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SUMMARY

This thesis treats two separate problems, The first concerns
the transverse vibrations of a beam and of a thin rectangular flat
plate., These vibrations are associated with a function space
which has the properties of a generalized "Riemannian" function
space., The geodaesics of this space arershown to play 2z role
analogous to that played by the ggodesics of the configuration
space in the classical treatment’of the finite dimensional case,
Part I is introductory and treats a few aspects of the vibrations
of beams with various end conditions under a change of paramster,
Part II develops the integro-diffqrential equation for the thin
rectangular flat plates The associated function space and its
geodesics are then studied in some detail., The space is found
to be not one of constant Riemannian curvature., An example is
worked out to illustrate the ideas, and an extension is suggested.,
The second problem (Part III) considers the equations of motion
of hydrodynamics of viscous flow with moving axes. Use is made
of the space of a kinetic metric‘intreducod by McVittie, who
considered non-viscous flow only. The Newtonian equations are
obtained by taking certain approximations, The equations of motion
in terms of the vorticity tensor are developed, Two examples are
discussed illustrating the theory, one concerning instability

necassary for tropical cyclones,
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PART I

VIBRATION OF BEAMS

1. Notations and conventions., To avoid any misunderstand-

ing we shall explain the notations and conventions used through-
out this thesis, Theorems, lemmas, and definitions are numbered
consecutively in each paragraph. The integer represents the number
of the paragraph, and the number to the right of the decimal point
represents the order of the theorem, lemma, or definition, For
example, Theorem 4.1 is the first theorem of paragraph 4, while
Lemma 5.3 is the third lemma of paragreph 5, etc. The ordered
pair of numbers such as (13,417) listed in the text means page 417
of reference number 13 in the list of references given after PART
ITI. The usual Einstein summation convention is used, i.s., re-
peated lower case indices (Greek or Latin) generate sums. The
range of such sums will be given explieitly., Capital indices will
be used to forestall summation. As is customary, we let notation
indicate some of the restrictions or hypotheses, especially in a

series of lemmas, For example, the equation stating Lemma 3.2

certainly presupposes that Definitions 3,3, 3.2, etc., are kept
in mind, This should cause no confusion since the required support-
ing definitions are usually on the same page or on the preceding

page. This is done for the obvious reason of keeping the lemmas



from being too bulky. On the other hand, the hypotheses for
theorems are listed in the theorem, A function u 1is said to be
of class C"° (briefly, Ili(fj‘if all of its first n derivatives

ars continuous.

2. Introduction. The role plgyed by the geodesics of the
configuration space of classiecal mechanics (of generalized coordi-
nates) is well known (cf. (13,31), (15,417), (4,17{). This con-
figuration space is usually a finite dimensional Riemannian space
with a fundamenﬁal symmetric tengor sééf The element of arc length
is given by ds = giiqudq& (i3 = 1525¢4¢9n) where the qL are
the gensralized coordinates, g..= K. and the summation
convention is used, F !

We consider here the generalization required for, say, the
geodesics of the "configuration space" of a vibrating string, beanm,

flat plate, ete, Clearly a finite number of independent generalized
coordinates is no longer adequate., An introduction of a generalized
"Riemannian" function space circumvents this difficulty (9,551),
(11,38). This generalization requires the uss of arbitrary (except
for certain restrictions listed where required) functions in lieu
of coordinates, Frachet differentials, GAteaux limits, a gener-
alized tensor analysis, and other aspects of modern differential
geometry (9,529),

We first consider the "small" transverse vibrations of a
straight beam. The effect of the various end conditions will be
brought out where appropriate. Vibrations of a flat plate will be

congidered in the next chapter.



3. Transverse Vibrations of straight beams. The partial

differential equation for the "small"™ transverse vibrations of a
straight beam of constant cross section and constructed of material
of constant density , and constant modulus of elasticity E

is (of. (14,241))

2"L u(x,t)‘ 32 u(x,t)
(1) BEI

— +
dx? I 2 t%

=0

where u= u(x,t) is the displacement of the axis of the beam
from its unstrained position as a function of distance
x along the length of the beam and of time t. We

o
assume u belongs to class C .

E = Young's modulus of elasticity;

I = moment of iner‘tia of the beam cross section about a
line through its centroid perpendicular to the plane
of the displacement wuj

P = mass per unit length;

o u\*
“gmpll" = | = may be neglected in the curvature formula
0o x
2 3,
1 _oJv 2% .
— T crm— (g u) s Wwhich gives the
R axz 14| —
o x

curvature of the axis of the beam,
For ease of reference we tabulate some of the end conditions
usually considered in beam problems, The conditions are arranged
in columns from which a typical case can be read off by teking one

and only one condition from each columm. The subscript notation

. z

is used for partial derivatives, e.g., uzx(o,t) = .i_(_:_La uix i
X

evaluated at x = 0.



_ TABLE I
(or TABLE I if t-s, u(x,t (8) )—»Tx(x,s))

A B L 2

(2)  u,(0)=0 u (L,t)=0 u_ (0st)=0 w, (frt)=0

(b) u, (0,t)=0 u, £,8)=0 u(0,t)=0 u(f,t)=0

Well known end conditions are

(2) Aa, Ba, Ca, Da = free ends
’ hinged (simply
(3) Aa, Ba, Cb, Db = supported) ends
(4) Ab, Bb, Cb, Db = built-in ends
bujlt-in, free
(5) Ab, Da, Cb, De = cantilever)

The kinetic energy T(t) and the potential energy V(t) are
given by (14,334)

(7) 3 u(x,‘S)
T(t) = dx
u(x,t)
(8) dx , where £ is the
length of the
beam,

Theorem 3,1. If 1) u(x,t)6(1¥ and satisfies equation'(l)
ii) the kinetic and potential energies are
given by equations (7) and (8),
respectively
iii) u(x,t) satisfies the end condition
(2) (free ends)

then T(t)+4 V(t)= C, a constant.



£,
Proo y) . 1 . 5
d(T+ V) d Du EI d O u
_—::/9. —— S—— dx+ — e 2 dx
dt 2 at Jt 2 dt o o x

L BT 2 ‘
- g. qutL}udx+?— j 2uﬂu“tdx
a

Y - i £ -
=r jgeutxdx-f- EI Luituiif - fuxtxuiftde

o

y4 -EI
:P fu}t F‘xtudx—!—EI, t}tuxmdx
. %

o

(7]
£ - L L 1
:F juxuttdx-EI uxuﬂm —_ jux:uzledx
- ©
L

= 0 L] Q.E.D.

Corollary 3.,1. If u(x,t)‘ satisfies any of the end conditions
(3)y (4), (5)y or (6) as well as hypotheses i) and ii) of

Theorem 3,1, then T(t)+4 V(t)= C, a constant.

Proof. An analysis of the "u v" terms of the integration
by parts in Theorem 3.1 shows that they likewise vanish under any
of the end conditions (3)y (4), (5)y or (6)s It is also to be
noted that this result also obtains if any set of four conditions

are taken from Table I with one and only one from each column,

It is fruitful to introduce another parameter in lieu of +.

£ az 2
Definition 3.1. A(N) = 2|c—- % alx)3) dx
2 9 x2

o

where i) c=T+vV, and we assume



¥4 2 2
Bl o u(x,h)o/
ii G- — > 0.
) 2 812
Le 3.1 A(X)=2T(A).

Proof, Clear, Use Definition 3.1 and equation (8).

: A
Definition 3.2, 8 = f A(X A
=]

Definition 3.3. A(s) = A(t(s)) , u(x,s) = u(x,t(s))

/z .
Lemma 3.2. 1 a E(X,S) %
A(s) A 2s

Proof.

ds dt(s) 1 1

— = A(t)=> from Definitions 3.2 and 3.3.
dt ds A(t(s)) A(s)

3 u(x,t)
A(t)=27(t) = ﬁj ( ) dx from equation (7) and

Loemma 3.1.

o u(x,t(s)) ds

o= (Y
A(t(s)) /0 A (t(s))j (3 u(X,t(S))) dx , and using

Definition 3.3

o u(x,
__/Oj ( u(x 8)) dx QoEoDc
A(s)

Theorem 3,1 on the conservation of energy can also be written in

(10)

terms of the parameter s.

Theorem 3.2. If i) u(x,t) satisfies equation (1),



u(x,s) = u(x,t(s)), and ueC" ’
ii) T(t) and V(t) are given by equations
(7) and (8),
jii) s is given by Definition 3.2,

iv) A(s) is given by Definitions 3.1 and 3.3,
then

_z L L, 2 z
P A(s) J u(x,s) EI 9 u(x,s)

(11) dx + dx = C .

2 o s 2 Ix*

2 o
y4
1 3 u(x,s) 2
Proof,——— = f° dx from Lemma 3,2
A(s) " Os

A(s) 213 H(xy9)\°
— + /" ——— | dx =0 wusing Definition 3.1

z
u(x,s i(x.s
dx+/o( (’)dxzo.

¢
Lemma 3.,3. If i) u(x,t) satisfies equation (1), € C,
ii) wu(x,t) satisfies the end conditions (2)
1ii) A(s) is given by Definitions 3.1, 3.2,
and 3,3,
v.
4R(s) f‘ 3 (me). Jilxs)
then -~ —2EI x
ds o s o x¥
(o)
z 2
EI 4 S u(x,t)
Proof. A(t)= 2|jC—— dx from Definition 3.1
2 o o x%

dA(t(s)) - ‘(/@2 aiu(!(’t(ﬂ)) 83a(11t(3)) d

x
ds A dx? ds 2x7



i
t

4
azu(x,t(aa)) azu(x,t(s)) , _f u(x,t(s)) au(x,t(s))

ox* ds0ox o -4 3x° ds3x
o [a’u(x,t(s)) 2 u(x,t(s)) (£ ’ fﬂ 3 u(x,t(s)) 3 u(x,t(s))
9 X o 9 x a 8
dK(S): — 2EI fia ulxre) a ixs) dx Q.E.D.
ds I s 3x*

Corollary 3.3. Hypothesis ii) of Lemma 3.3 may be extended to

encompass any of the end conditions (3), (4), (5), or (6).

Proof. The "u v" terms of the integration by parts vanish

for conditions (3), (4), (5), or (6) as well as for condition (2).

Theorem 3.3. If i) wu(x,t) satisfies equation (1) with any
of the end conditioms (2)-(6),
ii) T(t)+ V(t) = C, a constant
iii) A(s) is given by Definitions 3.1, 3.2,
and 3,3
iv) u(x,s) = u(x,t(s))
then u(x,s) satisfies the integro-differentiel equation
azﬁ(x,s) 2EI O u(x,s) J/Q a’(ﬁ(x,s) 3 u(xy8)
D s” —K(s) s A 2 x* s

EI af'ﬁ(x,s)f’a(a u(x,8) %
—f dx =0
Z(S) o X“ O s
[e)
ds

Proof., — = A(t) from Definition 2.2,
dat

d*s  da(t(s)
ri A
dt ds

(12)

dx

() .

d
“]



du(x,t) ou

Hence A(t)
ot O s
3 u(x,t) ’% 2 Du dA(t)

and - A (t)+— At) .
ot 3 s* 3s ds

Substituting these equations into equation (1), we have
2

du 2u dA(t(s)) P EI 6"u(x,t)
z,+ + 2 # =
ds Os ds A(t(s)) A’(f:(s)) o x

(o]

WhiCh’

upon using Lemma 3,2 and Corollary 3.3, becomes

2 _ £ - 7
o u 1 31 )f 24U 2

+ (-2E1 dx
/O'Dsz' r reer » O s 2 x*

2
B oW tiyw
+ — F dx=0 .
A ox? /. o s

This proves the theorem upon division by /o .

We now sssume that Table I has been rewritten as Table ‘f in

which t is replaced by t(s) and u(x,t)= u(x,t(s)):'ﬁ(x,s).

Theorem 3.4, If 1) u(x,s)e Cyand satisfies equations (10),
(11), 2nd (12)
ii) A(s) > 0 satisfies Definition 3.1 with
8 as a parameter
iii) € 1is a positive constant
iv) u(x,s) satisfies the end conditions (2)
of Table T
S
v) t = q[ _%T%\-)—
vi) u(x,t) = lx,e(t))

then a) u(x,t) satisfies the partial differentisl equation (1)
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b) u(x,t) satisfies the end conditions (2) of Table I

¢) u(x,t) has the constant total energy level C.

s
Proof. t = J‘i‘?’%‘)‘ by hypothesis,
[}

¢ 1 2i(xs)  Iulx,s(t) 1

-::—.K_(-s—)- 3 T ot A(s)

3% H(x,8)  Du(x,s(t)) 1 Difx,s(t)) ak(s(t)) 1
26 24 I Ot ()

Substituting these into squation (11), we have

2 -
o u(x,t) 1 Su(x,t) dAf(s(t)) 1 98I Su 1

(13) < -3 — - — — .
21 A((s) 81; dt A (8) A(s) 2t A(s)
]2 Qﬁa(x,s) 3 u(x,s) EI a*'ﬁ(x,s)
’ d
019 x’» s = A(s) 0']1:“
(8 u(x,s) 2
—_— dx= 0 .
B a s

_ ° EIf/Q(azﬁ(x,svz ]
Since A(s)= 2|C~— dx
[ 2 A ox*

aE (s(¢)) fi iu(x,s(t)) O ulx.s(t)
—_—= —2EI dx
dt A o x? 2tax*
f/e a E(X’S(t)) a E(X’s(t))
= — 2F1 dx
ot ox*

0
after two integrations by parts like those for the proof of Lemms

3.3, Substituting this into equation (12) we have

o u 1 1 Qu Za u 346(x,s)
2 —32 + _3 ZEI P dx _
Ot A(s) 1A°(s)At /, Ot ox
1 ou (X Fu(x,s) 3 T(x,s(t))
-2 dx 4~

_5.3(3) 2t A o x* ot
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2

¢ L
A O U(x,s) 2 u(x,s(t) '
+ = ( e )) dx=0, or
o

_A-s(s) Idx* 491:
o u ;)"Tz(x,s(t)) dsz 1
(14) 2 +EI ( ) — )
o t dx* at/ A(s)
L
(Qa(x,a(t)) z/dt)z
‘ dx=— 0 .
A o1t ‘ ds

ds _ L5 H(x,8) | 1
Since —— = A(s) and A(s) dx = —o |
d’t o a 8 f)

equation (14) becomes

2 ¥
du EI Du
+ = —— = 0, Hence conclusion a) follows, Conclusion

ot r Ix*

b) follows immediately f'rom the relation of Table I and I. Conclu-

sion c) follows from equation (11) of Theorem 3.2 upon noticing
that the left side of this equation is just the sum of T(t) and

V(t) as given by equations (7) and (8).

Corollary 3.4. Hypothesis iv) may be changed to read any one

of the end conditions (3), (4), (5), or (6) of Table I, and then the
conclusion b) will read the respective one of (3), (4), (5), or

(6) of Table I.

Proof, Clear. Compare with Corollary 3.3 of Lemma 3.3,



PART II

A FUNCTION SPACE ASSOCIATED WITH A FLAT PLATE

Before proceeding with the geometric ideas and the role of
the generalized Riemannian function space, we shall consider the

small vibrations of a thin rectanguler flat plate.

4, Vibrations of a thin rectangular flat plate. We con-
gider a thin rectangulgr flat plate of perfectly elastic, homo-
geneous isotropic material, With the axis selected as shown in
Fig. 1, the partial differential equation governing the vibrations
in the direction of 2z, the kinetic energy T(t), and th;
potential energy V(t) are given respectively by (14,421)

Dulxeyst) a0/ Dulxayst)  Dulxayet) 3 ulxsyst)
+

(15) ” +— + 27— =0
ot u\ dx”* dx~ dy dy*
M “rt 2 u\%*
(16) T(t)= ( ) dxdy
2& % Jo ot
D T’f( 3 u (alu)z 1)3111 o
17) V()= — + + 2
( 2 o x2’> o y*/ dx* ayz_'

2

' 3*u ) |
2(1-9 dxd
+ 2( .)Sxéy xdy

where & = area of the plate, = :: be

M =masgss of the plate

Eh3

D ::-—h (1 %

12
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E = Young's modulus of elasticity of the material
h = thickness of the plate
» = Poisson's ratio for the material
u(x,y,t) = deflection of the plate at time t.

uquH z

P—
S

Fig. 1

We shall be concerned with the vibrations u(x,y,t), assumed be-

longing to C , for which on the boundary u(x,y,t) satisfies

(18) u(x,y,t) =0, uz/{(x,y,t)z 0 and uq}jx,y,t):: 0.

Definition 4.1.

a——

* 2 z ¢
v 2 2 ‘ 2 u 2 u o u a u
Viu(x,y,t) = V (V u(x,y,t)):

+ 2 +
ax’{ ox? Qy& ay‘%

Theorem 4.1. If i) u(x,y,t) satisfies equation (15) and € le
ii) wu(x,y,t) satisfies the boundary condi-
tions of equation (18)
iii) the kinetic and potential energies are
given by equations (16) and (17),
respectively,

then T(t)+ V(t)=C, a constant,
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d
Proof (1‘(1:H—V(t))... fj (u) dxdy +
2a dt

+ — — w’ w2 2(1-7)u
- J‘( » u‘“p Ueayat (1 )uxfldxdv
c 4
-Tff%wm*
[] [o]

j f [uuuxxt-y—u??uf?tp)(u *u7?+ux M’t)+

+2(1~ )))i# :(125

(19) Y = V¥ dxdy +

+ D f J xx Mt+ L 4 //'71' +7 (u:aauff" U “ﬂt)

+ 2(3-7 Yu, » x?t]dxdy .
In order to simplify the last integral, we integrate it by parts.

We do this a term at a time,

e b ¢ 4 4 -
D fj AL Df {ux;cu;t:e f Y x:&dx dy
o ‘o ° [

/]

=—D [uaxuz _.f tgtum#dx dy
o 0 (-4 he
< 4
(20) = p ff wu  dxdy . Similarly

c.

(21) » j 77#tdxdy._ D jj u, 1"’”‘glxcly .
e A
-

[-4

s
j ﬂt“wd"dy“wf [“x 77‘ —f “‘%ﬂd"]dy
"D’)j [“t%”‘l jtﬁﬂ ]dy

dxdy and using equatiom (15)
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(22) f f Yu u? xdedY' Similarly

c L e
(23) D Yu u dzdy:Dj 'Pu u, . dxdy.
Yyt A% b 1
o 0
ffz(l Y Jug u pdxdy = 2(1- V)Dj E"f’“f’
j;a?u#tdx]

=-2(1-¥ )Dizﬁxu)‘xﬁ;w

c
—-ju u dy] dx
N Ayy

(24) ff 2(1-> )u xx’fdxdy .

The "u v" term of the integration bv parts vanished each time by

<

virtue of the boundary conditions. Using the results of equations

(20)-(24), equation (19) becomes

(r(tH—V(t))_ —D f/ u V u dxdy + Djf [,ax;("' syt

provs +¥ uxngf-Z(l-y’ )uix#q/]dxdy

¢ A . .
= Df[ ut(~ U u+ UV u)dxdy= 0, Q.E.D.

[z

+ .7

Definition 4.2.
_ D ¢k 2 2 2
A(t) = 2 -5 | + -
(t) |C ) ff{u;:—f—uf +27’uﬂu 2(1 H)ux }dxdy[

o 0

with A(t) > 0.
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Lemma 4.1. A(t)= 2T(t) .

it wv—  a—y————

Proof. Clear. Apply Theorem 4,1 and equation (17).

>
Definition 4.3. s = f A(X)ax .
o

Definition 4.4, Z(a):__—_- A(t(s)), u(xy,y,8) = u(x,y,t(s)) .

- ¢ 6
di(s) fj— ¥ -

020 —"2 O

emma 4 = D ) ) u v u dxdy

Proof. From Definition 4.2

=

da(t(s)) el
‘d—s-———: —2D Jf{uﬂ Worst Upplpss+ ’)(uxxsu77+ “,a“,,;s)"”
(O

u }%5}
Comparing this with the second integrel of equation (19) and using
equations (20)-(24), we have

dA(s) S “

—_—— —-2D f fﬁ's vV a dxdy Q.E.D,

ds o "o

< 6
1 M _ 2
Lemma 4,3, —— = — u, dxdy .

A(s) a 45 4

" c b
Proof., A(t)= 2T(t)=—j f u; dxdy from Lemma 4.1

a 2 %

M /o b rdg\*
A [
S
a., / dt
M _, c A 2
A(ls)=—— A (s)jj -I-l; dxdy since
a 2 o

ds -
— = A(t(s)) = A(s) by Definitions 4.3 and 4.4, Q.E.D.
dt

Theorem 4,2, If i) wu(x,y,t) satisfies equations (L5)and (18),
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and u{x,y,s) = u(x,y,t(s))
ii) T(t) and V(t) are given respectively by
equations (16) and (17)
iii) the parameter s 1is defined by Definition 4.3
iv) A(s) 1is given by Definitions 4.2 and 4.4 ,

then

2 A
(25) B fcffzd . - ch {-z 5,27
28 ) J S 2 2 A w Y oA & 4

+2(1-7 )EZTKGxdyz c .

Proof., A(s) A (S)M jfu dxdy from Lemma 4,3.

-2 ¢

A (s)¥ 1.:2. D -2 _a - -

R — u dxdy = C — —— gu +u- +27u uwu_ +
o8 ) s 2 )4 xx ¥ = FE

[}

+2(1-~” )ﬁ;;} dxdy from Definition 4.2. Q.E.D.

Theorem 4.3, If i) wu(x,y,t) satisfies equations (15) and

(18) and €C ¥

it) T(t)+V(t)=C, a constant; where T(t)
and V(t) are given by equations (16)
and (17)

1ii) A(s) is given by Definitions 4,2, 4.3,
and 4.4

iv) Wx,y,8) = uxsy,t(s))

then Uu(x,y,s) satisfies the equation

(26) u+‘%—§ zDu ffu V u dxdy+D Vu ffu dxdv} 0.

Proof. -g_: — A(t), from Definition 4.3
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dzs dA(t) _

T =A(t) -d_s— ’ u, = U A(t(s)) = usA(s)
y aK(s) _

u;tt:: ug, A (s) + ug " A(s) .

Substituting these relations as required in equation (15), we have

. —2 _ _ 4 &b _y_
7 A+u1 E—4+— Vu=o0 which, upon using Lemmas 4.2
5S S ds M

aD M
fu V T dxdy —+ V u-——- udxdylo.

Theorem 4.4, If i) 7W(x,y,s) satisfies equations (26)

and 4.3, becomsas

=l

and (25)
i1) A(s) > O and satisfies Definition 4.2
with 8 =a general parameter

iii) C is a positive constant

fs d M
iV) t E — ’
b A(N)

u(x,y,t) = E(XyY’ 3(1"))

v) u(x,y,s) satisfies the boundary condi-

tions of equation (18) with t and wu

replaced by s and u, respectively,
then u(x,y,t) satisfies the partial differential equation

utx..',. ab V¥ u=0 with boundary conditions of equation (18)
M

and also has the constant energy level C.
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A()) ds A(s)
1l

5S4 dt 1
Proof. t = — by hypothesis, — =——,
o

. Similarly

Es(x,y,5)= u (x,y,S(t)) o) =u =

e -

11
— =" u_ A
uSS uxt 'y a ut x

Substituting these into equation (26), we have

1 1
(27) utt:_:ut At-r-—E—ZDu ff u V u dxdy +
A A
b4 2
+ D Vu/rfu dxdy}:: 0.
X
o o
But A(s)= 2{0——ff ui+u77+ 27/ xxﬁﬁ+2(1 '/)u )dxdy}

dA(s(t)) ek, o o
" :—2D!oj(uuuﬂt+g’?u”t+)f( L+ 7;:- 1 ”.t)’*"

+2(1-v) —u;?uia't)dxdy

— ¥
(28) = -2D ff utV u dxdy , where we have repeated the

integration by parts of equations (20)-(24) using the given boundary
conditions on u rather than u, Substituting equation (28) into

equation (27), we have

2D et 2, o b
(29) u, +—u ff’ﬁ' Vv U dxdy— — fj?x V U dxdy -+
o o o
2 ¢ 'e'z
uff uz dxdy = 0 3
©o o

and since from Lemma 4.3
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fc dxdy = ( ) dxd
— u Als u XAY — e
— : y / S Y__ ,

ab
equation (29) becomes U 4 — V*u =0, Q.5.D.,
Y5 M

5S¢ An infinite dimensional generalized Riemannian space. We

now consider a function space that can be associated with the
vibrations of the beam considered in Part I or the flat plate of
paragraph 4. We shall develop it using the results of paragraph

4, The corresponding development for beams can be considered as a

special case where u‘}‘s 0 and the eppropriate boundary conditions
are used,

First, we need an expression for arc length in the proposed space.

M ¢ A 2
1= — A(s) _[f -“—s dxdy from Lemma 4,3,
a ()

ds(») M_
or ( ):—A (s) J f u (x,y,s(h)) dxdy , or
d X 7 a
ds(») ___ff
c u +u +27’
(30) (d)\ ) g ( uﬂ(u?,*

+2(1-9 )Ti:;’)dxdyg _(f’ﬁi (x,y,S(«\))dxdy

S

Definyiig_g 5.1, V(x9y; A) = U(X,KV,S())) .

Lemma é;lo

2M p (€

_— ——j v2+ v+ 2'fv +

a 2 AX 7 1‘7’
o

o

(31) s
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c A %
2 2
+2(1-v )vﬂa)dxdy]ff %(x,y,/«)dxdyj d/‘ R

Proof. Clear from equation (30).

Definition 5.2, If i) v(x,y), §&v(xsy) are arbitrary
7

functions € C
ii) v, $§v, A %, (§v) , end
(§v) all vanish at the boundaries,
¢ :
x=0 or b, y=0 or ¢
A .
. D f"f 2 2
iii) ¢ ) 0067,“+v7 +2:IY“\91,
+ 2(1—%)-«& dxdy > 0 ,
then the differential of arc length of the infinite dimensional

generalized Riemannian space is given by the positive definite

functional differential form

2M
(32)  ds'= {C—_ff(xx Yt P Yy +
¢ Z
+ 2(1~Y )v dxdy } j{(Sv(xl sy, )) dx, dy

with function coordinates v(x,y)

We consider the geodesics of this space. They are defined in

the usual way, i.e., they are the curves for which s of equation

(31) nave a stationary value. To facilitate the rather long computa-

tions the following notation is used.

Definition 5.3. [v s v [[v (x,¥) v, (x,y)dxdy .  (33)

2M D
Definition 5.4. g(v,}’)z—gc——- I}U ’vxi] +
a 2 a3 71
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+ ["fm, " ,ft,] + 27 [‘&,«,, Y ,7,] +

+ 2(1-¥) l_.v",‘h ’v“,’h] ) Fxsy), (34)

Lemma 5,2, ds? = [Sv, g(v, Sv)]

Proof. Compare Definitions 5.2, 5.3, and equation (32).

The geodesics of this space (9,552-559) are given by the

generalized calculus of veriations problem

Y
z dv dv 2 +
(35) — g(v,—) dt = min.
dt dt
%o
and satisfy the generalized Euler-Lagrange equation
dzv dv  dv
(36) "y + [ [ve— s — ] =o. Here
ds ds ds
Y,
+ 2
dv
Definition 5.5. s = v el S at.
dt dt
Xo
Definition 5.6. G(v,"7 ) = expression for ¥ when
g(vi T ) =7 4is solved for 7 .
Definition 5.7 [ (vs ¥ » ¥ ) = G(vY(v, ¥ » § ) =
] + -~

Definition 5.8. Y (v, 5 , § ) = %{g(v, LRI e

+g(v,71;§,)—g(" (vs 5 ;r‘)}.

3) ¢

where g(v, T ) is the Fréchet differential of g(v, }"’ )
1

with increment

Y
.-gl.

We use -&{— (or gys_) for the derivative with respsect to the

parameter t (or s8) despite the fact thet v is also a function
of x and vy.
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Definition 5,9. g(f) (v,}';'l,z ) is the adjoint of g(vy§5 37 )
defined by [g(v,}‘; 'LI )y Ql] = [’L  3) (vsT 31 )] .

Lemma 5.3. g(v,}‘;z)z—zfn [W*v, 7,] T (x,)

4 Xt v oty oy
where v v= + 2 -+ .
! o x* 2x*y* 2 y’,l
’ /

7

Proof. We compute g(v,5 3% ) as a Gateaux limit.

g(v+an ,7) — g(v,7)
g(vs 737 ) = 1lim L] ¥
Ao A

1f{om/ D
N )];imo-; . C-; [v’% +2 'Lz,x Vx4t M‘f,ﬁ,]

D
- ~p¥
PR LA A L [ % n]

— D(l-V) \""’1’-,- 37’1,7, ’v’,’l’/ + 372,1’1_’]>

2N D
":(C“_[v% ’vi,#,] + ["1,7, "%7,] - Y [‘9,1, 2']
= 50m9) [ty % 4] )z € (x,)

1

MD
= 1m — }——| [2» . 2 , +
o } a ([ KL )7”""] * [ 210 7, ]

A->»0 A
27 ) + 27 [
+ [ Vod ! 2}'7] [ V4 ’Zi,*,] +

+ 2(1-Y) [2>w‘l7l,@#7] )} T (x))+0(x)
— 2MD

S(V’T;Z)z—ag [v"‘, ’Zx,;g]—#[vfr?" ’ZM%] H)[” 4/,]-’.

+7 [%,7“]4; 202 [rg, 7]} F(x,) (37)
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Upon checking Definition 5.3 and the boundary conditions of
Definition 5.2, we note that the portion between the braces of
equation (37) is identical with the second integral of equation
(19) if the identifications u-sv, u —>% are made., Also the
boundary conditions used for u in equations (20)-(24) are the
same as the present ones on v, hence we can use these computa-
tions to rewrite equation (37) as

- 2MD

B(vs¥ 37 )=

a

[(Z #v, 'L] 3 (xl) Q.E.D.

—2MD

VZ"V(X, sy ) [}’, 'ZL] .

*
Lemma 5.4, g . (vo,¥T 31 )=
3 2

a

proof. [elva¥ 57 »n] = [, ey (6357)]

from Definition 5.9.
: —2MD

(i 00, = —— [2v0x, s 7 (5, )]
—[3‘("1 Y, ) (ES ,y,_)]

= ["L, ,-—ZMD V‘fv [%'(15 Y, )s 'I_z(xznrzL )]] .

a

— 2MD

Thersefore g:) (v,? $ ’Z )= VI"V(XI 'y, ) [’{ (xz )y, ¥4 (x‘_ ,YL)-J, QED

a

Le 5.5.

SIS N
—~MD

Y‘(v,}’, ’T,)"' - [V,"V: i] y’_,_ [v;"v’ ;r’] ;1 —[T,’Y,_] V,"V}‘

Proof. Y (v,?" ’ }; )= 4 g(v,},‘ ;;;).,.g(vo 53 fl )—Eé: (VJ,'! I ).S

from Definition 5.8, Using Lemmas 5.3 and 5.4 we have
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—-2MD 2MD

Y(V’T’ ,Y‘)zé a [V’*v,}:'] ;——: \z"‘v,‘g] T,_ M

/

2MD
B L Vl$v [Y 9 }‘] } . Q.E.D.
a ] L 9

fi 5,10 : 2M{ 2 (
Definition 5, . E —_—C—-— [ 'V ] ]
P[v] 8 2 %% 2 5% )|+ m. .

+ 27 ["’% "'M,]" 2(1-¥ )["éz ’“97])}‘

Lemma 5,6, If K(s) is defined by Definition 4,2 with u

replaced by v, then
a 1

M P[v]

= Z(S) .

Proof. Clear, upon checking Definition 4.2.

Lemma .5__.1.
-~ MD

[ (vs T :'[2)=TP[VJ {E?,"v, TJ Tl -+ [V,#v, }:] Tz - [T:fg_] ‘Z“v f .
Using Definition 5.4 we set

M D
(! =£("’T)=a—{°"{ ["t,x,"’me]"‘ o] +

+ 2v [Vét, ’vfh'f,]+2(1_1)) [v% ’v¢,7—;')} ¥ (x,) .

From Definition 5.6 and Definition 5,10, we have
T (xz)': G(ve ) = h Plv] .

Using Definition 5.7,
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F @Y )= oY g, 1)
= P[v] Y'(v,T’ y T ) or, from Lemma 5,5

4

Piv] {[W"% LT+

.‘_[\Z#v,f]}: - D’, {]V,,ij. Q.E.D.

Theorem 5,1. The solutions of the generalized geodesic equation

—MD

I—'(V’-{"Z )=

a

2
d v(s) dv  dv
r -+ I_'(V, ey e ]= 0 satisfy the integro-differential
ds ds ds

equation
1

# ¥
(38) vt I(S){-zn [V; v,vs] v.+D Vv [vs ,vs] g = 0,

where A(s) is given by Definition 4,2 with u replaced by v

and t replaced by s (c¢f. Theorem 4.3),

MD ¢
Proof, 0= vs‘s«;—/"'(v,v‘S )= v ——P[v] [\Z v,vs] v +
a

SSs

%®
+ [V’sﬂv,vs] v, - l:vs ,vs] Vv g
from Lemma 5,7, But using Lemma 5.6, this becomes
v _+ - ~2D V"L -+ DV'* = 0 E.D
Ss —A(s) [, v,vS] v-s v [Ys ,vs] = . Q.EeDe

We note that equation (38) is identical with equation (26) of

Theorem 4.3 if U is replaced by v. Hence we see that the
geodesics v of this generalized "Riemannian" space satisfy the
integro-differential equation (26) if u(x,y,s)= v(x,ys8) whers

8 1is the arc length defined by Definition 5.5,
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6. Curvature of the generalized Riemannian space. We now

desire to compute the generalized Riemannian curvature of our
function space, First we compute the generalized Riemann-Christoffel

curvature form (9,554) given by

Definition 6.2. g(v, ¥ 5% 37 ) is the Fréchet differential
2 [] 3

. + .
of g(v,'{}l ;}: ) with incremen '{3

Definition 6,3. The adjoint g* (vs¥ 373 8) is defined
3)

implicitly by

[I,g(v,s‘ s 8)] = [ 8y arssss)] .

Definition 6.4. The adjoint Y (veCy T ) of ¥ (veZ Y )
@ P (1) 2

is defined implicitly by
k3
[G, r(v,; ’}; )] = [:'; ’ {:)(Vycwrz )] .

Loms 6ol [ b8l T )] (n ) - [ 080, )] &n 1)

2

- Y- e

where P[v] is defined by Definition 5,10.

Proof. Using Definitions 5.4 and 5,10, we have
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[{,g(v,g )] & 5,) ~ [7 50, )] gv, T, )
1 g(x’Y)
— [}’ ’ %;(xz.yz)

¢ Pfv] Plv]

ot T )] —— T (0y)
—_ ’ 3’3] P[v] N 'Y

1 plv] 3
= Pi[v] 2[1',72]3'3 - [7,73] ‘;’li . QE.D.

We know that a necessary and sufficient condition that the space

is one of constant Riemannian curvature (9,557) is that

(33) R T T T I=K i [¥, setmr)] e,

! = 3

~ [ rem ] etn; )1

where K is the Riemannian curvature and is a constant.

. ~ 2MD L
Leuma 6.2. z(n}’s'{s&):——;— v, 5,7_] §(x,) o

g(v+ g AL Y—g(v,T 3’Z )

Proof. g(v,T ihs §)= lim
A—=»0O A

ory using Lemma 5.3,

2 ([F +re0] - B )76

&(vs§ 37 36) = dim —— 2
—_ * " _ ”
= lim a0 ([v, v"l;l"— r[v¥s, 'll [7 Vs 7-]\] 3 (x,)
A>0 a > /
.:—2:1) [V,"S 9 2] T (xz) ° Q.E.D.

% ~2MD ®
Le e3e & (v,-;,r;s):_T [;,7] v s .
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roof.  [£48(va7 54 15)] = [7 ¥ (7 1518)]

from Definition 6.3,

— 2MD

—[w"s+1] [5:7]
[ 2]

[1‘ , }‘] vis . Q.E.D.

[.I 18(Vs T N ERS )]:

—2MD

¥
gm(v,T 3T38)=

a

Lemma 6.4.

{:‘(V,G’Tz ):::?i{ [V‘.‘V"a] G+ [Gs};] v,‘f V- [G’V,“V Tz }.

Proof. [s, ¥t = [£ » ) e, )] |

by Definition 6.4, Hence on using Lemma 5.5 we have

wris Je =T [rren] ool o] [o]
- [5 7] [»%]]
= [’5 ’::—M([Z"V,'S;] G+ [G, '5'1] Vlyv
Hence,

- [G, V,’v] };)] .
¥ ~ DM

oo =[] oe [r] v % )

Lemmz 6,5,

(40) Y('lf V,G(v,r(v,‘;: ’};)) ’i_)“ Y(:(V,G(V,)"(v, 5, 93; 9, ;;)
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DM
= Plv] { 3 [V,lﬁv, }”‘] [V,“ v,?;] ?;

a!

~s[wrnn] [3.7] o+
+ [en] [ n] v
oy [T n + [wev)

A=l B

Proof. Using Lemma 6.4, Definition 5.7, and Lemma 5.7, we have

’ ’ ’ = P 7 Vs .
(41). )ﬁ) VsG(v, ¥ (v ¥ 1:)) }:) - [*] v’ };]

(B [ ) v
ot ([zen] [on] + )
8- 5] o)
-5 ([rer] [7d + )
o) - [7.5] [P 7+] g

(42) - Y(;::(V,G(v, 8 (v, ?; . }‘z )) ,Z):: (—:u-—-)zP[v] {— [V"v, Ya]'

(Fresls « [ [
- v ([Fon] [57]+ [e]:
o) - [0n] [n7)

sy (I7me] D7+ )

- )}

- DM
a
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Adding equations (41) and (42) we get the required result.

—3[@ ] [ )T,
+ [Fi] [eg] v
+ [5 5] vy T,
-~ {v;"‘v,q"v] [}"’ ,y(] 5 ;

Proof. First we consider the first four terms of

R(vse ¥ [ ?’) as given by Definition 6,1. Using Lemmas 6.2
/ 2 3

and 643, they become

(49)  Fan sy s )re) (T g ey i)

2 / 3 ¢

— &3 57 ;};)}

[ 7 - E[T?] ASAET

kN

- MD

a

= [Ty e[ -

3
Since the right hand side of equation (40) is the last two terms
of R(v, ¥ ,% 5 ) as given by Definition 6.1, we get the required
’ 2 3

result by adding equations (40) and (44). Q.Z.D.
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Theorem 6.1. The infinite dimensional function space
determined by ds® of Lemma 5.2 (or equation (32)) is not one

of constant Riemannian curvature,

Proof. Comparing Lemmas 6,1 and 6.6 we see that
R(v K v ] v
5575 A K] [T ] e s
—_ [T/ :S(Voz )] E(V"fz ) }
where X is a constant, as required by equation (39) for a space

of constant Riemannian curvature. Q.E.D.

7. An example. For an example we consider the geodesics
for the function space of the flat rectangular plate of paragraph

4 with u(x,y,t) assumed in the form (for fixed m,n)

mx nmwy
(45) u =B sin sin sin pt . This form of

Fe W % mm.
b ¢

u clearly satisfies the boundary conditions of equation (18).

Equation (15) becomes

aD

e o\ U™ Byt “4’7’?’#)

2 mix nmTy
= —B ,p sin sin sin pt +
b ¢
AD mTx nvy
+ sin sin sinpt B, . °

{669 69~ e
mars 22 [T 2]
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3
2 aD /mq‘ 1/1a
(46) p =] ;v — .
M kb c

We desire to compute the constant C= Cm

(t)+ v __(t)

=T
MmN

M

which represents the total energy level for a fixed m and n.

From equation (16),

M c L
(47) T_(t)= [fu/:dxdy
2a 0
o

2
c A
B M 2 z 2 BTX L oamy
= p cos pt sin sin dxdy
a AR

2 b c
. Mp* . be 2 Mp®be .
= B, cos  pt — = B o cos pt .
From equation (17),
Br.D /St
m 2 z
t)= Y -
an( ) - f[u""+ u77+ 2 uau#?j-Z(l V)ux?] dxdy
© °o
2 e A r? mr x nir
_ BnmD " gin® sin’ Y sin® pt 4+
- 2 b b c
© o
w7t L urx BTy
+ sin sin sin” pt -+
c* b ¢
7 ntaT mrx
n
+ 29 — sin sin’-’r—y— sin® pt
b c* b c
mrtaist  , mix  ,n7Y
+ 2 (1-?) — — cos cos .
c b c

. sin® pt] dxdy

2 #* o+
B 7D (m n? 2 c b , m7x
—t — sin" pt sin
2 b C (-4 (=) b

2 n7y 2 > m*n* a
esin’ —— dxdy+ B, 7 D——sin pt-
c b*e*

I

[
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¢ & , Wrx , ni7y
¢ f cos cos dxdy
o

o b c
2 D vl be n* n¥ 2m'n*
V =38 — (sin®* pt) — —t—,t—
mm 2 4 b c be*
o 2
( D7 be sinz'pt (m" n* 2
8 bz' ¢” ey

2

2 p7"c [m* n*
Lomms 7.1, 'I:"‘”gt)-}- v/"m(t): gm/r\a:B/mM -b—’:r-— |

8 c*

Proof. Adding equations (47) and (48), and after substituting

for pz from equation (46), we have

2
o 5] e
Tmm(t)—l- VoAt)= B ¥ AT e be cos” pt
8a

o Z
. DT be m. n* 2
+ B —z+—: sin™ pt

mmoog b
¢ 2
2z DTbe [m* n*
= B/m/n —1+.—;.- = C m
8 b ¢ -
which is a constant for fixed m and n, Q.5.D.

2 -2
We note that if B. is chosen as (m" n") we have the
i ot T er
D?T*bc
C,mm"—' = G, which is independent of m and n and hence
8

the energy level is the same for all modes of vibration,

Lemma 7,2, For @ fixed m and n, the arc length in our

- generalized Riemannian space is given by
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2 Mpz be 1 .
S = B, — (t+——— sin 2pt> .
8a 2p

Proof. Using Lemma 4.1, Definition 4.3, and equation (47),

we have £ 2

2 Mp  be 2

S o = Bm cos pt dt,
° 4a
2 2
B"um Mp© be 1
- t4+—sin 2pt | . 2.2.D.
8a 2p
4%
DT be
Theorem 7,1, If i) ¢= (;here Dy, b, ¢ are de-
8

fined after equation (172)
. a? a2\
ii) %“”L:r(}—-+-——-)

b* %
aD 4/ m* =n?
i) p=—TN|{—=+—
2 2
M b c

then

=u =B
\:ﬂl/y\_ mn mm

sin m7x sin nwry sin pt]
b c

is a geodesic of the infinite dimensional "Riemannian" space

defined by equation (32) of Definition 5.2 with total energy level

C for each harmonic,

Proof. The ds of Definition 5.2 is the differential of
arc length as given by Lemma 5,1, which in turn is equivalent to
s as given in Definition 4.3. Definition 4,3 gives the form of
s actuelly used in the computation of s of Lemma 7.2. That

each harmonic has a total energy level C follows from the remark

just before Lemme 7.2,
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Lemma 7.3, If v“n(x,y)::: u (x,y,t) for a fixed value

of t, then the geodesics Ymn(x,y) are closed geodesics,

Proof. From equation (45) we observe that we return to the

same function v,m_m_if t 1is increased by 277,

Theorem 7,2. The functional elements Vs Vo ’

v v
Yar? V30 Va2

\g, s eee 0f the double infinity family of geodesics are orthogonal

at the origin.

Proof. The origin is given by v =0, i.e.y by t=0
in umn(x,y,t). The tangent vector to v, ___ at the origin is
given by

2t
A=0
By orthogonality of two functions 7§ and '}; we mean that
1
["f ’ g(v,z )] = 0 where [‘{ ’ g(v,‘i )] is given by

Definitions 5.3 and 5.4, From Definitions 5.4 and 5,10 we have

Z(XA’) .

myT X nfry
= Brmm.p sin sin .
b c

(v, )=
S =50
Hence

n’ x nTy imx jmry
B P sin sin s glv, 4:1; sin sin

b c

mﬂ"x iTrx nry Jry
p i sin sin dxdy
P[] S "' b c c

B B
Py St G Sm

Il

where the repeated indices do not generate sums and SA}A is the

well known Kronecker delta symbol., Hence v _ _ 1is orthogonal to

Ydo;’ unless m =n and i=j. Q.E.D.
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8, Remarks and suggested problem. The function space

associated with the thin rectangular flat plate of paragraph 4
was developed in detail in paragraphs 5 through 7., The function
space for the vibrating beam of Part I with various end conditions
can be obtained similarly., 1In this latter case, however, a different
function space is obtained for different end conditions in spite of
the fact that many of the leading equations involved are not
affected by the end conditions, That this is true can be readily
seen by rewriting Definition 5,2 for the case of the vibrating beam.
The new hypothesis ii) certainly varies with the end conditions,
thus changing the elements of the function space.

An essential part of the development was the fact that the
sum of the kinetic and potential energy was a constant. This was
obtained by assuming that the modulus of elasticity E, the
density /9 s the moment of inertia I, etc. were constants, This

condition caﬁ be relaxed so that these quantities vary with position
T +ve)

and time. In this event, the requirement that

means that an integral involving & , I , fj s eotc, must be
x P x

O. This places an additional restriction on the functions v of

the associated function space. The study of such a space has

interesting possibilities, one of them being the possibility of

its having a constant curvature,



PART III

MOVING AXES IN HYDRODYNAMICS OF VISCOUS FLUIDS

9. Introduction., If the equations of hydrodynamics are

desired in terms of a curvilinear system of coordinates, they

can be derived from the known equations expressed in a "fixed"
rectangular coordinate system. Then using a transformation for
the space variables only, we can arrive at the desired equations
via the methods of tensor analysis, On the other hand, these op-
erations fail if the desired curvilinear system is in motion with
respect to the fixed rectangular coordinate system.

We shall now show how the required equations for viscous
flow may be obtained by the introduction of a "kinetic metric,"
From this, using some of the techniques of the theory of special
relativity, we can obtain the Newtonian equations by successive
approximations in terms of -%1 s Wwhere c¢ is the velocity of

light.

10, Space of the kinetic metric. We first require the

square of the differential element of arc length for the proposed
space. This is obtained by considering & fixed coordinate system
with an assumed absolute time and transforming to a moving coordinate

1 2 3
gsystem. We let £ s X4 X be the space coordinates in the fixed

The non-viscous case was discussed by G. C. McVittie (6,285).
We follow his notetion rather closely,

38
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7.
coordinate system and X be the assumed absolute time co-

ordinate, Also let x', x*, x> and x~ be the space and time

coordinates in the moving coordinate system, Let the transforma-

tion from fixed to moving coordinates be given by

Definition 10.1. X = h (x', x%, =%, x*) , r=1,2,3

z
where h’ré c .

Clearly the kinetic energy T of a unit mass of the fluid in

the X-system is given by
S

ax” ax
T= —
4 S”‘S ax* ax*

(rys= 19293)

where 5*5 is the well known 2-index

Kronecker delta symbol,

2 +
Definition 10,2, ds = (dx*)— i, §, axax® .

We now introduce the convention that Latin lower case indices have

the range 1 to 3, and Greek lower case indices have the range 1 to

4, unless otherwise stated.

d v an’
Definition 10.3. Ko = &s T 3
2K 3rn
Y
_ 2 v ars
yt:‘r‘ = 8".‘5 o x* 9x?
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Definition 10.4. = Vpe —
Brg = "Et:t“ Fate
g = _—_@_: 4
pt — et T #fe
e = 1- %
4y — c? ‘
Lemma 10,1, ds = g dx” dx® .
FESemAn | Sem— aT
. oW .
Proof. From Definition 10.1, dX = dx” and dX = dx",
a
X

Substituting these into Definition 10.2, we have

4+ s
z 1 3 nh Jh
ds® = (ax*)~ — §_ dx” dx’
c? o x* o xt
1 oK on’ 2 3 O O n°
= (1" ~ 45 —-—“)(dx")- — 24 — axax*
¢* 7?22 Ox ¢ 3 x* Jx*
1 on an®
-—$, — axt ax®

c TS E9xP a x¥
Upon using Definitions 10.3 and 10.4, this becomes

2 1 2 2 1
(1) as'= (= ¥, Max*)- ?);, dxdx _c?);l_d;!‘dxi'
zZ
— # dxFax* + dxl'ax¥
= gﬁ(dx )+ 2 gf" x/dx gfg_ x

o T
= B_. dx dx

Q.E.D.
This ds

is the desired diffserential of arc length of the

space associated with the unit mass kinetic energy T.

Definition 10.5.

g = B, V= ¥ »a= V_,
. -1

gzcz (cofactor of g, in glg

r¥=

-1
= (cofactor of 1\;‘} ina)a .
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Here the vertical bars are a short notation for the determinant

of the elements enclosed between them,

Lemma 1002- g == - c-éA -+ c~8 X' .

Proof. Observe g= | -V -, ~¥;= 0- ﬁ
-61- a cl c"
"}fl ‘x;z "yz‘s 0- AP
c? c? c? ¢
- YJ’I - xa':. T 0— K&‘
o ot o* c?
- nﬂ ~ r;z - Y;s i- r#‘
* c* c* c*

by Definition 10.4. Rewrite g as the sum of two determinants
by splitting the summands of the fourth column and apply

Definition 10,5.

yz yl 1
Lemma 10.3. (-g) =D 1- ¥ to terms of order =
B ¢3 2¢0 A c‘s

Proof. Clear,

Lemma 10.4. For the fixed rectanguler cartesian coordinate

system X
1 2 1 %¥ rr 2
= = = — ~g) = — =1 g '=—-¢
8”‘ 1, gf[« 2 ’ (g) 03 s B ’
T
with remaining g and Eor aqual O.

Proof, Clear. Use Definitions 10.2 and 10.5.
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11. Bquations of motion and of continuity. For purposes of

reference and completeness we shall give a brief sketch of the
steps required to write the equations of motion and of continuity
(Navier-Stokes diffsrential equations) of a fluid in the form used

in the special theory of relativity.

Definition 1l.1. i density of the fluid

p = pressure of the fluid

/4

(X,Y,2)

coefficient of viscosity of the fluid

i

i

external forces per unit volume in
the X', X%, x> (fixed system)
directions, respectively,

dx’ ax* ax® ax*
— ™ 4, — 4 — , — Jare the velocity components in

' ,ut,u%,1)

H

¥

’
ax’  ax* ax*  ax¥

2
the X‘, X, Xs, X“ directions,

respectively.

® =

ou' + o U1+ o §= 0 for incompressible fluids

ax' 9x~ ax® # 0 for compressible fluids

The well known Navier-Stokes differential equations (3,577) are

(90' ,ou o Usau’)
— F+ U — +U0 = + U —
r 2 x* ox" ox* ox?

QP 1 2® 2
= — — - Mo T Vu
X o x' 3/481(' t/

vt 2u* vt 3u’
(1) /D (a x'*+ Ua—X,-'-U ;—;z—i' U39X3
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(2) + + -+ =0 .

Using the equation of continuity (2), equation (1) may be

rewritten as

9((0[]‘) 9 2 ’9 , a2 2 ;2
5 +ax,(f>(v)+p S5 PUVISS (pU0)

1 2@ 2
= P Xt=—M—+uV y'

A (pu)) 2 (pu'v?) Q(ﬁ(U‘)z+ p) Drutu®
— + +—, +
o X Sx' oX ox?

(3) .
9@ 2 2
= Y+ — —tuv u
{O + 3/“ axz. /U
A(pv) d(pu't’) D(pu'n?)

> 2
U.J
2x? ""ax, +8x‘ + 35 ((0( )+p)

L vyt
=pLit -4 —, U
3 dx /l g
6T
Definition 11,2, T’° = P U - p .
‘cz

Lemma 11.1. If terms of order -%1r are neglected, then
a T"'C
o x°

and the left side of equation (2) for & = 4,

is the left side of equation (3) for & =1, 2, or 3
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Proof, Using Lemma 10.4, we have

b d #
21 D(pv B p) 2 (pu- EY 1)
- T c* + — c
o X ox? 2x*
A
D(pth (e’ +E"))
— ————+ ——
o x* ox*

which is clearly the left side of equation (3).

T 4 *g
o1 Dputr*- E_ p) a(ﬁUyUﬂ’.ﬁT p)
- c + — c
2x" ox* o x¥
%
_2p 9P
oxf  3x¥
which is the left side of equation (2). Q.%.D.
Dofinition 11.30 (f 5 £y £, £7) = (X, Y, 2,0)

Lemma 11.2. If terms of order '%1 are neglected, then

grt o U’),g 1 5‘1‘8 @

M e o T o x*
where the comma denotes partial differentiation.
v
Proof. Since U , :‘a_'x'p=® s, We have
1 gt 80”,,; 1 g *o@ 1 ¢ O®
T er o axr T3 o2 ox Es/uc1 ox*

Hence, upon using Lemma 10.4,

1
3

g*t QU’),,; 1 E*‘f 9@ 1 \E‘*”- o0 1 '}9 ®

e p L kI =y

c* Ix° 3 ¢ IAx* 3 e¢* IxT 3

and
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1 T oY, 1 ¢ o0® 1 'F 5@

—_— — M — T—-——_— — = — =0,
3/M c* Ox°F 37 ¢ 3x* 3 ¢t 9x*
if we neglect terms of order %,: .
1 g gv’,, 1 8‘% 2®
Therefore —— M = — _— Q.5.D.

3 ¢* I9xF 3 3 x¥
Lemma 11.3. If terms of order -%9_ are neglected. then
» 7 L2 2
—_— /14 g Uyoetr = /" Sﬁ v'u where V is the three
dimensional Laplacian operator.

¥ 2
Proof. —%/A gn: U¥’o’.’t: 0= /U S/c.v Uﬁ'

o' u*
_ A T U‘B— ==1 #* u ¥ -1 R#
'?.‘/Ll g 959 T '?}4 g sts¥ cz/l g PR ?
(3 x7)
g #
= MV, neglecting
terms of order ¢ . Therefore,
»
— Tt u et U, T M Sﬁv"u" . Q.E.D.
Theorem 11.1. If terms of order -lz- are neglected, then
c
equations (3) and (2) become
6T >
(4) 9 T —/o fa“ ,l’f_ grtau’)’ c-z/u gd”r U-)
- - - : 3> Qz .
o x°© 3¢ 3x°® i

>°F
Proof. By Lemma 11,1, a_)%? gives the left side of

equations (3) and (2). Comparing Lemmas 11.2 and 11,3 with the
right side of equations (3) and (2) and remembering Definition 11.3,

the desired results follow.

Definition 11.4. If xd_ and s are the coordinates and
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arc length, respectively, of Lemms 10,1, then we define

P
a dx
v =

ds

Definition 11,5, Regarding 4~ and p as invariants, we

define T °T in the x-coordinate system by (cf, Definition 11.2)

T
T(r-— vovT i
=pevV-—Pe
[v]
»
1 o—tavn’ 1 Joe T

T _ Ps 3
Lemma 11.4. T’t—/of—;-c—llug -—c:/vlg V,0, T o

O xt

Proof. In changing from rectangular coordinates X +to the
general coordinates x of the space of Lemma 10,1, we replace

the partial derivative of ’F’r by its covariant derivative. Hence

rewriting equation (4) of Theorem 11.1, we get the desired result.

The equations of motlon and continuity of Lemma 11.4 may

also be written in terms of the vorticitv tencor,

Definition 11.6. If v_.= g v , then the vorticity tensor,

{;r s 1s defined by (}f. expression for vortex vector of (5,277)
L
~1
T =c (-g)? (v‘)t- v ).

-
T 2

Lemmz 11,5. If terms of order ¢ * are neglected and the

fixed rectangular coordinate system X 1is used, then

ou’ au* ou' av?

B T e — —— " c—

327 gt ox*’ v o ox

v
A x*

2ut
o x'

5, =3 =%, = =7, =5,7L =

%2 #3 " 22 33
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1 1 (9 U, 9U3>
Proof, = (U - U ): -
e _gs cY=F 2,3 3,2 -3 \9x® ox*

. QU" 2 u” ./ 2u¥ Ju#
= c < T B [T\ T T
1o ax 3T Ax 23 9x%x7 3y

since we are neglecting terms of order c“l. Using Lemma 10,4,
T, = -2%+29
3 ax3 T

we have The other relations follow

similarly.

Lemma 1l.6., The equations of motion can be written

(5) ‘ ., 207) 1 9s
(P, + VT T pvTe bp ST —
T x¢

c2 O x°
1 o v:; r# H
::/0 fk—-—_:¢l 1f1 z Vies» ¢
3c o x I

Proof. Taking the covariant derivative of 7% as given

by Definition 11,5, we have

ge’l‘
acT _ s T T & '
T ,e= 7 ({ov )"c+ PY Vi— = | I

gft ap

cl a X'C

—_ 9 T T oM —_
-V C; V.lt + f>v € ?L,z

Now substituting for v/u - from Definition 11.6, we get
3

T « < to—/u g‘-c ap
< 5p
= o), T e v
c X

Settine this last expression equal to the right side of Lemma 11.4,

we get
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T - a < LS o"/( d"/l T —_
T.,z=Vv (p v )Jz—f cY-¢g PV E gr-f-/o g Vv ~ 3.c

s 1 a Vi 1

"Multiplying" by g(s and summing on o We have

1 2p
T T 0’;‘1 T _
vlev) + cY-gpv };t+/o g BV Y = 58

1 av:9 1 »6e T
— — v *
3¢*" Jx? c’f‘g"s . S

T
- 2(vy)
Hence if we observe that v v, = 3 ——— , and if we write

T for § and 6 for T , we get the desired result.

Lemma 11.7. If terms of order —11- are neglected, then for
¢

T = 4, equation (5) becomes

(/Ovs))‘.zo .

Proof. Since V.= R v® , then

ralt:
_ o &
vy__g‘”v_gwwu;g“}v .
Or by using Definition 10.4 and v"‘-_—%: 1, we have
S
(6) v=1- f“,‘ - Y;& ¢c* v¥ , similarlv,
o
vV = vV =g +¢g v F
g~ %e ¢ 3
(7) = -y, ot- v ¢* v/ . By Definition 10,4
Sy = T _ % r, &
vV g‘_tvv_g«“-ng“&v_f-gn_vv
(o = -y, mag, Ry, SN

Using Lemma 10.3,

(9) cY~¢g {' = c—z‘VZ'(l- Y )T . Since f“: 0,
Ta

2¢ta
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f%z—y‘; c.z'fg—.

-
10 f = f =
(10) = 8o Eg

Substituting these results into equation (5), we have for the

case C = 4(v"= 1) ,

Y.W'*'Y,;%v _)/73—

1= S o)+
D QY""/ V f- 7 —29 p
£ - —F&vv)-c
+ 2 3 xy c" c’L c* x
97‘:0‘ -2 o

H

= f —‘L —cHg 8 ¥V .

/0 * 3¢*9x” /4 HY Sl
-2

Neglecting terms of order ¢ this becomes

(11) (fvf)oo_zo .

-2
Theorem 11,2, If terms of order ¢ are neglected, then for

T = q= 1,2, or 3, the equations of motion (5) become

| 2 ‘ ) or
0 g, g i S B ) 5

o f, -2 - fa
fo = _—__-—-Y — Y
Proo v? v gz_ g,‘;-;- ; gf‘;_r “i c rg © V
f = f = £i= - c f
f0. " "%z ts

¥ M +4 S f s¢ s _# )
g 8 v:",’):gf-i'(g Vj;)q-l-g v g Vst g* Vytss

HE
-2 fv ¥ A S¥ g 2 ~S &*
- J;i' v”"?‘—'. g v;9‘15+ g V5.~ ¢ Y
~S er
= J;? Y" “v,s, s neglecting terms of order ¢ .
Setting T = q=1,2, or 3 in equation (5) of Lemma 11,6 and using

the results of equations (6)-(11) as well as those just above, We have
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o+£(1 ) (}’ P+ /avf") +
C
. L, OP
+ 5P 5— (1-' X.:, -2 );y v );,r va”c) * —
y p 1 8V,“r o"P M
= - J:Lf——/“ - — V,e,2 o
(O 3¢* Ox*# /u "?

-2
Multiplying by c2 and neglecting terms of order ¢ , We have

+ o p
va e (5, T S (et ) 5
2 vF
ey 3’1— +s R
Y R - SV A

Corollary 11,1. If the coordinate system x is at rest

relative to the "fixed" coordinate system X, then equation (12)

becomes
2 L) 20
(13) (T, + v*‘)-i 2 (¢, #v)-
YA—,VD —Tp‘ };f" c o x*% +* o x¥
y ot 2 e y ot
R RV ST
Proof. From Definition 10.4 we see that Y = 0 = Y, if

uy 4

,’v
the transformation funection h  is independent of xv, and hencs

equation (12) simplifies to equation (13).

Corollary 11,2. If the coordinate system x 1is at rest

relative to the coordinate svystem X and is such that x};= 0
unless p=q (that is, the directions of x', xz, and x> are

orthogonal) then the equations of motion (12) bscome
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Y Wﬁ(&*&ﬂﬁ‘*fo—(yf"" =

4}1.
A QK

:;-—/O q;? 3 -—/ﬁl @ﬁ- kﬂ V’,r,d- .

Proof. Clear, when we remember that Y}f = 5‘.3. Y(:aa and

~1
that Y*}: 5”_ (Y;Q ) 4 and use Corollary 11,1, The capital
indices are used, as mentioned in paragraph 1, to forestall

summation,

12. Rate of change of the vorticity tensor. In this paragraph

. . . # . .
we construct an expression involving the x° derivative of the
vorticity tensor. First we write the equations of motion as

given by equation (5) of Lemma 11,6 as

(V‘V,) . 1 9p
(15) c7V~¢ }' ,ov+%/° =-v(pv), +— . 57
-2
Cc /u pu
+ L 3 2 Vs« _ P M
‘a xT /u Eztg 1Y
Definition 12,1, P g = right side of equation (15).
T

We see that g 1is a covariant vector since it is a sum of co-
T

variant vectors.

2 38
Lemma 12,1, g - g = a - il .
s <,0 ¢ ,T 9 x* s %€
o v 3 v,
vt,"v vo’,‘c - o x« - O xF *

222920 Clear,
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Theorem 12,1

gvo av"
) V_PD cl- ):-—- - T - -5‘ )
(16) axy(rzy” cy- ¢ Pya\ N ST e

de, e,
o x? JIxT

Proof. Frou Definitimn 12.1 we have

2 w'v,)
M M
= -g v + 35 .
AL

Therefore, using Lemm 12,1,

v p av" M
(17) g -8 =°7"’( T o+ v D Ve 2%

Tya 6T IxT TH 0 x° SxT M 3 xt

P Qv ?_vﬁ]_a avr‘ag“]
J x Bx oxt 2 xax" 9x” )

But from Definition 11,6 and Lemma 12.1 we have

9" v

cl-¢g { ~ ot , and hence equation (17) can be
Tu ax“ o1t
written as
/J
2 g 98, v pa vﬂ
[} - = __g —_ - +
2 x¢ ox' I x% tH o xT oM

F -
ax" 2 x® I xT
oo (FET )
‘c)/—_q ] v}‘a T

o x¥
The desired result is obtsined after transferring the first term

axd"{/y 9!‘ T

following the equal sign to the left side.
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Theorem 12,1,

Iv® av’
. ' —_— -
(16) vg - (ﬂ—g Tw):-c g - 3 Y))\)

x T\ I xt <
. agt_ag, .
o x¥ I«xT

Proof. From Definition 12.1 we have

3,
M M
gr=07"——g"3;/‘*1+%axt .
Therefore, using Lemma 12.1,
9 Vﬂ H a V/‘ v'“
PR _ 2%
17 - = c ¥~ T — 2 e
an) Brs Boe™ ° i (9){‘r Z/‘ T dx® Ix° {7" 3 x°

Y 2 3 v, qavﬂJ_ > [av., avﬂ]z
+ ~ - °
a x2 x* 9x° 2 x| ax" 9x”

But from Definition 11.6 and Lemma 12.1 we have

v, IV
cl—-¢ ? = L , and hence equation (17) can be
u o xM I x*

written as

2 g 28, QVH Qvﬂ
g = C y—-§& b - }- +
o x° o xt o xT H I xT oM
+v” a (9 vtqav‘r)
Ox\a xT 2«7

av"T 9"#}’] py (FET )
- cY- — bl ra
gax‘T/‘ axr"'*vax"

The desired result is obtained after transferring the first term

following the equal sign to the left side.
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Corollary 12.1. If terms of order—](';- are neglected, then

equation (16) can be written as

18 2 v T -
) Z a ax?)rT ox ¢ gt °F

X

120 1 2V ? 45
+ I = 2 -Y f—--—/‘ —,&Y’X‘ v’z:,.,s>
i /Oaxt tF 3P Ix ¥

l ’
_ 2 [r2r _ f“—-/“ 3'-# v, v )
oxt\l axs % 3p IxT p ¥

Proof. Using the approximate formulas of Lemma 10,3,

(19) v/“ o (e =% Ttd’ )__:L 9 (a T“. )+ vs-?(ﬂfw)
2 < et Ox* ox¥#

Similarly,

v’ ov” ov?t av?t .
(20)  -cV-® [ 7)=““( - )
C £ x‘_ ) axr P 2 ax‘rz} a ;‘-"

From Definition 12,1 and Lewmma 11,7

p
(21) 1 90p . 1 p Ov,e 1 " e grvv" :
g = —— + £ = - PR
T o petaxt T o3pc* Ox" £t ~E
_ o * -2 7
But fr" gtd_ f = 8,4 £+ gti_f —=-C Y'r;. f from

Definitions 10.5 and 11,3. From Definition 11.4,

P
a Vo av?g_

o x° dx*
s» M _ oy &
Also gﬂr g8 V,e,¥~ g;r g Vies»
2 4y 8 L2 2 &
=-~c¢ );1. (g Vousut & ‘;v,,,.‘*g V,?;-,y."'g V,/f-,S)
2 +S 3 2 2 %
=-c 3;t gvis=-c¢ Y;.,_.(—c r v,,,s
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9 v_,‘;“
Substituting the expressions for f ’ and
T a x“c
(9v'u into equation (21), we have
g/ﬂ: & 36, a4 i
%
19p 1 ov rs F
T P oxt % 3p dxt P ¥
Now using equations (19), (20), and (22), we see that equation (16)
becomes
¥ &
1 y=[2v v
— _a__fv%a TA—ZO_: ( T - _5; +
c\Ix*  Ix? ¢ \ox® *# 0 x°
3.
13p 1 Iv! +s g
-2
vt (S oy T T
Sx\! o9x* % 3p Ix* °

_— _ +#S 2
o x\P oxT * 3P Ox° %);"Y v’”“as)'

Multiplying by cz we see that this equation coincides with

esquation (18). Q.Z.D.

Lemma 12.2. If terms of order ¢” 2 are neglected, then

¥
- o W}y __19:g, *_29():?'v ) o (): v;)

(23) ¥a Y ,

e D xT dx? Ox" —.ax‘r

Proof. From Definition 11.6,

v, v,
C)/; Ed‘ = Vz,o,_~ v‘r’t=axa‘~a x'C
o =
Y L T 5 e V-5 (g, ) . Using

Definition 10,4 and Lemma 10,3, this bscomes
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-2 ’ Y
c Ya = 2 _ (g v+ g v 2 _ (g v+ g_vP)
TOo oxe ™ 1z S xt ¥ g

_ 2 Y - o* 8 3 (.t a2 3
._xo_(c ¥ [ ):iv)—a_x_c(c ’:,.y y"_fV)o
¥ &
2, v") o(%, +%)
Hence, =T o= 2 3:"; _ a\‘r._s« + °F _ 3 . Q.3.D.
s O x© d x Oxt dx°
It is convenient to write ¥ as the sum of two terms.
T
We make the
-1
Definition 12.2. & = A"(a Yoy _aY;,
x x
_%(8 b:,z_vs 3 7:3_"3—)
_r)_ =T A g .
Te 9 x°© 2 x
Hencs
(24) Tra‘ = e * ﬂrf .

We shall now write equation (18) in a more convenient form
for use in the examples to bs considered in the next paragraph,

In these examples we will need the equations for § s ¥ ’
23 31

and § . We simplify the writing of this equation by using the
Iz

following definitions (1lmn is a cyclic permutation of 123).

d e 23
Definition 12.3. — = Vi— .
dx O x* o x*
Definition 12.4. w,= ¢, , S, =, where

w/,,, and _n_/n, ars given by Definition 12.2,

F x = 2B 25
’ = - ’
m £ oax™ I x™

Definition 12.5. ¥ f %=
mg
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Dg' 0P _9p' IF

Y = =+
L x™ 2 x™ Ix™ x™

-19 % ) ;8-
Definition 12.6. A = M Q (ﬁ v’ﬁ)._ 9 (p' v3_> 2
’c 3 ax""' ax”" Qx”‘ ax’m’

Qx”"ax Qx”"axm

£ /4{ ((o“' 3m Y ’ZS_%(/C’- B;,,.Y v;’;,s}

First we rewrite the left side of equation (18) by using

Definitions 12.3, 12.2, and 12,4 and setting (T ,0 )= (m,n).

a3 d 4
_ ?'&: = =Ta —mm +f =
+ ) ° dx mm dx
d Q"' }‘ d (u) +_n.§ d ya°
— Pl / f 3 2
(25) < - ‘) : ax” (‘uﬁ ) ax?

Now using equation (25) and the notation of Definitions 12,5 and

12.6, we have for equation (18),




Or, .
3 0N
(26) a ‘:—d“,)z-@(%+'[)1)+z (wl’"+ /l)avF +
dx dx i "x

1 = O v¥)
where ® = ga‘f— .

+
Ta~ (2x° Ox#
Equation (26) is the required equation giving the rate of change

of the vorticity tensor in a form used in the examnles,

13. Examples. In this parsgraph we consider two examples,
one with local rectangular cartesian coordinates and the other
with local evlindrical coordinates., We consider the motion of
the air within a distance of 200 km., of a point 0O on the surface
of the earth at North latitude ¢ .

First select the x and y directions so that positive x
is toward the Bast, Ox and Oy 1lie in the tangent plsne to the
surface at 0, and the coordinate svystem is a right handed system
in the usual order. The kinetic metric is given by (6,296)

(27) ds® = (1 4 “i{&.) at” _ ;I[( ax*+ dy’+ dz*+ (k(z a)-2 y)dxdt
c c

+ £ xdydt - kxdzdt}

2
where KZ,—_-~-§- {((z-f-a) cos¢ — y sin ¢) + xzz

W = angular speed of the earth ebout its polar axis

a = radius of the earth (considered as = sphere)
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k = 2w cos ¢
4 =2w sin¢
2
Comparing equation (27) with that for (ds) in equation (1) of
2
the proof of Lemma 10,1, neglecting terms in «w , and using the
notation (x', x*, x°, x*) = (x, v, 2z, t) we see that
- — — 1 - — =
(28) 3’;6‘—0, X,"f = b;’l = 9{k(z+a) lyz R €,~ b;'z + x/
- - — - - s

b;y-‘b:S = '%‘kx, rf.z—- Sf-j-’ —YA-‘. = 19 r — 5417_ .

Following the classical notation (3,31-32) we use
' 2 3

vV = u, V=V, V=W, _fL":‘g-,_sz:'Z) ,_fl.s:'ga

and hence

(29) ®@

I u Bv Ow
+ —
oOx Oy Sz

w=0, & = k, =L

I

7 2 3
T 2Dw Iv au oOw Qv Du
oy Oz 5z ox ox E;::

For the case q= 1, equation (14) becomes

2 u ou Qu Wau+%_’a_{k(2+a)—fyz

+u z - + wk
ot E3x-+ ' oy M Az ot L
1Jp /
= "534 f _L 20 Vzu .
) x.+ * 3p Jx * ﬂﬁ%

Similar equations are obtained for q= 2 or 3.

We now consider the equations given by the rate of change of
the vorticity tensor for this example. We first consider the
case whers ¢ =1,

By Definition 12,5
- Q0 2P _2p'or

30 f
(30) f ov 2z Iz 2y
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31 X = -
(31) NEPREY
A= 6" 9"’8’_ ' o )
' 3\3y 2: dz Oy
32 = _[’_9 » _9_9—- .gﬁ..’ —a-—®—
(22) # ov Oz oz ay

B,:,,{%(p R ya( FRAEO]

" 2

2 (5 -2 )

33 B = _9__ de w)— _9_ -IVL }
(33) B /‘{ay(ﬁ ) az(f’ v)
We now write equation (26) for the case {= 1.

d
(34) -
dt oy

3 9F3 9£~'ap+a(o" o>

2 2 Sy Iy o z oz oy

~/ 9—! 9®
+#(.2£ 2® _ e +
3 ay d 2 Oz ov

+/4(§ (/9 w)-2 (,o Vzv>) .

Similarly, for £ = 2 and 3,

dVL ov ov QV
Zt o i G '+
(55) — =-@ (x24T Fmb (40 )34 (205 ) -

OF, JITF, ap.:9p+3ﬁ-'9p +

—

— +
dx Oz Oz dx dx 9z
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Do B Hpl 2®
+ 2 _Qop +
.7%(92 3x 8){ 62

+ p (2= (r” Vu_..__ pv@)

(36) dg & w 3w ow
—_—— - —_— L+ T
" (L+Z) +7% 5. (k+'L)ay+( * )az

S F OF ~; -3
1+ Z_QP 9p+aﬁ p
Sy 9x IOx Oy Oy Ix

2¢" 20 o6 20), (2 (s -
*7‘;{ax ox Iy /"{ (Fe Y([»w)}

We now consider the same problem using cylindrical coordinatss.
1

Lemmz 13.1. ds = dtz-—cz (ir‘+ r'de + dz'+ k(z+a) sin® drdt

+(k(z+a)r cose+l rz) de dt— kr sine® dzdﬂ.

Proof. Make the transformations x= r sine, y=—r cos &,

z=z in the expression for ds~ of equation (27).

Lemma 13.2. If (r,e, z, t)=(x', x%, x°y x°) then
):', = %k(z+ a) sine ,

X4
Y. = r = %Q((Z-ﬁa) T cose + KL rl), y!

I

(37) Y., =0,

l
i
\
&
[&]
’.—J
=
U]

3ag T 43 2

}Zr-l, ):'l: rt, ):3:1, Y,_;:-‘Oforp:/:q, Ya =T

' a -~ P
Y =1, Y= '[‘1, Y33: 1, ¥ }: 0 for p# qe
Proof. Clear,

Lemma 13.3. If (U, V, W)= (v’, v, v’) then divergence
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® U QU 10V 9w
(38) = —t—t——t
r Or rde Oz

Proof. Clear,

(2% a9V
Lemma 13.4. 75,‘:-—kcose+r gg—ra-—z
Jdu 3w
L Y
(39) Tz = r ksine-+ r (az ar)
o(rv) U
— -~/
}; —/€+r(r —89>.

Proof. Using Definitions 12,2 and 12.4, we have

% 3
_ (DY, OV -,(aang_aa:,v )
T~u)’+ i axgz'yhaxa)-'-r o x* o x3

-1 ,,QW av
=r (-krcos® )+ r\JBe"T .
Oz

and |  are computed similarly.
3

McVittie (6,299) discusses Sawyer's theory of the development

of tropical cyclones and suggests a more reasonable criterion for

instability than that given by Sawyer. We give a criterion

applicable to viscous flow under certain simplifying assumptions.

Sawyer considers small perturbations of a symmetrical
circular motion whose basic flow is defined by

(40) U:O’ V= vo(r,Z), VJ:O, po= D° (r,Z),

voz 1 o 1
/2 ::/%(Tﬂ), /eVo'f' -r—:";o ERe

He finds that the flow is unstable if
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v v, Ve
(41) B= /Z + -2 A+ — 4 — is negative.
r Ir T

Lemma 13,5. Assuming U, V, and W are given by

equation (40), then ov,
=~ — k cos @ — —
}‘: oz
T = r’ % sin ©
2
av v,
T =2+ >+ —
3 a r r

Proof. Clear, Use aquations (38) to (40).

Lemma 13,6. Y=

Proof., Use Definition 12.5.

Lemma J._?_,_?_o A'——— O, AZ: O, A3= 0.

Proof. Using Definitien 12.6,

-t -1
s = Mfop 229 28 2®)_,
! %52_ oz dz e

Similarly A= A=O
2 3

L]

2
Lemmz 13.8. ¥V v'= 0.,

oV v
2 2, - ~3 -~ ° -2
v vi= vi(r vizr v+ LT + T

2
V V3: Oo
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Proof. Using equation (40), we have
2
V,;.—'V U = O.

vi= Vz (r!t V)= (72 (r" v, (r,z))

2 1 1 9 2
:(a +—i+—a +8 }(r" v.)

Or* rdr r2 96% 9,

2
2
-3 a4 9% -3 20Y% 2%
= 2r " v+ T -vyr + T + T >
° A r* Or o z

Lomma 13.9. B, =-u rt 372 (ﬁ," v (r~’ v°)>

Bz: 0

}33: /M jr (/{’ v Vz(r"l v, )) .

Proof. Using Definition 12,6 and Lemma 13.8,

. -1 +s 3. o) ~1! *s ¢
—/u{a (ﬂ, Y' ¥y ) xa(ﬁ );zy VJ,,S)}

o x* #3 IS =5

-1 A4S 2

-t v _d 2
:/“{ ﬁ o (¥ yr,s) z((oc vy v»/"os)%

2 (VY 2.5 ’V")I
= {/‘% 579“’ P rR

= “/" v _3_ (/6;; vS ¥ . Similarly,

— 8 ~/ ' -7 2
_/“{ax:‘(ﬁ Vzv)—g)x,(()ovvj)}zo,

I
—~
\}!
x\
o0,
N '_s\
~
p]
<
I
IQ)
)
A\
N
4\
N}



=
@
8
B
[ Lol
w
o
N
jo N
A
I
I
“x
-3
IQ)
N
n:
<
N
)
L
'S
~

— ax? dz
ay o v) (7 v) 1,
2 —_ + jo—
dx* " Or 3 Oz r

Proof. From equation (26)

% _ A ) (W + N 23 (0, 40, )
= —_— - + —+
dx” dx ¥ =-® ! ! ) ey ’L+ r o xP

-1 1
+(A)P Y~ X+ A+ B)=r1 B

- o (/J-’ Vz -1 )
T -y r - (r= v )] « The other two
/bl @ z °
expressions are found similarly.
mma 13,11. Using Lemma 13.5,

I, W
— = kr vV, sinée ,

dx*
d7, ;
Z:krlvo cos € ,
«
dx
a7
3-9 .
dx*
a3 av,
Proof, —I= a—-,. via (—k cos @ — 2
ax* \ 2 t o x¥ oz
:vza (—k cos 6)= v’ vk sine.
3 x" °

The other two are found similarly.
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d§
Bquating the two expressions for —f in Lemmas 13.10
dx

and 13.11, we have

=/
k v v, sin @ = -y raa__</f Vz(r"va )3
z

ov, 2('v)

(42) k v cos & = - (k cos @ + +
° dz Or
av, v, - AA Y,
+<£ + +—= ] -—
or r oz r

2 ! . .
where V¥ (r~ w.:,) is given in Lemma 13.8.
The second of these equations can be rewritten as

av, 1av,( 2v°) Y,

= +— ) —
or r 9z r

-1
kr cos @

L4

r

. . -19v ~1 =1
Lemma 13,12, If i) terms involving r alf s T /Oo R

and \A (except when multiplied by

9\'0)
:;z

ii) v, satisfies the equation

2 1
< + 2 ‘) v, = 0,
rr 22/ °

are neglected

then equation (42) can be written as

0=0

P \A 2vo
-—-(22 -+ - Y
0z r 2
0

(43)

') -
——

0
0=
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Proof. The first equation written out is

2 2
.y 2 ja) )
-~/ -3 -~ vo - vo - Vo
kr v sinez—/ur 9,‘; (r v—+-r, l—@-r‘z +I" 2)
oz er or Sz

3 N 3
- ..39vo _,a v, ~zavo _,8vo
-Ur r ——4r +r 4T

/4 ﬁ oz Jdzdr? J29r Iz’

This clearly reduces to 0 =0 wunder the hypothesis upon

a 31 Vo azvc)
Jl_ :O .
Az\or* 3:2*

noting that
The second equation (as rewritten below equation (42)) gives

Qvo 2v
—5‘( * )

The third equation becomes

2 2
-t ov v S v

0=,/i§__ (r vV +r L —tr °)
r Or g ° 2r* Ir Bi”

-1 Idv
::/l .26_ - r_z'va + !
r Ir
2
-1 -2 -1 avo 3 Ya
.,éL r VvV 4r + « The approximations
+ 7 /‘: ° dr JIr

then reduce it to 0 =0 .

Theorem 13.1, If i) the basic flow of a symmetrical circular

motion is given by U=0, V= Y,(r,z),




~1
_Q_L s end r v_ (except when multi-

v,
plied by

) are neglected
z

iii) v, satisfies the equation

o Den
2r* 97/ °

iv)é%{? <0 ,

then the flow is unstable (by the criterion of equation (41)) if

(a) ‘;’ Z-}-—-L-',- > 0 and E¥A 8v°<0
r Jdz
or (b) § <0 and g_’:; g_gk is positive.
3

Proof, From Lemma 13.6 and equation (43) of Lemma 13,12, we

- -1
e dp 3 3 p A -
have ° o —— ° —: « Now neglectin
ave  Sb So—3% glecting
> -1 2v,
o and substituting the resulting expression for /Z +
or r

_2¢ %
32 _a_zar"{'.ﬁere\f; is

-1

-2
given by Lemma 13.5. Hence B= —p - Car 3-% 3%°>T . Since
3

into equation (41), we obtain

;f 7 0, gﬁ; > 0, we see that B 1is negative, and hence the
flow is unstable in the cases listed in (a) and (b).

We note that in the proof of Lemma 13,12 it was not necessarv
to assume that the viscosity was zero., Hence the results of Theorem

13.1 apply in the viscous as well as the non-viscous case previously

discussed by McVittis,



1.

2e

3.

5.

6o

12,

REFERENCES

Courant, R., and Hilbert, D., Methoden der mathematischen
Physik, Vol. I and II. Berlin: Springer, 1931
and 1937,

Karmén, T. V., and Biot, M. A., Mathematical Methods
in BEngineering, New York: McGraw-Hill, 1940,

Lamb, H,, Hydrodvnamics. New York: Dover, 1945,

Lanczos, Cey The Variational Principles of Mechanics,
Toronto: University of Toronto Press, 1949,

McConnell, A. J., Applications of the Absolute Differen-
tial Calculus, London: Blackis, 1931,

McVittie, G C.y "A Systematic Treatment of Moving Axes
in Hydrodynamics," Proc., Royal Society of London,
Series A, Vol, 196 (1949) pp. 285-300,

Michal, A, D., Metrix and Tensor Calculus with Applica-
tions to Mechanics, Blasticity, and Aeronautics.
New York: Wiley, 1947.

-------- "General Tensor Analysis," Bull,, Amer, Math,
S50Ca Vol, 43 (1937) PDe 394-401,

-------- "General Differential Geometries and Rselated
Topics," Bull., Amer. Math. Soc., (Aug., 1939)
ppe. 529~563.,

-------- "The Vibration of Elastic Strings as Studies
in Geodesics," Actas, Academia Nacional de Ciencias
Exactas, Fisicas y Naturales de Lima, Vol. 9,
Fasciculo I (1946) pp. 3-27.

-------- "Studies on Geodesics in Vibrations of Flastic
Beams," Proc., National Academy of Sciences, Vol., 31,
No. 1 (Jan., 1945) pp. 38-43,

Rayleigh, Lord, The Theory of Sound, Vol. I and II. New
York: Dover, 1945,

68



69

13, Synge, Je Lo, "On the Geometry of Dynamics," Philos.
Trans., Series A, 226 (1927) p. 3l.

14, Timoshenko, S., Vibration Problems in Engineering. New
York: Van Nostrand, 1937,

15, Whittaker, B. Tes A Treatise on the Analytical Dynamics
of Particles and Rigid Bodies. New York: Dover,
1944,



