PI 2 N e - 1))
x Pk
N 1
= exp|—— —_— =
T

Prob[ C wins] < P[x* > Z (
k

> 1)].
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Chapter 3

Stability, Polls, and Duverger’s

Law

3.1 Introduction

How electoral laws affect the number and strength of political parties has been the
focus of a great deal of work in political science. A centerpiece in this research effort
is the famous work of Duverger (1954) on the effect of election type on political com-
petition. There are two main statements to consider. The first, which Riker (1982)
terms “Duverger’s Law,” is the proposition that “the simple-majority single-ballot
li.e., plurality] system favors the two-party system.” (p. 217) In the next sentence,
Duverger writes that “of all the hypotheses that have been defined in this book, this
approaches the most nearly perhaps to a true sociological law.” Indeed, Riker has
defended Duverger’s Law as an example of the cumulative progress of political sci-
ence. The second proposition, termed “Duverger’s Hypothesis” by Riker, states that
“the simple-majority system with second ballot and proportional representation favor

multi-partism.” (p. 239)
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We will focus attention on Duverger’s Law, the more widely studied of Duverger’s
propositions. It has a rich intellectual history,! which dates back to 1881 and an

English barrister named Henry Droop who wrote

. the only explanation which seems to me to account for [two-party
systems| is that the two opposing parties into which we find politicians
divided in each of these countries [United Kingdom, United States, etc.]
have been formed and are kept together by majority voting [what we now
call plurality voting.] (quoted in Riker (1982), p. 756-757)

Since Droop’s time, a broad range of research has touched on Duverger’s Law.
Several excellent reviews cover both the empirical testing of the Law and the theo-
retical explanations for its widespread applicability (Cox 1991; Duverger 1986; Riker
1982, 1986). It has garnered a good deal of empirical support, the best example
of which remains the notable book by Rae (1967). From a theoretical perspective,
Duverger offered the initial justification of his Law. He reasoned that the field of
parties is trimmed to just two by the forces of “fusion” and elimination. Consider a
third party (or candidate) receiving a small but significant number of votes. Facing a
bleak electoral future, it may choose to ally itself with or even merge or “fuse”? with
one of the larger parties in exchange for consideration in other districts or a share of
the benefits of office. This is the result of a strategic calculation made by the party
leaders. If the third party does not go the route of fusion, it runs the risk that its
voters will gradually desert it and the party will fall victim to elimination because of

lack of support. This alternative is the result of strategic calculations by the voters.

'As Riker (1982) notes: “It is customary to call the law by Duverger’s name, not because he
had much to do with developing it but rather he was the first to dare to claim it was a law. The
memorial honors, therefore, a trait of character as much as a scientific breakthrough.” (p. 754)

?Duverger’s use of the term “fusion” to describe mergers between political parties is sensible, but
it runs counter to its common usage among American political scientists as “the joint sponsorship
of a candidate by two or more parties.” With this meaning, “fusion” is offered as an ezception to
Duverger’s Law in which multiple parties persist in plurality rule districts. Examples are elections
in the Midwest and West during the late nineteenth-century (Argersinger 1980) and contemporary
New York (Cox 1987).
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Duverger continues his reasoning for his Law: “Elimination in this sense (the
second way in which bipartism is restored) is itself the result of two factors working
together: a mechanical and a psychological factor.” (p. 225-226) The mechanical
effect refers to the exaggeration of the success of large parties in excess of their
electoral margin of victory.® The psychological factor is the tendency of voters not to
vote for parties that have no chance of winning. As Duverger puts it:

In cases where there are three parties operating under the simple-majority

single-ballot system the electors soon realize that their votes are wasted

if they continue to give them to the third party: whence their natural

tendency to transfer their vote to the less evil of its two adversaries in

order to prevent the success of the greater evil. This ‘polarization’ effect

works to the detriment of a new party so long as it is the weakest party

but it is turned against the less favoured of its older rivals as soon as the

new party outstrips it. (p. 226)
This notion that unpopular parties do not receive votes because voters do not want to
waste their votes is well known (Downs 1957; Schattschneider 1942). In 1869, Droop
explained the concept this way:

As success depends upon obtaining a majority of the aggregate votes of all

the electors, an election is usually reduced to a contest between the two

most popular candidates or sets of candidates. Even if other candidates

go to the poll, the electors usually find out that their votes will be thrown

away, unless given in favour of one or other of the parties between whom

the election really lies. (quoted in Riker (1982), p. 756)

Droop’s comments foreshadow the explanation of strategic voting offered by de-
cision theory (Black 1978; Gutowski and Georges 1993; McKelvey and Ordeshook
1972). In this literature, an individual voter in isolation makes a voting decision

based on exogenously determined probabilities of certain outcomes. If the voter’s

favorite candidate has a poor enough chance of winning, the voter may decide to vote

3In American presidential election, the Electoral College has this effect. See Chapter 1.
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for her more favored of the two viable candidates, thus avoiding a “wasted” vote. The
logical next step is to ask if the exogenous probabilities can be made endogenous; is
strategic voting supported even if voters account for the (possibly strategic) votes of
others? Cox (1987a) was the first attempt to use this approach to analyze strategic
voting in elections. By using the concept of Bayesian equilibrium (Harsanyi 1967-
68), Cox was able to “close” the model;* “by using an equilibrium concept one can
take account of the logical connections that exist between preferences, beliefs about
others’ preferences, voting intentions, and beliefs about others’ voting intentions.”
(p. 16) The paper’s main contribution is to show that strategic voting is the norm
rather than the exception and that this phenomenon tends to help a leading candi-
date and hurt a trailing candidate. Palfrey (1989) extends this approach to prove
a much stronger result. Using a Bayesian game much like Cox’s, he shows that as
the size of an electorate grows without bound, the electoral support of all but the
two leading candidates is completely eroded. Palfrey argues that, except for some
knife-edge cases, “in equilibrium, the share of the vote for the third party declines to
zero as the number of voters increases.” Thus, Palfrey provides a strong theoretical
argument in support of Duverger’s Law.

There are several other equilibrium models of Duverger’s Law that we will briefly
mention.® Riker (1976) adds “disillusioned voting” to a model of sophisticated voting
to explain the case of India. Wright and Riker (1989) compare plurality and runoff
systems using theoretical models and empirical evidence. Feddersen (1992) proposes
a model with several unique features. Unlike Cox and Palfrey, Feddersen examines a

complete information game with costly voting. This cost of voting motivates voters

“Ledyard (1984) first proposed such a “general equilibrium” model of voting, but he did not
consider multiple candidates.
®Much of this literature is surveyed by Cox (1987, 1991).
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to avoid wasting their vote on a hopeless candidate. Thus, in equilibrium, only two
two parties receive votes. Finally, Cox (1994) extends the Cox-Palfrey model to deal
with multimember districts. He is able to prove the “M + 1 rule” which states that
strategic voting in M-seat districts has the effect that exactly M +1 candidates receive
votes in equilibrium.

Myerson and Weber (1993) argue that Palfrey has overstated his case in “proving”
Duverger’s Law. They construct a quasi-Bayesian “voting equilibrium” in which all
three candidates receive votes under plurality rule, in violation of Duverger’s Law.
They also show that this equilibrium is not just a knife-edge case, as claimed by
Palfrey. They conclude that “Duverger’s Law cannot be derived exclusively from
analyses of voting equilibria.” In addition, Myerson and Weber argue that “any
derivation of Duverger’s Law would seem to require some additional assumption of
dynamic stability or persistence to eliminate equilibria of [this] type ... ” In this
chapter, we show that analyzing a dynamic process involving public opinion polls
restores Duverger’s Law by eliminating the “non-Duvergerian” equilibria.

The use of public opinion polls as a vehicle for information in the model links
this work to the vast literature on public opinion polls, which we cannot hope to
survey here. Indeed, polls have long been used as a tool to measure public opinion
and other variables of interest to political scientists. But the opposite effect, in
which poll results change voters’ beliefs and thus their decisions, has received less
attention in the literature. The possible “bandwagon” and “underdog” effects of
election prediction via public opinion polls were first discussed by Simon (1954).6

McKelvey and Ordeshook (1985a) offer a model in which straw polls serve to inform

Simon may have been the first scholar to analyze the possibility of “bandwagons,” but ever since
the first polls were taken people have recognized the possibility that their use could affect outcomes.
See Smith (1990) and West (1991).
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the electorate about the policy positions of candidates. Cukierman (1991) shows that
pre-election polls can amplify the effects of shifts in ideology in the electorate.

In this chapter, we examine how public opinion polls can coordinate voters on
particular Duvergerian equilibria and argue that coordination on a three-party equi-
librium is impossible. The first section sets up the model and introduces the relevant
concepts and notation for the chapter. The next section shows that equilibria exist
in the model that violate Duverger’s Law. The third section introduces a dynamic
process involving a sequence of polls and shows that the non-Duvergerian equilibrium
is unstable. The final section illustrates this instability and discusses how polls can

act as a coordination device for voters.

3.2 The Model

In this section, we develop the model we will use to examine the stability of non-
Duvergerian equilibria in multi-candidate elections. By way of an example, Myerson
and Weber (1993) have shown that such equilibria do exist and are immune to small
changes in the parameters. The model described here is an extension of this example
to the Palfrey model, in order to show that the same result holds. We can thus view
this model as a hybrid of the models developed by Palfrey (1989) and Myerson and
Weber (1993). The notation will follow that of Palfrey (1989).

There are three candidates, labeled A, B, and C and n voters. Each voter in the
electorate has a preference ordering over the candidates that can be represented by
a Von Neumann-Morgenstern utility function. These preferences are referred to as a
voter’s type. In the general model of Palfrey (1989), there are six groups of similar

voter types that occur with positive probability, with each group of types correspond-



60

ing to one of the six possible (strict) preference orderings.” In addition, within each
group, the utility of the second-ranked candidate is distributed according to some
cumulative distribution function. In our model, we pick a particular specification of
preferences suggested by an example examined by Myerson and Weber (1993).

We suppose that the electorate is composed of three groups of similar types. Two
of these groups involve a uniform distribution over the utility of the second most
preferred candidate, while the third is a “degenerate” group involving a single shared
type representing one specific preference ranking.® So the electorate is described by
three groups of voters and three probabilities that a randomly selected voter belongs
to that group. The first group consists of voters who strictly prefer candidate C to
the other two candidates, about whom they are indifferent. The probability a voter
belongs to this group is denoted g which, following Myerson and Weber (1993),
we assume is equal to .4. The second group consists of voters who (strictly) rank
candidate A above candidate B in their orders, and who prefer either A or B to C.
Specifically, we suppose that the utility values for the three candidates are normalized
so that the most-preferred candidate, A, has utility 1, the least-preferred candidate,
C, has utility 0, and voter a’s utility for candidate B is v,. We refer to this group
of voters as AB type voters, and a voter who assigns utility v € (0,1) to B (the
second-ranked candidate) as a AB-v type voter. We denote the probability that a
randomly selected voter will be a AB type voter as gap. We assume the utility values
v for candidate B for voters in this group are distributed uniformly on (0,1).° The
last group is made up of BA type voters, with utilities v also distributed uniformly on

(0,1). That is, voters in this group have a (strict) preference ordering that ranks B

"These orderings are ABC, ACB, BAC, BCA, CAB, and CBA.

8Thus, we do not impose Palfrey’s assumptions that “all preference types are possible” and that
the “distribution of preferences has no mass points.”

°In the notation of Palfrey (1989), we are assuming that F4p(-) is uniform.
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Voter Utility for candidate Prior

Type A B C  Probability
AB 1 v~U(0,1) 0 gup=.3+4c¢
BA v~ U(0,1) 1 0 gga=.3—c¢
C 0 0 1 dc = 4

Table 3.1: Voter Types in the Electorate

above A above C' and have utilities for A distributed uniformly on the unit interval.
The probability that a randomly selected voter belongs to this group is denoted gp4.
In order to show the general existence of non-Duvergerian equilibria in this setting,
we suppose that gap = .3 + € for some ¢ > 0, and thus g4 = .3 — . We summarize
the makeup of the electorate in Table 3.1. We denote the set of possible types by T.

Formally, we define

T = ({4B} x (0,1)|J ({B4} x (0, 1) | J ({eh).

The probability of a particular type ¢t € T, is given by a probability measure P which
depends on gap, g4, and qc.

We have thus far laid out the distribution (in a probabilistic sense) of voters in
the electorate. We now turn to formalizing plurality elections as a game among the
voters. We suppose that each voter simultaneously decides which candidate to vote
for, taking other voters’ actions as given and maximizing expected utility. Voters
receive the utility value of the candidate that is elected. In case of a tie, we assume
that ties are broken alphabetically, i.e. A beats B in a tiebreaker.!® Implicit in this

description of the available actions is the assumption that all voters cast a ballot;

10The results in this chapter do not rely on the particular choice of a tiebreaking rule. The rule
we work with is computationally easiest.
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voters are not permitted to abstain.

Rather than assume that each voter has complete information about the prefer-
ences of other voters, we suppose that voters possess incomplete information about
the types of other voters. Voters have only (probabilistic) beliefs about the distribu-
tion of preferences in the electorate. Specifically, we assume that each voter knows
their own preferences and believes that the preferences of the other voters are inde-
pendently and identically distributed according to the true distribution described in
the earlier paragraph. This is the standard assumption of common priors in Bayesian
games.

In this Bayesian framework, we allow voters to choose actions that may depend
on their type. Therefore, we describe voter 4’s strategies as (measurable) functions of
the form o : T — {A, B,C}. These strategies represent the possible beliefs of other
voters about what voter ¢ will do, depending on 4’s type. In order to emphasize the
anonymity of mass elections, we consider only symmetric Bayesian equilibrium. An
equilibrium is symmetric if voters with identical types act identically. In other words,
voters subscribe to a common function ¢ in equilibrium. This common, symmetric
strategy is, in the language of Bayesian games, common knowledge.

In order to analyze the symmetric Bayesian equilibria in the game, we must char-
acterize the best response of a voter if the other voters, distributed according to P,
all use a strategy o. Given the symmetric nature of the strategy, each voter faces an
identical problem posed by the other n — 1 voters, in the sense that the distribution
of votes (of the other n — 1 voters) is a repeated trinomial experiment, which is de-
termined by o and independent of 7. Given a symmetric strategy o, we can partition

the type space T into sets D4, Dp, and D¢, such that Dy, represents the types who
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cast ballots for candidate k. Formally, we define
Dy={teT:o(t) =k}

In other words, Dy = o~ 1(k). The probability that a randomly selected other voter
will vote for candidate A, B, or C is denoted by 74, mg,0or mc, respectively. These

values are defined by

ﬂ'k:PT[tET|U(t):k]:/
a1 (k)

dP(t) = / dP(t).

Voters then use these probabilities to calculate the probability of any given distribu-
tion of votes. Specifically, the probability that candidate A gets (exactly) a votes,
candidate B gets (exactly) b votes, and candidate C' gets (exactly) ¢ votes, out of the
n — 1 other voters is f(a, b, c), a trinomial probability with formula

(n—1)!

o x Y z
T TATRTE, (3.1)

f(@,y,2) =

where z, ¥y and z are non-negative integers satisfying t +y+ 2 =n — 1.

In addition to restricting our attention to symmetric equilibria, we also rule out
any equilibria that involves voters using weakly dominated strategies. Voting for a
particular candidate is weakly dominated if voting for some other candidate would
sometimes be better for the voter, and never worse. For example, an AB-v voter
should never cast a ballot for C'; some of the time a vote for A might make a difference
in electing A, but never will it make the voter worse off than choosing candidate C.

In fact, the following is easily shown to be true:

Lemma 3.1 In any equilibria that does not involve weakly dominated strategies, all
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of the type C wvoters cast ballots for C, and the other two types of voters never vote

for candidate C.

Thus, type C voters always vote sincerely in the model. This lemma implies that in
any equilibrium, 7¢ = q¢ = 4.

Although the C type voters always vote sincerely, the other voters may choose to
vote for their second choice in order to avoid “wasting” their vote. The conditions
under which such strategic voting will occur are presented in the following lemma

which is due to Palfrey (1989).

Lemma 3.2 In an equilibrium wnvolving probabilities w4, wg, and w¢, if voter i is

an AB-v type voter, then i’s best response is:
1. Vote for A if (1 —v)php + e > vDE5-
2. Vote for B if (1 — v)p%p + e < vplp.
8. FEither vote for A or B if equality holds.
If voter i is an BA-v type voter, then i’s best response is:
1. Vote for B if (1 —v)phg + plp > vDl%e-
2. Vote for A if (1 —v)plhp + plp < vD%c-
3. Euther vote for B or A if equality holds,

where

plag = probability that voting for A yields A, but voting for B yields B.
Pac = probability that voting for A yields A, but voting for B yields C.

pep = probability that voting for A yields C, but voting for B yields B.
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The p; probabilities are essentially the probabilities that candidates ¢ and j will
tie for first place.!! They depend on the probabilities that a randomly sampled other
voter will vote for a particular candidate, (74, 7p, and 7¢), and the size of the
electorate, n. In the following trinomial formulas, we use notation such as {b < a =
¢ — 1}, for the set of non-negative integers (a,b,c) satisfying b < a = ¢ — 1 and

a+b+c=n—1. We thus have:

Phe = probability of {b < a=c—1},

= Z f(a,b,¢)

{b<a—c—1}n
-1

n—1)! k n—2k—2 E+1
N Z k'k+1('(n—)2k—2)( ) (@) ),

where [z] is the smallest integer not less than z.

pgp = probability of {a <b=c— 1},

= Z f(a,b,c)

{a<b=c—-1}n

[252]-1

= (n—1)! n—2k—2 k k41
N _[z: El(k +1)! (n—2k_2)v( 4) (mg)*(ma)*.

We note for later use the fact that p%p can be expressed as ) {p<ame—1}n | (b, a,c).

1 Because of the way ties are broken, the vote totals used in calculating the py; probabilities are
more complicated. For example, p%, is the probability that a voters vote for A4, b voters vote for
B, and c voters vote for C, out of the other n — 1 voters, where b < ¢ and a = ¢ — 1.
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Also,

php = probability of {a =b > c— 1}, + probability of {a =b—-1>c~ 1},
= > flabo+ Y flabe)
{a=b>c—1}, {a=b—1>c-1},

(211
: n—1)! k n—2k—1
= ) k!k!(sz - 213— 1)! (ma)*(m)(me)" ™

k=[2EL]-1
[251]-1
(n—1)! k k+1 n—2k—2
" k_%: R+ 1)i(n = ok — gy ) () o)
=[2]-

Now, if ¢ is an equilibrium, it must be the case that all voters are using a best
response to o. As Palfrey points out, this implies that an equilibrium can be charac-
terized by two values, v}z and v},, known as cutpoints. These cutpoints represent
the (maximum) level of utility that a voter must have in order to vote sincerely.
Thus, if a voter has utility v > vj; for her second choice, then that voter will vote
strategically for her second choice, candidate j. Note that if vj; = 1, then all type
1j voters will vote sincerely in equilibrium. It is sufficient to characterize equilibria
by cutpoints for only type AB and BA voters, as type C voters must use the weakly
dominant strategy of voting for C, i.e. v§ = 1.

Therefore the following condition must hold in equilibrium:

Condition 3.1 In an equilibrium involving probabilities 74, g, and ¢, type C

voters vote for C, and type AB and BA voters use the strateqy “Vote for i if v < (2

*x

5is where

) pi; + D
’Ui]‘ — min 1, o .
Dij + Pr;

However, this is only a partial description of an equilibrium. We add to this a rational

and vote for 7 if v >w
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ezpectations condition common to Bayesian equilibria. Specifically, we require that
in a given equilibrium, the 7’s that are taken as given in the first condition are in fact
generated by the distribution of voters and the strategies they use in that equilibrium.
In this way, voters’ beliefs about the actions of other voters (the 7’s) are self-fulfilling
expectations, i.e. the beliefs are not contradicted in equilibrium. Given the special
distributions of voter preferences we have defined, this rational expectations condition

simplifies to

Condition 3.2 In an equilibrium characterized by cutpoints vz and v} ,, the fol-

lowing holds:

Ta = qapVap +aBa(l —vpa) = (3+e)vhp + (3 —€)(1 —vhy),

T = qaVps +qaB(l —v4p) = (3 —€)vh,y + (3 +€)(1 —vp),

and ¢ = qevg = 4.

So we have described the two conditions that must be met in an equilibrium in this
model. It is natural to ask what such equilibria look like, if they exist. Palfrey (1989)
develops a (partial) answer to this question. First, any single party equilibrium, in
which only one candidate receives votes, must involve some voters employing weakly
dominated strategies. Thus we rule out any such equilibria in the model. Second,
Palfrey shows that multiple two-party equilibria exist. There are two such equilibria in
the model, one in which candidates A and C receive all the votes cast and one in which
only candidates B and C receive votes. We conclude this section by stating Palfrey’s
theorem dealing with these two-party equilibria. In the next section, we discuss the
existence of three-party equilibria in the model. Finally, in a later section we address

the problem of coordinating on one of the two possible two-party equilibria.
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It turns out the the key element in the voter’s decision calculus is the relative
likelihood of a tie between the leading and second-place candidate versus a tie between
the trailing candidate and one of the other candidates. Specifically, Palfrey proves

the following lemma;

Lemma 3.3 (Palfrey) Assume 74 < min{ng,nc}. Then lim, (%) = 0 and
B

li Pip\ _
My, e | 22} =0.
PcB

This lemma is used to prove the following theorem, applicable to our model:

Theorem 3.1 (Palfrey) There does not exist a sequence of equilibria {v:}, such
that 0 < 7 < min{7g, 7}, where 77 = limy .o m;(vyy), 7 = A, B, C and m;(v}) is

given by Condition 2.

This theorem states that a trailing candidate’s vote share must erode away to nothing

as the size of the electorate gets large, if all voters vote strategically.

3.3 Existence of Non-Duvergerian Equilibria

In the previous section, we developed a model that admitted two equilibria supportive
of Duverger’s Law. In these equilibria, the “wasted vote” phenomena led to some
voters voting strategically for their second choice in the election. As a result, only
two candidates received votes in the limit of the equilibria. In this section, we examine
the possible existence of equilibria that do not support Duverger’s Law. We will show
that for a range of €, there exist three-party equilibria and that these equilibria persist
as the number of voters grows without bound. The latter statement is important
because the two-party equilibria identified in the previous section are truly two-party
only in the limit. In any large, finite electorate, i.e. n < oo, these equilibria still

contain a small number of voters voting for the trailing candidate. This follows from
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the fact that in any finite electorate the probability of a tie between the last-place
candidate and the leading candidate is still positive, albeit very small. Thus, voters
who prefer the trailing candidate with sufficiently small utility for the second-place
candidate will still vote sincerely.

As suggested by Myerson and Weber (1993), we will examine the situation de-
scribed as an “exceptional case” by Palfrey, namely the case in which 7% = 7} < 7.
In this situation, one dominant candidate emerges, opposed by two smaller parties.
As the two smaller parties receive (nearly) equal vote shares, supporters of neither are
willing to abandon their most preferred candidate; there is no single trailing candidate
for voters to abandon, ala Duverger’s Law.

In the non-Duvergerian equilibrium we identify, equality of vote shares, 74§ = 7%,
holds only in the limit as n goes to infinity. In a finite electorate, the following
happens in equilibrium: the more popular candidate, A, receives a slightly smaller
vote share than B. This prompts the small fraction of AB voters with very high
utilities for candidate B to vote strategically for B. Thus, even though there is a
larger distribution of AB type voters than BA types, the lower vote share for A is
self-fulfilling. As the size of the electorate grows, the vote share for candidate A
increases while the vote share for B decreases. In fact, the shares for both candidates
approach .3. In the limit, the candidates receive equal vote shares and thus a three-
party equilibrium is sustained. This argument is laid out formally in the rest of this
section.

We will make use of a lemma first proved by Cox (1987a).

Lemma 3.4 (Cox) Suppose w4 > wg. Then

fla,b,¢) > f(b,a,c) <= a>0b,
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where f(z,y,z) is defined by equation 3.1.
Proof: From the definition of f, we have

fla,b,¢) > f(b,a,c) <= nonl > 771l <= ng_b)

As T4 > TR,

w0 s 7 s > 0= a >0

In order to show the existence of a non-Duvergerian equilibrium in the model, we
must identify values v} 5 and v3 4 that satisfy the conditions for equilibria given in the
previous section. One element of the preceding discussion is that these values must
vary for different values of n. Luckily, we do not have to consider every combination of
v p and v3 4 for every possible n. To show this, we establish two lemmas. They both
involve a critical value 9 = .3/(.3 +¢). If v}, = 1, then ¥ is the value of v% 5 which
insures that the probability of a vote for candidate A and candidate B are equal,

i.e. mq = wp.!? The first lemma deals with the possibility of equilibria involving AB

cutpoints greater than v.

> W](Ba_b).

Lemma 3.5 In equilibrium, it cannot be the case that ¥ < vz < 1.

Proof: If v < v}p < 1, then by Condition 2, 74 > .3. Thus, it must be that 74 > 75.

By Lemma 3.4, if a > b, then f(a,b,c) > f(b,a,c). Therefore,

Z fla,b,c) > Z f(b,a,c),

{b<a=c—1}n {b<a=c—1}n,

12This follows immediately from Condition 2.
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and thus p%» > ppp. However, by Condition 1, v% 5 must satisfy

g + Phc }

vip = min {1,
Pip T P¢s

Thus v% 5 = 1 in equilibrium, which is a contradiction. 1

This lemma does not rule out an equilibrium with v% 5 = 1. Such an equilibrium
would have 74 > wp and ng > wp for all n. Thus, this equilibrium is one of the
Duvergerian equilibria accounted for by Palfrey in Theorem 3.1. In order to identify a
non-Duvergerian equilibrium we must focus on equilibria with v 5 < 9. The following
lemma shows that any equilibria in this region must involve BA type voters voting

sincerely.

Lemma 3.6 If vz < ¥ holds in some equilibrium, then vj, = 1.
Proof: Follows immediately from Condition 1 and the supposition that v%5 < 1. B

This lemma allows us to ignore v, in what follows and focus on the cutpoint for
AB type voters, v 5, which we denote as v. As an additional convenience, we define
a “best response” function h,(v) that summarizes the two conditions for equilibria.
Specifically, if a value vz = v < ¥ is an equilibrium, Condition 2 defines 74(v) =
(.3 +¢€)v as v, = 1. It follows that wp(v) = .6 — ma(v), as 7¢ = .4. Thus, by

Condition 1, we define the “best response” to v as

) = i {1, DA it}
PaB(74(v)) + pcp(Ta(v))
It is immediately apparent that h,(v) is continuous, h,(v) =1 for v > ¥, and h,(v)
is differentiable everywhere except ¥. It follows from the definition that v is an

equilibrium if and only if v is a fixed point of h,(v), i.e. h,(v) =wv. Forany n, v =0
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Figure 3.1: hy(v) for three values of n

is a fixed point of h,(v). This corresponds to the two-party equilibria in which all
voters abandon candidate A. We now proceed to show that there is also a three-party

equilibria in the model. We shall use the following lemma:
Lemma 3.7 For any fized v < ¥, lim h,(v) =0.
n—00

Proof: We can rewrite the definition of h,(v) as

pap(ma(v)) | pac(ra(v)) }

o pcB(ra(v)) ' pos(na(v))
hn(’U) = min {1) paB(mA(v) N 1
pce(ra(v))

From Lemma 3.3 it follows that lim h,(v) = 0. |

n-—->00
We illustrate the implication of these facts about h,(v) in Figure 3.1. The figure
graphs h,,(v) for three different values of n, ny < ny < n3. As illustrated, the function

moves closer to the horizontal axis and the dotted line at ¥ as n grows larger.
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We next prove the main result of this section on the existence of a three-party
equilibria in the model. This theorem establishes that non-Duvergerian equilibria are
possible under a range of preference distributions. Thus, the equilibria in the model

are not generically Duvergerian.

Theorem 3.2 There exists a sequence of equilibria {vi}o2, such that 0 < 4 = 1} <

T¢, where T = lim, o m;(vy), j = A, B, C and 7;(v}) is given by Condition 2.

Proof: For each n, let F), be the set of fixed points of h,(v). As 0 € F,, for all n, F,
is non-empty. Fix v < ¥ and § < 0. Lemma 3.7 is equivalent to the statement that
there exists an integer IV such that for all n > N, h,(v) < §. As h, is continuous and
hn(v) =1 > v for v > ¥, this implies that for sufficiently large n, each F}, contains a
fixed point between v and ¥. More specifically, for any v < 9, there exists an integer
N, such that Vn > N, (v,0)(F, # 0. Thus it is possible to choose a sequence of
fixed points that converge to . Denote this convergent sequence as {v:} ;. This

sequence fulfills the requirements of the theorem. |

This theorem is illustrated in Figure 3.2 on the following page. For each n, there
is an equilibrium v}, satisfying v} = h,(v}). We show three such values in the figure.
The figure also shows that as n gets large, the shape of the h, function forces v} to

converge to 9.

3.4 Stability and Dynamics of Non-Duvergerian
Equilibria

In the last section, we demonstrated the existence of non-Duvergerian, three-party

equilibria in the model. This equilibrium is susceptible to two types of criticisms.
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Figure 3.2: Sequence of Equilibria Converging to o

The first critique is that it requires widespread, accurate information that is unlikely
to be present in a real electorate. The share of AB voters who vote strategically
for candidate B in equilibrium depends critically on the size of the electorate, n,
and the exact proportion of AB voters in the population, e. The larger n is, the
more AB type voters that are “allowed” by the equilibrium to vote sincerely. While
we have assumed that these values are common knowledge among the voters, it is
highly doubtful that such an assumption would be justified in a real electorate. This
feature is particularly striking as the other, two-party equilibria of the model do
not depend critically on these values. Even with some disagreement or uncertainty
among the electorate about the parameters, either of the two-party equilibrium could
be sustained. These equilibria require only that voters agree about which candidate

is trailing. In the non-Duvergerian equilibrium, however, uncertainty could cause
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some voters to vote “incorrectly” (i.e. not as prescribed by the equilibrium). Will
the political process restore the delicate balance required by the equilibrium? This
question raises the issue of stability of an equilibrium, which is a major focus of this
section.

The other criticism of the three-party equilibrium in the model also applies to
the Duvergerian equilibria. As Cox (1991) points out, all of the equilibria we have
identified require voters to overcome a very serious coordination problem. The “ful-
filled expectations” assumption acts to sidestep this issue. For example, the non-
Duvergerian equilibrium requires that just the right number of AB types vote for
their second choice, even though they outnumber the BA type voters; a number that
insures candidate A trails B by just enough to justify the strategic voting. Likewise,
the Duvergerian equilibria, in which either candidate A or B gets no votes, requires
that voters all know, without communication, which candidate is the viable candidate
that will receive all of the votes. Cox likens this issue to the coordination problem
posed by the Battle of the Sexes game and comments that “these models should both
be interpreted as showing that, if coordination problems can be overcome, then all
equilibria in multicandidate plurality elections entail that only two candidates will
receive any support.” (emphasis as in original, p. 13) While this qualifier is certainly
necessary, our analysis will have a great deal to say about overcoming the problem of
coordination in multicandidate elections.

The root cause of both of these weaknesses lies in the use of a static model to
describe a dynamic process. As Palfrey puts it, “the results in this essay have been
interpreted as implying that if three parties are competing in a single-ballot, winner-
take-all system, eventually (i.e., in an equilibrium) one of the parties will be weeded
out. However, the model is static, even though the interpretation has dynamic over-

tones.” (emphasis added, p. 85) Indeed, the reasoning Duverger offers for his Law is
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a dynamic story in which voters, over time, gradually abandon an unpopular party
in larger and larger numbers until no support remains. The static “one-shot” non-
cooperative game we have used to model the main elements of this story cannot fully
describe the dynamics involved.

Both of these objections arise because voters in the model acquire information,
either about the parameters of the electorate or the viability of candidates, without
an explanation for how this (self-fulfilling) information arises in the population. Both
Palfrey and Myerson and Weber appeal to public opinion polls, past election out-
comes, and media reports, among others, as sources of the equilibrium information of
voters. These polls, election outcomes, etc. may depend on earlier polls which may
depend on even earlier polls, and so forth. With this interpretation, an equilibrium
occurs when the most recent poll provides the electorate with enough information to
act in a way that justifies the predictions of the poll. However, neither paper explic-
itly models the dynamic process of pre-election polling or considers the stability of
the resulting equilibrium. It is this task to which we now turn.

In the analysis, we will use the function h,(v) defined in the previous section to
describe an equilibrium in terms of fixed points. In this section, we think of h,(v)
as describing an adjustment process that gives a best response for an individual AB
type voter to the shared belief about the current cutpoint used by the AB types as a
group.® This description is based on the following (tatonnement) process. Let vy <
be some initial cutpoint used by AB type voters. Suppose everyone begins by using
Vg in making their vote decisions. Next suppose that a public opinion poll is taken

to measure voting intention and the results are publicly announced. Then, given

13As was shown in the previous section, as long as v < ¥ the best response for BA type voters
and C type voters is to vote sincerely. Thus we once again focus attention on AB type voters and
suppose that the other voter types all vote sincerely.
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the cutpoints in use, the results should be, on average, that candidate A receives a
fraction gapvy of the vote, candidate B gets gga + qap(1 — vg) of the vote, and C
receives support from gc = .4 of the voters. Suppose voters interpret these results
as the probabilities that a randomly selected other voter will vote for a particular
candidate, which we have called 74, 7p, and 7. Then the best response under these

expectations is to use a cutpoint v; satisfying:

v1 = hin(vg) = min {1, paB(ma(vo)) + pac(ma(vo)) } .

paB(ma(vo)) + peB(ma(vo))

Now suppose that there is a second opinion poll. Using the cutpoint v;, voters’
responses once again are announced and voters use these results to update their
beliefs about the probabilities of votes from other voters. This gives rise to a new
cutpoint vy = h,(v1). If this process continues with a large number of polls, we can
evaluate the convergence properties of the cutpoints used by the voters, where these
cutpoints are given by the sequence vy = hy,(vy).

This approach can also be used to determine the stability of the various equilibria
in the model. Suppose that voters initially use cutpoints that differ slightly from
those prescribed by the equilibrium. If the polling process just described leads voters
to adjust their behavior so as to be more in accordance with the equilibrium, we say
the equilibrium is stable. If the polling process causes voters to use cutpoints that
differ even more widely from the equilibrium cutpoints, we say the equilibrium is
unstable.

This concept of stability of an equilibrium is captured by a definition of stabil-
ity first developed by Palfrey and Rosenthal (1991) for a similar problem. Their

definition, in the context of our model, is the following:

Definition 3.1 An equilibrium v* is:



78

e an ezpectationally stable equilibrium (ESE) if there exists an interval I(v*) con-

taining v* such that, for all vy € I(v*), [vo — hn(vo)](vo — v*)] > 0 if vo # v*.

e a globally expectationally stable equilibrium (GESE) if it is an ESE relative to

the open interval (0,7).

e an expectationally unstable equilibrium (EUE) if there exists an interval I(v*)

containing v* such that, for all vy € I(v*), [vo — hn(vo)](vo — v*)] < 0 if vo # v*.

Note that our definition of an EUE is a stronger statement about the dynamic process
than v* is not an ESE. An EUE involves a dynamic process which moves cutpoints
further away from the equilibrium cutpoints, as opposed to a process which does not
move the cutpoints closer.

In order to evaluate the stability of our equilibrium, we need the following lemma:

Lemma 3.8 There ezists an integer N such that for allmn > N, a‘%hn(v) > 1 at v},

where vy, is an element of the sequence of equilibria described by Theorem 8.2.
Proof: Differentiating h,, yields

—C—l—h (0) = (pag +pcB) 3 (pap +Pac) — (Pap + Pac) & (pas + pcs)
dv " (PaB + pcB)?

Since hy(v)) = v}, at an equilibrium v}, we can rewrite this expression as

d, S L (pap + pac)(V}) — vii(pas + pcs)(vy)

L (ol =
dv ( paB(v;) + pop(v})
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Thus we need the derivatives of each of the p;;’s.

d d d

d’l}pAC = -(-Z—?—}-WA('U)HPAC
iy k n— 2k — 2
= (qaB) flk,n—2k—2,k+1) [______]
A B
=[ 1]
= 1
2zt kn—2k—2k+1)[ (1 2) (n—Z)}
- A : Bl —+— ) —
aBPacC Tz: P . -
gt | (L 2>[§“kf(k,n—2k_z,k+1)
94D AC Ta  TB) e
k=[nz1]
1

oy F(ksm = 2k = 2,k + 1)

7B v’ AC

~ e (24 2 ) Bz - =2 ).

where E%, = L Z e 1] k% Likewise we can show that

ZZ%P?,*B = 4aBPCB [(n =2 <i— = > n EBC)]

A TB TA

where E%, = 1 Z Tl 2kkil) o0 g
23] P&p
[252]-1
d ., . (1 1 o Didma feE+1n— 2k —2)
duPAB = dap |Pas \ (nE%g) — — ,

2y n=ly_
where E%, = 1 (Zg[%]_l kﬂk’k’p’f,A_—;k_l) + ZEC:Z[%]]_II kﬂﬂ———ﬂf—_ﬂ) The E7, terms

Paim

represent the expected winning shares of the two candidates who receive the most
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votes, conditional on there being a tie for first place between candidates 7 and 7,

and Palfrey (1989) has shown that these terms have the following limits:

11
lim B, = = -
b /AC maX{3’2+—”B }

VTARC
1
lim E¢g = —r—
e 2+ T
1
n—00 3

For sufficiently large n, v} is close to ¥ and thus lim, .., E%- = 1/(2 + \/%5)

Returning to h,(v) and plugging in the derivatives gives:

Ly o Pie (& — %) Bia+Pic (£ + ) Flic — £]
— Ry (VX)) = qapn
dp ™™ AB paB(vi) + pes(v})
() i ot [ (2
paB(v;) + pep(v})

A )

T k1,0 —2k—2

k=[2]-

(1 _ ’U*) [F1-1

n

E3
— UpdaBn

2p™% 2p%
+ WAC + CB
B

B TA

paB(v}) + pe(v})
i 1 1 P 1 2 n 1
if(a“a)EﬁB+ﬁ§[(a+a)EAC“a]
(paB(vz)/pcB(vy)) + 1
P 1 1 n 1 1 2 n
Zha (& - L) Bip + (1) % - (E+2) sl
(paB(vE)/pes(vy)) +1

+ 4aB

= 4aBn

— UpGapT
o)
(paB(vi)/pep(vE)) +1°

where we use the notation O(1) to stand for terms that are bounded as n grows

without bound.

14 Actually, because of the tie-breaking rule, this is not exactly true. For example, E7. is the
expected vote share of A conditional on B coming in last and A receiving exactly one less vote than

C.
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Now, applying Lemma 3.3 and using the fact that all of the EJ; terms have constant

limits, we get that

L (o) = gam 2 0<i>(>1)+ by 00)
. momy+ K- (E+3)Es] o
St £<1) +g )], OER
n (0(1) - [1 - (% + 2) EgB]) +0(1)
B o(l)+1 ’

where we use the notation o(1) to stand for terms that go to 0 as n grows without
bound.

For sufficiently large n, we have

VTBTC

] n l(z + 1) (ﬁ_l—ﬂ__-> 14 0(1)] +0(1)
o(1) + 1 '

As 24+ 74 > 2+ \/7%_0_ when 7p < 7o (true for sufficiently large n), we conclude
that lim, o Jivhn(v;;) = 00. Thus there exists an integer N such that for all n > N,

Lh,(v) > 1 at v}, |

While all that we need for our theorem is that A, (v) > 1, it should be noted that
we actually prove that i/, (v) is of order n. This should not be surprising, as we know
that for any v < 9, hy(v) is near 0 for sufficiently large n while h,(v) = 1 for v > .

The main result of this section is that the non-Duvergerian equilibrium in the

model is expectationally unstable.

Theorem 3.3 For sufficiently large n, the equilibria v}, described by Theorem 3.2 are

ezxpectationally unstable.
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Proof: We must show that there exists an integer N such that for all n > N, v} is ‘
an EUE. By Lemma 3.8, such an N exists such that £ h,(v%) > 1. This implies that

there exists an interval I(v}) containing v* such that, for all v € I(v}),

hn (U) B h'n (U:z)

> 1.
v — vy
As v% is an equilibrium, h,(v}) = v, Thus
ho(v) —vi  hy(v) — — vk hy(v) —
(v) *vn: (v) —v+v—o o1 (v) —wv >0
v — v v — U v— U
We conclude that
— h,
v (*v) <0
v—u

Thus, if v # v}, v — h,(v) and v — v} have opposite sign. So for all n > N, (v —

hp(v))(v —v%) > 0 for all v € I(v}) such that v # v}. Thus v} is an EUE. |

Therefore, if voters are not perfectly informed as to the “correct” equilibrium
cutpoint, even by a minute amount, the polling process will move the cutpoints used

by the voters away from the three-candidate equilibrium.

3.5 Polls as a Coordination Device

In the last section, we showed that the non-Duvergerian equilibrium in the model is
expectationally unstable. In fact, we can prove more than this. In this section, we
show that the equilibrium is globally unstable and the dynamic polling process must
converge to one of the two Duvergerian equilibria, depending on the initial beliefs of

voters. Thus, the polling process acts as a coordination device for the voters.
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The key step in justifying these conclusions is the following lemma:

Lemma 3.9 For sufficiently large n, h,(v) < v for 0 < v < v} and h,(v) > v for

*
v > .

Proof: The second half of the lemma is trivial. For the first half, suppose the result
does not hold. Then for some sequence {v,}32 v, hn(vy) > v, for 0 < v, < vi. As
hn(v) is continuous, this implies that for all n > N, there exists a fixed point of
hn(v) at v > 0. Assume this sequence of fixed points converges, otherwise consider a
convergent subsequence. If this sequence converges to ¥, this contradicts Theorem 3.3
(which applies to any sequence of fixed points of h,(v) converging to 7). If it does

not, it contradicts Theorem 3.1, as no such three-party equilibrium can persist. |

This lemma implies that the “best response” function h,(v) has a form like that
of Figure 3.3. Moreover, it implies that the non-Duvergerian equilibrium is globally
unstable and that the dynamic polling process converges to one of the two Duvergerian
equilibria. This is also illustrated in Figure 3.3. Suppose voters hold an initial belief
vg that is less than the equilibrium cutpoint v7. Then the lemma implies that the
adjusted cutpoint v; = hy(vp) will be less than vy. Likewise, vy will be less than v;
and, as the figure illustrates, eventually v, must converge to 0. A similar argument
shows that if vy is above the equilibrium cutpoint, v; converges to 1. Thus, the
repeated cycles of opinion poll and adjustment lead voters to one of the Duvergerian
equilibria.

In fact, this dynamic process can shed some light on overcoming the coordina-
tion problem faced by voters. Polls can guide voters to coordinate on a particular
equilibrium, depending on their initial beliefs. In the previous section, the voters
shared an initial belief vy about the cutpoint used by the AB type voters, which was

then adjusted to v, after the first poll, and so on. This is a strong assumption about
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hn(’vg)_ - —-— - U

Figure 3.3: h,(v) and the Adjustment Path of Opinion Polls

the initial conditions of the polling process. Instead, we relax this assumption and
suppose that each voter « has some initial belief v§ about vap.!> When the first poll
is taken, suppose each voter votes according to the initial belief v§. This poll will
result in outcomes s4, sp and s¢ for the candidates, where these shares depend on
the distribution of beliefs. Suppose that after this first poll, voters adjust their beliefs
that these shares represent the probabilities that a randomly selected other voter will
vote for a given candidate. Then the polling process serves to aggregate the intentions
of the voters and transmit this information about the viability of the candidates back
to the electorate. If the polling reveals that candidate B is the serious challenger to
C, then a bandwagon effect develops as more and more AB type voters switch their

vote to A. Likewise, if A has the strongest initial support, a bandwagon develops for

15For completeness, we should add an initial belief about vg4.
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A at the expense of candidate B.

In this way, polls can help voters coordinate on the viable candidates in the race,
to insure that their votes are not wasted. However, this coordination can be fully
effective only after an infinite number of polls. Thus, in actual elections we should
not expect to see such dramatic results. In fact, if polls are not frequent enough or are
ignored by voters, this process may have little effect on the actual outcome. But as
polling becomes an even bigger part of media coverage of elections, we should expect
that strategic voting and coordination effects should have an ever greater importance

in politics.

3.6 Conclusion

In this chapter, we have focused on the “wasted vote” phenomenon and Duverger’s
Law. We have shown that in a Bayesian game model of strategic voting, there do
exist non-Duvergerian equilibria in which all three candidates receive votes (in the
limit). However, these equilibria require extreme coordination and any variation in
beliefs leads voters away from them to one of the Duvergerian equilibria. Thus,
non-Duvergerian equilibria are unstable, while two-party equilibria are not.

In addition, we describe how pre-election polls provide information to voters about
the viability of candidates and can thus be used by voters to coordinate on a Du-
vergerian outcome. This conclusion about the behavior of voters should be testable.
While there are no empirical studies that directly address this issue, there has been
experimental confirmation of this prediction. Forsythe et al. (1993) describe a set
of plurality rule experiments that closely resemble the theoretical model developed
here. They show that pre-election polls significantly reduce the frequency with which

the Condorcet loser is elected. With polls, voters are able to coordinate on one the
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Duvergerian equilibria. While these results are promising, more work needs to be

done on this process in the lab and among real electorates and elections.
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Chapter 4

Information, Polls, and

Bandwagons

4.1 Introduction

A central concept in the classic theory of democracy and representative government
is the importance of a well informed electorate. Citizens, the argument goes, must
have sufficient knowledge of the issues and choices present in the political system
if they are to delegate and monitor the actions of their representatives. Indeed,
political philosophers have long seen public political awareness and sophistication as
essential requirements for a successful democratic system. Early empirical work on
voter surveys dealt a critical blow to the foundation of this view (Berelson et al. 1954;
Campbell et al. 1960; Converse 1964). The classic image of the democratic citizen
was found to be far removed from the reality of the average voter. Campbell et al.
(1960) documented an appallingly low level of ideological awareness and political
understanding by the American electorate. The authors describe their landmark

book The American Voter as a “portrait of an electorate almost wholly without
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detailed information about decision making in government.” (p. 543) The impact of
these findings on classic democratic theory was addressed by Berelson et al. (1954):
“our data ... reveal that certain requirements commonly assumed for the successful
operation of democracy are not met by the behavior of the ‘average’ citizen.” (p.
307)

These early findings sparked an intense debate in the field of electoral research over
the level of political knowledge in the population on both substantive and method-
ological grounds (Nie and Andersen 1974; Achen 1975; Nie et al. 1976; Converse and
Markus 1979; Smith 1989; excellent reviews are Niemi and Weisberg 1993, ch. 4;
Dalton and Wattenberg 1993). While this issue has not been fully resolved, it is safe
to say that modern electorates do not match the lofty ideals of classic democratic
theory.

This empirical conclusion also has bearing on the numerous rational choice models
of voter decision making that assume complete information on the part of voters
and candidates, such as the celebrated Median Voter Theorem (Black 1958; Downs
1957; Enelow and Hinich 1984). Critics argue that as these models assume levels
of information and sophistication that are unmet by contemporary electorates, their
implications are vacuous.®

In both the empirical and theoretical studies of this issue, a central question that
arises is how do voters make political choices based on their limited political knowl-
edge. One approach to this question, that dates back to Downs, is to analyze the
cues and political shortcuts used by voters to overcome their informational deficien-

cies. Downs lists four sources of information that voters could use to supplement their

'Indeed, the fact that Downs, one the founders of positive political theory, devoted an entire
chapter in his groundbreaking 1957 book to shortcuts used by voters to reduce their information
costs appears to have been overlooked by many rational choice authors.



89

own limited knowledge, political parties, newspapers and television, interest groups,
and other voters — friends, family, or neighbors. In his book The Reasoning Voter,
Popkin (1991) argues that “low-information rationality” best describes the decision
making process used by “reasoning voters.” The term “low-information rationality”
refers to “the information shortcuts and rules of thumb that voters use to obtain and
evaluate information and to choose among candidates.” In Popkin’s view, the use
of such shortcuts is unavoidable — “an inescapable fact of life [that] will occur no
matter how educated we are, how much information we have, and how much thinking
we do.” (p. 218)

McKelvey and Ordeshook formalized this intuition that voters without perfect
information can acquire useful information from other sources. In a series of papers
(McKelvey and Ordeshook 1985a, 1985b, 1986b), they develop formal models of elec-
tions in which uninformed voters are able to gather valuable information, through
contemporaneous poll results or past election results, and, in equilibrium, vote as if
they had full information. Candidates in these models may also be afflicted with lim-
ited information, but once again enough information is transmitted by polls or past
elections to insure that both candidates converge to the median voter’s ideal point,
just as in a complete information setting. In other papers, the authors extend this
line of research to include multidimensional settings (McKelvey and Ordeshook 1984,
1987), influential interest groups (McKelvey and Ordeshook 1986a), and experimental
evidence in support of their findings (McKelvey and Ordeshook 1990a, 1990b).

Some authors argue that the very nature of modern democratic systems insure
the persistence of low levels of information in the electorate (Downs 1957, Popkin
et al. 1976). If acquiring political information is a costly activity, voters must weigh
this cost against the meager gain of an informed vote making a difference in the

unlikely event that that vote changes the outcome of an election. The authors of The
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American Voter, Campbell et al. (1960), put it best:

[A] part of the electorate is no doubt capable of informing itself about
political matters but is unwilling to pay the cost that such information-
getting would entail. Very few people seem motivated strongly enough
to obtain the information needed to develop a sensitive understanding of
decision making in government. It is a rather unusual individual whose
deeper personality needs are engaged by politics, and in terms of rational
self-interest, the stakes do not seem to be great enough for the ordinary
citizen to justify his expending the effort necessary to make himself well
informed politically. (pp. 543-544)
This argument is intensified by the results of McKelvey and Ordeshook indicating
that enough information is available from low-cost sources like public opinion polls to
insure a correct vote. Thus, a voter may rationally choose to “free-ride” rather than
invest in political information gathering.

Our purpose in this chapter is not to delve deeply into the countervailing norma-
tive implications offered by these theories of decision making by voters. Rather, we
limit ourselves to analyzing the relationship between voter information and election
outcomes in a multicandidate setting. Voters, with limited information, may find it
even more difficult to make a correct choice when faced with more than two candi-
dates. In a two candidate race, if a voter dislikes candidate A, a reasonable course
of action, especially for a voter with limited information, would be to vote for A’s
opponent. In a multicandidate race, however, a voter who dislikes candidate A is
unable to apply this simple shortcut; the voter is still faced with choosing between
several alternative candidates.

In this chapter, we address the role that limited information may play in multican-
didate elections. We extend a model of two candidate elections originally developed

by McKelvey and Ordeshook to the multicandidate case and obtain several results on

the ability of uninformed voters to gather and apply information available to them
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to their voting decisions. In the next section, we define the relevant components of
the model and describe the information structure in the electorate. In section 4.3
we examine “voter equilibria” in which voters vote optimally, given their beliefs, and
these beliefs are self-fulfilling in the sense that they are not contradicted by observable
information. We present two results in this framework. First, there is an essentially
unique voter equilibrium conditional on a fixed profile of candidate positions and
voter beliefs, in which all voters, informed and uninformed alike, vote as if they had
perfect information. Second, we define a dynamic process involving a sequence of
straw votes such that this fully revealing equilibrium is attained regardless of the ini-
tial conditions of the process. The following section extends this analysis to include
uncertainty among candidates, as well as voters. Once again, enough information is
transmitted in equilibrium so that the candidates act as if they were fully informed.
Specifically, we show that for three candidate competition, no equilibrium exists in a
standard model of position taking, but an essentially unique equilibrium exists for a
model of third party entry. Finally, in section 4.5 we show that if a small minority of
voters are fully informed and use this information to vote strategically, in equilibrium
all voters, including uninformed sincere voters, act as if they were voting strategically
based on full information. Thus, the “wasted vote” phenomenon can be viewed as
the result of voter’s low-information rationality.

Finally, it should be noted that although we use the terminology of polls and
straw votes in the construction of the model, we intend these terms to be interpreted
broadly. In the formal model developed in this chapter, voters observe the results
of straw polls and use this information to adjust their beliefs about the candidates.
However, this information need not be transmitted in the form of a public opinion
poll. Voters are certainly exposed to a great deal of “horse-race” coverage in election

campaigns, but there are also other means of acquiring this information such as
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general media exposure of candidates, discussions with friends and co-workers, and
newspaper and interest group endorsements. Thus, the theory developed here should
be seen as a general description of information transmission in the electorate and not

a narrow model of election polling and politics.

4.2 Notation and Definitions

In this section we introduce the notation and definitions used in developing the model
in this chapter. We will follow the notation used in McKelvey and Ordeshook (1985a).
We begin by describing the woters in the model by a probability measure space
(Q, F, ). The set Q is partitioned into two subsets, U and I, which represent the
uninformed and informed voters in the model, respectively. The set of alternatives
is a closed convex set X C R. The ideal points of voters are assigned by a (F mea-~
surable) function y* : Q — X. Thus, voter o’s ideal point is given by y*(«), which is
also denoted by y%. We construct the cumulative distribution function of the voters’
ideal points in the usual way.? For any (measurable) set C C Q and z € R, define
Feo(z) = p({a € C | yi < z}). We use the shorthand notation F(z) = Fn(x). In ad-
dition, each voter has a utility function given by u, : X — R, where u,(z) = u(z, y%)
and u(z,y) is a function that is symmetric and single-peaked in z about y, for all
y € X. Thus, voter o’s utility for an alternative z € X is uq(z), a function that is
symmetric and single-peaked about y*(«).

The k candidates in the model are given by the set K = {1,2,...,k}. With each
candidate we associate a point s; € X, candidate j’s policy position or platform. We

denote the platform profile of all of the candidates as s = (s, s9,. .. , sx). Without loss

2See Chung (1974) for a development of this subject. Also note that we do not require that a
density function exist for the distribution.
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of generality, we assume that the candidates are labeled such that s; < s5 < - -+ < sp.
For later use, we denote the set of functions from K into X as S, with typical element
s(4)-

In the model, the voters can each cast a vote for exactly one candidate; they may
not abstain. Thus the action set of voter « is K, the set of candidates. The set of
possible ballots that the voters as a whole could cast is given by B, the set of (F
measurable) functions from € into K. Elements of B are given by b: Q — K. Thus,
voter a’s ballot is given by b(a), which is also denoted by b,. In addition, the ballot

obtained by replacing b, by j in a given ballot b is denoted (b_,, 7). Formally,

, by forall o # a,
(b—ou ]) =
j  for a.

We are now able to define the vote shares for each candidate. For any (measurable)

set C C (), the vote share for candidate j, given a ballot b € B is given by:

o) = p({a € C | ba = 3}).

We denote the total vote for candidate j by v;(b) = v}(b). The vote for a set J C K
of candidates is given by v;(b) = 3, ; v;(b).

We assume all voters vote sincerely; they cast their ballot for the candidate that
they believe is closest to them. We describe the voters’ payoff function, given a
profile of candidate positions s, as a function 7, : B — R with 7,(b) = uu(ss, )-
In a complete information setting, this payoff function together with a single-peaked
utility function implies sincere voting.

The model distinguishes between voters based on their information. We define

these beliefs in the following way. Recall that we let S denote the set of functions from
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K into X. These functions represent possible policy positions for the k£ candidates.
Let M(S) denote the set of probability measures on S. Then the belief space of
each voter is M(S). Specifically, beliefs of voters are assigned by a (F measurable)
function A : Q@ — M(S). Thus, voter «’s belief is given by A(a), which is also
denoted by A, a probability measure on S. The set of all such (F measurable)
functions from € to M(S) is denoted by A. The beliefs of voters are important
because they allow the voters to make decisions based on expected utility calculations
when information is incomplete. The expectation operator is defined in the usual way;
Ex 2] = [,c52(s)d)q for (integrable) real-valued functions z with domain S.

In our definition of equilibrium, we include some restrictions about what informa-
tion is available to the informed and uninformed voters. The informed voters in the
model have perfect information about the policy positions of the candidates; their
beliefs contain no uncertainty. The uninformed voters, however, do not know the
candidates’ positions with certainty. Rather, uninformed voters have a specific type
of “low-level” knowledge about the policy positions of candidates. Specifically, we
suppose that the uninformed voters understand the (ordinal) ordering of the candi-
dates on the issue space. For example, in a three candidate race, while the uninformed
voters do not know the exact (spatial) positions of candidates, we suppose they can
correctly determine which candidate is on the left of the issue space, which is on
the right, and which is the moderate candidate. This limited information could be
supplied by cues such as party labels or interest group endorsements or by minimal
exposure to the political advertisements or media coverage of a campaign.

In addition, the equilibrium definition implicitly specifies the information that
voters observe in the model. All voters, including the uninformed, observe the vote
(or poll) shares of the k candidates. In addition, voters know that other voters have

symmetric single-peaked utility functions, but they do not know the exact distribution
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of voter ideal points. Rather, each voter knows the general features of the distribution
such as continuity, monotonicity, etc. as assumed in our results as well as the relative
position of the voter’s ideal point in the (true) distribution on the issue space. Thus,
voter o knows F(y,) and the general properties of F(x), but not the values of F'(x)
for z # y,. Finally, we suppose that each voter assumes that all other voters are fully
informed and rational. This assumption is justified in equilibrium as all voters act as
if they were fully informed.

In the definition of equilibrium, we will employ the following notation. For a given
profile of candidate positions s, define m; = (s; + sj41)/2 for j =1,... ,k — 1 and
set mg = —oo and my = +00. Then, under complete information, voters whose ideal
points lie in the region between m;_; and m; should vote for candidate j. With
this in mind, we define a correspondence ¢ : K x S —» R by ¢(j,s) = {z € R |
m;-1(s) < < m;(s)}. We denote the ideal point region supporting candidate j by
0i(s) = ©(J, 5)-

We are now able to formalize the equilibrium concept we use in our analysis.
The definition of equilibrium we offer contains two conditions. First, we require
that voters cast ballots that maximize their payoffs given their beliefs. Thus each
voter implements a best response, conditional on beliefs. Second, we require that the
beliefs of each voter must be consistent with the information available to the voter.
In other words, voters must have rational expectations; beliefs are self-fulfilling in
equilibrium. In addition, our definition includes the assumptions about information

discussed above.

Definition 4.1 Let s* € S. A voter equilibrium, conditional on s*, is a pair (b*, \*) €

B x A satisfying

1. Yo € 8, b}, satisfies maxjeg Ex: [7o (b, )] = Ens [1a (b, 05)],

- o
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2. Vael, No(s*) =1,
8. Ya € U, if s* satisfies s; # s} for i # j, then

(a) No({s € S |s1<s2<...<s})=1,

(b) v, j-13(0%) < F(yz) < v, 50°) = N,({s € S| y; € p;(s)}) = L.

A brief discussion of the three parts of this definition is in order. Condition 4.1.1
states that each voter o must cast a ballot b}, that maximizes the expected value of
the payoff function m,, where the expected value is taken over voter a’s belief A} (s)
on the candidates’ policy positions. For informed voters, condition 4.1.2 requires
that these beliefs, which are probability measures, must be point masses on the true
candidate positions s*. This condition reflects the fact that informed voters know
these positions with certainty. For uninformed voters, the definition imposes two
conditions in the case that the candidates’ positions are all distinct. Condition 4.1.3a
reflects the limited knowledge of the uninformed voters about the positions of can-
didates. Specifically, we require that voter a’s belief A} assigns zero probability to
candidate positions that are not ordered correctly relative to the true positions s*.
Finally, condition 4.1.3b insures that the beliefs of uninformed voters are in agree-
ment with the observed vote shares. Given that voter o knows that other voters
have symmetric single-peaked utility functions and assumes that all other voters are
fully informed and rational, the votes for candidates 1 through 7 —1 must come from
voters with ideal points to the left of m;_(s*). Likewise, the votes for candidates
1 through j must come from voters with ideal points to the left of m;(s*). Thus,
under these assumptions, if the relative position of the voter’s ideal point, F'(y), lies
between vyy,... j-13(b*), the cumulative vote shares for candidates 1 through j —1, and

v{1,...,;3(0*), the cumulative vote shares for candidates 1 through j, voter a can infer
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Figure 4.1: Inference of Uninformed Voters

that the candidate positions s € S is such that m;(s*) < y% < m;(s*). In this case,
voter o’s belief A% must assign zero probability to situations in which y} & ¢;(s).
We illustrate this last condition in Figure 4.1 for the case of a election in which
Q is infinite and F is invertible. While neither the graph of F(z) or the candidate
locations s are available to an uninformed voter a, the figure illustrates the inference
that voter « is able to make in a voter equilibrium. The horizontal axis represents
the issue space X and the vertical axis represents the percentage of voters. Voter
a knows y; and F(y;) and observes the equilibrium vote shares vy . ;3(b*) for all
j € K. Consider two possible conjectures by voter a as to the possible distribution
of voter ideal points, F’ and F”, as indicated in the figure. Note that both these
distribution pass through F'(y%), as this information is known to voter a. Suppose that
v, j-13(0%) < F(y3) < v,... ;3 (0*) for some candidate j. Now, a vote share vy, . ;1)

must imply a candidate midpoint at the point labeled m}_, for the conjecture F' and
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a midpoint at the point labeled m/_, for the conjecture F". Likewise, conjecture F’
implies that m/ is the midpoint supporting v(, . ;-1} and m; for the conjecture F".
These implications then lead to a conjecture <pf1» for the set of voter ideal points voting
for candidate j, under the conjectured distribution F', and ¢ for F", as illustrated
in the figure. These two conjectures make clear the general result — for any possible
distribution it must be the case that m;_;(s*) lies to the left of y% and m;(s*) lies to
the right. Thus, in equilibrium, voter a’s beliefs must be that % € ¢;(s).

This inference is the driving force behind the results that we prove. It provides a
means by which information can travel from the informed segment of the electorate to
the uninformed. Loosely, the inference can be stated as “a candidate whose support
comes from moderate voters must also be a moderate.”

We end this section with a comment on the requirement that the positions of can-
didates in the issue space must be distinct. We maintain this restriction in the results
presented below. The main purpose of the restriction is to expedite the notation and
proofs in the model and similar results could be obtained without this assumption.
Moreover, as we showed in the first chapter, a e-separability condition similar to the
restriction we impose here is equivalent to several alternative equilibrium concepts
for spatial model of elections. Finally, the ability of candidates to run on exactly

identical platforms seems empirically unsupportable.

4.3 Characterization and Convergence of Voter
Equilibria

In this section, we focus on voter equilibria of the model. We state and prove several

propositions relating to their characterization and eventual convergence in a dynamic
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setting. The first theorem provides an essentially unique characterization of the bal-
lots cast by voters in a voter equilibrium. In the model, informed voters know the
policy positions of the candidates and thus are always able to vote for the candidate
nearest to their ideal points. Theorem 4.1 proves that, in equilibrium, uninformed
voters also vote “correctly” for the candidate nearest them. This result follows from
the fact that the uninformed voters’ vote decisions, as illustrated in the previous sec-
tion, are consistent with the resulting vote shares only when the vote decisions are
correct almost everywhere. The beliefs of uninformed voters in equilibrium do not
equal point masses on the true candidate positions, as is assumed for informed voters.
However, these beliefs are “accurate enough” in the sense that they lead uninformed
voters to (almost everywhere) vote as if they were fully informed.

Thus, when the hypotheses of the theorem hold, a platform profile s* corresponds
to a voter equilibrium ballot b* that is unique almost everywhere.® This justifies
references to “the” equilibrium ballot b*. We should also note that it is simple to

prove existence of a voter equilibria, and thus the theorem is not vacuously true.?

Theorem 4.1 Assume Q) is infinite, u(I) > 0, and Fr and F are continuous and
strictly increasing. Let s* € S. Suppose that (b*,A\*) € B x A is a voter equilibrium

conditional on s* and that s* satisfies s # s for i # j. Then for all o« € €,

Yn € @i(s*) = b, = j.

3To say that the voter equilibrium ballot b* conditional on s* is unique almost everywhere
means that if we denote the set of all voter equilibrium ballots b* conditional on s* by B*, then
u({a € Q| 3b, € K such that b, = b3 Vb* € B*}) = 1. This follows directly from the theorem and
the fact that Ule w(j,s) = X \ {mo,m1,...,my} and F is assumed to be nonatomic.

4For s* satisfying s} # s} for i # j, let b be as specified in the theorem and let X satisfy Vo € 2,
Aa{s*) = 1. Then (b, A) is a voter equilibrium conditional on s*.
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Proof: Definition 4.1(1) simplifies to the condition that
Va € Q0] € arg max Es [ua(80,)]-

As u, is symmetric and single-peaked about %, uq(sp,) is maximized by b, = j if

Ya € @i(s).
For o € I, Definition 4.1.2 implies that

Exy [ua(sp.)] = talsy,)-

Thus, for o € I, the result of the theorem holds.
For o € U, suppose that vy, j—13(b*) < F(yk) < vq,.. ;3(b*) for some j € K (this

holds except for a y-measure zero set). Then Definitions 4.1.3a and 4.1.3b imply that

E}‘Z [ua(sba )] = / ua(sba)d)\’;.

{seSlytep;(s)}

But as the integrand is maximized by b, = j everywhere in the region of integration,

the integral must also be maximized at b, = j. We conclude that for a € U,

As F is continuous and strictly increasing, F~! exists and is strictly increasing.
y ) y g

In order to complete the proof, define z; = F~'(vq,. ;3(b*)) for j € K and define
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zo = F71(0). By monotonicity of F', it follows that for all j € K,

Tjo1 < Yp <5 = F(zj1) < F(y) < F(z)
= v, ,-13(07) < F(y3) <vg,. 5 (07)

= b, =7
We can thus give a lower bound on the vote for candidate 5. For all j € K,
vi(b*) = Fr(m;) — Fi(mj_1) + Fy(z;) — Fy(z;).
If 5 =1 this simplifies to vy (b*) > Fr(my) + Fy(z,).
As v, j(0%) = 20 vi(b*) for j € K, it follows that
J

v, 53 (0%) > ZFI(mi) — Fr(ms—1) + Fy(z;) — Fy(zi-1)

=1

(Fr(mj) + Fy(z;)) — (Fi(mj_1) + Fy(z;-1)) +

v

(Fr(mj_1) + Fy(zi-1)) — (Fi(mj_2) + Fy(x;-2)) +

oo (Fy(my) + Fy(zy)) — (Fr(my) + Fy (1))

AV

Fy(m;) + Fy(z;)

\Y

Fy(my;) — Fr(z;) + (Fi(z;) + Fy(z;))

Y

Fr(m;) — Fi(z;) + F(z)

AV

Fy(m;) — Fi(zy) +vg,.. 3(0%)

o
A%

Fi(m;) = Fi(z;).

Thus Fr(m;) < Fy(z;) holds for all j € K.
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Note also that

w(0) = Fi(mg) — Fr(me-1) + Fo(ze) — Fo(zp-1)
21— Fy(myg-1) — Fy(wp-1)
> 1= Fr(mg_1) + Fr(ze—1) — (F1(2-1) — Fu(zp-1))
> 1— Fy(mg_1) + Fr{zg—1) — F(zg-1)
> 1— Fr(mg-1) + Fr(zx—1) — F(xr_1)
vg(b") + v, p-13(0°) 2 1= Fr(mg-1) + Fr(ze—1)
0 > Fy(wes)— Fi(mes).

This implies that Fy(zg—1) < Fr(mg—1). A similar argument shows that Fr(z;) <
Fi(m;) forall j € K.
From Fi(z;) < Fi(m;) < Fi(z;), it follows that Fi(z;) = Fy(m;) for all j € K.

As Fj is invertible, z; = m; for all j € K. Thus, for a € {2,

Yo € 0i(s*) = U{l,...,j—l}(b*) < F(y) < U{l,...,j}(b*) = b, =7 N

We thus conclude that, in equilibrium, both informed and uninformed voters cast
ballots as if they had correct information about the positions of candidates. While
the beliefs of the uninformed voters may remain imprecise, they still are accurate
enough to allow the uninformed voters to vote correctly.

Theorem 4.1 proves that “correct” voting by all voters is an equilibrium state;
all voters are maximizing payoffs subject to beliefs and these beliefs are consistent
with the observed data. But the theorem is silent about how such an state might be
reached. Certainly the merits of this equilibrium are irrelevant unless it is achievable.

In order to address this concern, we next construct a dynamic process, corresponding
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to a sequence of successive polls, which converges to this voter equilibrium for any
initial configuration of beliefs.

We formally define this dynamic process as follows. We begin with an arbitrary
initial ballot 5° and belief A°. Now suppose a series of consecutive polls is conducted,
with each poll’s results announced publicly before the next one is taken. As each poll
is a survey of the entire population of voters rather than a random selection from

»

the population, we also use the term “straw vote.” As we specify in definition 4.2,

all voters respond to polls rationally in the sense that they adjust their responses
to be consistent with the information reflected in the most recently announced poll.
Specifically, we suppose that for the poll in period £, all voters cast a straw vote that
is optimal according to their beliefs AX=! and form beliefs consistent with the latest

results, vy, ;3 (6°71) for all j € K.

Definition 4.2 Let s* € S and fiz a pair (°,X°) € Bx A. Fort =1,2,..., we
recursively define a sequence {(b%, \*)}, where (', A\ € Bx A forallt=1,2,..., by

1. Yo € Q, b, satisfies maxjex Eye-1[ma(b, §)] = Eyi-1[ma(b, b)),
2. Vael, N (s*)=1,
8. Ya € U, if s* satisfies s; # s} fori # j, then

(a) M({s€S|s1<s2<...<s;}) =1,

(b) va,. ;1307 < F(ys) <wvp,.. 507 = A ({s €S|y € pi(s)}) =1.

It follows from the proof of Theorem 4.1 that if the assumptions of the theorem

hold, the ballots b defined by Definition 4.2 satisfy, for all j € K and t=1,2,...,

ael = mj_1(s") <yl <mi(s*) =, = (4.1)

aelU = zii<yi<ai'=1t, = (4.2)
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Figure 4.2: Vote Response In Successive Polls

where zf = F~Nvg,.. ;3 (0")) for j € K and 2§ = F~'(0), for t = 1,2,.... These
conditions dictate what ballots voters cast in succeeding polls as a function of most
recent poll’s information.

Figure 4.2 illustrates voters’ responses in successive polls. Again the horizon-
tal axis represents the issue space X and the vertical axis represents vote shares.
After the poll at time ¢ — 1, the results, vote shares for all candidates, are pub-
licly announced. With this information, the uninformed voters are able to calculate

g5t = F~ (vq,. j3(071)) for j € K, as indicated in the figure. Then, for the poll at

1 vote for candidate

time ¢, uninformed voters with ideal points between %~} and z~
J. Of course informed voters know the true candidate positions in all periods and cast
correct votes in all polls. The resulting vote shares for the time ¢ poll are identified

in the figure for both groups of voters.



105

The following theorem shows that even from an arbitrary initial condition, the
above process converges to a voter equilibrium. In other words, the eventual outcome
of the dynamic polling process is that all voters vote as if they were fully informed

about the positions of the candidates.

Theorem 4.2 Assume ) is infinite, u(I) > 0, and F;, Fy and F are continuous
and strictly increasing. If s* € S satisfies s; # s} for i # j, then the process defined
by Definition 4.2 converges to the unique (up to a set of measure 0) voter equilibrium
ballot b* corresponding to s*, in the sense that v;(b') — v;(b*) and zt — m;(s*) for

all j € K ast — oo.

Proof: As F is continuous and strictly increasing, if we show that z% — m;(s*) for

all j € K ast — oo, then for all @ € 2 and j € K,
Yo € ©i(s") = b5 =1

and thus v;(b*) — v;(b*) for all j € K as t — oo.
To begin the proof, focus on the vote for candidate 1. From equations 4.1, we

have

v(0) = Fr(my) + Fy(ai™)
= Fr(mi) = Fy(a7") + (Fr(ar™) + Fy(ef))

= Fi(my) — Fr(z8Y + F(2i™).

Consider first the case zi < my(s*). Then, as Fy is strictly increasing, Fy(m;) —

Fi(zt™') > 0. As F is continuous and strictly increasing, F~! is continuous and
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strictly increasing. Thus,
2y = F u(0") = F1 (F(zY) + Fr(my) — Fr(z8h)) > F (F(zih) ==t
We can also write
v (b%) = Fi(ma) + Fy(a871) = F(my) — [Fy(m) — Fy(ai™h)] .
As Fy is strictly increasing, Fy(m;) — Fy(2i™!) > 0. Thus,

oy = F 0y (")) = F~' (F(my) — [Fy(my) — Fy(zih)])

< F71(F(my(s*))) = mu(s®).

So if 2} < m;(s*), the sequence {z%} has the property that z{™* < z¢ < my(s*).
So {z¢} is a bounded monotonic sequence and thus must converge to its least upper
bound. We claim that this least upper bound is m;(s*). To show this, suppose that
the least upper bound of the sequence {z¢} is Z < my(s*). Then as Fy is strictly
increasing, Fy(my(s*)) — Fr(Z) > 0. As F is continuous and strictly increasing, there
exists an integer T such that ¢ > T implies F(Z) — F(2}) < Fr(mi(s*)) — Fy(z). It

follows from z¢ < 7 that Fy(zt) < Fy(Z) and thus

z = F Y(F(z)) < F~' (F(z}) + Fi(my) — Fy(z))

< F1 (F(mﬁ) + Fj(m1> — F[(xi)) = xi“.

This contradicts the assumption that 7 is an upper bound, so the sequence {z}} must

converge to my(s*).
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A similar argument applied to the case =t > m;(s*) proves that if 27 > my(s*),
the sequence {z!} is strictly decreasing and also converges to m;(s*). In addition,
this method of proof applies to candidate k and yields the result that 2t — my(s*)
monotonically as t — oo.

To prove the result for j =2,...,k — 1, we have from equations 4.1 that
J
v, 53 () = Z vi (")
i=1
J
= > Fr(mi) — Fr(mi_y) + Fy(zt") — Fy(a!7]
i=1
= (Fi(m;) + Fy(eiY)) — (Fr(mj1) + Fy(a521)) +
(Fr(mj_1) + Fy (i) — (Fr(mj—s) + Fy(2ih)) +
~oo o (Fr(ma) + Fy(a7™) — (Fr(ma) + Fy(a57"))
- FI(’ITLJ') -+ FU(.’L';Hl)
= Fr(m;) — Fi(a§) + (Fr(ziY) + Fy(ef ™))
= F(xﬁ_l) + Fi(m;) — Fl(wz-“l).
If we suppose that % < m;(s*), then Fy(m;) — Fy(z5™') > 0 and thus
:E§ = F_l(v{l,.__,j}(bt)) > -t (F(xt-_l)) = a:;'l.

J

Rewriting vyy,... ;3(0") as F(m;) — (Fy(m;) — Fy(z% ")) and noting that Fy(m;) —

Fy(zt') > 0 yields
z; = F (g, 3 (01) < F7H(F(my(s"))) = my(s*).

Repeating the argument on least upper bounds proves that the sequence {xg} is
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monotonically increasing and converges to m;(s*). When z% > m;(s*), the sequence
{x%} is strictly decreasing and also converges to m;(s*).
We therefore conclude that v;(b*) — v;(b*) and z% — m;(s*) for all j € K as

t — 0. [ |

4.4 Full Equilibria

Up to this point, we have assumed that the candidates’ positions in the model are
fixed exogenously and concentrated on the information and decisions of the voters.
Under these assumptions, we have shown that in a voter equilibrium all voters act as if
they had complete information. We now expand the model to include the candidates
as strategic actors with incomplete information about the characteristics of the voters.
In this section we show that the candidates, as well as voters, act in equilibrium as if
they were fully informed.

We maintain all of the relevant notation from section 4.2 and also define some
new concepts below. Recall that S denotes the set of functions from K into X and
a typical element s(j) = s; represents a policy position for candidate j. For the
strategy profile obtained by replacing s; by s; in s, we use the notation (s_;, s}). In
addition, to emphasize the dependence of voters’ ballots on the policy positions of
the candidates in equilibrium, we sometimes write b(s) for the ballot b.

We suppose that candidates choose their strategies in an attempt to maximize
the vote share they receive on election day. Therefore, we define candidate j’s payoff
function 7; : S x B — R as a function of a profile of policy positions s and a ballot

b(s) which yield vote shares. Specifically, we define

(s, 6) = v;(b(s)).
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We next define the information and beliefs of the candidates. As with voters, can-
didates’ beliefs will be specified as probability measures over the possible distributions
of voter characteristics. We assume that each candidate knows the policy positions
of all k¥ candidates. We denote the set of possible distributions of ideal points for
voters by Y = {y | y : @ — X is F measurable}. For any such function y, the corre-
sponding distribution function is defined as Feo(z | y) = p({a € C | yo < z}) for any
(measurable) set C' C 2 and x € R. The belief space of each candidate is M(Y'), the
set of probability measures on some o algebra of Y.> Specifically, candidates’ beliefs
are assigned by a function v : K — M(Y). Thus, candidate j’s belief about voter
ideal points is given by 7(j), which is also denoted by -y;, a probability measure on
some o algebra of Y. The set of all such belief functions from K to M(Y) is denoted
by T

As with voters, a candidate’s beliefs allow the candidate to make expected utility
calculations in the face of incomplete information about the voters in the model. We
suppose that candidates assume that voters are fully informed and rational;® they vote
(sincerely) for the candidate closest to their ideal point. For a possible distribution
of voter ideal points y, candidates can construct a predicted ballot for a profile of
candidate policy positions s. For s € S and y € Y, we define the predicted ballot
b(s,y) € B by

7 g if u(8j7 ya) > ’LL(S]'!, ya) for all jl 7é Js
ba(37 y) =
1 otherwise,

®We assume that for all z,¢ € R and C € Q, all sets of the form {y € Y | Fo(z | y) > t} are Y
measurable.

6 As we have noted, this assumption about voters is not correct in general. However, in equilibrium
this assumption is justified, as all voters act as if they were fully informed.
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for each o € 2. As was the case in an earlier section, é(s,y) will be unique almost
everywhere, while the predicted vote totals for b(s, y) will be unique.

As in section 4.3, an equilibrium of this model requires that players maximize
payoffs conditional on beliefs which are also consistent with available information.
But now the set of players is expanded to include both voters and candidates. Thus,
a full equilibrium consists of a voter equilibrium conditional on policy positions that,

along with beliefs, form a candidate equilibrium.

Definition 4.3 A full equilibrium is an element (s*,v*,b*,A*) € S xI' x B x A such
that (b*,\*) is a voter equilibrium, conditional on s*, and for all j € K, the pair

(s*,7*) satisfies
1. s7 € argmaxyex By [Wj((sij,s;-),l;((s*_j, i) y)),
2. forallie K, v; ({y e Y | F(mi(s*) | y) = v, 5(0")}) = 1.

Before proceeding, we briefly review the components of this definition. Condi-
tion 4.3.1 states that each candidate j must adopt a policy position s} that maxi-
mizes the expected value of the payoff function 7;, where the expected value is taken
over candidate j’s belief v}(y) on the distribution of voter ideal points. In addition,
condition 4.3.2 requires that these beliefs be consistent with the observed vote shares.
Candidate j knows the policy positions advocated by the other candidates and can
thus determine the policy midpoints m;(s*) for all ¢ € K. Candidate j also assumes
that the voters are also fully informed about s* and all vote correctly for the nearest
candidate, which is true almost everywhere in a voter equilibrium. Thus, for each
¢ € K, the combined vote shares for candidates 1, ... ,¢ must equal the share of voters
to the left of m;(s*). Therefore candidate j’s belief v} must assign zero probability

to distributions of voter ideal points y in which F(m;(s*) | y) # vy, ;(b*) for any
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Figure 4.3: Candidate Beliefs In A Full Equilibrium

¢ € K. In other words, the distribution function F(z | y) for each each admissible
distribution y must have value vy, . ;3(b*) at m;(s*), as illustrated in Figure 4.3 for
three possible distributions %/, ¥”, and y".

In order to illustrate the characteristics of full equilibria in a simple setting, we
consider a three-candidate election. The first theorem we prove shows that no full

equilibrium exists in this case; a result analogous to the complete information setting.

Theorem 4.3 Assume Q is infinite, u(I) >0, Fr(z | y), Fu(z | y) and F(z | y) are
continuous and strictly increasing for ally € Y, and k = 3. Then no full equilibrium

(s*,v*,b*, \*) exists in which s* satisfies s} # sj fori # j.

Proof: From the definition of a predicted ballot b and of the candidates payoff function

7;(s,b), it follows that for any profile s and any possible distribution of voter ideal
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points v,

71—j((é"tj’ 8;')7 B((S*—j’ S;‘)’ y)) =Y (8((3)1‘—]‘7 3;)’ y))

= F(m;((s2;,55)) | y) = F(m;-1((s, 57)) | 9)-

Consider candidate 1. We have

mi((s2y,81), (821, 81),9)) = Fmu((s%1,51)) | 9)-

Suppose that y satisfies F'(m;(s*) | y) = v1(b*). Then as F(z | y) is strictly increasing,

for some € > 0 such that s] = s + ¢ < s3,

F(mi((sy,51)) | 9) > F(ma(s™) | y)-

As this holds for all {y € Y | F(my(s*) | y) = v1(b*)}, definition 4.3.2 implies that

By [m (521, 81), (5% 1, 51), 9)] > B [ma (7, b(5%, 9))].

This contradicts the maximization condition in definition 4.3.1, so no such equilibrium

exists. [ |

It is also clear that no full equilibrium exists in which any of three candidates
adopt identical positions.

It may appear that this result simply reflects the lack of best response for an out-
side candidate. The next result shows that this is not the case. In order to guarantee
the existence of a best response, we assume a e-separability condition similar to that

presented in chapter 2.



113

Definition 4.4 For a given € > 0, s € S satisfies e-separability if |s; — s;| > ¢ for
i# 7.
We next define a e-separable equilibrium as the limit of a sequence of full equilibria

satisfying e-separability.

Definition 4.5 An element (s*,v*,b*,A*) € S X' x B X A is an e-separable equilib-
rium if there exists a sequence {(s%,7°,b%, A**)} such that s — s* ase — 0, s° satisfies
e-separability, v¢ = v* for all e > 0, (b%, X°) is a voter equilibrium, conditional on s°,

and for all j € K, the pair (s%,7°) satisfies

1. 8§ € argmaxyexe, Eae[m;((s2;, s7), I;((SE_jy i), 9))];

2. for alli € K, ~¢ ({y €Y | F(mi(s°) | y) = v, 3(0°)}) = 1.
where X2 ; = X \ U, (5§ — €, 5] +¢).

We state the following theorem without proof.

Theorem 4.4 Assume Q is infinite, u(I) > 0, Fr(z | y), Fy(z | y) and F(z | y)
are continuous and strictly increasing for ally € Y, and k = 3. Then no e-separable

equilibrium exists.

However, as is the case in a complete information setting, if we recast this three
candidate competition as spatial competition with entry, then a full equilibrium exists.
Palfrey (1984) proves this result for complete information and a similar argument
applies here. In a model with entry, two “dominant” candidates choose positions in
the issue space and then an entrant chooses a position, knowing the positions of the
preceding candidates.

Because of the added component of the timing of candidates’ choices, we must

modify some of the elements of our model. First, we reinterpret the assumption
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that s; < so < s3 by referring to the two established candidates as A and B and
the entrant as candidate C' and then relabeling them after their choices such that
51 < 89 < s3. Using this notation, we suppose that for s4, sg € X, the entrant’s
position, sc(sa,sp) € X is a (set) function of the dominant candidates positions.
In addition, the later move by the entrant changes the information structure of the
game played by candidates. We now assume that for all j € {A, B,C}, and for each
i € {4, B},

v {y €Y | F(sily) = F(si|ya)}) =1,

i (e 1Fs Dot = s Pt} ) =1

In other words, all candidates are aware of the vote shares available to the entrant on
the left, right, or center of the distribution. As it turns out, the values specified corre-
spond to the possible optimal entry points of the entrant. In addition, to simplify the
presentation we suppose that X = [0,1] and F(z) is continuous, strictly increasing,
symmetric, and convex on [0, 3] and concave on [},1]. These assumptions correspond
to Assumptions 2.1,2.2, and 2.3. We also suppose that the candidates beliefs admit
only distributions y € Y whose distribution functions satisfy these assumptions.

We are then able to prove

Theorem 4.5 Assume Q) is infinite, u(I) > 0, Fi(z | y), Fu(z | y) and F(z | y) are
continuous and strictly increasing for all y € Y, and k = 3. Then there exists a e-
separable equilibrium with entry ((s%, s, s& (s, s§)), v*, b*, \*) that satisfies F(s4) =

1 -2F(1/44 s4/2) and sp =1 — s4.

~ Proof: The proof is similar to much of the material in chapter 2. Fix ¢ > 0 and



115

suppose that s4 < sp. First, regardless of the entrant’s beliefs on y € Y, as F(z | y)
is strictly increasing, the best response of the entrant to the left of A is s4 —¢ and the
best response of the entrant to the right of B is sg + €. Since F(z | y) is symmetric
and convex on [0, 3] and concave on (3, 1], the optimal entry position between A and
Bis1/2ifsp=1—s4.

From the results in chapter 2 we know that F(s%) = 1 — 2F(1/4 + s%/2) and

sy =1 — s} implies

F(sh) = F((sg +1/2)/2) = F((s3 +1/2)/2).

The term on the left side of this equation is the vote share received by C for (optimally)
entering on the left, in the limit. The term on the right side of this equation is the
vote share received by C for (optimally) entering in the middle, in the limit. Now
consider candidate A. If he repositions himself to the left of s%, candidate C' will
enter in the middle to maximize votes and by the proof of theorem 4.3 candidate C'
will receive a smaller vote share. If candidate A chooses a position to the right of
s%, the entrant will enter to the left. Regardless of A’s belief on y, A knows that
va(s*) > F(s% | y) = F(s%). But A’s beliefs about F(z | y) also guarantee that for
8% < 54 < 8h, va((s4,55) < F((s5+1/2)/2) — F((s%+1/2)/2). Thus va((sa,s%) <
F(s%) < va(s*). Finally it is clear that for s4 > s§, va((sa, s§) < 1—F(s%) = va(s*).

Therefore candidate A has no incentive to change his position. A similar argument

can be made for candidate B and the proof is complete. |

Thus, even when candidates have limited information, the threat of entry by a
third-party candidate forces the dominant candidates to adopt non-convergent equi-

librium policy positions.
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4.5 Strategic Voting and Bandwagons

In this section, we suppose that the informed voters in the models vote strategically,
as well as being fully informed. We show that this results in an equilibrium in which
all voters, including uninformed sincere voters, act as if they were voting strategically
based on full information. We conclude that the “wasted vote” phenomenon may
thus be the result of information shortcuts used by voters with limited information.

If the informed voters anticipate the results of the dynamic polling process pre-
sented in section 4.3, a fraction of this group will realize that their votes will be
“wasted” on losing candidates. These voters will then have an incentive to vote for a
less preferred candidate who might have a chance of winning. When this occurs, the
inferences that the uninformed voters are making are changed, and the eventual result
is that all voters, informed and uninformed, act as if they were voting strategically.
So the process we describe results in uninformed sincere voters voting as if they were
fully informed strategic voters.

Suppose that for fear of a wasted vote, informed voters cast ballots for their most
preferred viable candidate, where viable is defined as a candidate who receives the
largest or second largest share of votes or a candidate tied for first in the case of a tie.
The vote shares that informed voters use in this determination are “correct” in the
following sense. We suppose that informed voters know the true distribution of voter
preferences, F(x), as well as the true candidate positions. As in the earlier sections,
we suppose that the uninformed voters believe that all voters are fully informed
and vote sincerely. Given this belief and their knowledge of F(z), informed voters
can form a shared prediction of the vote shares to be received by a fully informed,
sincere electorate. Thus, each informed voter reacts optimally to a sincere electorate,

neglecting the other informed voters who are making similar evaluations.
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Of course, an objection that immediately arises from those schooled in the so-
called “paradox of voting” is that if € is infinite then no single voter can change the
outcome of the election. Therefore, either all or none of the voters are “wasting”
their votes by voting sincerely, depending on how you look at it. But we can suppose
that the model just described is the limiting case of a finite sequence of models, each
of which contains a finite set of voters that must make strategic voting calculations.
In fact, just such an argument is the basis for a recent paper on voting equilibria
(Myerson and Weber 1993), as well as the results in chapter 3 on strategic voting in
large electorates. Myerson and Weber impose an “ordering condition” that requires
voters to judge that “[trailing candidates are] much less likely to be serious contenders
for first place than candidates with higher predicted [vote shares].” (p. 104) They
show that if the ordering condition holds as the size of the electorate grows without
bound, then voters will only vote for a candidate who is tied for first, is the unique
likely winner, or has the second-largest vote share in the case of a unique likely
winner.”

This result justifies the following specification for the payoff function of informed
voters. First, we define the set of winning candidates for a ballot b € B and positions
s by

w(s,b) = 1{J € K | v;(b(s)) = maxv;(b(s))}.

It is clear that w(s,b) C K and that |w(s,b)| > 1 implies there is a (|w(s, b)|-way) tie

"This result is Theorem 2 in Myerson and Weber (1993).
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for first. Then, for all o € I we define

uo(sp,) if by € w(s,b) or
Ta(b) = lw(p)| =1 and vy, > v, for j € K \ w(p),

-M otherwise,

for a sufficiently large integer M. Finally, we define expected sincere vote shares for
the candidates by 9;(s*) = F(m;(s*)) — F(m;j_1(s*)) for all j € K. The theorem
we present next deals with the case of a single winner and runner-up, for ease of

exposition. Similar results can also be proved for the other cases mentioned above.

Theorem 4.6 Assume ) is infinite, u(I) > 0, and F; and F are continuous and
strictly increasing. Let s* € S. Suppose that (b*,\*) € B X A is a voter equilibrium
conditional on s* and that s* satisfies s} # s} for i # j. Also suppose that for ezactly
one j1 € K, 0;,(s*) > 9;(s*) for j # j1 and for ezactly one jo € K\ j1, 9;,(s*) > 9;(s*)
for j # j1,72. Then for all j # ji,j2 and j € K, v;(b*) = 0.

Proof: Suppose that (b*, X*) is a voter equilibrium conditional on s* satisfying s} # s
for ¢ # 7, such that v;(b*) > 0 for some i € K where i # ji, jo. It follows from the
payoff function for informed voters that for all « € I, b, # 4. For uninformed voters,

it follows from the proof of Theorem 4.1 that for « € U and for all j € K,
v1,...,i-13(0%) < F(ys) <vq,. (07 = b, =,
and, defining z; = F~'(vg, . ;3(b*)) for j € K and zp = F~1(0),

3:j_1<y:;<xj:¢bz:j.
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This condition, which holds for all j € K, implies that

Yo < Zjo1=0b,#7j

Yo > Tj=0b,#]

holds almost everywhere. So the votes for candidate i are coming from uninformed
voters with ideal points satisfying z;_; < y < x; and possibly a set of measure zero
outside of this region. In other words, v;(0*) = Fy(x;) — Fy(z;_1).

As the distribution function F7 is strictly increasing, there is some € > 0 such that

Fi(z;) — Fr(zi—1) > €. But the definition of vy, . ;3(b*) states that

v(b") = U{l,...,i}(b*)_U{l,...,i—l}(b*)

= Fy(z;) + Fi(z;) — Fy(zio1) — Fr(zi-1)

> FU(asz) — FU(xi_l) +e.

This is a contradiction with v;(0*) = Fy(z;) — Fy(xi—1). Therefore, it must be the

case that v;(b*) = 0. |

It is of course true that the informed voters are now endowed with a very high
level of information about the electorate (as well as the candidates). Partly this is a
reflection on the reasonableness of the assumptions imposed in the earlier sections.
Indeed, this “high level” of information is usually assumed to be present among all
voters in the usual models of strategic voting (Cox 1987; Palfrey 1989; Myerson and
Weber 1993). Laying this response aside, it is remarkable that even if only a tiny
fraction of voters have this high level of information, in equilibrium all voters act

as if they were fully informed strategic voters. In this model, a small minority of
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knowledgeable strategic voters can go a long way!

4.6 Conclusion

In this chapter, we have analyzed the relationship between voter information and
election outcomes in a multicandidate setting. In our model with informed and un-
informed voters, members of the latter group are able to make plausible inferences
about the candidates’ positions based on the vote share each candidate receives. In
equilibrium, voters vote optimally given their beliefs, and beliefs are self-fulfilling in
the sense that they are not contradicted by observable information. We have derived
several interesting results. First, in the unique voter equilibrium of the model, all vot-
ers, informed and uninformed alike, vote as if they had perfect information. Second,
we have described a dynamic process involving a sequence of polls that illustrates
that this equilibrium is always reached. In addition, we have obtained results about
candidate positioning equilibria when candidates are also uncertain about the char-
acteristics of the voters. Finally, we have shown that if a small minority of voters
are fully informed and use this information to vote strategically, in equilibrium all
voters, including uninformed sincere voters, act as if they were voting strategically
based on full information. The uninformed voters view the lack of support for trailing
candidates by informed voters as evidence that these candidates are undesirable and
react by voting for a more prominent candidate.

Of course, much work remains to be done in this area. For example, the implica-
tions of relaxing the assumptions in the model should be examined and the testable
predictions of the model should be investigated with data from recent elections. This

additional work should expand and strengthen the results presented here.
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