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ABSTRACT

The dynamic response of structures is examined under a
general condition of loading. It is‘ shown that the inelastic response
of structures depends on the interaction between forces and displace-
ments existing at a section during yielding. A theory of yielding is
developed in terms of forces and displacements incorporating the
effects of such interactions, Based on this theory, a force-displace-
ment relationship is derived under a general condition of loading.

The use of this relationship to study the response of structures is
discussed and equations of motion are derived for a simple frame sub-
jected to simultaneous base excitation along its principal directions.

To study the inelastic response of structures, under a general
condition of loading, it is necessary to derive the equation of the yield
surface in terms of folrces acting at a section. For the special case
of bending about the principal axes of a section, equations of yield
surfaces are derived for various structural sections.

The response of a simple frame, subjected to sinusoidal base
excitation, is obtained for elastic behavior, elasto~-plastic behavior
énd elasto-plastic behavior with interaction. The response for these -
behaviors is compared and it is shown that interaction causes signifi-
cant changes in the response. The response of the frame is also
investigated for e‘arthquake type excitation and a series of curves are
presented to »shew:the effect of interaction oﬁ various response param-
eters. Use of thése curves for inelastic design of structures is indi-

cated and the implications of the effects of interaction are examined.
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CHAPTERI

INTRODUCTION

The inelastic behavior of structures has been the object of
considerable interest and extensive research during the last twenty
years. For static loads, a large measure of confidence and under-
standing of inelastic behavior\exists by now, and advantages and
limitations of inelastic design are well recognised. Several excellent

‘books(1 12,3)

s coveri;lg methods of inelastic design and analysis of
different types of structures, are now available and building codes of
most countries permit such designs. For dynamic loads, the interest
in inelastic behavior is relativeiy recent. Though a large amount of
wbrk has been done in this area, much more work, both experimental
aﬁd theoretical, needs to be done to develop proper understanding of

‘ inelastic behavior unde; dynamic loads.

| Problems of structural dynamics arisle‘ due to vibrations
induced by time varying loads, which can be classified under two
broad categories; 1) Recurrent loads, which act on a structure
during most of its life-span and over extended periods of time.

k Examples of such loads are the machine induced dynamic loads in
support structures and machine components; and forces of aero-
dynamic and hydrodynamic ori‘gin; 2) Occasionai loads, which are
likely to act on a structure infrequently during its life-span and

over short peri‘o\ds‘ of time. Examples of such loads are the dynamic
1oads generated by blasts and earthquakes and occasional overloads

in normally recurrent loads. For recurrent loads, the attempt more
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often is to design »the‘ bstructure in such a way that inelastic deforma-
tions will not occur, so as to avoid the possibility of fatigue failure
and cumulative damage. In svu.ch pi'oblems, it is of interest to study
how inelastic deformations can occur and if they do occur, due to
occasional overloads, what kind of response is to be expected. For
occasional loads, on the other hand, it is being increasingly realized
that inelastic deformations can be and should be permitted in order
to produce ecbnomical and safe designs. This has stimulated interest
in the study of the inelastic behavior of structures under dynamic
loads, particularily in earthquake engineering. (4)
Analyses of common types of structures, under assumed
elastic béhavior, show that during strong-motion earthquakes they
must experience lateral loads significantly larger than those
specified by current building codes. Yet, studies of damage to
structures during several of the past earthquakes have shown that
many structures designed for lateral loads even lower than those
prescribed by building codes have survived with little or no damage.(5)
This anomaly is best explained by considering the energy input into
_the structure and the mechanism of its dis sipation, if the strﬁcture
is permitted to undergo inelasﬁc deformations, It ié found that
inelastic deformations reduce the energy input to the structure(6)
and through hysteresis provide a mechanism for large dissipation A

. (5)

of energy. Recognition of these facts forms the basis of current

earthquake enginéering research in understanding the response of
structures during earthquakes and establishing methods and criteria

for design.
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In 1956, Housner(ﬂ introduced the concept of inelastic design
based on energy input to a structure during an earthquake and its
capacity to dissipate energy by hysteresis, while undergoing inelastic
deformations. Later, Housner used this concept to analyze the plastic

(8)

failure of frames and explain the anomalies in the response of

structure‘s during past earthquakes. (5) Housner's limit design(S’7 8)

(9)

and Blume's reserve energy technique provide simplified design
procedures based upon energy dissipation through inelastic deforma-
tions, without considering a detailed response of the structure. The
advent of high speed digital computers, permitting‘step by step inte-
gration, stimulated detailed studies of inelastic response of single
aha multi degree-of-freedom structures by a number of investiga-

tors--Newmark,(io’“) Berg,(é’iz) Clough,(i?’) Penzien(14’15)

Jennings,(ié) Tgnabashi,(”) and many others.(ié’ 19,20) Such
étudies, coupled with experimental investigations, (21,22) have pro-
vided valuable insight into the feasibility and 1bimitations of inelastic
design. By now, a generally accepted design philosophy has emerged, -
which aims at an elastic behavior for small to moderate strong-motion
earthquakes, which occur frequently, and perrﬁits inelastic response
during infrequent large earthquakes, thus risking limited damage.
In the studies referred tb above and known to the author, the
inelastic response of a structure is obtained on the basis of a pre-A
assumed force-@isi)lacement relationship of either general yielding, (1)

bilinear, or elastic-perfectly-plastic type, for each force-displace-

ment pair independent of others. ' A more complex mechanism of
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yielding invariably exists in almost all real structures and can arise

in several ways, some of which are mentioned below for a simple

structure.,

1.

2o

The simple structure shown in Fig. 1.1 consists of a

mass supported on a single column. Let a time varying
force be applied to the mass in the direction 1-1, The

mass vibrates in the direction 1-1 and at each section of

- the column there is a bending moment and a shear force,

in the direction 1-1, and an axial force. Yielding will
occur at a section when these forces attain a certain set
of values and the yield behavior will change as these
forces change Wifh time. Thus the interaction between
these forces determines the inelastic response of this
simple structure.

Suppose we now apply- time varying forces in directions
1-1 and 2-2 simultaneously. In addition to the forces

of case 1, we now have a bending moment and a shear
force, in the direction 2-2 also. If a torque is appliedr to
the mass, a torsional moment will also exist at each
section. The nature of yielding will depend on all these

forces and moments.

The procedure of computing the inelastic response of struc-

tures, with a pre-assumed force-displacement relationship, neglects

the effects of interaction between these forces on yielding. For static

loads, the effectsdf such interactions have been invéstigated(z) for a



F, (1)

F

-
L

G. 1.1

A SIMPLE STRUCTURE
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class of structures, but for dynamic loads, no such study is known to
‘the author. Based (;n experience with staticvloads, it may be ex-
pected that in some cases effects of interaction due to axial and
shear forces may be of secondary nature, but for earthquake and
shock type excitation, the effects of bending in two directions are, in
general, of the same order and, in particular cases, the effects of
to:sional moment may also be comparable.

The object of this study is to determine the inelastic response
of structures, considering the effects of such interactions on yielding.
Following the well established concepts of yielding in a continuum,
under a complex state of stress and strain, it is possible to establish
corresponding criteria for yielding of a structure in terms of forces

and displacements ,(-2) and to derive a general force-displacement
relationship. Once this is done, the equations of motion of a structure
can be written and inelastic response can be computed under a general
condition of loading.

This thesis is divided into five chapters. In the second
chapter a general theory of yielding is developed in terms of forces
and displacements under general conditions of loading. Based on
this theory a general fdrce—displacemen’c relationship is derived
and this is used to obtain thé equations of motion of a simple frame.
In the third chapter, the general problem of determining the yield
surface under comﬁlex loading conditions is discussed and the equa-

tions of the yield\‘svurface are derived for the special case of bending

in two directions. The fourth chapter deals with the inelastic
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response of structures to sinusoidal excitation. Transient and steady~-
state response is{bob‘tained with and without interaction and these are
cémpared to make clear the consequences of Ainteraction. In chapter
five the response of a simple- frame is obtained for earthquake type
excitation, using the Taft earthquake record and also an ensemble

of };seudo-ea,rthquakes. Response is again obtained ‘with and without
’int‘eraction and the implications of the effects of interaction are dis-
cussed;

In this thesis several terms already existing in technical
litefature are used, and some new terms are introduced. Some of
these terms are often used with varying interpretations by different

_authors. For purposes of clarity, the specific sense in which such

terms are used in this thesis is stated in Appendix I,
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CHAPTER II

A THEORY .OF YIELDING AND EQUATIONS OF MOTION
OF DYNAMIC SYSTEMS

2.1 Introduction

In this chapter a general theory of yiélding in framed struc-
tures is formulated in terms of forces and displacements at a section.
Starting with assumed stress-strain relations for elasto-plastic
materials the theory is built up step by step, following the basic
ideas of the theory of plasticity. Based on this theory a force-
displacement relationship is derived under the most general con-
dition of loading. It is shown that the elastic-perfectly-plastic force-
displacement relationship is a degenerate case of this more general
relationship. - For purposes of comparison, response of structures is
divided into three cases:

1. Elasfic response (E), with a linear force-displacement

relationship.

2. Elasto-plastic response (EP), with an elastic-perfectly—
plastic relationship for each force-displacement pair,
independent of others.

3. Elasto-plastic response with interaction (EPI), with a
dynamic force-displacement relationship incorporating
the effects of interaction between various forces and
diSp_laéements at a section‘,

For the special case of a simple frame the equations of motion

and the expressions for energy input and energy loss are derived for
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each of the abo;ve cases. In Chapter_s IV and V, these equations are
‘used to study the éffects of interaction for sinusoidal and earthquake
tyvpe excitations,

A list of symbols to be used is given below and they are defined

again where they first appear in the text.

Symbol Explanation or Definition

ay | yvield acceleration
c © viscous damping coefficient
e superscript denoting elastic behavior
is) | subscripts

m mass of a structure

P superscript deﬁoting plastic behavior

P . force ratio vector denoting the ratio of a generalized

force and the correspondmg yield force

q generalized dlsplacement vector
ay « generalized yiéld diéplacement vector
Eo displacement vector denotmg current position of
equilibrium
t time
u displacement ratio vector denoting the ratio of a

generalized displacement and the corresponding
yield displacement

W internal work in stress-space

WP . plastic work in stress-space

v ’ » ‘slubs’cript denoting‘ yielding

z Ve\Ctor denoting base displacement of a structure
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Symbol Explanation or Definition
[ C] viscous damping matrix
DE v energy loss due to damping
E Young's modulus
_EI energy input to a structure
‘—F_(t) | vector valued forcing function
G éhearrnodulus
HE energy loss due to hysteresis
[ K] stiffness matrix
T bending moment vector at a section
[ M] mass matrix
PX) | vector valued restoring-force function
Q generalized force vector
-23Y generalized yield force vector
w internal work in force-space
wP piastic work in force-spkace
X displacement vector defining the motion of a structure
€ uniaxial strain
eij strain tensor
€£j deviatoric strain tensor
g ratio of natural frequencies
N positive scalar
n o - Poisson's ratio
KEraction of critical damping
o uniaxial stress
L0 stress tensor

1]
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Symbol Explé,nation or Definition
o‘ij deviatoric stress tensor |
w natural frequency |
A differential increment
j ] symbol denoting absolute value
() symbol denoting inner product of vectors
[] symbol denoting matrix

2.2 Stress-Strain Relations for Elasto-Plastic Materials

Uniaxial Loading

The stress-strain curve for an elasto-plastic material under
uﬁiaxial loading is shown in Fig. 2.1(a). For simple tension, with
‘monotonically incre.asing strain, the stress o will be a
monotonically in¢creasing function of the strain € from O to H after
which it falls off until fracture occurs. From O to the proportional
limit A, the material is linearly elastic and as the deformation is
reversible, unloading takes place along AO, The elastic behavior,
however, extends generally beyond A to yield limit B and stress-
strain reiationship is nonlinear between A and B. For loading
beyond B, the deformation is irreversible, so that unloading from a
point C to =zero stress would leave a permanent plastic strain.
Unloading from C to a point, say E, takes place along CDE. Re-
loading from E .proceeds along EF to subsequent yielding at G
and further loading proceeds along the path GH. We suppose that

loading does not extend beyond H and disregard the portion. HI,
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FIG. 2.1 (a) STRESS-STRAIN CURVE FOR AN ELASTO-PLASTIC
MATERIAL (b) IDEALIZATION TO AN ELASTIC-
PERFECTLY-PLASTIC MATERIAL
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For simple compression the behavio;' is qualitatively similar but may
‘differ quantitatively lin case of real materials.
| In general, the stress-strain curve shown in Fig. 2.1(a) is
influenced by time dependent effects such as creep and strain rate as
well as temperature, We idealize the stress-strain curve to that
sh&wn in Fig. 2.1(b) under the following assumptions:
1. Deformations are isothermal and time dependent effects
are ignored.
2., Work-hardening is neglected.
3. The unloading path (CDE) coincideé with the reloading
path (EFG) and is parallel to the virgin loading path OA.
4. Behavior under simple tension and simple compression is
identical and proportional limit A coincides with yield
limit B,
These assumptions are taken to imply that material is elastic-
perfectly-plastic. Furthermorc, the hysteresis loss durin‘g loading
and unloading is zero and Bauschinger effect is neglected. These

assumptions are similar to those made by Prandtl, (24)

following the
experimental work of Berliner. The stress-strain curve shown in

Fig. 2.1(b) represents the idealized material behavior described

above and is used in all of the following analysis.

Complex Loading

Under a corhplex state of stress, the stress-strain relations
for an elasto-plastic material are given by the following relations

due to Hill, (22) Let us consider the stress-space defined by the
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Cartesian stress tensor cri‘j and let the yield surface be given by
¢(<rij) =1 | (2.1)
The incremental plastic work is given by

dwP = crijdel.;j (2.2)

and the incremental strain is the sum of the elastic and the plastic

incremental strains

de!. = de!® + deb, ’ (2.3)
i) 1j 1]
with
.o
e . .
and
P28 - : .
=0 if qS(a‘ij) <1, (2.5)
or if <[>(o‘ij) =1 and d¢ <0
Alsoc
{1 - Zp)do'ii
de., = ——————— (summation convention)
ii B )
where
O—ij is thevCartesian‘stres‘s tensor
o*gj is the Cartesian deviatoric stress tensor

eij 'is the Cartesian strain tensor
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is the Cartesian deviatoric strain tensor

ij
A is a positive scalar quantity
G is the shear modulus
E is the Young's modulus
it is the Poisson's ratio
e,p ‘are superscripts denoting elastic and plastic behavior

It may be pointed out here that equation de% = )\(8¢/80'ij)
implies that incremental plastic strain vector is directed along the
normal to the yield surface at a regular point.. The condition
dwP < 0 denotes that the incremental plastic strain vector is directed

along inward normal to the yield surface and is used as the criteria

for unloading.

2.3 Yielding in Structures in Terms of Generalized Forces and

Displacements

During vibration, stresses and strains are set up in the com-
ponentsrof a strﬁctural system, which vary from point to point and
vary with time. While it may be possible to work with stresses and
" strains, in most strﬁctures s it i1s more convenient to work with
forces and displacements, which are obtained by suitable ihtegration
over a cross-section with an assumed stress-strain relationship.

Let Q represent an n dimensional force vector and q aﬁ n
dimensional diép}aéemen‘c vector at a section such that the internal

work is of the form

W= (Q,q) | (2.6)
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where ( ) is the symbol denoting inner product of two vectors.
Then { is called the generalized force vector and q the generalized
displacement vector, For any system the choice of generalized
forces is not unique; but once they are chosen, generalized displace-
ments are determined by the requirement that Eq. 2.6 be satisfied.
Let us consider an n dimensional force-space generated by
the generalized forces at a section. The state of force at the section
is then represented by a point, say A, with coordinates Q1 15500 ’Qn
or equivalently by the vector Q from the origin to the point A. For
simpiicity, sﬁch a point is shown in Fig. 2.2 for a two dimensional
force-space. Let us suppose that there are no initial forces at the
section, so that we start at the origin, in the force-space. Let us
apply the forces gradually. Stresses and strains will develop in the
section and so long as the state of stress at any point of the section
is such that, in the stress-space, relation between stresses and

strains is linear; relation between generalized forces and displace-

ments will be linearly elastic and can be written as
Q=[Klq (2.7)

where [K] is a constant stiffness matrix.

When generalized forces assume such values that yielding is
imminent at one or more p‘oints of the cross=section in stréss-space
(Egs. 2'° 5), yielding will also be imminentﬁ in force~space. The
locus of all such boints in force-space is a closed surface Y' and is

called the initial yield surface. In the space enclosed by Y',
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LIMIT YIELD

SURFACE -

INITIAL
YIELD SURFACE

FIG, 2.2 INITIAL AND LIMIT YIELD SURFACES IN TWO
DIMENSIONAL FORCE-SPACE
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generalized foi'ces ana displacements are related by Eq. 2.7. As the
yielding continues at one or more points, the sectioln remains partly-
elastic and partly-plastic, until yieiding is imminent at all points of
the section, The section is now fully plastic. The locus of the set of
all such points in the force-space is called the limit yiéld surface Y
and can be written as a scalar function of the generalized forces of

the form

H(Q) =1 (2.8)

The limit yield surface is again a closed surface enclosing
the origin and Y', In the space between Y and Y', the section is
partly-elastic and partly-plas‘;ic. If it is assumed that the relation
between generalized forces and displacements remains 1ineariy elastic,
and is given by Eq. 2.7, upto Y (hereafter called the yield surface),.
the yield behavior in terms of gc;neralized forces and displacements
becomes analogous to the yield behavior in terms of stresses. and
strains discussed in Section 2.2. Following this analogy, it is possible
to establish parallel algebraic relationé in terms of generalized forces
and displac‘ements, Assuming that the coordinate axes of the géneral—
ized forces Q and the displacement increments Aq coincide, and

(36), it is concluded that the yield

following the postulates of Drucker
surface must be convex and the plastic displacement vector A—(ip
must lie along the outer normal to the yield surface at a regular point.

Since the yield sﬁrface, is a level surface of function &, the normal

' to the surface must be in the direction of the gradient and
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AP = 122 | (2.9)
| Yo

where M\ is a positive scalar.

During yielding the force vector Q moves on the yield surface,
whiéh remains fixed, since the material is assumed to be non-work-~ |
hardening. In plasticity theory, this is called loading and is
characterized by the relations <I>(6) =1 and d® = 0, The change
~from plastié behavior to elastic behavior occurs if ®(Q) =1 and
d® < 0. This is called unloading. The work done during yielding is

given by
awP = (Q,AqP) (2.10)

If the yield surface encloses the origin, it follows from Egs.
2.9 and 2.10 that during loading ‘®(Q) =1 and dWP = 0, If ®(Q) =1
and dWP< o, unloading must occur. These. relations provide alter-
 native conditioﬁs for load'ing and unloading and are adopted in this
study. The criteria for elastic and inelastic behavior at a section can

now be written:

the section is linearly elastic if ®(Q)<1

Corif ®(@) =1 and dWP <0 (2.11)

the section is yielding if ®Q)=1 and aWP =0 (2.12)

and

Q) F 1 (2.13)
Following the theory of plasticity, it is assumed that displace-
ment increments can be decomposed into elastic and plastic parts,

so that
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Aa - Aae + AEP ' ) (20 14)

During yielding the tip of the force vector moves on the yield surface
and the incremental generalized force vector is related to the incre-

mental displacement vector by the relation

AQ = [K]Ag® (2. 15)

Since the plastic incremental displacement vector A?lp is
normal to the yield surface and the force vector moves on the yield

surface, AQ and Aap must be orthogonal and, hence',

(AQ,A9P) ;o (2.16)
or using Eq., 2.15,

(Kag®,a9P) =0
Substituting for AqQ~ from Eq. 2.14, there results

(K(aq-AdP),aqP) =0

or

1
(=]

(KAG,A0P) - (RAP,AP)Y =

Substituting for AgP from Eq. (2.9) gives

I
o

NKag, 22y a2, 22y .
0Q 2Q  0Q

Solving for N gives
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(Kag, — )
-p 8Q 9P
Aq 58 03\ =
(K—=,=—=) 8Q
o0Q 9Q
~and Eq. 2.14 can be written
— 0@
(KAq, =— )
Aae = A—d - BQ

m*oﬁ
Ol 1y

‘ 8¢ 00
(K— ., —=)
0Q 8Q
Also Eq. 2.15 can be written

(KAg, 22

= — 80" 8%
2809 (05 o o)
8@ 8Q"

Dividing Eq. 2,20 by At and taking limit as At— 0

. 2 <Ka’§_§> 8% °
Q=[x](7q- —
& Fm T )
20Q 8Q

where Q denotes dﬁ/dt .

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

Fquation 2.21 thus defines the force-dieplacement relationship

at a section when yielding is taking place. We can now write the

force-displacement relationship at a section under the most general
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condition of loading., From Eq. 2.7, Eqs. 2.11-2.13 and Eq. 2.21,

" we have

Q=[Kl(q-7q) if ®(Q) <1, ¥
o _— . (2" 22)
or if ®(@Q) =1 and WP< 0
and
— d
. . (Kq, o ) ,
Q=[K(3- —5525 9—‘_5’_) if @) =1and WP= o,
9Q 9Q (2.23)
where —d:O denotes current position of equilibrium '

The force-displacement relations derived above apply at the
regular points of the yield surface. In many cases the yield surface
is piecewise smooth, consisting of a number of yield surfaces @i(Q—)

which are fegular and meet to form singular regimes, At such inter-

-

~ sections the normal to the yvield surface is not defined uniquely and

Eq. 2.9 does not hold, Following Koiter(‘ZS)

and assuming that
loading surfaces act independently, we can write the total plastic
displacement as the vsum'of the contributions from certain of the
®,(Q), determined by loading criteria (Eqs. 2.11-2.13), with each
<I>;1(6) satisfying Eq. 2.8, that is |
s :
B(I)i -
AGP = Z g\, —— (2.24)
il .= : .
. 2Q .
i=1
where

g. =0 for @i(é) <1

or @i(ﬁ) =1 and WP <O

1 for @i(c"z)'= { and WP=0
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and
@}i(c'j) A1
where s is the total number of surfaces at a singular regime.
Following this ‘general idea one can work out consistent schemes,

in specific cases,to deal with singular regimes by following through

the movement of the force vector, step by step.

A Special Case

In the case of one dimensional force-space, let Qi be the only
generalized force at a section and 9 the corresponding displacement.

For this case kq. 2.8, describing the yield surface, degenerates to

‘(Q1.>= 1 (2. 25)

where Qy1 is the yield limit of 'Qi' The force-displacement relation~-

ship defined by Eqs. 2.22 and 2, 23 now simplifies to

Q =lylay -agl <yl
orif Q = |Q . |and WP<oO (2.26)
i 2 A
= Q| it WP =o

i

The force-displacement relationship defined by Eqs. 2.26 represents

an elastic —perfeci:\l?fplastic behavior and has been used extensively by

(6,10,14,18)

a number of investigators to study the response of a large

class of structures., A typical force-displacement curve for such a
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behavior is shown in Fig. 2.3. The curve 'AC (shown dotted) repre-
‘sents the transition from elastic to perfectly plastic state. The
posiﬁons of points A and C and the shape of the curve AC depend
on the form of the member. In the elastic-perfectly-plastic force-
displacement relationéhip,déﬁned by Egs. 2.26,the curve AC' is
repiaced by the extension of OA to B. Eiffects of this approximation
are discussed in Section 3,4 of Chapter III.

It is clear now that in structures where more than one force is
 present at a section, to assume a force-displacement relationship
definéd by Egs. 2.26 amounts to ignoring the effects of interaction
between these fo'rcevs. The main purpose of this study is to investigate
the effects of such interaction. on the responsevof structures, by using
the more general force-displacement relationship defined by Eqs., 2.22
and 2,23, For purposes of comparison the response of structures
with a force-displacement relationship defined by Eqs. 2.26 is called
elasto-plastic (denoted by EP). Response with force-displacement
relationship defined by Eqgs. 2.22 and 2,23 is called elasto-plastic

with interaction (denoted by EPI). Elastic response is denoted by E.

2.3 Equations of Motion

The equations of motion of a large class of structures can be
written in the form

[M]X +[D] X +B(X) = Ft) (2.27)

where
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FIG. 2.3 FORCE-DISPLACEMENT CURVE FOR ELASTO-
PLASTIC BEHAVICR
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[ M] is the mass matrix
[ D] is the damping matrix
X is the displacement vector defining the motion

of the structure

P(X) is a vector valued function of X called the
restoring-force

(t) is the vector valued forcing function
X

denotes ds—{/dt

If the force-displacement relationships at various sections of
a structure are known, the restoring force function 5(5-() can be
computed and the response of the structure is given by integration of
Eq. 2.27. The responses of a large class of structures have been

computed (12,13,15,16,19, 20)

for force-displacement relationships
which are eithevr elasto-plastic (Eqgs. 2.26), bilinear or general
yielding. FIor the force-displacement relationship defined by Egs.
2,22 and 2.23, essentially similar procedures can be used to study
the response of a structure. It may be noted that in the investigations
referred to above, | since the force-displacement relation for each
pair is defined independently, the response for each pair can be ob-
tained sep.ara‘cely'° Since Eqs. 2.23 are coupled, this is not possible
when a force-displacement relationship defined by these equations is

~used. We illustrate this now by deriving the equations of motion for

a simple frame.

A Simple Fra%neb

" Let us consider a single-story frame shown in Fig. 2.4. It

consists of a rigid mass supported on four columns, which are
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FIG, 2.4

A SIMPLE FRAME
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assumed to be uniform and identical. Columns are rigidly clamped
_'a,t‘the top and bott.om and their principal axes lie in the directions
1-1 and 2-2. The weight of the columns is small compared to m
and is neglected. Damping is supposed to be viscous. The base is
mounted on ball-bearings and is free to move in the horizontal plane.
Let =z dénote the displacement of the base in the horizontal plane and
q the displacemeni of the mass center relative to the base, We further
assume that the shear and the mass centers of the frame coincide and
influence of axial and shear forces on yielding is neglected. Under
thesé simplifying assumptions yielding occurs at the top and bottom
sections of the columns with the interacting forces at these sections
being thé bending moments _Li and L2 in the directions 1-1 and 2~2
respectively. It may also be noted that for this simple case the
response of the frame dependvs only upon the behavior at the top and
bottom sections of the colﬁmns. When the behavior at these sections
is linear, the frame is linear. When vielding occurs at these sections
the frame is turned into a mechanism and behaves in a fully plastic
fashion. This permits some simplification to be made in writing the
equations of motion, if generalized forces and displacements aré '
chosen judiciously.
Let the lateral restoring forces in the di:ecti_ons 1-1 and 2-2

be chosen as the generalized forces Q1 and QZ" These are related

to L1 and LZ' by .
8L1 8L2 :
Q1 = ) : QZ = 5 (2.28)
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where

h is the hcight of the frame

L1 ,Lz are the bending moments at the top and bottom
sections of the columns in the direction
1-1 and 2-2

The generalized displacements q4q and q, are then the lateral dis-
placements due to translation in directions 1-1 and 2=2 and, hence,‘

the internal work is given by
W= Q1q1 +Q2q2 : (2.29)

The equations of motion can now be written in terms of q
and” qz by making use of Egs. 2.22, 2.23, and 2.26. Equations for
elastic response, ellasto-plastic response and elasto-plastic response

with interaction are given below in expanded form.

mqy teyq FQy = - mzy
' (2.30)
mq, *c,q, *Q, = - mz,
where
‘For elastié response:
Q= kg
(2.31)
Q, =k
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For elasto-plastic response:

in = kilqg-agy) if Qi_ < [_Qyi‘l ’
or if Q = [Qyiil and vs'/'f<o
= IQY1 | if vifli’zo
Qz% kylay - 9,,) Q<] ,l.
| 'orif Q,=|Q,| and W§<O
= e, | if Wo=0

and
if $(Q,,Q,)<1,

or if @(Qi,QZ) =1 and WP <0

and 28 y', . 22 03 |
. 59, 94 59, 54, 9,
Q) =kik, R 7
k, (o55) * k(o)
1\50, 2\5q, )
22 8% - (884
80, 50 9y 8Q1> q;
O =k .k

if @(Q,,Q,)=1 and WP = o

(2.32)

(2.33)

(2.34)
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We now put these equations into dimensionless form by making

‘the following changes in variables. Let

2_ K 2_ %2
b Y : W2 T m
u, = e u, = 42
1 " q_, ’ 2 q__
U1 U2
w . = 951 u . = 952
17 ’ 2
°% 9y °° Gy
= = 2.35
¢y meiéi ; c, 2mw2§2 (2.35)
Q Q
a = —-X—i-' ; a _= —lz—
vi m y2 m
Y )
3
i Qyi 2 QyZ‘
w
T = wit : g = —.—1

Substituting Egs. 2.35 in Eqs. 2.30 through 2.34 and denoting du/d7
by 1.1, we get
L 2 L] LR 7'
uy + 2&113,1 tpy =- zi(-- )/a
(2.36)
L2, + 28,0, tp, =- 2, (—)/a
2 2592 TPy =7 Zlg

2 ya

where
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For elastic response:’
Py =%y
P2 "%

- For elasto-plastic response:

py = (ag-ug) i py < 1],
orifp1= [1]| and \EVI;<O
= 1] it WP =0 | |
pz-(uz-uoz) ifp2<[1],
or if p, = |1] and W§<O
= |1] if Wgéo

rFor elasto-—plastig response with interaction:
pir: (ui B U‘01)
| Py = (uZ N uovz)
if <I>(p1,p2) <1

- or if P(p,,p,) =1 and wP <o
. 1°%2 ,

acb>2- 28 08 %yo -
' F) "1 7 Bp, Wp, q., %2
P2 1 Pz 9y

Py Tk,

N

2 2
Yo &\
loG52) i) |

(2.37)

(2.38)

(2.39)
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: 2

98 08 Yyq - 9P\ * %

- u, +l=—) u
% Op, op, 4y 1 (8p1>_ 2

3 2
§k1 g‘ﬁ%)y Tk, %%) $

if ®(p,,p,)=1 and WP=0

It may be observed that for elastic and elasto?plastic response
the equations of motion are uncoupled in the directions 1-1 and 2-2
and can be integrated independently. For elasto-plastic response with

interaction, the equations of motion are coupled and this can not be

done.

_ - Equations of Energy Input and Energy Loss

- In many problems of str.uctural dynamics a study of the energy
- input and eneigy dissipation by damping and hysteresis provides valuable
-~ insight into the overall behavior of the system. In earthquake |
| engineering such studies have been successfully used to explain

(5)

the response of structures during eérthquakes

(

and to establish
simple design criteria. 7:9) Expressions for energy input and energy

loss by damping and hysteresis are derived below for the simple

frame,

Equations of motion of the frame can be written as
0‘- + .a . . = = ew. ' ‘ L]
mq; +c.q, + Ql mzl(t) v (2.40)

where i=1,2 and Qi is defined for each case by Eqs. 2.31 through

2.34. Equation 2.40 is the same as the equation of motion of a frame
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with an immovable base whose mass is excited by the force -mz, (t)
As the frame moves through an increment of deﬂectlon dq , energy

is supplied to the frame by the force and
dEIi = - mzi(t) dq.1 , (2.41)

where EIi(t) is the energy input to'the frame in time t along i-i.

From Eq. 2.40 it follows that

" G, e, G, %
EIi(t) = 5 —mzi(t) dqi= mS‘ q; dqi+ C'S q; dqi+S Qi dqi (2.42)
. 0. o} o} o}
where it is assumed that the frame starts from rest. Setting
'ciiv:dzli/dtv and dgq, = (.li dt, Eq. 2.42 can be written as

t

. 0 v ;
i t

—- L] . v X " 2 * v

EIi(t) = mgo = dqi + Cig q‘i dt + § Qiqi dt

o)

=%m<';iz(t) +ciS q; dt +5 Q. q; dt ' (2. 43)

The first term on the right-hand side of Eq. 2.43 represents the
kinetic energy of the frame at time‘ t.v The second term represents
the energjr dissipated»by viscous damping and the tbird term is the
sum of the potential energy at time t and the energy dissipated by
hysteresis. We can lump together the kinetic enérgy and the potential
energy and‘call it the residual energy at time t. The energy input to

the frame during time t can now be written as

EIi(t), = REi(t) + DEi(t) + HEi(t) (2.44)
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where
REi(t) ' is the residual energy at time t in direction i-i
DEi(t) is the energy loss due to damping during time t,
in direction i-i
and

HEi(‘c) is the energy loss due to hysteresis during time
t, in direction i-i

The terms in Kq. 2.44 are given by the following equations

b2 1. 2 |
REi(t) = 5 mgq; + 5 kiqi (2.45)
t., '
DE,(t) = ci§0 q; dt (2.46)

For elastic response:

It
o

HEi(t)
For elasto-plastic response:

t a . .
HE, (t) =§ Q.q.dt  if Q. =]Q .| and WP =0
i Jo b1 i yi i

=0 i Q.< o], (2.47)
1 Vi

. _ ‘P
or if Qi—-{QYi[ and Wi<0
For elasto-plastic response with interaction:
: pt ° . )
HE.(t) = \ Q.¢Padt if ®(Q,,0,)=1and WP=0
i Jo 11 1772

(2.48)
=0 if (Q,,Q,) <1,

or if &(Q,,RQ,) =1 and WP <0
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By the change of var;ables defined by Eqs. 2.35, these expressions

can be rewritten in the dimensionless form

RE,(7) 2,
———————-—_1_ ‘ = U.i ui
2 Pyi%y

and

DE.(7) T .o
-1——-—1——-=4§.5u. dr
E id, 1 -
2 Tyi'yi

For élastic response:

HE, (7)

1
-ZQyi.qyi.

=0

For elasto-plastic response:

HE, () T
= 25- p.u. d7 . ifp
= Q q fe) 11

2 Tyityi

i

orif p; = [t] and W <0

. For elasto-plastic response with interaction:

HE, () T ‘ .
= ZS. pul d7 if ®(p,,p,) =1and WP=0

= Q g . v O
2 YﬁYL
=b if @(pi,pz) <1

or if @(pi,pz) =1 and WP<oO

= (1] and WP =0
(1] :

< |1

(2.49)

(2.50)

(2.51)

(2.52)
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where

Q

is the elastic energy capacity of the frame

1
2 . . . . .
in direction i-i

yilyi
It may be remarked here that the foregoing energy analysis
is for a structure whose mass is acted upon by the force -m'z.(t),
rather than for a structure whose base is excited by the acceleration
%(t). Therefore, the kinetic energy terms in the previous equations
represent the'energy of motion relative to the base rather than that
due to absolute motion., As it is the relative displacements and
velocities that are of primary importance in practice, an energy
equation expressed in terms of relative rﬁotion is more meanihgful

than one expressed in terms of absolute velocities and displace-

(16)

ments "o
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CHAPTER III

YIELD SURFACE IN GENERALIZED FORCE-SPACE

3.1 Introduction

In thius chapterva general approach for determining the equation
of yield surface in generalized force-space is discussed. The prob-
lem is posed and treated in general terms and references are given
to earlier work. For the special case of bending about the principal

‘axes of a section, yield curves are derived for various structural
shape's . The chapter is concluded with a discussion of some of the
assumptions made in deriving the general theory of yielding.

The notation used in this chapter is the same as in the pre-

ceeding chapters with the following additions.

Symbol Explanation or Definition
‘a,b,a1 ,b1 dimensions of elliptical sections
f(x1 ’XZ) a scalar function of Xy and X5
k constant in von Mises yield criteria
XXy coordinates in the plane of a section
B,I—I,Bi ,I—I1 dimensions of rectangular sections
N ‘ axial force at a section
51"B2’5 section parameters
v ,v1 v parameters

T1 s I'Z ,T3 , I'4 \ ‘dlmensmnal constants

a scalar function of Xy

b %

a scalar function

tei

a vector valued function
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3.2 Equation of the Yield Surface

. Statement of the Problem

The equation of the yieid surface in the generalized force-
space is a relation between the forces acting at a section when it is
fully plastic. More precisely, the problem can be stated as the
determination of a stress distribution, which satisfies the criteria
of yielding (qS(criJ.) =1 and wP = 0) at each point of the section,
except possibly along a line, meets Hill's criterion of maximum
plastic work and is such that the genéra.lized forces at the section

are given by

e -
Q=‘>§ Q(Tij’xi’XZ)dA (3.1)
A .
where
Q is a vector valued function
X. i=1,2, are coordinates of point in the plane of the

section

Let us consider a generalized space in terms of force-ratios
p; = Qi/Qyi,' Then the yield surface must intersect each of the coordi-
nate axes of this space in such a way that 5 ==+ 1. In the previous
chapter it was concluded, on the basis of Drucker's postulates, that
the yield surface must be convex., Hence, the lowest bound to the
yield surface must be a closed surface formed by the intersection of
planes joining the set of points p = = 1, . In view of the assumptions

made in Section 2.2 of the preceeding chapter (neglecting the

Bauéhinger effect), it is clear that the yield surface must be
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symrﬁetrical about the coordinate axes., Hence, the uppermost
"bound to the yield surface must be formed by planes normal to the
cbordinate axes at p =% 1. These surfaces are shown in Fig. 3.1
for a two-dimensional space,
To determine blthe equation of the yield surface in terms of

genéralized forces Sadowsky(26) proposed, in 1943, a heuristic
maximum effort principle for ideally plastic bodies. The principle-
states that "among all statically determined possible stress distri-
butions (satisfying all three equations of equilibrium, the condition
of plé.sticity and boundary conditions), the actual distribution in
plastic flow requires a maximum value of the external effort neces-

Prager(zﬂ applied this principle to a

sary to maintain the flow, "

uniform prismatic bar of arbitrary section, under combined torsion

(28)

and tension, Handelman used it for a bar under combined bending
-and torsion. In 1947, Hill(zg) pointed out that Sadowsky's principle
does not lead to correct results, in general, and introduced the
principle of maximum plastic work. Hé applied this principle to
determine the stress distribution in a prismatic bar of arbitrary
uniform cross section, plastically deformed by bending couples,

| t\;visting couple and axial force applied at the ends (Fig. 3.2). The
surface of the bar is stress free and the elastic strains are neglected.
Using von Mises criterion of yielding (o!.¢). = kz) and representing

1) 1)
the stresses in terms of a stress function f(x1 ’XZ) , he obtained

N

) of . of
3=k x, 237 k Bx;

and : : (3.2)
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LOWEST BOUND UPPERMOST BOUND

FIiG, 3.1 UPPERMOST AND LOWEST BOUNDS ON YIELD
CURVES IN TWO DIMENSIONAL FORCE-SPACE
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Using the principle of maximum work he found that the stress

function must satisfy the following differential equation

: of 5f |
(I‘ix +I‘ x +T )—-——-a (I‘1x1+1" x +I‘3)8X 2T
9 %4 L0 4
B I 5 * =0
1 (1 ) af )2 2 | - } ¥ V3
Bx X, K 8x sz

" with f = O on the boundary,

where

r.,r. ,1.,T are dimensional constants related to the
1idaadydy ; ; o
rates of bending, extension and torsion

The generalized forces generated by the stress distribution are given

by
' 3
N = x/ékgg\(i--é—-—- i)dA
* 2
1
2
L,= Vﬁkgg a sa-f—) dA
X ,XZ
(3.4)
3
L,= \/I:Sk‘)g - ax Xz) dA
and
L,= 2k J f dA
A
‘where

N is the axial force

Li’LZ’L3 are bending and twisting couples along axes 1, 2,
~and 3 respectively
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FIG. 3.2 A UNIFORM BAR WITI AN AXIAL FORCE,
BENDING MOMENTS AND A TORSIONAL MOMENT
APPLIED TOITS ENDS
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An analytic solution of the aboye equations is not possible
even for simple se.cti.ons. For any given section, however, these
equations can be solved numerically and an equation for the yield
surface can be obtained in terms of generalized forces through

(30,31) and Steele(32) have solved such problems

Eqgs. 3.4. Imegwu
for combined bending and torsion by numerical integration of Egs.
3.3 and 3.4. In formulating Eqs. 3.2 and 3.3, the material is

assumed to be rigid plastic. For an actual material with a finite

(33) (34)

‘rigidity Hill and Siebel showed theoretically and experimentally
that avctual loads approach the rigid-plastic yield level values
aéymptotically, approaching within a few per cent of computed yield
values when the plastic deformations are of the order of the elastic
deformations. From this it seems thatv for all practical purposes

the rigid-plastic approximation can be justified in obtaining the

equation of the yield surface,

Upper and Lower Bounds

In the plastic analysis of struétures the technique of obtaining

- approximations to the exact solutions, from above and below, has been
very successful, An elegant theory of limit'analysis based on upper
and lower bound limit theorems has been developed; and where
acceptable bounds can be found, it is of great practical significance.

Several investigators (2,32,35)

have used this approach to obtain
lower and uppei' bodnd approximations to the yield surface in terms of
generalized forces., Siebel(ss) has obtained such approxima-

tions for bending and torsion of circular bars and has found good
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correlation béetween éxperimental and analytical results. Hodge(z)

| has used this approach to obtain yield curves for bending and shear,
bending and torsion, and bending, bending and torsion for several
structural shapes. He has also given solutions for a number of
stai_:ic load problems using linearized interaction curves. In the next

section we use this approach to obtain the yield curves for the case of

bending about the principal axes of a section.

3,3  Yield Curves for Bending About the Principal Axes of a Section

The case of a prismatic bar acted upon at its ends by bending
couples in the plane of the principal axes provides a simple example
in- which it is possible to ded#ce an exaict yield curve., In this case
it is possible to obtain the maximum of the lower bound solutions--
which is, therefore, the exact solution. At any point of the section

~we have only tensile or compressive axial stresses and the yield.

criterion (Eq. 2.1) in stress space, reduces to the simple relation

o33 =i‘0-y (3.5)
- where |
033 is the stresls normal to the section
o-y is the uniaxial yield’stress

Thebgeneralized forces at the section are the bending moments along

the principal axes which are given by
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Q1‘5§ X033 dA

A
(3.6)

| Qz =S\§ X040 dA
A

To Satisfy_equilibrium the stress distribution should be such that the

axial force

r

“N:‘BS‘U:{,’dA:O N (3.7
A

Solid Rectangular Sections

Let us consider a rectangular section shown in Fig. 3. 3a.
Lét X, = X(Xi) be the equation of the curve separating tensile and
compressive zones. The stress field at the section is then completely
defined by this curve and Eqs. 3.6 define a family of curves in the
generalized force-space (Q1 ’QZ) in terms of the parametric
function ¥ (Xi)" The highest 19wer bound, which must be the exact
yield curve, can therefore be found if we can find a function ¥ (Xi)
which satislfies Eq. 3.7 and is such that given Q, ’QZ is maximized.
For such X (Xi)’ Eqgs. 3.6 define the exact yield curve. This is an
isoperimetric problem in calculus of variation and is easily solved.
Let us first consider the case v&hen |x (B)| = H. The axial force
at the section is given by |

(aB 3 X (Xi') H i
N =\ dx., + (-0 ) dx, | d
) g j-H o, dx, XX(Xl) o) dx, { dx,

B
= 20‘y S‘—B X(Xi) dx, (3.8)
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\“’y _xp=X (%))

(b)

FIG. 3.3 (a) A SOLID RECTANGULAR SECTION (b) INITIAL
AND LIMIT YIELD CURVES FOR SOLID RECTANGU-
LAR SECTIONS
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The moments for bending along %y and x, are given by

B ( X(Xl-) . H
~Q1 =S‘ 25 xl((ry)dxz'i'g xi(-cry)dx2 §x1

-BlY-H X (=)
B - .
= - Zo‘yS-B X1X(X1) dx, (3.9)

and

= - x.{oc )dx,+ x.(-0 )dx,rdx
2 - -H 2V y' T2 X(Xi) 2yl T2 1

B 2 2
= o‘y S‘- (H™-x (xl)) dx1 » (3.10)
It/is necessary to find a function ¥ (Xi) , such that QZ’ defined by

Eq. (3.10), attains a maximum value and integral constraints on N

and Qi (Eqs. 3.8 and 3.9) are satisfied. Let us define a function

A(Xi‘:X) = HZ_ X2<X1) -V xix (Xi) - V1X(X1) (3.11)
where '

v,V are constants

1
Then a necessary condition, for 02 to be a maximum, is that X(xi)

satisfies the Euler equation

4 (24 2

where

1 4x
X ‘ denotes ppe
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Substituting for A(x,,x) from Eq. 3.11 yields
X(Xi) = - in" Yy , (3.12)

To satisfy Eq. 3.7 it is necessary to have

B
N = Zq-y g_B(-vxi- vi) dx1 =0

s0O that

Hence
X(Xi) = -vx, (3.13)

Substituting for x(}il) from Eq. 3.13 into Eqs. 3.9 and 3.10, gives

- 4o 3
Q1=——-z3 B v
) (3.14)
‘ 3
2 BY 2

Equations 3.14 represent the yield curve in the parametric form.

For the rectangular section, the yield moments are given by

Q = 2B%He
Vi y ,
(3.15)

= 2H"Bo
y2 y

Dividing Eqs. 3.14 by | QY and QyZ' respectivelyvthere is obtained

i
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Py =

_ wlev
il o
<

(3.16)

_1. LB 2
Py = 3 2

Eliminating v between P4 and P, gives
3 2 _
2Py TPy =1

This is the equation of the yicld curve in p-space, when |X (#B)| = H
or from Eq. 3.13, when |v| 5% . This corresponds to lpil = -?2; .
By symmetry, the equation of the yield curve, when ]p1 | = % , must

be given by
3 2
3Pz TP =1

The yield curve is completely defined by the equations

3.2 ’ 2
-lel +p2=1 when Ipll = 3
and v (3.17)
3.2 , 2
Zp2+p1=1 ‘when [p1]_>_-3—

Initial Yield Curve

In the previous chapter we defined the ihitial yield curve Y'
as the locus of all points in force-space, where yielding is imminent
at one or more points of a section, In bending of rectangular sections,
yvielding become; imminent first at one of the corners when the
flexural stress reaches a value io‘_y_. The equation for Y' is there-

fore given by



QB | |QH
-—f—'—‘ +_ -—I—-— = 0 (3. 18)
1 1 2 LA
where
11 ’IZ are the moments of inertia of the section about X,
and x, axes respectively
Substituting for I, and I, in Eq. 3.18 and using Eq. 3.15
3p 3p .
1 2\ _ '
= |t 5| =1 (3.19)

Thus Y' is a closed curve formed by a set of straight lines inter-
cepting the coordinate axes at lpl = 2/3. Both Y and Y' are shown
in Fig. 3.3b. It may be noted that Eqs. 3.17 and 3.19 do not contain
section parameters and therefore hold for all solid rectangular

sections.

Hollow Rectanygular Sections

The equation of the yield curve for a hollow rectangular section
can be directly written in parametric form, using Egs. 3.16.
Figure 3.,4a shows the dimensions of a hollow rec‘tangular section,
Let B2 = ﬁiBl and I—I2 = ﬁZHi. The yvield moments for the section

are given by

= 2(1 - ppr)Binw

e
i

, b
and ;\ (3.20)

Q. =21 - 5%@1)1{‘;‘31@?
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FIG. 3.4 (a) A HOLLOW RECTANGULAR SECTION
(b) A HOLLOW ZLLIPTICAL SECTION
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and the yield curve is given by the following parametric equations.

By
Al D e T
Jv'l”—ﬁz H1 andals,o.—_Hi
3
b= 2 WP By
-l M
(3.21)
(1 - ) B,
1 1
p,=1-=
2 - Bﬁz( ).
B 8, B
1 £ By
For — = v]s._—__
T H | B, Hy
1 3 1(H1)2’1 2(B1)3'
e 3 3
1 (1-6‘2‘52) 3\B,/ 2 3\H, /P
| | (3.22)
o
1 gz 1 g
p, = ———— {3 (35 5
12,(1_5152) 3(131)1; 2P1*3 1(H>
By By By
orlf-B—gH1<[v[__-I—_I—-1
2
B
1 §2~ 1 2 1, 4y 3 1
() - eie, t ﬁ—-%
157 ﬁfﬁz)p(Hi) 1P2 73 B) 22
(3.23)
1 3 131'22 Z(Hi 31%
= -3(g) v* - 25 el 2
2 (1‘5152) 3H1) 3B1)2v
By By By

For |v|= —
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. 3
b= 2 (1-8,)  Hy
2- 35 2. B, Vv
(1'ﬁlﬁ’z 1
. (3. 24)
3 2
_og oy Mo B T
Ppp= 4t °3 z(B) 2

(1. - ‘32&1 ) 1w

For any rectangular section Eqs. 3.21, 3.24 and one of the
Egs. 3,22 or 3.23 apply, depending upon the ratio pi/ﬁz. In the
. particular case [31 = (32, Eqgs. 3.23 and 3.23 drop out and Egs. 3.21
“and 3.24 reduce to Egs. 3. 16. Thus the vyield curve is again given
by Egs. 3.17. This case includes 11011‘ow~ squai-e sections of uniform
thickness. For the general case, the equation of the Y' curve is

given by

(1 - B, B3)
(1 - B,p)

. C L2
> (-8,

3 -

This is again a closed curve formed by a set of straight lines inter-

3
secting the coordinate axes at |p,| =5 ——5—— and
- t3 -6l
172
3
2 - ByB). . .
Ipzl = § ——— . A similar approach can be used to obtain the

yield curve directly . from Eqs. 3.16, for idealized I-sections. It
may be noted that for such sections the yield curve is , in generalg

a piecewise smooth curve with corners.
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Solid Elliptical Sections

The yield curve for solid elliptical section has been worked
out in AppendixIl along the same lines as for the rectangular section,
and is given by
2,2 -
P tp, =1 : (3.26)
The equation of the Y' curve is given by

+ pz K , (3.27)

Since both Eqgs. (3.26) and (3.27) are independent of section param-
eters, they hold for all solid elliptical sections and, in particular,
for circular sections. Boththe Y and Y' curves are shown in

Fig. 3.5. ,

Hollow Elliptical Sections
| For the hollow elliptical section shown in Flg. 3.4b, the

yield curve is given by the parametric equations

3
o = ab ayby v
- T 1
Ppf+a®dz  pl+at?zlafe - alp,
(3.28)
3
. _g b2a byay {
- N T
2 mlatv?)z (b‘;“ +afv_2)2 ) (mla- bfai)‘

The equation of the Y' curve is given by
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FI1G. 3.5 INITIAL AND LIMIT YIELD CURVES FOR’ SOLID
‘ ELLIPTICAL SECTIONS
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16a(a®b - a’b,) } (16b(b2a - b%a,))?
g L LY G 2] 2
31r(a3b5- a‘;’bi) 1 311'(b3a - bi’a) 2

=1 (3.29)‘

For the special case of a, = Ba, b

{ = b, there is obtained

- av
= T
L7 o2t alplys
b
Py =

5 2 7.1
(b%+ a%v?)z
and fhe yield curve is again given by‘ Eq. 3.26. The Y' curve is

given by

4,) 2 '
et uter il o

This particular case includes the hollow circular tubes of uniform

thickness.,

3.4 A Discussion of Some of the Assumptions

Transition From ‘Elastic to Perfectly Plastic State

In Chaptern II, while developing the theory of yielding at a
section, it was assumed that the section remains linearly elastic up
to Y, thus ignoring the partly-elastic and partly-plastic behayior -
between Y and Y".‘. According to the theory of plasticity, as the
loading is continued beyond the initial yield surface Y' new yield

surfaces are formed which for elastic-perfectly-plastic material
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‘approach the limit yiéld surface Y. These new yield surfaces,
which are functions of the history of loading, may‘be thought of as
arising from the original surface bjr translation, by expansion, by
the combination of a number of independent loading surfaces, or by
any.consistént procedure.(ss)b The general behavior from Y' to Y
is similar to the phenomenon of work-hardening and is discussed
next, in this section.

In Séction 3.3, equations for Y and Y' for various sections
were derived. Using these equations it is possible to draw some con-~-
clusions about the effects of neglecting the partly-elastic partly-plastic
region, in terms of section parameters. The ratio of the volume
enclosed between Y and Y' to the volume enclosed by Y may be
regarded as a relati;fe measure of the effect of neglecting the partly
plastic region. Let Re and Rr denote this ratio for elliptical and
 rectangular sections. Then, from Eqs. 3.17, 3.18, 3.25, 3.26 and

3.30 (with 51 = ﬁz), it can be shown that

_ 2

R -1-%31?—-———9—-(1" 4’}
e~ 16 . 3
‘ (1 -p87)

(3.31)

Rt

Rr=1-o.3§(—1—"—p—3—)—}
(1 -p7)

R, and R . are plotted in Fig. 3.6 as functions of {, which
determines the thickness of the section. B =0 corresponds to a
solid section and it is seen that except for thin hollow sections for

which B — 1, this simplification may lead to a significant departure
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from actual behavio;‘; It seems that it would be more realistic to
use an intermediéte yield surface depending on the value of B, This °
also indicates that in view of‘this approximatioﬁ, one may as well
use simple approximate yield surfaces and where singular regimes
may present problems, replace the exact yield surfaces by smooth
approximations.

It was pointed out in Section 2,2 that ignoring the effects of
the region between Y and Y' is analogous to neglecting the effect
of curved transition in the elasto-plastic force-displacement
relationship shown in Fig. 2.3. Recently, Iwan'37) has studied the
effect of rounding on steady-state response of a simple oscillator,
using a distributed-element 1’1;10(181 to represent a general yielding
behavior. His results indicate that rounding causes a significant
change in the steady-state amplifgude as compared with a sharp-
 cornered elasto-vplastic approximation depending on the level of
excitation. Generalization of distributed-element model to higher
dimensions may lead to some understaﬁding of the consequences of

this assumption.

Wo rki-hardening ‘

The theory of yielding has been developed under the assump-
tion that the behavior is not wdrk—hardening., Real structures do
exhibit work-hardening during yielding and in studying the response
of structures ivt is ﬁsually taken into account by assuming a bilinear

(16)

or general yielding type of force-displacement relationship. It

is possible to introduce wdrk_-hardeﬁing in the present theory by
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following the corresponding formulation in continuum mechanics. If
.this is done, the n.evw surfaces (cailed 1oading surfaces) which grow
out of the initial yield surface Y', do not terminate on a limit yield
surface Y, but continue to change as plastic deformation occurs.
Shield and Ziegler'*?) have shown that the behavior of a work-harden-
ing material can be de;cribed by the initial yield condition, the flow
rule associated with initial and subsequent loading surfaces and a
hardening law that specifies the construction of subsequent loading
surfaces. The last of these requirements is still in an uncertain
statev of development., In a step-by-step integration procedure, if a
consistent scheme can be devised to construct the yield surface after
each incremental plastic displacement the theory developed in the
previous chapter can be extended, at least conceptually, to work-
hardening materials. However, considering that loading may produce
corners(39) as the yield surface deforms, it seems that it would be

very difficult to develop a numerical procedure for solving problems.

Deterio’ration of Material During Repeated Loading

In developing the theory of yielding an implicit assumption was
made that the material does not deteriorate during yielding. It is
known that deterioration does occur(21) in real materials but the
current state of knowledge of this phenomenon is very limited.

(22) carried out tests on ASTM A36 beams with

Recently, Popov
alternating cycles of end deflections producing strains 4 to 18 times

the yield strains. He found remarkably stable hysteresis loops that

show little deterioration in five cycles, Hans0n(21) carried out an
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extensive experirhent’al study of the post-elastic static and dynamic
“behavior of a single;story frame with steel columns. In this study
the frame was subjected to repeated cyclic loading with deflections
up to two times the yield deflection ahd it was found that dynamic
hysteresis curves aré stable and closeto static curves. The results
of these tests are reassuring but are clearly inadequate for many
problems of structural dynamics. During earthquakes, if plastic
deformations are permitted, structures must undergo large plastic
strains and large number of load reversals.(zz) There is a clear
need‘ for more work in this area a.Lri‘d this must be kept in mind when

interpreting the results of inelastic behavior under dynamic loads.

3.5 Summazry and Conclusions

~The general problerﬁ of determining the equation of the yield
surface, in terms of forces ac_:ting at a section, has been discussed.
The equations of the yield surface, and the initial yield surface,
have been derived for bending about the principal axes of a section.
Some of the assumptions made in deriving the theory of yielding have
been discussed. Ba_sed on this work the following conclusions can
be drawn. |

1, The approximate expressions for the yield surface can be
‘easbily obtained, under general condition of loading, by the use of .
upper vand lower béund theorems. |

2. The effect of assuming elastic behavior, during transition

from elastic to plastic state, may lead to significant errors for many
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structural sections. In such cases, it may be more realistic to

.us‘e as the yield surface one lying between the initial and the limit
yield surfaces. The choice of such a surface should be guided by the
aim of getting the best fit between experimental and analytical
results.

3. In view of the approximations involved in the assumption
discussed in 2 above, the need to determine exact equations of the
yield surface is not critical and use of approximate methods is
justified. In cases where singular regimes may present problems
exact yield surfaces may be replaced by smooth approximations.

4. The theory of yielding‘developed in this study can be
extended, conceptually, to include work-hardening. However, it will
be very difficult to develop procedures to solve any real problems.

5. An understanding of the deterioration in the yield strength

" of materials under repeated loading is important for inelastic design
under dynamic loads. The current svtate of knoWledge about this is
meager and there is need for extensive work, both experimen’cal and

theoretical,.
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CHAPTER IV

THE RESPONSE OF STRUCTURES TO SINUSOIDAL EXCITATION

4.1 Introductioﬁ

The study of the response of dynamic systems to sinusoidal
excitation is of interest for two reasons: 1) To understand the
behavior of systems whose exciting forces are sinusoidal; 2) In the
case of systems, whose exciting forces are not sinusoidal, the
analytic simplicity of sinusoidal functions permits analytical solu-
tions to a large class of problems. In many nonlinear systems, if
an analytical solution can be found for sinusoidal excitation, it gives
considerable insight into the dynamic characteristics of the system
Which may be helpful in interpreting the response to other types of
excitations. Such svolutions are also useful in checking the numerical
accuracy and correctness of computer programs used to solve an
actual problem, Inthe case of linear systems, if response to sinu-
soidal excitation is known, response to other types of excitations can
be obtained by the use of Fourier anélysis.

In this chapter the dynamic response of the simple frame,
déscribed in Section 2.3 of Chapter II, is inVestigated for sinusoidal
base excitation. The response is obtained for elastic behavior,
elasto-plastic behavior, and eiasto—plastic behavior with interaction.
To explain the special features of the effect of interaction, variousr
aspects of the ’re\sp‘vonse, for each of the three cases, are shown,

The steady-state response of the frame is investigated in detail and

curves of energy input per cycle and steady-state amplitude are
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presented for elasto-plastic response with and without interaction.

The chapter is concluded with a discussion of the implications of the

effects of interaction,

The notation used in this chapter is the same as in the previous

chapters with some exceptions, which are defined. The additional

syfnbols introduced in this chapter are defined here and also inside

the text, wherever they first appear.

. Symbol

Explanation or Definition

acceleration-amplitudes of base excitation in the
directions 1~1 and 2-2

_steady-state di_splacement—fatio-amplitudes in the

directions 1-1 and 2-2

steady state displacement-ratio-amplitude in the
direction 1'~1"'

steady-state force-ratio-amplitudes in the direc-
tions 1-1 and 2-2

subscript denoting peak response

ratios of excitation-acceleration-amplitudes and
yield accelerations in the directions 1-1 and 2-2

displacement-ratio in the direction 1'-1'
total energy loss due to hysteresis per cycle
total energy input per cycle

frequencies of excitation in the directions 1-1 and
2-2 '

‘phase angle

phase angles

ratios of excitation frequencies and natural
frequencies in the directions 1-1 and 2-2
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Symbols E:;cplanation or definition
K phase angle
p phase angile

4.2 Response of the Simple Frame to Sinusoidal Base Excitation

Equations of Motion

Let us consider the vibration of the frame described in
Section 2.3 of Chapter II to sinusoidal base excitation acting simul-

taneously along its principal directions 1-1 and 2-2. Let

Zl(t) = a,sin (afit + B)
(4. 1)
‘zz(t) = a,sin (azt + B+ p)
where
a2,  are the acceleration-amplitudes of base excitation
along the directions 1-1 and 2-2
a, o are the frequencies of excitation along the direc-
1°72 :
tions 1-1 and 2-2
B,p are the phase éngles

The equations of motion of the frame are then given by Eqgs. 2.30
through 2.34, with forcing functions .7:1(1:) and 'éz(t) defined by

Egs. 4.1. Setting 7= wt and defining

N W X
1 ayi 2 ayZ
e ., (4.2)
’n = e— 3 T] B —
1 Wy 2 w,y

and '
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w
1
w

é:

[\

Eqs. 4.1 can be written as

.e T
Zxﬁzg)
—y = rysin (1’]11' + B)

yi | »
- (4. 3)
z (;1_
“2 wzé) n,
———a—z—.—-=rzs’1n(-—g—7‘+[3+p)
Yy ,

The equations of motion of the frame are now given, in dimensionless
form, by Eqs. 2.36 through 2.39, with forcing function defined by
Eqs. 4.3. The expressions for the energy input and the energy loss

are given by Eqs; 2.49 through 2.52.

Integration of the Equations of Motion’

The elastic and fhe elasto-plastic response of the frame is
given by Eqgs. 2.36 with restoring force vector p defined by
Egs. 2.37 and 2.38 respectively. These equat-ions represent a
system of two uncoupled second-order differential équations which can
" be integrated independently, The response of the frarhe in these cases
is, therefore, independent in the directions 1-1 and 2-2. When the
effects of interaction on yielding are considered, the equations ol '
motion are givren\ bjr Eqgs. 2.36, 2.38 and 2.39. These equations form
a system of coupled differential equations and must be integrated

simultaneously. In this case, therefore, the response in the direction
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i'-i depends on the response in the direction 2-2. This interdepen-
‘dence characteriz'es’the basic difference between elasto-plastic
response and elasto-plastic response with interaction.

For elastic response, the equations’' of motion are' linear and
it is possible to obtaiﬁ closed form analytic solutions. (41) For
elaéto—plastic respbnse, the equations of motion are piece-wise
linear, and it is again possible to obtain analytic solutions for each
part. By folloy}ing through the transition from one paft to another

(42)

it is possible to write the response in analytic form. For elasto-
plasbtiic‘ response with interaction, the equations of mmotion are non-
linear and it has not been possible to derive an analytic solution.

In this cése, therefore, one has to use a numerical scheme of inte_—
gration. In this study, the third order Rﬁnge-Kutta scheme of inte-
gration has been used. ]Entégrals for the energy input and the energy

loss have also been computed numerically. The details of numerical

computations are given in Appendix IIl.

Some Features of the Effects of Interaction
For r1=r2=f=o.5, n? =n2=n%=0.8, g, =6, =£=0.0,
p= 30° and circular ‘yield curve response of the frame was obtained by '
numerical integration of the equations of motion, for elastic, elasto-
plastic‘ and ‘elasto—plastic behavior with interation. . In Figs. 4.1
through 4.7, various aspects of _the;response are plotted and somer

of the special features of the effects of interaction are discussed

below with reference to these figures.

Figufes 4,1, 4.2 and 4.3 show the variation of displacement
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ratio q/qy withtime, al’o.ngthe principaldirections 1-1and 2-2. In the
‘elastic case, Fig.‘ 4:; 1, since there is no damping in the system, the
transient part of the response persists and response looks like a
modulated sine wave. Since the excitation on the two directions is
identical, except for the phase difference, the response in directions
1-1 and 2-2 is also identical and differs only in phase. In the elasto-
plastic case, Fig. 4.2, the transient part of the response dies out in
about four cycles and the frame goes‘into steady-state oscillations
 about a new position of equilibrium, which is shown as the permanent
set iﬁ Fig. 4.2. The response is again identical in the two directions
but for the phase difference. It is seen that' the amplitude of oscilla-
tion for the elasto -plastic case is much smaller than the maximum
amplitude in the elastic case. A comparison of Figs, 4.1 and 4.2
shows clearly the effectiveness of hysteretic energy loss during
yielding, in limiting the response of the frame. When interaction is
consider;:d, Fig. 4.3, the general nature of the response is similar

to the elasto-plastic case, With‘tWO significant differences. The per-
manent éet and the amplitudes of oscillation are not equal in the
~two . directions. This indicétes that interaction causes a redistribution
of energy in two directions, so that the amplitude iﬁ one direction (1-1)
is increased and the amplitude .in.thé other direction (2-2) is decreased.

Figures 4.4 and 4.5 show the force-disi)lacement response of

the frame, with and without interaction. In both cases, the transient
part diesv out in a few cycles and the response settles down to stable
steady-state hysteresis loops. Itis seen that the shape of the

hysteresis loops is quite different in the two cases. For the elasto-
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plastic case, thé restoring force remains constant during yielding
and the shape of the 1oop is completely specified by the maximum
arﬁplitude. When interaction is conside;ced, the yield level changes,
in general, during yielding and the shape of the hysteresis loop
depends on the responée in both directions. Hence it is clear that if
inte:;-action is considered, the force-displacement relationship can-
not be specified independently for each force-displacement pair.
Figure 4.6 shows the locus of the mass-center of the frame
in the horizontal plane. The mass center starts at the origin,
drifts around during the transient response, and ultimately goes
into a steady-s‘tate ‘elliptical orbit about. a new equilibrium position.
On the same figure the motion of the base of the frame 113 also shown,
It is also an ellipse with its principal axes inclined to the principal
axes of the frame. It is clear that the steady-state locus of the
mass-center for elastic (with damping) and elasto-plastic behavior
will also be elliptical, with the same oArientation and shape as the
locus of the base but of different size. When interaction is con-
sidered, ‘the locus is an ellipse of different shape and its principal
axes are inclined to the principal axes of the locus of the base.
Figure 4 7 shows the response of the frame in force-space
for a circular yield curve. The frame is clastic (denoted by E)
when the tip of the force vector Q, lies inside the circle and
plastic ‘(c.lenoted by :P) when it lies on the circle. The steady-state
(thick lines) and the transient response (thin lines) are indicated on
the figure. This figure is presented to indicate the nature of the

response in force-space.
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4,3 Steady-state Reéponse of the Simple Frame to Sinusoidal Base

Excitation

In the preceding section it ‘was shown thét the response of
the frame to sinusoidal excitation consists of a transient‘part,
which dies out in a fex%r cycles due to energy dissipation by damping,
yielﬂding, or both;. and a steady-state part which persists. During
steady-state oscillations the energy input per cycle equals the energy
dissipated per cycle and a steady response is maintained. The steady-
state response of elastic systems has been studied in detail and is

(41.) The steady-state

available in most text books on vibration.
| : | » . 4

response of elasto-plastic systems has also been mvestlgated( 2) and

some of the approximate methods such as the method of slowly vary-

(43), and the method of equivalent 1‘mearization(42)

ing parameters,
have been very successfully used in such investigations. In this

- section, the expressions for the steady-state response are quoted for
elastic and elasto—pléstic behavior and ané,lytical and numerical
results are obtained for elasto-plastic behavior with interaction. -A
number of curves are presented fo_rkeach of these cases and effects

; of intera;tion are discus sed.

The system of Eqs. 2.36 through 2.39 and 4.3 represent
the equations of motion of the frame for sinusoidal excitation. These
equations involve a 1ai'ge number of parameters des;:ribing the frame
and the excitation s_b that an extensive study would have to be carried
out to study the influence of each of these parameters. To limit the

size of this investigation, it was decided to study the response of the

frame under the following restrictions:
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y1 y2 y
§1=€2=§ . = (4.4)
a;  =a,=a
and>
011'—‘_0!2=a/

It is seen that these restrictions confine this study to the class of
structures which have identical properties along the two'pr'incipal
direétions and are subjected to sinusoidal excitation which is also
identical, except for the phase difference in the two directions.
These résfrictions , Egs. 4.4, still leave us free to choose from a
large number of structural shapes ,’ each with its characteristic yield
curve, We restrict this study further to the structures for whi‘ch the

yield ¢curve is given by
2 2 ‘
Py + P, = i (4. 5)

It may be remarked here that the simple frame, Fig. 2.4, with

columns ‘of circular section will satisfy all these restrictions.
Under the restrictions imposed by Eqs. 4.4 and 4.5, the

equations of motion are consid,e.ra,bly simplified and can be written

For elastic response:

ve

ui» + 2«‘§,u.1 +u

1 frsin(nT+B)

(4.6)

w, +26u, tu, = - rsin (N7 + B +p)
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- For elasto-plastic reéponse:

and

or

- or

uy +.2«‘§.u1 +u1 -u01=-rsin (nT + B)

if p1<]1|,

if p, = |1| and WP <0
1 1

u, +2.§u,2 +u2 “u, T sin (n7T + B +.P)
if p2< It

if P, = 1| and \_;VI2)<O

i

.13'.1+2§1:11+|1] -rsi‘n(n'rl—i-[s)

if \Evli’zo

‘1.{2“+2§1..12+[1] - rsin (MT +B *p)

1]

if \3\[1;2 0

For elasto-plastic response with interaction:

and

or

i

'di +z§{11 tuy - u 4 = -1 sin(nT +p)

'1i2+2§u2+u'2~u =-rsin(nT T Tt p)

02

if'p?-l-p; <1

if pf'i*pg:i and WP< 0

(4.7)

(4.8)
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u, *28u; tp

= - r sin (M7 + B)
‘ (4.9)

1]

u, t26u, tp, = - rsin (N7 + B +p)
. Z. °
Py T Pl T PyPo4,
° e ) 2.
P, = "PyPyuy *t Py,

if p. tpo=1 and WP =0

~ Let us consider an undamped system and assume that the

steady-state response is of the form

ug = bism nr + U

1
, (4.10)
u, = bzsm (nT tK) + U,
where
‘b1 ’bZ : are the steady-state displacement amplitude
ratios in direction 1-1 and 2-2

K is the phase difference in the steady-state

' response along two directions
UyoUoy are the components of permanent set

Elastic Responsé

The steady-state elastic response is characterized by the

following relations (41)

(4.11)
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and

Elasto-Plastic Response

The steady-state response and the stability of elasto-plastic

(43)

systems has been investigated by Caughey,

(42)

using the method of
slowly varying parameters. Iwan has investigated such systems
in detail, using both exact and approximate methods. Both of these
investigations were made for bilinear hysteretic sy.stems for which
elastic-perfectly-plastic behavior is a particular case. It is

characterized by the following relations. The steady-state amplitude

and phase angle are such that

and » o (4.12)

The frequency responsc equation is given by

2 C S(b
'r] - (b) (b) Q ( ) (4013)
- where
S(b) = - 1—:3 sin%v i b>1
=0 if b<1
' _b sin 2vy .
C(b)_?(vf—-—z—) if b>1
=b i ob< i
and
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The amplitude and the phase resonance of the system occur at the

(43)

' same frequency and peak amplitude of the response is given by

N 7.0 (4,14)

-, Cb)
N = —L2- . (4.15)
P b ‘
p .
where
) is the subscript denoting peak response

The hysteretic energy loss in the system, per cycle, is equal to the

area enclosed by the hysteresis loops and is given by
HE" = 8Q_q (b - 1
yoy e -1

Dividing by the elastic energy capacity, %quy,

S e HE 1606 - 1) o . (4.16)

ZQpa, -

where

' P . .
HE is the total (both directions) energy loss due to
hysteresis per cycle
The frequency response equation 4.13 gives the relationship
between the frequency ratio mn and steady-state amplitude b and is
plotted in Fig. 4.8 for r =0.5, 0.7, 1.0 and 4/w. Equation 4.15

represents the locus at peak amplitude and is also plotted in Fig. 4,8.

These curves show the typical behavior of a softening system., From
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Eq. 4. 14 it is seen that if r = 4/w, .bp becomes infinitely large,
This shows that unbounded response occurs if r = 4/7. These
curves are compared later with the similar curves for elasto-plastic.

response with interaction.

‘Elasto-Plastic Response with Interaction

The equations of motion for elasto-plastic respolnse with 'inte.r'-
action are given by Eqs. 4.8 and 4.9. It is clear that the steady-state
response must be one of the following types: -

1. Elastic, when Eqs. 4.8 hold

'2. Plastic, when Eqs. 4.9 hold
3. Partly ’elastic#nd partly plastic, when both Eqs. 4.8 and
4.9 hold. | | |

Klastic Response
If the steady-state response is purely elastic, the amplitu&e

" and phase a.ngles‘ are given by KEqs. 4.11 so that

uy = b sin N7

(4.17)
u, =b sin (7 + p)
and | |
Py =%
(4.18)
P2 =By :

The condition that the frame remains elastic is that

2 2
p1 +pz<1

or

+u§<1

a2
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Substituting from Eq. 4.17 and simplifying, it can be shown that
> :
uy + ug = b2 {1 - cos p cos (2T + p)}

and

Max (u? + ug) = bz(i + cos p)

Hence the steady-state response will be elastic if

R — (4.19)

(1 +cos p)?
or substituting from kq. 4.11

1 - n? | |
r < 1 (4.20)
(1 + cos p)@ :

- Plastic Response
If the steady-state response is purely pléstic the equations

of motion are given by Eqgs., 4.9. Let
p; = d1 sin (n7T + 61)

(4.21)
P, =’d2. sin (nT+ 62)' '

For purely plastic response, we have continuous yielding and the

following conditions must be satisfied:

2, : ~ o
potpi=t (4.22)
and -

wP =0 (4, 23)

Differentiating Eq. 4.22 once with respect to 7 gives
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PPy TPp, =0
S\ibstituting from Eq. 4.21 and simplifying, ‘it can be shown that

(dfcos 25, +dcos 26,)sin 207 + (a sin261+d§ cos 28,)cos 217 = 0

Since this condition must hold for all 7, we must have

cos 26.d% + cos 26.d% = 0

171 272
(4. 24)
. 2 . 2
sin 251d1 + sin 262d1 =0
For ndn-trivial solutions of df and d; we must have
cos 261 cos 2_62
. =0
sin 261 sin 262
“or
sin 2(62 - 61) =0
This implies that
§,=6, T3 , n=0,1,2,... (4. 25)
For n=o,2,4;ooa
2, 2 _
(di + dz)cos 261 =0
so that
5, ==L m=1,3,5,...

1 4

and
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py = disin (n7+_rr_£r_r )
(4.26)
P, = dpsin (97 + )

Equations 4,26 do not satisfy Eq. 4.22 and hence even values of n
-are not admissible. For n=1,3,5,...

2

2
(- dz) cos 2231 =0

(d

which requires that

d, =d, =d
and
6, =6, t3° n=1,3,5,...

Since p, and p, must satisfy Eq, 4.22 it follows that d, ~d. = 1
1 2 Y 1~ %

and

Py sin (07 + 61)

(4.27)

p, = cos ht + 61)

The assumed steavdy-,state,response is no§v Qefined by Egs. 4.10 and
- 4,27 in terms of ]o1 s bys Koy B and ;61s These equations must satisfy
the equations of motion 4.9. Substituting‘Eqs. 4,10 and 4. 27 into
the first two of Eqs‘v. 4,9 and simﬁlifying,v it can be shown that
{-binz + cos 61‘ +r cos B}sin‘n'r + {sin 61 + r sin B} cos NT=20
{-bZTIZcosK - sin 0,+ r cos (B + p.)} sin MT +

+ {- b2n24si_n K * cos 61 + r sin (P + p)}cos nT =0
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. To satisfy these equations for all T, the coefficients of cos 77 and

sin 7 must vanish, so that
~b 2 + 6, o) = 0
u | cos 64 trcos f=

sin(i1 +rsinfpf=20
(4.28)

: -bznzcos K - sin 61 trcos(B+p)=0

-bznz sin K + cos &, +rsin (B +p) =0

It is also necessary to satisfy the last two of Eqs. 4.9. It can be
shown that only one of these is independent in view of Eq. 4.22.
Substituting Eqs. 4.10 and 4.27 into the first of these equations and

.simplifying it can be shown that
b,cos &, - b,sin (§,-p) + (b, -b,sinp)cos (2n7 + §,)
+ bzcos psin (20T + 51) =2 . (4.29)

It is not possible to satisfy Eq. 4.29 for all 7, except for p = /2,
as will be shown later. For this special case, Eqs. 4.28 and 4.29
~ provide a set of transcendental equations which can be solved for the
unknown variables by, bz, K, B and 61. For other values of p, it

is not possible to do so.

Condition for Continued Yielding

It was shown that for continued yielding we must satisfy
Eq. 4.22 and 4.23. For p; and Py defined by Eq. 4.27, Eq. 4.22

is identially satisfied. Hence, it is necessary to look only into the
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Eq. 4.23, WP can be written as
- p _ . .
WY = quy(piu.1 + pzuz)

Substituting from Eqs. 4.10 and 4.27 and simplifying, it can be

sho_wn that

. Q
wP =-ZLq.Y{b1sin 5

+ bzcos (p - 61) + Rsin (2717,+li)}

1
where
2 ,.2 1
R = (bi 'i'bZ - 2b1b2sin p)?
and

bisin 61 +bzsin (61+p)
bicos 61 -vbzsin (61+Tg)

tan p =
From Eq. 4.30 it is clear that wP =0, for all T, if and only if
1 - = e
bisxn 61 +b2cos (p 61) =R=40Q

Substituting for R and simplifying, it can be shown that the neces-

sary conditions for continued yielding are

| bisin 61 +b2cos (p - 51) =90
“and ’ ) (4.30)

b, cos 6, - bzs?n (p - 61) =0

Partly-Elastic and Partly-Plastic Response

If the conditions of continued yielding, Eqs. 4.30, are not
satisfied the stea\dy-state response is partly-elastic and partly-plastic.
For this case, the equations of motion are given by Eqs. 4.8 for the

elastic part and Eqs. 4.9 for the plastic part. This is the exact
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counterpart of the eiasto—plastic case (EP), for which results of
approximate anal‘ys’is.were quoted earlier vin‘ this section. In view of
the difficulties encountered in obtaining analytic solutions for per-
fectly-plastic response, there seems to be no hope that such approxi-
mate methods can be used for partly-elastic and partly-plastic

response.,

Steady-State Response for Special Values of Phase Angle p.
Phase Angle p = 0.

When p = 0, the set of equations 4.8 and 4.9 are identical
in directions 1-1 and 2-2 and therefore, the response is also identi-
cal both_ in phase and amplitude. The locus of the mass center lies
along a straight line inclined at 45° to the axes 1-1and 2-2, and the
problem can be reduced to a one dimensional problem by considering
the motion along this direction. Let us define a new coordinate
5ystem with the axes 1'~1' and 2'-2' inclined to the axes 1-1 and 2-2
at 45° as shown in Fig. 4.9(a). Let u' denote the displacement
ratio in the direction 1'-1', Then the equations of motion of the

frame reduce to

260’ +p' = r2 sin (nT +p)

s—
+

where
p'=u' - ul if |p'|<t (4.31)

or if |p'| =1 and \;Vp'<0

p'= 1] if WP'=o .

Equations 4,31 are of the same form as equations of motion for
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elasto-plastic response and can be solved by the approximate methods
used for such systems. Knowing the response in the direction 1'-1"
=u' /2.

the response in the directions 1-1 and 2-2 is given by u, = u

1 2
It is in‘structive to look at this case as a two dimensional
problem, and see how the interaction comes into play. Consider the
response in the force-space shown in Fig. 4.9(b). The force vector
starts at the origin and in view of the symmetry moves along the
straight line 1'-1' until it hits the yield surface at A, The system
now goes into the plastic state and again due to symmetry, the tip of
the force vector stays at A so that the restoring force ratios are
given by Py =P, = 1/\/2. On unloading the force vector again moves
along 71'-1' aﬁd the response remains elastic, until it hits A',
where yielding is initiated and Py =P, =" 1/\/._2 For this éase, the

équations of motion reduce to
u, * 2«‘§ui tp; =1 sinnT
where i=1,2, and
p.=u. -~u. if |p|<1 : (4.32)

or if ]5‘ = 1 and Wp'<0

1—1—-‘ i WP =0

Equations 4.32 are again of the same form as the equations of motion '
for elasto-plastic response and can be solved by approximate methods

used for such systems. It can be shown by setting u' = V2 g that
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. Eq. 4.32 becomes identical with Eq; 4.31, It may be pointed out

here that for elasto-plastic response without interaction, the equations
of motion are given by Eqs. 4.7, which are the same as Eqs. 4.32,
except that in theformer p = |1 | during yielding. This shows that the |
response obtained from Eqs. 4.7 and Eqs. 4.32 will be different.

The ‘fre‘quency response curves, showing the amplitude ratio

b' against frequency ratio 7 2, are shown in Fig. 4.10 both for the
‘elasto-plastic response (EP) and the elasto-plastic response with
interaction (EPI). The loci of peak amplitude are also plotted on
the same figure, Figure 4,11 shows the plot of the ratio of energy
per cycl¢ to the elastic energy capacity of the system against fre-
qﬁéncy ratio nz. These ‘cur\Ares. show the following changes in the
response due to the effect of interaction on yielding:

1.  For the elasto-plastic response with interaction, the
locus of peak amplitude is shifted further -to the left of
the locus of peak amplitudé for the elasto-plastic response.,
Since a shift to the left, in the locus of peak amplitude, is
a characteristic of soft systems, this indicates, that inter-
action has the effect of making the system softer.

2. For the elasto-plastic response with interaction, the un-
bounded response 6ccurs for r = 2\[2/17, whereas for the
elasto-=plastic responserﬁ:occurs for r = 4/m.

3. The \cta:rvés for the s‘teady-state amplitude ratio b' are
- significantly different in the two cases. Interaction has

the effect of increasing the amplitude for low values of
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frequ‘enéy ratio 1'12 andﬁerireasing the amplitude for
higher values of T}Z, depending upon the value of r.

4. From Fig. 4.10 it is seen that for elasto-plastic
response the behavior is plastic if b'> 1/42.” For
elasto-plastic response with interaction yielding occurs
if b'> 1., This indicates that interaction has the effect
of causing yielding at lower force levels. Since yielding
produces permanent displacements in the structure, this
is significant where permanent displaceménts' are to be
avoided. |

5. The ratio of energy input per cycle to the elastic energy
capacity of the system is also significantly different 1n
the two 'calses. It is seen that over most of the frequency
range, the energ'y input is decreased.

For p =0, the basic cause of these changes in the response is

very simple. From Egs. 4.31 and 4.32 itis clear that,interaction

has the effect of reducing the yield level by the factor 1/\/2.

Phase angle p = n/2

In the beginning of thié section it was assumed that the
response of the frame is giveri‘by Eqs. 4.10 and 4.27, in terms of
b1 . bZ’ K, B and 61., It was a],sQ found that for the perfectly plasfic
case, these pérgrr;etefs must satisfy Eqs. 4.28 and 4.29. Substi-

tuting p =m/2 in Eqs 4.28 gives
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~b‘1An2 + cos 61 trcosB=0

sin 6, T rsin =0

_ (4.33)
-bznz cos K = sin 61 ~rsinfB=0
2 .
-bzn sin K + cos 61 +rcos =0
From KEqs. 4.33 it can be shown that
K=m/2
(4.34)
.b1= b,= b
and
2 4% - 2 cos =1 (4.35)
Substituting p = TI'/Z and b1 = bZ =b in Eq. 4.29 gives
2 - 2b cos 61 =0 (4.36)

Thus it is seen that in this case it is possible to satisfy Eq. 4.29 for
all 7, and Eqs. 4.33 along with Eq. 4.36 satisfy all the equations of

motion, Equation 4.36 and the last of Egs. 4.33 gives

2.2 :
cos B = -}9——;—1}—-—:——1 (4.37)

Substituting for cos B in Eq. 4.35 gives

r? + b2t - amZmind - 1) =1  (4.38)

This is the frequency response equation.
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Peak Response -

Equation 4.38 can be rewritten as

bf =L (r% - 1+ 2nd) (4.39)
Ul
SO~
s a1 4
d - 5 3
K n y

For peak response, dbz/dn = 0, hence

ax%-1) 4

5 —5=0
n M
This gives
n_=(1-1r%?2 (4.40)
P .
and from Eq. 4.39
%
b = —— (4.41)
P (1 - r7)= :
where
P is the subscript denoting peak response

Combining Eqs. 4.40 and 4.41 gives

1
b = —
Py

(4.42)

This is the locus of peak amplitude. Substituting Eq. 4.42 and
Eq. 4.37 gives ‘B = /2. This shows that phase and amplitude
resonance occur at the same frequency. Also, from Eq. 4.41, it

. L
is' seen that unbounded response occurs for = = 1,
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For p=m/2, it is seen from Eq. 4.19 that for elastic
response b <1, and the response is given by Eq. 4,11, Forb=1,

Eqgs. 4.11 and 4.38 are identical and give

=1y (4.43)

For b > 1, yielding must occur. Substituting Eqs. 4.34 and 4.36
in Eqgs. 4.30' it is seen that for p = 7/2, the conditions for continued
yield are satisfied. Thus for p = w/2, the response is elastic if
b =1 and is perfectly plastic if b > 1,

Energy input per cycle and energy loss per cycle are given
by Egs. 2.44 and 2.52. Substituting from Eqs. 4.10 and integrating

frdm 0 to 2w, it can be shown that

TE"/ 3 Q,q, = 4mrb sin B

‘ {(4.44)
* .1 -~ :
HE /= quy = 4mb sin &,
where
TE" is the total energy input (both directions) per cycle
HE " is the hysteretic energy loss (both directions) per

cycle

als

From Eqgs. 4.33 it is seen that r sin p=-sin 5,. Hence, |TE= [T,
which is a necessary condition for steady-state response. From
Egs. 4’.40 it is see_h that maximum energy input occurs when B = ’IT/Z,
which corresponds to the peak amplitude.

The frequency response curves and loci of peak amplitude are

plotted in Fig. 4.12, both for the elasto-plastic response and elasto-
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plastic response with interaction. Curves for the ratio of energy
input per éycle to the elastic energy capacity of the system are
plotted in Fig. 4.13. The general nature of these curves is the same
as the curves for p = 0. In this case, the interaction has the effect
of ‘causing continuous yielding for b > 1. It can be shown that for

r < 0.95, the stecady-state amplitude for the elasto-plastic response
with interaction is always less than the steady-state amplitude for
‘the elasto-plastic response and for r > 0.95 the same is true

except for the small values of nZ» depending on r. This indicates

the effectiveness of interaction in reducing the response.

Check on Numerical Integration and Computer Program

For p = w/2, we have obtained the exact solutio‘n for the
steady-state response. This makes it possible to check the accuracy
6f the numerical integration and the correctness of the computer
program. For this purpose, the response for a number of cases was
obtained by numerical integration and is shown by isolated points in
Figs. 4.12 and 4.13. Maximum differences were found to be less
than 2 per cent in amplitude and 4 per cent in energy computation.

This agreement is considered to be satisfactory.

Phase angles 0< p < 1/2

For p=0:and w/2, it has been possible to obtain analytical
solutions for stéady—state response and to examine the effects of
interaction. As shown earlier it is not possible to determine an

analytic' solution for other values of the phase angle. To study how
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the response changes as the phase angle is changed from 0 to =/2,
the response was obtained by numerical computation for r = 0.5,

2 o

n"=0.9 and p=0 °

, 10°, 45°, 60°, 80° and 90°. Figure 4.14
shows the locus of the mass center for each of the above values of
phgse angle. The locus of the base is also shown on each plot. It
is seen that the locus changes gradually frém a straight line for
p =0 toacircle for p =nw/2. In general, the locus is an ellipse,
with its principal axes inclined to the principal axes of the locus of
the base. |

Figure 4.15 shows the variation of total energy input and

.maximum amplitude, along with their components, with the phase
angle p; From this figure it is clearly seen thaf although the exci-
tation is the same in two directions, but for the phasé difference,
the energy input and steady-state amplitude of oséillation are differ-
ent, This is dul'e to the redistribution of energy caused by the inter-
action. It is also seen from Fig. 4‘. 15 .that the energy inpufc does
not change much with phase angie, but maxi'mum s‘t‘eady—state
amplitude decreases uniformly as the phase angle increases frhom
0to w/2. Since the yielding occurs at a fixed level for p = 0 and
continuously for p = Tr/Z, it indicates that ability of the system to
remove energy, by hysteresis, at low yield levels reduces the

amplitude of response,

Effect of Damping

In the cases so far considered the damping has been zero., To

see how damping affects the response both with and without interaction,
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the response was obt.a"med by numerical integration for r = 1.0,
n2=0.8, p=90°and £=0.0,0.02, 0,05 and 0.1. The variation
of energy input and steady-state amiplitude with damping is shown

in Fig. 4.16. Itis seen that damping has the effect of increasing
the energy input slightly in bot}; cases but more so in the elasto-

- plastic case, The s teady-state amplitude is decreased in both cases

as damping increases and the damping is more effective when there is

no interaction.

The Shape of the Yield Curve

‘ So far the effects of interéction have been discussed with
reference to the circular yield curve defined by FEq. 4.5. In
Section 3.2 of Chapter III, it was shown that it is possible to define low-
est and uppermost bounds of the yield surfaces and for two-dimensional
force-space these are shown in Fig. 3.1. It may be noted that the
uppermost bound represents the elasto—iolastic behavior with}out
interaction an;i we have already discussed the response for such
behavior along with the response for the circular yield curve. The
response for the lowest bound has been computed, by numerical
k integratidr'l, for r = >0.5, p = 90° and § = 0,0. Curves showing the
variation of steady-state amplitude and energy inpu1-: per cycle with
frequency ratio nz, are plotteci in Figs. 4.17 and 4.18. These
figures show that the response is quite sensitive to the shape of the
yield curve. The 1owest'yie1d curve permits more interaction as

compared to the circular yield curve and this is reflected by the fact

that peak amplitude is shifted further to the left and the steady-state
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amplitude and energyb input are increased for low values of 1‘]2. It
| is also seen that for circular and uppermoét_yield curve, yielding
occurs for b > 1, where as for the lowest yield curve, yielding

starts at lower values of b. Since yielding causes permanent set

this fact is of significance, where permanent set cannot be permitted.

4,4 Summary and Conclusions

The dynamic response of a siﬁple frame subjected to sinu-
soidal base excitation acting simultémeously along its principal
directions has been presented. To limit the size of the sjfudy, the
discus siqn has been restricted to frames which have identical pro-
perties along the two principal directions and a circular yield curve,
The excitation has élso been assumed to be identical along the two
directions, but for a phase difference, Using the equations of motion
deri,vvéd in Chaptér II, the response of the frame has been obtained
for inelastic interaction between bending moments acting along t.he
i)rincipal directions of a section. For‘purposes of comparison, the
response has also been obtained for elastic and elasto-plastic
behavior and the changes introduced in the response due to interaction
have been discussed. For steady-state i'espo_nse, the problem of
getting analytical solutions has been investigated and it has been
poséible to get an exact solution when the;kphase angle p 1is equal to
90°. Using analytical results for this case, the accuracy of the

numerical computations and correctness of the computer program

have been checked. On the basis of these results, the following
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conclusions can be drawn about the effects of interaction and their
implications: |

1. Interaction causes yielding, and hence energy dissipation
by hysteresis, at for;e levels lower than the fixed yield level for
elasto-plastic behavior. This has the effect of reducing the steadky-
state’/ amplitude and energy input per cycle over most of the frequency
range. This ability to limit the response, in general, is a.signiﬁcant
feature of the.effect of interaction.

2. Due to the coupling introduced by interaction, a redistri-
bution of energy takes place along the principal directions. This
transfer of energy causes aﬁ increase in the amplitude of response
in one direction and a decrease in the 6ther. If interaction is not
included in the analysis, this phenomenon will not be anticipated.

3. Since interaction permits plastic deformétions at yield
levels lower than the fixed yield level for elasto-plastic behavior, it
causes permanent displacements at lower force levels. This is of
significance in problems where permanent displacements cannot be
tolerated. For structurbes subjected.to recurring loads, occurrence
of plastic deformations at low force levels introduces also the possi-
bilities of fatigue failure and cumulative dama.ge.

4, In interpreting the results of the dynamic tests of struc-
turés » in the post-elastic range, interactioﬁ between forces present
at a section may be signbificam‘c° In the test set up used by Hanson,(Z“
the axial force and the shear force were also present along with the

bending moment at any section. By using the general theory of yield-
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ing developed in Chapter II, it is possible to derive a theoretical force-
displacement relationship incorporating the effects. of intéraction be-

(21)

tween these forces. Hanson has reported thatthe yield in the frame
was initiated earlier than predicted by the theoretical force-displace-
ment relationship and has attributed this, in part, to the effect of
axial force which was not included in the analysis.

5. The theory of yielding derived in Chapter II is based on -
the assumption that the section remains elastic up to the yield sur-

i face, thus ignoring the effect of partly-elastic partly-plastic region.
It has been shown in Section 4.3 that the response to sinusoidal
excitation is very sensitive to the shape of the yield surface. In view
of this, it seems that ignoring partly-elastic partly-plastic region
may introduce significant errors in the estimates of the response.
As pointed out in Section 3.4 of Chapter III, a simple way to get a
more realistic response may be to use an intermediate yield surface
lying befween the initial and limit yield surfaces. The choice of
such a surface can be made by getting the best fit between the
analytical and the experimental results.

6. The discussion in this chapter has been restricted to a
special class of frames and excitation. This leaves a number of
parameters unstudied and these may be responsible for some other
significant effééts Qf interaction. Further study is, therefore,

needed to investigate the influence of these parameters.
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CHAPTER V

THE RESPONSE OF STRUCTURES TO
EARTHQUAKE-TYPE EXCITATION

5.1 Introduction

The motivation to pursue this study came, originally, while
considering the inelastic response of structures subjected to simul-
taneous base excitation by the horizontal components of an earth-
quake. For such an excitation, if a structure is assumed to undergo
only a planar motion, its response can be obtained by considering
the equations of motion alyong two mutually perpendicular directions,
It is clear that for linearly elastic behavior, the response of the
structure can be obtained by the superposition of response along the
two directions. However, if the response' is inelastic, such a super-
position is not possible, and as shown in Chapter II, interaction
between forces écting at a section comes into play in determining
the behavior of the structure. In section 2.3 of Chapt'er II, the
equations of motion of a simple frame Wefe derived for elaétic s
elasto-plastic and interactive elasto-plastic behavior. In this
: chaptcr, ‘these cquations are used to study the response of the frame
to the Taft earthquake and to an ensemble of artificial eafthquakes.
The calculated response is presented through a series of curves
having various parameters représenfiﬁg the characteristics of the
frame. Effect of interaction on the response of the frame is discussed
. in detail, and us\e of these cur\}es for inelastic design of structures

is indicated,
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The notation used in this chapter is the same as in the pre-

ceeding chapters with the following additions.

Symbol Explanativon or Definition
T,1 s TZ : natural periods of the structure in the
- directions 1-1 and 2-2
A
Zys Z, r.m.,s. values of the horizontal component
: of ground acceleration during an earth-
quake, in the directions 1-1 and 2-2
z r.m.s. value of the ground acceleration
vector during an earthquake '
A A
Y0 Y, acceleration ratios Z/ayl ) 2 /ay2
Mo iy . ductility ratios SN /qyi’ 9 a2 /q_)r2
pfﬂ ratio of the maximum radial displacement
: during an earthquake to the yield dis-
placement
Y] ratio of hysteretic energy loss during an

earthquake . to the elastic energy capacity
of the structure

5.2 Response of the Frame to Earthquake Type Excitation

Equations of Motion

Let z 1(‘c) and 'z.z(t) denote the horizontal components of

) A A A
ground acceleration during an earthquake. Let ’211 and z, denote
the r.m.s. of each of these components and let
A A A, L1 .
Z = (27 +22)° (5. 1)

A

z is then the r.m.s. value of the vector representing ground

acceleration during the earthquake. It is independent of the direction
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in which the two components are recorded and is in a way an abso-

lute measure of the strength of the earthquake. Let

where

g4 (t),g,(t)

Also let

where
Uy173y2

Yo Y

A

EACERFNC

(5.2)

z,(t) = z g,(t)

are the dimensionless time records of ground
motion in the directions 1-1 and 2-2
respectively

A (5.3)

are the yield accelerations in the directions
1-1 and 2-2 respectively

are the acceleration ratios in the direction
1-1 and 2-2 respectively

A

Setting T =w,t and substituting for z from Eq. 5.3 in Eq. 5.2,

gives

(5.4)
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 ee T \
Z ————
ayz 12527 ng
where
¢ denotes the ratio Wy /ooz

The equations ‘of motion of the frame for ‘earthquake typé excita-
tion are now given, in dimensionless form, by Eqs. 2.36 through 2.39,
with the forcing function defined by Eq. 5.4. The expressions for
~energy input and energy loss are given by Eqgs. 2.44 and 2.49 through
2. 51 .. If the ground acceleraﬁoﬁ record _of the horizontal components
of an earthquake is digifized at identical time intervals for each com-
ponent, the response can be obtained by numerical integration of these
equations. In this study a third order Runge-Kutta scheme of integra- '
tion has been used. Integrals for energy input and energy loss have
~also been computed numerically. Details of"numeric‘al computation
are given in Appendix IIIL.

For circular yield curve with T

=1.0, T, = 0.5, y, = 0.5,

1 2
Yy = 0.3, £ = 0,02 and horizontal components of the Taft earthquake
(record, response of t_he frame has been computed for elastic, elasto-
plastic and elasto-plastic behavior with interaction, by numerical inte-
gration of Egs. 2.36 through 2.‘39. Various aspects of the response
are shown in Figs. 5.2 through 5.11. These figures are used below to
explain, qualitativeiy, some of the features of the effect of interaction.

- Figures 5.2 through 5.7 show the displacement~time response

of the frame for'elastic, elasto-plastic and elasto-plastic behavior
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with interaction. The plastic drift of the frame during yielding is

also indicated on these figures. Comparison of these figures shows

the following features of the response.

1.

The response for elasto-plastic and elasto-plastic be-
havior with interaction is considerably smaller and much
more uniform than the response for elastic behavior.
This shows the effectiveness of yielding in reducing the
response of structures. Careful comparison of the
responses with and without interaction shows that inter-
action leads to smaller and more uniform response.

The oscillatory pazrt of the response for elasto-plastic
and interactive elasto-plastic behavior is quite similar
but the drift pattern is very different. For response with
interaction, yielding occurs at lower for‘c‘e levels and
therefore increment in plastic drift occurs many more
times than during the response without interaction.

The maximum displacement during an earthquake depends
both on the plastic drift and on the oscillatory part of the
response. Since the drift patferns for response wﬁ:h and
without interaction are so different,any estimates of the

maximum displacement obtained for the two cases can be

very different, in spite of the fact that oscillatory parts

of the response are quite similar. This shows the extent
of randomness and significance of interaction in the esti-

mates of maximum displacement. This fact is of interest

because the ductility ratio, which is the ratio of maximum
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displacement to yield displacement, has been suggested
' . (10,13)

as acriterim for inelastic design.

Figures 5,8 and 5.9 show t.he.force-displacement relations
for the two corﬁponents of the earthquake, with and without inter-
action. These figures show, as already ‘pointed out, that interaction
causes plastic déformations to o\c‘cu'r at yield levels lower than the
fixed yield for elasto-plastic behavior (Fig. 5.8). Figure 5.10 shows
the locus of the mass of the frame in the horizont‘al plane. The |
significant feature of this figlurei is the fact that large excursions of
the mass occur only a few times. Similarity between this figure
and the record of the seismbscopes‘ may be noted. Figure 5,11 shows
thé response in force~space. | It is seen that the response during
yielding follows the assumed yield curve (a circle) very closely,

This is an indication of the accuracy of the numerical integration.

5.3 Response of the Frame to the Taft Earthquake and the Ensemble
of Artificial Earthquakes

In this section a discussion of the response of the frame to

- earthquake type excitation is presented in detail. Since the equations
of motion 2,36 through 2.39 contain a large number of parameters,
it was neceSsary to i'mpos‘eb certain restrictions in order to limit the
scoi)e pf the study. As in Chapter IV, it was decided to consider
only the special case of a symmetrical frame sa‘tisfying Egs. 4.4
and 4.5. Under\these reétrictions, the equations of motion are con-
siderably ‘simpllified and are given by; Eqs. 4.6 through 4.9. The

response of the frame is obtained by numerical integration of these
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~ equations, and curves showing energy input, velocity, displacement,
and permanent set are plotted for each case. The special features

of these curves are discussed towards the end of the section.

The Earthquakes

‘ The particulars of the Taft earthquake record and the arti-
ficial earthquakes used in this study are shown in Table I, The hori-
zontal components of the ground é,cceleration recorded during the |
Taft earthql;.ake are shown in Fig. 5.1, This earthquake record was
digifiz ed at the University of Michigan. The artificial earthquakes
(16)

were generated by Jennings.

"~ Choice of Parameters

As already pointed out, the discussion in this study is
‘restricted to frames with identical properties along two principal
directions, so that T1 = T2 a_nd le = QyZ" The response of the
frame to the Taft earthqulake has been obtained for seven values of
- natural period, T1 = TZ =0.25, 0.5, 0.75, 1.0, 1,5, 2.0 and 2.5
seconds.; and three values of the fraction 6f critical damping,
£ =0,0, 0.02 and 0,05, The choice of small damping values was
" made in view of the fact that modern framed structures tend to
possess a small amount of darhping. (44)

- The yiéld strength of the frame is characterized by the yieid
accelerations é’yi :and ayz, which repfesent the acceleration values

at which yielding occurs indepen dently in the directions 1-1 and 2-2

respectively. Three values of yield acceleration, ay1= ayZ =0.247g,
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. 0.099¢g and 0.049g, have been chosen to cover the range of values
likely to occur in properly designed real structures. For the Taft
earthquake record of 30 second dﬁration these values correspond

to acceleration ratios Y=Y, = 0.2, 0.5and 1.0 respectively. The
parameter "acceleration ratio" was introduced by Jennings<16) as

the x;at/:\io of the r.m.s. value of each component of ground accelera-
tion (fz“i) to the yield acceleration along that component. In this study
the acceleration ratio is defined as the ratio of the r.m.s, value of
the ground acceleration vector (Q), which is independent of direction,
to the yield acceleration of the structure along a particular direction.
The acceleration ratio is a fneasure of both the strength of the earth-
queke and yield strength-of the structure. It is clear from Eqgs. 2.36
through 2.39 and Eq. 5.4 that doubling the strength of the earthquake
will‘produce the‘ same response in terms of u, (= qi/qyi) as if the
yield level had been halved. This permits a more general interpre-
tation of the responsc and is found to be very convenient in establish-
ing design criteria, as will be shown 1ate:f.

In this study, the strength of an earthquake is characterized
by the r.m.s. value. Since the nature of ground motion during an
earthquake is a non-stationary random process, the r.m.,s. value is
only a partial index of the characteristics of an earthquake, It is
known that two earthquakes with the same r.m.s. value may prodﬁce
widely differe'nt_\re»sponse in the same structure. In view of this, it

is not meaningful to draw any general conclusions on the basis of a

“response obtained for a single earthquake. To deal with this prob-
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“lem, Jennings(ié) dévéloped an ense.mble of artificial earthquakes,
each member of which is a sample of a statibna’ry process, with
statistical properties, similar to those of recorded strong-motion
earthquakes. By the ’use of suitable scale factors an ensemble ofv
theée earthquakes can be made to match the r.m.s. value of any
particular earthquake. The scale factors for the four strong-motion
earthquakes, which were used to generate these earthquakes, have

(

been given by Jennings. 16) Using an ensemble of these earthquakes,
it is -possible fo obtain average values and deviations about them of
various response parameters and to draw conclusions about the
.behaviorl of structures during an earthquake, with some measure of
confidence,

For this purpose, eight artificial earthquakes have been used
to form an ensemble of four pairs of earthquakes representing the
horizontal components of éround acceleration. To match the Taft
earthquake (duration 30 seconds), the artificial earthquakes have
been multiplied by a scale factor of 1.61, based on the ratio of
average r.m.s. of the Taft earthquake to the average r.m.s. of the
cnsemblé, The reséonse of the frame to fhis ensemble of earth-
quakes has been obtained for the case having Yy =Y, = 0.6 and
€ = 0,02, The average values and scatter have been computed for.
each response,parg‘imeter. The response for the Taft earthquake is
compared with the response for the ensemble of artificial earth-

quakes.,
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Discussion of Results

The response of the frame to the Taft earthquake and to an
ensemble of four pairs of artiﬁcialv earthquakes is shown in Figs,
5.12 through 5.33. These figures show the variation of energy input,
maximum velocity, maximum displacement, and permanent set
against the natural period of the frame, for elastic, elasto-plastic
and eiasto—plastic behavior with interaction. The effect of inter-
action on each of these response parameters is discussed below.

- Energy input and energy loss

Figures 5.12, 5.13 and 5.14 show the variation of the ratio
of total energy input to the elastic energy capacity of the frame
against its natx:fral period forv elasto-plastic and elasto-plastic be-
havior with int;:raction. Total energy denotes the sum of the energy
input along directions 1-1 and 2-2 and these figures indicate the
amount of ene'rgy that must be dissipated by the frame through damp-
ing and yielding. It ié seen from these curves that interaction has the
effect of decreasing the energy input to the frame. For y =1.0 and
£ = 0.0 the decrease is up to 30 per cent of the energy input without
‘ihterefctiOn. For lower values of vy, the reduction in energy input
slowly decreases, which must be expected since lower values of v
n{eans less yielding. The curves are drawn for three values of
damping and it is seen that the increase in damping causes, in general,
a small increase m the energy input. It is also seen that decrease in
energy input due to interaction is slightly reduced as damping

increases.
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For an elastié frame, multiplying y by a numerical factor
n. would increase the energy input to the ffame n2 times and an
interesting comparison is made byv multiplying the energy input ratio,
for y = 0.2, by 6.25 and 25 and corﬁparing it with the energy input
ratio for y = 0.5 and 1.0 respectbively. Curves obtained by multi-
plying the y = 0.2 curve by 6.25 and 25 are shown in Figs. 5.12,
5.13 and 5.14, It is seen that these curves lie, in general, above
the actual curves. The actual energy input is seen to be less than
the energy input deduced from the vy = 0.2 curve up to 50 per cent
for y =1,0 and 30 per cent for y = 0.5. This shows that the energy
input to a structure decreases as its yield strength is decreased. It

(6)

found the same behavior for

(

rr'idy be pointed out here that Berg
elasto-plastic structures,but Jennings L6) found that for general
yielding structures, such a decrease is very small. This fact is of
interest in Housﬁer's method of limit design. (7)

Figure 5,15 shows the average energy input curves for
elastic, elasto-plastic and elasto-plastic behavior with interaction
obtained from the ensemble of artificial earthquakes. The range of
eﬁergy input for elasto-plastic response with interaction is shown as
 the shaded area. These curves show that yielding has the effect of
decreasing the energy input and interaction decreases it still further.
It may be noted that the order of decrease for the ensemble average
and for the Taft earthquake is about the same but it is more uniform

for the former. It is seen that for T, = T2 < 0.75, the energy input

curve for elasto-plastic behavior lies outside of the range of the
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_curves for elasto-plastic behavior with interaction. In this region,

therefore, the effect of interaction is more meaningful.

Maximum Velocity

Curves showing the variation of maximum velocity of the frame
as ;:L function of its natural period are shown in Figs. 5.16 through
5.19 for the Taft earthquake and the ensemble of artificial earth-
quakes. It is seen from these curves that yielding reduces the velo-
city and interaction reduces it still further. It may also be noted
froni these curves that yielding is more effective in reducing the
velocity for low values of period than for higher values. This is due
to the fact that as the natural period of a structure decreases its
response has greater_nul;nbgr of peaks,.and yielding occurs more

often.

The Ductility Ratio

-The ratio of t};te maximum displacement to the yield displace-
mevnt in the response of a simple oscillator subjected to earthquake
typé excitation has been defined(io) as the ductility ratio. If the
vibratiori of a structure is considered independently along its
principal directions, the ductility ratio is directly related to the
ratio of maximum plastic strain to the yield strain (hereafter called
the plastic strain ratio) for each direction and is a convenient
measure of the e\xtj_e‘nt of plastic deformation that may be permitted

in a structure. If the vibration of the structure occurs simultaneously

along the principal directions, as in the case of earthquake type
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~excitation, the total plastic strain ratio will dei)end on the displace-
ments along both principal directions'and it is clear that ductility
ratios along each principal directiénl are not directly related to the
total plastic strain ratio. If the ductility ratio aloné one of the
principal dirécti_ons is considered alone, it will underestimate the
total plastic strain ratio and if the sum of the ductility ratios is
considered, the total plastic strain will be overestimated. For a
frame with columns of circular section, this problem can be
resolved by using the ratio of maximum radial displacement and the
yield displacement as a measure for plastic strain ratio. For other
sections, where yield displécement varies with the direction of dis-
piécement, an average value of the yield displacement may be used-
to divide the maximum radial displacement.

Figures 5.20, 5.21 and 5.22 show the variation of ductility
ratio (denoted by . p) against the natural period of the framae. The
ratio of maximum radial displacemen’c to the yield displacement
(denoted by p.*) is shown in Figs. 5,23 through 5.25 for the Tait
earthquake. It is seen in these figures that the behavior of these
curves is somewhat random and it is diffiéult to find a general trend.
This is to be expected because, as pointed out in §ection 5.2,
the maximum displacement depends on plastic‘ drift, which occurs
in a random fashion. These curves indicate that for periods iess |
than 0.5 secoﬁds:, cinteraction causes no significant difference for
vy =1.0, but for y = 0.5 and 0.2, the ductility ratios and the -ratio p*

are considerably increased. For periods greater than 0.5 seconds,
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interaction reduces the ductility ratio and the ratio p* if yv=1.0,
.b\;t causes no sigﬁificant change for y =0.2 and 0.5, 'In Fig. 5.23,
curves for by and (p.i-i-p.z) are drawn for y = 0.5 to see how they
compare with the curve for p.*, It iAs seen from thése curves that
By may underestimate the plastic strain ratio by as much as 50 per
cent, whereas (;.u,1 + p.z) may overestimate it up to 100 per cent of
the actual value. Figure 5,26 shows the average curves and range

3¢ B
for p . It shows that interaction increases the value of . con-

siderably for T1 =T, <0.5, but has very little effect for higher

2

values of the natural periods.

- Permanent Set

The permanent sét is defined as the final position of equili-
brium of a structure at the end of an earthquake. It was shown in
Figs. 5.3, 5.4, 5. 6 and 5.7 that during yielding the frame undergoes
plastic drift and moves to a new position of equilibrium every time
such drift occurs. The behavior during plastic drift appears to be
quite random and therefore estimates of permanent set involve a
large degree of uncertainty.A Figure 5.27 shows the variation of
permanent radial set for the Taft earthquake. It is not possible to
draw any precise conclusions fx_'om these curves because of their
variability., Figure 5.28 show‘s the average curves and the range.

It is seen from‘these curves that interaction increases the permanént
set for naturai p\ersiods less than 0.5 secon‘ds and has no significant

effect for periods greater than 0.5 seconds.
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The Shape of the Yield Curve

The respo‘nse of the frame discussed so far was obtained for a
circular yield curve. Figures 5.29, 5.30 and 5.31 show the response
of the frame for three shapes of the yield curve. The upper bound
curve represents elasto-plastic behavior without interaction. The
lower bound curve permits more interaction as compared to the
circular yield curve and this is r"eflected clearly in all three figures.
It is seen that the response curves for the circular yield curve are, |
in general, bounded from above and below by the response curves

for upper and lower bounds.

Comparison of Response for Taft Earthquake and Ensemble

of Artificial Earthquakes

The response of the frame to the ensemble of aijtificial
earthquakes was obtained after multiplying the ground acceleration
values by a scalé factor, so as to match the r.m.s. of the Taft earth-
quake. Since the artificial earthuakes were generated by obtaining
the best fit on the average lineér response of four strong-motion

(16)

earthquakes, it is of_ interest to see how the response of real and
ai'tificial earthquakes compare for nonlinéar behavior. Ior this
purpose, the response for the Taft earthquake has been plotted along
with the curves showing‘the avérége response and range for the
ensemble of artificial earthquakes. It is seen from these curves
that the ehergy input curve (Fig. 5.15) for the Taft -earthquake lies
below the averaée input curve for all values of ﬁatural period. For

values of natural period greater than 1.5 seconds, it lies outside

‘the range of values of the ensemble. The curve for maximum radial
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displacement (Fig. 57. 28) also lies below the average curve, but
follows it quite closely and lies within the .range of values of the
\ensemble. The curves for velocity ére shown in Fig, 5.19, wherein
it is seen that the maximum velocities for the Taft earthquake are
‘higher and outside the range for periods less than 1.5 seconds and
lower for periods greater than 1.5 seconds. Considering the non-
stationary random nature of real earthquakes the differences pointed
out above are considered to be acceptable. These difference could
arise because of one or all of the following reasons: 1) The strong
part of the Taft earthquake record (Fig. 5.1) is confined to the first
15 seconds, whereas artificial earthquakes are uniform over 30 sec-
onds. | 2) The scale factor w;.ls based on r.m.s., which is only a

partial index of the nature of an earthquake.

Effect of Damping

The response of the frame was obtained for three values of
damping, & = 0.0, 0.02 and 0.05, The effect of damping on various
response parameters was pointed out while discussing the response
curves for each case. It was shown that the increase in damping has
the genefal effect of’reducing the maximum velocities and displace-~
ments and smoothing the response curves. The energy input is found
to increase by a small amount with increase in damping. The energy
loss dcie to damping , during the Taft earthquake, for elastic and
elasto-plastic behavior with interaction, normalized by the damping
energy loss in the elastic case,is shown in Fig. 5.32 for £ = 0.02

and 0.05. Tt is seen from these curves that interaction has the effect
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of reducing the energy loss due to damping up to 30 per cent. This
shows that interaction reduces the dependence on damping for dissi-
pation of energy. This fact is significant because modern structures

(44)

are found to possess a small amount of damping.

Yield Displacements and Elastic Energy Capacity of the Frame .

Most of the response curves presented in this chapter have
been normalized either by the yield displacement or the elastic
energy capacity of the frame. The values of these parameters for
diffe‘rent values of acceleration ratios and natural periods of the
frame are‘ shown in Fig. 5.33, These curves can be used to compute
the actual value of a parameter from the response curves presented

in this chapter.

5.4 Inelastic Design of Structures to Resist Earthquakes

The present concept'of' inelastic deéign of structures to resist
earthquakes is based on the idea that the structure should. remain
elastic during small earthquakes, which occur frequently, should‘
undergo limited plastic defoi-z;nation dufing moderate size earth-
quakes; and may unciergo large plastic deformations during infrequent
large earthquakes. In this section, this basic idea is used to illus-
trate how the curves presented in the preceding section can be
utilized to produce such designs.

In ‘the preceding section, response curves for the Taft earth-—.
quake were drawn for three values of acceleration ratio. Since the

_earthquake was the same in each case, different values of accelera-
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tion ratio represent different yield strengths of the frame. If one
Copsiders the yield strength of the frame to be fixed, these curves
can be looked upon as response curves for differént earthquakes,
This interpretation prqvides a simple way of using these curves
in design.

Let us suppose that the Taft earthquake with r.m.s. value
.z = 1.59, represents a moderate size earthquake. Let us further

A
suppose that earthquakes with r.m.s. values %= 3.18 and

Z = 0.635 represent large and small size earthquakes respectively.
With fhe size of the.earthquakes 50 specified and considering a frame
with yield acceleration a.y1 = ay2 = 01 g, it can be shown then that
the response curves for y =1,0, 0.5 a.nd 0.2 will represent the
response of this frame for large, moderate and small size earth-
quakes respectively. If "limited" and "large" plastic deférmations
can be characterized in terms of response parameters such as
ductility ratio, permanent set, etc; ( hereafter called design param-
eters) these curves can be readily used for purposes of design as

shown below.

The Ductility Ratio
' (10,13)

The ductility ratio haé been suggested as a measure of
permissible plastic deformatioﬁs. In the preceding section it was
shown that the ductility ratib can be redefined as the r_afio (p.*) of the
maximum radié.i c}is‘i)lacement and the yield displacement to get a

better correlation with plastic strain ratio, Let us use p as the

parameter to specify perxini“ssible plastic deformations. It is clear
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that p*ﬁ'i represents elastic behavior, Let us assume, as an ex-
ample, that 1< p.* = 3 characterizes "limited' plastic deformations
and 3 < p,*S 6 characterizes "large'plastic deformations. Then,
depending upon the damping present in the structure, we can use

Fig. 5.23, 5.24 or 5.27 to choose values of yield acceleration which
will satisfy the design criteria outlined above.b For 2 per cent damp-

ing these values are shown below:

Period Yield Acceleration
(T1 = 'I‘2 = T) (a.yi = ayz = ay)
T>1.0 - a >0.1g
. Y
0.5<T=1.0 - ay>o.15g
0.25< T = 0.5 o a, > 0.3 g

It may be pointed out here that these values of yield accelera-
tion have been estifnated on the basis of the three curves shown in
Fig. 5.24. If such curves were plotted for a number of acceleration
i'atios , the appropriate values of yield acceleration could. be readily
determined. The same procedure can be used for other constraints
such as permanent set and values of yicld acccleration satisfying all
the constraints can be obtained. If the ’du“c‘tillity ratio and the permanent
set are uéed as deAs.ig‘n parameters, it is seen from Figs. 5.24 and
5.28 that interaction has a significant effect on design for T < 0.5,

The method of inelasﬁc design outlined above is direct if
criteria for permissible plastic deformations can be specified
qtiantitativel')r‘i'n terms of one or more of the response parameters.
One of the'main considerations in the choice of thesé parameters Aand

.their values is the possibility of fracture or unstable response due to
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deterioration of the yield strength of the material during repeated
.loading. Since it is not possible to include this consideration
directly in the suggested design procedure, it is necessary to
allow for this through one or more of the response parameters.
The ductility ratio is one such parameter and it is of interest to
examine its suitability for this purpose.

It was pointed out in the preceding section that under simple
loading conditions the ductility- ratio is directly related to maximum
plastic strain occurring in the structure during an earthquake. Due
to this relationship with the maximum plastic strain it has a direct
bearing on the possibility of fracture or unstable response due to
large strains. DBesides this, J.t has the following additional advantages:

1. The ductility ratio is. obtained fro&n the maximum dis-

placement which in itself may be a constraint on de.sign
and can be accounted for by a constraint on the ductility
ratio. |

" 2. In experimental investigations designed to study the possi-
bility of fracture or unstable résponse, the ductility ratio
can be directly measured. Based on such experiments it
can be assigned nurner'ical values to specify permissible
plastic defOrmation‘s for purposes of design.

The use of ductility ratio has the following disadvantages;

1. It was pointed out in Section 5.2 that due to the random

natur\e‘ of plastic drift, estimates of the maximum dis-

placements involve an element of uncertainty. This is
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carried over to the estimates of the ductility ratio.

2. The maximum displacement is'a transient phenomenon
occurring for a short time. Hence, its influence on
fracture or deterioration of material rn:a.y not be signi-
ficant.

3. For general loading conditions, with torsional mofnents,
shear forces and bending moments acting at a section,
the ductility ratio is not directly related to the yield

behavior at the section.

The Plastic Energy Ratio

Thg: ratio of the total energy diséipated by yielding during an
earthquake to the elastic energy capacity of the structure (hereafter
called the plastic energy ratio and denoted by §) is another response
parameter which can be used as a measure of the possibilities of
fracture and deterioration dur.ing yielding. Since it represents the
overall yield behavior of the structure during an earthquake, including
the effects of interaction, it does not have the disadvantages pointed
out for the ductility ratio. As compared to thé ductility ratio it séems
to be a bettér measure of the deterioratvion of the irield strength during
yielding. The main disadvantage with plastic energy ratio is the
difficulty of measuring it in an experimental investigation.’

The responée curves for 'plastié enérgy ratio are shown in
Fig. 5.34 and can be used for the purposes of inelastic design by
follov}ing the procedure ou‘c_l'med.' earlier. Dué to the small number

-of response curves presented, it is not possible to make a meaningful
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. comparison between designs based on ductility ratio and plastic
energy rétio. However, if it is assumed that "limited" plastic deforma-
tions are characterized by 0 < =9 and "large'" plastic deforma-
tions by 9 < 2 = 36, it is seen that designs baéed on two criteria will
be practically the same, From the point of view of interaction,
however, there is a significant difference between the two criteria.
It is seen from Fig. 5.34 that interaction reduces the plastic energy
ratio, for all periods, whereas from Figs. 5,24 and 5,26 it is seen
that interaction increases the ductility ratio significantly for
'I‘1 = T2 < 0.5 seconds.

It is clear that a detailed investigation both analytical and
eXperimenta.l, is needed to exami‘ne‘the suitability of these ratios

as criteria for inelastic design.

Multi-Story Structures

In this chapter the effects of 'mteracti.on on the response of
structures have been investigated for a éingle—story frame. It is
seen that the interaction does not have a significant effect on the
responsé for natural periods greater than about 1.0 seconds. Since
“natural periods greater than 1.0 seconds pertain generally to multi-
story structures whose behavior is different from the behavior of.
singie—story structures in many respects, these conclusions are not
'directly applicable .iin this range. The resiponse of multi-story
structures has been investigated(is’ 15,20) for elasto-plastic behavior
and it is of interest td see how interaction can affect the résponse of

these structures. In this connection, the following observations may
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The aﬁciai force and shear force in the columns of a multi-
story structure increase progressively from the top floors
to the bottom floors.

If the vibration of a structure is considered simultaneously
along both principal directions, the interaction between
forces coming from the two directions will occur mostly

in the columns.

In view of these observations it is clear that if interaction

between axial force, shear forces, and bending moments acting at a

~section is considered, the response must have the following character-

istics.

i.

The effect of int.eraction due to axial force and shear force
will increase progressively from top to bo‘ttoni, causing
more yielding in the lower stories.

The possibility of yielding in columns will increase relative

to yielding in girders.

The extent to which such behavior may affect the response of

- multi-story structures needs to be investigated.

5,5 Summary and Conclusions.

- The dynamic response of a simple frame to earthquake type

excitation has been presented. To limit the scope of the study, the

investigation was restricted to frames which have identical properties

along the two principal directions and a circular yield curve for
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‘bending about the principal axes. Usiing the 'equatio‘ns of motion
derived in Chapter II, the response of the frame was obtained for
inelastic interaction between bending moments, acting along the
principal directions of a section. For pﬁrPOSes of comparison the
response was also obtained for elastic and elasto-plastic behavior
and changes in the response due to interaction were discussed. A
series of curves éhowing vai'ious aspects of the response of the

frame were presented for the Taft earthquake and for an ensemble
of artificial earthquakes. The éxisting notions about the inelastic
deéign of structures were examinéd in the light of results presented
.in this thesis and use of response curves for such designs. was pro-

~posed. On the basis 'of these results the following conclusions can
be drawn about the effects of iﬁteraction and their implications for
earthquake engineering: |

1. During earthquakes structures are subjected to general
conditions of 1oading giving rise to inelastic interactions between
forces aéld displacement acting at a section. The theory developeéd
in this thesis mékes it possible to consider the effects of such inter-
acfciozis on the dynamic re;sponse of structures.

2. The essential feature of interaction is the occurrence of
yielding at force-levels lower than the fixed levels for elasto-plastic
behavior without interaction. This causes energy to be removed from
the system by hysteresis before the response has time to build up, |
thus resulting in a smaller and more uniform response.

3. The yielding redtic‘_es the maximum velocity and energy input



—i73-—
_t‘o the systerﬁ and interaction reduces it still furthef. This is of sig=- -
nivficénce fx_'om the point of view of Housner's method of limit design.,
| 4. The interaction has the‘effect of incréasing the values of
ductility ratio and permanent set for structures with natural periods
less than 0,5 seconds., This has a significant influence on the designs
based on these parameters.

5. The concept of ductility ratio can be redefined, as the ratio
of maximum radial displacemeﬁt to the yield displacement, to obtain
better correlation with the plastic strain ratio. The ductility ratio
curves, along with curves for other paraméters » can be used to
design structures in accordance with the current philosophy of earth-

~ quake resistant design. The use of dﬁctility ratio to speéify permis-
_sible plastic deformations is meaningful and convenie‘nt, but has
cé_rtain disadvantages which %nust be‘ kept in mind. |

- 6. The piastic energy ratic can bé usAed as an.alternative to
ductility ratio or as an additional design parameter. It has the
acivantage of representing aggregate yield behavior during én earth-
quake and seems to be a better measure of deteripration during
repeated loading.

7. Extensive experimental and theoretical investigations are
needed to incorporate the possibility of fracture or unstable behavior
due to large plaétic strains, and deterioration of material during
yielding, és a constraint on permissible plastic deformations. in
terms o.'f one or more response parameters.

8. The increase in viscous damping has the effect of reducing
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‘the displ:.icements and velocities and smoothing the response curves.
The interaction has the effect of inc reasing the fraction of the total
energy removed by hyst'ekresis s thu‘s reducing the dependence on
damping to limit the resp@nse. . This is éignificant ;:onsidering the
fact that modern structures possess a.small amount of damping.

9. The discussion in this study was confined to a special
class of structures. This leaves a number of parameters uninvesti-
gated and these may be responsible for some other significant effects
of interaction. Further study is, therefore, needed to investigate the
influence of these parameters.

10. Comparisons of the résponses to the Taft earthquake and
to an ensemble of a‘;rtificial earthquakes show that artificial earth-
quakes can be meahingfully employed to obtain average curves, and
estimates of the reliability of these avera‘ges , well into the nonlinear
range of the response.

11, The results of this sfudy, based on the response of a
single-story frame, show that interaction does not cause a significant
influence on the response of structures with period greater than about
1;0 seconds. This range pertains, nio_stlly, to multi-story structures,
whose response differs from the response of single-story structures
in many respects. Interaction may cause sorhe change in our present
notions about the inelastic response of these structures. This needs to
be investigated.

N

12. In this investigation, the effects _of axial force, shear

force, gravity',(A‘é) and vertical component of ground motion during
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_earthquakes, have not been included in computing the response of

the frame. The region in force-space, where the structure is partly-
elastic and partly-plastic, has been assumed to be elastic. In real
structures a,ll the effects are present and will tend ito increase the
effects of interaction. This must be kept in mind while applying the

results of this investigation,
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APPENDIX I

EXPLANATION OF TERMS

The specific sense in which some of the terms are used in

this thesis is_stated below.

Force - forces and moments.

Displacement - deflections, rotations and curvatures.

Force-displacement pair - a pair formed by a force and the displace-

ment caused by it.

Simple loading conditions - a single force-displacement pair existing

at a section or if more than one force-displacement pairs

" exist, all except one are disregarded.

General loading conditions - more than one force-displacement pair

existing at a section,

Inelastic interaction - influence of forces and displacements acting at

-

a section on yield behavior of the section.

Elastic behavior - linearly elastic force-displacement relationship for

each pair.

Elasto-vplastic behavior - elastic-perfectly-plastic force displacement

relationship for each pair, independent of other pairs.
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‘Elasto-plastic behavior with interaction - a general force-displace-

ment relationship incorporating the effects of inelastic inter-

action between forces and displacements acting at a section.

Damping energy loss - the energy dissipated in structure due to

viscous damping.

Hysteretic energy loss - the energy dissipated in the structure due to

yielding.

System parameter - a parameter representing a property of the

system.,

Response parameter - a parameter representing a property of the

response of a system.

Design parameter - a response parameter used as a criterion for

design.

Taft earthquake - the ground motion recorded at Taft, California

during the earthquake of July 21, 1952,

Artificial earthquake - a sample of a stationary proc'ess with statis-

tical properties similar to those of recorded strong-motion

v , eafthquakes.
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APPENDIX II

YIELD CURVES FOR ELLIPTICAL SECTIONS

‘In Section 3,3 of Chapter III, the equation of the yield curve,
for bending about the principé,l axes of a rectangular section, was
derived by determing the highest lower bound. The same approach
is now used to deternﬁne the equation of the yield curve for elliptical
sections. Symbols used are defined wherever they first appear.

Let us consider an elliptical section shown in Fig. A2.1.

Let the section boundary be defined by
2 .
b2 |

and let Y = X (x) be the equation of the curve separating tensile and
compressive zones., We have to find X (x), which satisfies Eq. 3‘.7
and is such that given ‘Q1 , QZ is maximiséd. 'For‘such X (%),

Eqs. 3.6 define the exact yield curve.. The axial force at the section
'is given by Eq., 3.7. Substituting Eq. 3.6 and carrying out the inte-
gration it can be shown that | »

| a ,-X. ‘ x' ’ |
N = Zay{g yéx -S‘ Zy dx +.5 t X (x) dx} (A2.2")

X1 ~-a "‘XZ

‘Substituting for y from Eq. A2.1 and noting that x4 and x

2 must

satisfy the relations
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. FI1G, A2,1 A SOLID ELLIPTICAL SECTION
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and

Eq. A2,2 reduces to

N = o-y {—xzx(-xz) - xix(xi) - az (sin-1 -él'- - sin”

| %,
+5 X (x) dx
’.XZ

From Eqs. A2.3 and A2.4 it is seen that, if

X (x) = - (-x)

X=X, and Eq. 3.7 is identically satisfied.

X

'3)

(A2.3)

(A2,.4)

(A2.5)

The generalized forces (bending moments) Q; and Q, at the

section are given by Eqs. 3.6. Substituting from Eqs. A2.1 and

A2.4 and simplifying, it can be shown that

4be 3/2

2 *1
Q1 = =2 (a —xi) ; +4oryS" xx (x) dx
: - o

and

2

‘ 1
-, (1t -2

a

To maximize Q\Z, given Q1 , let us define a function

Afx,x ) = x 200 - 2vxx ()

0y o

(A2.6)
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where

v is a constant

Then a necessary condition, for QZ» to be a maximum, is that ¥ (x)

satisfies the Euler's equation

4(2). 2
dx\ox'/ ™~ 9y

"where
X' denotes dy /dx

Substituting for A(x,X) gives

X (x) = ovx | . (a2.7

Substituting Eq. A2.7 in Eqs. A2.6 gives

3

( 4cya b
Q, = — v
t 3(b2+a2v2)2
and | ' ‘ : (A2.8)
| 4wyb3a
Q= - yl

The yield moments for the elliptical sections are given by

. 4 2
Qyi— 30'yab‘
. 4 2
_‘Qyz- 3cyba

“

Dividing Eqs. A2.8 by Qyi and QyZ gives
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a

P = .l v
SRR
and | | | | ' (A2.9)
p, = —s2 |
- L
_ 2 (b2,+azv2.)3

Equation A2.9 is the equation of the yield curve in parametric

form. Eliminating v between Eqs. A2.9 gives
pf + pg = ‘1 ‘ . - (A2.10)

which represents a circle of unit radius in p-space.

Initial Yield Curve

Maximum flexural stress in an elliptical section occurs some-

where on the boundary and is given by

Q1 QZ :
O-=TX+TY (A2°11)
1 2. ’ '
where |
I1 ' is the moment of inertia of the section for bending

along the y-axis

I2 - is the moment of inertia of the section for bending
along the x-axis

Substituting for y from Eq. A2.1 and taking the partial derivative.

with reyspect to x gives

O,bx

where
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01,02 are the ratios Ql/Ii. and QZ/IZ respectively

For o to be maximum, 08¢/8x = 0, which gives

- ;3.201
(a Zof + b20° )a
and ' (A2.12)
b%0,
= 22 2.2
(a O1 +b OZ)
Substituting in Eq. AZ2.11 gives
2,2 22T
O ax = (a O1 +b OZ) | (A2,13)
Yielding begins when o = |o- I and the equation of the initial
max y :
yield curve is given by
5 azQi' szg
o= -~ +
VA 1

Substituting for 11 and IZ and using Eq. AZ2.8 yields

2 ~
2 2 _ 3w '
p1 +p2._ (16) | (A2,14)

which is again a circle with radius 3w/16.
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APPENDIX III

DETAILS OF NUMERICAL COMPUTATION

Integration of Equations of Motion

In the course of this investigation it was neces sary to integrate
numerically Eqgs. 2.36, The integration was carried out on an
IBM 7090 digital computer using a third order Runge-Kutta method

attributed to Heun. (45) For a system of n first order differential |

© equations this method can be written in the following form:

Let the system of differential equations be given by

w=1(7,%) ' (A3.1)
where
u is an n-dimensional vector
T is an n-dimensional vector function
T is related to time by T=ut

Then the Runge-Kutta formulae for the s +1St integration step are

— -—__' i j— a—
ugyg =g Tz (K, T3 K,)
where
R = aTE(r_,T) (A3.2)
K, = AT77Tr7 +—1—A'r) (u +1g )}
i 3 ! 3 7o
K. = A'rf{('r + 2 AT, (@ +2 g )}
v 3 2T T E By

where
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K ,K ’KZ. are n-dimensional vectors

AT is the interval of integration

Equations 2.36 can be written as a system of first order equations

and the above method can be used directly. For elastic and elasto-

plasfic behavior, Eqs. 2.36 represent two uncoupled second order

equations which can be integrated independently. For these cases,

let
u(l) =
and (A3.3)
du,
u(2) = ==
where i=1,2. Egs. 3.6 can then bev.written
For Elastic Rerspon‘se:
a(l) = u(2)
, ( ) ' » (A3.4)
. Wy w, 2
i = () - o) - (2) a0
For Elasto-Plastic Response:
at) = u(2)
oo [ o7
' Z( ) w, 2
a2) = - (- ) (2 )& a(2) i(w—;) (u(1) - u (1))
if p,< 1],

or if p, = [1| and W[ <O

and

(A3.5)
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a(1) = ‘uI(ZA) )

cw, 2 W, '. . 2
a(2) o - (%) __lay_li_ - z(i(:.li_)gium - (%) it

i wP) =g

When interaction is considered Eqgs. 2.36 are coupled and cannot be

integrated independently. For this case, let

u(l) = uy
dui
wl(2) =7
u(3) = uy 7
du, (A3.6)
ul®) = g+
u(s) = P1
u(6) = p,

Equations 3.6 can now be written

For Elasto-Plastic Response with Interaction

u(1) = u(2)
(D)
-k

yi

it

- 2€,u(2) - (1) - u (1))
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and
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u(4) - <5 (a(3) - u (3))
Q .

if @(p,,p,) <

if ®(p,,p,) =1 and wP <0

a(1) = u(2)

B ;:1 (Z’:‘)

a(2) = —-E——l—-- 26, u(2) - u(5)

vi
a(3) = u(4)

a(4) = —:;a(@)- Zf (4)-‘;‘“ .
() e g 2 2wl
{1(ap1) (8) )

L onbR R Mg

{ 1(8191) ai)} ’

if ®(p;,p,)= t and wP=o

(A3.7)
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Equations 2.36 are n‘éw in the same form as Eq. A3.1 and can be
integrated, step by step, by using Eqgs. A3.2. The Runge-Kutta
method was chosen because of its long range stability and its self

starting feature. It has a truncation error of the order of (A’T)4.

Integration Interval AT

The integration interval was determined by the following

equation
At | |
AT = 2= : A3,
N ‘ (A3.8)
where
t denotes time
N is an integer.

For sinusoidal excitation the integration interval was obtained
by setting At = 0,0125 seconds and Nk= 1. Tesvt cases were run
for At =0,00625 seconds and N =1 and it was found that change in
displacement values was less than 1 per cent. Hence At=0.0125
seconds was considered satisfactory. Since it was possible to get
exact solution for the phase angle p equal to 90, the numerical
accuracy and correctness of the computer program was checked by
comparison with exact results. Results of this comparison are shown
in Figs., 4.12 and 4.13. The agreement is considered satisfactory.

For earthqﬁake type excitation, At was taken equal to the
interval of digit‘i\saﬁion of the earthquake. For the Taft earthquake
this valuevis ‘0.02 seéonds and for the artificial earthquakes it is

equal to 0,025 seconds. To determine suitable values of N, a few
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_teét cases were run fbr rTi = T2 = 0.25 seconds with N = 2 and 4,
.It was found that the change in displacement values was less than
3 per cent and in energy values less than 5 per cent for these values
of N. This difference was considered small and .N = 2 was adopted.
For T1 = T‘2 = 0.5 seconds, a :féw test cases were run with N =1
and N = 2 and the differences were found to be of the same order
as in the previous case., Hence, a value of N = 1 was used for

Ti = T2 = 0,5 seconds.

Transitions Between Elastic and Plastic States

From Egs. A3.5 and A3.‘7 it is seen that for elasto-plastic
and elasto-plasti'c behavior with interaction the motion is bdefined by
twb sets of equations. One set applies, when the response is elastic,
and the other when ;1t is plastic. ‘The conditions for transition from
one set to another are given in Eqs. A3.5 and A3.7. In any numeri-
cal procedure it is not possible to satisfy these conditions -exactly
and certain tolerances must be permitted. Invth'is study the following
criteria were used for such transitions:

For Elasto-Plastic Response:

Changé from elastic state to plastic state if 1 = ]pil <1+107%
P )
Change from plastic to elastic state if é—L < - 10"
. - vi
For Ela;sto-Plastic;Response with Interaction:
Change.from elastic state to plastic state if 1 = &(p) <1 + 10-4
, | . . 2WP -4
Change from plastic state to elastic state if SIS <-10
| yi = Ty2
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At each transition, the interval of integration was subdivided

until above tolerances were satisfied.

Evaluation of Energy Integrals

The integrals for energy loss due to damping, Eq. 2.50, were
corﬁputed by Simpson's rule on the IBM 7090 computer. The interval
of integration w‘as the same as in the integration of the equations of
motion., Energy loss due to hysteresis was obtained for each step
- of integration by computing the product AHE = ( Q ,A9P ). The
accuracy of Simpson's rule was checked by a few test runs and was

considered satisfactory.
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