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ABSTRACT

A method of calculating Regge Lrajecluries ils presenled
and tested. The method is based on dispersion relations and on Cheng's
representation for the S-matrix in terms of the Regge trajectories,
A non-linear equation must be solved to obtain @({s). Potential theory
calculations, using the Cheng representation and a modified representa-
tion, are made to test the method. To illustrate the application to
relativistic scattering, a crude calculation of the rho trajectoxry is
made. A self-consistent trajectory with the experimental mass and
width does not exist, but one may be found if the width is about 200 MeV.
Omitted physical effects are discussed, and comparison is made with

Chew's strip approximation.
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"My bootstraps have taken me the usual distance',

Mignon McLaughlin
The Neurotic's Notebook

"We must continue to grope intelligently'!

Urban T. Holmes and Sister Amelia Klenke, O,P.
Chrétien, Troyes, and the Grail
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I. ZINTRODUCTION

There are several reasons which indicate the desirabiiity of
having a method of calculating Regge trajectories; three will be
discussed below.

1. Currently it is believed that the high-energy behavior of particle-
particle scattering of mesons and hadrons is determined by a combination
of terms corresponding to singularities in angular momentum of the
partial-wave scattering amplitude A(s,£). These singularities are poles

in g4, called Regge poles after T. Regge who introduced the idea of

congidering complex angular momentumll and branch cuts in 4, proved to
, 2 . . . ;
exist by Mandelstam ). Although at very high energies the contribution

of the cuts is probably not negligible compared to the pole contri-
butions, there is some indication that the effects of the cuts are not
important for lower energles, below 100 GeV or 503’4). In addition,
the cut terms give no contribution to the scattering amplitude at

zero momentum transfer, so for almost-forward scattering, an analysis
in terms of only poles is reasonable. These conjectures are supported
by the analyses of Phillips and Raritaa). Thev considered =N, KN,
.and KN scattering, both charge-exchange and elastic; the range of the
data included was incident momentum from 6 to 20 GeV/c and squared
momentum transfer less than 1 (GeV/c)z. in a three-pole model (the

5) 6)

Pomeranchuk™ pole, the Igi pole ’, and the rho pole), both the total
cross-section ¢ and the differential cross-section do/dt were fit

with excellent résults.
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Such fits of experimental data typically give @(0) and its
slope ®%'(0); another point on the trajectory is known for trajectories
on which lie a résonance or bound pérticle. These known points on a
trajectory provide checks of the calculated trajectory, or, alternatively,
may be used as part of the input to a self-consistent calculation of
the entire trajectory.

7,8,9)

2., Previous bootstrap calculations » which have attempted to
determine masses and widths of pafticles and resonances without
introducing Regge trajectories, have been hampered by divergences and by
inability to calculate accurately in the high-energy region. Subject
to the restrictions discussed in (1), self-consistent calculation of
Regge trajectories would determine the high-energy scattering. The
divergences willl Dbe discussed within the framework of fhe N/D methodlo),
which was used in almost all previous calculations.

The N/D method is designed to produce a scattering amplitude
which satisfies elastic unitarity and which has the corrcct analytic

behavior. For a given angular momentum j, the partial-wave scattering

amplitude A(s) is written as (the f-subscript is suppressed)

A(s) = N(s)/D(s). (I.1)

The unitarity vclation satisfied by A(s) is
& - ‘ *
[A¢s) - A" ()]/21 = Tm A(s) = A(s)A" (o). (I.2)

- This mav also be written

Tm = -1, \ (1.3)
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D(s) is made tp have the right-hand cut of A(s), from SR to «,
and no left-hand cut, and N(s) has the left-hand cut of A(s), from
SL'to w, and no right-hand cut. The propér analytic structure in s

of A(s) and the unitarity relation are automatically satisfied if N

and D satisfy the dispersion relations

NG =2 [ $2e p(s") TmoAGs")
S i (I.4)
D(s) = 1 -% f:%l-s—_'—-; N(s'").
SR

These comprise coupled integral equations for N{s) and D(s) if the

"force term'" Im A(s'), for § < §_, is known; the usual procedure is to

L)
assume some force term as given by exchange of a few particles.

The difficulty arises because these integrals generally
diverge if the force term includes exchange of a particle whose spin
is one or higher, This divergence must be removed by some method such
as by multiplying the integrands by some arbitrary factor which makes
the integral convergeg), or by setting arbitrary finite upper limits
‘to the integralsg). In any cése, arbitrary parameters must be intro-
duced, on which the calculated masses and widths must depend.

Regge poles provide one method of removing these divergences.
In practice, the divergence comes from the Im A term in the N equation.

11)

-Lt is known that, il the external particles are spinless, exchange

z

of a particle of spin ¢ produces a term in Im A(s) proportional to s

for large ]s|; however, exchange of =z Regge pole Q(t) produces a term
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. ok )
in Im A(s) proportional to s ® for ]s[ large and for some t less

than zero. Since a(t)< 1 for t < 012), the exchange of a Regge pole
gives a less singular Tm A(s) which would allow convergence of the N
integral (D(s') = 1 as s' = - «, so that the Im A(s') term determines
the convergence of the N integral}.

13)

3. A new representation derived by Cheng suggests that knowledge of

all the Regge trajectories suffices to determine the S-matrixz, whenever
the cuts in angulaf momentum may be neglected,

An alternative approach to the present method of calculating
Regge trajectories is the "strip approximation", first proposed by

14) 15)

Chew and Frautschi

16)

Chew and Jones . A modified N/D method is used for the calculation;

» later revised by Chew s and most recently, by

a Regge trajectory CG(s) is determined by the value of § for which the

denominator funetion D _{s5) is zero: = (0. The name "strip

) Pagsy ()

approximation' comes from the approximation used to determine the
force term, Im A(s') in Eq. (I.4).

Parameters Sqs Uy t1 are introduced; s for instance, is the

1’

value of s above which the force term is dominated by the exchange of

Regge trajectories in the t and u chamnnels, Schematically, this is

c(s) (L)
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Parameters uy and tl are defined similarly for ﬁhe channels in which u
and L are Lhe energy, respectively. An empirical form for the
contribution of a Regge pole to the total scattering amplitude

T(s,t,u) is written, and T(s,t,u) is approximated as a sum of Regge
poles in all three channels: s,t, and u. The partial wave projection is
then taken of T to give the force term, and the N/D equations are then
solvéd for the'Regge trajectories. The input trajectories (into the
force term) are adjﬁsted until the output trajectories (from the N/D
equation) match them,

This approach has several difficulties which make an alternative

t, are arbitrary; there

method desirable. TFirst, the parameters Sys Ugs by

is no sharp dividing line between regions in which exchanged Regge
trajectories do and do not dominate the scattering amplitude. The

hope is expressed that the precise values of $q» uys b, are unimportant,

1’71
that the calculated trajectories are insensitive to the choice of
these parameters, but there has been no indication that this will be
the case.

Secondly, the numerical difficulties involved are enormous.
The form chosen foxr the contribublon of a Regge pole to T becomes

logarithmically infinite as s - s,, so that both N and D become

1)
infinite, and a special technique is necessary to solve the N/D
, 17) _ ;- 18)
equations . In a preliminary calculation where all peles cxecpt

the rho pole were neglected, computing the output trajectory from the
imput trajectory took 6 minutes of IBM 7094 time; by comparison, the

time for the corresponding calculation in part TTI was 8 seconds.
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Thirdly, the strip approximation seems to be inadequate for
caleculating the trajcctorics above threshold, where the &'s become
complex; Collins and Teplitz conclude that "it may be possible to
'bootstrap' trajectories with some hope of obtaining the physical para-
meters for £ < 0, when all the trajectories are included, but there is
no sign that we shall be able to obtain the correct particle masses
and ﬁidths".

In the preéent calculation, the goal is to calculate Regge
trajectories for relativistic scattering, but first non-relativistic
potential scattering will be studied. The reason for this is twofold:
First, thére exist exact methods in potential theory for computing
Regge trajectories, and calculatlons have been performedlg’zo),

Any relativistic calculation is of necessity approximate; the
corresponding approximation in potential theory allows comparison
with exact results. This at least provides a megative check; if the
potential theory calculatlon gives good results, thls does not prove
the corresponding relativistic calculation will give good results,

but if the potential theory calculation gives poor results, less
reliance may be held in the Wfarth of the corresponding relativistic,
calculation, Second, in the relativistic scattering problem, various
assumptions muét be made; comparison with potential theory gives some
indiecation of the proper assumptions to make,

The exact methods in potential theory are explicitly based
‘upon the Schr&dinger equation, and so are not-suitable bases for the
extension to relativistic scattering. The method that will be used is

21)

similar to those previously used by Cheng and Sharp » and by



Frautschi, Kaus, and Zachariasenzz); no explicit use is made of the
Schridinger equation.- The method, presented in Sectiom IL, is bLased
upon proven dispe?sion relations, proven asymptotic behavior of the
scattering amplitude and of Regge trajectories, and unitarity. These
are directly extendable to relativistic scattering; all but the
asymptotic behavior of the scattering amplitude have been proven for
relaﬁivistic scattering, at least when the external particles are spin~
less.

The approach used here differs from that of the earlier
computations in that Cheng's new representation is utilized. This
representation is unitary, even in its approximations, in contrast to

21,22)

earlier calculations where unitarity was only approximately
stisfied. Dispersion relalious for the Regge poles and for the
residues of the poles of the scattering amplitude are combined with
the Cheng representation, and a set of integral equations for the
Regge trajectories is derived., ¥or a practical calculation, all but
a few trajectories must be neglected; the complexity of the integral
equations that must be solved almost necessitates keeping only one
trajectory. For this reason,_emphasis is given to finding a method
which gives accurate results in a one-trajectory approximation,
Sample potential theory calculations were performed using the
Cheng represeﬁtation and retaining one trajectory; qualitative
agreement with the exact trajectory was found. The Cheng representa-
tlon for the S-matrix contains little inIorma&ion gbout the potential,

and has other defects in the one-trajectory approximation, as discussed

in Section TI. A modification of this representation, found inde-
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pendently by the present author and by Abbe, Kaus, Nath, and
23)

Srivastava ,.is then derived. This modified representation has
improved properties, and the solution of the derived integral equation
for the Regge trajectory is quantitatively correct in a one-trajectory
approximation.

In Section IIT, the method is applied to an illustratory
calculation of the rho trajectory. The bootstrap hypothesisza) is,
roughly, that all particles are either bound states or resonances of all
the other particles, and that the forces between particles are produced
by the exchange of these particles. Thus, the rho meson is composed of
all sets of particles which may be found in a state with spin one
and isotopic spin one, such as 2%, 4w, KK, and many others. The forces
between two pions come from the exchange between the pions of 2%,

41, and many others.

In this calculation, the simplest possible situation7) is
considered as an illustration; the rho is computed as a resonance in
7% scattering only. The force between the pions is approximated by
rho exchange only; this force is attractive in the I =1, g =1
chamnel, and may be strong enpugh to produce a resonance or bound state.
If the mass and width of the imput rho are chosen properly, the force
may be such as to produce an output rho of the same mass and width.

The possibillity of this occurring depends, ot course, upon the validity
of the approximate method of calculation used. The present calculation
‘fails to.generate a self consistent rho of the experimental mass and

width, but this is not surprising In view of the drastic approximation

used. This approximation will serve to demonstrate the method of



calculating trajectorigs, but neglect of other chammels and other
contributions to the force indicates that the numerical results will
only be of qualitative significance.

The method and the asspmptions and approximations made, are
further discussed in Section III. Briefly, the method of calculation
is completely analogous to the potential theory computation. Dispersion
relations are writtemn for the Regge poles and residues, and a
representation for the S-matrix 1s derived. These are combined, in a
cne-trajectory approximatioﬁ to give an integral equation whose
solution gives the Regge trajectory on which the rho lies.

Finally, thc qualitative changes in the rho Lrajectory due to
several physical effects are investigated, especially inelasticity

and short-range forces.
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IT. NON-RELATIVISTIC (POTENTIAL THRORY) CALCULATIONS

For certain potentials, notably single Yukawa potentials. the

20)

Regge trajectories have beeﬁ calculated analytically ; comparison of
these exact results with the approximate calculations done here is the
crucial test for the validity of the methods used. In.addition, many
of the results which may be proved in potential theory may be generalized
to the relativistic. calculations.

The approach followed is similar to that used by Cheng and

21)

Sharp and by Frautschil, Kaus, and Zachariasenzz). First, dispersion
relations are written for the Regge trajectory, @(s), and for the residue,
B(s), of the Regge pole at £ = ¢(s). Then various representations

of the S-matrix in terms of its Regge poles are presented and dis-

cussed. TIn the approximation that only one trajectory is retained, an
lutegral equation for Im ¢G(s) Is derived and solved for the Regge

2 e_pr/r.

trajectory associated with a single Yukawa potential, V(r) = - g

The scattering amplitude, A(s,f), used is defined by

S(s,4) =1 + 2iq A(s,2), (11.1)
with the S-matrix obeying the unitarity condition
S(s,4) S7(s,47) = 1. (11.2)
The residue ﬁn(s) is the residue of A(s,f) at 4 = an (s)

B (s) = 1tm {[g - a ()] a0}, (LI.3)
J) ->a%(s) o
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A, Dispersion Relations for the Regge Pole Parameters

The method used for the calculation of Regge trajectories
arising from a given potential is based on the proven analytic proper-
ties of the trajectory &(s) and its associated residue B(s). It has

25,26)

been shown that the leading trajectories (i.e., those for which

Re @(s) is largest) obey a dispersion relation in the energy s:

o0
: 1 ds' 1
= - - 194 = e s .
an(s) n + el B Im n(s Y, n=1,2, (I1.4)
0
For the non-leading trajectories, @ and B are not real-analytic

functions with only a right-hand cut27’28)

; these trajectories may

cross each other, and their &'s and B's will not obey simple dispersion
. . , 2 -upr

relations of the type written here. For example, if V(r) = - g" e " /r
2 . . .

with g= = 1.8, n =1, m = 1/2, the first and second trajectories obey

the Simple dispersion relations, but the third does not., However,

the S-matrix is accurately obtained by using only one or two trajec-

tories in this case23’29)

; so apparently these "abnormal trajectories
may be neglected. 1In addition, the reduced residue bn(s), defined by
2&5(5)
b (s) =B ()/q ™, (Ir.s)
is an analytic function of s and has only a right-hand cut, from
s = 0 to s = w along the real axis. Here q is the momentum of the
particle being scattered from the potential V(r), s = q2/2m, with m

the particle mass.

Further, if V(r) is a superposition of Yukawa potentials
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[x's]

V(r) = -[du' o(n') e_uir/r (I1.6)

1

. with

g =ﬁu’ a(n"), (11.7)
B

the following asymptotic hehavior holds:

an(s) —-n+ 1 me/q as s = o {11.8)

bn(s) - me q2n -2 as s = w . (1IT.9)

This may be seen by noting that, as s - w, the S-matrix S(s,f)

approaches the S-matrix for the Coulomb potential Vcoul(r) = - gl/r.

This S-matrix has been calculated exact1y30’31):

P+ g - i gin/q)

(SJ£)= )
P+ +1igm/q

(11.10)

The ¥'a are given by the locations of the pales in g, with the f's
given by the residue of Acoul(s,z).

(In most of the literature, the mass of the scattered particle
is_expli;itly or implicitly tqken to be 1/2 to remove factors of 2m
from various equations, so that s = qz,)

Since bn(s) is real-analytic, it will also obey a dispersion
relation; because of the asymptotic behavior, however, each higher
trajectory will reguire a dispersion relation with one more subtraction.
For this.rcason, FKZ do mnot writc the usual tyﬁc of dispcrsion relation

for bn(s). Instead, they consider the function ®(s), where
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b (s)

@(s) - in . (I1.11)

n-1
I 2ms - si)
i=1

The s, are the (n - 1) zeroes of bn(s). ®(s) is real-analytic with a

right-hand cut starting at s = 0 and has no other singularities. Its
2 .

asymptotic value, as s =» o, 1s gn (mg ); therefore, it obeys a

dispersion relation

8(s) = ﬂn(mgz) + iv[qu_tgz_:—Ig Im 6{s'). (I1.12)

0

1]

In addition (q'2 = 2ms")
Im &(s') = arg [bn(s')] = arg [Bn(s')]- Im an(s') tm oq'?,  (I1.13)

Then we obtain the exact relation

n-1 _ | 5!
Bn(s) = mg2‘q2a(s) igl [2m(s - si)l exp %i[ngﬁ—fé%rjfzz-[arg Bn(s')
0,
- Tm an(s') in q'2 15 . (IT.14)

The dispersion relations for an(s) and Bn(s) form part of a scheme
for calculating & and B; the mnecessary further relation comes trom
considering a specific representation for the scattering amplitude
in terms of the Q's and B's, and from requiring the S-matrix to be
unitary at some point or points in the g-plane. The Cheung repre-
sentation and its successors are automatically unitary at -all values
of £, buf give the scattering amplitude in terms of the &'s only;

thus another relation is obtainable from the definition of B, Eq. (IL.3).
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Although unsubtracted dispersion relations may be used, as
written abowve, subtracted dispersion relalious might be of use. These

2
are (q0 = sto)

5 -8 o '
a (s) = (s)) + —;;-gf ds Im (s ) . (I1.15)
1 . 1 .
(s' - s - i) (s’ - So - ig)
0
_ 2an(s) n-1 s - 5, s - 8,
B (s) =B (s) 5" 1 (-——-4L—) exp { ——
n n- o0 2an(so) i=1 \Sp ~ Sy 7
qO :
ds’ larg B (') - Im @(s')¢n ql2 1
(s' -5 - ig){(s" - SO - ig) n

0 (11.16)

B. Representation for the Partial-Wave Scattering Amplitude A(s,f).

1. The "Universal' Representation

The first representation was used both by CS and by FKZ, although
neither wrote it down explicitly, Recgge's l) representation expresses
the total scattering amplitude in terms of the partial-wave amplitudes

and the Regge poles:

-1/24+i
. 1
T(s, cos B) = "Z-'i—[d,g Qs+ 1) % P!/ (- cos 9)
-1/2-1

2a¢_(s) + 1) B_(s)
- = Z o & PO: (s) (- cos 9) , (IT.17)

in © G
- sin n(s) n

where the summation is over those poles for which Re an(s):>-1/2.

The partial-wave amplitude is defined. for non-negative integer

2, by (x = cos 8)
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1
A(s,t) = %fdx P, () T(s,%). (11.18)
L
The relationgz)
3.
%—/dx P, () P(x) = B (11.19)

-1
which is wvalid foxr g =0, 1, 2, ..., is necessary. (In the limlt
G —-n = integer, the well-known orthogonality relation for the

Legendre polynomials results in

1
L wx) =
2de P, () P_(-x) i—l——zﬂ 2 o, (11.20)
-1
after we use the identity Pn(x) = (—l)nPn(—x).)
Taking the partial-wave projection of (IT.17) gives
2@ (s) +1 (s)
A(s,0) = F+o @ T1 1~ a oy T B, (11.21)

n
The sum is again over the Regge poles with Re an(s) > - 1/2, and
B(s,£), the 'background integral, is the partial-wave projection of
the integral term. This background integral, which is assumed to be
small compared with the first term when 4 is near dh(s), is neglected,

In practice, only one term of the sum is used, so the final result is

20(s) + 1 g8(s)

A(s,1) = 2+ 0(s) +1 g - afsy ?

(11.22)

which is used even for Re G < - 1/2. This may be called the "universal™
representation (after FKZ), since it is independent of the potential;

calling it thc Regge representation would be grossly unfair Lo Regge.
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FKZ and CS do not actually use this representation except at
4 = a(s), where it is inserted into the unitarity relatlon. A(s,g)

obeys the condition

_ % % % %*
A(s,2) - A (s,8) = 2iq A(s,4) A (s,2 ). (II.22a)

The representation (II.22) will not, in general, obey this equation

Both FKZ and C3 require (II.22a) to be satisfied for 4 = G(s). ‘lhis

gives
B(s) = Im &(s)/q, (11.23)
and
- 200(s) + 1 Im (=) 1 24
A =T 11 T 7 - a6 (IL.2%
A(s,£) is related to the S-wmatrix by
8(8,8) = 1 + 2i q A(s,£). (11.25)

In order to compare more easily with the Cheng represcntation lator,
we calculate as follows

2i Im o%{s) 20(s) + 1

Near J =-a(s),
2i Im C(s)
S(S’ﬂ)g—ja(s) IEETORE (11.27)
Near 4 = Ct(s) this may also be written
o -
S(s,p) —r,  L-L(8) (11.28)

£ —afs) 2 - a(s)
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Since this representation is used only at § = Q(s), all results of €8
and FKZ using the "universal representarion are exactly the same as if

they had explicitly used

*
S(s,L) = ﬁ—:—gi—L(s;’-l s (11.29)

which is unitary for all s,g.

2. The Khuri Representation

The Khuri representation33) was the first to incorporate the
background integral term of the partial-wave scattering amplitude
into a tractable form. In the "universal representation," the neglect
of the background integral term removed all dependence of the trajec-

tories on the potential; the Khuri representation attempted to repair

this failure, Khuri deriwved

B_(s) -l - a (s)le(s)
A(s,8) = z ﬁa—n(-s—)— e n , (II.30)

n

where cosh £ =1 +‘m2/25, and the potential is given as
[e4] co

—'I_lr
V() = -[e — o(p)dn; gz =[' o(p)dn. (I1.3D)

m : m
The sum runs over all the Regge trajectories. 1In deriving this result,

Khuri made use of the proven result D that as lg] —w, Re 4 > - 1/2,

A(s,p) = 0(e 28 Re &) (11.32)

He found it necessary also to assume the same behavior for Re § < - 1/2;

34)

since Cheng has shown this to be incorrect, the Khuri representation

is inwvalid.
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FKZ and Ahmadzadeh 2

have also presented a modified Khuri
representation; its derivation is similar to that of the modified

Cheng representation, to be given below, and so will not be derived here.
The modified representation has three major advantages over the
unmodified; fifstly, in the modified representation the scattering
amplitude approaches the known high-energy limit (the Born term) as

8 — o, even in the one-trajectory approximation. Secondly, the
modified representation has the proper cuts in s for a single Yukawa
potential, even in the one-trajectory approximation. Thirdly, the
convergence of the series for the scattering amplitude is much quicker
than for the unmodified representation; one or two poles are an
excellent approximationzg).

For completeness' sake, we write down the two Khuri repre-

sentations; the modified representation is given for the potential

V() = - g2 e P/x
Unmodilied:
2 B () -ls-a(s)]les). (II1.33)
A(s,p) = —L &
E 2 - () ©
n=1
Modified:

o Lo - o ()]E(s)

B (s) e
Als,8) = Z e
=1 n

2 . 2 = -+ n)Es) 2y
+ Q(1+—E—)-Ze P (1+—E—)]
)/ 2 £+ n n-1 2
2q 2q ] . q
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where cosh E=1+ (2u)2/2q2, and Qﬂ is the usuarl Legendre function of
the second kind. The dlle-Lrajectory approximation consists of using
. only the first term of each-sum..
Neither representation is unitary; FKZ require unitarity at
£ = Q(s) to get an expression for B(s). This gives, in the one-

trajectory approximation,

Unmodified:
B(s) = InQ e—2i £(s) Im a(s) (1I.35)
q
Modified:

~2i E(g) Im a(s) { L
q

.2 1+ &F(s)lEs)
+ =B l: & {1 + 112/25) - & :J
q2 QOd (s) 1+ Of.*(s)

B(s) = Im G(s) e

(II.36)

3. The Cheng Representation

13

This representation, derived by H. Cheng ,» allows the S-matrix

to be expressed in terms of the Regge poles only. Its comstruction

34}

was made possible by the proof by Cheng and Wu that (A = g + 1/2),

S(s,8) _9627&7\. as ]?\.I — o with Re A < 0, (11.37)

Thie wae proved for scveral potentials: a single Yukawa superpositcion

with o(p) = e-u, a square well,and any potential which has a power
: : m

series expansion V(r) = a, r if the potential is cut off at a
: n=-1 .
finite r. It presumably holds for a wider class of potentiale, but

this exact form is unnecessary for the derivations of the Cheng
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Representation and those to follow,

Cheng's derivation is as follows: the uniterity condition for

S, for s > 0,
% *
S{s,8) 8 (5,4 ) =1, (I1.38)
requires that if S has a pole at £ = C(s), S must also have a zero at

%
g =t (8), for 8 above threshold, Wow consider the contour integral

' ="+ 172, A

1l

£+ 1/2)

'
- = N RS g(i)ﬁeil i(s,ﬂ') . (I1.39)
Cr

Here GR is a cirele of radius R, centered at the origin, and R — =,

Also cosh £ =1+ p2/2s‘ The function fn S(s,f) is an analytic function

of g{or A) with branch points at the poles £ = an(s) and zeroes

i = an*(g) of S(s,£). [For this potential $(s,2) has no cuts in 2.1
The branch cuts in A' are chosen ta run fIOm,an(s) + 1/2 to

@n*(s) + 1/2, although they may equally well be chosen to run from the

1)

branch points to - «. In the region Re A'> 0, as \K‘] ~> 00

S(s, 4"y =1+ 0(e“}"§/\/}7), (IT. 40

so that the integraﬁd is 0(?\3-3/2

}). In the region Reh' < 0, the
integrand is O(ehtg) as ]k'l — e, so Chat the integral I goes to zero
as R —ow.

The contour CR may be deformed to the contour C, composed of
C. around A' = A and the Cn around the branch cuts. TFor simplicity,

0

only one cut is shown, -
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Tm A'
: 1
% + & (s)
/"‘\
} EROR
hc
1
} Re A'
¥
"’/ 1 *
2+C£1(s)

The integral may then be evaluated to givg +1/2
n

MNE(s) - dn” E!}\'IE
I=0=¢e ﬁnS(S,ﬂ)+Z A R

ST (IL.41)
n=1 « *+1/2
n
then -
o (s)
e(ﬂ' - 2)E(s)
S(s,4) = exp jg: dg' LR s (11.42)
Ta (e

which is the Cheng representation. Note that knowledge of the Regge
trajectories is sufficient to give the S-matrix. The Cheng repre-

sentation may also be written

S(s,2) = I Sn(s,ﬁ), (IT.43)
‘n=1
where o *(S)
o '
21 - EG)
8 (s,8) = exp dg' T . (I1.44)
C'Dtn(S)

‘Here, each Sn may be regarded as the contribution of one of the Regge
poles to the scattering matrix. In contrast to the earlier ones,

this representation has the advantage of being rigorously correct,
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hut perhaps the most important feature of this-representation is that

each S 1is unitary:

5_(5,4) sn*(s,g*) -1, (II.45)

This means that the unitarity of 85 does not depend on cancellations
among the various terms, and that in a practical calculation, where
only a finite number of terms are retainad of the infinite product,
the approximate S-matrix used is unitary.

We may also write each S (s,£) as
a *(s)

NG ,
Sn(snﬂ) = 7 - an(s) EXp ds

e(«g' = ,e)ﬁ(s) -1
A

o (s)
(I1.46)

Then, using the definition B_{(s) it is easy to obtain

% n
SO i ST an(s)lﬁ(s) _

Im an(s) e 1
Bn(Q) = -—(-1——— exp dg ,2' ” Ofn(s) nl;[%nsnl(sJOin(S))-

@ () (I1.47)

In the one-trajectory approximation the product is set equal to onme.

Note that, for Im G(s) small, the integrand mav be expanded to givezg)

B(s) =

Im o(s) ~2i&(s)Im Oﬂ(S), (II.48)
q

just as in the Xhuri representation. An approximation one step
cruder, for small Im &, is obtained by replacing the exponential by 1;
this gives the "universal" result

B(s) = Imqo‘ s) (I1.49)

Equating equations (II.47) and (II.14), in the one-trajectory
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approximation, gilves the integral equation

94
| (4" -t -1
Im G(s) = mgz q(1 * 20ﬁ(s))exp fdﬂ' = PR
%
+ lljr _T___QEL_T_ [6¢s")y - gnq'? Ima (s} . (I1.50)
T} 8 =8 = 1l¢g
O .
Here; €(s) = arg B(s). Letting
0¥ ()
f’ ' - als))Es)
D(s) = dg' s (I1.51)
' - a(s)
a(s)

and changing the integral over s' to a Cauchy principle value, we obtain

the integral equation

2 q[l 4+ 2 Re a(s)]

Im ¢(s) = gm exp {- Re D(s) +

3_11- }A;—dﬁlg [Im D(s") - Imo(s") n q'2 Ip . (I1.52)

The Regge trajectory (s} is determined by the solution of this ecquation,
together with the dispersion relation for Re ¢i(s), derived from (II.4)

by changing the integral to a Cauchy principle value integral:
.o

Re a(s) = - 1+ = I[ 2 m as). (11.53)
o
Writing the integral equation in the above form allows an easy
.comparison with the equations which would bLe oblained for Lhe earlice
representations:. these would give the identical equation except for

the replacement of D(s) by another function D'(s).
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Universal : D'(s) =0 (I1.54)

Khuri : D‘(Sj - 2i B{8) Im &{s) (1T.55)

Modified Khuri : Im D'(s)

-2 E(s) Im @(s) + Im Z(s);

Re D'(s) = 4n [Re Z(s)];
2 - 2 [1+a () E ()
wi - ig s ) e :|
e 20 q [Q“*(S) ( ! 24 1+ Q" (s)

(11.56)

In any of the approximations, the integral equation embodies

25)

the known asymptotic behavior of a(s):

a(s) =~ 1 + i g’m/q, as s = o (IT1.57)

1/2 + Re a(0)

Tm %(s) & 5 , as 8 =0, (IL.58)

The integral cquation to be solved if once subtracted

dispersion relations are used may be obtained if s, > 0 by dividing

0
the (unsubtracted) integral equation for Im C/(s)} by the equation for

Tm d(so), and combining the two Cauchy principle value integrals:

1 + 2 Re a(s)
Im ¢(s) = Im Oi(so) ql PO exp{ Re [B(SO) - D(S)] +
. q o

0

o

% _ ds' | . , 2
- [Tm D(s") - Im a(s")4n q Iy.
(s
0

' e g) (st - so)

(1I.59)

If SO < 0, the equation to be solved becomes (b(so) is real for 5, < Q):

0

Im (s) = b(so) q[l +2 Re a(s)] exp<{- D(s) + (same integrall).(II.60)

In either case, Re &(s) is given by



0 ds'

G (s' - &)(s" - SU)

Re Qi(s) = Re @(SO).+ Im ¢(s').

(I1.61)

In this form, the integral equation does not have the correct asymptotic
properties guaranteed. The s — 0 limit is correct, but Re Q(s) does

not necessarily appreach - 1 as s =,

Im &(s) - ¢ q[1 + 2 Re O()] as s De , (11.62)

but this is not correct unless Re G{w) = - 1, and the constant ¢ may
not be correct either., If enough information about the potential is
included, the subtracted equations can be as accurate as the
unsubtracted ones.

The integral equations (IL.52) and (I1.59) were solved for
the values of the parameters g2 =1.8, m=1/2, n =1, for the potential
V(r)w--g2 e_uﬁi‘. For {IL.59) the subtraction was arbitrarily set
at 5g = S &(SO) was taken from the exact solution given by
Ahmadzadeh35). The solutions are given in Figures 1 and 2, along with
the exact solution of Ahmadzadeh, The solution with the subtraciion
at sy = - .4 is very similar to that for sg =+ .4, except slightly
shifted toward higher energy.

The defieciencies of this representation for the S-mat+rix are
(at least) twofold, First, very few details of the force are included -
the over-all strength g2 of the potential, and its range p (in £). The
second deficiency is easy to see in terms of scattering diagrams;
these represent scattering of two particles (of mass 2m each) by an

interaction potential V(r). We have expressed S(s,£) as a sum (or



- 26 -

product) of Regge poles, and approximated by taking only one pole, i.e,,

[ o

For high energies, however, thils is seriously wrong, for it is known

that as s = o« , 5(s,2) approaches the Born term

——
) ~3 00 1
S
o2
SBorn(S;ﬂ) 1+ 2 iqLZqz Qﬂ(l + B /2q )} . (I1.63)

Therefore it seems reasonable that a better approximation than the one-
trajectory approxXimation would be one trajectory plus the Born term,
with somé alterastion to take eare of the fact that part of the Born
term will be contained in the one-trajectory term, This may be

schematically presented as

~ >——< A E(s) ,
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where for large s the O term is small compared to the Born term.
For a single Yukawa, the Cheng representation also gives the

total scattering amplitude T(s.t) an incorrect cut in t23); in

reality S{s,t) has a pole at t = pz and a cut from t = 4u2 to =, but
.the'Cheng representation in the one-trajectory approximation gives a
cut from t = uz to w (from £). (In the Regge representation this
spurious cut is cancelled between the Regge pole terms and and back-
ground integral; the infinite product of the Cheng representation is
responsible for the cancellation of the spurious cut.) A modified
Cheng representation may be constructed, which has improved properties,

as follows,

4. The Modified Cheng Representation ?’

The modified Cheng Representation is, for V(r) a single attrac-
tive Yukawa potential, fully equivalent to the unmodified Cheng
representation. In practice, however, it is superior, since the
modified Cheng Representation approximates [S(s,f) - SBorn(s,ﬂ)] by
a finite number of Regge poles, while the Cheng representation approxi-
mates S(s,£) by a finite number of poles. 1In addition, the modified
Cheng Representation gives the correct analytic properties both for
the partial-wave amplitude and for the total amplitudes, even in the
one~trajectory approximation.

Instead of the integral I of the last section we consider I'

O =gt + 12, A= g+ 1/2), 2

S In S(s,2") -»ﬁgz/q)Qﬂ,(l + E_E )
1 j(ex'E,(s)
2mi

I' = 2 ', (II.64)
A=A

CI
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where C' is shown in the figure. (Only one of the poles is indicated.)

1
<

Im A'

(C' is the limit as the radius of the circle goes to infinity and the
wedge removed shrinks to zero angle,) The integrand has no singulari-

ties except at A = A', so

AE(s) i i z 2
I"=e {ﬂn S(s,2) - === Q (1 + L—) . (II.65)
q 2 9¢%
q
The representation33)
=z P _ 1(cosh §)e_(£ t )k
Q (cosh &) = » B , (11..66)
2+ n
n=1

indicates that Qﬂ(Z) is regular in 2 except for poles at the negative

integers, with residues P 1(Z). In addition37),

B e |

s -nE

Q,(cosh £) = jom—m @

as |M - in |arg A] < 7. (II.67)

Algo,

W i) 4 of 25

S(s,4) =1 + q Q,G (1 -+ ng) + O(T ) (IT.68)
2 29

2 -

where cosh E(s) = 1 4 Z
2q
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It is then easily seen that there is no contribution to I from
the infinite semi—circle. Evaluating 1' by integrating around the cuts

from o (s) to o (s) and 1nclud1ng the poles of Qﬁ’ we obtain
(-m - 1/2)§P (1+1_J__) -

22 (ﬂ + 1/2)¢
- ig dg',
4 Z (~m - 1/2) - A Z f

=0

(I1.69)
Finally, equating the two expressions for I' gives the modified Cheng

Representation,

. 2 2 0
S(s,4) = exp -l-i‘- Q, (1 + }217:-) ]'[1 [Sn(s,ﬂ)], (TI.70)
q n=

with *

a o+ WE,

2 2,
' ' -pnt .2 -1 (/24
Sn(.q,,a) = exp l[ dg’ = - X2 .

L' - q 4+ n

n (I1.71)

This expresses S(s,£) as S times a product of Sn's where each Sn

Born
may be regarded as the contribution to S from a single Regge trajectory.
This S(s,£) produces the correct analytic structure for the totral
amplitude T(s, cos 8) 23); T has a pole in cos € at cos € = 1 + u2/2q2,
from the Q~function, and a cut from cos 8 = 1 + (211)2/2q2 from E(s).

- This is true even in the one-trajectory approximation.

The residue Bq(s) may easily be found from its defining relation.

Letting .Q%* (L7~ a )& _ 1 92 2
_ e ig By _
En(S)- f df X N + q [_QCZ o+ 2 )
. - o i} 2q
%y o+ a)t 24
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We may write Bn as |

Im a.(s) ® .
exp {En(s)] m s ,(s,&n). (1I1.73)
n'#n U

B (s) =

This equation combined with the representation (Eq. II.70) allows the
elimination of the Bn(s), and the writing of a set of coupled integral
equations for the Im an(s), as before, In the one-trajectory approxi-

mation we obtain (dropping the subscripts n = 1)
[24]

4 1
s' - s

0

- Im a(s') gu q'2J} . (TIL.74)

This then, is exactly equation (TL.52) of the Cheng Representation,
except that D is replaced by E. The solution of this integral equaticn
produces the same asymbtotic properties for Im O as does the unmodified

equation:

afs) = -1+ i gzm/q as 8 — o, (T1.75)

1/2 + Re x(0)

Im ci(s) =< s as g -0, (I1.76)

This equation and the corresponding subtracted equation were solved
for the same choice of parameters as were the unmodified equations,

2 -pr 2 , .
V(i) = - g e /fry, g =1.8, n=1, m=1/2, The subtraction point So
was chosen to be g = + .1, because the true trajectory and the one
calculated from the unsubtracted modified Cheng representation were

quite close at that value of g; a(so) wag taken from the true trajectory.

The resulting trajectory is in each case quite close to the true
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trajectory, and much better than the corresponding trajectory
calculated from the unmodified Cheng representation., 1In particular,
Re Q(w) for the subtracted case is almost exactly - 1, though this

was not forced,
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TII, RELATIVISTIC CALCULATION OF THE RHO TRAJECTORY38)

To demonstrate the application of the method to a relativistic
proBlem,-the rho trajectory will be calculated. The approximations
involved are such that only the qualitative features of the trajectory
are to be believed; little credence should be held in the numerical
values found.

The rho meson has isotopic spin I = 1, spin J = 1, parity - ,
.G—parity +, mass mp = 765 MeV, width for decay into two pions

T =~ 120 MeV39) .

In accordance with the bootstrap hypothesis, the tho
may be comnsidered as being composed of (or having an amplitude to be
found as) all systems of particles with the same quantum numbers, A
few of the lowest-mass systems include 27, 4%, 6w, ..., m%, KK, NN. A
complete calculation would require including all these systems, and
finding the rho as a resonance im each channel: 2T — p — 2u,

KK - p = 6%, and all the others. The customary argument here 7 is
that the most important channels are those with the lowest thresholds;
thus, the most Lmportaul is 2u — 23, with the channels with higher
thresholds less importamt; this is equivalent to saying that the rho
is primarily composed of two pions, with a lesser admixture of heavier
systems. This is a rcasonable argument, but the difficulty is in
deciding where to draw the line. In this calculation, the rho will be

considered as being wholly a 2% resonance. This is correct in reactions

b
with center-of-mass energy less than ﬁmﬁ ), but less accurate for

*) The units are such that § = ¢ = 1.
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higher energies; the approximation is certainly a crude one, but suffi-
ces to demonstrate the method which may be used in more accurate
calculations.

The usual Mandelstam variables are defined:

2 2
4(q + mﬂ ),

S:

2
t=-2q (1 - ZS), (T1IT.1)
u= - 2q2 (1 + zS),

with q the s-channel center-of-mass momentum of one of the pions, m the
pion mass ( = 139.6 MeV), and zg the cosine of the s-channel scattering
anglc in the conter-of-mass system, The total s-channel amplitude

Ti(s,t,u) is defined in terms of the partial-wave amplitude by

(s, t,u) = Z Qs+ 1) Ales,p [2,() + (—l)IPﬂ(-z)]. (I1I.2)

£=0
Since
z=l+“-—'2-'E—'"-é" and-z=1+-—-—gl1--—2—-, (ITI.3)
s - énﬁ s - 4mﬁ

Bose symmetry is satisfied:

T (s, t,u) = (-1)TT (s u,t). (III.4)

{(The Bose symmetry allows some simplification from the + and -
amplitudes of Frautschi, Gell-Mann and Zachariasenll). If, Eq. (IIL.2)

-is rewritten as

TI(s,t,u) = il(s,t) + (—1)I iz(s,u), ' (I11.5)
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the Sommerfeld-Watson transformation may be made on the T amplitudes.)

The S-matrix 1s given in terms of AI by
i ! coq L1
5 (s,£) =1+ 21 - AT(8,4), {IIL,6)

where w = Js/@ 1s. the energy of one of the pions in the center-of-

mass system.

A, The Relativistic Cheng Representation

The derivation of the relativistic analog of the Cheng
representation is quite similar to the non-relativistic derivation.

For Re g > - 1/2, it is reasonable to assume that

sT(s,0) =1 + 0 ** /D) as | 2] — o, (II1.7)

2 2
where cosh § =1 + (2mﬂ) /2q", since the least massive system which may
be exchanged between two pions consists of two pions. An heuristic

derivation of this limit may be obtained by inspection of the Froissart-

Gribov extension to complex 4 of the partial-wave projection formula40’41)
2]
__]-, 1 t' t
A(s,p) = dc' Q (1 +7=) T (s,t"). (III.8)
2 2 £ 2s [
nq
tn

Here, ZﬂiTt(s,t') is the discontinuity across the t-cut of T(s,t,u);
2 is the beginning of the cut and is equal to the square of the
lightest mass system which can be an intermediate state in the t -
channel, Because of the asymptotic behavior of the Q-function, inter-
change of the integral and the limit lE] —~w gives the desired result
(7). For Re g < - 1/2, it is not necessary.to assume that SI(S,ﬁ)

2ni{g + 1/2
- @ 10 / ),as does the non-relativistic 8, but only that
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£n SI(S;ﬁ) eﬂé

-0 as |£] %o, with Re ¢ < - 1/2. In addition, it
has been assumed that the S-matrix has no cuts in angular momentumj
if there were angular momentum cuts, then the resultant expression would

include a term for the integral around the cut. Then exactly the same

derivation holds as for the non~relativistic case, and we oblaln

o *(s)
I o m U - DE)
S (s,4) = 1 exp dg' >. (I11.9)
n=1 AN
a (s)
i3

This expression is, except for the difference in definition of s,
the same as the Cheng Kepresentation.
The derivation of a relativistic analog to the Modified

Cheng Representation requires construction of the force term,

I

SBorn(s,ﬂ). The furce Dbelween two pions comes [rom the exchange of

particles or trajectories between the pions., The particle exchangeable
between two pions include 2x, 4m, 63, ..., P, fo, KK, NX, e
alternativaely, Reggse trajectories with icotopic spins I = 0, 1, or 2
may be exchanged between two pions. In particular the exchange of a
tho, or of the trajectory on which the rho lies, produces an attractive
force in the T = 1 channel. The customary approximat'inn7 39 used in
calculatiﬁg the force is firstrto neglect exchange of all but the
lightest set of particles, which is 2w; and second to approximate

this by a single-particle exchange (of the p) which, it is hoped,
dominates the 27 exchange. In this calculation, too, the force due to
the exchange of an elementary rho meson will be used to find SBorn’

although in any quantitative calculation, this approximation would be

inadequate. Since the purpose here is to demonstrate the method, using
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rho-exchange as the force will suffice, because the force thus

found 1s attractive and of approximately the correct size to produce

. the rho resonance itself, the rho-exchange force term.

by the I = 1 projection of the diagram

kL8 %

Use of the effeclive inlLeraction Lagranglan

L

ine T 2L Y (g Foap)y “opy
for the vertex
ﬁB)qz
pp
i
I 29
gives
=1 g_ f 5 4+ m
Sﬁorn(s,g) = 1 4 23 = k?. + -——-—Q-—Zqz ) Q,@ (

m

This is given

) . (ILL.10)

(In what follows, the 1 = | superscript will be understood.)
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The S(s,f) we calculate will have a pole at § = 1 4+ ig¢ for
SO0me energy pz and some small ¢; one condition for a self-consistent

2 2
S-matrix is that p = mp . . A gecond condition comes from requiring the

width of the output rho (i.e., the resonance at g =1, s = uz =m 2)

p
to be the same as that of the input rho. The condition on the

coupling constant is

..
> =
A

wlt—-\
=

2
d |_qa
Re S I:A(s,l):' R (TI1.11)
0

Actually, this calculation is only approximately self-consistent;
true self-consistency would mean using the rho trajectory as the
Born term, or as part of the Born term, and then requiring the calcula-
ted trajectory to match this. The method used here is equivalent to

. , . . 2 12y
matching the trajectories and slopes at one point, s = m .

To derive this expression, we first note that the I = 1

amplitude for A(s,l), from the diagram

b1y T

is A(s,1) = 5}’[ : T s (IT1.12)
S m

if the intermediate state is an elemetary rho. Near s = m 2, the
!

amplitude for resonance as intermediate state in the same process is
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thé_same except (s - mbz) in the denominator has an added imaginary
term, ‘the condition (I1L.11) results from requiring the input and
. output coupling coﬁstant yz, and thus the widths, to be the same.
The experimental width F(p — 2x) is related to the coupling

2
constant y by

2 (mpz _ 4mﬂ2)3/2
r~ Y 5 ; (ITI.13)
"

this is obtained from the definition of I' as the rate for the process

p »2x, i.,e,, the diagram

with the final pions in an I = 1 state.
Cheng and Sharp use the approximate ewpression for the oufput
width as part of their self-consistency requirement:
Im ¢(m 2)
T = 0 . (IIT.14)
mp %; [Re a(s)]s _ mbz

43)

This comes from the following agreement . For § near ¢(s),

1

Ao = 7oy

(I11.15)
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With C{s) near 4, s is also near mp , and
G(s) = 4+ (s - m 2) d_ Re C(m 2) + i Im C(m 2) (II1.16)
~ p 7 ds o 7 p 7’ .
so that

. ) »
A, 0) {csii; Re O‘(mpz) l:s - mp:2 + i Im Oﬁ(mpz)/ %’g‘ Re O&(mpzil} )

(II1.17)
The width I’ may be identified by writing A(s,4) in the form
1
A(s,2) oo = s (IT1.18)
E-m + i+
o) 2

with E = Afs the total center of mass energy, Using
5 -m 2 o 2m {E - m )}, we obtain
8 P p

2
i Im G(m ™) - -1
Al ) o \f%— Ee m Zﬂ 2 [E - m, e ]} ;
| ds P P P om 9 Re agm 2
p ds 0

(I11,19)
which gives I’ as Cheng and Sharp have it.
To see that this T is'approximately the same as the onc we
obtain, note that we have

$(s,0) = £nB () RO (III.20)

£ - 0{s)

where presumably the second factor varies much slower than the first

factor near the resonance at 4 = Re &. (Cheng and Sharp had T(s) = 0.)

‘Since 2 2
Od(mp ) =14+ i Im Od(mp )}

S(mpz,i) = - exp [%(mpzi] . | (I11.21)
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Using the requirement (YII.11), assuming the numerator varies slowly

compared with the denomimnator,

2 3/2
-(m " -~ 4m 2) ’ .
1 . 8 u 4 i
7 6% m Re[ds 5G,1) - 1] o (TIL.22)
" 0 s =m
p
.(-1._ R 05( .
ds(s,1) _ Cds Re A8)  4qigy 2
s o = |- 21 alarm o €XP T(mp .
§ =m Im %(s) 5 = m
o P
(XI1.23)
2
3 Iy
L @P-wm2)?? raReat@?) 27 o
P e B Re E—+ '@ ) 5 .
2 67 m \_ o cm 2) P T(m <) 9
Y - o - (L +e P )
(TI1.24)
vy 2 2 .
If we neglect T (mp ) and set T(mp ) = 0, we obtain
., @7 -2’ Rea'@?)
S adase &, (I11.25)
12x Tm O
Y m T (mp )
then using Eq., (IIL.13)
Im & (m 2)
= E— (111.26)

2
m_Re G'(m
o (m )
so the two methods are voughly equivalent. (In the actual calculation,
the two methods differed by about 5 to 10 percent.)

With Eq. (TII.10) as the Born term, exactly the same procedure

is followed as in deriving the modified Cheng Representation, to

obtain (I11.27)
: 2 2 .
i} Xoaf, P o) 7
S(s,£) = exp (i T (2 + 3 )Qﬂ (1 + 2) I Sn(s,;ﬁ),
2q 2q° /n=1
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«
wherea o

| RN Y- 2 s +m m
5,(s,) = XPU e - 1S E (2 o )
_ 2q
&
n

e U mE, n)} ) (1I1.28)

2
-1 (2mﬂ)
Here £(s) = cosh (1 + 5 , since Zmﬂ is the smallest mass Ethat
2q

can be exchanged between two pions., The residue Bn(s) of A(s,2) at

4= Oﬁn(s) is then

W 2 s +m2 e-(m)g ;
{Sn(s) = -C-I- Im Odn exp {D(s) + i %%—E (2 + -—-w-E--z )[Qan el Pn-l]

2q
v
. n];]:-:l Sn| (S,an) (111.29)
n'#n
W [2e]
- E Tm @n exp {Fn(s) } n|];[1 Sn| (B,Ofn) (I1I.30)
n'#n
- where Odn“(s)
(' -a)t
D (s) = dp' & Nl 5 (TTT.31)
1
04 S) £ - O&n(s)
n

'_and Fn(s) is defined by these equations., In the one~trajectory
approximation, the product is, as before, set equal to onej then, the

n subscripts may be suppressged;

B(s) = % Im C(s) eF(S), (T11.32)
%
: o (s) 9
e(,{if - 1 2 s + m
F(s) ={ dz' + 19X (2+____9._)
' w21 \ 2
£ - 2q
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I_QCX (1 + "Q_) - '(;_(i‘;;'gli] . (I11.33)

The second term of F is due to the Born term; inclusion of this
term is the only difference, since the £ is the same inthemodified and
unmodified cases.

One defect of this representation in the one-trajectory
approximation is directly attributable to the use of an elementary rho
for the force. The S-matrix does not approach 1 as s - o (for

physical £) as it should, but instead
2

2 - m
. 1
S(s,4) —y exp {2i XE l-_Qa<oo) (l + -:;—2) glirpn 1] (III.34)

Using Eqs. AL.l4and AIL,20 of the Appendix

2 . .
S(s,8) = exp{2i 3’-1; fn -iz- - vp - Y+ oa(oo)i] (I1I.35)
m
ar
S(s,4) — exp {i (a; +a, in s)} s (IT1.36)

with ay and a, conslauls defined by these equations. Thus the
magnitude of S is correct asymptotically, but not the phase, This
incorrect phase comes solely from the Born term;y in reality, some
mechanism, perhaps the Regge mechanism, damps the Born term and the phase
goes to zero,

It may be noted, too, that if all the trajectories are kept,
‘the asymptotic phase of S 1s correct, so that this spurious infinite
phase is directly due to the one-trajectory approximation.[The Q term

cancels the sum of the P terms.]
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B. Dispersion Relations for & and B

For those trajectories which do not intersect with other
trajectories, it has bheen shown that ¢(s) and b(s) are real analytic

functions, with only a right-hand cut from threshold to infinity along

25)

the real s-axis . Gribov and Pomeranchuk44) have shown that C(s)

then will obey a onee subtracted dispersion relation of the form
0

5 - 8 '
a(s) = Od(so) + - = 0 f ( ds Im a(s").
S

Y. s - dg)(s’ - sy = 1€)

S
T (I1I.37)

\ . 2
Sy 1s the threshold for the reaction, here equal to 4mJT . If
Im G(s) -0 aa 8 > w, as is true for non- relativistic Crajeclories, an

“unsubtracted dispersion relation will hold:

4]
e

a(s) = Ciw) + %--] ds_ Tm a(s'). (111.38)

s'-—s-ic

S

In view of the asymptotic behavior S(s,f) -1 as s » « for physical
£, and the representation IIT.9, Im G(s) should go to zero as s -
unless some complicated cancellation among trajectories occurs.
The high s-limit of the Regge trajectory,t(»), is not known. For this
reason, it may be preferable to use a subtracted dispersion relation,
especially if the subtraction is made at the rho mass. This was done
in the calculations performed.

To derive an expression for B(s), we use the same technique as
in the non-relativistic case. We assume that the residue of the rho
trajectory has no zeroes, just as the leading trajectory in potential

theory Las no zeroes. From Eq, (IIL,29), after a little algebra,
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we may see that

b(s) ;a i%a%g%l exp'{}(al + az in s)} as 8 o o (II1I.39)

(The infinite phase is spurious, and is the same one discussed earlier.)
Il we are Lo write an unsubtracted dispersion relation of the same
20 ()

type as before, we need to know the limit of Im C(s)/q Recall

that in potential theory, the analogous limit is known:
b{s) — mg2 for the first trajectory, where m iz the cxtcrnal particle
mass, To avoid an assumption about the asymptotic form of b(s), a

subtracted dispersion relation will be used
[+

2c(s) 8 ~ 8§ e ‘
B(s) = B(sy) —2 exp 2 4 -
0 2&(80) {: T JZ (s' -5 =~ ig)(s" - Sg - ig)
9% G

i

- Eu:g B(s") = Im <a(s") fu qz(s')]} . (I1L.40)

C. Integral Equation

In the one-trajectory approximation, using this and the previous
equation for B(s), we obtain the integral equation

W -q[1 + 2 Re (s)]

Im O(s) = Im ab ;Q 1T 77 i U(SO)J exp {Fe [F(so) - F(S)I +
99
s ~s_ f '
" 0 ds [%m F(s') - Im a(s') 4n q'%[}.
. (s' - 8)(s' - 85) .
hm (II1.41)

(No use has been made of the dispersion relation for C(s); the same
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integral equation obtains for sﬁbtracted or unsubtracted dispersion
relations for ®(s), if a subtracited dispersion rélation is used for
b(s).)

Since Im & -0 as s - = , D(s) —» 0. F(s) approaches i(al + ay
in s}, a; and a, the constants previously defined, but again this is
because of the unphysicél nature of the Born term at high s,

The "true" F(s) would go to zero as s — w., For all cases investigated,
Tm ¢{s) 4n q2 -0 as s - ® ; since for a better choice of F(s),
F(s) -0 as s =» «© , then the Cauchy principle value integral would — 0

as 8 - w , Then as s = = , the equation reduces to

2 Re ¢(s)

Im #(s) = (const.) ¢ (TiL.42)

Since Im @(s) — 0O, then Re Clx) < 0. If F(s) does nct — 0 as
s ->wm, however, Re Q{w) may be positive.

Since F(s) - 0 as s = 4mﬂ2, at threshold we have

q2(%*+ Re )

Im Q(s) o , (111.43)

just as in potential theory.

D, QGalculation

The procedure for finding the rho trajectory was as follows:
Choose 8 = mpz, the experimental wvalue, a(mpz) = Qb =1+ Im ao. Pick
a value for ao and for yz. Solve the integral equation ILI.41 using
the definition of F(s) as in Eq. ITI.33 (or a modified F as described
later}. Then calculate the output y2 by Eq. III.11 and check that it

agrees with the input Yz. Vary Im &0 until the input and output

2
values for y agree (if that is possible, for the given yz).
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Using an elementary rho as the Born term as previously
degscribed, and using thé experimental rho mass, it was found that no
self-consistent sblution exists with the experimental width
(' = 120 MeV). However, a solution does exist for a larger width; in
particnlar, a self-consistent solution for the rho trajectory was found
with I' = 200 MeV. This is shown in Figs, 7, 8, and 9. The important
featufes to be noticed are that Re C(w) =~ .03, positive, but barely so.
Re ¢(0) = .9, and.decreases very slowly as s becomes more negative.

4)

Analyses of recent experiments have indicated that Re ap(O) = 54,
indicating a steeper slope than that found here. None of the investigated
modifications steepened the slope of Re @ below the threshold; for
the three modifications described hereafter, the below-threshold
character of Re @ is virtually unchanged. (It may be noted that, for
Re & to be steeper, below threshold, the peak in Im & nust move Eo
lower energies). Similar below-threshold behavior was found in a
preliminary calculation by Collins and Teplitzls); they found ap(O) = 715,
The integral equation which is obtained from the ummodified repre-
sentation was also solved; this gives results close to those obtained by
Cheny and Sharp, and radically different from the solution to the modi-
fied equation. No solution could be found with the experiemntal mass
and width, A sample solution is shown with @(mpz) =14+ .025 1i;
this has an output T of about 500 MeV (Figs. 5,6).

In none of the calculations, including the modified ones to be

described below, did Re Q(s) ever become large enough to produce a

second resonance at £ = 3; the maximum Re O was always less than 1.5.
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E. Phenomenological Modifications

Sevéral modifications of the basic integral equation were made
to investigate,.qualitatively, the effects of physical processes
which were left out. In particular, it was desired to know if inclusion
of these neglected effects would make it possible to find a rho trajec-
tory with the rho meson at its experimental mass and width. This

was'found to be the case,

1., Inelastic effects

This was, as expected45), found to be important in narrowing
the width of the resonance. 1In the previous calculations, inelastic
4 . . * * - - » .
unitarity, § (s,£ ) S(s,£) = 1, was used, ignoring inelastic channels.

In reality, this should be a matrix equation,

x % * %
S11 (s,2 ) Sll(s,ﬂ) + Skl (8,4 ) Skl(s,ﬂ) =1 (IIL.44)
k>1

plus another equation for each possible reaction, and the sum runs

over all states k for which is neater than the threshold for that state.
[Nofation: Sij is the amplitude to go from state j to state i, and
state 1 is the xn state of beforel. Thus our equation S*S =1

should havc been

9*(B,ﬂ*) S(s,8) = £(a,4), (ITT.45)

where £(s,4) is a real positive function of both s and £. For s below
the first inelastic threshold, i.e., s < (Amﬁ)z, f(s,ﬂ)_is identically
one, and [ is less than (or equal to) one for higher energies;

0< f(s,4) <1.

If we regard f as a known function we can use the same
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arguments on S(s,£)/ f£(s,4) as we did on S(s,2) before to derive a
new representation which phencmenologically includes inelastic effects.
The fjffis merely carried through as a factor in all the derivations,
if it is assumed that I/JEE;:ES has no cuts or poles that would
necessitate changes when the contour integral corresponding Lo II.64
is done. For the simple choice of f chosen below, no problem arises.
The end result is that the integral equation, Eq. III.4l, must be
multiplied on the right side hy 1)Jf(s,@(s)), and Eq. ITI.27 for the
S-matrix must be multiplied on the right side by #£(s,8).

In order to get an indication of the effect that this would

have on the calculated rho trajectory, an arbitrary choice of

A £{s,0(s)) was chosen:
§ £(s,0(s)) 1 s 8 < 16mﬁ2

s+ 16m * e > lom” .

2s

(II1.46)

This narrowed the resonance significantly. For an input

T = 120 MeV and Im a(mpz) = ,025, the output width was ' = 300 MeV

1f inelasticity was ignored, but the output width was I’ = 85 MeV with
the above inelastic modifications. Thus it is evident that inclusion
of imelastic cffects might well result in a self cousistentl LrajeclLocy
with the proper width. The slope of Re ™ was mnot appreciably
steepened, so that Re Qb(O) is still too high.

2. Effects of Higher-Mass Exchange

The exchange of higher-mass particles than the rho between the

pions is also expected to narrow the output rho resonance46). This
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was tested by adding to the Boin term a term for the exchange of ano-
ther . I = 1 meson, exactly like the rho except for having twice the mass
and half the coupling constant. (No attempt was made to caleculate

this additional meson self-consistently.)

This too narrowed the rho resonance significantly. Tor an
input T = 120 MeV and Im Oﬁ(mpz) = ,025, the output width was 300 MeV
if higher-mass terms were negligible, but the output width was 185 MeV
with the above modifications. Again this had little effect on the

slope of Re Ci(s).

3. Regge Cut-off on Born Term

The use of an elementary rho as Born term is significantly
wrong at high energies, since the Born term should tend to zero, but
the rho term becomes proportional to the logarithm of the energy. In
earlier calculations by the N/D method, otherwise-divergent integrals
were given a finite upper limit to avoid divergence. (This upper
limit provided a parameter whose adjustment provides a 'crude
representation of the natural cut-off provided by the Regge behavior
of composite states" ?) )

In order to obtain this "crude representation of the natural

cut-off", the Born term was multiplied by a damping factor at high

energies, fR(S)

iR(s) 1, g < Sp

(SR/S)E! > 5 (IIT.47)

R

This damping factor was chosen more-or-less arbitrarily;'e = 1/2
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was comple;ely arbitrary, and Sp = 7000 mﬂ2 was chosen because Im &
Im a(sR) was small thére, but Re a(sR) was not yet at its asymptotic
value (Re O & -l instead of =~ + ,03). Very little difference was
seen between the damped and the undamped solutions,

The general effect of such a term as fR(s) above, for any choice
of Sp and y, was identical qualitatively. For a given choice of
Im a(mpz) and the input yz, the inclusion of a Regge damping factor
fR(s) had the same.qualitative effect as lowering vz, i.e., providing a
weaker force. The peak in.Im O was lowered and moved toward higher
s-values, thus making Re & closer to 1 (as may be seen from the
dispersion relation for Re Q(s)), and reducing the slope of Re Q.
This latter effect than increased the output width, since

-1

d
I-\cnut w [ ds Re a(s)‘ § = m 2 1] *

P
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IV. CONCLUSION

A-meﬁhod for calculating Regge trajectories has been
presented, and has been tested in potential theory. Good agreement
was found with the exact trajectory,.in a one-trajectory approximation.

An illustratory calculation of the rho trajectory was
perfbrmed: the approximations used were sufficiently drastic that the
computed trajectory is not to be believed quantitatively, but several
qualitative features of the trajectory (Figs. 7, 8, 9) may be noted:
1) With the mass of the rho fixed at the experimental value, no
trajectory with the experimental width (120 MeV) exists. Trajectories
with larger widths (such as 200 MeV) may be calculated. This is in
accordance with expectations, based on comparison with early non-

7.9)

Regge calculations .
2) The slope of Re O{s) is smaller than analyses of experiments4)
indicates; in particular, Re @{0) is higher ( és .9) than the indicated
experimental value ( ~ .5).
3) As s —w, Re G(s) = .03, approxzimately. As discussed in the text,
an improved calculation of the force term would have given Re Qo) < 0.
4) Re a(s) never became nearly large enough to produce a second
resonance at g = 3,

Properties (1) and (2} agree with the results of a strip
approximation calculation by Collins and Teplitzlg). They used only
the rho trajectory as the input term [Eq. (I.4)], and set Re @ =1

at the experimental rho mass. (This corresponds closely to the

physical approximations made in Section III, but the mathematical
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approximations are very different.) They used a two-parameter form
for Re ¢, ‘and approximately matched input and output trajectories over
the range - 200 mﬁz < s < 0 where & is real, They obtained "good
self-consistency" in this region with a(s) = .33 + .42/(1 - s/?Smﬁz).
Their solution breaks down for s > 0, however; the output trajectory
rises only to (about) .85, so that the rho meson is not generated.
Since their input term depends on & only for s < 0, they conclude

"we regard this as a self-consistent solution, but it is clear that
our results cannot be continued into the physical region".

Qualitative consideration was given to several effects,
The effect of including inelastlc chauuels was Lo allow a narrower
width for the output rho trajectory, but not to change appreciably
either the slope of Re &(s) or Re @(0). The inclusion of shorter-
range forces had much the game effect,

Since none of the qualitative changes lowered Re a(0),
some consideration should be given to the possibility that the Re ¢(0)
calculated by Phillips and Rarita is ineorrect, and should he higher.
No firm conclusion may be drawn, of course, until a much more
accurate calculation is made. No test was made of 2) below; this is
the most important effect which remains untested, and it is possible
that this might steepen Re ¢(s) below threshold.

Improved calculations of the rho trajectory should include
some (or all) of the changes listed below. The comments with each

lare partially Eased on experience gained in calculating with this
method, partially on results in the literature, and are partially pure

opinion.
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1.  Exchange of a rho trajectory instead of an elementary rho would
permit a truly self—coﬁsistent calculation, which is essential
theoretically. If the rho trajectory in an improved calculation
proves to be as flat below threshold as the ones found here and by
Gollins and TepliLs, Lhis probably would not make a large diffevence
.in the output trajectory. (Collins and Teplitz noted that the differ-
ence between their rho trajectory input term and an elementary rho
input term was "notrgreat".)

2. Inclusion of an inelastic channel, such as the s channel, would
reduce the width of the output rho, probably enough to permit a self-
consistent rho with the experimental parameters.

3. Inclusion of a force due to I = 0 exchange, either the £° meson

or the Pomeranchuk - £ trajectory, might possibly steepen the slope
of Re &(s) below threshold and produce a Re ¢(0) nearer the experi-
mental wvalue, but this is only a conjecture. Theoretically, though,
in any reasonable approximation this force should be included, and the
Pomeranshuk trajectory computed simultaneously with the rho
trajectory,

4. TInclusion of a second I = 1 trajectory (a two- instead of a one-
trajectory approximation) is likely to be less important than 2)

and 3). This is based upon experience with the potential theory

case, where a one-trajectory model gives a fairly good approximation to
the scattering amplitude if the modified Cheng representation is

used for the S-matrix,
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APPENDICES

All computations were carricd out on the IBM 7094 computer at
Caltech's Booth Computing Center., The difficulties involved were
of two varieties: first, the setting up of the programs for doing the
necessafy integrals and calculating the necessary functions; and
second, the solving of the integral equations for Im @(s), These will

be discussed in Appendices I and II, respectively.
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APPENDIX 1 WIMERICAL TECHNIQUES

The two major computational problems were the calculations of
the Hilbert transform integral and the Legendre function Qv(z). of

much less difficulty was the calculation of D(s,q).

A, Hilbert Transform Integrals - Unsubtracted

The Cauchy Principle Value integral
3
_ 1 dx
I(y) = p j — - f(x) (AL.1)
0
was required, where the f's involved were smoothly varying; which were

zero at x = 03 and which went to zero as X — o, but might go as

slowly as (fn =/%).

After much experimentation, the following method was derived.
The integral is broken up into four integrals: I, is the integral from

= = f a '
p: 0 to X X5 12 rom xl to £y I3 from X, to LSy and L4 from

Xy to o, The choosing of these three values X, is not particularly

critical, but best accuracy was obtained when the Xy to @ interval

contained none of the "structure' of f£(x), but only its smooth decay
to zero. (This segment proved most difficult to do accurately.)
For accurate calculation, the singularity must be removed.

For cxample, by definition %
P 2

Iz-zg‘;j = fex). : (AL.2)

x -7

Adding and subtracting f(y)/x - v inside the integral, we obtain
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%, X,
=L fx) - £ . £(y) _dx
12 - f dx S — + = I (AL.3)
xl _"1
X2 -y
The second integral 1s just gn — . Exactly the same technique
' -l
is used for Il and 13, but a minor modification is used in I4 so that
the second integral will converge:
oz
£(x) -sz(y) X, + |y
I, = & fax £ + 0, J_?’I J_I . (AL.4)
4 = X -y 11 J;ﬂ _ Jﬁ
3 ¥
*3

We are now left with three finite integrals and one infinite
integral, each with a smooth integrand. It was decided to do the inte-

47)

grals by the method of Lagrangian quadratures 3 lé-point quadratures
sufficed to give the desired accuracy. The more usual Simpson's Rule
integration was rejected because it would require many more points for
the same accuracy, and the calculation of f(x) was relatively time-
consuming,

The integrals Il, 12, and I3 were reduced to the interval
[-1, 11 by linear transformations, but 14 was more difficult. A
simple change of variables from x to u like u =1 - 2 x3/x makes I4
inte an Integral over u from - 1 to + 1, but has a Jacobian which di-
verges as 1/v2 as X > «, Since the integrand contains terms which may
go to zero as slowly as gn x/x3/2, the resultant u-integrand is infinite

at the upper end, and the u-integral is only very inaccurately done by

Gaussian quadratures. After much searching, the transformation

X = X3{l + a(l + u) explu/(1 - w)l} . (AL.5)
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was found to give good accuracy. The parameter "a' was usually chosen

to be around 1 br 2, [u=o0 corresponds to x = X3(l + a)].

The resultant accuracy, for a test function like
f(x) = JEY(XO + %), for which I(y) = JE&/(XO + y), was approximately
+05 pcrecent to 0.1 percent except for the first 2 or 3 (y = 0) and the
last 2 or 3 (v ;9m) points. For the first two or three points the
error was around 1l percent; for the last 2 or 3 points the error was
small in ahsolute walue, buit because of the smallness of lI(y), the

percent error might be as large as 10 or 15 percent.

B. Hilbert Transform Tntesrals - Subtracted

<]
"

¥y - x
I(y) = —— f dax - £(x). (AI.6)
x - ¥)(x - %)

These were done in the same manner as the unsubtracted integrals
except that it was necessary to remove the singularity at x = X

(if x5 > 0). This was done exactly ac was the removal of the x = v
singularity, and then the integral was done by the same method.

The accuracy was the same as the unsubtracted, except for the
last two or three points. Here, the accuracy was around 1 percent;
the absolﬁte error was about the same size as for the unsubtracted
integral, but the percentage error was less,since lI(y)l will not in
general be small as y - w,

The relativistic Hilbert transforms require a subtracted

e . . 2 3 .
dispersion integral from g = 4mﬂ to 5 = coj a linear transformation

from s to % was used,
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The integral

x

(0

T - e
=jdge ﬂ_a'l (AL.7)
0

is required. A change of variable reduces this to

1
~
D =j du {expl - i(1L + )& Imal - 1 3/(L + u). (AL.8)
-1
The integrand is smoothly-varying, and, for the values of £ Im &
necessary, sufficiently slowly-varying so that 16-point Gaussian

quadrature gives 6 or 7 figure accuracy.

D. The Legendre Q-Function

The function Qv(z) is needed for ¥ complex, and for z real

and greater than one. The basic formula is derived from the

. . 48

integral representation
It
~

; ) L+ 2v
Q (z) = —= (sin t) dt, (AT.9)
v 21 + v 1+ v
0 {z + cos t)

which is wvalid for Re v > - 1, =z > 1, The substitution v = cos t

yields

o
1 - y dy
Q,(2) J . (AI.10)
j [2(y +2)J 20

It is desired to do the integral by Gaussian quadratures. Q, has a pole at

N
V= -1, from the {1 - yz) term; for Re Vv < 0, the integrand near

v = + 1 becomes large , and so the evalunation of the integral by
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Gaussian quadratures is inaccurate. The following transformation, how-
ever, improves the accuracy considerably: Eg. (AL.9) is identically
equal to

14V ooV,

1
Q(z)=; .—.—1—-:—22— +r 1"y b L;d
V@ ST T |Z6+a | Gra) Y-
-1

(AT.11)

Integrate the second term by parts; for Re v > - 1, the integrated

term wanishes and we ohtain the formula which was used for calculations:

1

My 2L+ 1 v
Q, () """j [2(y+z)] Ltsa+o "z(x+y):,dy

-1 (AT.12)

This is valid for Re v > - 1, z > 1, Note that it contains the pole at
V= - 1 explicitly; this formula is better approximated by Gaussian

quadrature near YV = - 1 than the earlier formula, for this reason as

v
well as for the reason that the (1 - yz) is replaced by (1 - yz)l Y,

This formula was used for z > 1,05, Re V> - ,9; for

49)

z »>1.05, Re v< - .9, the recursion relation for QV was used, and

formula (AX.12) was used to calculate Q and Q

Yo+ 1 v+ 2°
L+ M@ = Qv+ Dz q, () - (V42 Q,, ,). ALY

For 1 < z < 1.05, an asymptotic cxpreasion was usecd for

Qv(z)' The basic formula 1550)

Qv(z) = Pv(z) [% in (%—-4_-_—1-) - Yp- ¥(l + V)]

sin 7 v Z r(;z-g)pg+v+1)[m+xy(z+1)] (‘1— z)g
I (g.)z 2
=1 :
(AT.14)
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Here I'(t) is the usual gamma functiom; ¥(t) is the usual psi functionm,
¥(e) = 5 Lon 1(e)] (AT.15)
and %= 0.5772156649. .. Pv(z) is given by the hypergeometric seriesSI)

1l - =
5 ). (AL.16)

Pv(z) = F(L + Vv, ~V; 1;

The gunma-funcllion obeys the relationssz)

(L + &) = t (L),
(AL.L7)
™t) (1l - t) = n cse xt.
Thus

(e -V TUE+1+Y) =[ -1 -2-V...(- ML+ -1+V)...

A+ Wl cse v = () 7 csc nv, (AT.18)

which defines n(£), except that n(0) = 1. Using these relations, the

formula for Q,‘J can be written

w5 ) ﬂ .
Qv(z)uz 221:;2 (12— z) [-%ﬂn (jf%)+w(1+z) -ur(1+v)_].

£=0 (AT.19)

Since (1 - 2)/2 iIs no larger than .025 in the range where this formula
is to be used, only a few terms of the infinite sum are necessary;

five terms were used.

Y(1l + £) is easily calculated from its initial valuc and its reccurrencc

relation53):

(1) + Y= 0
: 1 (AT.20)
(L + ) = ¥(c) +y
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The basic formula for calculating Y(1 + V) is54)
: ' 0
1
(1 + V) + ¥, = v Z ryeanur Ul (AT.21)
n=1

which is valid except for Vv a negatiwve integer., The infinite series
was altered for quicker convergence by repeated use of the following
technique:

Zmﬁ*ii‘z‘[ "nfv]ﬂ@)'”z-z—l—- :

n (o + V)

(AL.22)

Here, f is the Rieman zeta function. The resultant formula, for N

repetitions is

N w0
vl + V) + Y= Z (-1)1 tm Ve + 1) - (- wh * 12

m=1 n=]

1

nN+ 1(n+ V)

. (AL.23)

This formula was used, with N = 9; ten terms of the d4nfinite series
were kept,

The resultant accuracy for QV(Z) was around six figures, for
tabulated values of v, v = - 1/2, 0, 1/2, 1, .., . The program was

also checked by testing to see if the recursion relation was satisfied.
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APPENDIX 2 SOLVING THE INTEGRAL EQUATIONS

The integral equations derived are distinguished by their non-
linearity and complexity, Very few techniques for solving such formi-
dabie equations have been discovered; foremost among these techniques
are jteration and guessing the answer; Both were used in finding
solutions.

The iterative method is simply stated: if the integral egquation

to be solved is written

Im C(s) = F(s; Im &(s)) (ALT.24)

t LA th
then straight iteration gives for the n gucss at Im @&

Im Oﬁn(s) = Fs; Tm Oﬁn_l(s))- (AI1.25)

The procedure indicated is the following: calculate Re ah {s) from

-L
I &n_l(s) by using the dispersion relation, and then insert the
resulting an_l(s) into the right-hand side of the integral equation to
be solved. Evaluating this rigﬁt—hand side gives the next guess for
Im G(s), Im an(s). The solution to the integral equation is the limiting
function of the sequence {Im ah(s)} > and Re ¥(s) is given by a dis-
persion integral over this limiting function.

The advantage of the iterative method is the simplicity of the
solving algorithm; the disadvantage is that iteration trequently fails

to converge, especially because of instability, An example is the

. ~X . .
equation x = e . The iterative procedure

X = , (ATI.26)
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converges to the correct answer x = ,567; with an initial guess
Xq = 0, X1 and the succeeding Xn's were cach equal to .567; starting
with_the much better guess x, = .5, Xg = ;567. However, the

alternative expression x = - gn x, with the same solution, fails to

converge with the obvious iterative procedure

X = = /X

N n-1’ (ATI.27)

There are, of course, an infinite number of possible iterative
procedures for any equation of the form x = £(x); a valid procedure is,

for example,
x = Ix) + G(E(x) - x) (AII.28)
for any function G with G(0) = 0. Choice of a proper iterative pro-

cedure can increase the rapidity of an already-convergent procedure or

cause a divergent one to converge., For example,

=L o +e ™ (AIL.29)

n 2 “n-l1 : ’
converges frowm Xo = 0 to XS = .567, in 5 instead of 12 steps; the
procedure

x = L (= - 4 x_ ) (ATI.30)

n 2 “n-l n-1 '
converges instead of diverging, from Xq = .5 to Xe = .067,

One more complexity is that of the 'radius of convergence"
of any given procedure; equation (AII.29) will converge for any initial

guess X, but equation (AII.30) converges only for x. > 0.

0

The subtracted integral equations that were solved for this
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papér were relatively easy to solve. The iteration scheme
= o .
ImC (s) =5 {Tm p (s + F(s; Im oan_l(s))} (ATII.31)

was found to converge for both the relativistic and non-relativistic
calculations, if the initial gueés was close enough, The potential
theory iteration converged much more slowly, but comvergence could be
speede& by adjusting the iteration procedure: the difference Aan(s)
between the nth iteration and the solution was found to oscillate with a
period of about 15 iterations, while decaying very slowly. Using the
average over L5 iterations as the next input produced rapid convergence
thereafter. The rho-trajectory calculations converged well, with or
without the modifications, after trial-and-error produced a reasonable
guess for Im ao(s).
The solwving of the unsubtracted potential theory egqguation

was quite a contrast, for no iteration procedure was foumd to work,
al.though many, of various degrees of complexity, were tried. The
ﬁrocedure (ATT1.31) was found to slow down the divergence enough to get
two or three iterations done before Im an(s) bacame clearly wrong., The
solution was finally obtained by trial-and-error methods,by inspecting
_a'diverging set of iterations graphically and then adjusting the guess

for the next input Im ao(s) accordingly.
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FIGURE CAPTIONS

Graphs ~ Potential Theory

All are for V(r) = - 1,8 e"r/r, m=1/2,

Figure 1: Im ®(s): - true; --- calculated from Cheng representation
(unsubtracted); ..... caleulated from Cheng

representation (subtracted at 89 = Y,

Figure 2; Re CQ(s): same key at Fig., 1.

Figure 3: Im ®(s): - true; --- calculated from modified Cheng
representation (unsubtracted); ------ calculated from

modified Cheng representation (subtracted at 5 = ).

Figure 4: Re ¢(s): Same key as Fig. 2.

Graphs - Rho Trajectory

Figures 5 through 9 are subtracted at 8o = mbz; Figures 10 through 12

. . . 2
are subtracted at 8= @3 s is measured in units of m

1

2
Figure 5: Im & (s); Im & (m .025,
g p(): p(p)

Figure 6: Re ap(s); as in Fig. 5.

Figure 73 Im ap(s); I = 200 MeV.

Figure 8: Re ap(s); T = 200 MeV, s positive.

Figure 9: Re a%(s); " = 200 MeV, s negative.

I

Figure 10: Im ap(s); Re ame) -1,

Figure 11: Re ap(s); Re upcn) =~ 1, s greafer than 4.

Figure 12: Re ap(s); Re apﬁn) - 1, s less than 4.
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