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ABSTRACT

The diffraction of transient elastic waves by a spherical cavity
is treated. Two cases are considered: (a) a suddenly applied normal
poipt load, and (b) the impingement of a plane transient pulse on the
cavity. The method used determines the solution only in the shadow
zones; that is, those points which cannot be connected to the source of
disturbance by straight-line rays. Analytical results are obtained and
evaluated for the displacements at the cavity wall.

The analysis is based on the Laplace transform (on time) and the
Watson transformation. This well-known transformation makes it
possible to convert an infinite series involving a discretle real wave
number into one involving a generalized wave number. This leads to
transient solutions the components of which have a one-to-one corre-
spondence with the modes of the underlying frequency equation. These
solutions have a form convenient for numerical analysis and for obtaining
approximate solutions.

The results given here are for the displacements evaluated at the
cavity wall. It is found that the behavior of the diffracted wave fronts
is similar to that associated with the simpler equations governing

scalar diffraction problems (see Friedlander, Sound Pulses,

Cambridge, 1958). In both problems the Rayleigh disturbance
predominates for long time, being singular at its arrival time in the

point load case and non-singular in the plane wave case.
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NOMENCLATURE

Latin Symbols

a constant

see equation (2. 2-10)
Airy function

see equation (A. 9)

a constant

see equation (2. 2-10)
Airy function

a constant

integration contour for inversion of Laplace transform
dilatation wave speed
Rayleigh wave speed
shear wave speed
integration contour for Watson's transformation
see equation (2.2-10)

see equation (2. 2-10)
Laplace transform of F(t)
see equation (2. 4-9)

see equation (3.4-12)

a prescribed function of t
see equation (2, 4-2)

see equation (3. 4-1)

see equation (3. 2-7)

see equation (3, 4-7)



a curve in the
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Vv~ plane

Heaviside step-function

Hankel function of the first or second kind
modified Bessel function of the first kind
mode number

Bessel function

see equation (B. 2)

see equation (B, 2)

modified Bessel function of the second kind

see equation (2,4-2)

an integer

see equation (3, 4-1)

Laplace transform parameter

a constant

Legendre polynomial

see equation (2.2-14)

see equation (2. 2-14)

radial coordinate

radius of cavity



I
R Rayleigh wave mode designation
s an integer

s 2 g)  see Table Al

v
& see equation (3. 2-7)
,;8,\)* see equation (3. 4-8)
t time
T dimensionless time
T2 see equation (2.7-22)
T3 see equation (2. 7-40)
T4 see equation (2. 7-40)
T5 see equation (3, 6-15)
T, see equation (3, 6-31)
T, see equation (3.6-32)
u general displacement
U Laplace transform of Ur
Ug Laplace transform of Us
UO= S normalization constant for displacements
ro()\+2 )
U, = ——1;9—?—9- normalization constant for displacements
At 2u
Ur radial displacement
Ue tangential displacement
v= —L—Uc—r dimensionless frequency

w a complex variable
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x Cartesian coordinate

vy Cartesian coordinate .
y(8) see equation (2. 7-17)

z Cartesian coordinate

z general complex variable
Zj the zeros of Ai(z)

Greek Symbols

= see equation (A. 9)

B coordinate angle

Y see equation (A, 2)
'(z) gamma function

5(#&) Dirac delta function
6ij Kronecker delta
JAY see equation (2. 2-12)
€ a small positive constant
Eij strain component

go root of equation (C. 8)
7 rsee eqﬁation (A. 29)

& coordinatc angle

K lineal wave number

A Lamé elastic constant
A see equation (A. 2)
I Lame¢ elastic constant

Vv Watson transformation parameter
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Vj root of A=0

VR Ravyleigh root

vlj the roots \)j close to v=102

VZj the roots \)j close_ to v=mQ

g see equation (A. 29)

P density

o Poisson's ratio

T - imaginary part of VR

Oa an average value of o,

Gij Laplace transform of Tij

Tij stress component

P Laplace transform of @

:p\)j_lé_ see equations (2.4-12) and (3. 4-15)
o scalar displacement potential
cpo(p) Laplace transform of cI’o(p)

CIz)(t) see equations (3.1-2) and (3.1-3)
v Laplace transform of ¥

¢\)_% see equations (2.4-13) and (3. 4-16)
¥ vector displacement potential

W= *xip angular frequency

=2To dimensionless frequency
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Subscripts and Superscripts

(

incident part of solution

scattered part of solution

Al

n

o

N
see equations (3.4-7) - {3. 4-11)
complex conjugate

evaluated at r=r

corresponding to the Rayleigh root
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CHAPTER 1

INTRODUCTION

The purpose of the present investigation is to analyze the
diffraction of a stress pulse by a spherical cavity embedded in an
infinite, linear, homogeneous, isotropic, elastic medium, Two
cases are considered: (a) a suddenly applied normal point load on the
surface of the cavity, and (b) the impingement of a plane transient
pulse on the cavity.

The work presented here is based on the results given by several
authors for harmonic waves. Nagase (1) treated the case of harmonic
elastic waves. For the case of an exterior point source, he obtained
the high frequency approximations of the displacements by employing
Watson's transformation. A modified Watson transformation will be
used here to extend Nagase's results to the case of transient dis-
turbances.

The work of Nussenzveig (2) which treats the case of an acoustic
harmonic plane wave has also been important to the present study. To
evaluate the high frequency contributions, Nussenzveig used a modified
Watson transformation and Poisson's summation formula; he showed
that for his problem the two techniques were equivalent. He gave a
rigorous proof of Watson‘s transformation and of the convergence of
the residue series which arise from it. In the present work, his
findings are used to obtain equivalent information for the case of

transient elastic waves,
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A further guide in the analytical work for the present spherical
problem is the analogous work done by Miklowitz (3, 4) and Peck (5)
for the cylindrical cavity., The work of these authors is based on a
technique developed by Friedlander (6) for representing a diffracted
wave as a sum of its cylindrically propagating components. Their
work also developed inversion procedures of double integral trans-
forms (Laplace on time and Fourier on the cylindrical angle) that
yielded transient solutions the components of which have a one-to-one
correspondence with the modes of the underlying frequency equation.
These exact solutions were shown to have a form convenient for
numerical analysis and for getting certain approximate solutions. The
use of double integral transforms yielded expressions containing two
complex variables. In the present work, a Laplace transform on
time is used. A spatial transform on € is not possible, but Watson's
transformation supplies the needed tool.

It is of interest to point out that in recent years there has been
considerable importance altached to these problems because the point
source in the cavity is related to the detection of underground nuclear
explosions; and the plane wave case is related to the design of under-
ground structures which will withstand severe ground shock environ-
ments (see, for example, Mow's work (7) ).  However, beyond this,
the problems have fundamental significance as two of the most
elementary exampl.es of the diffraction of stress waves by a smooth
curvilinear boundary. A good discussion of the analogous case of

acoustic wave diffraction is given by Levy and Keller (8) for the
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" cylindrical and spherical cavities.

| Following the theme in (3, 4, 5), the formal solutions to the
problems in the present investigation are obtained by the Laplace
transform on time, residue theory, and contour integration. Evalu-
ation of the solutions is effected through asymptotic approximations of
the functions involved. The final expressions are valid in the respec-
tive shadow zones of the problems. Expressions valid in the lit
region may be found by using the techniques in references (1), (2),
and (9).

The procedure for deriving the solutions is as follows: the first
step is to apply the Laplace transform and perform a contour integra-
tion along the imaginary axis of the transform parameter. This gives
formal solutions to the problems which involve the wave frequency.
The next step is to introduce Watson's transformation (or Poisson's
summation formula (2) ) and to determine the roots of the character-
istic equation relating frequency and wave number, for the solutions
are based on a residue series associated with the poles of these roots.
The characteristic equation involves Bessel functions of complex order,
the wave number and‘ frequency being the order and argument of these
functions, respectively. The rools were approximated by Nagase (10)
for large order and large argument. Termwise contour integration

over the modes completes the solution.

The geometrical optics of these problems is similar to that of
the cylinder; in fact, Figs. 4 and 7 of reference (3) are now the

meridional section of the fronts, and the actual fronts are obtained by
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- rotating them about their axes of symmetry. Hence there is an
important new feature: the portions € =0 and ©¥-= 7w of the axis in
Fig. 1 are now caustics of the diffracted fronts., Consequently,
different representations of the field are required for 0 < & < 1 and
©=0or m

The results given here are for the displacements evaluated at the
cavity wall, It is found that the behavior of the diffracted wave fronts
is similar to that associated with the simpler equations governing
scalar diffraction problems (6). In both problems the Rayleigh
disturbance predominates for long time, being singular at its arrival
time in the point load case and non-singular in the plane wave case,
in agreement with reference (3). The analytical information on the
frequency equation given here could be employed for a more complete
evaluation of the response by numerical techniques. Peck (5) devised
a scheme for such an evaluation of the diffracted waves. His
numerical scheme could be used in the present problems,

It should also be pointed out that the results found hexre can bhe
extended to the linear viscoelastic case using a correspondence

principle as was done in reference (3).



CHAPTER 2

POINT SOURCE ON THE SURFACE OF THE CAVITY

2.1. Statement of the Problem

In a spherical coordinate system, consider a spherical cavity

of radius r centered at the origin.

A normal point load PF(t) is

suddenly applied, at time t=0, to the cavity wall r=r_ at Y =0 (see

Figs. 1 and 2).

time behavior of the input.

| 22& 205% | 9RP*
T2P=—. ’ VP .
@ CFor? Cs 272 '’
where ']P p . . The potentials _5 and # are related to the

displacements through

U=Vd+Vx T*

where V?is the Laplacian spherical operator,

T 55 (B ol e Bt

Cd and

or/" riging M& Y 08/ r2,520 3152 ?

P is a magnitude constant and F(t) describes the

The governing wave equations are

(2. 1-1)

(2.1-2)

CS are the dilatational and equivoluminal body wave speeds

respectively, and are defined by Cd ;]?2/( nd C /a/f

where 2 and/( are the Lame constants, and gD is the material

density,



In spherical coordinates the stress-strain relations needed in

the sequel are as follows:

7= 4 Vi®s, +2uE] (2. 1-3)
where
_ an 30:, U;g. i _QD,:- |
Err"' 2r ) fm’_( or —T-{_—r—. 819‘)? (2.1-4)

The boundary conditions (at r:ro) for the problem are
£)5(8) )
T ro '0"'6 =— :&E—(—-—— ]
r (s ’ ) 2T 2 el
- (2.1-5)
Trp (Yo, 8,£)=0

where §(#) is the Dirac delta function. The potentials @ and v
(and hence the displacements and stresses) are required to vanish

as r-w~co, that is,

iim

(8. ¥, U, U, etc.) =0 (2.1-6)

T

The initial conditions are taken as

5(r5.0)= V(r.o.0)- 22080 _ 2¥(8,0_

= =2 (2.1-7)

representing quiescence at t=0,



2.2, Formal Solution
Here the Laplace transform of a quantity will be denoted by a

small case letter®, for example,

X ot
¢=of{%}=fg§e/§r, g_S-__fcf)e dp » (2. 2-1)
o
B,
where p is the Laplace transform parameter and Br1 is the

well-known contour in the right half of the p-plane.

Application of the transform to equations (2. 1-1} using (2.1-7)

gives
P 2 a o
24 = - -
V3P = 2 ¢, VX =2 SRR : (2. 2-2)
3

A solution of (2. 2-2) satisfying the transform of (2. 1-6) is given

by
‘P-‘-i An }—(’ﬁ%—m& (coe® —ZB ”*V’@"} JPJ(Z"LG) s (2. 2-3)

where h=p/C,, kz-p/CS, K +‘/(z) is the modified Bessel function of
2
the second kind of order n+ 1/2, and Pn(cosa') is the Legendre

polynomial of order n.

* Except for 035 T I{Tij}



Since

TV -z _ v, dK»
KXZ(Z)=(E) e , Ky.,,_ = Kz)‘? > (2. 2-4)

K z) may be expressed as

nti

Y -z, [Z(l4+n+s) -5
= (Y2 2z 2.2-5
Koe 22 (=) esg s/F(/m_s)( ) (2. 2-5)

wherel*x) is the gamma function. Clearly

K sty (=) (2.2-6)

JZ

does not have a branch point at z =0.

The transforms of equations (2.1-2)-(2.1-4) may be written as

N

Uy=2%4 L3 (aiyo¥) , Up=L23P_ 12
" or +YM689(M ) > r a6 rar(rw)’
(2. 2-7)
e, — Mr | yro_P? e =1[2% Us 1 ) |
T or ’ Cf(P) =20ar “F T 55/
O?I': )hz¢’+2/(€rfj rﬁ.zgﬂffﬁ..
of
Using the relations
Pi(p)Gt&) it P 1(p)
- — = 3 QP @n+ 1B (cos®) ,  Qp) =~ ,
2mr_ sin? 4n r?
=0 o

the boundary conditions are transformed into



@
frr(ro’.e’ pP) = Q(P)Z (2n+1)Pn(c08'9), 0'}9(1”0”9’1*0
n=o0

By (2.2-3), (2.2-7),

(2. 2-8)

d5,
O?r—zp A+ 8, B]P(cad.ﬁ) Orp= /ZI: H+B, g] (C«%ﬁ, 2. 2-9)

where
Konuts (hr) Zwmo 4%i{%%&0,
A PR T
— el I Kuss (ﬁr) c/ K +% (ﬁf))
B = 2){)7()”) ( & = a/r }/7_7
* =£i/KM+'/z(&r) K)/]—a-/z('kr) “ZW[YHI) 2 .
rdrl R

The application of (2. 2-8) to (2. 2-9) yields

@ ® )
S Ynko +8y Bo| Ecoct)= nZ Q) ns)B, (os)

>

Z”[A £ +B, &, cfﬁv;re):a,

/

5 (2. 2-10)

(2. 2-11)

in which J‘éo = A /r=r , etc. Solving for An and Bn’ one obtains

(¢}

D
A =@y Brt)  » B __ A %
" : A(fo,[’,)’)) ” " EO

(

Ao, pym) =A, Eo— Be D, .

(2.2-12)
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~Substitution of (2. 2-12) into (2. 2-3) gives

| qb___ () @ ) Eo ] KW+V2(/7")
G(p g(zm )A(ra,P_,W) s E (csab)

. (2.2-13)

W & £ _ K}H‘é[ﬂr) dB, (cond)
= @(P)gfw)a B e 5

Clearly, in view of (2. 2-5), except for possible branch points of Q(p),
¢ and ¥ are meromorphic functions of p in the whole p-plane. For

the special case of a delta function in time,

: Pf(p) -P
F(t) =5(t), Qp) = - = = q ; -
PE) 4o 2 (2. 2~-14)
o o]
for a step function in time,
F(t) = H(t) , Qp) = 4 (2. 2-15)
P
Convergence of the Series. It seems appropriate to consider

now the convergence of (2. 2-13) for p on the Bromwich contour
Rep=c>»0, -R=Im p£R, R~%, The potential functions ¢ and ¥
are assumed to be analytic on the contour. Select the compact subset
of the Bromwich contour given by Re p = c >0, -R<-Y=< Im p< Y<R,

and recall the inequalities
dPn(cosﬂ) 2

< -

’Pn(cose-)__l, o Zn .
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.Then, by writing .

2% )
=Y ¢ ) Y=Y %> (2.2-16)
U=

o =0

one. sees that for large n

|8, ~ ’i(&)we' (=)
« éﬂ r

P (ceet)

E

12 /0 —c(Fr) | dP, (ceat?
m’fvé«(ﬁ - ' J¢

independently of Im p. Therefore, for 0£6= , r>/ro+e, e>0,

b

the series in (2. 2-13) converge uniformly on the Bromwich contour.

2.3. Exact Inversion

Since the series are uniformly convergent on the Bromwich
contour, the Lapiace transforms in (2. 2-13) may be inverted by
term-wise integration. Alternatively, these transforms may be
inverted by integrating along a contour equivalent to the Bromwich
contour. One such contour will now be determined.

For the present case, selecting F(t) = H(t), the Bromwich
contour Re p = ¢ >0, ~-R=Im p<R, R>®, is completed down the
imaginary axis, as shown in Figure 3, by the contour C+ CR+ C—-R’
where C = CU-I- CL-I_' CO. This selection is inherent in the foregoing

analysis since it takes p through its physical values. No branch

Ay

cuts are required,

als

* A cut at the origin was required in the cylindrical case.
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The singularities of (2. 2-13) can come only from the vanishing
of A(ro,p, n) and from the character of Q(p). Poles in the right
half-plane are ruled out by the boundedness in time requirement of
the solution.

On the basis of the previous discussion and the Cauchy-Goursat

theorem, the solution to the problem is given by

r i
@ / o P ____L_ ¢ F _
o=z ) (v € P iwiedp, @

where the paths of integration are shown in Figure 3. For large p,
I
4>7l o 7;:3— M?a[-k(f—n)],
/ -
¥ =2 2z [~ & (r-1)]

where qbn and ’y/n were defined by the expressions (2. 2-16),
Consequently the integrands of (2. 3-1) vanish uniformly on CR and
C.gas R—+c and, therefore, the above expression for the potentials
reduces to
& t r
v 2m )Y 27 ) ¥ (2. 3-2)
Br,

and thus it has been shown that the path C is equivalent to the

Bromwich contour.

Since for real

K)H’/z(*i—ﬂ)_ Kw+’z LQ) -
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where the vinculum indicates the complex conjugate, then, by (2.2-10),

{¢} _ {‘P (2. 3-4)
i Y

(2.2-12), and (2.2-13),

and e szw \
$ / {"’} pt
=L e’ dp,
{Y{} 27rsz F
Gt (2. 3-5)
.
¢ ~cwl
27/7 {}e (i) + f{w e deiw)
=i ey F:_‘w ]
4;' ﬁe v ¢ ol
- ¢ (2.3-6)
{P, T {w}e dw,
o F:—.L'w
in which ;/ ’
olp=iv> [ (s ]
LUJ @(L“)Z( 21+ A(liwon) M([Z)(r?/z) R;(Céd-ﬁ)s
-
L (2.3-7)
op/ K r) 4,
/ , =D 7)4"/2 Cs ) nfcﬂdﬁ).
L(,/() Q(@)Z(QW)A( i (w_r v o
Cs) J

In the rest of the chapter, reference will be made to these

expressions as the partial-wave expansions for ‘b/ and W/
w tw
The subscript (wWis henceforth deleted.
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.2.4. Watson's Transformation

It has long been known that for harmonic wave diffraction by
spheres and circular cylinders the Fourier series type of solution
converges increasingly slowly as the frequency is increased. The
number of terms one must keep in the partial-wave expansions is of
the order of %Ee>>i, so that (2.3-7) becomes useless at high
frequencies. However, since high frequency is associated with
short time through integral transform theory, it is necessary to
estimate the values of ® and ¥ for large W

It was discovered that the convergence could be resolved by
changing the form of the solution through the use of Watson's trans-
formation (2,8 ,// ,/2) or of Poisson's summation formula
(2,5,13,14)., Here it is shown that these two techniques are

equivalent for the present problem.

(a) Watson's Transformation. This transformation is based

upon the following formula:

[#9] (“.77.7)}
Z 70(77’“/2) = -;— 75(7)) MCZ:”.V d=, (2. 4-1)

=0 C"W

where CW is the contour shown in Figure 4. This formula may
easily be checked by evaluating the residues at 2 =n + 1/2.
f,(#) must be such that it reproduces f(n + 1/2) at ¥=n+ 1/2

and be regular in a neighborhood of the real axis; thus the integral

may be computed by residue theory. In practice the choice of fo(ﬂ’)

is dictated by the requirement of appropriate behavior at infinity in
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the ? -plane, since the next step in Watson's transformation will be
to deform the contour CW away from the real axis,
Before writing the particular form of the Watson transformation

to be used in the problem, it is convenient to introduce the notation

- Cs _[l-20 VZ _wl, _wr ]
=g 720 TR 0 V=
(2) 77 S ZE
F(fﬂ)— (,ﬁn fﬁ)) V%ﬂ)“— 2 L (2. 4-2)
N':: /8/ 2
-& nz"V“"/z

o

where & :2‘{, B ,°9 , £ and H(_f,)(_fl) is the Hankel function of the
second kind.

With this notation and the relation
Ko (™n)= M) L), (2. 4-3)

one immediately finds that

/A A
r2mve 2)? A 3+42% _ » i
4 M) U o ( ) A FEm), e

ro(ve’ )% & 2 )

< M) HE ) =-(*4)2vFte0-3) » 42
2 Y% O
r*6mvet 2)* 2% - zmyF(v),mv)—-3 5 (2. 4-6)

M) HEbw)
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S

vt E
réive 2
S 2vF(my (3_-4L+v2}, (2. 4-7)
M) K5 y) 300+ 2

(2. 4-8)

A g, icop-%) _ 4/;}?’//1{2/72)_/)_(421_ %) 7"" (_V) ,
A2 ) 3 mn) r# otz 2

and

£ )= 224l N* )2 / WK
wm(/ 2(,)3_9/4)/"{’:(’{””1) P (’* Dra %)}X o, 40

{F(’M) i (/ ) i{f% )} '

On applying formula (2.4-1) to the expressions for 47 and ¥

and using the relation Pn(cos © ) = exp(i™n) Pn (-cos ), one

obtains

o= cpﬁw"f ¢’)/2(&’W/’P Geoi0) 2LETD 4,

A(G La)ﬂ)—/ cod LT
Cy (2. 4-10)
Yoy (o, 1y ) £ (
yqu)(‘w) /(rﬂ}”/} C/g)/z(mé W( 72) 0/7/-,’
AP %) Jo coa T
Cy
or ¢ _pz_ .
_ Bliw) 7’~’/z(r”|9r1 %) Loy & 2d =2
= i 4 (l,cw,#-%) E"’/z( ) e’
w
}-
p- Qi) Yoy, (5,1, 7-%) C/E’“/(Wﬁ » dz (2.4-11)
p) AV, ico, 2~} ) d& ot o7
w
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where
¢ ( ] o %(V)IL/,LZ)(MV)
A h#2)= Eo e (2.4-12)
Y, by ly)=— D M) B ) .
2l Ly)=—4, v e (2. 4-13)
(b) Poisson's Sum. For the present problem Poisson's

summation formula { 2 ) may be written as

2 Fbra) - 5160 Ee )i s 4

S=-c0

The application of this formula to the partial-wave expansions for

¢$ and V¥ vyields

ZQ(LU))Z({ @/_yz(f‘o, , #14)

At w,2-1)

4] % (caa (1)) st T2 (254:)] 22

S=—¢o

_2 @(w) Z G w,_:/z(ra,nv.z ) ey feoelr-0)

§ Y Al imoty) e sxp [iTalsti]d»
T ., 0, e% 2

By substituting-2? for + 2’ in the integrals corresponding to the sum

from s =-1 to -@ and using the identities

Pﬂ-/z (m (&) = (czkz T-6)) » (2. 4-14)



-18-

HS’:‘;)(ﬂ) HE: SIS (2.4-15)

the above expressions become

]
95 ZQ(LUD}Z[" ¢V—/zlo , (m(ﬂe))%[ﬂg)/gs—ﬁ/ﬂdv

(2. 4-16)

w_ 2 G){WZM_[ R a’P-‘/zjzd(F—e))W Ep-,/(zs,q)]a/z).

Figure b shows the path of integration for these expressions.

This result may be shown to be equivalent to (2. 4-10) and
(2.4-11) as follows: by (2.4-14) and (2.4-15), the integrands of
(2.4-10) and (2.4-11) are odd functions of 27, so that the lower half
of the contour CW may be replaced by its reflection about the origin
(see dashed line in Fig. 4)., This contour and the upper half of CW
is equivalent to the straight line D located above the real axis and on

which the expansion

O
1 _ E: 118 . _
=0

is valid, Substitution of this result in (2. 4-11) gives (2. 4-16).
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2.5. The Zeros of A(r, i W, Z-1/2)

To deform the path of integration in (2. 4-10), (2.4-11) and
(2.4-16), away from the real axis, it is necessary to know the
singularities of the integrands as functions of # . The integrands
are meromorphic functions of Z and their poles are the zeros of
cos #’w and of A(ro, iw, 22 -1/2).

The behavior of the roots of A for large values of 42 is needed
for the short-time sclution. The required asymptotic expansions for
the Hankel functions are given in Appendix A. These expansions are
used in Appendix B to determine the properties of the function F(#7,.42)
defined in (2. 4-2),

Nagase (10) found that the zeros of A are equivalent to the zeros
of fz('z)), equation (2, 4-9). He also found, analogous to the case of
the cylindrical cavity (5), that there exist three groups of zeros of the
first order in the fourth quadrant of the #?’ -plane and no zeros lie on
the real or imaginary axes¥*; the zeros in the second quadrant are
merely the negative of those in the fourth quadrant. Only the first
approximations are given below because they are satisfactory for
wave-front expansions,

As indicated above, and just as in the case d the cylindrical
cavity (5, 4), for/2>>1 the roots split into three types. First, an

infinite set of shear type roots lying asymptotically along the curve

als

% The real value obtained for the Rayleigh root comes from the

imperfection of the approximations used.



-20-

h,  in Fig. 6. This curve starts from # =<1, makes an angle of -w/3
with the positive real axis and goes off to -ic@. The first several

zeros, which are of the greatest physical importance here, are given
by

_\/3 . s N
) ot SR (6 ”zj)-ﬂ/3+ o), j=1,2 3, .

The second type is an infinite set of dilatational type lying asymptoti-
cally along the curve th in Figure 6 (the zeros of H(7z))(m_n.) lie

asymptotically along this curve). The first several zeros are given by

AV

2yl z‘/3e5gi(e'i“zj) m-2)%+0(n°), j=1,2,3, ... .

And third, a single root of the Rayleigh type

22 CS o
R~ —> /1 + O() ,
Cr
where the imaginary part of VR vanishes exponentially as /470,
The zj are the roots of Ai(z) = 0, which are real and negative, where
Ai(z) is the Airy function, and CR. is the Rayleigh surface wave speed.

The imaginary part of 7R is of the form

ImVRfu —a-ﬂe_bﬂ' , a, b >0,

just as in the cylindrical case. In Appendix C the expressions for a

and b are given. These expressions differ from those appearing

in (10).
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Clearly, even though the frequency equations in the cylindrical
and in the spherical case are different, the first approximations to
the roots given here are the complex conjugate of the roots given by
formulas (3.8), (3.9), and the first of page 34 in Peck's work for the
cylindrical case (5). In fact, if Hg)l)(Q) were used here instead of
Hi)z)(Q), then the first approximate values of the roots would be

identical in the two cases,

Thus it is seen that for large ,\)f , vanishingly small imaginary
wr,
. s - - °
part, and large w, there is a limiting real root YR %Rro ——-C
R

( 4 being the wave number) corresponding to the Rayleigh surface
wave on the half-space. This result follows logically since

N = %Rro - 0 can be interpreted as p[ R™ @ for fixed ros
hence this very short wave ""does not see the curvature'!. One would
expect, therefore, as Miklowitz (3, 4) has shown for the cylindrical
case, that this root would yield the predominant disturbance in the

long time solution for the present transient problem.

2.6. The Residue Series

In section 2.4, Watson's transformation and Poisson's
summation formula were applied to the series for Cp\iw and Miw
which converge very slowly for large w. The next step in the
solution is to determine the conditions under which the expressions

(2.4-11) and the integrals in (2. 4-16) may be reduced to a series of

residues evaluated at the zeros of A(r_, iw, v-%). This is done
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by considering a sequence of paths C . shown in Fig. 5, which passes

between these zeros and is such that

lim [f (r,0;%, s)d® =0 (2. 6-1)
Nn—=o
G,

whe.re f(r,6¢;#, s) is a generic expression for the integrands of
(2.4-16). Here the analysis is much simpler than that given by
Nussenzveig (2), and leads to the same conclusions when applied to
the problem treated there. Instead of the asymptotic expansions

employed in (2), the power series

-2 ® »
2y, . _ F(z)-s) iz [-p-s) 1255F
H(a) = N o
s/ 2
S$=0 ’
is used here. This expansion is valid for all 27 and =z.

On C_, the dominant terms of H(ﬁ)(z) are
n

-7

(3 3)”
1 2 . 2
simwr | Ga» PP 05

(2. 6-2)

where the second term in the brackets is significant only in the

neighborhood of the imaginary axis. Therefore

e [ &)

A(n,jbw 3144 4/¢7) r

r
(o]

y .
k) |
A% iw,3y)  4uw3VE T ol 1

where the second term in each bracket is valid close to the imaginary

r

(2. 6-3)

axis.
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"From Appendix D, for 0<6-<m,

£

\/Z(Ca—a.(ﬂiﬁ)) ~) (2777),4,(}”19)_% [_'iy[]r_ﬁ) _,L‘Z)_r] (2. 6-4)

on —Cn, and therefore

-
By (eoalT-0))sap ilveshs) (o2 Toind) arp [#6T5+2)]
dBey, (coclr-0) L(2. 6-5)
46

st T2 fsH) v (P GTT224n ﬁ)%yxf E » (27/‘5+:9)] .

-7

Since the paths of integration avoid the singularities of the integrands,

the application of Jordan's lemma gives

wfzjff(r,ﬁ;ﬂ,s) a2 =0 (2. 6-6)
Cy
for all ¥ , 0<P <. Also, since 13}__)(/21) =1, it is easily verified
that all of the above results remain true if #=m. Near & =0, however,
the equations (2.4-16) can no longer be employed, for E_V(cos(w-e) )

2
has a logarithmic singularity at this point.

In view of the foregoing discussion, it follows that the integrals

in (2. 4-16) can be written as
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(o)
1,05 6) = [ Po-26(te,r,2-%) -
I(r,8;6) _wA(r,,_zzw,7)_5)E"Zz(w(y‘ﬂ))W[””&S’”ﬂ%/’)

~

=27r¢Z qu p_/z(cmér-ﬁ))w[ﬁ‘zz(zsyg } (2.6-7)

2,
J
P=%
L h2rk) dGayoa(r8) T
I (h59) L/i’ﬁéf@y_/) y"jf‘tr ) [Lﬂ—fj(ZS’f?]JV

s (2. 6-8)

= 277; Z{ 2 ) CJBJ—V?(IT 19))‘0‘90[7}_])(25#2] }

for 0<€¢4£mw, where the ﬁj are the zeros of A( r, i, ¥-)5) in
the second quadrant,
The functions ¢/ and 'V//‘-w are then given by

(P: 47@{;&))%[’02{32 y../ C&i(ﬂ' 19)) Jﬁbfﬂ'ﬂéSﬂﬂw}

=2

J

"

r(2.6-9)

3”-47/‘4)@0))2(/) Z { by dB-y(coe(r-s)) [‘-777’(25*")] 7)/

S=p de-
=22
=

J
or, equivalently, by
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. ¢JJ~}Q P 2
¢= QW_Q(W);, 5225 u&(m(ﬂlﬁ))mvzr} ,
(7 V::?-
V=27@(w) 3 Bty ARy (welre))  » ’ > (2.6-10)
# 6%7) A cow 2T
] y:'ﬂ‘f-

where relation (2.4-17) has been employed. These last forms of the

result are also obtained directly from (2.4-11).

2.7. Evaluation of the Transient Response

2,7.1. Introduction . The ultimate goal of the present

investigation is the analytical evaluation of the solution. The solution
is’the inverse Laplace transform of equations (2., 2-13). The task of
evaluating the exact inversion of (2. 2-13) (see section 2, 3) is a
formidable one for the complete ranges in time and space. However,
important approximate solutions valid only for certain ranges in the
time and space domains can be obtained with less difficulty, It is well
known that the behavior of a diffracted wave near its front is correlated
with the behavior of its Laplace transform for large p. This fact
was used by Friedlander (6), and by Gilbert and Knopoff ({5} to obtain
wave front expansions in diffraction problems. This is the type of
information that was found here also,

The analysis which has been performed here is different frorn.
that employed in {6) and (15), and leads to the same conclusions when
applied to the problems treated there. In section 2.3 it was indicated

that the series in (2. 2-13) are meromorphic function of p with poles
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at the origin and to the left of the imaginary axis; the path C in Fig. 3
was shown to be equivalent to the Bromwich contour. In sections 2, 4,
2.5, and 2.6, several properties of the functions ®(r,%, p=iw)} and
f(r, &, p=iw) were deduced. The final forms obtained in section 2. 6
give the behavior of the functions for w—=® ., Hence, using for ¢ and

I the expressions given in (2.6-9) or (2.6-10), one finds that

@ .
- f Pl a(iw) ™t (2.7-1)
v 2wi - I

is valid for short times. But the path C is equivalent to the

Bromwich contour and, therefore, one can set iw =p in (2.6-9) and

(2. 6-10) and obtain

LA 1[ P e”’td(iw)—.—zl, PU Pt ap , (2.7-2)

which is valid for short times.
A similar analysis shows that the transforms of the displacements

possess the same pro'perties found for ¢ and {, Hence, one may

write, for 0 <@ =71, W -

2

arzg(—/)sg 721[;'/2(%(7710))!470 [ire (@su)] wr (2. 7-3)
=0 J-
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S g By feosti-a T
Uo:sgo(/); v jﬁﬂd— 220 [417'7)(25%2] Q: s (2. 7-4)

where

® 4Tliw) 2 K
a}::___j:ﬁf_{%;%(;ﬂ//7G%W7V)—%)—6V—QE)%ézazﬁgég’

T Qliw) 47
L(X-;ﬂ_}_“_’_{qg,_yz %(vl—‘(wv )Jz o2

and the \)j are the roots of A( T iw, v- 1/2) in the second
quadrant, Thus, to find the displacements at the wave fronts, it
remains to apply one of the inversion formulas (2. 7-2) to (2. 7-3) and
(2.7-4). This will now be done for the displacements at r = T

A step function input will be assumed. The normalization constant

U = P (2.7-5)

o
ro()\ + 21)

is introduced in the final expressions.

2.7.2. Contributions from the Roots VZj

Dilatational Waves . In this vicinity, the dominant term of

Corresponding to

Alr, iw, v - 1/2) is given by%*

als
ko

The corresponding equation for the cylindrical cavity (5) is given by

D(vhcw)w (7)2 y 2002 (27)2_/2.2)/9/”){_0.) (')(m./l)
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. 2 A
A(,B,LUJ,V~//Z)»V/M 4/1'{ )€ Z(ny 2)2/6/7/(2)(ﬂ)/§/’)(2)(mﬂ) . (2.7-6)
Vo (L1

From Appendix A it follows that the transitional asymptotic expansion

(2)

applies for H (m Q) and that the non-transitional asymptotic

expansion applies for H(Z)(Q). Thus in this region the zeros of
A(ro, iw, v - ) are the same as the zeros of H( )(mQ to this

- degree of approximation (this, of course agrees with references (5)

and (10} ). In the vicinity of the zeros,

(2)
12)
(2) o> (o , _
wm) v (P25, (2. 7-7)
H"mn)~ ( 2]) 3% /
7j=12J.
where 7
. e 2T
5 = mALt 2 B (e 7 )(m_n_) 3 (2.7-8)
and the Zj are the zeros of Ai(z). The first ten z, appear in

Table El. From equations (2.7-3) and (2. 7-4), it follows that

re >

Up=b, (wao ZZ( 2 BT Gw)- 4l ; [z7fs+19]} (2.7-9)

Up=—2b,(I- »1)»71(4‘“”)2( {‘7)[2”(5“) d "’[27’5"‘9]} (2.7-10)
S=o0 z'
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in which

w L2

T i by e

H

where equations (2. 7-8) and (D, 8) have been used.

In practice, even though (2. 6-9), (2.6-10), and (2.7-9), (2.7-10),
converge for all € in 0< ¥ < r, their usefulness is restricted to the
domain where their terms on \)j are rapidly decreasing from the

beginning so that only the first few terms need to be considered. Thus

s 4y 67-0l|= g [~ 2 (e (o) amgf 700

[ (0| = wp BB p o

must both be rapidly decreasing functions of zj. This will be true

provided that

Ve %

> 07, 2 -6 P> O (2. 7-13)

These inequalities are satisfied in the shadow region. Setting

mQ = 100, (2.7-12) is evaluated below for various values of € and.zj.
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6=0.1 &=0.2 ¢ =0.5 “¢=1.0
zy 0. 4747 0. 2249 0.02399 0.00058
z, 0.2714 0.0736 0.00134 0.000002
Z3 0.1718 0.0295 0.00015
2y 0.1152 0.0132
Zg 0.079 0.006
Zg 0.056 0.003
z4 0.041

Thus it is obvious that (2. 7-9) and (2. 7-10) are useful for the deep
shadow region.

The infinite sums appearing here have a physical interpretation
which agrees with geometrical optics (2, 3, 5, 6, 8). For simplicity
consider only poir}ts on the surface of the cavity (see Figure 7). At
short wave lengths one may employ the concept of propagation along
rays. The source excites a series of surface waves. As these waves
travel along the surface, they shed radiation along tangential directions,
leading to the decay factor (2. 7-12). Upon reaching & = w, these
waves are reflected toward their original direction. Thus, a point
(rO,G- ) is reached by the waves coming from the source and also by
those being reflected at € = . FThe corresponding angles travelled
along the surface by the first waves and their reflection are, according
to Figure 7,

& =&
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in agreement with (2, 7-9) and (2. 7-10) for s = 0. The paths along
the cavity surface are called "diffracted rays’ in Keller's geometrical
theory of diffraction (8).

In (2.7-9) and (2. 7-14), the terms with s =1 correspond to
waves which have encircled the sphere 2s times, so that the
corresponding angular paths are increased by Zws. This interpre-
tation is corroborated by the solution to the problem of diffraction by
a pulse (6), where one can follow the diffracted wave front around the
sphere.

Substituting p=iw into (2.7-8), (2.7-9), and (2.7-10), one

obtains

. -
B AP wm Te _ ~¢ ) )WnD
£rE =P s e%)(f’gc ’ (2.7-14)
and, by applying (2. 7-2),

3 _cz_»f—_/Lf_z-,) DYENI )  Ersia)de }

3&

m -
(ZW-—/ Z{Vfra ra (2”-(5+/) _9) c{ff} (2.7-15)
W 2”’44,,119 S=0

Br,
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T —r—(/or")y (z7Ts+8) GIP/Z
By

2{;/;);&_)’_4__;2{/)5{ fo /’-‘Va)ﬁ/zzr(sm Q)C{} (2. 7-16)

U 20-wY'3 &) {2
Us Gwm 2/)/277476;0%

where

274(6):% /D'"D i@_-g)}%o{ (f’2 ] (2.7-17)

The form of y{# ) indicates that the inverse Laplace transform of
each mode \)Zj is zero for th < rO'G" . This agrees with the
geometrical optics of the problem.

The integrals in the above expressions have the form*

Top(-bigt) . e

ala
o5

An extensive treatment of integrals of this type appears in

reference (/8).
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where
i ~ 2 (275+) 7% >o
9: /DZ;—Q' 2 b] — 4 &7 2
- 3. - /%
L 2 [2r Gr)-6]23>0
> (2.7-19
\ LG — (275+0) )
2 lo
= oT > 7; fC’ or
% —4 — [27 (s+)-6]
Jo ]

If 3x were an integer, then this integral could be expressed in terms of
the Airy function discussed in Appendix E. For this problem the
approximation of the integral for small values of T is needed. For

such values of T (6),

v 4(6%1) ’4(5’-65\’) ‘4 (6x-5) 3/,
2/7 3% 7T %

x|+ 0{-%;22/}, %7]'3/2 >0 anod veal. (2. 7-20)
7

The magnitude of the error term limits the applicability of the
technique. Since 0 > zy > z2>z3 ..., the leading term of any mode
of order j>1 tends to zero more rapidly than the error term of the

first mode. Since the error term is to be neglected, it follows that

the results must be confined to a range of T in which the error
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-term for s =0 is smaller than the contributions from the higher modes.
Then only the terms s=0, j=1 need be taken into account for & > 1,

and thus the final expressions are

*\/2 _l
Ur_ (2n by T2 W(—0-774219’3/z72_ 4)/7’(72') (2.7-21)

Us %(ﬁﬂmé)/" 2

7
_U_‘; 2(/—)'»2)[/ 7 7(—/ Sj,’?o( 07742-9-27— )H(T) (2. 7-22)
U @) alans 22.3¢2)

in which

T, tCd _p , (2. 7-23)
r
o)
and the inequalities
1LL= 7, t Gy << min -9.: 21 —9)’ (2. 7-24)
r, m
must hold. When m =0.5 (Poisson's ratio of one-third), these
expressions reduce to
__l
Uy _o0li5 T (0974219 /‘7//(7;), (2. 7-25)
Ua v,ddfrlﬁ'
Vo_ 2857 %(0774219_/17— )/7/(7—) (2.7-26)

U 0Yaird
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Reflecting upon the results for the half-space (see de Hoop (17) )
one sees that the dilatational wave generates a head wave at its point of
contact with the free surface. Furthermore, at the surface this head
wave travels with the speed of the dilatational wave. Since here the
evaluations have been made at the surface, the head wave is contained

in the expressions given above for the displacements.

2.7.3. Contributions from the Rayleigh Root. In this vicinity

the non-transitional asymptotic expansions apply for Hs)z)( Q), HS)Z)(m Q),

F(v,Q), and F(v, m{Q)). The dominant term of A(ro, iw, v- %) is given

by
A(n)J éw,y—g)mﬁt/"//l//u)ﬂ(y 4)/4(2)( )//7(»2)( ﬂ)ﬂ{y) (2.7-27)
* ez
where
' % 2
V) v 2 22
and the required cuts are given in Fig. 6. In accordance with

Appendix C, there is only one root which approaches the real wv-axis
as |V o0 and whose limiting phase velocity is the Rayleigh velocity.

The real part of this root is given asymptotically by

-t -
vp ~ v ==, (2. 7-28)

where Qo is the unique real root of the cubic equation
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lé(l-mz) Q3 - 8(3—2rn2) Q2+8Q—l =0 ;

go is greater than one; Co =1.15 whenm=0.5. The imaginary
part of this root, O'o, has the form

Im vp = o~ const Q o-const £ , (2. 7-29)
where const > 0,

When m=0.5, (2.7-3) and (2. 7-4) give

/(193_—_6[572 P wrb) Z{QJJEF@H) 19_7 LVPTS‘/"B] (2. 7-30)
Fu s 2T, Cs | & '

\

Uprg = O 475 (;w ra)— { c3y [2TE+)- ’9.7 < 7 [275+19]J2
Zut Co2Tainsp Cs

(2. 7-31)
S=

0

The physical interpretation of the infinite sums is the same as that for

(2.7-9) and (2. 7-10).. As was indicated in 2.7.2 f{for the roots VZj’

the source excites a series of surface waves and, as these waves travel
along the surface, they shed radiation along tangential directions,
leading to the decay factors (2. 7-11) and (2. 7-12)., Since

0>z, 22,27 ... , the higher v

1 2 3 modes decay faster than the

2]
lower modes. The corresponding decay factors for the Rayleigh root

are
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/ﬂapﬁ [& 2, (217-6)] {-—: 9170{—0‘0 (27—19)} ) (2.7-32)

/”7” (%ﬁ)/: bop {—0219]. (2. 7-33)

Sincc N << —zj Q, it follows that the predominant disturbance for
long time is given by the Rayleigh root, in agreement with Miklowitz
(3, 4) who showed this to be the case for the cylindrical cavity
diffraction problems. It is of interest to note that Miklowitz (3)
first deduced the analogous result for the cylindrical case by
comparing his final expressions with the results of Lamb's problem
(see, for example, equation (2-114) ref. (18) ) of the elastic half-
space subjected to a surface impulsive line load.

The analysis now follows closely the technique given in (3) and
(4). Hence the following need only be brief. The application of
(2. 7-2) gives

b
Urg ___l_ Ure ePc/F
U&R 27 Uge

c {W=F

and, since the semi-circle Co in Fig. 3 gives no contribution to the

integrals, these integrals reduce to
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cwlt
Um ﬁf{ } wc/ o, (2. 7-34)
VaR Usr

where property (2.3-4) has been used. More explicitly,

Ue _ ”'?[2“?’“” ~8] 3k [T 5+8] Wf

Z]ﬁf fG 0. 672 b Br6H-4] apferseo]) cuwit
_fzvz

= - & € dn (2. 7-36)
) vms = ’
where
Cg
ivp =-i 1.072Q -0 =-1 G-o . (2.7-37)
Cx ©

For the approximations being determined here, it is sufficient to

assume a certain value of a, s denoted by o, (see ref. (4)). The

A

above expressions then become (20)

_ ~G4 [2Ts+4] ~ 04 [2m&+) -8
Og o045 Y {H(T)é’ 4 H(T2)€ i Lt J}, (2. 7-38)

U g 1A 73 1%

O [2ms+ ~ QG [z (5467
UGF: 0.%3 N {H(Z?-)f Al 127_ H(75)€ , (2.7-39)
U Veime 524, /E/yz [T/ %

where

T3:£r£n- (2ns+6), T, = YOR _ [2q(stl) -], (2.7-40)
r
(o] [o]
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_ H(T3 4) is the two-sided step function

-4, T<O
H(T) = < 0, T=0 , (2. 7-41)
2, T>0
\

N and No are large numbers determined by the number of periodic
waves occurring in a certain domain of large time.

The discontinuities represented in this expression are two-sided
phenomena having tails and heads which extend in front and behind
their arrival time. However, since the heads and tails are negligible
relative to the infinite discontinuities, N needs to be only slightly
greater than NO. It can be seen from these expressions that their
singular nature renders them as periodic non-decaying disturbances,
as was found in reference (3) for the cylindrical case,

The form of the individual expressions (2. 7-38) and (2. 7-39) agree
with those of Chao (21) for a half-space subjected to a concentrated
surface force. There it was deduced that the Rayleigh disturbance is
of the form

U ~ [C,t- r["%

) R , (2. 7-42)

where CR is the Rayleigh surface wave speed.
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2.7.4. Discussion of the Results., The diffraction of scalar

pulses by continuously curved obstacles has been considered by
several authors (6,8). It is found that the diffracted pulses near

the front are always of the form
b _L
u~CT exp(-5T ®) , (2. 7-43)

where T is the time counted from the arrival of the diffracted front,
C and 5 are functions of position, and b is a constant. This
diffraction formula implies that u and all its derivatives with respect
to time vanish at the diffracted front. Hence u increases at first
more slowly than any power of T. By referring to equations (2. 7-25),
(2, 7-26), and the Figures 8 and 9, it is found that these qualitative
results hold in the present problem. For the cylindrical cavity,
Gilbert {22) and Peck {5) also found these qualitative properties,
Therefore, it may be conjectured that (2. 7-43) is a general diffraction
formula valid near the diffracted front.

The technique employed here for the \)Zj roots is useful for
regular wave fronts., However, the shear wave front is two-sided at

the surface of the cavity, as may be seen in Figure 11, Consequently,

the contributions from the \)lj roots cannot be assessed by this

technique. Nevertheless, the \)lj roots have been included here

because they are needed for a numerical evaluation of the response (5)

and for further work on the regular wave fronts. For a detailed
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discussion of regular and two-sided wave fronts see Rosenfeld and
Miklowitz (23).

The qualitative results for the Rayleigh root contributions,
which are similar in behavior to those in (3), are shown in Figure 10,
The infinite discontinuities are, of course, directly dependent on the
nature of the input function F(t) which, it should be recalled, was
taken to be a step function H(t). These discontinuities were also
found for the problem of a half-space subjected to a concentrated
surface force (21). This proves the validity of the technique

employed here,
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CHAPTER 3

INCIDENT PLANE WAVE

3.1 Statement of the Problem

Using the cavity described in Chapters 1 and 2 the problem of
an incoming plane wave will now be considered. The geometry of
this problem is depicted in Figure 12 where the coordinate system of
Figure 1 is used.

For the problem of an incoming plane wave, the boundary

conditions are

TSC(r , B, t) = - Tinc(r , B8, t)
I 0 T O
(3.1-1)
S B, 1) = -2 0Ly,
ry (0] Irr o]

such that the total stress at the surface of the cavity is zero. The

. sc inc o
superscripts ( ) “and ( ) denote the scattered and incident
parts respectively., The incident plane dilatational wave is specified

by the function @O(t) in

I r

, tC t G
¢1nc(r,9,t):¢0( d—cosﬁ') H( d-cosﬂ-). (3.1-2)

For an associated step-function stress ( T in Fig. 12) of amplitude
T
o

®(t) = o”d . t& . (3.1-3)
2
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Equations {2.1-1)-(2.1-6), with (2.1-5) replaced by (3.1-1), apply in
this case when the superscripts ( )SC and ( )inC are attached to
them. Hence, equations (2.2-3) also apply, where An and Bn need
to be determined for this case.

The total field is given by adding the scattered field to the incident

field, that is,

& =8, 0,0+ & (r, &, 1),

® =

(3.1-4)

= v°%r, 8, 1) .

-
1

‘ET

3.2 Formal Solution
Here use of the bilateral Laplace transform will be made. Such
a transform of a quantity will be denoted by a small case letter*, for

example,

o
= = -pt —-l-- pt
v I{@} ‘[Cbe dt q’“zfrif“pe dp .
~ap

Bri

The application of this transform to (3. 1-2) and (3. 1-3) yields

#'™%(x, 0, p) = o _(p) e BT 03T

where, for a step input in stress,

* Except for % =I {Tij}
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. 2
ToCqg -3
@) = — L 2-
0Py = T P (3. 2-1)
From reference (24), it follows that
inc (hr)
¢7C(x, &, p) = o Int g (B) o (cos®) (3.2-2)
V=0 /hr
where
= o) [T (zat1) (-1, (3. 2-3)

and In_l_%(z) is the modified Bessel function of the first kind of order

n+%. Since

1y

[ F—‘z”: SNCEDY

+'/2(Z):(27rz)Vzl — 5“/(7]-8)./(22)5 +

o (n+s)/
+ (/) Z S!(»-8) /(22)5 }'

(3, 2-4)

then, for the input of (3. 2-1), cplnc(r, ®, p) is a meromorphic function
of p.

The boundary conditions are transformed into

O

sc _ _ .inc sc _ _ .inc
o, (x»Bip)=- o x . p), o (r . O p)= -0, (r_ ., D)

(3. 2-5)

By (3. 2-2) and (2. 2-7), one finds that
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gne S JResa®) L 2-6
==Z v Y [ (csa®) | Gy /Zc ,8,,__.0%‘:___ (3. 2-6)
where
gy Zusl00) (o2 mne) , as A Ten(hr)
A==l [f742 28 Ty
L (3.2-7)
s=z (L Iw'/zf“’),
dr\t  Jhr
J

The application of (3. 2-5) to (3. 2-6) amd (2, 2-9) yields in this case

Z [t Aot BB cove) - Zc Y B esat)
e (3. 2-8)
& df5) (coatd) g JB, (csatt)
‘Z@“ogmwfo]T:_cho 1 (e8)
n=0 Nn=o & ]
Where\f(-,lg,a@,f are given by (2. 2-10).
Solving (3. 2-8) for An and Bn’ one obtains
/4)72 C‘n éBo '20"/2{0 go ,
A (r‘;: Fﬁ Y))
5 3 { (3. 2-9)
By) — Cn 0/210 -*/%o o ,
A(To, ,D,n)
J
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where A(ro, P n) is given by (2. 2-12), The substitution of (3. 2-9)

into (2, 2-3) gives

(04
PR ey Lt be Kuslhp o)
=0

A (r‘as P, )7) /}—;?

L(3.2-10)

pa = - ) fjéauﬂ
VEL80) iy DelloAedo Koy lhr) bt
/; n:zo 4 (6,pym) VAT -

The Laplace transform of the total field is then given by

®=0.= Cplnc(rs G, p) + CPSC(J-‘: 19" p)
(3. 2-11)

b=bp= 0% % p) .

Clearly, in view of equations (2. 2-5) and (3. 2-4), ® and { are

meromorphic functions of p in the whole p-plane.

Convergence of the Series. As in Chapter 2, the convergence

of (3.2-10) is considered now for p on the Bromwich contour
Rep=c >0, -R<Imp <R, R~-® ., The potential functions ¢°¢
and \Lrsc are assumed to be analytic on the contour. Select the
compact subset of the Bromwich contour given by Rep =c¢ > 0,

-R <-Y =Imp =Y <R, and recall the inequalities

2

dPn (cos &) < g

d

Pn (cosﬁ')’ <1, l
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- Then, by denoting

one sees that for large n,

sc I'(2nt+1]) 1

W) ~ 2L P (cos & )] —

‘ & T+ | 2 (hr)?T!
sc _ D{2ntl) dP_(cos¥) 1

Yy T (n+1)2® ao (hr)>t?

Therefore, by the ratio test, one concludes that the series in (3.2-10)
converge uniformly on the Bromwich contour. Hence, one also

concludes that (3. 2-11) are uniformly convergent,

3.3. Exact Inversion

Since the scrics in (3. 2-10) are uniformly convergent on the
Bromwich contour, the Laplace transforms in (3. 2-11) may be
inverted by term-wise integration. By the arguments given in section

2.3, and assuming that the paths CR and C_

R in Figure 3 do not

contribute to the integral, one finds that the paths Brl and C are

equivalent; that is



As in Chapter 2, the singular points of ©® and | are also those where
A(ro, p, n) vanishes.

Since for real Q

Iw+‘/ ( "ﬂ') [ ])/H-'/z (cn ] , (3. 3-2)

—z_{Z)VZ

then, by (2. 3-3), (2. 2-10), (3. 2-7), and (3. 2-10), one may write

© ¢
= (3.3-3)
P——Lw F:Cw
and
a
@ 0
1 P .
- 21 ePlap = 137.;‘? e 19t (3. 3-4)
Y mi I o |V
Cy+C,
in which
o] = 0%, &,-i0) +0°%(x, &, -iw) , (3. 3-5)
P:-—ZLO
v = %%(x, €, -iw), (3.3-6)

P=~iw
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i s
where cpmc(r, &, p), ¢ C(r, &, p), and lbsc(r, Y, p) are given by
equations (3. 2-2) and (3,2-10), The infinite sums in (3. 3-5) and
(3. 3-6) will be approximated in the next section for w=® , The

subscript p = -i®w is henceforth deleted.

3.4. Watson's Transformation
Before writing the particular form of the Watson transformation

to be used in the problem, it is convenient to introduce the notation
. 'ﬂ’%/ﬁ
Fiv,oy=-mu) |, Ny =T (3.4-1)

where Hi)l)( Q) is the Hankel function of the first kind, With this

notation and the relation

. _L7T
K (Qe /T=Jﬁ(v)Hf})(Q) , (3. 4-2)

V

one immediately finds that

—~

%

Y/ % 2
rafmve )t A _ (3"4” —v2)—4 mv P (2mv)s  (3.4-3)
N K 6w 2

r“(Ve—”yz)’/Z' é} _
e A ) HEW)

- (;;2_14) (Zv ?7(7/, y)—-s) ) (3. 4-4)

* p=iw had been substituted into equations (2, 2-10) before writing

equations (2.4-4)-(2.4-7). Here the substitution is p=-iw.
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rz[;n\/e—zg)\/f

o) %%MJ:ZMVQWH»mO—

<Y, &
r2(ve 2) £ — v 7:77/’ V)‘/‘(s_:jﬁ—/-\/z)a

M) HE)

45 = é?— 2 E]
A(ra*bwtl)—/z) 4\/7"/“4/)2(7—))_/2.(7)2— 9/4-)
paT; 7 (=)
HO) Hpma)  r* e
where

ngi Uy () (34423 2) )= V)
F [(WN)'&( 2 V) v (-,,,,v)sz

8% [?7nv ) _ 5 o bmV) | 1
(mv) 72 Omy) %

7@(7)):—?:;? (/— 2 {7{7)»4/1)_2”1!2( A 9/)}

»2

{ Tb)+55 (- Zﬂz)}

(3.

(3.

(3.

4-5)

. 4-6)

. 4-9)

. 4-10)

. 4-11)

3.4-12)



-51-
On applying formula (2. 4-1) to the expressions for ® and ¥,

one cobtains

(P’}"/z ",r«;,}z‘//z.) _Py_ I (C&é"g)

5{’:/%?43(—&@) % 2 (12w
OW

s2p [—t’%’(yw/z)]c/v, (3. 4-13)

caa 22T

’ | | ’__LJI L
Vxﬁ@[-zw 2 %%()’;ra,ﬂ'é).algj_%(@iﬁ)'%o[ 2(742)](/7), (3. 4-14)
8 Al ~cw, »+1) G caq PTT
C

where

Pt ?) = VRla A (e-iunznti) o

~ N ()
+ [Ba 2326-/210*2’,,] At G

= (3. 4-15)
AP Y
";U%//z(f,‘fa,ﬂ)_—_[c@c’/&a v{a ff‘ =N ) (3. 4-16)

and Cw is the contour shown in Figure 4. Using the relations

@ = VT

T {m = e T I (e +isin vr B (2) (3. 4-17)

P_x_%(cosﬂ') = PA_%(cosﬂ) .
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. it is seen that the integrands are odd functions of v. By the

arguments given in section 2. 4, it follows that

LT l
=T L)€ jz‘j(/)f %‘/ZP (w9)w[ﬁ[zrs+ﬂja/v (3. 4-18)

- @
Yo ar )€ i;(/) %“)2 JB"/(Mﬁ) [7)(27/5+ VJC/y (3.4-19)

—

The application of Poisson's summation formula to equations

(3. 3-5) and (3. 3-6) yields
LE (z-1%)

‘W ch’bﬂ‘yz cad f . .
b= 2T HE JZ(/) . P( 08" by Grisv)dv

S=o

o T (k)
y=lar i)y I » Yot dBY(eat) € 2y (1iSPId2 .
S=~w A A4 c/t9'

By substituting -v for Vv in the integrals from s= -1 to @ and using
equations (3.4-17), the above expressions become precisely equations
(3.4-18) and (3.4-19). Thus, Poisson's summation formula and
Watson'é transforma;tion are also equivalent for this problem.

To deform the path of integration in (3.4-13) and (3. 4-14) away
from the real axis, it is necessary to know the roots of A(ro,,—iw, v-%)
for large values of (2. These roots may kkbe easily determined from

those of A(ro,iw, v-%) because the relation

s ) = 58%@q), a real,
\Y; i V-
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- implies that

and

Alr, -iw, v-%) = Alr_, iw, v-%) , (3. 4-20)

where the vinculum indicates the complex conjugate. Hence the roots

of A(ro, -iw, V-%) are precisely the complex conjugate of the roots of

A(ro', iw, v-%).

3.5, The Residue Series

The next step in the solution is to determine the conditions under
which the integrals in (3.4-13) and (3. 4~14) may be reduced to a series
of residues evaluated at the zeros of A(r_, -iy v-%). This is done by
considering a sequence of paths Ln, shown in Figure 13, which passes

between these zeros and is such that

lim . _
n_)wf f(r, &; v) dv =0, (3.5-1)

: /—”
where f(r, €; V) is a generic expression for the integrands of (3.4-13)
and . (3.4-14). Since the integrands are Qdd functions of v, the

. integrals along the imaginary axis vanish.

On I‘l, and F , the dominant terms of‘ J\) (z) and Hs)l)(z) are

v
J fz) ~

%)

1
fZ’T’r_'\T(v
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- -V +v
~imV : z z s
H(l)(Z) — J-\)(Z') B J\)(Z) e -~ 1 (2) _ (2) e ™1
v i sin mVv isinmv | T(1-v) I'(1+v)

where the second term in the brackets is significant only in the neigh-

borhood of the imaginary axis. Therefore

where the second term in each braket applies close to the imaginary

axis. Above the real axis the expansion
1 <2 ]
—— = 23" (-1)° exp [inv(2s+1)] (3.5-2)
cosvT
S=0
is valid., Below the real axis, the corresponding expansion is

2%
_r 2 Z (-1)° exp[-i'n'\)(Zs-l-l):,
§=0 -

cos v

From Appendix D, _:for 0<¢ <m,.

njH

P, (cosé) ~(——L———) cos V§ |, I\)l -0 .
V=g 3
V7 sin
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- When these results are applied to the integrands of equations (3.4-13)

and (3.4-14), one finds that

f{r, &; v) exp [—i-n-\)(Zs+l)] ~ exp iv | (&~ %E) - Zws] on I‘Z )

f(r, &; v) cxp[-iwr\)(23+l)] ~ exp iV _Z'rrs + —;5-19 )] on I‘l .

Since the paths of integration avoid the singularities of the integrands

it follows that

n -

;

for all s when 0 < # < 7, and that

lim ff(r, 85 v) exp [-inv(2st1) ] dv =0 , (3. 5-3)

limff(r, 85 v) exp [imy (2s+1) | dv =0 (3. 5-4)
n—9
13

forall #, 0<% <1w when s =1, However, for s =0 Jordan's

lemma gives

¢ < (3. 5-5)

o
2
as the vconditio,n under which formula (3.5-4) is valid, Also, since
P _% (1) =1, it is easily verified that all of the above results remain

A%

true if € =0. Near # =, however, the equations (3. 4-13) and
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(3. 4-14) can no longer be employed for P\)_;z__(cos-ﬂ‘) has a
logarithmic singularity at this point.

It is appropriate to indicate here that, for the case of a scalar
plane wave, Nussenzveig (2) also found the term with s=0 to be the
critical one in determining the solution in the illuminated zone. He
showed that only this term needs to be considered for obtaining the
solution outside of the shadow zone.

In view of the foregoing discussion, it follows that the functions

and V) . can be written as

cp\ P:—iw p"""lw

4 3/z

b= e(zzr) (,15(4&))2( Zru‘pﬂ-’/z B, (mﬁ)%[m(zzrsﬂt 7')] (3. 5-6)

'l’V (2]]_) e 45[‘&))2(/)521)?5}}{2 J-PVc/e/Wﬂ) [7)(2”—5_/_ 7)] (3.5-7)

for 0 <& <X, where the v, are the zeros of A(ro, -iw, v-%) in the

first quadrant.

3.6. Evaluation of the Transient Response

3.6.1. Introduction. The analytical evaluation of the solution

will now be performed; the technique to be followed has already been
employed in section 2. 7. In sections 3.2 and 3. 3 it was indicated that
the series in (3, 2-10) and (3. 2-11) are meromorphic functions of p with

poles at the origin and to the left of the imaginary axis; the path C in
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Fig. 3 was shown tol be equivalent to the Bromwich contour. In section
(3. 4) and section (3. 5) several properties of the functions ®(r, & p=-iw)
and {(r, &, p=-iw) were deduced. The final forms obtained in section
3.5 give the behaviorvof the functions for w~® ., Hence, using for

@ and ¥ the expressions given in (3.5-6) and (3. 5~7), one finds that

@ cwt |
= l_ﬁ wt |7 d(-iw) = lﬁPtCP dp, (3.6-1)
y 2mi i 2mi I
¢

BG —L’L()::F

which is valid for short times,
A similar analysis shows that the transformed displacements
possess the same properties found for @ and . Hence, one may

write, for 0 < #< %,

-
u, = Z; (-1)S Z \)PV_%(cos'&) exp [iv(Z'rrs+-3-2T)]u:* (3.6-2)
S=o 2.
]

de_% (COS % )

exp [iv(2w5+% )J u;* (3. 6-3)

@
u :Z (-1)52 v
0 ﬂj

5= a¢
where / y
. in/4 2
A _ Cpo(‘lw) o' " (2m) . 1 2 1 0A -/
u, = ” {CPV_%(ITIVJ(\), mv)-E) - (v —Z) \[;v_%} (5:)_) ,
Ly diw/4 3y ) _
P (-iw) ' M 2m2 . " |
ui* = - CPV_%' ¢V_%(v3 (v, v)+-£) (5-;-) ,

and the \)j are the roots of A(ro, -iw, v-=%) in the first quadrant. Thus,
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" to find the displaCerhehts at the wave fronts it remains only to apply
one of the inversion formulas (3. 6-1) to (3.6~2) and (3, 6-3). Again
this will be done for the displacements at r=r o A step-function

input will be assumed. The normalization constant

T T
U = —2° (3. 6-4)
A+ 2u

is introduced in the final expressions.

3.6.2. Contributions from the Roots Vo Corresponding to
J

Dilatational Waves, The contributions from the roots VZj are

found in a similar manner as those from the roots \)Zj of the point load
case., In the vicinity of the roots, the dominant term of A(ro, -iw, \)-—?g)
is given by

2 .
~im/2
Alr g, -iw, v-3) ~ AT (2v2-0%) 2l (g Hs)l)(mQ) . (3.6-5)
Jm Q ri

V

Consequently, in this region the zeros of A(ro, -iw, v-%) are the same as
the zeros of Hs)l)(mQ). These zeros are given by

-AB in/3 -im
e

Vs .
~mQ+ 2 (e zJ)(mQ) , J=1,2,..., (3. 6-6)

where the Zj are the zeros of Ai(z). From equations (A. 39), (A.40),

(E.11), and (E. 12), it follows that
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Ve iw/6
_ (_z__ )/3 0 pitey
sz 2 J

3, (mQ)

V.".‘ 7)2]

where Bi(z) is defined by equation (E, 11), Using these results and

equations (3. 6-2), (3,.6—3), one finds that

‘ I
Yo (27) G Blie) 273 2 (_ [eoTs s
T ) I JaT aen &/

(3. 6-17)

X §(~/)S; {,a/yfiy [27[5.;.(_27[_9)]7,_% [P [2775—%(—27—7%19)]]55 [zj),
=0 2 |

Yoo 1o 7
Uy CT) 26 i) 250 (_ (W1, )zéx

(Zm2-1) Yo /277 atns Cy (3.6-8)

xg‘o'(*/) SZ{%D z})[zlfsvt {—ﬁ)]—% /7’1:27757‘(577‘#)]} B: C”-f;) .

By comparison with the series (2. 7-9) and (2. 7-10), it is concluded

that the above series are useful in the deep shadow region, ¥ < 1—; .

The infinite sums appearing here have the same physical
inte‘rpretation as those in (2. 7-9) and (2.7-10). Here, however, no
diffraction starts until the incident wave fi‘ont reaches the ring
(r, &) = (ro, —Tz—r ); that is, the diffracted waves have their origin at
r=r ’9“=—121. , when t=0.

 Substituting p for -iw in (3.6-6), (3.6-7), and (3.6-8), one
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obtains

(3. 6-9)

~

i
; 1‘0 —\/3 -if Pr, /3
1\)2. =-p— -2 (e z.)| ——
J C‘d J

and by applying (3.6.1),

(];:_ 27 w?* 2

U G /)/——-.Z(/)Z[E(fzﬁﬂ 9)+E(z‘2775+77+19)} (3. 6-10)
1 'VM

2.

Us _ 2n(- m‘)/ZZ G [E(f 2775+7r :\ (3.6~11)
Ve _ ) -z‘,zzrs+.7l+z9) ;
Uz (2;/,12./),/ 's;a ;VZ: ( 2

7

where

E.(t, &) = 21z To [PTo) 1}(ﬂ)dp , (3.6-12)
J 2mi c, | ¢

By

and y (¢ ) is given by equation (2, 7-17). The above integrals also

have the form of equation (2. 7-18) and, therefore, the final expressions

here are

—[];’__ 805W2F X 5‘(2/) ngil
U brnidfeing (I_4)%

(3.6-13)

X ﬁq/a[—q.974z @ﬂa)s/szﬁl/j/‘/(E) )



U (l-m2 3 U
Ue _ . __—_7)._ U (3. 6-14)
U1 m | Ul
in which
T = tCa . (1_9) , (3. 6-15)
S r 2

and the inequalities (corresponding to (2. 7-24) )

0<t , 1<Z-8, tCq <min(—l-(12r--19'),—121+6') (3.6-16)

2 r, m

must be satisfied., When m=0.5, these expressions reduce to

94
U. 4 h -
= . . 3.26 Ts exp | -0.9742 (—13 'ﬁ}azT £ H(T,) ,
Uy /sin® (%-&)’% 2 > >
| (3.6-17)
e . .o & | (3.6-18)

these results are shown in Figure 14 for & = —é—r .

3.6.3. Contributions from the Rayleigh Root. In the context of

this chapter, the Rayleigh root is given by

_ B
Re\)R \)O—QOQ,

_ - Q
Im v, = 0. ~ 4+ const Q e const s
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~ where \)0 and do have been defined in section 2. 7.

From Table Al it follows that in the first quadrant, close to

the Ravleigh root,

T m Q) = % s m a) ;

hence equation (A.7) can be used directly to give

i
J\)(mQ) ~ 1 /% (\)2— QZ)//T'e\)(tanhY—’Y)’ v=m{ cosh vy ,

or.

INEE
DI
ol

Q

™ |

2 % 2
Y v 2] Q -1 v
JV(mQ)rv (——1) exp Vv ( > m) - cosh -

Using these results and equations (3.6-2), (3.6-3), one finds

that when m=0.5

a/
Urr  0.250 (277)3/2_‘ [y EL 7 /;'(j-%

[]Z /Wﬁ- ‘ Cd R
—0.507%,

’ o0
x> l)fe : ;
s%: {%‘%[27]5+27[—79)+W"7;ﬁ775+iz+19)} R (3.6-19)

X

a4

' 3
U _ _ o.128 (er)-/z.'"_of 27% x
Ur NEVY QI R
(3. 6-20)

- 0.50‘77{,

X Z('/)Se {% "% (27754_37]_"19)_/%0 4% (27754.%_/.&)} .

S=0
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. From the discussion given after equé,tion (2. 7-31), one concludes
that the perdominant disturbance fqr long time is given by the
Rayleigh root, in accordance with Miklowitz (3, 4) who showed this
to be the case for the cylindrical cavity diffraction problems.

The application of (3. 6-1) gives

c
[

R _1 tRE Pt gy (3. 6-21)

Usr C |YsR
—eW= )D

and, since the semi-circle CO in Fig, 3 gives no contribution to the

integrals, these integrals reduce to

_ Re e gy | (3. 6-22)

where property (3. 3-3) has been used. More explicitly,

_0.507*k  _wl
U 0206 0250(2773/2(/)‘/v ~% e ;[V s)€ rt;)a/wa (3.6-23)
1

G
Ur _ & Losza)ari g% L (5 6-24
T e Z(’) = W € o, 62
where
ivy, =.iv_-0_ , (3. 6-25)
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GOk 9)= 010 (% 7S+ -0)+ s2p %% (275 + L +8), (3. 6-26)

/7(7%\»,5):% (7 (2775+2l'-,y_%£:/f\, (2775+.27I+59. (3. 6-27)

For the approximations being determined here, it is sufficient to
assume, as was done in reference (4), a certain constant value of
g, denoted by a small number and accounting for a correction term

so generated. The qualitative features of the Rayleigh waves are

then contained in

774

Uk f 0506 )%Z‘”

Uzrﬁ_];ﬂ %ﬁ (_/)5 6/(72,275+217.z9)+a/(£[,,z;r5+27[+6)}, (3. 6-28)
S=p

;1%
UﬁR:_b_&_gé of‘lz8(277)3/22@,(‘_/)S{d(76"27r5+_7_7_'_5) +C/(7“—7, 27‘5.;_.7[,4.,9)} ) (3. 6-29)
q m \'4 Ad;nﬁ =0 * ?

obtained‘ from (3, 6—23) and (3. 6-24), where

w E
AT, &) = e‘%’f viF O S0T epleiv Ty da,  (3.6-30)

T, = tOR - 2ns -<1‘- -9) , (3. 6-31)
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T = R _ 215 -(% +19L) . (3. 6-32)

These integrals may be evaluated by using the formula (20)

[22]
—-ax ~x7
%) : (3. 6-33)
[«r e %"f-z“%z/}’“”

(a*+ 7%
Thus,
EE.: 075 ® [b(T2F5+__ )-/- 0(7;’277574 +-ﬁ)] (3. 6-34)
1 \/Mﬁ' 5_0
Cor _ _ I.l‘l/ @ [b(?@')zr/-g.;..;_’"_ﬁ)\ D(?-’,, 2}7‘54-%.,.;9)} > (3. 6-35)
A vaent’ c1
where

g , o
D(r8)= oo Tz[m(fwo?o?)'w< aso)] (3. 6-36)
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3.6.4. Discussion of the Results. As can be seen from

eéuations (3.6-17), (3.6-18), and Figure 14, the diffracted wave
fronts are smooth and have the same form as equation (2. 7-43)
which was derived frém the general theory of diffraction. Recall
thaf this agreement was also found in the case of a point load,

The contributions from the Rayleigh root, in the plane wave
case, present a different behavior than was found for the point load
case, as Miklowitz found for the cylindrical case. The significant
difference is the non-singular nature of the Rayleigh waves at their
arrival time. This means that the heads and tails of these waves
have to be included in the solution (ref. (4) gives a scheme for
considering these which could be applied here). This leads to the

approximate form of the resultant disturbances given in Fig, 15,
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APPENDIX A, ASYMPTOTIC APPROXIMATIONS FOR

BESSEL FUNCTIONS OF LARGE COMPLEX ORDER

Introduction

The primary purpose of this appendix is to present the asymp-

totic approximations for the Hankel functions of the second kind,

(2)

H.,' (1), valid as|P|~wand/a—0® ., The results shown here are

taken from Watson's Theory of Bessel Functions, reference (24), and

from references (2 ), (70), (25), (25), (27), and (2B). A common
notation is used. Only a brief exposition of the results is intended
here; for further details one should refer to the aforementioned
references.

Expansions for Large 2 and /2 with || Larger thansL

This section contains the asymptotic expansions for the region
usually denoted as non-transitional (5 ) or non-oscillatory (}0).

These expansions are employed forh?|>>.0~; more specifically, for

N :
7)%(7—)’= e . (A. 1a)

lim
IVI—#Q‘)

For # in the transitional region a separate analysis should be given.

The transitional region is governed by

) /s:__l>l<oo (A. 1b)

|7;|_—co

This case will be treated in a later section.

In Watson's work is is assumed that

2= 71 cosh? =, cosh{ A+ if), (A. 2)
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- where 0 < B<w and A is any real number. Gonsideration is then

given to the integrals

0+
, 1 -
n(n) = — e W) 44, (A. 3)
i
-~
. -~77¢ 0
- 1
HS (a) = ————] e W) gy ———f ¢ Maw, (a9
i i ~
-® -wt+¥e
where f(w)= w cosh ¢! - sinh w.
A stationary point of the integrands is at w = ¥ . Hence, to

evaluate the above integrals one should choose the contours that
correspond to the steepest descent through the stationary point w= 7
that is, the curve whose equation is Im f(w) = Im £(9"). There are

two such branches through w = 2" ; their slopes at the point are

+ %— + —;— ta.n—l (tanh’/\ cot B) ,

where the tan—l denotes an acute angle; Ref(w) increases as w moves
away from ' on the first branch, while it decreases as w moves
away from " on the second branch,

The integrals along these branches [say (i) and (ii)] are

denoted, respectively, by

st :i_f &) g | (A. 5)

(i)
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‘s(,i)(a) =—l~f W) 44 | (A. 6)

mL
(<)

With the aid of Watson's lemma these integrals yield the asymptotic

expansions

o \ i
Sg)m)~A,(ﬂ,ﬂ)e“ I%%%@_ A (—Z’itanha”) " ’ (A.7)

(%) 2

o0
sSNa) i (pa) & O, (——-Z-tanht)")_m . (A.8)
-m=0

where
7,
—‘/
4_ /z
Al0)= ( Maj 2)% (2 Pk
‘r (A.9)
)7 22 /22
o= v(Mr-r) b2y o b2+ (—-J—L—-)—]
| J
with ‘
arg (- 2™ tanh ) = arg ( -i sinh?") , (A.10)
2
where the value of arg(-i sinh?d') lies between -—— and —— ; the
values of A., A,, ..., are

1 2.
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A0=1,‘ A =1—- icothzad s
1
8
3 77 2 385 4
A,z— 128 " 576 vcoth r+ 3450 coth™ s eee (A.11)

These asymptotic expansions are invalid for the values of »
corresponding to small ¥ because (A.la) is violated; this case is
the transitional case which will be presented in the next section.

Obviously, since S(,,})(ﬂ) and S(j)(.ﬂ.) are solutions of
Bessel's differential equation, they represent linear combinations of
H(;)(_rl) and H(jz,) (/%) ; the coefficients in the asymptotic expansions
of the latter are determined by identifying the terminal points of the
particular contours (i), (ii) in (A.5) and (A. 6) with the terminal points
of the paths in (A. 3) and (A. 4).

The location of the end points of (i} and (ii) depends on the values
of » . For some regions in the 2» - plane, and the corresponding

' -plane, shown in Figure Al, one obtains the end points which
correspond to those of H(jl,)(ﬂ) and H(i)(_n.). Table Al gives the
end-points for the various regions in Fig. Al and also the relationships
between S(;)(f)_), S(ﬁ)(_f).) and H(;l))(_a), H(,Z;)(_a). Table A2 is
obtained from Table Al' by a suitable rearrangement. In the tables,

M and N denote respectively, the smallest integer for which

1 -Atand + [(M+1)m-8] cotp>0 ,

when cot B>0, and

1-Atan 3 - (Nw+ B)cot B >0 ,
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when cot < 0. The preceding two relations arise from general-

izations of the equation

1 -{3cot{3—)tanh2 = 0,

The curves AB and AC in Fig. Al correspond to this equation,
The generalizations stem from extensions of the ! -plane depicted
in Fig, Al.

The values of H(,Z,)X(JI.) corresponding to various values of
are obtained when s(yl)(_/z) s S(,Z;)(_(l) , and H(jz;)(_a) in Tables Al

1 1 H
and A2 are replaced by S(jl)) («2), 8(72)) (), and H(jz)) (). The

(1)

asymptotic expansions for S,

1
(n2) and S(,Z;) (), obtained by
differentiating the above expressions for Sg)(ﬁ.) and Skg)(_().), are

as follows:

SS)'(ﬂ)Nsinth(z),fz) & [1 + cl(a)tanha”)'l+ Cz(ﬂtanhb‘)_z‘r- -],(A- 12)

(@) . -« ' -1 -2
»' ) -i sinhyA@,n)e l—Cl(Vtath‘) +CZ(1)tanhb‘) + ..., (AL13)

where

The information in the tables is presented graphically in
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 Figure A2 for the various regions of the #-plane. Additional
information is also depicted. Construction of the figure is given in
Appendix B because it is more peftinent to the discussion of the
function F(#’,/2). The following comments apply ( 2 ): in the
figure the notation of (A.9) has been used, where the branch of

A
(722—_{)_2)/2was indicated in (A.10), more specifically, one must have

(V.z—ﬂf)%"—» 2 = |Plexpli¢p ), (-wepgm), for|2|l—mw (A.14)

Thus,

\ »
2% e‘i»( eﬁ) for |2|—@ ., (A.15)

Aj), — )
(#.1) (172/) 27

The asymptotic behavior of H(,})(_n_) and H(,Z;) («2) changes
(Stokes' phenomenon) across certain ''Stokes'' lines, shown as thick
lines in Fig., A2. For H(,l,)(f)_) , one has the curve
hl(Reo(zo, Im»>0) and h_l(Re(o(-iw:t))=O, Im#<0). These curves
are symmetrical with respect to the origin and the zeros of H(,l,)(_a,)
are asymptotically located on them, The curve hl cuts the real axis
at # =_2 atan angie of w/3. The tangent to this curve tends to the
vertical direction for [#|>~c., Asymptotically, the curve approaches

2 =072 ,7—* - 'rz_r_ where ¢~ and 7 are defined as

= exp[i(lzr'l‘e)] ’ (A. 16)
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o 2P
7= e 1nJeﬂ ) (A, 17)

and e—=0 in such a way that ’7 approaches a constant value.

For Hg)(_f}.), one has the Stokes lines hZ(Reo( =0, Im#2<0)
and h_Z(Re (£+ imz°) = 0, Im#2>0), which are complex conjugate to
, respectively, and where the zeros of H(j)(_/L) are

h., and h_

1 1

asymptotically located. In addition, one has the portions of the real
axis denoted in Fig. A2 by j' (from -c0to -/1L) and j (from -/1to 1)),
where the zeros of Jv(_ﬂ_) are located.

These curves divide the 27 -plane into the five regions A to E
shown in Fig. A2. The asymptotic behavior of H(;)(_f)_), H(j)(_(z),

J’)(,r)_), and Jj)(_Q) in these regions is shown in the figure. Note that

Y, s

~/2 e L2

I()—(2TmV , (1Pl ) A, 18)
L()— (27 ) fz—j;) ( (

in all regions. For each function there is a domain where it tends to

zero for !79]—““’, whereas it tends to infinity outside this domain.

For Jg')(_(z_), this domain is the region A, For H(;,l))(_n_), it is the domain

2
half-plane. For H(ji)(ﬂ), it is the domain B between hl and the

E between h, and fhe curve 2 :—0"|7)|, "7——»— ?i;—T in the lower

curve ¥ =07|2|, 7—» % in the.upper half-plane. Finally, ._I_p(_ﬂ_)f» 0
in the regions C and D,

These result.s have to be modified in the neighborhood of each of
the Stokes lines, where the two representations for the same function

become of comparable order. One must then add the two represen-
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- tations to obtain the asymptotic expansions valid in these neighborhoods.
Note that the function is the sum of the two representations in the two
regions adjacent to a given Stokes line. However, one of them becomes
negligible in comparison to the other away from the Stokes line.

These neighborhooas are indicated by the shaded region in Fig. AZ,

Thus, to the first order, one has
T4 .
) () ~2ae' dinnfe - 1—;’-) in AB, (A. 19)

I—Ig)(_f)_) ~ -2Aexp(-imz- —ET—) sinh{x - iwrz + %E—) in DE, (A, 20)

HZ W)~ -28expling+ 1) sinh - inw- 3T) nBC, (AL 2)
-0 .
H(ﬁ)(_()_)ru 2ae” Yinn (e + %) in EA . (A. 22)

In region BE, in the neighborhood of the real axis, one may

employ the Debye asymptotic expansions

(152) - '
Hy(ﬂ)=J;2-:mz—ﬂz)/)4&?D ii[(ﬂ&pzlz_ﬂm__é_)_{_J} %

N F ot (222 )+ e
sk T3 )

where the upper signs refer to H(71))(_Q) and the lower ones to H(ﬁ)(_a),
7

-4 -
and (N*-#*) >0, 0<cos 1%4—% for—-N< 22 )
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-Asymptotic Approxirmations in the Transition Region

The transition region corresponds to the neighborhood of
¥ =+ /) where the asymptotic expansions given in the previous

section are not valid. In this case, with

2 =z cosh &, (A. 24)
Y =0 (%) << 1, (A. 25)

!
and therefore |#- z| becomes comparable to |7)/3|, that is

lim | %, z
23 Z-1 léw, A, 26
N L RS (A. 26)
As in reference (5), this case will be termed 'transitional'!,

The formulas of the first approximation were investigated by

Watson in (27). The results are

HOy= -3 97 [, @)- £77¢ Hy (814 007] » (A. 27)
A ‘Eé
"’(z) =3 evg [f/("(e;J—~ g,f/ (z;)+0(7] (A. 28)
where

& = 1—373 tanh ) 7 = tanh Y (A. 29)
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-and 2z, z» are unrestricted complex numbers. These results were
improved (/0) by noticing the form of (A. 27) and (A. 28) and assuming

for H‘j)(z) the following expansion with unknown coefficients:

(2), Y <TGl 02 & 241
Hy (=3 2e 7/7/“6 (4)+Z 7 &)7 (A. 30)
n=/
By substituting into Bessel's differential equation,

2 @
S (z) n 4/7' & _ (,_5_) ey = i He) (A. 31)

P

and equating coefficients of the same powers of 7 , one obtains a

system of differential equations for the qn's, for example,
73”(4)+55—2’(4)+ﬂ+g'5:) F6)=-2456)- % 4, Hy ()
A (4)+ Ee)+(1+ 3 51)2“(4)=—f/f,2(§)+ 7;”(;)+§—;;’(4) (A.32)
o 7)) -

By an iterative process one obtains expressions for the qn‘s , for

example, q;(g) is given by

7(e)= 75)"1{-(2(4’)— 33-%/22)(;) . (A. 33)
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»Thus one finds that .

5% ‘/3[<az(4+az<; H (5 + B ) W] (a5

2

in which

al§)=l+57* o by=— g7,

42(4) (230 75% ;2) 74'/'(283200 - % ‘;Jz) 7[6"‘
_,_( 1.3959

§

g (A. 35)

+1.3329- 05//635 +aoas4§')7 P

20 18900 600 950

LU-(553 1) i 2 )

+(‘2.o7zé+ 0.5/ 93842" 0.05854/ 54) 78'

By a similar process one finds that

Hy(z)"’- e7 [(41(4)+az(g)+ Hy@)+(51(4)+/p(gﬁ+ );"H;') J (A. 36)

Differentiation with respect to z yields

(2)

W eoi3 72(My/"[g(4);~'ﬂ W)+ )b ] (4.37)
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~where

celf)=(r5~F4Pr+ (g -2 4) 1M

L (A. 38)

R e Aol

with a similar expression for H(l) (1)
Reference (28), pages 367 and 446, gives another form of the

expansions

("f)ﬂ) 2%(;;‘ )(_27:) [%Q(zg‘zir)( )3(7, ﬂ]+0(ﬂ*) » (A, 39)
Vs Y5
vy (2)= (’5:) Az[(?z?) (f*ﬂ)]‘*‘O( =) (A. 40)

where Ai denotes the Airy function defined in Appendix E.
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TABLE Al

Regions End-points SV(I)(Z)

1f3’4 -co, oo + wi Hv(l)(z)

2, 6a o -mi, co+ wi ZJv(z)

5,7b -0, -0+ 2wi Ze'v"i;r_ (z)

6b -0 - 2Nmi, co+i eN""iHv(l)(ze‘N“i)

7a 0, oo+ (2M+1)mi e-MVTriHv(l)(ze_MTri)
Regions End-points Sv(z)(z)

1,2,5 -co+mi, o Hv(z)(z)

3,7a -0+ i, -oco0 -mi ZJV(Z)

4,6b o+ 21, o 2¢¥T ()

6a o+ (2M+1)ri, oo eM"“iHv(Z)(zeM“i)

7b -~ +mi, - 2Nmi e—Nv"iHv(z)(zeNTri)
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a nA dn.mw A a a .:..\».G“.mm
(®)(1) Srua(r-n)-° Tan s - (B(g) S (®)(2) Stuaz-> = (¥(1) Stuan-° ma(ranwrs aL
a a L4 UIS A 14 uts a
(® (1) S - By Stuaw-° Ta(Tan)ars (®)(2) Stua(r4n)-° Tapyurs - (B(p) S el
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APPENDIX B. ASYMPTOTIC EXPANSION OF F(# ,41)
AS A FUNCTION OF FOR LARGE

Introduction

In this appendix‘a summary of the asymptotic properties of the
function F(22,42) is given. These properties were derived in
detail in reference (10) and were rederived by the author. Here it is
shown that some of the results can be obtained and extended by
techniques simpler than those of (10). Only the results needed in the
text are given.

Basic Formulas

F(2,0) = —jz(lnH‘i)(-a) - -

where

@ 2
Jl‘—'_—.'fKo(t) cosh ngclf; = -g— H(jl))(ﬂ) H(72))(-Q) .
°

.0 I, ° .
= =f Kl(t)smh# cosh 27/40’4 ;

(<]

fil

Y

(B. 2)

o | ==

t = Zfl.sinht; s

valid for any complex # and Re 1> 0.

Preliminary Analysis
In reference {(10) a preliminary analysis of F(2°,12) was
perform‘ed by considering equation (B. 1) and separating the values of

P=T1+i0 (71,0 real) into real, imaginary, and complex values.
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‘Since F(?,42) is evén in 22, only Re 27> 0 was considered.

| The results of the analysis are given schematically in Figures
Bl, B2, and B3. The poles of F(# ,42) are the fourth quadrant
series of points indicafed by "o'" in Fig. B3. From the analysis in
(IO)A‘ it is concluded that F(#’,42) has an infinite number of poles of the
first order within a relatively narrow region extending from % =42 to
-ie0 ; this region will henceforth be termed the oscillatory region or
' the transitional region (5).

' On the basis of the preliminary analysis in (10), it was postulated

that, for ¥ >0 in the whole %7 -plane except the transitional regions,

Y
F(#,0) = '(‘})Ti )2{1 + 0(1[’)} (B. 3)

to the first approximation. The required Riemann surface has a cut
~in the right half-plane as shown in Figure B4. The cut starts at

P =41 and goes off to -iC0 , always within the oscillatory region.

The argument of ( »* )\/2 vanishes when 7 tends to + @ + ie,

N2

e<4<1, The validity of this formula will be shown in the next section,
Note that the Riemann surface here is different from that of

equations (A. 2) and (A. 14) and therefore one must scrutinize the

arguments of multi-valued functions when applying the formulas. The

coexistence of two different surfaces on the discussion merely means

that the two surfaces are complementary, as will be seen later.

Closer Evaluation of F(#2 ,/2)

In accordance with Appendix A, away from the cuts of Figure B4,
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»H(Z)(_(Z) is a linear combination of S(l) o) d (2) i
” ' () and S’ («2). Using

relations (A.2), (A.7), (A.8), (A.12), and (A.13), one obtains

H(j)(ﬂ) = A(#, 1) (c1e°‘ + icze“"),

Y (1) = A@,2) (¢ ic,e) (})—Z: -1 1+0(J2")} ;

where ¢y and c, are some functions of 2 .
Hence, using Table A2 and considering the sign of &X and of the

imaginary part of # , it follows that
2 2 \/2 —|
F(#.4) = - @¥7*-1)% {1+ 0w} (@)
in regions A and B of Fig. A2, and
2 ~ =2 \Z: —{
F(#,0) =+ (@7 1)2 {1 +oa )} (b)

in regions C, D, and E of Fig. A2.

Equation (b) is the analytic continuation of equation (a) into the
other sheet of the Riemann surface of (7)2_0.-2“- l)\/z .  However, since
F(%,A1) is a meromorphic function of # , this surface is not really a
property of F(2?,); it was introduced in approximating H(jz,)'{_f),),

In fact, the approximations given here for F(=2,/L) are not valid
in the vicinity of the cuts shown in Fig. B4. On the basis of equation
(B. 3), it follows that equation (a) above is valid in the whole 2% -plane

except the transitional regions.

Location of the poles of F(2°,1). The estimates of F(=,(L)

are simply given by the ratio Aof the expressions in Appendix A for
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,I—I(,z,)(_(‘l) and H( )1( 1) for # in the various regions of the 2’ -plane.
F(»,) will now be closely analyzed to determine its poles.

The poles of F{(# ,/1) correspond to the zeros of H(f,)(ﬂ) and,

therefore, the results in (23) serve as a check on the results given

here.

1)

*Observe that S(j) () and S(i)(_r)_) never vanish, This is so

because the expressions

(1)(_0_) __1_ ~nIm f(a‘) GARe f(w) gy

_n_Im f(b‘){ -.n.Re f(w f -nRe f(w dv
G)

(2)(_Q) - _1_ e-ﬂ-Im £ f e.rIRe f(w)du+ ij e-/IRe f(w)dv
i
([(:) (I:L')

2

are derived by using the property of the integration contour. These
contours, as shown in the figures on pages 264-266, reference (24),
are such that neither du nor dv changes its sign in the intervals
contributing to the integrals; in the case of J being finite this is
also deducible from the expansion formulas (A. 7) and (A. 8).

Using Table A2 and considering the order of magnitude of € 7)'”1

(2)

it is clear that H_, (1) never vanishes in the regions 6a and 7b,

Fig. Al, but vanishes only in a part of regions 3, 7a and 4, 6b,

1)

where S(,,)(Jl) and. S( (/1) are of the same order.

(2)

In view of equation (A.21), the zeros of H ;' () are given by

ale

* This discussion is applicable to the construction of Fig. AZ2.
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“such values of v that correspond to y satisfying

Q(ycosh ¥ -sinhY)=i(mm - —Z—;—) {1+O(Q-l)} , [v=Qcoshy]

for large values of y, where m denotes any positive integer; in other

words, the zeros of Hi}z)( Q) lie close to the curve
Re(ycoshy-sinhy) =0

(or, equivalently, Re® =Re Vv(tanh Y- ¥)=0 as shown in Fig. A2),

or

AcothA-BtanB-1=0.

The curve starts from the point v= Q forming an angle - & with the
‘ 3
real axis, passes through the middle part of region 3 and goes off to

-ic0 , as shown by the dotted line in Fig, Al and by the branch line hZ

in Fig. A2. For large m it is easily seen that the zeros of H(Z)(Q)
g g Yy N

are given by

N (m-%) wi
m logm

For values of v close to Q@ which are of greatest importance for the

(2)

applications in the text, the zeros of H\)

( Q) are discussed another

way in the following.
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Poles of F( v, Q) close to 2. Relation (A. 34) suggests to the

first approximation, that the zeros of Hf)z)( ) near Q are given by

those corresponding to the values of & satisfying

(2) - _______Tl' . é 1 =
Hop(8) = HCw / ~ Ai(z) o, (B. 4)

which is the highest order term, where

€ = ig\—)—’(:a.nhs\(
. 2 _ 3,
E=pe™, -e”’(gp)é, o-—i—(e”z)f (B. 5)

and Ai(z) is the Airy function discussed in Appendix E. Table El
gives the first ten values of z for which (B.4) is satisfied. From
the values of z one finds that the first few values of p are¥*

2, 3834466, 5,5101956, 8. 6473577,

o = . (B. 6)
11, 7868429, 14, 9272068,

The first approximate values of Y are those which correspond to these
values of p, that is

| 5, 77”[
y N(é_g)/s RZ

0 P (B. 7)

* Nagase found these values of p by using the tables on pages 714-

729, reference (24).
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‘choosing among the three possible arguments of y the one which is
compatible with the previous discussion. Therefore, since

v=0Q cosh ¥ , the required zeros of H(\)Z)(Q ) are given, to the first

approximation, by
73 S5V,
=N 1 /35 3
V= [/1‘;(3) € > (B. 8)

- where the values of Q are given by (B.6). This result is in

agreement with references (5) and (25).



-92-
APPENDIX C. RAYLEIGH ROOT OF THE FREQUENCY EQUATION

Introduction

The primary purpdse of this appendix is to derive approximate
expressions for the Rayleigh root of the frequency equation. This
appendix follows closely the plan and outline of reference (10) where
the root has been approximated. It differs from the aforementioned
reference in that it has the correction to some errors made in (10).

Rayleigh Root

" In the vicinity of the Rayleigh root,

Flan)=-(Z- I){HO(J[’)} Flma)=~(2 W Z[/+0(JZ“’)}

therefore equation (2. 4-9) may be written as¥*
: I, .
2\ 2 2 2 2N2
Lo)=-Z24( N R L (- __ﬂ_) »
mal Z 2(»2 ?) 2z [ 29\ 2Ly

x [—éﬂz ™ ) z»m(’ ,,27/ [ 140 ﬁ-%z @
[ )/ “*—- —2,){)] /+0(_/2‘/)} "

>(C. 1)

— P2 22 Z Y
= 4)’)7772‘[( _/} 4_,22. T _-%.—9 )

=-_L'(zﬁ_£i47’z P2 2\ 22 €)
| ) G )

% See Figure 6 for the required branch cuts.
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- When the expressions [ ] in (C. ic) and (C. 1d) are set equal to
zero, they become, respectively, e‘quation‘(32), reference (29), and
equation (2-38), reference (/9).

By setting the above expressions for fz(-z)) equal to zero, the

following equations are obtained

er2n?fe42*(-0"%) //2( a2, (C. 2)
‘;(%ﬁ)yz(é‘-w)yﬁ E-%) =0, (C. 3)

where
2 .4
< = _1;).7 . (C. 4)

Formula (C. 2) corresponds to formula (3.11), reference (5),
and formula (C. 3) is precisely formula (3. 27), page 850, reference (10).
It‘ was also deduced in a related way in references (30) and (3). As in
the cylindrical case, (C. 2) or (C. 3) establishes the fact that fz(:'))
contains a real root which corresponds to the Rayleigh surface wave,

Using the definition of phase velocity, ¢ = u)ro , formula (C. 3) can

2’

2 2\
c2\2 _C2 2 __C )
&= H-5) 5 9

be written as
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_Squaring equation {(C. 5) gives
e g6 Lt C2 fs 52 _

which is equation (2~29), reference (/9).

The preceding equations are discussed at length in the references
indicated. In particular, from the analysis given in reference (29),
page 9, it follows that there is only one root which approaches the real

# -axis as |2l and whose limiting phase velocity is the Rayleigh

velocity, The real part of this root is given asymptotically by
Y2
%R v, = §o ﬂj (C. 1)

where 5o is the unique real root of the cubic equation

16(1 -m2S° - g3-2m2) 8  + 85 -1 =0 ; (C. 8)

£ois greater than one.
To estimate the imaginary part of the root, it is necessary to
retain the first term of the expansion for F(#,f1) that contains i.

In accordance with equations (3. 47), (3. 48), (3.50), and (3. 51),

reference (10), part I, the expression needed is

F(’JRJﬂ):_ (Z-—LZ -/)!/2 [+ "E(VRJ'Q)J ,

where VRz 2 +i0, , and
o .
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E(#n)= Mf[-zﬂ(%wj:’g_z (VZ /)/2)] (C.9)

By assuming the inequality |66l << 7, , the substitution of this

expression into (2. 4-9) yields

)— —&—{/ 27/2 ——/) [HE{%H]
- 20%) 0%,
-_7;;2?——)[ _I_ NPT

B )/ T

+iE Bon) +0 E(2 n2)

frictin

§l~

By setting this expression equal to zero, and in view of equation

(C. 3), the following equation is obtained:

;cf)/ -»/[{( i Jeatrets e i

- 2-&2 Lﬁjjﬁ _0
‘mV’-ﬂ-’ 2) E’/L 7)07) 22 | TV

or, by solving for G5 ,

f

K(m)

[[[ 2572) + E (22 )ﬂ_ﬂ)J (C. 10)
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‘where

K (m) =(§Z-m2)1(9;.,)‘i (‘;""é)(zgm‘/)(ﬁ—o_l/z(;;%z %

Note that, just as in the cylindrical case (30, 5 ), 0o has the

form

_ conal2

3

UQ”'-;}'? =0 v-conl(l €

where const >0,
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APPENDIX D. ASYMPTOTIC APPROXIMATIONS
FOR LEGENDRE POLYNOMIALS OF LARGE COMPLEX ORDER

Introduction

This appendix contains asymptotic approximations for the
Legendre functions appearing in the text. These approximations are
valid as | #|—~=in, at least, larg?! 4‘7% and various regions in &
Some formulas hold for largﬁlén -8 . The results compiled here
_are taken from references (2), (3/), (32), (33), (34), and (28).

A common notation is used.

Basic Relations

Py_yz(mﬁ‘):/c(é--v,‘2'“*7";/5-2/—-—:%:»‘19), | < coed </ (D. 1)

By (coet)=P, | (coa®)s (D. 2)

E

-»/2(‘“49)=Ez_yz(@49)m7’77+g@,_l/gma)mwr, occsatrsl, (D.3)

Ain A e B)crs o< -
@Zy(—m9)= - G, (ese9) 1)2r+:2_1-3,_,/2( B)ese 2T, OL _—
2

For integer n,

Bylrcout)= ()R, (coe0) , et )=, (coe8)  (D-5)
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_G@an)! ,

B ()=hB =), B, O)=aar e » B, [0=0 (D. 6)
A | dB, (cseB)
R(m&)fé/ ) | — | & 73 (D. 7)
de

Asymptotic Expansions

If 0<&<m, |arg?|enm-§ , the following asymptotic

expansions are valid as |P|—=2 (32), (33):

i i ftro-Brofy @

If 0£f<ec, |Plegl, |ZI>® , arg 2 arbitrary, (2), (31),

(33), then
Fy_%‘(mﬁ)"’ ] (u)+ MQ-ZQ—[%U; ()= ] (w) J,T_Z]%JJ.;_ 0(%4.212‘), (D. 9)

where

uw =2 %sing | (D. 10)

and must remain finite.
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A uniform asymptotic expansion of the L.egendre function has

been given by Szegd (34):

(w¢9)~( ) [J &)+ - (Guvf& /) < (78) +0(y“2)] (D. 11)

This reduces to (D. 8) when |#|{#>>| and remains valid for &—0.



-100-

APPENDIX E. THE AIRY FUNCTION

Introduction

This appendix contains some properties of the Airy function
which are needed in the text. The results given here may be found

in references (2), (28), (35).

Basic Relations

The Airy functions are solutions of the differential equation

d w _ ZW . (E. 1)

One standard solution is defined by

3 i 3, 05
Ai(z) = = cos(t™ + 3 zt) dt (E. 2)

T ¢

which can also be written as
Ai(z) = 1

where

c = %Z (E. 4)

2

The functions Ai(z et 3 ™)

also satisfy {E. 1), and one finds it

convenient to use the notation
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P 2
R (z) = Ai(z), R,(z) = Ai(ze3 ™), R,(z) = Ai(ze Zri).  (E.5)
Any two of these functions comprise a linearly independent pair of

solutions of (E. 1), the Wronskians being

e_ir/g eiTV6 i
WRL Ry = S, WRLRY) =S—,  WR,Ry ==, (E.6)
Also
Rl(z)+ei27r/3R2(z) t e‘i’ﬂga_?’(z) =0 . (E. 7)
Asymptotic Expansions
| Ai(z) is an integral function of z and, for large |zl ', it takes
the asymptotic values
, - | "
Ai(z) = —— {1+O(ld )
2 /m z*
‘ _ ¢ (E. 8)
v - ,
Ai'(z) = - zte {1 + O l(:l")}
) 2/
J
when !arg z' < mw, and
Ailz)= 2= {M(@ )ﬁ+0(/§/‘2)]—m(Sva)o(ls'l")}
L (E.9)
A== { ot (S+T) [+0 (1617 + ain(+Z) O(ISI )}
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when larg zl < —;—Tr. The expressions in (E, 8) and (E.9) are
equivalent in their common region of validity. From them one may

deduce the useful inequalities

4 IAi(z)’ < C{1i+ Izlz")_1 1exp(