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ABSTRACT

A local Noether lattice of dimension n is regular if and only
if its maximal element is a join of n principal elements, A setof n
principal elements whose join is the maximal element is called a

regular system of parameters, An element of a regular system of

parameters is called a regular parameter,

The main results of this thesis describe the structure of
distributive regular local Noether lattices, and relate the structure of
certain broad classes of local Noether lattices to the structure of dis-
tributive regular local Noether lattices,

A distributive regular local Noether lattice of dimension n
is isomorphic to RLn, the sublattice of the lattice of ideals of
Flx

xnfj (F a field) consisting of all joins of products of powers

RERE
of the principal ideals (xl), ches (xn). A local Noether lattice 1L of
dimension n is regular if and only if there exists a sublattice L' of L
isomorphic to RLn, and prime, primary, and principal elements in L!
are prime, primary, and principal, respectively, in L.

A lattice L with a unique proper maximal element \;vhich has
a minimal representation as a join of n principal elements is a distri-
butive local Noether lattice if and only if it is isomorphic to RLn/G
where 6 is an equivalence relation which is first defined on the principal
elements of RLn and is then extended to all of RLn by prese.rving join,

and where, in addition, 6 preserves multiplication and preserves the

cancellation of principal elements in nonzero products,



iv
A final result which shows the strength of the condition that
a local Noether lattice be regular is an abstract characterization of
RL3. If L is a regular local Noether lattice with precisely three min-

imal primes, and if each minimal prime of L is a regular parameter,

then L. is isomorphic to RL3.
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CHAPTER 1

INTRODUCTION

This chapter introduces the basic ideas of abstract com-
mutative ideal theory and describes the main results of this thesis.

The proofs of these results and some additional supporting results are
given in later chapters of the thesis,

I'he basic concept of abstract commutative ideal theory is
the concept of a Noether lattice which was introduced by R, P. Dilworth
[2] as an abstraction of the concept of the lattice of ideals of a
Noetherian ring. A Noether lattice is a modular multiplicative lattice
satisfying the ascending chain condition in which every element is a
join of elements called principal elements, The principal elements
are characterized by a pair of identities that are satisfied by the prin-
cipal ideals of a ring, and they play the same role in the abstract
theory that principal ideals play in the ideal theory of Noetherian rings.

The multiplication, meet, and join in a Noether lattice are
supposed to mirror the multiplication, intersection, and sum of ideals,

Because of this, a multiplicative lattice is defined to be a complete

lattice L containing a unit element I and a null element O, and pro-
vided with a commutative, associative, join-distributive multiplication
for which I is an identity element, We will use AN and V to denote
meet and join, respectively, and < to denote lattice partial orderings,

with < reserved for strict inequality., For each A, B in L, A:B, the



residual of A by B, is the join of all X in L such that XB< A, An

element E in L is principal if

(1. 1) (AAB:E)E = AE AB - (all A,B € L) and

"

(1. 2) (AVBE)}E = A;:EV B (all A,B € L).

(An element E in L is meet principal if it satisfies (1, 1); join

principal if satisfies (1. 2),) We will reserve the letters E, F, H, K,
and N for principal elements, Since all elements in the lattice of
ideals of a multiplication ring (for‘example, a Dedekind domainj are
principal [3], the concept of a principal element is broader than that
of a principal ideal.

An element P of a Noether lattice L is called prime if for
all A, B in L, P > AB implies P> A or P> B, Anclement Q in
L is primary if for all A, B in L, Q> AB implies Q> A or Q> Bk
for some integer k, If Q is primary, the join PQ of all X such that

xE < Q for some integer k is a prime containing Q and is called the

associated prime of Q. The usual theorems about the existence and

uniqueness of primary decompositions [4, pp. 14-15, p. 21], [2,
pp. 483-867] hold for Noether lattices.
ILet P be a prime element of a Noether lattice L. P has

rank r if r is the maximum of the lengths of chains of distinct primes

less than P. P has dimension d if d is the maximum of the lengths
of chains of distinct proper primes greater than P, Let A& L. Then

A has rank r if r is the minimum of the ranks of its associated

primes; A has dimension d if d is the maximum of the dimensions of

its associated primes. A Noether lattice is local if it has precisely




one proper maximal element, If L is local then, as for rings
L4, p. 631, dim(0) is finite and is called the dimension of L,

Two very important theorems of commutative ideal theory
which Dilworth has generalized to Noether lattices are Krull's inter-
section theorem and Krull's principal ideal theorem. Restricted to a
local Noether lattice with maximal element M, the intersection
theorem states that /\kMk = 0. The principal element theorem states
that the rank of a minimal prime containing a principal element is at
most one,

If L is a local Noether lattice of dimension n, asetof n

principal elements whose join is primary with respect to the maximal

element of L is a system of parameters. A set of n principal ele~

ments (called regular parameters) whose join is the maximal element

is a regular system of parameters, If L. has a regular system of

parameters, L is a regular local Noether lattice.

The structure of arbitrary regular local Noether lattices is
closely related to a special class {RLn} of Noether lattices. The
elements of RL_ are those ideals of Flxq, ..., %3] (F a field) which
are joins of products of the principal ideals (xl), (xz), e (xn). It
will be shown that RLn is a sublattice of the lattice of ideals of
F[x{, ..., ¥,] and is a regular local Noether lattice. The relation-

ship of {RLn} and arbitrary regular local Noether lattices will be

described as follows,

A local Noether lattice L of dimension n is regular if and

only if there exists an isomorphism (p:RLn - L. with the property that
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the images under ¢ of prime, primary, and principal elements in RLn

are prime, primary, and principal, respectively in L.

A distributive regular local Noether lattice is isomorphic to

one of the latticcs RLn.

- Formn 22, it will also be shown that RI_.I1 is not isomorphic to the lattice
of all ideals of any Noetherian ring. In fact, an appropriate sublattice
of RL2 provides an example of a Noether lattice for which the usual
"converse!' to Krull's principal-ideal theorem (a prime of rank one is
a minimal prime of some principal ideal) does not hold.

In the process of obtaining these results, the following two
theorems which are generalizations of theorems about Noetherian rings

will be proved. I L is a regular local Noether lattice, then any join

of a subset of a regular system of parameters is a primc. If L is

regular, then L/D is regular if and only if D is a join of a subset of

a regular system of parameters, (L/D is the set of all elements in L

greater than or equal to D and is a Noether lattice [2].

It is possible to obtain fairly concrete information about
Noether lattices satisfying the distributive law, It will be shown that
a Noether lattice is distributive if and only if (A V B):E = A:E V B:E
for all A, B and all principal elements E in L. A complete char-
acterization of distributive local Noether lattices will be given. Xach
distributive local Noether lattice may be represented as RLn/S for a
suitable integer n and a suitable equivalence relation 6. To complete
the characterization, a description will be given ol those equivalence

relations O such that RLn/G is a distributive local Noether lattice,



A Noether-lattice imbedding of L' in L will be defined as an

isomorphism of L' into L which preserves prime, primary, and
principal elements. The first main result above states that there is a
Noether~lattice imbedding of RLn in each regular local Noether lat-
tice of dimension n. A question which naturally arises is whether

- every Noether lattice has a Noether lattice imbedding in the lattice of
ideals of some ring. This question will be answered by an example of
a Noether lattice which cannot be imbedded in the lattice of ideals of
any Noetherian ring. This lattice has the trivial multiplication

(AB = 0 unless A=1 or B=1. The computations used in this ex-

ample will be generalized to give a proof of the following thcorem.

A lattice may he represented as a Noether lattice with the

trivial multiplication if and only if it is a finite-dimensional modular

lattice with precisely one proper maximal element in which every

element but I is a join of atoms,

The final result will be an abstract characterization of RL3

as follows.

Let L. be a regular local Noether lattice with precisely

three minimal primes. Then if each minimal prime of L is a member

of a regular system of parameters, L is isomorphic to RL3.

This result lends some credence to the conjecture that every
regular local Noether lattice may be imbedded in the lattice of ideals of
some Noetherian ring. The depth of the analysis used in proving the
result described above indicates that this conjecture is likely to be very

difficult either to verify or disprove.



CHAPTER 1II

PRELIMINARY RESULTS AND EXAMPLES

The following important lemma is an immediate consequence

of the intersection theorem.

Lemma 2. 1. E I, is a local Noether lattice and A,B<€L,

then AB = B implies A=1 or B =0,

Proof: Let A#ZI. Then

B = A"B<M" all k .

Thus B_<_/12Mk=0, so that B = 0.

Lemmma 2. 2. Let L be a local Noether lattice, Then an ele-

ment of L is principal if and only if it is join~-irreducible,

Proof: Clearly, join-irreducible elements are principal;

so let E be a principal elementin L(E #0). LetE =D, V... VD

Then, by equation (1. 1),

Di = (Di:E)E (all i)

Thus

g
i

= (D:E)E V...V (D :E)E

(DE V... VD E)E

By Lemma 2.1,



(DlE) V... V (Dn.E) = I

Since L is local, there mustbe a j such that Dj:E = I; but this implies

that E S-Dj’ so that E = Dj'

Corollary 2. 1. Let L be the lattice of ideals of a local

Noetherian ring R. Then the principal elements of L are precisely the

principal ideals of R.

Applying the Kurosh-Ore theorem to the dual lattice of a

local Noether lattice, we obtain the following corollary.

Corollary 2. 2. Let L be a local Noether lattice, and let

A€ L. Then any two minimal representations of A as a join of prin-

cipal elements have the same number of principal elements., I L is

distributive, then each element of L has a unique minimal representa-

tion as a join of principal elements.

Of course, the usual replacement properties [1] of the Kurosh-Ore
theorem follow also,

Some of the examples and proofs we give use computations
with qubtient sublattices L/D= {A € L| A >D}. With the multiplica-
tion A°B = ABV D, L/D is a Noether lattice; and if F is a principal

element of L, then F V D is principal in L/D [2].

Lemma 2. 3. If L is a local Noether lattice, then the prin-

cipal elements of L/D are precisely the elements of the form DV E,

where E is principal in L.
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Proof: Let E' be a principal element in L/D. There exist

El’ .o Ek in L such that

E'=DVE,V...VE, = (DVE) V... V(DVE)

k

E' is principal in L/D, so that we can apply Lemma 2.2 to L/D to

obtain a j such that E' =DV Ej.

In the proof of the fact that every local ring has a system of
parameters, the following lemma is often used, If Pl’ PZ’ e Pn
are ' prime ideals of .a Noetherian ring R and A is an ideal of R not
contained in any Pi’ then there exists a principal ideal (a) < A such
that (a) ¢ P, for all i [4, p. 12]., This lemma does not hold for
Noether lattices, as the following example shows.

Let RI.,2 be the set consisting of (0) and all the ideals of

Flx,y] (F a field) of the form
RS S AV P L T )

It is easily seen that RL2 is closed under join and multiplication. We

shall show that if

A

1

(al) V...V (an) , and

B

(b)) V... Vi(b),

where a = Xl(s)yJ(S) and bt = xk(t)yh(t), then

AANB = V (l.c.m. (a_,b))

Slt

Clearly 1,c.m. (as’bt) is in AA B; therefore, let p(x,y) be in



A AB. Since p(x,y) is in A, there exist polynomials ps(x,y) such

that
PeY) = pylxy)a; + ...+ p (xy)a

Thus each nonzero term of p({x,y) is divisible by ag for some s. Sim-
~ ilarly, each term is divisible by b.t for some t, Therefore p(x,y) is
in the join of the principal ideals generated the least common multiples
of the ag and the bt'

This shows that RLZ is closed under meet. To show that
RLZ is closed under residuation, observe that since A:(BV C) =
A:B A A:C and A:(BC) = (A:B):C, itis sufficient to show that A:(x) 1is
in RL, for all A in RL,. We assume that A':(x) is in RLZ if A' is

2 2

a join of fewer (x)(y)) than A. ¥ A = (y)), A:(x) = (0I:(x) = ()7 € RL,,

so that we may assume
= syt d ' :
A= (VA (1i>])
Then using equation (1, 2), we find that
1 s
Ax) = (07 VAR

the right-hand member is in RLZ’ by the induction hypothesis, But
now, since principal elements are defined by equations using rneet,
join, multiplication and residuation, the elements (:»c)i(y')j are principal
in RL,. Thus RI_.2 is a Noether lattice.

We note also that RL2 is distributive, for if A = (al) V..
.. Via), B= b)) Vv...V (bm), and C = (cl) V...V (Ck) are ele-

ments of RL then

2!
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AAN(BVC)

\% {1,. c. m, (ai, dj) ‘ di = bi’ 1< mj d.l = Ci_m.,l > m}

i,]
(AAB) V(AAQC) .

vV (l.c.m. (ai’bj) Yy Vv iVj (l.c.m. (ai, cj))

It is clear that the only proper prime elements of RLZ are
(x) V(y), (%), (y), and (0). However, by Lemma 2, 2, the only prin-
cipal elements in RL2 are the elements (x)i(y)j. Thus every principal
element of RL2 is less than or equal to (x) or (y). Now, with
A={x)V(y), Pl = (x), and P, = (y), itis clear that jl.z‘f_Pl and
Aif_ PZ,’ while every principal element contained in A is contained in
either Pl or PZ' Clearly, though, RL

and in fact it is regular,

2 has a system of parameters,
The next example is an example of a local Noether lattice
without a system of parameters. Let L = RLZ/(X)(y). By Lemma 2,3,
all principal elements of L are less than or equal to (%) or (y), since
(x)(y) is less than both (x) and (y). But since (x) and (y) are primes
of rank (0, every principal element of L has rank 0. Thus (x) V {y)
is a prime of rank 1 containing no principal elements of rank 1, so that
the ""converse'!' to the Krull theorem does not hold for L and L has no
system of parameters,

These examples show that RL, cannot be isomorphic to the

2

lattice of ideals of any ring.
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CHAPTER I

BASIC STRUCTURE THEOREMS FOR REGULAR

LOCAL NOETHER LATTICES

The concept of a Noether lattice imbedding is used in the

main theorem of this section. ILet L and L' be Noether lattices, We

say that ¢:L = L' is a Noether-lattice imbedding of L in L' if ¢ is an

isomorphism of L into L' and the images under ¢ of prime, primary,
and principal elements of L are prime, primary,and principal, re-
spectively, in L!,

Recall that RLn consists of all joins of products of the ideals

(xl), (xz), .. e (xn) in the lattice of ideals of Flx , xn] (F a

R
field). As in the case of RLZ’ it is easily verified that RLn is a reg-
ular local Noether lattice that is not isomorphic to the lattice of ideals
of any ring. Again, since the meet of two elements in RLn is the join
of the ideals generated by the least common multiples of their genera-
tors, we can apply the computation by which we showed that RL2 is
distribﬁtive to prove that RLn is distributive. The main theorem of
this chapter states thatif L is a local Noether lattice of dimension n,
then L is a regular local Noether lattice if and only if there exists a
Noether-~lattice imbedding of RLn in L.

In the proof of the main theorem, we shall use two theorems
that are generalizations of well-known theorems [4, p. 73], [5, p. 303]

about regular local rings. The following lemma and its corollary form
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the basis of the proof of these two theorems,

Lemma 3,1, Let L be a local Noether lattice, let A = El V..,

Y/ Er be a member of L, and let A have dimension s. Then the

dimensionof E, V... V Er

1 is at most s + 1.

-1

Proof: Let d:'u:n(E1 V... V Er—l) = s + i, Then there exists

a chain of primes

P.>...>P_,.>P >E. V,,, VE

1 s+1 s+i+l =71 r-1

Since Er is a principal element by Lemma 6, 4 of [2] there exists a

chain of primes

al, ais
sk ES

.
P = P1>Pe > 2 Pgyi 7 Payinn

such that P . > E . Since P . > A and A has dimension al least
Stle~ T S+1 =

s+1-1, we see that s >s + i~ 1, which implies that i <1,

Corollary 3,1, Let L be a regular local Noether lattice,

and let El’ ceon En be a regular system of parameters for L. Then

-dim(El_V... VEk) =n - k.

Proof: Apply Lemma 3.1 n - k times to show that
dim(El Voo, V Ek) is at most n - k, Suppose dim(El V... Vv Ek) is
n-%k-i(i>0). Then apply Lemma 3.1 k times to show that

dim(0) <n -i. Thus n<n -i which implies i = 0.

The usual ring-theoretic proof [4, p. 75] shows that if L is

a regular local Noether lattice of dimension one, then every element of



13

L is of the form Ek, where E is the maximal element of L. Clearly,
this implies that 0 is a prime in L; for if Ek = 0, then E would be
contained in some prime of rank 0, contrary to the relation rank(E)}
= dim(0) = 1. The next theorem extends this remark, and its proof is a
rather natural extension of the simple computation used to prove the

remark,

Theorem 3.1, Let L be a regular local Noether lattice,

Then any join of a subset of a regular system of parameters is a prime,

Proof: Let El" . En be a regular system of parameters

for L. The proof uses induction on n - r to show that 0 is a prime in
L/(El V...V Er)' By Lemma 3, 1 and the remark above, 0 is a prime

in L/(Elv... VE )

Assume Elv 'VEr is a prime if r > 1, Let
L' = L/(El\/... VEi) H

and let X' denote X V El V,..V Ei for all X in L, By the induction

hypothesis, EJ' is a prime in L' for all j >i. Now E:'J must contain a
minimal prime of 0', for itis prime, By Corollary 3.1, L' has
dimension n - i and E; has dimension n ~-i -1, By Lemma 6,4 in

[27], there exists a chain,

ale e .
< b2 t

1> >P

1
(Eq V... VEn) > P n-i~1 n-i

1

in L' such that P, . >E!. Thus E'=P"

. ., and E! is not a min-
-i=-1="3 j n-i-1 j

imal prime of o'
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Now let P' be a minimal prime of 0' contained in E; . Since
P' = (P':E‘;)Eé_and P! is prime, P':E_; <P'. Therefore, P'= P':E; ,
and so P' = P'EJ! ,» which implies that P' = 0', by Lemma 2, 1. There-

fore, 0O' is a prime in L', and hence El V... V Ei is a prime for alli.

Theorem 3,2, Let L be a regular local Noether lattice, and

let D be an element of L. Then L/D is regular if and only if D is a

join of a subset of a regular system of parameters,

Proof: Corollary 3.1 implies that if L is a regular local

Noether lattice and El’ ce e En is a regular system of parametiers for
L, then I.,/(E1 V... V Ek) is regular,
Assume that L/D is regular, and let M be the maximal ele-

ment of L, Then, by Lemima 2,3, M=DVF._V.,,, V Fk’ where

1

DVF.,,..., DV F,_ is a regular system of parameters in L/D. Let
D= I—I1 V,.. V Hr' Since D V Fl, ce., DV Fk is a regular system of

parameters, we may assume that by renumbering the Hi and dropping

superfluous ones that

M=H_V... VHSVFIV... vV EFE

1 k

is a minimal representation of M as a join of principal elements. By

Corollary 2,2, s + k = dim(L); therefore H R HS is a subset of a

e
regular system of parameters., Thus Hl V...V Hs = D' is a prime,

But rank D' = s and dim(D) = k = dim(L) - s, so that rank (D) < s,

which implies that D = D#,

In proving the main theorem, we shall use the fact that in a
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Noether lattice A:B = A if and only if no associated prime of A con-
tains B (this canbe proved as for rings; see [4, p. 23]). We shall
also neced the following lemma (the symbol = indicates lattice iso-

morphism).

Lemma 3, 2, Suppose that L is a Noether lattice in which 0

is a prime, that A, E € LL (E principal), and that A:E = A, Then

EvVAAEY A T I/ETY A

Proof; In the relations

(EVA/NE*VA) = [EV(E'VAT/(EYV 4
T E/EAE YV A)] = E/NE YV (E A 4)]
= E/[Ei vV (A:EYE] = E/(Ei V.EA)

= e/[e"ly AE] = I/(Ei-l vV A) ,

the first isomorphism follows by modularity, the second by Lemma 6. 3

of [27.

Theorem 3.3. Let L be a local Noether lattice of dimension

n. Then L is a regular local Noether lattice if and only if there exists

a Noether-lattice imbedding of RLn in L,

Proaof: Clearly if'-RLn can he imbedded in L., the maximal
prime of RLn maps onto the maximal prime of L. Thus the maximal

prime of L, is a join of n principal elements, and L is regular,

Now assume that L is a regular local Noether lattice and let

El, cee s En be a regular system of parameters for L. Define a map
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¢ from RL_ into L by defining ¢(0) = 0 and ¢ [(Xi)] =E,, and then
extending ¢ to all of L by preserving product and join. Since by
Corollary 2, 2 each element of RLn has a unique minimal representa-
tion as a join of principal elements, and since each principal element
of RLn has a unique factorization in terms of the elements (Xi), this
method of defining ¢ does yield a map. Note that RLk may be con-
sidered as a subset of RLn. We shall use induction to prove that ¢ is
a Noether-lattice imbedding; in particular, we shall show that ¢ re-
stricted to RLk is a Noether-lattice imbedding of RLk in L for k<n,

The restriction of ¢ to RLl is an isomorphism of RL1 into
L, since the image of ¢ is a regular local Noether lattice of dimension
1 and is therefore isomorphic to RLl (see the remark preceding
Theorem 3, 1). A simple inductive argument shows that Ell is primary;
since El is both principal and prime (Theorem 3, 1) it {ollows that this
isomorphism is a Noether léttice imbedding.

Now assume that ¢ restricted to RLj is a Noether lattice
imbedding of RL.j in L, for j< k < n. Denote the restriction of ¢ to
RLk by ¢'. To show that ¢' is an isomorphism, observe first that ('
preserves products and joins. It is evident that ¢' preserves meets of

principal elements, for

i(1) i(2) i(k) _ ~i(l) ~i(2) i(k)
Ell /\Ef2 A...AE{( _Ell E12 .. E!

k

Thus

(1)
Ek

(1) Li(2) i(k) (1) £i(2)

El EZ "'Ek /\E1 E2 .
_ =m(l) .m(2) m(k)
= E1 E2 Ek

where m(t}) = max(i(t), j(t)).
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We shall use computations with residuations to show that o'
preserves arbitrary meets; but first we must prove that ¢' preserves

residuation in certain special cases, Let

A= ypi® 2 i3 Li(h,K)
ho 2 3 )

ce B .
Then, by the induction hypothesis, the element A has a normal decom-
position in which all the associated primes are contained in E2 V..

.. VEk’ and since EleZV.,. VEk’ A:E1 = A,

Thus, in view of equation (1. 2),
©'[B:(x))] = ¢o'(B):p'[(x,)]
Since X:(YZ) = (X:Y):Z, itfollows that
©'(B:F) = ¢'(B):p'(F)
for all B &€ RLk and all principal elements F € RLk' Also,

e (BAF) = ¢'[(B:F)F] = ¢'(B:F)o"F)

= [o'(B):0p"(F) o' (F) = ©'(B) A @'(F) .

We shall now show that ¢' preserves all meets, Since RLk
is distributive, (AVBYAF = (ANFYV (BATF) for all A, B, and

principal elements F in RLk' Then, in 1.,

o' [{(AVB)AF] = [p(a) Ap'(F)]V [¢(B) A ¢'(F)]

Now let C =F_ V... VFSERL

1 Temporarily, let ¢'(X) = X',

K
Assume that

(2. 1) (F‘lv_., VF;)/\D’ = (F'lAD')V,,_ V(Fr/\D')

E
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for all r < s and for all D'.. Then

1 1 . 1 1 1 : 1
(F{V... VF)AD = (F] V... VF) A(F_ VD) AD

{(FLVIF,V... VF, ) A(F, Vv D11} A D'

{(FLVIF] A(FLVDYIV... VIF,_; A(F,VD')]} AD'

H 1 1 ! 1 1 t 1 1 1
[FSV(FI/\FS)V(Fl/\D)V,,, V(F, | ANF) V(F,_|AD Y]l AD

!

1
EFS vV (F

ADYYV ... V(F' . ADHY]AD

s~1

I 1 i H ! 1
(F,AD')V(F,AD) V... V(F, ; AD"

This shows that Equation (3. 1} holds for all r, Now let D = I—_’{1 vV,.

. VI—It. Then
1

0 (C) N @' (D) = (F; V...V F;) AD'

'(F'lAD’)v(F;_AD‘)v... v (F A D)

1 i - ! 1
1YJ (Fi/\ HJ) = 1\,/3 (p(Fi) A (’D(HJ)

Yy @' (F N = oLy (B A

©'(C A D)

Now, since X:(Y V Z) = (X:Y) A (X:2Z) and ¢'(A:F) = ¢'(A): 0 (F),
@' preserves residuation and is therefore a homomorphism.

But now cp'(RLk) is distributive, and, therefore by Corollary
2, 2,two elements are equal if and only if they are joins of exactly the
same principal elements, But this implies that the mapping ¢' is one-
to-one', since it is clearly one-to-one on principal elements. Thus ¢'
is an isomorphism.

By Lemma 2, 2, the only principal elements of RLk are the

elements (xl)i(l)(xz)i(z) .o (Xk)i(k); therefore ' maps principal
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elements to principal elements. By Theorem 3.1, ¢' maps primes to
primes, ‘l'o show that ¢' is a Noether-~lattice imbedding, we must
show that it preserves primary elements., Since every meect-irreducible
element is primary, since the intersection of primaries with the same
associated prime is primary, and since every element is an intersec-
tion of meet-irreducible elements, it is sufficient to show that ¢' pre-
serves meet-irreducible elements,

Since RL, is distributive, it is easy to see that the only

k

meet~irreducible elements in RLk are the elements of the form

i(1) V..

(Xl) Now, in L, the elements E, V.., VES are

1

meet~irreducible, since they are prime by Theorem 3.1, We shall usc

induction to show that the elements Ell( 1) V... V Els(s) are irreducible

in L, Suppose that Eil(l)'l v Eiz(z) V,.. V Eis(s) is irreducible in L.
i(1) i(s) . . . .

Then, by Lemma 3.2, B = El V...V Es is irreducible in BI/B’

where SB1 = El \ E12(2) V...V Els(s) . Now assume that B = Cl AN

.. NC_. Since B=B AB,,
r 1

B = (B, AC)A... A(B;AC)

Since B is irreducible in Bl/B, there exists a j such that B = Bl A Cj’

and therefore

v
=
1

= (B1 /\Cj):El = Bl:E1 /\Cj:El

Cj:E1 since }'*_‘.1_<_B1 .

Thus

C.< C.:E = B:E - Eil(l)-l VEié(z) V... VE:;(S)

1
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But this implies that C. is in BI/B’ hence Cj = B, Therefore B is
J

meet-irreducible and ¢' preserves meet-irreducible elements. This

implies that ¢' is a Noether-lattice imbedding of RL

K L. But now,

by induction, ¢ is a Noether-lattice imbedding of RLn in L.
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CHAPTER IV

DISTRIBUTIVE NOETHER LATTICES: BASIC

STRUCTURE THEOREMS AND EXAMPLES

The [irst result of this chapter is a characterization of dis-

tributive Noether lattices in terms of join and residuation.

Theorem 4, 1. Let L be a Noether lattice, Then L is dis-

tributive if and only if

(4. 1) (AVB)I:E = A:E V B:E

for all A, B and all principal elements E in L.

Remark: " Note that Equation (4. 1) is equivalent to
(4. 2) {(AVBYAE = (AAE)V (B AE)

for all A, B and all principal elements E in L, To obtain (4. 2) from
(4. 1), multiply both sides of (4. 1) by E and use equation (1. 1). To
obtain (4, 1) from (4. 2),l residuate both sides of (4. 2) by E; then use
the facts that in any multiplicative lattice L, (X A Y):Y = X:Y and

0:Y < X:Y for all X and Y in L.

Proof of Theorem 4, 1: Suppose L is distributive. Then by

the distributive law, (4. 2) holds for all A, B and all principal ele-
ments E in L. By the remark above, (4. 1) holds.

Now suppose that (4. 1) holds for all A,B and all principal
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elements E in L. Since (4. 2) also holds, it follows by induction that

(Aj V... VA)AE = (A AE) V... V(A AE)

for all Al, ey Ak in L. Let A, B, and C be in L, and let
C= El V... V En be a minimal representation of C as a join of prin-
cipal elements. Let C1 = E2 V... V En, and suppose inductively that

for all A, B in L,
(4. 3) (AvB)/\cl-_-(A/\cl)v(B/\cl)

It is clear that (AV B) AC>{AAC) V(B AC); thus itis

necessary to show that (AVE) AC<(AAC)V (B AC). Inthe relations

(AVBYAC (AVB)/\(AVBVEl)/\(El\/C

1)

(AVBYA(E, V{AVBVE)AC T}

(A V B) /\[EIV(A AC) V(B AC)VI(E, /\cl)]

(AAC)V(BAC)V [El/\ (AV B)]

1!

(AAC)VIAAE)V(BAC) V(BAE))

(AACYV(DAC) ,

| A

the second and fourth lines are by modularity, the third line is by (4. 3)
and induction, and the fifth line is by (4. 2). Therefore L is distributive,
By replacing the phrase '"'principal element' by the phrase
"principal ideal' throughout the proof of Theorem 4, 1, we obtain the
following corollary which gives a sharper result for the case where L

is the lattice of ideals of a ring.
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Corollary 4.1, If L is the lattice of ideals of a Noetherian

ring R, then L is distributive if and only if equation (4. 1) holds for all

ideals A, B and all principal ideals E of R.

For local Noether lattices, the distributive law is a very

strong restriction on the lattice structure.

Lemma 4.1, Let L be a distributive local Noether lattice,

and let M = E1 V...V En be a minimal representation of the maximal

element as a join of principal elements. Then each nonzero proper

principal element of 1L, is a product of powers of the elements Ei'

Proof: Let E # I be a nonzero principal element of L. Then
= = = A A
E=EAM=EA(E,V...VE) = (EAE)V... V(EAE) ,

which implies that E = E A E. for some k by Lemma 2,2, Thus

k
E< Ek' Let i(k) be the largest integer such that E < EL(k) . Then
- p.pik)y i(k)
E = (E:E ) Ep

by Equation 1, 1. Lemma 2, 2 implies that E = FEi'fk) for somc prin-
. i(k) . m

cipal element F < E:E. 7. F 4 E, since E ji_Ek for any m greater

than i(k)., Thus F=1I or F< Ej for some j# k., If F =1, there is

nothing more to do, If F # I, apply the same process to F as we

applied to E to obtain

_ i(j) —i(K)
E = HE}J Ell{

where i(j) is the largest integer such that F < EE(J). Iterate this
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process to obtain
E = keiDgid g
1 2 7" Tn
with K:t_ Em for m=1,2,...,n Then K=1 and the lemma is proved.

Theorem 4, 2, A distributive regular local Noether lattice is

.isomorphic to one of the lattices RLn'

Proof: Let L be a distributive regular local Noether lattice
of dimension n, By Theorem 3. 3 there is a Noether-lattice imbedding
of RL in L. Let E, = (p[(xi):\. Since by the definition of a Noether-
lattice imbedding {El’ cens En} is a regular system of parameters,
Lemma 4. 1 implies that each element of L is a join of products of
powers of the elements Ei‘ Thus ¢ is an onto map, so itis an iso-

morphism of RLn onto L.

From Lemma 4, 1 we see that it is possible to define a map
from RLn onto a distributive local Noether lattice whose maximal
element has a minimal representation as a join of n principal elements,
The next theorem shows that this fact allows us to characterize distri-

butive local Noether lattices in a very concrete manner,.

Theorem 4. 3. A lattice L. is a distributive local Noether

lattice if and only if there exist an integer n, an equivalence relation

8 on RLn and an equivalence relation ¢ on the set of principal ele-

ments of RLn such that L is isomorphic to RLn/G and the following

conditions are satisfied:
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1) H,V...VH_08K, V...V K_ if and only if for each
1 T 1 m

i< r there exists a principal element N in RL = and j<m such that

I—Ii oN< Kj’ and for each j<m there exists a principal element N'

1_13 RLn and i_<_ r such that Kj g N' < Hi'

2) H o N implies HK ¢ NK.
3y HK £ 0 (mod ¢) and HK g NK implies H ¢ N.

4) X 061 implies X =1,

Remark: Intuitively this theorem says that each distributive
local Noether lattice arises by the identification of certain principal
elements and then by the extension of these identifications to the whole

lattice by join, multiplication, and cancellation.

Proof of Theorem 4, 3. Suppose that L is a distributive

local Noether lattice, Let M = E1 V... V En be a minimal representa-
tion of the maximal element of L. By Lemma 4.1, each element of L
has a representation as a join of products of powers of the elements

Ei' Since two elements of RLn are equal only if they are joins of the
same principal elements by Corollary 2, 2, and since, by residuation,
two principal elements of RLn are equal only if they are the same
product of the same powers of the elements (Xi), it is possible to de-

fine a map ¢ from RL_ into L by defining (p[(xi)] = E, and then ex-

tending this map to all of RLn by the rules

o{AB) o(A) ¢(B)

o(A) V ¢oB)

dAV B)
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Define an equivalence relation 8 on RLn by A © B if and only
if o(A) = ¢(B). Let (A) denote the set of all elements of RL3 equiva-

lent to A mod 6. Define

(4. 4) v{a) = {A']| AT 9 A}

(4. 5) (A)<(B) if and only if A<V (B),

(4. 6) (AYv(B) = (AVB) ,

(4. 7) (A) A(BY = ((VAN A(V(B) )Y, and

(4. 8) (A) B) = (AB) .

It is immediate that (4. 5) defines a partial ordering on the set L' of
equivalence classes modulo 8. Since V (X) § X for all X in RLn, and
since X <Y implies V (X) <V (Y) for all X and Y in RLn,'(4. 6) and (4. 7)
give the meet and join relative to the partial ordering given in (4. 5) for
each pair of elements in L', With the multiplication given in (4. 8), L!
is a complete multiplicative lattice satisfying the ascending chair con-

dition.

Consider the map ¢":L' - L defined by ¢'({A)) = ¢(A). By
the definition of ¢' and 8, @'({A)) = ¢({B)) implies ¢ A)= ¢(B) which
means that (A) = (B). Thus ¢' is 1tol. If X is in L, then X = (Y)
for some Y in RL_ which implies that X = ¢((Y)). Therefore o' is
onto, Since (A)V (B) = (AV B) and (A)(B) = (AB), ¢' preserves

the partial order and multiplication of L'. Now assume

o' ((AY) < ©'((BY)
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Then

' ((AYV(B)) = o'({A) V @' ({B)) = @ (B ,
so that (A)V B) = (B) and (A)f_ (B). Thus ¢' and its inverse are
order preserving which implies that ¢' is a lattice isomorphism. Since
@' preserves multiplication, L and L' are isomorphic as multiplicative
" lattices and thus as Noether lattices,

Now let ¢ be the restriction of 8 to the set of principal ele~
ments of RLn' Then Corollary 2, 2 implies that condition 1 of the
theorem is satisfied. Condition 2 of the theorem follows immediately
from the definition of 8. To verify condition 3, suppose {0)# (HK)

= (NK). Since L! is a Noether lattice, it follows by Equation (1. 2) that
(H)V (0:K) = (N)V (0:K)

Because (H), (N}j_ (0):(K), a minimal representation of (H) V (0): &)

has the form
(I—I}V(KlV... VKt> s

and a minimal representation of (N) V (0):(K) has the form

(NYV(K] V... VK)

Then since (H), (N)<£ (0):(K), it follows by Corollary 2.2 that Hg N.
Condition 4 follows from the fact that L' is local.

Now suppose that § and ¢ are equivalence relations on RLn
such that conditions (1) - (4) are satisfied. We must verify that RLn/G

may be regarded as a Neother lattice.
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Denote the equivalence class of all elements congruent to A
mod 6 by (A). Define a partial ordering on L = RLn/G by using equa-
tions (4. 4) and (4. 5). The fact that (4. 5) does yield a partial ordering
follows immediately from the fact that V(X) 8 X for all X in RL, and

3

the fact that if X <Y in RL,, V(X)< V(Y). The first of these is

3’
clear; to verify the second note that if X' 6 X, then X'VY 8Y by

condition 1 of the theorem. Then

(4.9) V) = V{X'[X'8X}<V{X'VY[X' 8X]}<V )

It follows immediately that (4. 6) and (4. 7) give the join and
meet of any two ele.rnents of L relative to the partial ordering given in
(4.5). It is‘clear that L is complete and is a multiplicative lattice
with the multiplication given by (4. 8). We shall show that L is a
Noether lattice by showing that L. is distributive and that every ele-
ment of L is a join of principal elements,

In order to show that L is distributive itis necessary to use
(4. 10) V(AVB) = (V{A) V(V(B)
Clearly (V (A)) V (V(B)) <V AV B). Thus assume
C =K, V... VKreAVB

Let A=E, V.., VE_and B=H, V... VH_. Then, by condition 1,

for each Ki there exist j and Nj such that either
K.ON.<E, or K. 6 N. <H, .
i i=""] i i—=-"73

Thus by (4. 9) the elements Ki may be divided into two sets such that
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the join of the first is less than or equal to V (A), and the join of the
second is less than or equal to V (B). Then C < (v (AY) V ({V (B)), and

therefore
VAV B) = (V{A) V{V(B))
But this implies that L is distributive, for in the equations

(Cy A ({AYV (BY) = {(CYA(AV B)

(VCY) A [(V(A) vV (VB ]

LvACH A (v (AN ] v [(v CH) A (v(BY)]
((CLA)) v (CYA (B)) ,

]

the second and fourth lines follow from (4. 7) and the third line follows
from the fact that RLn is distributive,
Using (4. 5), (4. 8), and the definition of residuation we obtain

the equations

(4. 11) (AY:(BY = vV {{X)| X)YBY < (A}

v {{(X)| XB < v(A)]

v (XY X < (via):B]

(v (AN:B)

1]

We shall use (4. 11) to show that (E) is principal in L for each prin-
cipal element E in RL . To show that (E) is meet principal it is nec=-

essary to prove that

(4. 12) (AYACE) = ((A(EN(E)
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Note first thatif H 8 K in RLn, then (H) = (K) and

{V (AN:H) = AxE) = (A):(K) = ((V{AN:K).

Multiplying the left side of this expression by (H) and the right side by

(K) and applying equation (1.1) in RLn, we obtain the equation
(4. 13) (VAN A H) = {(V(A)) A K)

Note also that since V(EYBE, V(E) = EVEK., V... VKr

1
with Ki 6 Hi < E by condition 1 of the theorem. Using this fact, equa-~
tion (4. 11), and applying (4. 13) and the fact that (A V B) = (A) V(B)in

the third line below, we obtain

(AYA(E) = ((V{A)) A(EVEK

AR VKr)>

1]

Cv AN Al v ivian ar v vIiva) A g D

Cv<ay AEIVIiVAWH T V... VIV AHED

(VCAY A (E VE V...V H))

1

1]

UV AY) AE) = ([(V{A):E]E)

(A:EY(EY

This proves equation (4. 12), Now let A = N1 V...V NK in RLn. In

the equations
((A) A(BY:(E)) ) = [N V... VINE)) ACBY(E) ] (E)
= (AN A BY:E)ICEY V... V(N HA(BED) &)
= {LUBY: @N AN KNDICE)Y V.o v LLBY (E)): NG ) KN OHED
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((By: ®N)I(EN) V... V ((B) :(ENKXEN,)

((BY A (END) V... V((B) A (EN,))

(BY A ((EN[) V... V(ENLY)

(BY A CEY(N V...V NL)

(BY A (EY(A)

lines 2 and 6 follow from the distributive law, lines 3 and 5 follow from
equation (4. 12), and line 4 follows from the fact that (X:Y):Z = X:(YZ).
Thus (E) is meet principal.

The first step in proving that (E) is join principal is proving
(4. 14 ((BYKE)):(E) = (B) VvV (0):(E).

If (BY(E) =(0), then (B) < (0):(E) and (4. 14) holds. Assume

(BY(E) # 0. Itis always true that

(BY (EY):(E) 2 (0):(E) V(B)

so suppose that K is a principal element in RLn such that (K)(E)
<(BY(E), with (KX E) # (0). Then KE V BE § BE so that by
property 1 of the theorem there exists H' 8§ KE such that H! < BE.
But byEquation 1.1 H' = H'A E = HE with H = H":E., Then KE 6 HE

implies KOH < B by condition 3, Therefore (K)< (B). Thus

VUK | RV (BN < (BVURY  and (KM (RN 4 (0V) < (R
A Y 7/ \ N [ A /N / AY / / — 7/

i A NS

Therefore Equation {4. 14) holds. It now follows that (E) is join prin-

cipal because in the equations
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({AY V(BY(EN:(E) = [((A) Vv (BE)) A (E)]: (E)
[({a) A (E)) V(BE)]«(E)

(A EENCEY v (BY(E) 1:<E)

LA CE) V(BN (E) ]:(E)

(AY(EW (B) V (0):(E)

(AY:E V (B) ,

1}

i

il

line 1 follows from the fact that (X AY):Y = X:Y, line 2 follows from
distributivity, line3 follows from (4. 12), line 5 follows from (4. 14), and
line 6 follows from the fact that 0:X < ¥:X in any Noether lattice, This
proves that (E) is principal, so that each element of L is a join of
principal elements. Thus L is a distributive Noether lattice. L is
local, for if (AY)V{(B) = (I}, AV B =1 by condition 4 so that A =1

or B =1, This proves the theorem.,

This theorem may be used to construct interesting examples
of Noether lattices, For example, the lattice L obtained by identifying
(x'l)2 and ('x‘z)2 in RL, is drawn schematically in Figure 4. 1. The
dots indicate that the pattern above them is to be continued,

 To verify that L is the lattice shown in Figure 4. 1, let
{(x 1)): E and ((x,)) =H. Note first that each principal element of L
has a factorization of the form EiL or EiH. Thus every nonprincipal
element X of L has the form X = Ei \ EjH where i is the smallest in-~
teger such that Ei is contained in X and j is the smallest integer such
that EH <X. If j>i, X = E., If j<i,

EfEVH) if i-j=1
lveig = gt lvy - ’
E'H ifoi-j>1
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Figure 4,1

The lattice obtained from RL2 by identifying (x 1)2

and (x 2)2 as described in Theorem 4. 3.
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Therefore each element of L. has the form El, EJH, or Ek(E v H).
Thus Figure 4.l is the correct diagram for L.

Another interesting example which may be obtained from
RL2 is

L' = RLZ/[(X.I) Vo (x Z)ZSZ

This is the lattice obtained from RL2 by identifying (x. l)2, (x l)(x Z) ,
and (X‘Z)Z with 0 as described in Theorem 4. 3. Also L' = L./E2 vV EH
where L is the lattice described above.

L' arises naturally as a quotient sublattice of any distribu-
tive local Noether lattice which is not a chain, This is a crucial point

in the proof of the following theorem.

Theorem 4. 4. If LR is the lattice of ideals of a local ring

R, then L

R is distributive if and only if LR is a chain,

Proof: If the maximal ideal of R is principal, LR is a chain,
Suppose the maximal ideal of R has a minimal representation of the

form El V...V EK with each E.1 a principal ideal, Let

A = (El \/EZ)2 % E3 V.., V EK and let X' denote XV A, Then it is
easily shown that E’l v ETZ’ E!1 , E‘Z , and 0' are distinct elements of
LR/A. For example, if E'1 = Ei?‘, then

M
1]

(E;VARE, = (E,VALE,

1]

1
2
(E{VE, V... VEL)E,

EIV(EZV.” VEK):E1
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Since LR is local, (EZ' V,..V EK):El = I. This is impossible since it

1 SEV e VEL

Now suppose that X' # I is an element of LR/A. Then

implies that E. <E

1

X

1]

1 1 1 1 1
X'A (E’l VE)) = (X'AE) V(X AE))

1

= (X :E’l)El

1 1 1
v (x:EL):E,

Butif X:E'#1', (X"E)E!=z0'. Thus I, E' VE', E!, E., and 0
j N 1 2 1 2

are the only elements of LR/A. I..R/A is the lattice of ideals of the

ring R/A. Since E; and E'2 are join-irreducible, they must be prin-

cipal ideals. Let E'l = (%) and E; = (y). Since (x) # (y), (x+y) #0.

Also (x+vy) # (X),for if x+ y=1rx, y is in (x) which is impossible.

¥ (x+vy) = {x,¥), (x,¥) is principal and by Corollary 2,2, (x,y)= (x).0or

(x,v)= (y). Again this is impossible, so that LR/A cannot be the lattice

of all ideals of any ring. Thus the maximal ideal of R is principal and

I_.R is a chain,

Theorem 3. 3 asserts that there is a Noether-lattice imbed-
ding of a distributive regular local Noether lattice of dimension n in
each regular local Noether lattice of dimension n, This might lead us
to hope that there is a Noether-lattice imbedding of a distributive local
Noether lattice whose maximal element is a join of n principal ele-
ments in each local Noether lattice whose maximal element is a join of
n principal elements. Unfortunately this is not the case, as the follow-

ing example shows., Let F denote the real numbers, and let

R = Flxyl, ) /T +yD)

(x,v)
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following the usual notation for factor rings and rings of quotients [4],
Let L be the lattice of ideals of R. If A# I isin L and A< (x2+y2),
then 0:A = (x2+y2), since (x2+y2) is a prime. Suppose E V F = (x,vy).
By the exchange properties of the Kurosh-Ore theorem mentioned after

2

Corollary 2. 2,E ¢ (x +y2), F4 (x2+y2). If E and F were members

of a distributive sublattice L' of L which had a Noether-lattice imbed-
. 2 2 2
ding in L, then (x&—i-y ) would be in L' also since (x +vy ) = 0:E. But

then since (x2+y2):E = (x2+ YZ),

(x2+y2) (x2+y2)/\ (EVF) = [(x2+y2)A E]vV [(x2+y2) AF]

[(X2+y2):E1E Vv [(x2+ yz):F]F

2 2
(x%+yAE V (x°

2
+yv)}F =0

However (x2+y2) # 0, so that there is no Noether-lattice imbedding in
L of a distributive local Noether lattice whose maximal element is a

join of two principal elements,
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CHAPTER V

NCETHER LATTICES WITH TRIVIAL MULTIPLICATION

On the basis of the results of Chapter III and Chapter IV,
one might suspect that every Noether lattice has a Noether-lattice im-~
bedding in the lattice of ideals of some ring. The purpose of this chap-
ter is to show that this is not the case., The example given in this
chapter has the trivial multiplication defined by AB = A if B = I,
AB =0 if A,B # 1. The next theorem classifies all those Noether lat-
tices with this multiplication and will be useful in the construction of

the example mentioned.

Theorem 5. 1. A lattice L may be represented as a Noether

lattice with the trivial multiplication if and only if L is a finite-

dimensional modular lattice in which every element but I is a join of

atoms.

Proof: Suppose that L is a Noether lattice with the trivial
multiplication. Note first that L is local, for if I= AV B and
A,B#I, then IX = AXV BX =0 for all X #1 in L, Thus A= 0,
B=0and I=0, Now let E # I be principal in L, Then (using equa-
tion 1. 1) if X < E, X = (X:E)E = 0 since (X:E) # I. Thus the proper
nonzero principal elements of L are atoms and every element of L
but I is a join of atoms. Let M be the proper maximal element of L.
Since MZ = 0, L= L/MZ, By Theorem 6, 2 of [2] L/M” is finite

dimensional, Therefore L is finite dimecnsional.
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Now suppose that L is a finite dimensional modular lattice
in which every element but I is a join of atoms., Since I is join-
irreducible, the trivial multiplication on L is a commutative, associa-
tive, join-distributive multiplication. To show that L is a Noether
lattice, we shall show that the atoms of L are principal. In fact every
element of L is join-principal. Since the multiplication is trivial, it

is clear that

M i Y<¢X

I

(5. 1) X:Y
I if Y<X

for all X and Y in L, where M is the proper maximal element of L.

Now let A and C be elements of I.. Then
(AVIC):C = (AVC):C =1= A:CVI

If B#£1I1, then
" (AV BC):C = A:.C = A:.CVB ,

since A:C =1 or A:C=M>B. Thus C is join principal. Now let E

be an atom of L., If B_)_{E, then B:E = M. Therefore
(AAB:EE = (AAME= 0= AEAB ,

since AE AB <E AB which is zero because E is an atom and E _<_,f_ B.

If B> E,

(AABE)E = (AADE = AE = AEAB

because AE <E < B, Thus E is meet principal. Since the atoms of
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L are principal and every element of L but I is a join of atoms, and
since I and 0 are trivially principal, L is a Noether lattice,

We shall now construct a lattice L which cannot be imbed-
ded in the lattice of ideals of any ring. The elements of L are the
symbol I and the elements of the lattice of subspaces of a non-
Desarguesian projective plane (for example the Moulton plane), The
partial ordering in L is given by I >X for all X # I and by the partial
ordering of the lattice of subspaces of the plane. Let the maximum
element of the lattice of subspaces of the plane be M. Then M/0 is.
a finite dimensional complemented modular lattice, so that every ele-
ment of L. but I is a join of atoms and by Theorem 5.1, L may be
regarded as a Noether lattice with the trivial multiplication.

Now suppose that ¢ is a Noether-lattice imbedding of L in
LR’ the lattice of ideals of a Noetherian ring R. Since M is prime
and each X <M is M-primary, the fact that ¢ is a Noether-lattice
imbedding implies that ¢(M) is prime and @(X) is @(M)-primary for
all X <M in L. Because of this, we may assume without loss of

generality that

R = [R/(p(O)]((p(M)) .

Thus LR may be assumed to have the trivial multiplication. But for

any ring R with maximal ideal P, P/P2 is a vector space over the
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field R/P [4, p. 52]. This means that ¢(M)/0 is a vector space. But
the lattice of subspaces of a vector space is Arguesian, so that the
lattice of ideals of R has no non-Arguesian sublattices. But L is non-

Arguesian, so that L cannot be imbedded in LR .
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CHAPTER VI

AN ABSTRACT CHARACTERIZATION OF RL3

The example given in the last chapter does not disprove the
conjecture that every regular local Noether lattice L has a Noether-
lattice imbedding in the lattice of ideals of some ring. The next theorem
shows that if L satisfies certain stringent conditions, then the conjec-

ture is valid, In fact, these conditions imply that L is distributive.

Theorem 5.1, Let L be a regular local Noether lattice with

precisely 3 minimal (nonzero) primes., If each minimal prime is a

regular parameter for L, L is isomorphic to RL

3¢

Proof: If I, has dimension 3, there is a Noether-lattice

imbedding of RL_ in L, so that (p[(xl)] R '(‘D[(XZ)]’ and (p[(x3)] are

3
the minimal primes of L.

Let K be a principal element of L. By the principal ele-
ment theorem [2], K is contained in one of the three minimal primes
in L. K is a multiple of this minimal prime since the minimal prime
is principal., Thus if K cannot be factored, K is equal to the minimal
prime, If K can be factored, each of its product-irreducible factors
may be considered to be principal by Lemma 2. 2., Thus K is a product
of powers of the minimal primes. This means that the imbedding of

RL3 in L is an onto map so that L is isomorphic to R.L3.
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Clearly L cannot have dimension 1, because if it did it
wbuld have precisely one minimal nonzero prime. (See the remark
before Theorem 3, 3).

The remainder of the proof consists of showing that L. can-~
not have dimension 2. Thus suppose L has dimension 2. Denote the
" minimal primes of RL3 by E, ¥, and H, and the minimal primes of
L by e, f, and h. As in Theorems 3.3 and 4.3 define a map ¢ from
RL3 into L by letting ¢(E) = e, @(F) =f and ¢(H) = h, and then ex-
tending this map by preserving joins and products. As we remarked
above, every principal element of L is a product of powers of e, f,
and h, so that ¢ is an onto map. For the remainder of this proof we
will denote the elements of RL3 by capital letters and the images of
these elements under ¢ by the corresponding small letters with the
exception that ¢(I) = 1, Thus e, f, h, k, and n are principal elements
in L. The letters p, q, r, s, t, u, and v will be reserved for integers,

Note that again as in Theorem 4. 3,
-1 -
(6. 1) anb = ol(ve (@) ave Nl

where (p-l(x) is the inverse image of x and V (p-l(x) is the join of this
set,
Let m denote the maximal element of L. By the definition

of a regular parameter,

eVi=m or eVh m ,

fVe=m or f Vvh and

1]
2

hVe = m or hvf=m
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By inspection of the three relations given above it.is clear that without

loss of generality we may assume that

(6. 2) eVi=eVh=m=eV{Vh

Since L/h and L/f are regular of dimension oue, they are
chains (as described in the remark made before Theorem 3. 3) so that

there exist integers p and q for which
hvi=ePviz=elvn .

If p<gq, Equation (1. 2) and the fact that h is prime imply that
e9"Pvh =1 which implies that p = q. Since the same type of compu-

tation may be made if 9<p, P=4q and
(6. 3) hvf=¢e%vizelvn

The computations used to prove the theorem will differ for q =1 and

q > 1, but the following relation holds in both cases,

(6. 4) V@—l(evah)rf_(EVFVH)r

1(e viv h)r. Then e £°h"

To prove this, suppose E.FUH' < Vg
< (e v f v h)r, and hence

t

]
©
H
<
o
H
!
t
Hh
<
<
h

0" < (evV f)r:e

(er-l r-2 r-1 r, t-1

(e v f)r-t if t<r
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Similarly n' <(ev h)r-t-u unless t+u>r, Then unless

1 = (e Vh)r-t-u:hv = (e Vh)r-t-u-v ,

t+u+v>r. Thus t+u+v>r and EF'HY < (EV F vEH)T, proving (6. 4).

Also,

(6. 5) FveE =efvievnT zefvievn® = fvn®

Now assume q = 1., We will show that one of the equations

(6. 6) e"Vh™ = e’ VI,
(6.7) eSVhZ = e5\/f2 s or
(6. 8) e5Vh =e5Vf

must hold. Notice that (6. 6) implies that

3 3 3

e5\/h >h™ Vi 4

>hvp® = (evhvn® setn

Thus 1= (e5 \Y% h3):e4h eV h2 by (1. 2) and the fact that e and h are

prime. This is impossible, so that (6. 6) cannot hold. . Similarly (6. 7)
and (6, 8) cannot hold, so showing that one of these must hold will show
that g =1 is impossible, Note that one of' (6. 6), (6.7), or (6. 8) would

be implied by a relation of the form

(6. 9) e5 v h3f2 = c5 v h%Y with u+tv=>5 and u 3

3

which means that it is sufficient to show that (6. 9) holds.

Since every element of RL3 is a join of principal elements,

(6, 10) V(p-'l(eSVhsfz) = E5VH3F2VK1‘ V... VK, ,
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K

l: o e o ) t«
We will show that there exists a p such that e5 Y% h3f2

for suitable principal elements K

= e5 v kp and that kp must be of the form given in (6. 9).

It is easily checked that

3

evH® = (edved)evn? = (e3vid)(evh?

Thus expanding this equation and using modularity,

2 vnil = (2 vndHaevn® = (e 3 2

Vi34 A e v 3 (e v b

5 2.3 4 3 3,2

(e Vh3f2)/\(e5Vef Ve hVef"hVe'h Vf3h2)

e5 \Y I:(e5 \ h3f2) A (ezf3 % e4h Y% ef3h Y% e3h2 v f3h2) ]

1}

5

e VIV o He® Vi) Al ;

the last line follows from (6. 1) with A=V (p-l(erS Veéh Y ef3h V e3h2

2
\Y f3h ). Using (6. 10) and the fact that RL, is distributive,

3

5 .32 5 3.2
(6.11) e VhE" = e’ VHF A A) V(K] AA) V... VoK _AA)

Define a principal element to be of degree p if it equals ErFsHt or

erfsht.with r+s+4+t=p, We will now show that each principal element

contained in (p(HBFZ A A) has degree 6 or more, If HSFZZf_ A, then

this is the case, Thus we wish to show that (p(A):h3£2 # 1. In the
equations

@(A):hsfz (e4h v e3h2 v e2f3 v ef3h v £3h2):h3f2

e*h v e3th v €% v efh v 2090352

(e3h \Y ezf Vefh VvV fhz):h3
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(e V ef V fh):h%

(eh'2 VihV e:f):h2

eVIif1l ,

the second line follows from the relation e3h(e Vh) = e3h(e V), the
third and fourth lines follow by repeated application of (1, 2), the fifth

line follows from the relation
e(ez\/f) = el(e Vf)zvﬂ = e[(th)2V£] = e(hZVf) ,

and the last line follows by repeated application of (1. 2),

Thus if none of the elements Ks have degree five,

(6. 12) e®vntP<e’vievevn® =P vievn®

Using (6. 12) and applying (1. 2) repeatedly, we obtain

5 5 4 2 3.3 2

= {e"Ve h Ve h”" Ve h4Veh5

1 V (e V 1) °]:n3¢? v 1°):n3s

Le

3 2 2 2

(e2 v e?h Ven? v hdys? = (e Vb))t

2 = (<33Ve2£'Vef2Vf3):f2 = eV{

(e v f)3:f

This is impossible, so that one of the elements Ks must have degree
five by (6. 4), and (p(Ks A A) must contain a principal element of degree
5, say n, Let Nps eees B be the principal clements of degrcce 5 con-

tained in at least one of (p(Kl ANAY, ..., (p(Kt A A)., Then

(6. 13) e5Vh3f2=e5Vn V... Vn_ Vec
1 T

where c < (e VIV h)é. Thus since (6. 12) cannot hold, Lemma 2, 2
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implies that there is some n€ {n , nr} such that

l, v e

(6. 13) e5 \Y% h3f2 = e5 Vn

It is clear that n< e since n3g? 4e. Butn# h3f2 because
n< (p(KS A A) < o(A) and noe ¢ ¢{A). This proves (6.9) and the case
q = 1 is complete,

Now suppose that g > 1. Recall that this means that edlvrs

=fVh = e? Vh, We shall deal with this case by showing that
q2+l q-p q2+l q-p
(6. 14) e Vh = e Vv i with q>p>0
For if (6, 14) holds, we have
a%s1 q-p _ ,.4-P ,, .A-P 2(g-p)-1
e Vh >h v £ > (h V1)

= %y pile-p-1 jdla-plya-p-1

But then, applying (1. 2) and the fact that e and h are prime, we have
2
1 = (e t1y p97P),a(d-Plya-p-1

= el+qp Vh

which is impossible,
An important relation we will use in proving (6. 14) is

2
(6. 15) fAvnd = ffved

»

By equation (6. 5), efvif-elvily hq, so that by modu-

larity

(6. 16) hved o mdveY aedvey = £9v [eqAmivid]
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Let

volmtvih = mivEIvk V... VK,

Since a principal element is contained in e? if and only if it is a mul-

tiple of e? and since by the uniqueness theorems for primary decom-
positions [2] each principal element has a unique representation as a

product of powers of e, f, and h, V (p-l(eq) = Eq. Thus (6. 16) becomes
q q _ 4 9.4 ARa AES
h*vi* =1 V(p(EH)Vq;(Kl E)\/,..V(p(Kt ED

Since h® v 9 4 qu Vv e9nt by residuation by n? and (1. 2), Lemma 2, 2

implies that there exists an s such that
vl - 9y O(K_ A EY

But KS i F, for if it were, hq would be contained in f, and hq _<_i_ f.

Thus Ks =P, If r > q residuation by h' would give
1= 3V i%Ym' = (9 v nTe™ax(P: )y pT

4y max(p,q)

2

and this is impossible. Thus letting u = max(p, q),
vl = f2vnte®

- with r <q. Residua‘cioﬁ of both sides by h' gives

(6. 17) h vtz v et

Joining f to both sides of (6. 17) yields
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-r u

Wi fve=fvet |

- - -r
but since thqr:fV(th)qr=fV(fVeq}q » u = q(g-r),

Now joining h to both sides of (6. 17)

nvid - nyvidy 2a-r)

-r
hvdv(hyved

hvilv vt

nv 3T

i

Residuating both sides by £2°7,

which implies that r = 0, Therefore (6. 15) holds.

We shall show that (6. 14) holds by demonstrating that
2n1 201
(6. 18) e? Thym® o %ty Y
with u+v = k+1 and u # 1. Note that

, 2
(6.19)  ¥<(e? viY(e vy

2 2 2
2 vifevh = ed Ty ertvedhy iy

?

by substituting (6. 15) and (6. 2) into the first line.
By the modular law and (6. 19),

2 2 2 2
(6. 20) e T ymd o (3T v YA (e Ty erdved n v £y

2
4

2
Ly ol (v (p’l(eq 1y mYy aal



50

) 2
where A=V (ef*Ve® hvith), Let
-1 2

2
Vol Tl s et vraivig v vk .

1
Then substituting into (6. 20),

2 .
eq +1 \Yj th

2 2
et Hly o 1A a) v (FrY NEVE ABV..L V(K AA)]
= e T Vo (FHT AA) VOl A A) V... Vo(K, A A)
We shall now show that any principal element contained in <p(FHq A A)

has degree at least q + 2 by showing that thi@(A). In the relations

2 2
o(a):fhd = (ef?ved nviny:m?d = (efd7lved nv 9 ny.nd

2 2
(e:’.q“1 ved qu-'l):hq-1 = (eq v fq-l):hq_l

2
<(e? vomTl o [eTvntvelntt

(v dvelnd™t = (h9ve]nd?

fi

hvfd£1l ,

the first two lines follow by (1. 2) and the third follows from the fact
that if, in a multiplicative lattice, X < Y, then X:Z < Y:Z, Thus
unless there is an s such that go(KS A A) contains an element of degree
q+ 1 (by (6. 4) it contains no elements of degree q or less),

2 2
(6. 21) ey mic ety e vy A

This however implies that e V thf_ e V(fV h)q+2, or by (6. 3)
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evind<ev(evn¥? = o vndt?

= eV(th)q-l-2 = eV(er)(th)q'l-l»:: erhq+l

Residuating both sides by th we obtain 1 = e V h which is impossible,
so that (6. 21) does not hold.

Because (6, 21) cannot hold,

) 21
Tt yvimy Tt v FHYA A)

so that by Lemma 2, 2 there exists an s such that

2 2
q+1vth g +1

e = e V(p(KS/\A)

Since. thi/ e, (p(Ks AA) £ e. Therefore because (6. 21) can-
not hold, there exists n< e of degree q+ 1l such that n< @(Ks A A)
and

2 2
e +1thq = e4 +1Vn

But n # fh? since n< ¢(KS A A) < o(A) and thj_ o(A). But
n=fh' withu+v = g+ 1, so that (6. 18) holds and the case g > 1 is
impossible, Therefore L cannot have dimension 2 and L is isomor-

phic to RL..
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