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ABSTRACT.

Two wave propagation problems are considered: the propagation
of acoustic waves in a fluid slab and the propagation of elastic waves
in an elastic slab,

When formulated in terms of nondimensional variables these
problems depend explicitly on two small parameters € and §. The
parameter e provides a measure of the thinness of the slabs considered
and the parameter § measures the impulsiveness of the applied excitation
or loading. Approximation solutions of the problems considered are
obtained consisting of several parts, each part having the form of-a
power series expansion in the parameters € and §.

The most important result obtained is the developuent of the
approximate theories - the plate wave equation and the Euler-Bernoulli
plate equation - directly from the full equations of dynamic elasticity

using a rational perturbation expansion technique.
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INTRODUCTION.

This thesis is concerned with the discussion of two wave
propagation problems: the propagation of acoustic waves in a fluid slab
and the propagation of elastic waves in an elastic slab. These two
problems can be regarded as particular cases of a general class of
problems which arise in the investigation of the physical behavior of
a material contained in a geometrically thin region. Such problems
are often described mathematically by a boundary valug problem or a
boundary-initial value problem for a partial differential equation.

In many cases it i§ difficult or impossible to obtain an exact,
explicit solution for such problems and therefore it is desirable to
be able to find approximations to the exact solutiom.

Usually the most significant behavior of solutions to
boundary value problems for such thin regionms can be described in terms
of a thickness average of some relevant physical quantity. For example,
we are usually more interested in the average flow of fluid through a
pipe, .than the detalls of the velocity distribution across the pipe.
Consideration of such average quantities allows the number of geometric-
al dimensions of a problem to be reduced. Thus the static displacement
of a thin three-dimensional elastig plate can be approximately describ-
ed by the average dispiacement of the plate considered in the corres-
pondiﬁg two~dimensional région. Similarly the thrce—dimensional flow
of fluid through a thin pipe can be2 considered approximately as a ene-

dimensional problem for the average flow.



Various methods have been devised for obtaining "approximate'
theories which describe the average behavior of solutions for a thin
region, Many of these methods involve assumptions whose validity is
diffiéult to assess. Perhaps the most systematic formal method consists
of formulating the problem in terms of a small parameter ¢ which measures
the thinness of the region. This is followed by a formal perturbation
expansion procedure in powers of € which yields many simpler boundary
value or boundary-initial value problems. The lowest order term derived
by this procedure is found to be some signiiicant thickness average
satisfying an equation suitable for use as an "approximate' theory. A
difficulty arises here in that the solution derived by using this pertur-
bation scheme is often not uniformly valid; in the case of the static
deflection of an elastic plate the corresponding approximation cannot
satisfy all of the originally prescribed boundary conditions specified
at the edges of the plate. This difficulty is to be expected as the
problem formulated in terms of e can be considered as one of a singular
perturbation type.

To improve the solution predicted by the approximate theory
further corrections are necessary. The derivation of these corrections
also allows the rational development of boundary conditions and initial
conditions suitable for use with the approximate theory.

The perturbation expansion approach discussed above has been
applied to the problem of the bending and stretching of thin elastic
plates by Friedrichs [5], Friedrichs and Dressler [6], Reiss [35]

and Laws [21]. The deformation of a cylindrical shell was investigated



using this method by Johnson and Reissner [14] and Reiss [34].
Green [7,8], Green and Naghdi [9] and Green and Laws [10] have extended
the perturbation procedure to thin shells of arbitrary shape.

Fox [4] and Knowles [17] used the same procedure to inves-
tigate the potential problem for a flat plate with Dirichlet boundary
conditions and Westbrook 38 ] extended this work to the potential problem
for a cylindrical shell. TFor the problems considered in these three
papers the authors demonstrated rigorously that the solutions obtained
by using the perturbation procedure are uniformly valid.

An investigation proving the accuracy of the results obtained
from an application of this perturbation procedure to a nonlinear shell
probiem was carried out by John {[12,13].

Some estimation of the worth of the technique is inherent
in the work on Saint-Venant's principle by Knowles [18,19], Horvay [11],
Johnson and Little [16], Novozhilov {30] and others.

The present work is concerned with the application of this
perturbation expansion procedure to dynamic problems for a "fluid plate”,
dealt with in chapter I, and an elastic plate, considered in chapter II.
In both instances a boundary-initial wvalue problem is considered for a
thin two-dimensional rectangular region. Initial quiescence is assumed
and impulsive excitations or loads are prescribed at one end of the
rectangular region. In addition slowly varying excitations or loads
are prescribed on the other boundaries.

When these problems are formulated in non-dimensional form

two small parameters g, § emerge. The parameter ¢ measures the thinness



4

of the region considered and § measures the '

suddenness' of the applied
impulsive disturbance. Approximate solutions are obtained consisting
of several parts, each in turn a perturbation expansion in e and S§.

A more precise discussion of the problems considered is given in the

introduction to the separate chapters.



I. AN APPROXIMATE SOLUTION OF THE WAVE EQUATION IN A THIN DOMATIN.

l. Introduction.

In this chapter an approximate solution of a boundary value-
initial value problem for the two-dimensional wave equation in a thin
rectangular domain is constructed and discussed. The wave equation
mathematically describes many physical situatioans. Two examples,
similar in certain respects to the more complex elasticity problem
described in chapter II, are the small motion acoustic behavior of a
fluid, and the behavior of an elastic medivm sheared in such a way
that the particle motion occurs only in one direction (the so-called
SH wave). The former of these two cases is used as a model to ailow
some physical insight into the mathematical procedure that follows.

In physical terms the problem we wish to consider may be
described as a waveguide problem. We comsider an initially quieszcent
slab-shaped region of fluid suddenly excited on its boundaries, and
we try to determinehthe subsequent motion of the whole region. For
simplicity it 1s assuped that the prescribed excitations are such that
they induce a motion which does not vary along the slab. This means
that the motion is two-dimensional and we accordingly speak of a
" rectangle of fluid " to conmnote a typical cross section of the

corresponding three-~dimensional region.



We shall consider a "thin" rectangle of fluid. That is, a
section of a plate whose thickness is small compared with its length and
width. In this dynamic case another length scale besides the physical
dimensions of the plate is introduced by the time dependence of the
applied boundary excitations. It is assumed that large changes in these
applied excitations only occur soon after the start of the motion. The
duration of these sudden effects multiplied by a characteristic velocity
of the problem (the velccity of sound in the fluid) provides a quantity
with the dimensions of length which is a measure of the sudderness of
loading. We call_this'quantity the "excitation length'. The relative
magnitudes of the thickness of the rectangle, the length of the rectangle
and this excitation length greatly influence the solution. We do not
attempt to solve the problem for completely general boundary conditiomns,
but rather specify in advance that the excitation applied to the long
sides of the rectangle is slowly varying with a corresponding length
comparable to the excitation length of the rectangle; and we specify that
part of the excitafrion of the ends is slowly varying. Ian addition there
may be a brief initial effect at the ends with an excitation length small
in comparison with the length of the recrangle. This rather vague
description of the problem is made more precise with the detailed formula-
tion in the next section.,

We cannot expect an approximate solution for this problem



entirely analogous to those obtained for static problems (Knowles [17],
Friedrichs and Dressler [6], Reiss [34], Reissner and Johnson [14] for
example) since the dynamic prcblem for a fluid plate is concerned in an
essential way with the phenomenon of propagation. The effect of boundary
data specified at the ends of the rectangle will not remain localised in
boundary layers near these ends. However for the particular type of
boundary excitation considered here it might be expected that propagation
effects are mainly concentrated in a pulse travelling along the rectangle
and that this pulse could be approximatéd without having to obtain an
exact solution of the problem. This idea is found to have considerable
merit and an approximate sclution is constructed consisting of three
parts: an "inner" approximaticn satisfying boundary data on the sides
of the rectangle, "quasi static" boundary layer approximations valid near
each end of the rectangle and a wave front approximation describing the
pulse propagation.

For this problem some assessment of the quality of the
approximate sclution obtained is possible by rigorcous comparison with the
exact solution.

2, Formulaticn of the Problem.

The two-dimensicnal equation of motion for the acoustic
behavior of a fluid may be written in terms of a velocity potentizl ¢ in
the following form:

¢ + 9 -

XX OUYY «©

The velocities U,V in the ¥,Y directions respectively, are given by the

2 s = 0 (2'1)

formulae:



U=¢9¢

,‘X EY V = (D’Y . (2'2)

The constant ¢ is the speed of sound in the fluid.

We consider the open rectangle R in the X,Y plane consisting
of those points for which 0 < X < &, 0 <Y < h. It is required to fiﬁd
a function ¢ (X,Y,T) satisfying the differential equation (2.1) for

(X,Y) ¢ R, T > 0 and fulfilling the following boundary and initial

conditions:
V(X,0,T) = P(X,T), )
\ 0 ix <2 s 0 <T < =3

vV{,h,T) = 0, J
U(0,Y,T) = F(Y,T) + A(Y,T),

. 0<Y<h , 0 <T< =
U{e,Y.T) = @, ‘
¢ (X, Y,0) = 0,

(X,Y) € R.
Q’T(XQY,O) = 0!

In the construction of an approximate solution for this problem it is
found that the prescribed excitation at X = 0 produces two effectz: a
quasi-static boundary layer and a propagating pulse (not including

the propagation of the average excitation). We have anticipated this
result by writing the prescribed excitation in two parts: F(Y,T) is a
slowly varying function. of T responsible for the quasi-static boundary
layer near X = 0, and A(Y,T) represents a sudden excitation. It is
assumed that A(Y,T) is of limited duration vanishing outside an interval
[O,Toj say. The details of the assumed smocothness of the functions
P(X,T), F(Y,T) and A(Y,T) will te discussed when they become important

ir later calculations. For the present we assume that given data are



such that a solution for ¢ does exist which gives rise to continuous
velocicies on the closure of R for each T>0.

The rectangle R is thin if the parameter ¢ = %'is small
in comparison with unity. In order to exhibit the role of ¢ explicitly
we introduce new independent variables x,y,t defined by the change of

scale:

cT

Y
3 y='ﬂ' ) t=r

(2.3)

Nondimensional dependent variables ¢, u v are also introduced by the

following definitions:

N 3

p(xsy,t3e,8) = 170 (x,hy, ) »
1. %

ulx,y,tie,6) = ¢ Ulex,hy, 7 t) ’ (2.4)
1 .o

v{x,y,t;e,5) = K‘V(zx,ny, E‘t) .

The parameter ¢, small compared to unity, is defined by the relation
cT

§ = —zg » Where To is the length of time for which the given excitation
at x = 0 has a large variation (the time derivatives of the prescribed
excitation are not 0(l) in comparison with e for 0 < T < T ).

We are interested in the particular case where the applied

excitations depend on ¢ in such a way that the limit problem as ¢ > 0

will produce a displacement in the x direction, u, which is 0(1).

Accordingly we introduce new functions p(l), f(o) and a(o) through the
definitions:
1 1 2
cpPan =frax, Lo :
(0) R e
f (Y'nt) = h ‘-(h_}r’ c t) ] (2.5)

294, 5 - Ly, ko ,
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More general applied excitations, say

2

%PCQX, ;’t) = p(x,t;e) = ep(l)(x,t) + azp(z)(x,t) oo,

require more cumbersome calculations with no fundamental change of method
and will not be considered here.

Using this new notation the problem for ¢ may be written
in the following final form:

¢,yy + 62(¢’xx - ¢’tt) =0 ,0<x,y<1,0<t<e>.204)
RGO

0 R -7 -
/[ (2.7a)

¢,y(x,0,t;s,6)

s (x,1,t5¢e,6
¢ y(& €,8)

1_(0 1 (0 t
¢, (0,y,t3e,8) = ;f( )(y,t) + E'a( )(y, Y
s, v1sy,t5e,8) = 0 s O<y<l, O<t<e,
(2.7b)
¢(X:Y:O ) =0,
. 0<=x, y <1 .
¢)t(x’YSO) =0 ’ (2.7(:)

Once the potential ¢ is known, the velocity components follow from the

relations:
u = E¢’X ’ v o= ¢, . (2.8)

This problem may be solved exactly by elementary means.
However, since we are oﬁly interestad in the case where ¢ and ¢ are
small, we shall attempt.to obtain an approximate solution for ¢, as an
asymptotic expansion in ¢ and §, directly from the differential equation,
boundary conditions and initial conditions without first finding the

exact solution. While this scheme is of interest for its own sake, it
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also provides a pilot problem to suggest procedures in more complicated
cases where an exact solution may be difficult or impossible to obtain.
Such is the case, for example, in the elasticity problem described in
chapter II,

3. Formal Inner Approximation.

The most obvious first approach to the problem (2.6), (2.7)
is to investigéte approximations having the form of power series in ¢.
We wish to find an approximation for the velocity u which is 0(1) in the
limiting case e > 0. Consequently we assume a formal expansion
io)(x,y,t;é) + euil)(x

ui(x,y,t;s,é) =u 5¥5E38) + .0 . (3.1)

The subscript "i" has been added as an abbreviation for "inner' as a
reminder that we expect this expansion to only partially fulfill the
requirements of the problem. -We see from equation (2.8) that the

expansions for ¢i and vy associated with (3.1) are:

rbi(x,y,t;s,ﬁ) = l;' ¢i("l)(x,y,t;<5> + ¢i(0)(x,y,t;6) + ... (3.2)
vi(x,y,t;e,é) = %V£_l)(x,y,t;6) + vi(o)(x,y,t;d) + ... (3.3)

We now substitute the expansion (3.2) into the problem (2.6),
(2.7) and consider the equations associated with each particular power

of ¢ as individual problems. We first obtain the following equation for

oD

.

(-1)

¢ 1,9y ’ 0<x , y<1 , 0<t<= (34)

Solutions of this equation certainly cannot, in general, fulfill given

conditions at x = 0,1. However, the boundary conditiocus arising from
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(2.7a) merely require:

f
o
A

¢i 1)(x 0,t368)
0<x< 1 0< t < =

IEZ s 3 (3.5)

by (6a1,50)

)
o

These may be fulfilled by a solution of (3.4) which is a function of

x,t only. We use the notation:

oD x 7D

sYst368) = x,t38) . (3.6)

The displacements derived from this potential are:

S v 2o : (3.7)

Yy ¢i;< ’ i

The equations (3.4) and (3.5)a}onetdo not constitute a well set problem

— ~ ,—
for ¢§ 1). Having determined the y-dependence of ¢£ 1), it is not yet
obvious what further conditions to impose on Eﬁ-l) . Equations, similar
to (3.4) and (3.5), determine the y~dependence of ¢§0), ¢§l) s see 5, and
also supply more information about ¢( l)
(0) . . . . (-1) ,
¢ satisfies equations identical to those for 95 in
(3.4) and (3.5). Therefeore we conclude that:
0
( )(K,y,t (S)=¢( )(Xté) H (3.8)
where at present $§0) is an arbitrary function. The associatsd
displacements are:
1) _ —(©) 0) _ 1 s
u, o= ¢i,x . v, = 0 . (3.9)
In the first order system arising from (2.7) and (2.8a)
1) -1) , (1) e
there is some interaction between b $i ;3 in fact ¢ satisfies

the following differential equation and boundary conditions:
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4,5(-1) + ¢(]) - ¢("l) =0, 0 <x,y<1l,0<t<e, {3.10)

' YY i,=xx i, tt
31 (x,0,£58) = pD) (x,t)
i,y .
0<x<1l,0<tc<o, (3.11)
=0

o1 (x,1,¢;6)
i,y
Equation (3.10) and (3.11) can be used to determine the y-dependence of

¢(1) and to obtain a condition on ¢F“l) as follows:
i

¢SM&%HM=(-%+y-fbaN&U+EfH&mMJ (3.12)

The term - %p(l)(x,t) is not immediately suggested by equations (3.10)

and (3.11), but is added to the arbitrary function-ggl)(x,t) to arrange
1 o

that_J ¢(1)(x,y,t;6)dy ='$(1)(x,t;5) . In writing equation (3.12) we

have used the condition:

-?6("1) - 6-("1) = p(l) N (3-13)
i,xx i,tt ,
which arises from the fulfillment of the boundary conditions for ¢Fl) at
: i

y = 0. Condition (3.13) still does not fully determine ¢§"1). Boundary
conditions at x = 0,1 and initial conditions at t = 0 are required. From
the prescribed initial quiescence condition it is natural to require:

(-1 —{-1)
b1  (x,y,038) = 0, $i,t (x%,y,0:;8) = O R {3.14)

These conditions may be derived more rationally from investigations of
an initial approximatién where they are reguirements to ensure bounded-
ness of the approximation. Since we are not concerned with non zerc
initial values and the resulting vibratory type of initial approximation
we are obliged to assume conditions (3.14). The question of boundary

(1) (1)

conditions at x = 0,1 will be considered later. Displacements 4 ,vi
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are associated with the expression for ¢(l) obtained in (3.12):
i

1 2 —(1
(-3+vy- l;;‘)p,x)(X,t) + ¢§,i(x,t;6) 5

]

uil)(x,y,t;é)
(3.15)

1
(l-y)p( )(x,t) .

vil)(x,y,t;é)
Proceeding through successive orders we can evaluate ¢§'12 ¢§0),¢§l),
in terms of the prescribed boundary excitation p(l)(x,t) and a sequence
of functions of x,t only, $§"12 $§0), Eil), <+« 3 satisfying different~
ial equations similar to (3.13).

Rather than carry out this program in detail, we,shail
employ a different procedure to obtain ths higher order terms more
quickly. The alternate procédure is a symbolic one similar to that used
by Knowles [17] for a second order elliptic boundary value problem.
Introducing the operator L2 = %EE-— %%3 we formally comsider the
equation (2.6) as an ordinary differential equation:

¢ + e212¢ = 0 , (3.16)

s¥Y ‘
with the boundary conditions:
=@ y=0

4 (3.17)
=0 s y =

=

¢
2y
This- has the 'sywbolic' scluticm:

cos(1-v)el. (1)
¢ = LsinsL P - (3-18)

The formal expansion for ¢ in powers of ¢ is obtained by using the
Taylor series expansion (cf. Abramowitz and Stegun [1], p.804):

cos (1- = 2n .
._O_S_L_.._X_}..Z_ = z B (_y_) 2 (_1‘}11 ZZn—Z

2 sin z 20t
ni
p=o 2n 2

where Bk(r) is the Bernoulli polynomial of degrese k. Substitutiang
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z = (2 . . .
72 = 84(3; - _329 we obtain the exian51?n for ¢:
v ) B, & I (DTG - St W) (3.19)
nso 0
We interpret the term (32 e )" (1)(x,c) in the following way:
3xZ
<“——2— - ALz ) P( )(Xst) = Z el (p(l l) (X,t) ’
X ot e
—(=1 .
where ¢( ) satisfies the differential equation ¢(xi> (ti)— p(l) ,
and E(J)satisfies the differential equation (ii ¢(iz =0, j> 0,

Then we can rewrite the expansion (3.19):

o«

- 2
Z B2 (}é_)%___x_:_(_,l>n€2n—l(%%_2_ - _z_z_z)'l-l 1) - Z gh= l¢(n—l) . (3.20)
- 2n 2 2nl X

n=o

The validity of expansion (3.20) of course depends on the

di fferentiability properties of p(l) 1)

. For example, if p (x,t) is a
polynomial in x,t, expansion (3.20) becomes a finite sum. 1t is easily
verified that the expansion (3.20) formally satisfies the differential
equation (2.6) and the prescribed boundary conditions at y = 0,1 (2.7a).
Also the first few cerms of expansion (3.20) agree with the terms of
the inner approximation obtained in equations (3.6), (3.8) and (3.12)
(with the subscript "i'" added in (3.20)). With further calculations we
could show this agreement to be valid in general.

Often all that is required for the inner approximation is
the first few terms of (3.205. We assume that the derivatives
"

(o

9x it
are 0(l) compared to €., We write:

= )np(l) for 1 < n <My all exist for 0 < x < 1, 0 < t <~ and

¢ o zl 68 2 (_l)n€2n—l(__2)_;_ )n—l (1) (x,£)+ z.l_ eﬂ—l¢(rx—l)
n=o 2 2" 2nt % =0 (3 21)
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The rigorous interpretation of the relationship connoted by (3.21) will
be investigated later.

Let us reexamine equation (3.17), which may be written in the
form:

@ sin e L)$ = (cos(-y)el)p'L) (x,t) (3.22)
This may be considered as an inhomogeneous, infinite order, partial
differential equation for ¢. Then expansion (3.20) is a particular
integral of this equation to which we must add a complementary function
satisfying the equation (L sin ¢L) ¢ = 0 and fulfilling the additional
constraint that ¢3y= 0 at vy = 0,1. Together, the partiéular integral
and complementary function must satisfy initial conditions and boundary

conditions at x - $,1. Since z sin z has the infinite product expansion:
zsinz = 1 (22 - n272) »

we may formally assert thar the complementary function satisfies the
differential equation:
I [e2G> - $7) - 2?12l = 0 .
ax

n=0
The significance of this equation in relation to the boundary layer and
wave front approximations will become clear in subsequent sections. The
inner approximation ¢, written in (3.21), is an approximation to a
particular integral of (3.22) and it is found that the boundary layer
and wvave front approximaticns together form an approximation to the
complementary function of (3.22;.

To assess ¢, as an approximate solution we substitute it into

the equations (2.6), (2.7). We find that by satisfies the specified
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conditions at y = 0,1 exactly and satisfies the differential equaticn

2+l

with an error which is 0(¢ }. However, in general ¢i is a poor

approximation to the boundary conditions at x = 0,1.

The smoothness conditions assumed on p(l)(x,t) are that the
derivatives (gzé-msgé-) p forl < n_i Ml all exist and are 0(1) for
0 <x<1, 0 <t < », This means that all the derivatives of order
M,-1 are zero at t = 0. Thus the only contributio; to the initial
values ¢i(x,y,0;s,6) and ¢i t(x,y,O;e,S) arises from the fumctions ;ﬁn)
We impose the initial condigions (similar to conditions (3.14)):

™M @,050 -0, I{i‘:z(x,o;a) -0 . (3.23)

—{(n)

We cannot fully determine ¢4 yet as we do not know what
conditions to prescribe at x = 0,1. This difficulty will be resolved

in the next section.

4, Formal Boundary Laver Approximation.

In the previous section we observed that in general the
inner approximation ¢i doas not satisfy the prescribed boundary conditf-
ions at x =0,1. To explore a possible boundary layer correction near

x = 0 we introduce a bouwdary layer variable ¢ defined by the scaling:

b

g = % , (4.1)
E
and we write:
9 {x,7,t5¢,8) = ¢, (x,y,t5€,8) + ¢, (L,y,t;5¢,8) , (4.2)
where ¢2 represents a tentative boundary layer correction near x = 0.
Substituting this expression for ¢ into the original diffefential equa-

tion, and using the property of ¢; written in equation (3.23), we obtain
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the following equation for ¢2:

+ ~ g2 =
M +1
where from equation (3.23) we can show that ¢ is 0(e ) . Since we

are only interested here in the boundarytlayer near x = 0 and since we
.8hall require these corrections to tend to zero as ¢ increases, it is
natural to replace the domain 0 < ¢ < %‘, 0<y<1,0<t<=opfthe
differential equation (4.3) by the region 0 < g < », 0 <y <1, 0 <t <=
We also require that ¢i + ¢2 fulfills the boundary conditions

except at x = 1, This places the following boundary conditions on ¢2:

¢l,y(€,03t;536) =0 2
0<g<ewo, 0<t <=,
4.4
0y 4 (6sL,E58,8) = 0 , (h.42)
(0 0
6, ©,y,t56,8) = £ 5,00 + a@ (v, e/6)-e0, _(0,7,85¢,6).
2,c 1,X
(4.4b)
In addition we impose a decay condition:
¢ (¢,y,t;e,8) - 0 as L+ = {4.4¢)
258
We assume an expansion for ¢l:
0 1 .
¢, (c,y,t5e,8) = ¢é ) (c,y.t56) + €¢§ >(f;,y,t;<5) + ... (4.5)
so that, following standard proredure, ¢§0) satisfies the problem belcw:

(0 (0

¢2 €€+ ¢2 vy = () » 0 < ¢ < w, 0 < y < l, 0 <lt < o (4,63)
E] -]

0
¢§ )(C,O,t;ﬁ) =0,

(6§ 0<g<w, 0<t<w»  {4.6b)
80 (2,185 = 0,

sy
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~ ’(o, y.t58) = £ g, + 2@ (g,e00) - 5O 1’(0 £16)

( ) (4.6c)
0 S > w

bg,c > O as ¢ (4.6d)

Bere it should be remembered that 6{_1)(x,t;6) is still not

i

determined. Without actually solving the system (4.6) we can derive

a necessary condition for the existence of a solution with the right pro-

perties. This-condition provides a boundary condition for ¢(— ) at x =0.

We integrate the differential equation (4.6a) over its domain:

1

= (0) (0)
0= JJ(Ql,YY + ¢ 2 Cg)dédy >
00

0
é )(O;Y,t 38)dy + ¢é Z(w,y,t;ﬁ)dy

s

+ ¢5§ >(c,l t;8)de - ¢,§?;(c,0,t;6)dg .

08 o~———~k*

OQ—=—B8 O0“——p

Substituting from the boundary conditiors (4.6b), (4.6c¢) and the decay

condition (4.6d) we obtain the following conditiom:

1
jcf(O)cy,t) +a@ e - TEP 0,500y =0 .
(o]
That is: 1
Eﬁ"i’co,t;s) - J(f‘o)cy,t> + 2@ (y,er6))dy C Gl
[e]

. . . . - —(~1
This equation provides us with a boundary condition for ¢§ )(x,t;é) at
X = 0, A similar condition at x = 1 is derived by consideration of the

boundary layer there.
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We can obtain a solution for ¢§O) having the form:
) _ v ,.{0) (0), e B¢
2, = ;Zl(fn +a) ) oo cos any > (4.8)
where 1
0) .: (0
aé )Cg) = a( )(y,t/é) cos nry dy N
)
and 1
féo)(t) = f<0)(y,t) cos ngy dy .
J
0

Note that the condition (4.7) ensures that there is no term in the

series solution (4.8) which is independent of y and hence non decaying as

(0)

¢ » =, The variable t only occurs in the solution ¢L

0)
%

as a parameter

and hence the behavior of ¢

() (0)

with respect to t will be similar to the

behavior of £ and a with respect to €.

1

( P , .
At the next order we find that ¢i satisfies equations which

are the same as (4.6a), (4.6b) and (4.6d). However at ¢ = 0 we now have
(1) e o =(1) .
cbﬂ’g(o,}’,t,ﬁ) = @i’X(O,t,C‘i) .

Proceeding as above we obtain the condition:

—(1
¢£’i(0,t;6) =0 (4.9)
and the solution for ¢§1>:
¢él) =0 . (4.10)
At the s d ord . . {th 0) (2)
t the second order some interaction wit ¢l appears. ¢g
is a solution of the following problem:
T e I N R A

¢ + ¢ -9
g, 2,yy ~ *a,tt
°6 77 (4.11a)
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(2)
(Pﬂ,:y

il
(@]

(¢,0,t36)

0 <¢g<w 0<t < , (4.11b)

i}
o

2y, .
¢£ ;(c,l,t;ﬁ)
’

2 1 v2 1 1 X
60,60 = ¢+ y - FnDo,0-60 0,650
y s X i,%X .
(4.11c)
¢(2) -> -
N as ‘ (4.11d)
Writing the differential equation (4.1la) assumes that ¢éozt is 0(1).

)

Therefore we cannot include the function a

(0) (@

approximation; a is 0(l) whereas a e
3

in the boundary layer
is O\ 5). This is why the

prescribed boundary condition at x = 0 is written as the sum of f(o)(y,t)

and a(o)(y,t/é) . It is found that a boundary layer approximation near
© (2,)
x = 0 which includes terms .o ( can only accomodate
LR @
m_. (0
a function f( )(y,t) for wnich the derivatives S , 0 <m 5_2%2, exist
ot
and are 0(1) in comparison with ¢, for 0 <y <1 and 0 < t < o,
0},
We rewrite the solution for ¢ :
-7
¢§O)(g,y,t) z f(O)(t) cos nmy (4.12)

n_

From the equatioas (4.31) we obtain the condition:

1
6§li(0,t;6) = —J(— %-+ y - %i ‘l)(o t)dy = 0 (4.13)
o
and the solution for ¢( ).
nng
02 g,y = 7 (flgoi):t(l-l-nrg) - 4p( )(0,£)) 5 cos ally .
n=1

(4.14)
More complicated higher order boundary layer corrections may be found by

proceeding systematically in this manner. The following condition is

obtained:



oM 0,e36) =0, n20 (4.15)

providing a boundary condition at x = 0 for successive orders ¢§n) .

22 n @)
¢, = 1 €9, E ,y,1) : (4.16)

n=0
A similar correction say ¢2,, where
2M
¢£' = Z

3 e%é’,‘) e , (4.17)
n=0

£

can be developed to approximate the solution near the end x = 1. This
process will also determine boundary conditions for 3(,'1), -djio),. Ve
$£2Mi) at x = 1, These together with boundary conditions (4.14), (4.13),
(4.9) and (4.7), plus the initial conditions (3.25) determine solutions
of the differential equations for E:g.-l)’ 74)1:0) ,~--,$§‘2M1) . In fact
$§0)E 5}1)5 ess = $§2Ml) = 0 . In the next section the initial walues
of boundary layer approximations will be signi ficant. With this
knowledge we make a further assumption that the prescribed data at x = 0
may be divided into f(o)(y,t) and a(o)(y,tlé) so that a(o)(y,tls)
includes all the initial effects. Thus éfifgl(y,O) =0, 0 <m<2M and
this ensures that the boundary layer appiiximations contribute nothing
to the initial walues at the orders considéred.

We now consider the convergence of the series represent-
ation of the solutions for ¢go), ¢§2) in equations (4.12), (4.14). From
these two orders it 1s obvious that progressively higher and higher

powers of -L are introduced into the Fourier coefficients of the higher

nm

order boundary layer corrections, say ¢ék). This means that we need not
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prescribe very restrictive smoothaess conditions on f(0>(y,t) for

0 <y <1, We assume that f(o)(y,t) has a continuous y-derivative for

0 <y=<land 0 <t <=, We assume that the series
o .24, (0)
L aTT2E ()
2 Saa . cos nwy
2M
n=1 3t 7
2M, 1.2M,
converges uniformly to the sum 9 £ (v.t)_ 9 £ (v,t) dy .
t JO oC

It should be emphasized that in this section we have
obtained boundary conditions for ¢§n) and demonstrated the inability of
the boundary layer to handle prescribed data like a(0>(y,t/6) without

finding the boundary layer approximation explicitly.

5. Wave Front Approximation.

The composite approximation ¢i + ¢£ + ¢£, satisfies the
differential equation (2.6), the boundary conditions (2.7a), the initial
conditions (2.7¢c) and part of the boundary conditions (2.7b), all with

2Ml

an error which is 0{(e ). The remaining part of the prescribed bound-
ary conditions at x = 0 is the rapidly varying portion aco)(y,t/ﬁ);
this is expected to produce a pulse propagating along the rectangle. It
is reasonable to invesiigate scalings of ¢ and x which make the wawve

2 2
operator QQ__ - gn_) the most important part of the equation (2.6).

o2 2 :

Ix at
This procedure produces approximations to the wave front behavior which

are not uniformly valid. To obtain an approximation having widexr applic-

ation we introduce the following variables suggested by the boundary

i

condition at x 0 and the differeantial equation:

¢ = L=X no= =S (o) (5.1)

¢ el
We write an approximation for ¢:
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. , S ) 1-x ‘
Pp(x,y,t;e,0) = wi(x,y,t;a,u>+<al('€3y,-t;s)*l‘w2'G‘"; »Yst3e) e (yy,E5e,6)
(5.2)

where ¢f represants the pulse approximation. Substituting this form
for ¢ into the original system (2.7) and (2.8) we find that G¢ satisfies

the following problem:

?'Ml
- 4 = 0 5.3
ey T een T 0T ’ (5.32)
2
for %g E<n<o, 0<y<l, 0<g <oy
9. (n,O,tZ;E:@) =0 ’
£y (5.3b)
¢f’y(ﬂ :l’E;E’S) =0 »
2
for %y E<n<w, 0<Eg<w;
M
52 __3 (@ 2
b e T eTbg T (,8) 006 ) » (5.3¢)

o

n = g;-g, 0 <y<1l, 0<¢ <=, Weknow that no disturbance can travel
faster than the acoustic velocity; thus as the fluild is intially at Trest
¢z is zero for ¢ < 0. Also we require that P be continuous at § = 0.
That is:

¢:(n,y,03e,8) =0 » 0<n<w= » 02y <1,
(5.4)
We do not attempt to enforce a boundary condition at x = 1. The effect

of the solution we shall obtain for ¢f at the end x = 1 will be used as
a boundary condition for another wave front approximation.

The most important aspect of the development that follows is
our assﬁmption that the ratio g; is small., Then at the lowest order we
can approximate the domain described in equation (5.3a) by the region

0<y=<1l,0<¢<w, 0<n <o And we apply the boundary condition

(5.3¢) at ¢ = 0,
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This places a further restriction on the prescribed end

conditions. The problem for ¢f as written in (5.3) and (5.4) does not

depend on 6 and ¢ separately but only their ratio. We introduce a new

parameter v = g-and we shall consider only the case where ,, is small.

Using this new parameter vy, we can write the problem for 95

as follows:
2M2

¢f,YY -‘4¢fsc & = 0G ) ?

for v2f < <2, 0<cy<1l,0<g <= ;

¢f,y(5:0"z;v) 0 s

|
(@]
")

¢f:y(n ’l)g ;\’) =

for v2g < n < o, 0 < g < =}

¥,

¢
¢f, - vzcbfm -~ a( )(Y,E) +08e 7) s
forn =v2%, 0< y< 1, 0<E <3
¢f(n sY:O;\)) =,O s

for v2f <n<e ,0<y< 1,

We now assume an expansion for e of the form:

2
¢f(n3YsE;\)) =v¢f(l)(n,y};) +\)2¢é )(n,y,g) + ...

Following the usual procedure we can establish that ¢§1)G],y,g)

satifies the equations below:

1) 1)
¢é,i’y-4¢é,én=0<n<m’ 0<y<1,0<£<w,
¢ (1) n 0 -
£,y0150:8) =0
(1) o 0<nn<w, 0 < gy
P y(ﬂ,l,s) =0
3

(5.5a)

(5.5b)

(5.5c)

(5.5d)

(5.6)
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-a ©) (v,

6 0 &) ., 0<y<l,0<g <=

£ ,YsE) =

¢f(1)(n,y,0) =0 » 0 <n<g=, 0<yc< 1.

Note that we have replaced the boundary condition at n = v2f by one

at n = 0. This is a procedﬁre similar to the replacement of the domain
O<y<l1l,0<¢gc«< %‘by the semi infinite strip 0 < y < 1, 0 < § < = din
the analysis of the boundary layer in section 4. However in this case
errors produced by this approximation of the domain are not negligible

at higher orders.

(1)
£

We can now solve the above system for ¢ obtaining the

sclution in the form:

@«

¢§l) = - z jaéo)(z)JO(nﬂVn(E—z) )Jdz . cos oy (5.7)
n=lo
where 1
aéo)(g) =_Ja(0)(y,£) ¢os nry dy ,
o

and Jo is the Bessel function of order zero. Displacements corresponding

to this potential are:

g
Ja§0)(2) _BEKEL.Jl(nﬁ/n(g-z) )dz.cosuny.

(0) (0) v
ul = —at (y,E) + )
£ n=1 o 2Vg-z (5.8)

©)

(1) ?
Ve T n=lJan
o

(z)Jo(ann(E-Z) )éz.nm sin nrwy.

Before considering the convergence of the glove expansions and behavior
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far from the wave front, of the functions they represent we examine the

procedure required to obtain higher order terms ¢§ ), ¢§3),... . As the
system (5.5) is even in v, ¢§ ) does not occur. ¢§ ) satisfies the
following equations
3 3
3
¢;é )(n':O:E) =0,
0<n<e 0<E <
(3) - 5.9
¢g y(o1,8) =0, (.9)
3 . 1 0 1
ber @0 = Lim @ om0 0280020 025,00,
V>0
0<E<wo, 0<yc<l;
(3)(n,y 0) = d<n<e=, 0<yc<l.
(3)

The condition on ¢ = ( requires further explamation

£,
If the procedure we are following is to be of use, the approximations

(1) (3)

v¢f ’ v3¢ . must be successively of lower and lower order uniformly

in n ,y, and £. Also at x = 0 ( n = v2g)

S 2Tk—
E(Zk l)-‘-{a(o)( ) - (¢(1)+v ¢é3) ...+v2k¢ff k l))
+v (¢ ¢f,nP...+v ¢f,ﬂ )
must be uniformly of 0(v2k+2).We examine E( )—{ a(o)( JE)- ¢(l} E,V,£)
+w2¢él)(v2,y,§ﬂ in detail. We find the result:
W ._ 5 i ()
V- )
E = {(z )~—~—~*—-J (v (E-z) )dz.cos nuy.
Z] 1’1 2;/{(9.-2) _ (5 11)
o

Using the following inequality:
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|3, Gy V2D )| i_f!"_ﬁ.zé_g:z‘_ ,

W),

we can estimate the magnitude of E

B z 22 T 22 (2)] 4z :

o

We have prescribed that a(o)(y,g) = 0 for g > 1. Therefore

]E(l)l vz ) méq? z[aio)(z)]dz . (5.12)

O

At present we assume that this sum is comvergent and then we conclude

|E(1)| is uniformly 0(u2).

Writing the Bessel function J, in equation (5.11) in power

1

series form we find that

2 o
E(l) - %__ § n?n2 J z aéo)(z)dz . cos mny + O(vH) .
n=1

(3)

These results then provide a boundary condition for ¢ . @t =v?g¢ which

we approximate by the following condition at n = 0.
z

Q

3

We can then obtain a solution for b

¢(3) = - Z BE.(Z a(O)(d)/ £ 3 (nq/n(g—z )dz.cos nry.
£ L 2 (5.13)

ol—._

Proceeding to higher orders we can obtain a solution
o & k
2k+ .
¢é“k'l) Z (EL-J A ( )( ) (i——) J (nﬂ/n(g -z)dz.cos nny.

"L, !
) o (5.14)
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We also obtain an estimate for the error E(2k+1).
. 1,
+ k+1f 2% 0
gD} 22 1 GO j Z1aP@laz (515
3 o

which is unifornly O(vZk) provided the series above converges. We now
take up the question of the convergence of the series in the error
estimates (5.12) and (5.15) and in the solutions (5.7), (5.13), (5.14).

We assume that a(O)(y,g)—fa(O)(y,g)dy has continuous k+1 th y derivative
°
and piecewise continuous k+2 th y derivative for 0 < y < 1 and 0 < & < 1,

)k+1| (D>(€)|

These conditions ensure the convergence of Z (nm

k+1 (0)( ) cos nny (k 1) (O)( £)

sin nry aykﬂl

uniformly for 0 < y < 1, for all 0 < § < 1. We further assume that the

Also Z (ar)
n=1

converges to

K"r-lla(o)(&')l is uniform for 0 < ¢ 5_1. This 1is

convergence of z (nr)
D=1i
true, for example,'lr a(o)(g, ) = (0)(5)3(0)(y) The above conditions

+
are sufficient to ensure that the errors E< ) s E(?’),...,E(2k b are

uniformly 0(v?), 0(v“),...,0(v2k+2)

(l), ¢(3),...,¢(2k+l) are all uniformly convergent.

respectively. Also the series

solutions for ¢

(0)

From equation (5.15) we can see that the condition on a

a(o)(y,E) =0 £ > 1,

is unnecessarily strong. The condition,

a(o)(y,g) =0 kiz) for large £, is sufficient.
g

(2k+1)

We are interested in tha behavior of ¢ far behind the

wavefront. That is for large £ (but for £ < 570. For large ¢

ST}

Zk 2k+1 2k
)

1
; Zq! 0) (2 ><~——) I, (am/n (E=z)dz.cos nry.
[¢]
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- 4
Using the assumed properties of a(o)(y,z) and the fact that §;5-§_§-< %g
k .
we can see that although the apprcximate sclution Z ¢é23‘1) produces
j=o

2k . .
errors at x = 0 uniformly at O(v™) the separate orders are not uniformly

of O(vzj) for all £,n,y. We can demonstrate this fact by substituting

£ = Egz-and n = gz{t+x) in part of ¢é2k+l).
k k
v2k¢§k+l - ok E (%EQk %T aéo)(z)(Eifiéé)z Jk(nvvn(i—z) dz
n=1 (5.16)

X cOs nny.

2k (2k+1)
L

We can readily verify that v is uniformly of 0(vk) and decays

like g'l/4 far from the wave front.

The assumption that Z{O)(y,g) = a(o>(y,€)-I a(o)(y,E)dy
possesses k+l ceontinucus derivativee on the open interval 0 < y < 1 is
not a very restrictive practical condition. However the assumption that
this condition also holds at the end points y = 0, y = 1, is rather
severe. As a result we can only prescribe functions E(o)(y,i) fer which
the odd y derivatives of order less than or equal to k+l are all zero at
y=0and y=1. If E{O)(y,g) does not satisfy these conditions we have
to consider 'corner approximations'. We have been unable to develop
an asymptotic procedure for examining these "corner approximations”. The
solution we have developed for ¢f was obtained without using any boundary
condition at the end x = 1, The solution ¢f first effects the end x = 1
at time t = 1, We use the values of ¢f at x = 1 and t > 1 as new data
for boundary layer approximations and wave froﬁt approximations similar
to these of section 4 and this section. This proccess must be repeated

after time t > 2 at the end x = 0, vime t > & at the end x = 1 and so on.
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In practice we will probably only be interested in the approximate
solution of the problem up until the first reflection.

6. Summary of Results.

In this section we summarize the results of earlier sections.
We have developed an approximate solution of the problem (2.6), (2.7) of
~ the form:

6 (x,7,856,8) = ¢, (,y,t56,8) + 6, oy tie) +

1-% § t-x. 0
o1 CTmystyed o, (Cx(etx),y, 753 )
(6.1)
The usefulness of this expression depends on the prescribed properties
. . 1 0 o . D om
of the excitations p( ), f( ) and a(o). The inner solution ¢i satisfies

the boundary conditions at y = 0 and vy = 1 (2.7a) exactly. Also b5
describes the propagation of the y-average of the excitation prescribed
at the end x = 0 (2.7b) exactly. However, the accuracy with which ¢i
satisfies the differential equation (2.6) and the initial conditions
depends respectively on the smoothness and initial growth of the
excitation p(1>(x,t) (the smoother p<l), the more accurate ¢i).

The functions ¢Q and ¢Z' describe the quasi-static boundary layer effects
at the ends x = 0 and x = 1, respectvively, arising from the slowly
varying excitations prescribed at the ends (except for the y-azverage of
the excitations whose propagation is described by the inmer solution ¢i).
The function ¢f describes the propagation effects stimulated by the
rapidly varying part of the prescribed excitation at the end x = Q.

The development of the terms ¢R and Qf and the order of accuracy with
which they satisfy the differential equation (2.6) and the end conditipn

(2.7b) depends on the prescribed excitation at x = 0. This excitation is



32

represented as the sum of two functions f(o)(y,t)+a(o)(y,t/6). Here
f(o)(y,t) represents the slowly varying part of the prescribed execitation

(0)

and the development and accuracy of g depends on the smoothness of f

©)

(the smocther £ 7, the more accurate ¢, [cf. section 4]). The function

a<0)(y,t/6) represents the rapidly varying part of the prescribed

0

excitation. The development of ¢f depends on a  ° vanishing for t > §,
where g'is small (that is the sudden part of the excitation must be
over in a time shorter than that taken for an acoustic wave to travel
across the rectangle). The accuracy of e also depends on the smooth-

@) )

ness of a with respect to y (the smoother a is with respect to y
the more accurate is ¢f [cf. section 5]).
The division of the prescribed data at x = 0 into functions

0. (G : . _ .
£ (y,t) and a (y,t/8) is a rather arbitrary process. There is no
very precise wmathematical way to define the admissible class of
excitations at x = 0. From practical considerations we know that the
impulsive excitations considered here are described by functions of time
which vary rapidly for a short time and then ocillate more slowly back to
some final static value. Given the graph of such an excitation (say
obtained from some measuring device) we must decide on a time scale for
the rapid excitation, say To° We cmoothly join the section of the
prescribed excitation for t > To to 2 zero value at the origin t = 0,

- . . ) (0 .
This determines our functions a  ’(y,t/¢) and £ ' (y,t). The method
developed is only applicable if the time scale To leads to a parametex

§ (rapidity of excitation) which is small compared with ¢ (thinness).

. . § . . e .
Ever if the coundition E—< 1 is satisfied, the other smoothness conditicns
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required of th.c prescribed excitations, especially initial smoothness of
the function pcl)(x,t) and smoothness of a(o)(y,t/é) near y = 0,1
limit tae generaiity of the procedure. However in practice the leading
term in cach approximation may be all that is required, and these can be
obtained for prescribed data of a reasonably general nature.

We have established that the expression for ¢ writtem in
(6.1) satisfies the conditioms of the problem (2.6), (2.7) accurately.
If we write y = ¢exact -4 , then we have shown that y satisfies a

system similar to (2.6), (2.7). This is:

¥y + EZ(W’Xx - ) = QMA(X:Y:t;E’é) ? (6.2)

vy w’tt

for 0 < x< 1, 0<y<1l, 0<t < o

n

U,y(X,O,t;E,é) 0, w,y(X,l,t;E,ﬁ) =0 3 (6.3a)

for 0 < x <1, 0 <t <o

M
v, (0,7,t3e,8) = ¢ B(x,y,t;e,8) ,

" (6.3b)
w;x(1:Yst;€:6) = SLC(X,y,t;E,S) >
for 0 <y <1, 0<t <o
¥ (x,y,05e,6) =0 » vy, (%,5,05€,8) = 0 | (6.3c)

2y 2M, 2y

for 0 < x <1, 0 <y <1l. Here eh is the largest of ¢ , € s V

and A, B, C are functions of x,y,t determined from the expressions for

1 1 ]
;0 ¢£, ¢£, and ¢f. It is found that f Ady = j B dy = j Cdy =0. 1In
o o o

order that ¢ should be considered a good approximation to the exact
solution exact the solution of the system (6.2), (6.3) for y should be

O@ML
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This result can be obtained using elementary methods to sclve (5.2) ,

(6.3) exactly; or better, by using the results obtained by Shield [36].
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II. A1 APPROXIMATE SOLUTION oF THE DYNAMIC EQUATIONS OF ELASTTCITY IN A

THIN REGION.

1. Introduction.

In this chapter an approximate solution is constructed for a
boundary-initial value problem in the linear two-dimensional plane strain
- theory of elasticity. We consider an initially quiescent elastic slab
suddenly loaded on its boundaries, and then try to determine the subse-
quent motion of the whole slab. For simplicity, it 1is assumed that the
prescribed loads lead to a state of dynamic plane strain in the slab.
This means the motion is two-dimensional, and we accordingly speak of an
"elastic rectangle' to conncte a typical cross section of the actual
three-dimensional region. Furthermore in this thesis we are interested
in thin plates and therefore we consider an elastic rectangle whose
thickness is small compared wifh its‘length. |

In.a dynanic problem certain characteristic time scales (for
example: a pulse duration, or a period of oscillatiqn) are introduced by
the prescribed loads. Suppose Tc is an example of such a characteristic
time. This time, Tc’ multiplied by a characteristic velocity for the
problem (say the shear speed), gives a quantity having the dimension of
length. We call this length the "loadiag length". The relative magni-
tudes of the length of the rectangle, the width of the rectangle and
various loading lengths associated with the prescribed loads, greacly
influence the nature of the solution. We do not attempt o sclve the
problem for completely general prescribed lozds. We specify din édvance,

that the stresses applied to the long siles of the rectangle are slowiy
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‘varying with a loading length of the same order of magnitude as the
length of the rectangle. We further specify that part of the loading at
the ends is similarly slowly varying. 1In addition there is a brief
initial impulse at one end which has a small loading length compared
with the length of the rectangle. This rather vague description of the
problem is made more precise with the detailed formulation in the next
section.

It is well known that two types of waves, the so-called
shear and dilatation waves, arise from a disturbance in an elastic medium.
These waves interact near a surface to produce a surface (Rayleigh) wave.
The differential equations and boundary conditions required to describe
these phenomena sre naturally more complicated than the simple wave
equation and boundary conditions of théléko;s§ic problem of éhaﬁtégb
I. However some of the features of the approximate solution obtained ia
this earlier work occur in the more complex and difficult elasticity
problem of this chapter.

It is possible to construct an inner approximation which
satisifes the specified loading conditions on the long sides of the rect-
angle and describes the propagation effects arising from a slowly varying
average normal stress at the ends in a manner exactly analogcus to that
used for the inner approximation of chapter I(or the inner approximation
for the deformation of an elastic plate c.f. Fried;ichs and Dreséler [61).
Again it is fouﬁa.that parﬁ of the slowly varying end locads, Qith certain
averages having zero values (zero average normal stress, zero average

shear stress, zevo bending moment), produce effects which are important
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near the ends and can be described by quasi-static boundary layer
approximations {c.f. Novozhilov [30]). To describe the effects generated
by the average shear stress and the bending moment applied at the ends,
a "diffusion approximation" is introduced. vThis has no analogy in the
acoustic problem or the static elasticity problem. We use the term
"diffusive" to describe the spreading of the slowly varying part of
the.average shear stress and bending moment into the interior of the
elastic rectangle. Furthermore, propagation effects péoduced by the
impulsively applied loads at the end ¢f the rectangle require the
development of three wave froant approximations associlated with dilatation
waves, shear waves and Rayieigh waves. As will become apparent in this
chapter, the struciure of these wave front approzimations iz more compli-
cated than that developed for the acoustic problem of chapter I.

Except for particular prcblems corresponding to very special

end loads, "corner approximations"

are required. These heve not been
obtained in what follows because they are connected with the unsclved
problem of a dynamically loaded elastic quarter space. Since these corner
approximations and the wave front approximation moving with the Rayleigh
wave speed are inter-related, the latter is also not completely developed.
The main difference between the methods developed in this
chapter for the elastic rectangle and those of chapter I‘developed fox
the fiuid rectangle is that in the elasticity case the slowly varying
effects and the rapidly varying effects interact through the boundary
couditions., The vapidly varying effects in the elastic rectangle cause

other effects at the boundaries which may not all be rapidly varying. In
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the acoustic case considered in chapter I it was possible to completely
separate the slowly varying and rapidly varying portions of the solution.

In spite of the deficiencies ﬁehtioned above, this work may
help to elucidate the various phenomena occuring in an elastic plate
after impulsive loading. Also it may help to show more clearly the
significance of the approximate theories - the plate wave theory and the
Euler-Bernoulli plate theory -.in relation to an exact solution of a
dynamic elastic plate problem. In this respect the present work can be
regarded as a supplement to the work of Miklowitz [23,24,25,26], Mindlin
[28,29] and others (summarized in a review article by Miklowitz [27]).

The results obtained in subsequent sections are summarized in
section 11. The reader may understand the develcpment of this work more
readily.by first reading section 11.

2, Formulation of the Problem.

The two-dimensional equations of motion for an elastic medium
may be written in terms of the three components of stress g
7 P ®%° % % Wy
and the two displacements U,V, in the X and Y directions, respectively,
in the following fornm:

O'XX,X*. GXY,Y= pU’T‘I s

(2.1)

a = pV

Y]

+a 7
XY,X YY,Y 'TT

where p is the density of the medium. The stresses are given in terms of
the displacements and the Lame constants X,u by the following consti -

tutive equations:

o = (A+2ujU, 42V,
XX ( ’4X ’Y 3
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Oyy = pU."Y+ uV,X ’ (2.2)

o
H

u,, + ()\+2u)V,Y .

X
The problem may also be considered in terms of the two potentials

¢, ¥ for which:

U= @,X +9 sy ’
(2.3)
V= @,Y T,X ’
(c.£f. Lové [22], p. 47)..
In terms of these potentials the equations of motion are:
¢ + - ¥
’m ’YY C;:z— ’TT = O H]
(2.4)
v - A =
‘P’,XX-!—‘,YY :;‘P’TT 0
where ¢y is the speed of propagation of dilatation waves, and <, speed

of propagation of shear waves. These velocities can be expressed in

terms of A, u, p:

o2 = A2 a2 o B
1 P ? 2 » '

We consider the cpen rectangle R in the X,Y plane consisting
of points for which 0 < X< &, -h < Y < h., It is required to find
functions U(X,Y,T) and V(X,Y,T) satisfyirig the differential equations:

(J\+2u)U,XX+ (>\+u)v,XY + uU, - pU =90

Yy *TT ’

Lt
1]
.
tn

g

uV,XX + (A+U)U’XY,+ (K+2u)V,YY - pV,TT = Q

for (X,Y) e R, T > §, and fulfilliang the following boundary and initial

conditions.
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GYY(X’y’T) = Pl(X,T) ]
0<X<8, 0<T<w=, (2.6a)

UYY(X,—h’T) = Pz(xst >

QXY.(X’h,T) = Ql(XaT) 3 O

0<x <42, 0<Tc<w, (2.6b)
UXY(X,—h’T) = Qz(K’T) 3

aXX(D,Y,T) = F(Y,T) + A(Y,T
-h < ¥Y<h, 0<T < «,(2.6c)
g (,f,T) =0
XX J
a_ (0,Y,T) = 6(¥,T) + B(Y,T) ,~
XY
-h < ¥Y<hy, 0<T< o,
o (,Y,T) =0 (2.64d)
XY -
U,Y,0) = 0 h
v(x,Y,n) =0, '
. > X,¥) ¢ R, (2.6e)
U’T()\rY’O) = O,
V,T(X,Y,O) = _O’ _J

Here Pl’PZ’Ql’QZ’F’G’A’B are prescribed functions., The division of the
boundary conditions at the end X = 0 intoc two parts is a notational
convenience which anticipates results developed in later sections. It is
found that the slowly varying parts of the applied stresses at X = 0,
which we denote by F and G, and the rapildly wvarying pérts of the stresses
denoted by A and B, produce quite different effects. The properties
reguired of F, G. A and B depend on the order of accuracy needed for the
approximate solution and will be discussad subsequently. At this state

we assume that the sudden part of the loading has a limited durationm,
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namely A aﬁd B are zero for T z_To. .The smoothness properties of
Pl’PZ’Ql and Q2 are also discussed in later seétions when they become
important in the construction of the approximate solution. For the
present we assume that the given data zare such that solutions for ¢
and ¥ exist which give rise to continuous displacements on the closure
~of R for each T > 0,

The rectangle R is thin if ¢ = %‘is small compared

with unity. In order to exhibit the role of ¢ more explicitly, we

introduce new independent variables x,y and t, defined by the change of
T .
Y Y 2
scale x = T P YTRot= . 2.7)

Another length scale czT0 is formed by multiplying the pulse duratiomn,

To, of the end loading by the speed of propagation of shear waves, €y

We define a parameter § measuring the sudéenness of loading by -the
c2To

equation § = -

Non-dimensional dependent variables u,v,%_ s Toos T4 ¢ and
KX Xy Yy

y are introduced by the following definitions:

i

ulx,y,t;e,8) %U(Qx,hy, ~&t) .
i C2

v(x,y,t;e,5)

i
~
o

iy
oy

«
or
~

Txx(x,y,t;sfé) =
TXY(K,Y:t3€:‘5) = Xy cz (z.8)

T yy(x,y,t;e,é) =
1 '3
¢<X:Y:t;€:5) = ET@(Q‘x,hYs E‘—' t) ,

w(x’y’t; EQ\S) = hl?z-i‘y ( Xglly,'gl“ t) .
. CZ
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We are interested in the particular case where the given
loads produce displacements u and v which are 0(1) in the limiting case
e » 0. This occurs when the loads, written in terms of scaled variables,
have the orders of magnitude displayed in equation (2.9) below. The

prescribed loads are given in terms of the new functions P§2)’p§2)’q£2)’

qéz),f(l),a(l),g(3/2) and b(3/2) when written in scaled variables. Thus:

2.(2) =1 | % 2,(2) =1 i
€ p1 (x,t) . Pl(zx,czt), £ P, (x,t) 5 PZ(Ex,czt) .
2,(2) =1 % 2,(2) =1 L X
E ql (X,t) . Ql(ﬂ'xsczt)’ £ q% (X’t) ’ Qz(xxaczt) ’ (2.9)
£ (y,0) = L ray,2t) , caW3,e/6) = L amy,2t) ,
1% C2 K C2

/253D (y,e) = Loty try , P 5,08 = LayE)
H C2 H C2

Here the superscripts on the above functions refer to the associated
power of . As 1in the acoustié problem of chapter I, we have assumed
the given data to have a very special dependence cn ¢, the thinness
parameter, when expressed in scaled variables. The problem associated
‘with the prescribed loads of (2.9) can be considered as one of a whoie
hierarchy of problems associated with more general loads. The essential
features of the dynamics of an elastic plate are included in the problem
with prescribed loads given by equation (2.9).

Using this Aew notation, and defining a parameter a by the
equation al = E% , we are lead to the following final formulation:

2

u,yy + e(az-l)v,xy + ez(azu,xx - u,tt) =0 ,
(2.10)
x?-1 1 1 :
-+ .g...-,.—— + 2 had = 0 L)
Vrgy T T Wxy T C GZ Voix 752 Vet '
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for 0 <x <1, ~L <y <1, 0 <t < o,

initial conditions are:

The boundary conditions and

2
Txy(x,t’t;i,a) = EzQi )(X,t) ’
2y . (2.11a)
txy(x,—l,t;e,é) =52q§ )(x,t) ’
for 0 <x <1, 0 <t <
2
Tyy(xsl:t;E:S) = Ez?i )(X,t) 3
(2.11b)
2
Tyy(x,—l,t;e,ﬁ) = Ezpé )(X)t) )
for 0 < x <1, 0 <t <o
t O,3,e56,0 = £ D0 + eaBPg,er0 :
(2.11c)

TXX(I’Y=C;835) = 0

for 0 <y < 1,0 <t <=

Txy(O,Y:t;€,5)
rxy(l,y,t;e,d) =0

for 0 <y <1, 0 <t <o

1
(]
“

u(stSO;Eaa} =
v(x,y,05e,8) =0,
u:t(stsO;€95) =0 3

V,t(x,y,O;e,B) = O ’

for 0 <x <1, -1 <y < 1.

) EB/Zg(3/2)(y,t) + 33/2b(3/2)(Yst/5)

>

(2.114;

(2.11e)

The stresses are given in terms of the displacements

according to the equations below:
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Ty = (GZ—Z)V,y + ga? U,

Txy = u’y + SV’X ’ (2.12)
= 2 -

Tyy v, + .363 2)u, .

The potentials ¢ and ¢ associated with the displacements u,v are cal-

culated from the equations:

u = w,y + ew,x »

(2.13)

v o= ¢:y - E‘P:x .

' The problem (2.1@);-(2;11), (2.12) can not be solvéd explicitly
aﬁd exacgiyiéy simplé methods. | Thus the construction of an approximate
solution directly from the differential equations,bcundary conditions 'and
initial conditions in the form of an asymptotirc series in ¢ and § will be
of interest. We attempt to carry out this scheme in later sectionms.

3. TFormal Inmer Approximation.

In this section we utilise a proéedure=p¢eviously dewreloped
for the static elasticity problem [c.f. Friedrichs and Dressler [6])
utilized in Chapter I for the wave equation. First, approximitions
having the form cf powet series in & are examined. Furthermore, as
stated in the last section, we are interested in the problem where the
displacements'u,v are 0(1l) in the limiting case € -~ 0. We call the
approximations investigated in this section uy and Vis and we-assume

expansiong for them ac follows:



45

u, (x,y,t3e,8) = ugo)(x,y,t;ﬁ) + sugl)(x,y,t;S) S
i i i
vi(x,y,t;s,6) = vio)(x,y,tga) + evil)(x,y,t;G) + oee. .

(3.1)

Here the subscript "i" is used as an abbreviation for "faner". We also

assume expansions for the associated stresses T__., T. . and 1__. of
. xxi? “xyi yyi
the form:
=@y Dy
xxi xxi xxX1i
=0 Dy
Xyl Xyl Xyl (3.2
T = (0? + er(l? + ... .
7yL yyi yyi

We now substitute these expansions into the system (2.10),
(2.11) and (2.12) and solve the resulting equations, by considering the

coefficients of each power of € separately. This leads to the following

differential equations for uio) and vio):
(0)
. = 0 R
“L,yy |
' (3.3
v(o) =0 s
i,yy

for 0 <x <1, -1 <y <1, 0<t <=, Solutions of these equations
cannot in general satisfy the prescribed boundary conditions at x = 0,l.
This statement is also true for the solutions of the equations

for u§1>,v£1),u§2),v£2);....which are provided by thie procedure.
Consequently in this section we are content to fulfill the prescribed
boundary conditions at y = 1. The approximations so chbtained are not

fully determined, and have the capability of accomodating only special

types of boundary conditions at x = 0,1. These conditicns are develnped



46

in the later investigations of the "boundary layers'.

(®) 03

The boundary conditions for us and ) at y = 1 which
follow from (2.11a), (2.11b) and (2.12) are:
@, . - (0 .5) =
xy1(x, 1,t;8) = ui,y(x’il’tfa) = 0 R
(3.4)
;O;(x,il t£3;8) = vi?;(x,il,t;é) =0 .

for 0 < x<1,0<t <,

We conclude from (3.3) and (3.4) that uio); vio) have the

form:
0 —(0
ui )(x,y,t;é) = ui )(x,t;ﬁ) ,
(3.5)
0 —(0
vg )(x,y,tgs) = vg )(x,t;é) R
i i
;ﬁO) and ;;0) are as yet arbitrary functions of x and t. Corresponding
stresses are all zero, that is, T(O? =0, 1 (0) =0, T(O? = 0. To obtain
xxi xy1 yyi
more informatioen about ui ) and v( ) we must investigate higher order

terms.

At the first order there is some interaction with the zeroth
1
1 W

order, The differential equaticns and boundary conditions for ugtt, vy

resulting from (2.10), (2.11) and (2.12) are:

yes WD
syy ,YY

for 0 <x <1, -1<y<1l,0<t <o

Téii(X,il,t;ﬁ) = ui%;(x,il,t;ﬁ) + Vi?i(x’i%t;s) =

\l) + 2 \l)f I (1) (v * . =
Toep GOtLEs6) = (@P-Duy ] Gt ) +0o? v]’y\..,“],t,cﬂ) 0,
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for 0 < x <1, 0<t <=,

The most general solution of this system is:

1 —(0) =(1
ui)kdﬁﬂ)= wixu¢w)+u§)&¢w) R
(3.6)
'vil)(x,y,t;ﬁ) = -y ——z— u(o)(x t;8) + v(l)(x t;8) s
where ui ), ;( ) are arbitrary functions of x and t. The corresponding
stresses are:
Txxi © a2 fi,x 7 XYl © Tyl T @.7

This procedure will determine the structure of the y-dependence of
0 1 1
© 0 W, o

'() =(0) —(1) @

arbitrary functions us v, un T, v 5-++-« However, at the next

i
=(0) —(0)

order, further restrictions on the behavior of us vy ‘are obtained.

2)

The differential equations and boundary conditicns for ui

successive terms u .+s3 but only in terms of the

(2)

and vi are:

W@ 4 @@+ 2@ @ oo

i.xy 1 XX 1 tt ?
() ,e21 (W 1 0 _1_ 0
i,yy Yy VXY T3 i,%xx  of Vi, tt v :

for 0 < x< 1, ~-1l<y<l1l, 0<t < =
(2) _ 1
(2) ) 1 ~ ql x,t , y=1 s
1%,y YT (@
XY ? ? qz (X,t)’ y= -1

L]

L@ PPty -

Tyyi

( 1)

i
[

= (a2 ~2)u
(2)(X t) s ¥

1
t
i

for 0 < x < 1, 0 < t < », After substituting the earlier results from
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from (3.5) and (3.6) we can solve the above system to obtain the

solutions:

W@ = @250 L (@ - (@) - yr® - L@ ()1
i 2 al  i,xx 2 i,x i
(2) o ¥ (L1252 o2-25(0) _ya2:-27 <1>_ 1 (524, (2)y 14 ()

Vi 2 [2a2(p1 p2 ) nzfmvi,xx] y[v—v-u 242 (pl +p2 )1+ vi y

(3.8)
where Eéz) and ;§2) are arbitrary functions of x and t. The integration

of the differential equations governing u§2) and vfz) leads to the

_ i i
result that they are both quadratic functions of the variable y. Using
this information in the boundary conditions we find the solutions (3.8)

and also the following restrictions on the behavior of'ﬁgo) and v(0);

i i
=(0)  _ 4(a2-1) —(0) _ (2) _ @) '
et _Lo?-)— U, xx (q R 3.9
- _1.,.@) _ ()
Viee T2 P P77 (3-10)

When recast into physical variables, equation (3.9) is readily

identifiable as the "plate" wave equation (the plate wave spead is

.L‘ziisiqu.“ (£ _JﬁL;QQJQ'; E is Young's modulus and ¢ is Poisscn's
ratio (c.f. Kolsky [20], p.8l). Equation (3.10) can be interpreted as a
statement of Newton's law of motion for the mean behavior of each
section of the plate. It is interesting to note that, as with the static.
elasticity p?oblem, the inner approximation can be identified with one
one of the approximate theories; in.this case, the plate wave equation.
We assume that the inner approximation satisfies the initial quiescence

condition (2.11le). Thus VFO) satisfies the conditions:
i

vi (x,y,056) = 0, §°)<x,y 03¢) = 0,
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and we can integrate equation (3.10) to obtain:

t t
WO e [ P wepaP meplay, L Gan
(o] o

However, the initial conditions:

X,¥,036) = 0, u

e 5,0 Ge,y,036) = 0 :

=(0)

are net sufficient to determine u; as a solution of equation (3,9);

boundary conditions at x = 0,1 are also required. If the prescribed
normal stress at x = 0 was just a function of t (that is, constant across

the thickness of the plate) then, using equation (3.7), we could write a

—(0)

suitable boundary condition for us . In general this is not the case and

={(0)

it is not immediately obvious what condition to specify for u

=(0)

and x = 1. Suitable boundary conditions: for ug

at x =0
are determined in the-

course of the boundary layer 1nvestlgatlons of section 5.

The stresses associated with u( ) and vlz) are:
(2) _ 022 <2) (2) 4(o?=1) =(0) (2) (2) 4(02-1)=(1)
xxi = [a (p )+ o’ i xx]+ ( )+ 02 i,x

AP AT SO RE NCROE S , (3.12)
ot
@)y (@ _ @) 1@ O

©)

Proceedlng throagh successlve orders it is p0551b1e to evaluate ui s

2) (@) @
V(O), ugl), v?l),..., in terms of the boundary data p( ), p( ) qi ),qi )

i i i
. ‘ NN EO, T g Sm)
and a sequence of functlons of « and t only, ui i s di . sevesy

satisfying differential equations similar to (3.9) and (3.10). It is
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found that the successive orders of the displacements depend on success-
ively higher derivatives of the boundary data (as was the case for the
analogous terms of the inner approximation derived for the accustic
problem of chapter I). Thus the smoothness of the prescribed loads de-
termines the order to which the process may be continued.

To examine the structure of successive orders in more de-
tail we now proceed tc the third and fourth order equations. By exam-
ining these higher orders we can discover the relation between the

—(C) —(2)

functions uy “and u; o, and show the inability of the inmer approxi-
mation to deal with the rapidly varying part of the aﬁplied end loads.
The differential equations and boundary conditions govern-

(3) (3

ing the Dehav1n* of u; and v{ are:

(3 4 (a —l)v(z) + azu(l) - o) =g

i,yy i, xy i,xx i,tt
(3) 4?1 (@ G DR ¢ D R

v + —F=u + v v =0 ,
i,yy o i,xy %2- i,xx i,tt

for 0 < x <1, -1 <y<1,0c<t < o

NONING BN N
Xyl 1,y 1 X yyl
for 0 < x <1, 0 <t < «, After substituting the earlier results from

(3) = (a —Z)u(z) + a? (3) , y = 1,
i,x%

i,y

(3.5), (3.6) and (3.8), and performing some tedious manipulations we
can solve the above system to obtain the solutions:

u® = 3o 20%1H0) 4 3622 10 g,
i 6 ol i,ttx o i,xxx

(1) . 3022 7(1) _ o -1 (2) (2)
[ i,tt a? 'ui,xx 247 (p * p M+

+ y[- 7(2)y 521 G(0) .&ﬁ.:.)"TO) 1+ a(3) (3.13)
i

i,x a* i ttx a* i,xxx
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a—?. --(0) ', 302-4 =(0) y2 a2-2 —(1) | 1 - @)
[ ul xtt+ oz Y4 XY&}+ 2 L a? vi,xx+ a 1 tt

NON:

__2_( (2) <2))] by & 250 oZ-1 5(0) 22 -1) =), ™

i X ot 1 ttx i xxx i

(2) (2) _(2) (2)

In writing these solutions we have assumed that p s Py Ty Q4 > 4,
are at least differentizble, and their first derivatives with respect to

x are 0(1) in comparison with e. The development of the solutions

(3.13) also produces conditions restricting the behavior of u(l) _él)
These are:
=(1) _ 4@?-1) —(1) _ o2-2  (2) (2)
I a Y1,xx T 242 (pl,x * p2,x) * (3.14)
@O _1.,.@) (2)
Vier - 20,x Yy - (3.15)

The right-hand sides of (3.14) represents the squeezing action of the
normal stress applied on the long sides. The right-hand side of (3.15)
shows that the shear gradient produces a lateral deflectior of the plate.
It is worth noting that both of these effects are important in the
development of some of the "approximate''plate and rod theories. The
Rayleigh correction to the plate wave equation'based on squeezing motion
(or lateral inertia) is described by (3.14) and the Timoshenko shear
correction to the approximate beam equation accounts for the effact
described by equation (3.15) fc.f, Miklowitz [27]).

The system of equations for u£4) and vi4) were investigated
and solutions obtained. These are lengthy and contain no significant new
information and hence we shall not record them here., As part of the
(4) (4) we can derive the

—{2) —(2)

and v,
i

investigation of the solurions for ug and v,

following equaticins governing thes behavior of ug
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-(2) 4! -1) ”(2) (2) (2) 7o -14a2+8 (2)
Uittt (ltt—tht) CS

o 1 xx 12 1, xx 32 xx

_4 2 -1 (@ 2-2)2 —(0)

3 ab i,xxxx * (3.16)
~(2) L@ @, 22,0 0, 4 2:0) —©
vi,tt + 1242 (pl,tt p2,tt) 1202 (Pl,xx p2,xx 1 XXXX =0.

‘ (3.17)

2) (2) (3)
1,tt’ ql xx? Pl tt?

~(0)

Here we have assumed that the second derivatives, é

(2)

1 s +ee 5 €xist and are 0(1). Also it is clear that ug
» XX

must be at
least four times differentiable with respect to x to allow for’

a continuous solution for u( ). A more precise statement of this fact
is made later when suitable boundary conditions for (3.9), (3.14) and
(3.16) are discussed. This will be done in section 5 which is devoted

to the investigation of "toundary layers™ near each end of the plate,

In principle it is possible to proceed to higher orders for

solutions for uis), vis),... ; at the same time we can develop further
={3) =(3)
equations restricting the behavior of u {0 Vg e s However, the

calculatione involved would be prohibitively lengthy. In this case a
éymbolic procedure similar to that used in section 3 of chapter I in
dealing with the inner approximation for the wave equation problem is of
little use. A "symbolic" solution analogous to equationv(1.3.18) can
be developed but no con&enient expansion similar to (I.3.19) is found.

0; (1)

However for a practical problem the first three terms EPR I

u§3) may be all that are required. We shall adopt a truncation
of the original expansion (3.1) as our inner approximation:
u, = FO) + €u< ) +e’u (2) s
* 1 (3.18)
1 (3.
v, = v(o) + svg*) + szvgz) )
i i i i
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© O O @ @ )

where ug s, vt u T, vty and v, * are determined from equations

(3.5), (3.6) and (3.8). 1In full these are:

ay = 50w ety O oD 2 R T 20 P g {P))
+ 33 e, vy ") ;ifi] +u? ’ (3.19)
v = 7O 4 ety LR TOS P el o P (P)- 2 2 o)
+yighy 0 + o) - 27D TP :
Here u(o), Vfo) “ﬁl), %ﬁl), Zﬁz) and v( ) are all functions of x and t

only, satisfying equatioms (3.9), (3.10), (3.14), (3.15), (3.16),6 (3.17),
respectively.
We require that the inner approximations given by equation

(3.19) fulfill the initial quiescence condition. That is:

ui(x,y,O;e;é) = 0 . ui,t(x,y,0;5,6) =0
' 3.2
v, (x,5,05¢,8) = 0 ’ vi,t(x,y,o;s,é) =0 (3.20)
This condition provides the initial conditions for u( ), ;éO) s aes o
O g g @@ g@ €=,
i 1 t i 1 t i 1 t
_ _ _ _ e _ (3.21)
SO 50 @ L@ _3® D Lo .o,
i L, Vi 1 t i. .

for 0 < x <1, ~1 <y < 1. The equation (3.20) also requires that the

2y (@) ()

I’
prescribed functions p s P | and q‘“) all vanish at t = 0 and
1 2 1 2

have vanishing first time derivatives at t = 0.
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The stresses corresponding to the inner approximation for

the displacements written in equation(3.20)} are:

= ¢ { 41 30 2 y[e2=2 (2= (@) 4 4a2-1) F(0)
Txxi e { az' ui,x bt byl 207 (pl p2 )+ o vi,xx]+
2.2 . (2 2 4(a®-1) =(1
+ [ 2532'(P£ )4 Pé )) + —igag—l ui,i]}+ 03
=e2 { X (2) 2) + (2), @)y, 4
Tyyi (p ) (p P, )} (3.22)
+ e (2D £2F ) o) - 2EED(ED) JO) gy
= Feq (2 (2) 1 (2) (2)\
Ty - & 1389 ) + 5(q; )} o+
. a2 2 —
3 2_ _oaf-1 )_ 2(2) 2(a*-1) (0) :
f e (G-I _5—7 ( 1 X 2 )+ o 1 XXX I
Note that the terms in e in 7 T are written explicitly to show
: xyi yyl

that the boundary conditions at y = *1 are satisfied by the inner
approximation (3.21). The term in €3 in t | will not be used and
: : xxi

therefore is not written explicitly.

We can now use the results of (3.21) and (3.22) to test ui,

vi as solutions of the original problem (2.10) and (2.11). We find:

2 2 2 73
- £ - + - = 0
ui,YY4 (e 1)vi,xy (e U, xx ui,tt) SR
2 2"‘ + Fz -— = 0 3
¢ vi,yy+ e(a l)ui,xy =2 ( vi,xx vi,tt) (%) 2
. (2 . 2 (2
Txyi(xalst;gsaf = Ezq:;;.) s Txyi(x,—l’t’t‘,a) = € q2( ) ’
T .(Xslstsegd) = EZP(z) ) T ,(X,"].,C;E,G) = EZP(Z) .
yyi 1 yyi 2
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Thus the prescribed boundary conditions at y = *1 are satisfied exactly

by u,, v, and the differential equations are satisfied with an error of

i
0(c3). However we can see from equation (3.22) that in general us and
v, cannot fulfill the prescribed stress conditions at x = 0,1. As
discussed following equatiop (3.20), the inner approximation saﬁisfies
prescribed initial conditions. Before proceeding to the later sectioms
of this chapter, where we obtéin corrections to uy and v, to improve the

approximations near x = 0,1, we briefly examine some aspects of a formal

"symbolic" approach used for finding higher order terms of the inmer

approximation.
As in chapter I we introduce the notation L = %E- and D E-%; ,

and formally consider the equations (2.10) as differential equations

in the variable y:

u, + (a?-1)eD v, + a2e?D u - €212y = 0O »
vy y .
v,yy + Y eD u,y + Pl Dev - o7 € Lev = s .e

for -1 < y < 1, with the boundary conditions,

2,(2) =
u,y + €Dv ={:€ 95 ? y=1 ?
2
Ezqé ) > y=-1 L]
2_(2) =
(@2-2)eDu + uzv,y ={E ptz) ’ y=1 > (3.24)
€2p2 > y=-1 S

Now "symbolic solutions" for u,v analogous to {I.3.18) can be obtained.
These '"symbolic solutions" divide naturally into odd and even functions
of y, The calculations are lengthy and will not be included heve.

It is found that the part of v which iz even in vy, (ve J, and the part

VEDL
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of u which is odd in y, (u dd), both satisfy equations of the form:
o

[ (LZ_ 2D2)2 COSE’/DZ"‘ LZ sinevDe- L /C! -

e¥D2- L2/0? (3.25)
2
- ﬁ%-VDZ— 1LZ sinevD?- LZ cosevD? LZ/a? ]Veven =,.. .

When we put € = 0 in (3.25) we obtain.equation (3.10). Assuming an

= v(o) + sv(l)

expansion v
: even even even

+ ... , and equating the coefficient of
e equal to zero in (3.25) leads us to an equation similar to (3.13). 1t
is interesting to examine a truncation of each side of (3.25) at C(sz).
The left hand side becomes:

- (——2——4(°‘i’1) + 2)L2D% + i@%}l}_ D' 1w

> ey

2 evean

2
2 ere3 4 1 2
- {(=+
[L+3{(2 57 )L
This equétion Lz« a strong resemblance to the Timoshenko equation (cf.
Kolsky [20], p. 535) for the dynamic behavior of plates, which in our

present notation may be written:

2.1 4{c%-1) , 1 4(a2- 1)
2 Efr L4 _ o2LOQT N1 22 a L =
[L +3{KL ( ag—+K)LD + D}]Veven ..

where K is a "correction factor" usually given a value between 2/3 and
1. The above discussion is not intended to be a rational development of
the Timoshenko equation. In fact the arbitary truncation process has no
rational basis within the scope of the perturbation techniques used in
this thesis. It suggests however that the Timoshenko equation is a

combination of the first two orders of the inner approximation.

4, Tormal Diffusive Approximation.

In general the inner approximation (3.19) cannot fulfill the

prescribed stress condition at x = 0,1. To explore the trausfer
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of the prescribed loads into the interior of the plate we must study

the solution near the ends in more detail. We expect the rapidly varying
prescribed loads at x = 0 to produce propagating pulses which can be
described by wave front approximations (see section 6). Using the
results of chapter I as a guide we might expect that the slowly varying
'prescribed loads at x = 0 produce effects which can be described by
a'boundary layer" approximation, important only near the end, plus the
inner approximation. A preliminary "boundary layer" investigation was
conducted near the end x = 0. It was found that the slowly varying part
of the prescribed loads pro&uces'an effect local to the end only if
certain conditions are satisfied. These are: (i) The prescribed average
normal stress iz zero, (ii) the prescribed average shear stress is zero,
(iii) the bending moment resulting from the prescribed normal stress

is zero. 1In general the prescribed loads do not fulfill these three
conditions and this means that effects other than a quasi-static boundary
layer are produced by the slowly varying prescribed 1oads at x = Q. The
average normal stress at x = 0 can be used Lo provide axsuitable boundary
condition for the arbitrary—functions G;O), ;§l) s Eﬁz) in the inner
solution. Thus the average normal stress will propagate with a velocity
equal to the "plate" speed. So far we have no means “of dealing with
the average shear stress and the bending moments. Thus befors examining
in more detail the "boundary layer" approximation near x = 0 and its
interaction with the inner approximation,we study the effects produced

by the average shear stress and the bending moment prescribed at x = 0.

We consider the idea that the part of the total solution given
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by the slowly varying prescribed average shear and bending moment at
x = 0, 1s important near the end but decays away from the end. However,
this decay is more gradual than that of the boundary layer approximation
and we allow the possibility that the decay depends on time; in other
words perhaps the effect of the average shear stress and bending moment
"spreads'" or"diffuses" away from the end.

In order to examine a neighborhood of the end x = 0 on a length
scale longer than thét associated with the boundary layer of the next
section, but shorter than that of the inner approximation we introduce

2 new variable z, by the equation:

X ) !
z = — . (4.1)
ve
The reascns for tho choize of this -zaling are not obvious. Trial and

, . a
error methods using arbitrary scale factors, say ¢ , showed that a =

toli=

was a significant value allowing the development of an approximation
having the required properties.

We assume approximate solutions for the displacements u,v of
the form

ulx,v,t:2,8) = ui(x,y,t;a) -+ ud(z,y,t;s) .

4.2)
v(x,y,t;e,8) = vi{x,y,t;a} + vd(z,y,t;e) ,

whera Ugs Yy represent the diffusive approximation describing the effect
discussed above. We do not izclude the parameter § in both the Imner
approximation and the diffusive approximation since we shall find later

that these approximations can cnly haadle the slowly varying part of the

prescribed loads,
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We require that u = u, +u.,, v = vy + v, satisfy the differential

i 4’ d

equation {(2.10) and the boundary cenditions at y = *1, (2.11ab). Also we
require that the stresses derived from these displacements, which we write

as 1 = T .'+ T s T =1 ., +T s T =1 .+ , are capable
XX xxi xxd* “xy xyl xyd® yy yyi yyd

s »

of fulfilling the macroscopic features of the prescribed loads at x = 0
'(ayerage normal stress, averége shear stress, bending moment). However
as we have not yet examined the boundary.layer near x = 0 in detail, it
is not yet obvious.what boundary conditions to impose on the diffusive
approximation and inner approximation at orders higher than that ét which
the loads are prescribed.

In this section we determine~scme properties of the diffuéive
appreximation but do mtdetermine itcomplefely, The boundary layer investi-
gation of the next section will demonstrate how to completely determine
both the inner approximation and the diffusive approximation.

Using the prdperties of ug and vy derived in the last secticm

(see (3.19), (3.22)) and introducing the new varisble z we can derive

the following system of equations governing the behavior of u, and v :

d d
u + /e (a2-1)v + ea?u ~ 2y, =0
d,yy ( ) d,yz d,zz d,tt (e”, (2 3
2_ X
v + /E'9~7; u + sig-v - ezlz‘v = 0(ed)
d,vy o d,yz a d,zz Q d,tt ’
1
f0r0<z<-r:,-1<y<]_,0<t<co;
Ve
txyd(z,il,t;e) =0 , Teeg(Zrtlotse) = 0 , (4.8)
for 0 < z i_%: » 0 < t < =; here the stresses are given in terms of the
Ve

displacements by the following equations:
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2

. == D a’
Txxd e z)vd,y e “4

X 2 Xy

= +
Taxyd T U,y e Va,x,
= 2 2" .
CTgyd T %y + /& (o Z)md,X (4.5)
Since we expect uy and V3 to be small for large z, that is, far away

from the end, it is natural to replace the domain of equation (4.3) by

the domain 0 < 2z < =, =1 « ¥y <1, 0 ¢ t ¢ w. Then, instead of a

boundary condition at the end z ='/;]—':- , we impose the following decay
€
condition:
limud,vd=0 s “1l<cv<1,0c<t <o . (4.6)
Zryco

We shall discuss the errors introduced by this approximation of domain

at a later Stage.

The appropriate formal expansions for u, and v, are:

-]:-\ d d
ud(z,y,t;s) = uy (z,y,t) + /% uy (z,y,t) + ... ,
& (4.7

V&(Z,Yst;E) V(§0)(Zay,t) +V/'€_ de (Z,y,t)-“‘ cee 4

and proceeding in the standard way the following differencial eguations

and boundary conditions for uéo) and v(go) are obtained:
(0) )
u =0 v =90
d,yy ’ d,yy ?

for 0< z< o, ~1< y< 1, 0< t< o}

(0)

+ =
Tyyd(zp l:t) 0 Py

Tf{?é(z, 1,t) =0 »

for 0 <z <o 0 <t <=

0) _

d 0 ?

lim uéo) s V

Z->0
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for -1 £y <1, 0%t <%, We do not expect this system to determine

OO

; however it does predict that the solutions have the

following form:

1Py =T V@, Py =T P,
(4.8)
where uéo) ard vé ) are arbitrary apart from the condition:
lim u(o) , ;éO) = 0 . (4.9)
Zro
=(0) ()

To obtain more information concerning the functions Uy and Va

must investigate higher order terms. Unfortunately to develop all the

=(0)

4 in ths section, we

@ b

have to investigate the form of the solutions for ud s Vg o v s

u‘§2). , V§2)

conditions governing the behavior of v possible

Before proceeding to the next order we note that the stresses

corresponding to uéo), véo) all vanish:
L0 £ (0) ' 0 _ 4.10)
Txxd 0 ? Txyd =0 ? Tyyd T - <
- - @)
The differential equations and boundary conditions for ud2 and
1
véZ are:
(1/2) 2_
%,yy  + @2-1v®) =0 v/2) el O

d,zy ’ d,yy “aZ Yd,zy
for 0 < z < », -1 < y < 1, 0 < t < =

a2y, . _ A2, -
Xy& (Z,“l,t) =0 s de (Z,—l,t) -

for 0 <z <=, 0 <t <

ué1/2), Vél/Z) -0 ,

for -1 <y <1, 0 <t <=, Usiug the expressious for stresses in terms
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(0)

of displacements written in (4.5) and the results for ug

1/2) . (/2)
d

(0)

and Vd
of (4.8) we can obtain the form of the solutions for uy

suggested by the above system. These are:

uél/Z)(x’y’t) - ;é?;(z,t) + :51/2)(2,1:')

(4.11)

Véllz)(z,y,t) = -y —~Eg-5{o)(z t) + (1/2)( o t) .
Here ' +/2 )(z t) an (1/2)(Z,t) are arbitrary except for the condition:

lim u(l/z) . ;ﬁl/Z) =0 . 0t <o .

20 (4.12)
The stresses corresponding to u(llz) and v(l/z) are:

(1/2) _ 4(e? (0) L(1/2)_ 172y

Txxd fnl g xyd 0, ‘yyd T 0, (4.13)

We now move on to the next order and examine the following

1) (1)

differential equations and boundary conditions for uy and V4 :

(1) + (Ctz l)v(l/z) + a 2 (0) 0

“d,yy zy “d,zz ?
1) La/2) L1
vd,yy+ az %4 2 Vd,zz ’

1
txyd(z,il,t) =0 , Tiyé(z’il’t) =0 ,

for 0 < z < =, 0 < t < o

@ IO R
d

lim uy s

Z-»

for -1 <y <1, 0 <t < =, After substituting the expressions obtained

(0) 50) (4.8), and uéllz), vél/z)

earlier for ug s Ve, s (4.11), we can find

the form of the solutions of the above system to be:
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uél)(z,y,t) = -y v(liz)(z t) + u(l)(z t) s (4.14)
2 - - 2_
vél)(z,y,t) = %—' g_zg_véO; (z,t) -y g;zg‘ (1/2)(2 t) + v(l)

In deriving these expressions we obtain restrictions on the previously

mol

arbltrary function u The satisfaction of the condition
T(lé (z, #1,£)=0 requires that:

Xy
-(0)
d zz =0

(4.15)

This differential equation, together with the decay condition (4.9),

provides the following solution for u(o).

e (O
uy = . (4.16)
. =(1) =(1) .
The stresses corresponding to Ug and vq ~ are:
(l) 4(a?-1) —{O) 4(a =1) —{1/2) (l) T(1) =0
Txxd 0 a Yd, 2z a Y4,z ! xyd * yyd )
(4.17)

(1)

Since T exd is partly an odd function of y, it may be able tc describe

the prescribed bending moment at x = 0 (for example, by taking

1
=(0) _ 32 (1) —(1)
vd,zz(o’t) = ETEY:IS' y £ (yo,t)dy). In (4.14) the functions Uy
. -1
and ;él) are arbitrary except for the condition:
lmué) ~§l)=0 ) liy<l, 0t <e o (4.18)
Z-r
—— -7
To find out more about v( ) 51/2)’ vdL/z) 300, We proceed
with the above scheme. The system of equations for u§3/2) ’ v§3/2) is
(3/2) 2 (1) 2 (L/2) _
ud,yy + (a l)v y+ o ud 2z = 0 ,
(3/2) , a®-1 (1) L(172) _
vd,yy + o2 Y4 22V * a d zz 0 ’

for 0 <z <, -1 <y <1, 0 <t <=
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TV

(3/2) . _ _
Xyd (Z,-l,t) =0 1 de ) =0 ’
for 0 <z <=, 0 <t < =
TANCON W3 ,
Zrs

for -1 <y<1,0<t <, fUsing the results obtained from the lower

order systems we find that u(3/2), V§3/2)

d have the following form:

3 3g2-2 —(0)
a? d,zzz

<

—(1), 2(a2-1) —(0) yo (3/2)

(Vd z a< vd,zzz d

|

w8 (2,,0)

_oy? o?-2 —(1/2)  o?-2 —(1) , —(3/2)
»¥st) 2 vd,zz -y 0’ ud,z + Vd » (4,19)

I

v§3/2)(z

(3/2) 4 =(3/2)

Here uy d are arbitrary functions of z and t satisfying the
condition:

1im u(3/2) , §§3/2) =0 . (4.20)

20

- —(1/2)

In deriving the results of (4.20) we find a restriction on ug The
condition ;322)(2, 1,t) = 0 requires that:

31/2) _ . (4.21)

Y4 »Z2

This equation with the decay condition {(4.12) has the solution:

=(1/2) _

Y4 =0 3 (4.22)

(3/2}

a result exactly similar to (4.16). The stresses ccorresponding to vy

v are
L2/3) g bl —12 $(1/2) (@®-1) —(1)

xxd d z2Z @l d z :

(2/3) ) 2(a‘-l) —(0)

Txyd (y=-1) ol Vd,zzz > (4.23)
(3/°) -0

Tyyd
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Tae form of these stresses corresponds to an associated non-zero bending

moment and non-zero average shear stress.

The system of equations governing the behavior of u§2) and véz)
are:

ué?iy + (az—l)vé?éi) + a? él;& - ué?it= 0 .

B ED , e
for 0 <z <w, -1 <y<1l, 0<t < o

(2)(2 £1,£) = 0 , inz( s1,6) = 0 ,

for 0 <z <=, 0 <t < »;

lim uéz) R véz) =0 s

2o
for -1 <y <1, 0 <t <», Using the results of earlier orders we can

(2) (2)

¢btain the following forms for uy and vy

*-(2)

@), _Z 3P2 =(1/2) | =(3/2) | 2(e2-1)=(1/2)
(z,y,t) = 6 ol Va ,ZZZ y(vd,z + o2 Vd,zzz) +u ’

e R D == O T =(0)

Va (z,y,8) = - 24 _—Ez—-vd,zzz ( d zZ B(u -1) (3 5)vd zzzz)

a?-2 —(3/2), =(2)

-y az a A d

In deriving these results some interesting restrictions are ohtained for

;‘;(l) =(0)

and vy The boundary condition Tfii(z,il,t) = 0 , requires that

Eél) satisfies the differential equation:
7@
d zz 0 '

With the decay condition (4.18) this means that
-Eél) z
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Satisfying the boundary condition T( )(z 1,t) = 0 requires the following
(O

restriction on v d
=(0) , 4 a?-1 =(0)

= . .2
d,tt 3 ao? vd,zzzz 0 (4.27)

We can write this in the original physical variables as follows:

s ,pd B =0 _,

4,71 ¥ 3 o (1-02) 'd,xxxx 3 (4.28)

where E is Young's modulus, ¢ is Poisson's ratio, p is the density for

the material of the plate, and 2h is the plate thickness. Equation (4.28)

is easily recognizable as the Euler-Bernoulli equation for the dvpamic

bending of a plate {cf: Love [22], p. 496) . To fully determine solutions
—(0)

0 as well

for vy from (4.27) we require two boundarv conditions at z

as the decay condition (4.9). We expect the conditicns at z = 0 to be
connected with the average shear stress and bending moment of the applied
loads. These will be discussed in detail in the next section. Initial

—(0)

conditions are also requlred to determine V4 and we assume that uy and
A7 fulfill the initial quiescence condition., Then we find that:

;éo)(z,O) =0 , éoi(z 0) = o | (4.29)

We cannot say much more about the diffusive approximation until
the investigation of the boundary layer approximation is completed in the
next section., Before temporarily leaving the study of the diffusive
approximation {we reconsider the inner and diffusive approximations
in section 6) we summarize the results obtained so far. We know that Ugs

V4 Up to 0(¢2) have solution which produce stresses having the following

forms:
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2_ -— ol — 3g
ce[- 4gaa 1) Véoiz” 20 12 S(/2) 1, [JGL( ~1)=(0)

d ,ZZ at d 2222

~

xxd

. 2_ —
+ y(- ‘*("‘a L vﬁ;z + 2(a2-1) Gt 12 +7)Y “?Zz ) ,
o2
2Ry ®) e ranReE T

0l-1 *(0)
d 2272

T -82[- F1SAke O ] .

yyd

In a similar manner we can develop a diffusive approximation

important near the end x = 1 by introducing the scaled variable z'

defined by the equation:

[ l"'x
z' = —— .
Vs (4.31)
If we write this diffusive approximation as Uyt and Vg it can be shown
that the lowest order term, Vqr© s is independent of y, say v( ) z',t)
and satisfies the differential equation:
-{0) 4(a2-1) —(0) 5
d‘ + 3o vd',z'z'z'z' =0 ? (4.32)
for 0 < t < », 0 < z'< » ; and the initial conditions
=(0 0
vé,)(z',O) =0 . ( ) (z ,00) =0 s
for O Z' . (4.33)
Similar results can be found for higher order terms v(llz),
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3. Formal Boundary Laver Approximations.

The approximale solution consisting of the sum of the inner
approximation and the diffusive approximation cannot in general satisfy
the prescribed boundary conditions at x = 0,1. To explore the transfer
of the prescribed loads at x = 0 into the interior, and to investigate
the solution near x = 0, we introduce a 'boundary layer' variable

defined by the scaling: x
r = % . (5.1)

The following investigation will provide boundary conditions to fully
determine the inner approximation and the diffusive approximation. We

assume approximations of the form:

]

X
U(X,Yatﬁ,ﬂs) ui(X,Y,UE) + ud(‘]/"e‘,Yatﬁ) + uz(.ca}“t;e) ’

(3.2)

X
V(X’Yst:esé> Vi(X’Y>t;E) + vd(VE_,y’t;E) + VE(C,Y:t;E) s

where u, , Vv, represent tentative boundary layer corrections near x = 0.
We have not included the parameter € in any of the above approzimations.
This anticipates the conclusion that the inner approximation, diffusive
approximation and boundary layer approximation can only describe slswly
varying effects. We require u =-ui+ud+u2, v = vi+vd+v2 to satisfv the
differential equations (2.10), and the corresponding stresses to. satisfy
the boundary conditions (2.1labecd}. Then using the results of sections
3 and 4, we obtain the following differential aquations and boundary

conditions for u, and v,:

£ L
u  + (a2-1)v + o?u - g3y = 0(c3d)
9,yy 2,Cy £,zC 2.ttt ’ (5.3)
alv + (¢2-1)u + v - ey = 0(e3) ,
L,yy L,y L,LC L,tt

for 0 <z < 1fe , -1 < y<1l, 0<t <o
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J(L:2Ll,t5e) =0, Ty 2(c,—1 t;e) =0, (s.aé)
for 0 < ¢ 5;%,-0 f.t < oo
©,y,t50) = £ (g, 00-1__ (0 )1, 40,3, t5¢)
XX,Q. sYsts€) = & y,t T sYstse Ty 1YsLse s (5.4b)
3 3/2
Xyz(O,y,t €) = ¢ 'lzg( / )(y,t)—Txyi(O,y,t;e)—rxyd(o,y,t;e) . (5.4¢)

for -1 <y <1, 0 <t < «, Since we expect such a boundary layer approxi-
mation to be important cnly near the end x = 0, it is natural to replace -
the domain of the differential equation (5.3) by 0 < g < o, -1 <y <1,

0 < t < ®, Thus instead of boundary conditions at % =‘% we impose the
following decay condition:

lim

C*W_Txxﬁ’Txyl’Tny = » 1 <7 i_l’ 0 <t <o (5,5)

(For the analogous static problem, the error introduced in this way turns

-x/e))w

out to be 0(e

We now assume expansions for ul_, V2 of the form:

3/2 (3/2)(€ v

2 t) + ... ,

ujLCC: Y,t;E) (l) (CaY:t)"'E
(5.8)

(1)

3/2 (3/2)(

v, €,y,t3¢) L@y, et vy L,yst) + oov

Foilowing the standard procedure we obtain a system of differen-

tial equations and boundary conditions, which, written in terms of the

@ @ @ .
xxﬁ’Txyz’Tyyl , 1is:

stresses 1

LG ORI ¢ D B D D

= '
XXSL,; XYL,y Xy IVL,y ’ 3.7
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for U<g <o , =1 <y<l, 0<t< oo
W, =0 , (W, =0 (5.8)
xy- vy

for 0 < ¢ <w, 0 <t <>

T @9, = £ P g0 - 2D O 0,6y 7O 0,001, (5.90)

d
Doy,n=0 (5.9b)
for -1 <y<1, 0<t<w
(1) 1) 1) _ '
éig Coxt ® Txyg,Tyyz 0 . {5.10)

for -1 <y <1, 0 <t <, These equations are merely the equations of
static elasticity with t appearing as a parameter. No convenient
explicit solution for the stresses can be found (cf. Johnson and Little
[16]). However by integrating equations (5.7)‘over their domain, we
obtain a coﬁdition (restricting the prescribed stresses at z= 0 )
necessary for the existence of a solution for the above system. From

(5.7) it can be observed that if a solution exists, then:

xy4,T yyl,y

1 = '
= ey (1)
0 J—l ! ['xxz,c ¥ Txyl,y ] dedy
l o
0= J J D Dy gy
-1

Assuming that we can reyerse the order of integration where necessary,
using the boundary condition (5.8) and the decay condition (5.10) we
find:

1 1
J (U 0,y,0ay = 0, f I CRACLRKINE (5.11)
-1 -1

If a sclution exists the first equation of {5.7) shows that:
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1 o
_ 1) (1) ,
0= J_1J5Y(Tnﬁ,c+Txyl,y)dCdy

After integrating by parts we can simplify this equation using the second

result of (5.11) and the boundary condition (5.7). We find that:
1 o8 :
v T 0,y,t)dy = 0 . (5.12)
-1 xx 2

Conditions (5.11) and (5.12) are satisfied by the prescribed stresses

(5.9a), (5.9b) if:

- 2 1

“ggi(o’t) gy J_lf(l)(y’t>dy ) - (5.13)

$(0 ©.t) = - 302 1 f(l)( d s 14)
d,zz" 8(a2_1) —1y Y y > .

for 0 < t < ». These conditions provide suitable boundary conditions for

;;0) and ;éﬁ) at the end x = 0. The equations (5.12) and (5.14) are the

main results of this section. We do not attempt to develop explicit solu-

) (1)
A 2

tions for u and v

» but merely note before proceeding that Johnson
and Little [16] have obtained useful results in relaﬁion to eigenfunction
expansion &olutions for the system of equations (5.7), (5.8) and (5.10).
To demonstrate the complex interaction bewteen the diffusive
approximation, inner approximation and boundary layer approximations

at higher orders we now investigate the next two orders.
O/ G/ 4y (372

: ses T
The stresses <x2 ’Txyl

satisfy the following

equations:

LB/, 6/ _

xx%,C xyl,y ’ {5.15)

(3/2) (3/2)
Txylag * Tyylsy
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for 0 < g <o, =1 <y <1, 0 <t <

risgz)(c,il,t) =0 , Téigz)(c,il,t) = 0 s (5.16)
for 0 < g <2, 0 <t g @
Tiiiz)(o,y,t) = -y 5192512-3§f£§)(0,t) , (5.17)
0 0,5,0 = §¥D 4,0-6>0HR IO o0, (5.18)
for -1 s_y <1, 0 <t <oy
iiﬁ Tiiﬁz),T§§£2},T§§£2) =0 , (5.19)

for -1 <y <1, 0 < t < », Using wethods similar to those used irn inves-

tigating the system (5.7)-(5.10) we can find a necessary condition for

existence of a solution of the above system. It is:

1
J 1(3/2)(0,y,t)dy =

= 0 s (5.20)
_l.xxz
! 1(3/2)(0 t)dy = 0 5.
-1 Xy,Q, ¥ y 3 (J.Zl)
NG (3/2) 4.y . t)dy = 0 5.22
YT exe ,¥.B)dy = s (5.22)

-1

for 0 < t < @, Substituting the prescribed conditions (5.9ab) into the

equations we obtain the resulis below:

1 .
=(0) N L3’ - 3/, . (5.23)
vd,zzz(o’t) = 31 f~lg (y,t)dy ,
-V-(l/Z} (O,t) = ) , (5.2/*)

d,zz
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for 0 < t < » . These results provide suitable boundary conditions for
(0, 5(1/2)
d d

We consider one additional order before examining T(l),...

xxl

1(3/2) in more detail. The system of equations governing the behavior
of ug('z), véz) interact with ug(ll), vél). We can write them in terms of

stresses as follows:

L@ L@ W

XX, xyl,y 2, tt 2 B ) (5.25)

xyL,¢ yye,y 2,tt °

b
for 0 < g <e | -1 <y<1, 0<t<=;

. Tf{f(z‘(;gil,t) = 0 . T}(rii(f;,il’t) = " (5'26)

for 0 2 <, , 0<t <>,

() (6.v.t) = - (a2-2) (. (2) 0 - 52 gy + 8(a%-1) S(D) (g -
TXXQ,( IV ) Yl 20.2'__ (Pl ( ,t) P2 ( y L, -"——-52—— Vi,XX\U,t)]

- 226@ 0,00+ 0,0+ 462D 5 (0,01 >§_34£9‘§g.1_>‘€§‘jizzz<o,t)

2_ — - .
- [—f"‘(—(%zl—’ Vﬁl)z<o,t>+ 2e*-n @10t 0,01, G.27)

’ s Z2ZE

(2) IR P ) W ¢)) _1..(2) (2) -
rxylc_o,y,w 79,7 (0,8)-q, (0,1)) 7 (@ (0,6)+q,%) €0, )

- *-1) ——T—z(“z‘l) ?&ii;m,t) ; (5.28)

for -1 <y <1, 0 <t<o> ;

1im 1(2), «{2), «(2) =0 , (5.29)
g>o xxk Xyl vyl

for -1 <y <1, 0 <t< o, Even at this order interacticn between the
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boundary layer approximation, the diffusive approximation, and the
inner approximation has become quite complex. Proceeding as hefore we
obtain a necessary condition for the existence of a solution of the

above system as follows:

1 1

[
J lriii(ﬂ,}’,t)dy = 1 ;lt):t(g’Y5t)d§dy R (5_30)
1 1

[
J ng‘((]sy:t)dy = J. élit(c’y’t)dcdy R (5.31)
"1 o

1

1 1
J_lyrif{i(o,y,t)dy - | j a1, Gy, tdasay - | f J Vi) G2y, £)dzdzdy,

-1’0 -1’0

(5.32)

for 0 < t < =, We assume at present that the infinite integrals on the
right hand sides of equations (5.30), and (5.32) all converge (this
assumption is discussed subsequently). We can therefore substitute the

stresses prescribed at £ = 0 to obtain the following conditions:

1
_ 2
, (1)(0 t) —IETT")[ (2)(0 t)+p§2)(0 t)]- 5—@9’—-1")[ "uf_‘zt( Z,y,t)d &y,
(5.33)
v /20,4y ———-7—3“ (020,044 20,0145 3 o [l [ Q) (ry.traw
d 222 16( ) 9 ? q 2= 8( )J 0 , Lt ”V Y
(5.34)
;(l) o,t) = : ()( t)dud lr‘” ()(z t)dzd tdy +
d,zz" "’ -1 0 2 5rYs dy - ol Vo, et'#sYs y
2
—(—ag———)[p ()0, ¢)- p52)<o £)1+35 (6+3502 5Ju+15a6)vc(l 32 0,00+
Fi(oix(o,t) , (5.35)

for 0 <t < =,
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These equations show that at this order, interaction is oc-
curring between all three of the approximations considered (inner,
diffusive and boundary layer).
Until now we have assumed that the boundary layer approxi-
mation is incapable of dealing with rapidly varying part of the pre-

scribed loads. We are now in a position to show why this assumption is

1 1
valid. The solutions for ui ) and vi ) only depend on t as a paramecter.

1 1
Thus if the prescribed loads depend on t/3$ then ui_) and vi ) also de-

(1) and v(l)

2,tt 2, tt would not be 0(1) in comparison with €.

pend on t/6 and u

This would make (5.25) invalid, since in writing these differential

1) (1)
5, tt and Vz,tt

all 0 <t <«, From these facts we conclude that the function £(1)
(13- (1
IS )

equations we tacitly assumed that u exist and are 0(l) for

occurring in the boundary conditions for u must have a second

time derivative which is 0(1) for 0 <t < » . A similar argument appli-
ed to u(3/2) , v(3/2) (3/2)
L L
second time derivative which is 0(1l) for 0 <t < » . If greater accur-

@ @ /1) (5/2)

acy was required and the corrections u s V ’
L 3 L )

then we would require f(l)(y,t) and g(3/2)(y,t) to possess fourth time

shows that the function g (y,t) must have a

obtained

derivatives, 0(1) 0 < t < =, and so on.
We now briefly consider the error introduced by the approxi-
mation of domain and the related question of the convergence of the

integrals in equations (5.33), (5.34) and (5.35). The results of

1 1 -
Knowles [19] show that the StreSSES‘é ) and«f ) are 0(e /e

xx£ xyl
and therefore need not be considerasd in any analysis at the end x = 1.

)at(;:.l/g

A similar result can be dsduced from the form of the eigenfumction

expension representation for solutions of (5.7)-(5.10) obtained by
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Johnson and Little {16]. These authors found that each term of aun

1)

eigenfunction expansion, for say s’

invelved a decaying exponential

@
2

in the variable ;. The overall exponential decay of 1 and the con-

vergence of the integrals in.(5.33), (5.34) and (5.35) can probably

be proved as a consequence of the exponential form of the eigenfunction

expansions; however this result has not yet been established. It would

be even more desirable to use the more direct energy estimate methods

used by Knowles[19] to prove the convergence of these integrals.
Results similar to those discussed above can be deveioped

for the end x = 1 by introducing the variable ;' defined by the

equation:
= 1x . (5.36)

3 €
and considering tl.e boundary laye:r corrections uz,(g',y,t) and
vz,(c',y,t). We will not consider these corrections in detail as the
analysis is substantially the as that for e, and Ve However, it is of

interest to note that we would obtain the following boundary conditions

to use with the inner approximation and the diffuse approximation at

x = 1z —(0) _
ui’x(l,t) = 0 , (5.37)
—=(0
Vd.zz,z.(O,t) =0 s (5.38)
-—(0
vg,zz,z,z.(O,t) =0 s {(5.39)

for 0  t < », These last two conditions, together with the initial
condition (4.33), and the differential equation (4.32) show that
(0 L

Vg E 0. In fact the lowest order boundary layer terms at x = 1, uz,

and v,y are also identically zero.
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6. Further Consideration of the Inner Approximation acd the

Diffusive Approximation.

With the additional information obtained in the last section
we are now able to completely determine the functions‘ﬁgo),-ﬁgl), which
i i

are part of the imner approximation, and the functions :ﬁo);gél/Z)’ :ﬁl)
?§9),'$§}/2),'3§}) which occur in the two diffusive approximations.

First we consider'ﬁfo) and'ﬁgl). In section 3 it was shown
1 1

that’ﬁio) satisfies the following differential equation (3.9):

Gi?it - 462-1) 5(0) =1 @®- a{?))

o i,xx

for 0 < x< 1, 0< t < =; in section 5 we found the following boundary

conditions (5.13), (5.37) :

1.
W, =2 | Dy, 3@ -=0,
i,x , 8(ac-1) J-1 i,x
for 0 < t < ®; and we have assumed that 1l§0)satisfies the initial
conditions:
10 (x,0) = 0 |, 10 (x,0) =0
i i,t

for 0 < x < 1 . The above system of equations completely determines

ﬁ‘o) which can be found explicitly using standard techniques. We shall
i

not exhibit the solution for G‘O) here. It can easily be verified that
i

the derivatives u(0) and T(0) are 0(1) in comparison with €, and the
i,tt 1,xx :

development of 7#0) valid, only if the rapidly varying prescribad normal
i

stress is excluded from the boundary condition (5.13). We can summarize
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the results for ?J—'(l)as a solution of the following system of equations:

i
(1) 42-1) (1) a2-2  (2) (2)
Ui, et -~ @2 UiL,xx T 942 (p1,x *+ PZ,x) >

for 0 <« x <1, 0< t < = 3
(2-0?) 1, (2) ) 0.y1- a2 (Y o

. ’
ey = (2202 (@) (2)
u (1,v) oD [pY47 (1,t)+pl4/ (1,t)]

for 0 <t < =

Ei(l) (0,t)

W x,e) =0 , T®(x,t) =0 ,
i it

»

for 0 < x <1 . From these equations it may be observed that the first
term of the boundary layer approximation,' ugl) , must be obtained before

we con solve for u(l) .
i

The lowest order term in the diffusive approximation near

x = 0, —\_réo) , is a sclution of the following system (cf. (4.27), (5.14)):

—(0) 4 g2-1 —(0)
3 =0,

Va,ee t o? Vd,zzzz
for 0 < z < @ , 0 < t < w }

—(0) 302 1 (1)
Vd,zz T T 8(e?-1) J( y £,y ,

(0 N PLNR L€ V2
Vd,zzzz(o’t) m}_lg (y,t)dy ,

for 0 <t < =

—(0 - i
lim vé ) (z,t) =0 , 1lim véo) (z,t) =0 ,

Zr ) ) Z-ree

for 0 <t < = 3

1t
o
-

'x?éo) (z,0)
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for 0 < z < w, This system completely determines véu) and a solution
can readily bve found using standard techniques. In an earlier section
. : - . . . —(0]
we assumed that the effect of the diffusive approximation vé ) was small
1 . . . . .
at z = --(x=l). To verify this assumption we muzt examine the
—=(0) . . . APt () R
solution tor vy in detail. We can obtain a solution for Vi having the

following form:

—(0) _ k/Ejﬁjs(3/2)(t—T) oz 22

)
Va,zz - (l) (t-T)&s:Ln(

drt (6.1)
2 372 ! A
oi /T 2k"T ,)
where the notation below has been used:

2 1
Do g | v Powy
-1

2
3 34 3/2)
5 (3/2 2 (e = EYCLN) } (3/ ) (y,t)dy .
The behavior at the end =z =-§: , 1s found by substituting this value for
€
z in (6.1). We fiad that:
s }
~(0) 1 2MHsGP oy WP 1
d az( ,£) =k i - 57372 r S (4k41r YdT (6.2)
/ﬁ Jo 43 2k7T /54)
For finite values of t, using the Riemann-Lebesgue lemma (Apostol [2])

(3/2)(y,

and the properties of f(l)(y,t), g t) discussed earlier (existence

of two t-derivatives for 0 2 t < ®) we find that the right side of

3/2

(6.2) is at least as small as 0(¢ ). This result is obtained by using

integration by parts in the right-hand side of (6.2). This estimate

_(O) Gl; , t) is not uniformly valid. 1In fact for t as large as

d&uﬁ

1. . , ~ . ,
O(EO it is not valid. But we are only concerned with times before the

of

first wave (the dilatation wave, see section 8) travels the length of the
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rectangle. Thus the original assumption that the diffusive approximat-
ion‘;§0) does not produce significant effects at the end x = 1 is valid.

We can also show that w(9) (L ,t) is smaller than 0(c). Thus
: ,ZZZ Vg

T (.i ,t3€) is smaller than 0(55/2) and T (-l
xyd Ve : xxd Ve

0(85/2). These stresses contribute to higher order effects at the end

,t3;€) is smaller than

x = 1 but only at orders beyond those of interest for the present work.
Further discussion of the contribution of'séo) at the end x = 1 for long
times can be found in section 10 of this chapter.

The next term in the expanéion for va is'§§l/2) which

satisfies the following system of equations:

—(1/2) 4 o?-1..(1/2)
Va,tt ¥ 3 o Vd,zzzz =0

for 0 <z <ew , 0 <t <oy
—(1/2) ‘
Vd,zz (O,t) =0 ,-
—(1/2) 302 (2) (2) 302 . L (1)
Vd’zzz(ost) = = 16((14..1)[511 (O,t)‘*'QZ (O,t)]" 8(@2—1) J Vﬂ,ﬁttdgdy ’
. -lo

for 0 <t < =
lim‘;(l/z)(z,t) = 0 .
Z>w

for 0 <t < = ;

VA2 (z,00 =0 , FED(z,0) =0 ,
d d,t

H
for 0 < z < = ; note that the boundary layer approximation term v(l)'
- 2
must be determined before a solution for v(llz) can be found.
d
.- a
A similar system of equations can be written four vé}/‘),
the lowest order term in the diffuslve approximation at the end % = 1.

This completes the consgideration of the inner approximstion,

the diffusive approximations and boundary layer approximations. These
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approximations together describe only the effects produced in the
elastic rectangle by the slowly varying part of the precsribed loads.
We now consider effects resulting from the rapidly varying part of the

prescribed loads.

7. Formal Wave Front Approximations.

In constructing the approximations of the p#evious sections,
we have taken into account all the conditions of the original problem
except that part of the applied load at the end x = 0 which varies
rapidly. In an elastic plate we.expect such loading to give rise to
significant stresses propagating in pulses associated with three
different speeds: the dilatation speed, ﬁhe shear speed and possibly
the Rayleigh speed (we use the symbol 8 to represent the ratio of the
Rayleigh speed to the shear speed). The rapidly varying parts of the
prescribed loads are functions of t/6 and we expect this scale ﬁo be
important in describing propagative effects. Consequently we introduce

a wave front coordinate f defined by the equation:

_ ct-x
€ = = .

At present the constant c is undetermined. We will deduce the signific-

(7.1)

ant possible wvalues for ¢ in the course of the construction of the wave

s

front approximations and at present assume only that it has a walue in
the range 0 < ¢ < a. We introduce another new variable emphasizing the

wave character of the problem. This variable,n , is defined by:

n = QT-(ct+x) . (7.2)
EZ

The choice of scale in the equation above for n ensures that wave front

approximations obtained later are wvalid everywhere in the plate aad
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not just near the wave fronts. It will turn out that the scheme
developed in this section is of use only when the parameter ¢ is small
in comparison with e; that is, when thevrapidly-varying part of the load
has a shorter duration than the time required for a shear waw to travel
across the thickness of the plate.

i

Additional corrections u , v are added to the approximate
c c

displacements u, v as follows:

L3

u(x,y,t;e,8) ui(x,y,t;e)+ uléf,y,t;s)+ u Qéié,y,t;e)+

2'1
+ X .. 1l-x . e Ay
ud (‘/E' 9Y;tat)+ ud' (7E—,Y:t9€)+ Uc(ﬂ,Y,E,E,O),

v(x,y,t;e,8) = vi(x,y,t;e) + vgéf,y,t;e)+ Vl,6l25,y,t;s)+

X .. A-x . . .
+ Vd(7g,y,t,€)+ th(‘/s ,Y,t,5)+ Vc(ﬂ,y,€,€,5) H

where gy Vo represent certain wave front approximations. We require

u+u +u +u +u_ +u and v +v +v +4v v _+v to satisfy the differential
i 2 ' 4 4" ¢ i o2 ' 4 d' ¢

equations (2.10), the boundary conditions at y = *1 (2.11a), (2.11bj,
the boundary conditions at x = 0 (2.11e), (2.11d), and initial condition
(2.11e). At first solutions are considered only until the first wave

has reached the end x = 1. Here it is found to be convenient to

consider the problem £é6r u ,v in terms of the corresponding potentials

c cC
¢ , ¥ defined by:
(4 c

u =79 - Eb 1y ,

c c,y .8 ¢,k £ C,N

(7.4)

v=¢ -8p 48 .

c C,¥ C,E € C,n

Using the properties of u ,v ..., dewloped earlier we find
i i

that ¢ ,) are solutions of the $Hllowing problem
c ¢
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e2 VC2 _ 02 52 C2
ET (l- a?):?c’gg‘*’ ¢C,yy_ 2(1+ ‘&7')¢c,gn+ ‘_E.é-(l— ?)Qcann = 0(83) 5

(7.5)
2 i 2
£, Q-cB)y 4y =2y + 8 (1Y = 0(eh)
&7 ¢, EE c,yy c,En €2 c,ynn ’
2
for éz-g <n<e =1 <y<l, 0<§<eo;
€
* . = + . =
Txyc(n, ],-92;9536) 0 » Tyyc(n, 135’8:5) 0 Py (7.63)
,52
for — £ <n<®, 0 <<=
e2 T -
§2 . - (1)
Txxc(EZS"y’g’a’s) £ a (Y;E/Cr) ’
(7.6b)
52 , o .3/2,(3/2) :
TXYC(ZZE,Y’E’E’S) € b (y,E/L) s
for -1 <y <1, 0 £ £ <« ., Here the stressesT , T . T are

XXc =~ Xyc & yyc
given in terms of the potentials ¢ and Y by the following equaiions:

c d
Txxc = %gczwc,ig~ %.zwc,£y+ 2C2¢c,£n—‘2¢c,yy+ g.zwc,ny+ §§¢c,nn ?
_ 2,2 e 2 o 82 .2 01,
Txyc = EQ(C —2)¢C’gg— 3.2¢c,€y+ 2(c +2)¢c,€n+ 22¢c,yn+ EQ(C —2)4;Csnn ,
_ g2 5 £ . 2 o) 82, 5
Tyyc = §?(c —2)¢C,E€+ §-2¢C,£y+ 2{c +2)¢c,£n- EQwC,yn+ Ez(c _2)¢C,nn

7.7
Throughout the problem posed'above, except in the definition of che
domain of interest, the parameter ¢ occurs only in the combination &/e,
For the approximations.developed in this section it is assumed that the

parameter Vv defined by:

is small,’
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Two obvious special choices for c arising from a study of
equation (7.5) are ¢ = o and ¢ = 1. We ghall find thacr the dilatation
front approximation (¢ = o) describes the propagation of the prescribed
normal stress from the end into the interior of the rectangle, and the
shear front approximation (c = 1) describes the propagation of the given
shear stress from the end into the interior of the rectangle. In the
study of these wave front approximations we find that they generate high
order effects important near the sides y = :1, Iﬁ fact we find that the
dilatation front approximation generates higher‘order shear stresées at
y = %1 and.that the shear wave front approximation genérates higher order
normal stress at y = *1. To find a method suitable for dealing with the
'secondary' stresses we must examine the sidra v = *] more closely. Near

y = 1 we introduce a 'boundary variable':

r ="_1.\-;y, (7.9

Together with each wave front approximatioﬂ@c,wc we introduce wave freont
boundary corrections ¢c£(n,r,5;a,v), wcﬂ(n,r,i;e,v)ﬂ These correc-

tions must satisfy the differential equations (7.5) and certain stress
boundary conditions at r = 0. That is, ¢c2 and wcﬁ satisfy the following
differential equations:

2

c
20 en

0

2 2
1 e : ' 2. e -
-\;2-[ (1- u2)¢d’€g+¢d’rr]_2(l+ W (l az)‘b cl,nn »

{7.10)

.2 2 _
+v (1-¢ )wcz’nn = 0

w2 (ESLD UM S E TC TS TR

We consider these boundary corrections to the wave front approximations

in specific detail in the next two secrions.
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Before preoceeding it is necessary to define the properties
of € and 6. We do mot attempt to deal with the problem where £ and §
are independent small parameters. In general it is assumed that v = Ea,
a> 0, and expansions for ¢c,¢c in powers of sb are assumed where b is
the highest common factor of a and 1/2. We shall only consider the
special case a = 1/2 in detail. It is easily seen that the methods dev-
eloped for this special case also apply for other values of a. We now
consider the two cases ¢ = a,l in detail. Since the normal stress at

the end x = 0 is given at a lower order than the shear stress, the case

¢ = a is considered first.

8. The Formal Dilatation Wave Front Approximation and Associated

Boundary Ccrrections.

First consider the wave front approximation associated with
the choice of ¢ = o in equations (7.3)-(7.7). We denote the correspond-
ing potentials as ¢a,wa, and use the independent wvariables Ea,na defined
by the equations:

at=-X _ ot+x

QT o T e ®-0
(cf. equations (7.1), (7.2)). As was stated at the end of section 7,
only the special case v = Ve is considered. It is required that ¢u,$

should satisfy as many of the following conditions as possible:

| -4 = 0(e?d
¢0‘,Yy ¢0¢,Eana ( ) i (8 2)
1 @-a®y o+ - 2(1+a?)y + e{l-a?)y = 03
E a:@asa T, 7y a,rl(_xga Oy NNy

for efy, < ng <, =L <y <1, 0 < i, < »;
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T, (n ,*1,£ 3e) =0 R 1. (n ,%1,F ;¢) =0

Xyo o ) _ yya o a ’ (8.3a)
for B8, SN, S 0 <& <
&D) Qo
Txxa(ega:Ysga;e) =€ a (y,zf) ’
: ) / £ (8.3b)
(3/2), (3/2)
Txya(esa,y,sa;e) = b (Y,;gﬁ s
for -1 <y <1, 0 j_Ea < w3
u, (n ,y,05e) =0 . v (n,y,05e) =0 | (8.3¢)
for Ega <, -1 <y < 1; where the stresses Txxd,TXYa,Tyyd and

the displacements u&, vd are given in terms of the potentials ¢d and

wd by the folluwing equations:

eaZp’

Ye2y + _
a:nay a:nana

1, 1 2
T = oty - =2y +20.°% L .=2% +
JXXOL € a,Eaaa Je a,iay a,iana o%,¥YY

1

" 1 2 . . . ’ . . =

T = =(a2=2 -2 +2 (0242 +/e2 +e (@?-2)

xye T e g g T g PO g W e @D,

: 1,5 2N 4 - 2 2 . | ' »
= =(a%-2 + 42242 ~2Ver +e (@22 _
Tyva e(a )¢a’ga€a ;%w“’gay (o )¢a,gana Ewa,yna e (a )@u’nanaa
1

u = - == + +/e (8.4)

a ng)d,ga wa,y € ¢G-ana ’
v = ;L.¢a gt ey .

¥ /E 2%y a,y Q:na

Expansions for ¢a,¢u of the following form are assumed:

52¢§2)(na,y,£u) + 35/2¢;5/2)(na,y,aa) o ;

(8.5

¢a(na’Ysga;€)

S 2y, .. 5/2 (5/2
b (noya i) = <20y 4 D pey L

2
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Then adopting the standard procedure we find that ¢§2) and wéz)

satisfy the system ¢ f equations written below:

$(2) _ 4 62 o

H

BRI A4 a’naga
p(2) =0 ,
a,E E,

for 0 <n <=, -1 <y <1, 0< Ey < ©.3

(l) + = (l) k4 —
T n.,*¥, 0 s T n_,*1,¢ ) =0 >
xya( a £s) yya( ar bt

-

for 0 < n < m', 0<g <o

il
[N
~~
[Se
p—
~~
&«
=
S

Tiig(O,y,Ea)

1
Tiyi(O,Y,Ea) =

|
o
-

e

a

for -1 <y<1,02¢g <=
3/2 - 3/2 =
ué / )(nasy’o) =0 ’ V§ / )(ﬂa,Y,O) =0 ’

for 0 < n, <=, -1 <y <1. Note that the boundary condition at

Ny = € £, has been replaced by a similar one at Ny = 0 and the domain of

a
the problem modified accordingly. This is a procedure similar to the
approximation of domain used in deriving the diffusive approximation

and boundary layer appioximations of earlier sections. Now the errors
produced by the approximation of domain are relatively large. However,
provided that the prescribed rapidly varying normal stress a(l){y,t/é)
satisfies certain conditions (discussed later) we can show that thess

errors. are uniformly smaller than 0(55/2) in the ecalculation of the

. A2 P 2 P :
stresses. Wa can now solve for ¢§‘) and wé") cbtaining solutions:
. i,
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¢(2) = Z 2 (1)6-)J (nw/ —z))dz. sin nny

a n=1 o
0

£
o |”q

+ ZJ % aD &g ELh ). cos Ly (8.6)

n=1]

(2)
=0 8.7
o) 3.7
where
1
gi)(a) = J‘la(l)(y,i)sin nry dy )

éi)(a) =.J_la(l)(y, )cosg%~; ry dy

and J is the Besuel function of order zero. The subscripts "o'" and "e"

éi)(a) s aé;)é&) refer to the fact that the part of a(l)(Y,E/m)Which

(1) (1)

is an even function of y contributes only to a, s and the part of a

( )

which is an odd function of y contributes only to an Here we solved

$2) ana 4@ @ @

themselves since only these derivatives are required for the calculaticn

for the derivatives rather than the potentials ¢

of stresses and displacements at this order. The corresponding stresses

and displacements are:

~ - /e
Tiig B a(l)(y,g la)= ] (1)6“) I (nnvn (& -"))dz sin nny
@ n=1 o 0 2#& -
£, : o
® (2n-1)mvE
- z él)( 2N — [¢] Jl(z'ﬂ"l" r——‘—n (E —z))dZ.COSg‘Izl:‘]:‘ Ty
n=1 B el 4/? -z 2 & e
o
LC R :
Xyo
® _ 4?2 (D

T
yya
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g

. \ «© o .
u§3/2, = ’Z :%aéi)Cg)Jo(nﬂvna(Ea—z»dz.sin nry

n=1 o ‘

= (% (L)

1A (1) zy; 2n-d - 2n-1
-nzl o2 3en (a)Jo("'z"“nVna(éa z))dz.cos 7 1Y X(B's)
(3/72) _
va =0 .
£

This solution is useful only if the prescribed load a(l)(y,ig) has the
property that:

g
2 (tl,—a‘l) =0 . (8.9)

Equation (8.9) requifes that the rapidly varying part of the stress Tox
prescribed at the end x = 0, vanishes at the vc¢*nrers y = t1. 1In general
this condition may not be fulfilled. We shall aiscuss how to deal with
~loads having non-zero values at y = *1 in 2 later section dealing with
"corner approximafions". At present it is assumed that the prescribed
normal stress at the end x = 0 fulfills equation (8.9), or that we are
considering the part of the normal stress which fulfills condition (8.9).

We now consider the error introduced by the approximation of

domain. At na = €Ea:

g ‘
f e @ty 0 D 20502, () 30 ()

XXO XK o o 045 O, o
’Eaga 56" 224 2oy

- g . (1) 4
£ v e )m £ .
If our procedure is to be of use then Tﬁw‘\eﬁg,),éa,e) €T (sgu,y,fu)
(2)

is uniformly of higher order than . Substituting the solution for ¢a

obtained above in (8.6) we find the following result:
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. 1
TXXG(ESQ,Y,EG;E) = Ei‘}(cxzt(gga’y’ga) =

3/2) § LD 2 8. Su% 1/2 —
€ Zlnﬂj a . (a)[( 0 + (3~ 37)( 3 ) )Jl(nn/gVEa(Ea—d))
o Fa o
' E‘on.'z 3/2 :
- £ ) J3(nﬂ svéa(ga—z))]dz.sin nry +
o
2n—- a Lz 2 8. 5.7%1/2
- T A QU+ G- P Dy <-—--—-r/‘/ "‘<“"'"))
n—l g ga<§a—z) o
8% 372 on-1 rml )
- ngwﬁ J3G-§—-WJEVEa(Ea—z))]dz,cos~??—vnii.
"o

Bessel functions satisfy the following inequalities (cf. Watson [371):

.le(x)] j_j% s Xreal, k>1 , lJl(X)[ i.%' ,  x real.

Using this information we can obtain the estimate below:

|t (€E SN ET( )(t’ci sYsE )| <

.XXO!.

o« o
232 ) 9—;—'{ lac()i)(az-)l[z’—‘fv’é +2/7 (1+ ;—%—)]dz
o]

n=1

+) 21'1?—-1 J { gl)( )l[Z‘z‘Il:—ITVE:"?*Z/—ﬂ.‘i")]dZ)\
n=1l ~ o J

The property that a(l)(y,aa/a) = 0 for Ea > o has been used im the

(8.10)

above formula (8.10). This property eusures that the integrals in (8.10)
(15

converge. Of course a less restrictive condition on a could have been

1), . _1 . e fed
\y,Ea/a) ~ iR for large £, However insis-

: G
g . . . s
a )1s zero for £ > o is a more cenvenient practical criterion

prescribed; for example, a

ting that a
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for the division of the given data into slowly and rapidly varying
parts. To ensure that the estimate (8.10) is uniformly valid we must
prove that the series on the right hand side of (38.10) converge uniformly
for -1 <y < 1, A sufficlent condition for this 1s that the proscribed
, @y, - . T .
function a (y,ga/a) has a continuous second derivative with respect to
. (1) _ D s , ;
v and a v (l,iu/u) =a (—l,gu/u). This means that we can only admit
> L,
quite smooth functions of y (where our definition of smoothness is the

existence of continuous sedond derivatives), It becomes apparent that in

(5/2)

order to develop higher order terms ¢a

»eee, we would have to know if
1, . . . . .
a( )(y,gc/a) has continuous fourth derivatives with regpect to y. We do
4
not investigate this matter in any further detail.

We now briefly consider the next order, that is the functions

5
¢§5/2),W§5/“). These functions satisfy the following system of equations:
(5/2) (5/2) (5/2)
9, -4 T T =0 Yoz g =0 (8.11)
0,yy a,n &, at &,
for 0 < U <ew -1 <y<1l, 0¢« &, <=3
(3/2) _ (3/2) N -
TX}’G (nas l’g’u) =0 s Tyya (nOL’ lsga) (VN
for 0 <n <®, 0 <E <o ;" (8.12a)
- a - "o
(3/2) oy _ lim 1, (1), (D ,
" xxo (O’y’gu) T 0 /e ta (y,ga/a) Txxa(ega’y’g)J ?
€
for 0<g < , -1 <y < 1 (8.12b)
(2) } 2 }
u, " (n,,y,00 =0 , v "(n,y,0) =0 ,

(8.12¢)

for 0 < n, <=, -1<y=1. Here, as in the previous order, the domain

€f < n < ®, =1 <y <1, 0 < & < «, has been approximated by the domain
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0 <<, -1 «cy<1l, 0 <f <o To verify that this approximation of
domain is valid at this order the properties of

1im (2 (y,5 /o) - <D (ce Ly, )]
50 Ve o X0 o a

must be determined in detail. 1In particular we must know the behavior
of this expression for large ga. It may be necessary to divide it into
a slowly varying function and a rapidly varying function before proceed-
ing. However our primary interest in comnsidering the equations for
¢§5/2)and wés/z) is not to find explicit solutions for these functions
but to demonstrate that both boundary conditions at y = *1 cannot be

satisfied. We can write the shear stress 1(3/2) in terms of potentials

Xy

¢(5/2),w(5/2) : (3/2) - _2¢(2) + (a2-2)w(5/2)

a a Xyo @, Eyy @y Eq€q

From equation {8.11) it is clear that w(Jﬁzi = 0, and we have already
o

E o Sacde }
determined ¢(2) completely in equation (8.6). It is obvious from (8.6)
a

that in general (3/2) goes not vanish at vy = t1., We now develop
Xyo

'boundary approximations' to deal with the stress 1(3/2) generated at
Xyo

y = *1 by the function $(2)
o
We first consider the side y = 1 and introduce the boundary
variable r defined in equation (7.9). The dilatation wave front
boundary corrections ¢ (0 ,r,& 3€) and ¥ (n ,r,& ;€) are introduced.
al o o al o a
From equation (7.10) it can be observed that these function satisfy:
:'l'“bz -44;25 =0
e afl,r: S n
T »=ala (8.13)

L0y - (a?-1)y 1 -~ 2(1+a2)y - e(a2-1)y = 3,
€ ol,rr ol,E,8, al,EqyNgy af, NNy

€f <n <w® Qg<r< 1 0<E <= e also require that ¢ and ¢
a o /e a al af

deal with the stress t1(3/2) generated by the wave frent approximation
Xyo
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at r = 0 (y = 1). That is:

T (n,0,£) =2 262 (v ,1,6) ,
xyafl © o a,gay o o

for € <n <o, 0<g <= . There must be no interference with
a T o ~ a

the normal ‘stress condition at y = 1 and consequently:

[
o
w

T (n ,0,¢ je) =
yyak o o

for e <n . <o , 0<§g <o, It is assumed that the displacements
a — a - o . .

u , v _ corresponding to the potentials ¢ and ¥ must be continuous.
al” ol ol al
Other conditions are required to determine ¢ g’ 1] 2; however they are
' _ o a ‘
not introduced until after the differential equations (8.13) are

considered in more detail. We assume expansiens of the form:

]

) 5/2,(5/2) 3,(5) -
¢ i(na,r,aa,s) S (na,r,ga) +e¥¢ ) (nu,r,;a) + ..,
(8.14)

5/2.(5/2) 3. (3 (. .
£ wa!?. (nd,l'a‘éa) + ¢ ll)a'ov (na,r,ga) + ...,

Y (n 358 ;E)
al o o

and thence, substituting in equution (8.13), we find that the lowest

order terms ¢(2/2) and w(i/z)Asatisfy the following equations:
o o

¢(5/2) -0 w(5/ ) - (a2_1)¢(5/2) =0 , (8.15)
al,rr ad E :

for 0 < <o ,0<r<wo, 0<«<pn <». Wemight expect that the
. [»3 v [¢2

effect produced by the secondary stress 1(3/2) at y = 1 would remain
. : Xya
local to the side. However the second equztion of (8.15) shows that

effects propagate even thouzh they occur on the same scale as r. Thus

there is no decay conditicn for large r. We assume that the solutions

¢(i/2) w(5/2) remain bounded for large r.
a .
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The boundary conditions at r = 0 require that:

fl

1(3/2) (n .0, t; )] 2¢(2) (n ,1,g) ,
xya a,gdy o a

(3/2) (n >0, )
yyol

il
o

for 0 <n <=, 0<¢g <o, Here the stresses 1(3/2) ana (3/2) gre
a a xyoh yyol

given in terms of the potentials as follows:
1(3/2) = 24(5/2) + (a2—2)¢(5/2)
xyol al,E4r 0L, 68y

7(3/2)_ (a2-2)$(5/2) - 2y (5/2)

yya al,Caga a2 Ear
The only soclution for ¢(2/2) which is bounded for large r and which will
o
allow higher ovder terms ¢(2),¢(7/2) »+++» to be bounded for large r is
' o

¢(5/2) = 0. Since no propagation in front of the wave front & = 0 is
o

possible, the solution for w(S/Z) must te a function of -~ r, and
ol Ya2-1

thus it is possible to specify only one condition at r = 0. We require

1] . to deal with the shear stress at r = 0 as we have already seen that
o

the wave front approximation ¢(5/2),w(5/2) cannot. Then the equation:
o a

0 R o r<0 ,
AV ECY
y(5/2) = vat-l (8.15)
% (3)( oo £q
$ Nyl —=-1) , - -rz0,
2 >
(a"-1) \/uz—l /az—l

provides a function which satisfies the differential equation (8.15) and
the shear stress boundary condition at y = 1. Similarly, near y = -1, if
we define a boundary variable:

r' = 1ty

14>

> {8.17)
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and a corresponding boundary cerrection ¢,y o we find that:
' ol o .
€
0 ’ —2 - -r' <0,
YaZ-1
41(5/2) = _ (8.18)
at’se 3 £
: 2 ¢(2)(n y—1, - a_r') ’ OL_..r'?_O,
o2-2 ',y oZ-1 Ya2-1
¢(5/2) = 0 .
al’

Of course ¢(5/2) and w(S{Z) do not satisfy the normal stress condition
al al

at y = 1 and y = -1 respectively. Before considering this fact in more

detail we consider the shear stress produced at y = -1 by ¢(z/2) and the
O

shear stress produced at y = 1 by ¢(5{2). At y = 1:
al

1372 (2 e )

quz a/;‘,ba

@¥E o RZTT Ve a
and at y = -1: :
0 £ < -Z- erz -1,
a JE
€ _
2 (n -1, % - 2y, g >2 /7.
%y o VoZ-1 Ve o
We can see from the above equations that the boundary corrections ¢(zf2)
&
w(S{Z) are only of use for a limited distance behind the front z = 0.
al ) o

In physical terms what this means is that the dilatation wave effects

are generating secondary waves propagating diagonally across the rectan-
gle. These sscondary waves reach the other side of the plate a distance
behind the wave front given by & = 2, Thé wave fronts of these second-

o Ve

ary waves are given by the equations:



Eo ~ VaT-lr =0 £ - Voi-l r' = 0

. (8.19)
In paysical variables these equations are equivalent to the following
wave fronts: ciT - X - /E§7Eg:Il(h~Y) = Q, cll - X - /_27. -1 (ht+¥y) =
Tnese ironts appear to be related to the Stoneley waves occuring foll-
owing a moving disturbaace in an elastic half space.

For €a~ __./Eztz'thc boundary corrections w(S/ 2) ,wéi{z)

£

not suitable for dealing with the shear stress at y = 1. We can improve

\P<5/2) ,(5/2)

are

ol LAY by taking the following expressions instead of (8.16),
(8.18):
{- 0 . Ea - Val-1l r <0 ,
,B12) _j_ 2, (@) —— | o 2
OLfL E "az_z %’y(na,l,ia- ac-1 1’.') 3 0 i F’OL a“=-1l r < ‘/‘_e‘_ 3
l <2) 1. —/aTT ry- () 1e VT e - 2.
—-2-:5 (n ’ 5 o r) -‘TZ QOL,y( Ol’ aga r )/E—I—
2.__<__ c:a - VaZ-1 r < 4 ; (8.20)
Ve Ve
~0 R S Va1 ' <0 ,
p 1) }_2.‘4)(2) (n=l,e =T r') , 0<g=- =Tz <2,
ak',g 15232 Toa e
l—z—z-q)(”) (n »=1,6 ~/alT £')- S <2>(n J1,g ~/af1 r'- L),
o 2 Q,y \/.E-
2 [T i 4
= <& =Voc=1l ' < = ,
e a
There are obvious extensions of these expressions for £, In the ranges
A< £ VaZ=1 < -8 etc. Thus the dilatation wave fromt approximation
Ve Ve '

is accompanied by wavelets bouncing back and forth across the rectangle

behind the primary wave front.
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The expressions for w(5/2) and ¢;Z{2) written iﬁ equation
(8.20) do not produce zero normal stresses at y = 1, Also if extended

(5/2) 4nq 45/

far enough these exzpressions for w show that these boun-

dary corrections produce both normal and shear stresses at the end x =0.
3
However these stresses are at most 0(c /2 “) since ¢( 2)

£y
,
~ in fact decays for large Ea, if the given rormal stress a(l)(y,t/ﬁ) has

is bounded (and

a continuous second y-derivative). Using the information we have

obtained about w(S/Z) nd ¢(5/2) we can now rewrite the equations gover-

ning the behavior of ¢(5/2) which were previously written as equations

(8.11) and (8.12abc). The potential ¢§5/2)satisfies the equations:

(5/2) (5/2)
a,yy a,En. ’
for 0 <n<e , -1<y<1l, 0<g <=3
o o

(3/2) oo (3/2) v _(3/2) L 3/2)

Tyya  (Mot1aEy) = =Tooyy (030,80, ooy " (nga=1,8)) = =1 oogr (050,20,

for 0 <n <o, 0<E < (8.22a)

- a - 7a
3/2 tim 1 W fa (@

,Exé )(0,y,€a> = Efgf,/—[ ( )( o) - u(eaa,y,&;a)% (8.22b)
(3/2) (3/2)
xmg(i,ya) (€£,yC)},

for 0 <n <= -1<y<1;

2 P
ui )(na,y,O) = . (8.22c)

< ®, -lf.}wf.l'
5(5/2)
a

for 0 < n

solution for

may be incompatible with the boundary conditions at y =

making 'corner'

suitable for dealing with the shear stress at the end x =

approximations unavoidable.

We shall not attempt to find an explicit

It should be noted that the end condition (8.22b)

*j (38.22a)
We now examine 3 merhod

0.
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-9, The Formal Shear Wave Front Approximation and Associated Boundary

Corrections.

The wave front approximation associated with a value of ¢ =1
in equations (7.5)-(7.7) is now considered. Corresponding potentials
are written ¢l and wl. We use the independent variables El,nl defined

by the equaticns:

t~X t+x
g = e——— n T ———

1 - 3/2 i 1 1/2 ’
€ €

(9.1)

(cf. equations (7.1), (7.2) and (8.1} ). Again the speclal case Vv =/e

is considered. Then ¢1,¢1 satisfy the following equations:

I a- - L -1 =
E~(1 + ¢l 2(1+ 2)¢1 £ n + (1 a2)¢ 0,

l.)¢ )
0?7188 24/ ot Tlyeyny Lnyny

: 9.2)
b, -4y =0
l,yy 1,n & ’

< < ® -1 < < 0 < ©
for g, < n, , -l <y <1, £ <

+ * = B t . = b .
Txyl(nl3 l:glse) 0 Py Tyyl(ﬂl, lsglse) 0 > (9-3>
for €€y <myj <@, 0 < g <=

Txxl<€gl3y,nl;g) = 0 y

(9.4)
Loy = 2372 .(3/2) - -
Txyl(aﬁl,y,nl,c) £ b (y,El) rxy (eaEl,y,mEl)
- - 1
rxyal(eail,r,ail) Txyuz.(eaal,r ,ocil) s
for -1 <y <1, 0 <& <, Here the stresgses T . T »T are

xx1l = xyl yyl
given in terms of potentials ¢l and wl by the following equations:
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1
€

1
= - + - +Ve2,
Ted T eLe e ey 201,50, 720yt eyt ’

»Np¥ 1M

1.
T . = = =Y - -f?¢ 6y, . +/e2¢ e s (9.5)
Xyl el glzl /' 1s£1y l’gl 1 L,y nl 1,nlnl

: g .
T L= = + ==y +6¢ -Ve2y -

yyl E l’glgl /E 1’£ly 1’Eln1 I’Yﬂl l’nlnl
We assume that the disturbance arising from the shear stress at the end

= 0 (cf. equation 9.4) cannot travel along the rectangle faster

than the shear speed. Thus for continuity of displacements at the shear

wave front we require that:
ul(nl’Y:o;E) =0 3 Vl( nl:Y:O;€> =0 ’ (9.6)

for s&l :_nl <, -1 <y <1l. The displacements uy and v, are given in

terms of the potentials ¢1 and wl by the following equations:

= - L
LT ¢1,El+wl,y+¢gbl,nl ’
(°.7)
v,o= Ly 4 -/eu
1 /E lsgl l,y - 1301 :

We assume expansicns for ¢l and ¢l of the form:

5/2 (5/2)(

N (3) .
¢1(ﬂ1:3’351,5) 1!Y’ :l)+€ ¢ (nl’y:gl) + L ?
2.8)
LN 5/2 (5/2) (3)
¢l(ﬂl,y,51,5) = (nlay,bl)+5 w (nl,ngl) + ... 9
and following the standard procedure find that ¢£5/2) and ¢§5/2) satisfy

the system of equations written below:
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a- eI o, LI, (5/2)

= 0
1 ‘EE 13yy wl,‘-‘zl rl

for O SNy < -l<y<1,0 <g <

(3/2) _ (3/2) \
Xyl (n ail,gl) =0 ’ yyl ( l/ =

fOfOinl<m’ 0__<__E_.1<°°;

D ,yep =0,
g{”(o, £ = b3/ eyl '3/2{ 82 (ear Ly 08y
w3 2)(€a£1,r,agl) 12 (eaxt )
for -1 <y <1, 0 Sk <
ul? )(nl,y, 0) = o, v (03,0 = o,

for O Sy < -1 <y < 1. Note that we have replaced the condition

at nl = sgl by a similar one at Ny = 0.and have modified the domain
‘above accordingly. This is a procedure similar to. that used in the

previous section and the error introduced by this procedure is discussed

(5/2) (5/2)

later. . We can now solve for ¢ and wa obtaining the

solutions:
(5/2)
931

?"

e 9.9)
(5/2) Z J (l) (z)J <n“"ﬂl(€1“z)d4 sin nmy
o

b1, 51 =1

Q .
b z 2 nl/(] (£ - 4))dz cosgu Yy,
1 en o 1
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where

bér};) (Z) J A(] (y,Z)bln nny dy s g(l) (Z) = J A(1) (y,Z)COSZ l‘[‘[y dy
*1 en -1 2

and J, is the sessel function of order zero. The subscripts "o'' and "e"

on b(l)(E ), b A(l)(E ) refer to the fact that the part of p )(y ) which
“( ) (1)

is an even function of y contributes to b only and the part of b

~(1 )

which is an odd function of y contributes to b only. We solved for

(5/2) (5/2) (5/2) ll)(5/2)
y U

i, El 1 &1 1

themselves since we require only these derivatives for the calculation of

and Y

derivatives ¢ rather than the potentials ¢

stresses and displacements at this order. The corresponding stresses and

displacements are:

3/2) _
Txx1 =0 >
E an/E-
- 1. £
(3/2) (l) (1) 1 S -z :
= (y,E ) (2) J (nﬂ n, (£.-2z)dz.sin nny
xyl n_l 2V€ -Z 11
g
o {1 (2n—l)ﬂ/g_
- z béi)(z} 1 1 2221“¢nl —z))dz coq?n L TY
=1 We -z
L3/2) _
yyl - (9.10)
o E‘-']_
VJ(_Z) =7 bc(,i) (Z)Jo(nm’ﬁ;(g—liz))dz.sin nny
n=1 o i g
- Z J (1)( )J ("‘1n 1 /__1gl z))dz. c:osz-‘é--l TV,
n=1
o

This solution is only useful if the prescribed load b(3/2)(v,g ) has the

property that:
- (3/2
53/ )(il,al) =0 . (3.1L)
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~(3/2)

In general b (y,gl) does not satisfy this condition. We shall

{3/2;
discuss how to deal with prescribed stresses b naving non zero

1
vaiues at y = 1 in a later section dealing with ‘corner approximations,
R 27 R ) A
At present we assume that b fulfills equation (9.11) or that we

~(3/2)
are considering the part of the shear stress b waich fulfills(9.11).

Using methods similar to those of the previous section deal-

]
ing with the dilatation wave front approximation we can estimate the

error introduced by the approximation of domain. At the end n., = €f

1 1

we find that:

153/2£(3/2)(y’£1 —83/2Ti3£2)(€€1,y,il)| = 0(62) >

~(3/2)

uniformly in ¢jand y if b (y,gl) has coatinuous second y-derivat-

~(3/2
ives, and if D( /2) (y’éj) decays capidly eaough for large £ It is
~(3/2)

difficult to decide if b (y,él) satisfies these conditions. Oaly

(3/2)
those prescribed loads b (y,%,) which sacisfy these smoothaness and
3/2 -
@2, o

decay conditions are adnmissible; however b ;) includes the shear

stresses vesulting from lower order dilatation wave effects at x = 0,

_ (3/2) o :
as well as the prescribed shear stress b (y,£ ). These 'generated
shear stresses may not be sufficiently smooth or may not decay fast
enough to allow the validity of our procedure involving the approximat-

ion of the domain. Once we have worked ou: the details of the function-

3/2 3/2 (3/2
al form of the stresses T( /2 T( /2) T )

s y T . this issue is decided.
Xy o Xy ol Xy uid

Unfortunately this seems to be practically impossible. At the moment
~(3/2)

we just assume that b (y,gl) has a continuous second y derivative

‘and decays faster than

for large €l' Any shear stress waich
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does not satisfy these conditions must be dealt with in other ways.
Shear stresses at the end which are not sufficiently smooth with
respect to y give rise to 'end waves' propagating back and forth
across the ends. We shall discuss them briefly in a later section
dealing with corner approximations. Shear stresses at the end which
do not decay sufficiently fast must be broken up into slowly varying
portions and rapidly varying pof;ions and then used in the appropriate
sections (éections 3,4,5,6 for the slowly varying end stresses, and

sections 7,8,9 for the rapidly varying end stresses) as end conditions.

Apart from the difficulty of determining all the properties

~(3/2)

£hb ,» furtlz2r trouble arising when we proceed to the next order.
_ 3 (3 .

and attempt to develep solutions for ¢l and wl « This difficulty

0

-

is exactly similar to that encountered when the systems of equations

(5/2) (5/2) :
(8.11) and (8.12) for éa and ¥, was examined. It was found
3/2)
there that the condition Tiy/ (na,il,ga) = 0 could not bte satisfied.
In the present case we find that:
2) _ 5, (5/2)
yyl 1,8y

In general, the stressldefined by the above equation cannot satisfy
oo (2) G/ .

the condition Tyyl( N,*,8) =0 (wl’gly is fully determined by

equation (9.9) and is nct zero at y = t1). Therefore we musc davelop

another method for dealing with this norma) stress.

Irn the previous section we examined the side y = 1 by dintzo-

ducing the variable v defined in equation (7.9). 1In a similar manner
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we introduce here shear wave front boundary correcticns ¢ ,r,&l;e)

. (n
1
and v (n ,r,& ;). Equation (7.10) shows that these functions must
s 1 1

satisfy the following differential equaticns:

1 1 _ 1 ! _
(- a‘)¢1£,51€1+¢1£,rr1 2(1+ 37°¢1z,51n1+5(1 57°¢12;hn1 o

1 : -
e[wlg‘,rr]_éq)lg,g n = 0 s (9.1.2)
11
gf. < n, <ew, 0 <r < 2 E:iﬂzl < < =, Note that we allow
°1 1 4 /;’ atl € "1 : 1

to be negative in this case. Although it is assumed that ro shear
effects can propagate directly down the plate taster than shear wave

velocity, we now allow effects produced by the interaction of tne

shear wave and the sides to appear in front of this wave. It is also

(2)
regquired that ¢l and ¥ 3 are capable of dealing with the stress T
y¥
generated by the wave front approximstion at r = 0 (v = 1). That is:

. (9.13)

™M
N
ro
s
e~
w Un
a2t
P
(o L

Tyy12(n1,0.815€) = -

In this case we shall find that the effects produced by this secondary
|
stress are important near the side y = 1., At present we require that

and . are bounded for r large. Expensions for ¢

12 lﬁandwl nf

%12 ;
the follewing form are assumed:

ey = 383 : 7/2,(7/2), -
¢1K(nl:r9€13«) = € ¢12 (ﬂl,r,gl) + € ¢1R Lnl,r,gl) + i

: i 3 .(3) N T &2 € X 3 TP
wlz(nlyrsglae) £ Wl (nlargéll + € Jll (ﬂlsﬁrél) L

i
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After substituting these expressions into equation (9.12), we find

(3)

that the lowest order terms ¢12 and ¥

equations:

1,.(3) 3 _
- a?9¢11,€ g * ¢12,rr B
1°1
3 _
lpl!L,rr -
f0r0<n-l<°°"0<r<co’—co<gl<co_

(3
12

satisfy the following

(9.14)

These equations can be solved

in conjunction with the boundary condition (9.13) and the boundedness

assumption, obtaining the following solutions:

(5/2)
o 1,2)
(3) _ T [ Iibl (nl’ ] .
= ' (3) =
¢12’51 T ] dz , wlﬁ 0. (9.15)
- (g;-2)%+ x2
The corresponding stresses are:
= (5/2) (5/2)
[ I!J n ,-‘, )( - ) < (Y’h :l:z)
(2) - 622—3) i 1,y (Mm,1,2)( 1-2 2oy - @z Mhyz 4
xx1 o i. [{51_2)2 + r2]2 T a” ﬂj (gl_z)2+ r2
r (5/2) w  (5/2)
(2) .2 1pl,‘f (nl,l,z)dz _ 4 2 J 1pl,y (nl’l’z) dz
1 . 2,2 9.1¢
Xy w‘J_m -2+ Ty [(gl_z)2+r2]2 (9.18)
B i (5/2} E \
T(z) - £ l"'l’_yz (nlal,Zx ‘z
yyt o 7T (& —z)2+r2

r
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I1f this procedure for removing the stress at y = 1 by means of correct-

. 3
ions ¢12,w is to be of use, the stresses corresponding to ¢12 and

1y
(3)
v written above in equation (9.16) must be smaller than 0(82) at

12
y=-1 (r= 17). Before we can estimate the size of Tigi ,Téii we
c
5/2
must examine the properties of W( /2) in more detail. Integratin
i,yz &

the last equation of (9.16) by parts the following relationship is

obtained;

@ 2 [ YOI 01,0 @)

dz .
vt [(z-.)%+ r? ]2
0 1

A crude estimate shows that Téii(nl,%g gl) is 0(Ve) uniformly in nl and
(5/2)
E if ¥ (n,1,£) has a uniform bound of O(1l) compared with e.
1 1,y 1 1 (5/2)
From equation (9.9) we can calculate ¥ (n ,1,&) as follows:
1,y 1 1
© .5 !
1 2 r —
bOe ][O @2 @) @ (D
2 s n
=10 4 (9.17)

J, (¢

2 (Rl a(3y2), 27E 7z 2n-1
) b (z)
1 en —_— 1 2

ﬂ/nl(£i~57 ) dz (-1 .

~(3/2

We have not been successful in deteimining conditions on b( /2) (y,z)

(5/2)
such that di y is uniformly bounded. It is certainly possible to

3

: (5/2)
find examples of interest where 4& . is not uniformly bounded; the
L R 1L B ; e _1
stress vyl = 1ﬁq Ey at vy = 1 in general decays no faster than gli&
+°(5/2) 3/2 1

i i S 1 e ng £ »*
which predicts that ?l,y (Ti,l,i ) will grow as fast as &, | for

large ii. Fortunately we can deal with the generated stress

'%Yl(fi,l,él) in another way. From equation (9.9) we can easily deduce
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(2)
that = (i ,1,4) is uniformly 0(1) in comparison with € (remember-
yyl i 1 )
. N .
ing the assumad properties of b xy,&i)). Thus, uritien as a
(

function of the variables x,t, the stress ¢ (0 ,1,5%.) s also uni-

27
o i

formly 0(1) in comparison with e. In c¢his foiin it way be used as a

part of the nocrmal stress at y = 1 associated with the inner approzi-

mation developed in section 3. We are in fact proposing (without

(2)
proof) that the generated stress Tyyl (n1’l’€l) can be divided into two
4

parts: a pulse near the front El = 0 which stimulates the boundary
Q,”lplj?,; and a morve slowly decaying part which can be in-

cluded in the inner approximation. Both the boundary correction and

correction ¢l

the inner approximation aie required as the boundary correction cannot
. 2) . . . .
deal with the part of v 1 (ﬂl,l,él) which decays slowly away from the
7y

front €. = 0; and the inner approximation canunot deal with the part of
(2)

T
yyl

should also be noted that this approach could not be usad to deal with

(ﬂl,l,il) which varies too rapidly spatially or wich time. Tt

stresses generated by the dilatation wave front approximation since
these effects travel along the rectangle at a faster velocity than the
inner approximation allows (the inner approximation predicts that no

disturbance can travel along the rectangle faster than the plate wave
2
speed ﬂg__,__l_l ).
02
2)
If T( ’

yyi
the boundary corrections

was ‘explicity known we would now be able to develop

(5/2) ,(5/2)
¢1A ’wlz

valid nesr y = 1 and a sinilar
correction,@iz{z) ,wii{z) valid near y = -1. These corrections would
in turn génerate shear stresses at the sides y = 1 providing bLoundary
(3)

conditicns for the next term in the shear wave front approximation $l.
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10. Further Approximations.

In the course of the development of the results of the
preceding section various restrictions, which limit the permissible
type of prescribed loads, were obtained. Some of these restrictions
were required to avoid consideration of effects variously described
by the terminology: corner approximations, initial approximations,
Rayleigh wave front approximations, long time approximation and end
wave approximations. These effécts are not unimportant but so far we
have not been able to develop the approximations describing ﬁhem;

theréfore we can only demonstrate why they occur and discuss them from
an intuitive point of view,

First we consider the 'corner approximations'. In sections
8 and 9, devotcd.:o the development of the dilatation wave front
approximation and the shear wave front approximation, we found that it
was necessary to assume that the rapidly varying part of the prescrib-
ed loads at the end x = 1 gatisfies the following conditions (cf. (8.9)

and (9.11)):
a® iy -0, ¥ (e =0

‘We could require that only those prescribed loads which satisfy the

: ' -(3/2)
first of the conditions (10.1) are considered. However since b
. (3/2)
includes both the prescribed stress b , and stresses generated by

the dilatation wave front approximation, it seems very artificial to
assume that the second condition of (10.1) is true. The question then
arises: what can we do if condition (10.1) is not true? A suitable

choice of variable allows the corner x = 0, vy = 1 to be examined in
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detail and a corner approximation investigated. However the equations
governing the behavior of this corner approximation turned out to be
the full equations of two-dimensional elasticity even at the lowest
order, and the relevant domain was an infinite quarter space., This

is a classic unsolvad problem in elasticity. A careful examination of
the equations (7.10) for the boundary corrections to the wave front
approximations shows that another choice for ¢ besides ¢ = a and ¢ = 1
is significant. For c = B, where B< 1 is the‘real roof of the follow-

ing equation (Rayleigh's equation):

(2-82)2 - 4 J1-g2 V1-g2/a? =0 , (10.2)

Solutions ¢B£ ,sz can be found which leave the gide v = 0 stress free
and which correspond to effects decaying away from the side r = O.
The difficulty is tﬁat it is not possible to decide what conditions
should be specified for ¢BE’ wBQat the end x = 0. If it was possible
to develop a 'corner approximation' this would naturally suggest con-
ditions to allow thecompiete determination of the Rayleigh wave front
vapproximation ¢82’ wBQ' The corner approximations would also be assoc-
iated with the phenomenon of ‘end waves' bouncing back and forth across
the end of fhe rectangle.

In the deveiopment of the inner approximation and the dif-~-

(2) )

fusive approximations it 1is assumed that pl (x,t), pz (x,t),

q§2) (x,t) and qéz)

(x,t), the prescribed stresses at the sides y = 1,
are all zero initially and have their first two time derivatives zero

initially. Intuitively speaking, this means that at the lowest order

there is no overall vibration of the rectangle due to waves bouncing
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from side to side. 1t also means that we must assume suitable initial
conditions for the inuer approximation and diffusive approximations.
The development of an 'initial approximation' would allow general init-
ial conditions to be specified for the elastic plate problem and would
also allow a more convincing development of initial conditions for the
corresponding inner approximation. This 'initial approximation' has
so far not been sucessfully obtained. Therefore we nust assume that
the rectangle is initially at rest and restrict the initial growth of
the prescribed stresses at y = 1 as described above. |

In the development of the diffusive approximations it was
assumed that the diffusive approximation valid near the end x = 0 has
small effect av tl:2c other end x = 1 (and vice-versa for the diffusive
approximation significant near x = 1). In section 6 this assumption
was shown to be valid for finite times of smaller magnitude than 0(1/¢)
This is a completely satisfactory conclusion as we are not concerned
with the solution to the problem after the dilatation wave propagating
‘from the end x = 0 reaches the end x = 1, However it is of interest to
note that we can develop a long-~time approximation by introducing the
variables x,y and 1 = et and the corresponding approximations, say
vt(x,y,r;e); ut(x,y,r;e). We find that the lowest order term in the

. - (0
expansion for vg can be written vy (x,1) (wing familiar notaticn)

where‘ﬁf satisfies the following differential equation:
+© 4 4 (et 7(0) =0 . (10.3)
t, 1T 3 t,xXxXxx

The two diffusive approximations can then be 'matched' on to a sclution

of (10.3).
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11. Summary.

The most significant and complete result obtained in the
preceding work was development of the plate wave equation and the
Euler-Bernculli plate equation from the full equations of dynamic
elasticity using a rational perturbation expansion technique. 1t was
found in section 3 that a slowly varying normal stress applied at one
end of an elastic rectangle propagates according to the plate wave
equation. In section 4 it was found that a slowly varying bending
moment and average shear stress applied at one end of an elastic rect-
angle diffuse according to the Euler-Bernoulli plate equation, 1In
later sections some results concerning effects arising from rapidly
varying applied loads were obtained. A summary ot the derivaticn of
these results is now presented.

In sections 3 - 9 an approximate solution of the original
system of equations (2.10), (2.11) was obtained as the sum of several
different approximations, each satisfying part of the protlem and all
interacting with one another. These parts of the overall approximate
solution are: the inner approximation, two diffusive approximations,
two quasi—static boundary layer approximations, the dilatation wave
front approximation and asscociated boundary correction, the shear wave
front approximation and associated boundary correction, the cormer
approximations and the Réyleigh wave front approximations (these last
two were not completely developed).

Before any of these approximations can be obtained the pre-

scribed stresses at the end x = 0 must be divided into slowly varying



112

parts and rapidly varying parts. We write (cf. (2.11c) and (2.11d)):

TXX(O,y,t se,8) = sf(l)(y,t) + sa(l)(y,t/é) . (11.1)
' 3/2 (3/2 3/2 )

Txy(O,y,tse,S) = € /zg( / )(y,t) + e / b(B/Z)(y,t/G)

Here f(l)(y,t) and g(3/2)(y,t) are required to have continuous

second t-derivatives of 0(1l) in comparison with € for 0 < t . This

. 1
condition is especially important at t = 0 since that f( )(y,t,) and
(3/2) . : , (1) '
g (y,t) rise smoothly from t = 0. We require that a (y,t/8&)
(3/2) ,
and b (v,t/8) are zero for t >§ , where &/ec is small. Given

certain prescribed stresses we can examine their second time deriva-
tives and if these are large only for a short time a scale § is deter-
mined and a divicion as in {(11.1) can be méde. If these conditions

are not satisfied the present methods would req dire modification.

(for example, the methods developed here cannot be used for a problem
where the impulsive part of the load has a duration as long as the

time required for a sheaf wave to propagate across the rectangle; nor
can prolonged rapidly oscillating loads be considered). We also re-
quire the prescribed end stresses to possess continuous second y-deriv-
atives, This avoids the propagation of waves across the ends.

(2) (2)

A similar condition is required for the stresses Pl ,p2 s

(2) (2)

q;  s9 prescribed at y = 1. It is required that these given funct-

ions are twice continuously differentiable for 0 <t <, 0< x< 1.

Having ascertained that the given data satisfies the above reguivzments
we can nov develop an approximate solution rfor the origirnal system

(2.10) (2.11). The first step is tc calculate the lowest order term
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¢(2) at+x | at-x
' (52/5’3’ 8 ) of the dilatation wave front approximation. For

3/2
particular case §=¢ / this may be explicitly written as follows

(cf. (8.6)):
0 EO. < 0 ,
(2) _
- I R &I _(ar/n (E-2))dz.sin
= aZlon ‘oo TN L7 T i
o
= (%o %1 2n-1 - ' 2n-1
+ Z -—5 (1)( )J (=== n nvn (% —z))dz.cos-%f— Y. £ > 0,
=1 a o a—
(8]
_ at-x _ attx (1) .z
where ¢ MEB/Z s 51/2 > 8 (a)sm ary dy,

=
(1) 2y _ (1), 2z, 2ol

en &P = _1a (v, oo~ Tydy

The expression (11.2) describes the propagation of the prescribed
noermal stress a Cl%y,t/19 from the end into the interior of the rect-
angle (with a velocityo ). As the disturbance described by ¢g ) pro-

pagates alcng the rectangle it produces higher order shear stresses on

the sides y = H%l.

To deal with these generatad stresses the dilatation wave

front corrections are developed. The lowest order terms

5/2 2 '
(Z/ )(atif l-y ot-x ) and ¢§Z{ )(dt+x’l+y’dt-X) are described by
a e JE e3/2 /£ /E £3/2

equation (8.20). They correspond to wavelets propagating across the

¥

rectarngle and moving with the dilatation wave speed. (These effects
are related to the Stoneley waves of seismology).
Next we calculats the lowest order term of the shear wave

front approximation, w(S/Z (&=, y Em——-3, according to equation (9.9)

PRRRE
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(for the special case 8= 32y i copression describes the pro-

. P . (4] 7
pagation ol thie prescribed shear scroenss &j/“) {/,t/% ) aisd shear stress-
@s generated by the dilatation wave ficiv apprusimacion (ucscrivad 07
5 .
( u( / ) q< /~)) at x = 0 into the incersinr oi che rectangle (wich

& velocity 1). The difficulty at this stage is Lhat it is not pussible

to decide in advance, for a general prescribed stress 1) (y,t/s ), what

the properties of the generated shear stresses Té;ézz i;éﬁ), Ti;éi3’

are at x = 0. 1In a particular casc we must decide how much of these
generated stresses to include with the rapidly varying effects and then
consider the remaining part with the slowly varying erifects.

Assuming that we have successfully and fully determined the

ﬂ . (3/2) _(3/2) _(3/2)
properties of the shear stresses T T T, ]
Xy o Xyl Xy?ﬁ/z)
5

can calculate the shear wave front approximaticn 2] . This express-

N

t x =0, we

. J )
ion generates higher order normal stresses T at the sides y = 1.
vy

To deal with these generated scresses we introduce shear wave front

(3)(r+x 1 y X (3)(t+\ 1+y [
1

o REARV -

~corrections describe effects important near each side moving with the

(3)
shear wave. It is found that ¢1, can only accomodate a normal stress

Z) and 2) These

boundary corrections ¥

at y = 1 wnich decays rapidly away from the wave front t = x. In gen-

(2) t4x [ . . s

eral the generated stress l\yl( s 1, 3/2) does not satisfy this con-
Ve

€ (2)
dicion. We assume that we can con81der Tyyl

in two parcs: a rapidly
decaying part producing the correction term ¢(§) and a more slowly
varying part which can be considered with the prescribed normal stress
2
P1
division oft(? >(“* ,1,£2%- ) has not been established.

vyl /e 3/2

at y = 1, , in the analysis of the inner approximation. This
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It is now necessary to investigate the lowest order term in
the corner approximations. These are required to describe the effects
produced by non zero ﬁrescribed stresses at the corners x = 0, vy = #1,
These corner approximations have not been developed. Also connected
with these corner approximations are the Rayleigh wave front'approxi—
mations. The existence of a wave front important only near the sides
y = *1 and travelling with -the Rayleigh wave speed (velocity B in our
notation) was established. However this Rayleigh wave front approxi-
mation can only be fully determined after the corner approximations
have been developed. It may alsc prove necessary to develop an end

wave approximation to account for the normal stresses at x = ( generat-
ed by the dilatation wave front approximation q:.o(tz) and the accompanying
boundary corrections ¢;2/2): wég{z). It is an obvious deficiency in the
present work that the corner approximaticns and Rayleigh wave front
approximations have not been obtained.

The results described so far account for the lowest order
éffects produced by ‘the rapidly varying part of the prescribed stresses.
We now develop the lowest order terms of the inmer approximation,
;EO)(x,t) and ;go)(x,t). This approximation describes the effects
produced by slowly varying prescribed and generated stresses at y =f1,
as well as the propagation of the average prescribed and generated
slowly varying normal stress from x = 0 into the interior of the ract-
angle. The equations for G‘O) and'ggo), written below, do not include

1 1

the generated slowly varying stresses. However the modificaticn vequir-

ed to do this is minor. The equatiouns obtained determining uso), v?u)
i i
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are:

0 _ &le1) 1,.(2)_ (2)

%1,tt o i,xx s ) , (11.3)
(0) o? ! (1) 0)

ui{g(O,t) = ETEQ:ET J-lf (y,t)dy , ui,x(l’t) =0, (11.4)

uj(-o) (X,O) = 0 s ui?t): (X,O) = 0 N (11.5)

V§?it =3 6P, (11.6)
(0) - (0) _

vi @0 =0, v R G0 =0 11.7

It is of significance that the equation (11.3) can be identified as
the plate wave equation.

The lowest order terms of the two diffusive approxiwations,

=(0) x —(1/2) 1 -x
vd (/E’t) and v X /E

moment and the average shear effects produced by the slowly varying

-—(0)

prescribed and generated stresses at each end. The discussion of vy

_(1/2)

and vy in sections 4 and 6 does not include the generated (however

,t), describe the spreading of the bendjng

" the extension of the results to do this is not difficult). The term

V§0) is a solution of the following problem:
;é?it + %.gzgl. 3§?izzz =0 (11.8)
1
;ﬁ?iz(o’t) = - §2§%§1§ J_{f(l)(y,t)dy ,

8(&‘"1) J
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lim —‘;((10) (z,t) =0 , lim v( )(z t) = R (11.10)
Zr® Z-»
;éo)(z,o) =0 , ( )(z,O) =0 , (11.11)
’
where z = ?:. Equation (11.8) can be identified as the Euler-Bernoulli
£

beam equation (see section 4).
Lastly we obtain the lowest order boundary layer approxi-

(1) x ( ) X (2) ( ) 1

mations u, C;,y,t) C—,Y,t), C“',y,t ) and v, C""",Y:t)

€

which describe the gquasi-static effects arising from the slowing vary-
ing stresses at each end. These effects zre important only near each
end.

In the above summary we have only considered the various
approximations cbtained for times before the fastest wave (the dilatat-
ion wave) reaches the end x = 1. To proceed further we would have to
consider the stresses generated at x = 1 by the approx1mate soluticn as

new data and repeat the whole procedure with the role of the ends x = 0

and x = 1 interchanged.
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