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ABSTRACT

This thesis deals with the problem of how the elements
from a finjte field F of characteristic p are distributed among
the various linear recurrent sequences with a given fixed
characteristic polynomial fe F[x]. The first main result is a
method of extending the so-called ''classical method" for solving
linear recurrences in terms of the roots of f. The main difficulty
is that f might have a root § which occurs with multiplicity
exceeding p-1; this is overcome by replacing the solutions et,
tet, tzet, ..., by the solutions et, (i )et, (g )et, «e. . The
other main result deals with the number N of times a given
element a e F appears in a period of the sequence, and for a # 0,
the result is of the form N = 0 (mod pe), where e is an integer

which depends upon £, but not upon the particular sequence in

question, Several applications of the main results are given,
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I. INTRODUCTION

This thesis is concerned with the problem of how the elements
from a finite field F_ are distributed among the various sequences
which satisfy a fixed linear recurrence relation with characteristic
| polynomial f(x). The space Q(f) of all such sequences is viewed as
a subspace of an e-dimensional vector space over Fq, where e is the
exponent of f; this involves no loss since each sequence in Q(f) is
periodic of period e.

Chapter II presents the necessary preliminary material.
Chapter II extends the so-called "classical method" for solving linear
recurrences in fields of characteristic zero to the case of finite fields.
Theorem 3. 2 gives an explicit (if rather unwieldy) expression for the
tth element St of a sequence which satisfies the given recurrence in
terms of the tth powers of the roots of f in a splitting field. Previous
attempts [10,147 to extend the classical method have met with
difficulty when a root of f occurred with a multiplicity which exceeded
the characteristic of the field; theorem 3.2 overcomes the problem
by replacing the powers ti which occur in the classical solution by the
binomial coefficients (g ) (which are suitably defined for the field Fq.)

Also, theorem 3.2 makes heavy use of the fact that if § is a root of f,
then sois 8 q; this reduces the complexity of the solution considerably,
since there are fewer "independent' roots of f than its degree. Chapter
III concludes with two applications of the main theorem 3.2, K f is an
irreducible polynomial in F , and m is an integer, let ﬂ‘l-1< m < pM.

(%)

to the pM th power, Theorem 3.3 gives a precise description of the

The polynomial f is obtained by raising each of the coefficients of f

M
space Q(fm) in terms of the space Q(f(p )), and extends an earlier



result of Zierler [14], who proved the result in the special case

m = qa. Theorem 3. 4 gives an upper bound on the number of distinct
distributions of elements from Fq which may occur in Q(f), when f
is irreducible, in terms of the number of irreducible factors of a
certain polynomial xE— 1,

Chapter IV, some of which appears in [ 11], is a digression
and contains an explicit (though again somewhat unwieldy) expression
for the so-called "monomial" symmetric functions in terms of the
power-sum symmetric functions, in a field of characteristic zero.
The method used to obtain the result, given in theorem 4. 1, uses the
method of M8bius inversion on a certain lattice of partitions, and may
be of independent interest. A careful analysis shows that theorem 4. 1
may be used to compute symmetric functions of roots of unity in a
field of arbitrary characteristic; this fact, stated in theorem 4. 2, is
used heavily in the proof of theorem 5. 2, the main result of chapter V.

Chapter V is an extension of some of the ideas in [11]; it
presents a combinatorial-algebraic method which appears capable of
completely solving the distribution problem in Q(f), at least in the case
that £ has no repeated roots in a splitting field. Unfortunately, the
difficulties encountered in pushing the method beyond a certain point
are so great that theorem 5. 2 is the best single result it has been
possible to obtain, If N(s;a) represents the number of times a residue
ae Fp occurs in a sequence s ¢ Q(f), theorem 5. 2 gives information of
the type N(s;a) = 0(mod p°®) for a # 0, and N(s;0) = e(mod p%). Here
¢ is an integer which depends upon the fewest number of roots of f
which can be multiplied together to give 1. Theorem 5.2 is a
substantial generalization of the well-known result that if p = 2 and
(x - 1) ¥ £(x), then each sequence s ¢ Q(f) contains an even number of

ones; this result was previously thought to be peculiar to the binary



case; theorem 5. 2 shows that it is not. Theorem 5. 2 frequently

gives enough information about the space Q(f) so that it is

possible to combine it with other information to obtain very

precise information about the distributions which occur in Q(f).

This is illustrated by an example with p = 3, at the end of chapter
V.



II. PRELIMINARIES

Throughout, if F is a field and x an indeterminant, then
we denote by F[x] and F(x), respectively, the ring of polynomials
- with coefficients from F, and the field of rational fractions. We
shall only be dealing with finite fields F, = GF[q] with g = p', p
a prime, and in this case it is possible to identify the field Fq(x)
with the set of all ultimately periodic Laurent series; i.e., the set

. n n+1 . . .
of all expressions of the form a X +a 4X + «s« in which n is

an integer (positive, negative, or zero), a.e Fq’ such that there exist
integers r and t for which a, =a, forall i>t, (Intuitively, in
this representation one obtains the Laurent series corresponding to

a fraction p(x)/ a(x) by actually performing the division.) For details
about this isomorphism, see [14].

If a and b represent either integers or polynomials in F[x],
we write a|b to mean that a divides b, (a, b) for the greatest common
divisor of a and b, and lem(a, b) for the least common multiple of a
and b,

Let a5, 2g,.00,a,, 2 # 0, be n arbitrary elements from Fq’
We shall study sequences of elements s = (SO’ S1s Sgse e .) from Fq

which Satisfy the linear recurrence relation

S, + alst_1»+ ee s, forall t >n. (2.1)

It is clear from (2. 1) that the sequence s is completely

determined by its initial values Sy Sqreves Sy and it follows that

there are qn distinct sequences s which satisfy (2.1). Also, if s and
s' are two sequences which satisfy (2. 1), and a and b are elements

of Fq, the sequence as + bs' = (as; + bsp, as; + bs],... ) will also



satisfy (2. 1), so that the sct of all such scquences may be viewed
as a vector space of dimension n over Fq.
We associate the polynomial (x) = X+ alxn'1 +oeee A

with the linear recurrence (2. 1), and call f(x) the characteristic

- polynomial of the recurrence, The vector space of all sequence
satisfying (2. 1) is denoted by qf(f).

For an arbitrary polynomial p(x) e Fq[x] such that p(0) # 0,
let us define the exponent of f as the least integer e such that
i(x)] x°-1. Then a basic fact [107 about the space qff) is

Theorem 2. 1: All sequences which satisfy (2. 1) are periodic; i.e.,
for each s e Qff), there is an integer ¢ such that St = S, for all t.
Furthermore, if the characteristic polynomial f(x) has exponent e,
then every sequence in Q(f) has period e, and some have no shorter
period.

In view of theorem 2,1, it is natural to regard the sequences
in Q(f) as finite sequences of length e: s = (SO’ Sqs eees Sg. 1), and
the space Q(f) itself as an n-dimensional subspace of the space of all
possible e-tuples from Fq. We shall call e the block length of qf(f).

One of the results we shall require is the theory of the

factoriZation of the polynomial x° -1 in Fq[x] . The results given
below are implicit in the books by Albert [1] and Dickson [3], for
example, but the point of view we wish to emphasize is sufficiently
unusual to merit a somewhat detailed discussion, We will not,
however, attempt to prove each statement made.

In factoring x° - 1, we assume with no loss of generality
that (e,q) = 1, for if e = e g with (eo,q) = 1, then x -1

€

0
m

- 1) . The splitting field for x° -1 is GF[qn], where n is

the least integer such that q" z 1{mod o).

= (x



Lemma 2,1: I f¢ F [x] has 6 as a root in some splitting field,
then 62 is also a root
In the field GF [qn] , the roots of x° - 1 will be powers of a
primitive element 8§ of multiplicative order e; i.e,, the roots are
2 e-1
1’ e , e , LI N , e

f will have as one of its roots some power of §; let us say £(6%) =0

. I f(x) is an irreducible factor of x° - 1, then

By lemma 2.2, f will also have as roots the powers &% , eccq’
m-1
p%d , where m is the least integer such that

ocqm = a{mod €). Conversely, the elementary symmetric functions
m-1

of the set (6%, &% q’ . 8%% ) are fixed by the Galois group of

GF ['qn] over GF[q], which is generated by the automorphism
q m-1

, so that the polynomial whose roots are (6%, %% ..., %% )

LI}

X - X
is in fact an element of F [x] This polynomial is then an irreducible
divisor of x° - 1 of degree m. f turns out to be of exponent e if and
only if (q,€) = 1.

In this way we see that the question of the number of
irreducible factors of any degree of x° - 1 can be answered in an
elementary fashion: given e and ¢, we permute the residues modulo
e by the mapping k - kg (mod e). From the cycle structure of this
permutation one reads off the number of irreducible factors of each
degree. For example, let q =3 and e = 20; the cycles are
(0)(1,3,9,7)(2,6,18,14)(4, 12, 16, 8)(5, 15)(10)(11, 13,19, 17), Con-
sequently XZO - 1 has 7 irreducible factors in F3; two of degree
.one (these are naturally x+ 1 and x - 1) one of degree two, and four
of degree four. The cycles (1,3,9,7) and (11, 13, 19, 17) exhaust the
residues prime to 20, and correspond to the two irreducibles of degree
four and exponent 20,
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It is clear that, conversely, given an exponent e, the
degree n of an irreducible factor of x° - 1 which is of exponent
e is uniquely determined as the exponent to which ¢ belongs modulo
e, so that there are o{e)/n such factors.

Finally, we present three miscellaneous elementary number-
theoretic results which will be needed in the proof of theorem 5. 2,
below,

Suppose p is a prime, n an integer > 1. We write n in its

unique p-ary expansion, n= g nkpk, where 0 < n <P, and of
k>0

course only finitely many of the n, are different from zero., Similarly

m= T m

pk
k>0 k

Definitions: Vp(n) = the "p-ary weight" of n= % =n.. I r isany
k>0
rational integer, write r = pt . & where (a,p) = (b,p) = 1. Then

b
t= p.p(r).

Theorem 2, 2: (Legendre; see Dickson [ 3 ; chapter IX].)

wh) = G- W)

Theorem 2, 3: (Lucas; see Dickson [ 3 ; chapter IX],)

) 0 (2‘
k>0 k

( ) (mod p) .

n
m

Lemma 2.2: If R is a finite set of rationals, £ r =38, then
re R
Mp(s) > min {up(r): re R} )



Proof: Obvious.

Throughout, if x is a finite set | x| denotes the number
of elements in x. I r is a real number, [r] = the greatest integer

< r; i,e., [r] is the unique integer n which satisfies r-1<n< r,



I, THE "CLASSICAL METHOD"

Let f(x) = ™ + a,lxn_1 + ... +a_ be a polynomial in F [X]
of degree n and exponent e, Let (f(x)) be the principal ideal 1n
Fq [x] generated by f(x), and denote the quotient ring Fq[x 1/¢(x)

| by Rf. Then f(x) will have a ""root" 8§ in Rf; i.e., an element of
Rf with 8% = 1 and such that the powers 1, 9, ez, coey en'l are

linearly independent aver Fq. With each element xe Rf we shall

associate an ordered generalized coset of the multiplicative sub-

group T={1, 8, 02, cees Be—T}

as follows:

X - {x, X8, vuuy xee-l} =xT.

(These are not cosets in the ordinary sense since there can be fewer
than e distinct elements in xT; indeed, unless f(x) is irreducible,
it will always be possible to find x # 0 with [xT | < e.)

Viewing R, as an n-dimensional vector space over Fq, we

f

choose a linear functional t of Rf over Fq. (That is, t is an Fq—

onto Fq.) With the aid of t, it is possible

linear mapping from R

f
to a sequence of elements from Fq with each element x ¢ Rf:

x - XT - (t(x), t(x6),..., tx6% 1) = s() . (3.1)

Theorem 3. 1: The set of sequences (3. 1) is identical with the solution

space Qff).

Remark: Theorem 3.1 is a very minor generalization of the "secondary
¢ and q(f) given by Hall [5]. The only
difference is that Hall proved theorem 3.1 for a particular linear

isomorphism' between R

functional t.
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Proof of theorem 3.1: First let us show that for each xe Rf, the

sequence s(x) given by (3. 1) satisfies the appropriate linear
recurrence. In R , 1(s) = 0 and so

n n -
e +ale +"'+an 0.

Multiplying this expression by e‘kx and operating with t, we obtain

n+k n+k- 1)

t(xs + alt(e dree 4 ant(xek) =
which is the statement that s(x) satisfies the recurrence with
characteristic polynomial f,

Conversely, since IR | = la)| = q", if we show that the
sequences s(x) are all distinct we will have also shown that every
sequence in Q(f) musf occur as s(x) for some xe¢ R;. We therefore
assume by way of contradiction that s(y) = s(z) for some y # z. K
welet x=y-2z, s(x)=(0, 0, ..., 0) or equivalently t(Xej.) = 0,
i=0,1, ..., e -1, This means that the elements y; = x6" are all
in the nullspace of t, which has dimension n - 1, so that the elements
Ygr V1o ++» Yp_q 2T€ linearly dependent, i.e., for certain b € Fq
it is true that £ b, i~ 0, so that x% ble = 0, which contradmts the
fact that the set {1, 9, e2
Hence s(y) = s(z) implies y = z and so the sequences s(x) are all

y ees, 801 } is linearly independent.
distinct. This completes the proof of theorem 3.1,
Corollary 3. 1: I f is an irreducible polynomial, then Rf is isomorphic

with the finite field GF[q"]. In this case for each s caff) it is
possible to find an element x ¢ GF[qn] such that for all t > O,
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St=xet+xqeqt+-..+xq pd %, (3.2)

Proof: It is of course one of the fundamental facts about finite fields
that Fq[x]/(f(x)) = GF[qn] when f is irreducible of degree n.

~ The corollary follows from theorem 3.1 if we choose the linear
functional t to be the trace of Gthn] over GF[q]; i.e., for

xe GF[a"], Tr®) =x+ x3+ ... + x0® L, (And in fact it is not
difficult to prove that every linear functional t of GF [qn] over GF[q]
may be written as t(x) = Tr(ax) for some a e GF[q"]; so that there
is no loss in replacing t by Tr in this case.)

n-1

Since by lemma 2,1, the roots of { are 8, eq, eer, 89 ,

(3. 2) is an expression for s, in terms of the tth powers of the roots

t
of f; and in this way (3. 2) resembles the classical method of

representing s It is therefore possible to view theorem 3.1as a

generalization Jcc>f the classgical method to the case of finite fields, in
which the "roots" of f are thought of as lying in the ring Rf. In
some sense, however, the most nalural place Lo look for the roots
of f is in the splitting field for f. In the pages to follow, a
generalization of (3. 2) will be given for arbitrary polynomials f,
in which the basic algebraic structure is indeed the splitting field
for f. The price we shall have to pay for this is a great deal of
increased complexity of the solution. The following discussion
follows the classical method as given in Hall [6], as closely as
possible, under the circumstances.

With a sequence s = (so, s Sgyee .) which satisfies a
linear recurrence with characteristic polynomial f, and which is

considered to be infinite even though we know it is periodic, we

associate a formal power series; i.e., an element of Fq(x), as

follows:
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s - s(x) = z skxk . (3.3)
k=0

s(x) is called the generating function for s. (No confugion should

~arise because the same symbol s(x) was used in theorem 3. 1; the
notation s(x) in (3. 3) is only temporary and will be abandoned
shortly.) We emphasize that the series s(x) is to be viewed as
an element of Fq(x), and that it is meaningless to ask questions
about the "convergence" of (3.3). (3. 3) gives a representation of
s(x) as a Laurent series; our first step will be to express s(x) as
a corresponding rational fraction,

Define f*(x) = anxn ta, lxn_1 + s+ + 1, so that
*(x) = x‘nf(-}—lc ). Now let us form the Cauchy product of s(x) and
f*(x) in Fq(x):

k

s@eE = ¥ x° Y as a1, (3.4)

k=0 j;O 2, = 0, k= n,

For k > n, the coefficient of xk in (3. 4) vanishes because of the

recurrence relation
+a 4+ eee + 3
Sp+ 2451

S
nt-n’

so that

s(x)f*(x) = c(x), (3.5)
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with c¢(x) a polynomial of degree < n-1 in Fq[x]. (3. 5) is the
required expression for s(x) as a rational fraction. We suppose
that f(x) has the following factorization into irreducible factors
in F :

in q[x]

m m
- 1 @) (3.6)
k=1

where degree (fk) = dk and so n = gd m,. It follows from (3.6) and

the definition of f* that

k'

P = 1 (fk*(x))mk.
k=1

Then according to a generalized version of "partial fraction"
decomposition [12, p.88], we may use (3. 5) to express s(x)

uniquely in the following way:

m

s) = ) =,
k=1 (*(x) ©

(
% 3.7)

where each polynomial Ck(x) is of degree < d, m, .
Let us examine more closely expressions of the form

c(x)

"0
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where f(x) is irreducible over F_ and degree (c(x)) < mn,
n = degree (f). ¥ K is a splitting field for {, then |K:F| =n,
and if 6 is one root of f, then by lemma 2. 1, the olher roots

9 -
a4 .q n-1

are 875,87 , veey eq . We assume that £ has exponent e, so

that 8 will have multiplicative order e. In the field K(x), f(x)
‘factors completely as a product of linear factors, and so also does
%, so that it is possible to further decompose o(x) into partial

fractions in K(x), as follows:

n-1m

o(x) = 3" L ,_________ , (3.8)
k=0 j=1 (1- eq )

A

where the akj are uniquely determined elements of K. The field
K(x) admits an automorphism A which is induced by the auto-
morphism A*:y - y? of K itself; i.e., if an element p(x) ¢ K(x)

has the rational fraction representation

Zaix1
p(X) = 7
Tb.X
]
then
}“_Ja.iqxi
A. : = .
o(x) Zb 0]

Clearly the fixed field of A is Fq(x), and since o(x) e Fq(x),
it follows from (3. 8) that
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n-1 m kel
o@=y ) of/0-e% B,
k=0 j=1

and since the coefficients in (3, 8) are unique, we see that G +1, ] q% i
~(Subscripts reduced modulo n if necessary.) Therefore there are m

k
elements from K, say ay, ag, -+, a,, suchthat a, j=a§1 , so that
-]

n-1 m Kk
c®=Y )a q/(1 0% ) | (3.9)
k—O j=1

We pause for a brief degression. Consider the fraction
(1 +ax) ™ as an element of F (x) ae F,q We wish to find the
Laurent series corresponding to 1+ ax) , and of course the

natural thing to do is use the binomial theorem (1 + ax)~ m_ v (" K )a x .
k>0
This is in fact valid, but one has to exercise a certain amount of care

in defining the "binomial coefficients' ( lr; ). The most natural way of
defining them from our point of view is by way of the recursion
( ) = ( ) (ﬁj ), along with the boundary conditions ( g ) =1,

(2 0 )= (2 I ) =1 for n # 0. (Of course these binomial coefficients
are the usual ones reduced modulo p, the characteristic of Fq.) The
recursive definition allows the usual proof of the binomial theorem to
be applied - one uses induction on m, and in F (x) there are no
convergence problems to complicate the 51tuat10n

~ Thus let us expand the term (1 - eqk %)™ which occurs in
(3. 9) by the binomial theorem:
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k. . k
@-e007=5 (ke »°
t> 0

k
y (Nt %" . (3.10)
t>0

Combining (3. 9) and (3. 10) we obtain the following Laurent
series for o(x):

n-1

o(x) = z <t Z

t> k=0 j

. k k
(J’?l) cx;.l dt (3.11)

1 '
HL\’J =]

The coefficient of x* in (3.11) may be written as

n-1 m k

YTt aet)

k=0 j=1

it
T ~18

m .
-1, £y _ £ jet-1
Y Te{(F e} =Te{e ) (" Day)s (3.12)
1 =1 '

n-1 n
where as before Tr(x) =x+ x4+ eee + 52 in GF[q ].

It is poussible to put (3, 12) into slighily more palatable form
as follows: the identity '

j+t iyt
(=76 )

1
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means that

1

m-1 -

m
(e =
j=0 =0

a; Y (1 (1)
i

m-1

=V T eth=3 Gy
i j=0 i

where ¥ =% a].( i ). Consequently the coefficient of < in (3. 11) may
be written as

m-1
st=Tr{et ZO (;)Yj}. (3. 13)
. j=

(3. 13) represents the general term of the sequence
S = (SO’ Sqs eees S e..) Of Q(fm), where f is irreducible, In
the classical case, the expression (3. 13) would be replaced by

n m-1
_ T it
8¢ = 2 Z akjt By - (3.14)
k=1 j=0

In 3. 14, the elements 8, are the distinct roots of f; the
fact that the roots of £ in the case under consideration are all powers
of a single one is reflected in the fact that the outer sum in (3. 14) is

replaced by the Lrace in (3.13). The really crucial dilference belween
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the two expressions, however, is that the powers tj in (3, 14) have
been replaced by what we might call the "binomial functions" ( ; )
in (3.13). The essential reason why no expression of the form

(3. 14) can represent every se Q(f) is that the set of functions

{1, t, t2, ooy t 1} may fail to be independent in Fq, so that

- the dimension of the space of all sequences of the form (3, 14) will
be less than the dimension of the space a(™). (For example

t? =t in GF[ qn] .) However, the binomial functions (; ) are
independent over any fieldl; for let us take 6 =1 in (3,13). Then

f(x) = x - 1, and if there were a linear dependence among the
t

m-1
from Fp, then the space of all sequences of the form (3, 13) would

binomial functions (é ), (g ), (; )y eeey ( } with coefficients
have dimension strictly less than m; but we have proved that every
sequence in a@™) is of the form (3. 13), so no linear dependence is
possible. (Of course a linear dependence in a larger field implies
a linear dependence in F p.)

Let us extend (3, 13) to the more general case where f(x)
has the factorization given by (3.6). I is clear how to proceed,
since at the carlicst stage (3.7), s(x) was decomposed into partial
fractions whose denominators were irreducible powers. We simply
observe that in a splitting field for f(x), say GF[qd] ,d=1c.m,
(dl’ Aoy wees dm), it is always possible to find a primitive element
8 of multiplicative order e' = 1. c.m. (el, gy eery em) where e,

is the exponent of fi’ and integers bl’ b2, consy bm, such that

! Although the fact shall not concern us here, it is possible to extend
the classical method to arbitrary (not necessarily finite) fields of
characteristic p. Naturally we could in general lose the fact that the
roots are powers of each other, but the binomial functions would
enable us to handle multiple roots with no difficulty.
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b. d.
o ! is a root of fi in GF[q . Combining these remarks with the

expressions (3.7) and (3. 13), we obtain

m m
Theorem 3,2: Let fe F [x] have the factorization f(x) = 1 (fk(x)) 1‘,
k=1

- with each fk irreducible of degree d Then if GF[qd] is a

splitting field for f, there is a pr1m1t1ve element 6 ¢ GF[q ] and
b
integers by, b,, ..., b__ such that £ (8 )= 0. Furthermore, for
1 72 ? "m k d
any sequence s ¢ Q(f) it is possible to find elements y%l) e GF[q ']

i=1,2, ..., m j=0,1, ..., m, - 1 such that for each t = 0,

m.-1
m bt @
_ (@, 1 oty (@
s= ) Tro{et ) Gyt
i=1 =0
W %
where Tr'” is the trace on GF[q "] over Fq; i.e.,
d.-1
. i
Tr(l)(x)=x+ 34 4 x4

We emphasize once more that theorem 3. 2 is most
valuable when f(x) has multiple roots; indeed, results essentially
equivalent to theorem 3. 2 are known when f is squarefree [8],
or if f', the formal derivative of f, is squarefree [14].

As an application of some of these ideas, let us return
to the case of a power of an irreducible polynomial f(x) of degree
n, exponent e. Our goal is to give a relationship between the
solution spaces Q(f™) and Q). In view of (3.13), it will plainly
be helpful to know the propertles of the sequence (r ) whose
general term is r, = ( ) for a fixed integer r. In this case the

generating function for (rt) is
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= Y (D)xf=x" Y (FThy

/. T
t> 0 t>0
r t, -(r+1), t xr
Tx 2 SEMGRRE T+1 °
t=0 (1-x%)

If the sequence (rt) is to be periodic of period n, it must be
true that (1-x)r+1 | (l-xn), since the Laurent series corresponding

to 1/ (1-xn) is 1+x" + X2n + +«« , Suppose therefore that n = nOpf
with (no, p) = 1. Then

f f
n,p f f (1r10 -1)p

T-1-x =(1—xp)(1+X2p+---+x

1-x

- 1- 2 oW ,
where Q(1) =ng # 0, sothat (1- x)™*1|1- = i and only if
r+1< pe. Therefore the sequence (rt) of binomial coefficients
is periodic of period pe, where e is the least integer such that
r+1lc< pe, and (rt) is not periodic for any smaller value,
We wish to apply the preceding remarks to formula (3. 13),

which involves the binomial coefficients ( E ), ( tl ) P mt-l)'

Hence if u is the unique integer which satisfies p“'1 <m<p",
then each of the binomial coefficients will be constant on residue
classes (mod p*).

Let b= p“. We perform an operation, called decimation

by b, on a sequence defined by (3, 13), as follows: define b new
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sequences (st(i)) i=1,2, ..., b

(1) _
St T St+1

i.e,, the sequence (st(l)) is formed from (St) by taking only those
terms whose subscripts lie in the residue class containing i (mod b).

Then from (3. 13),

. . m-l -
St(1)=TI‘{el(eb)t Z (btj+1)Yj}
j=0

=1 {o'") Y (Dyy)}

since we have seen that ( bt;' 1y = ; ) in F o (Of course the above

calculations are performed in GF[qgll], a splitting field for £(x).)

Continuing,
m-1
(1) _ i byt . _ i
s, =Tr{e's;(6)}, with 8, = z (v - (3. 15)
s

Formula (3. 15) resembles the formula for a sequence from

q(f), with one exception: the root 6 is replaced by eb in (3. 15).
But this anomaly is easily understood: in GF[qn] , the minimum

polynomial for eb is f(b), the polynomial formed from f by raising

each coefficient of f to the bth power. (Recall b= p” so that
f(b)(eb) = (i‘(e))b = 0.) Hence (3.15) represents a sequence from



22

Q(f(b) ), rather than one from q(f) itself. (Of course if q = p’ and

rlu, £=£9)) Thus according to the definition of the sequences

(1
t
sequences from Q(f(b)). But it does not follow that given any

collection of b sequences from Q(f(b) ) it is possible to interleave
~ them and obtain a sequence from o(f"). Indeed, there are qnb
sequences which may be formed by interleaving sequences from
Q(f(b)), but only g™ sequences in Q(™). We shall now derive
a relationship among the field elements By which appear in (3. 15)

which is both necessary and sufficient to ensure that the sequences

s, , the sequence ste a(™) is formed by interleaving certain

st(l) may be interleaved to be obtained a sequence, viz,
m
k,m _
Y OF ()8, =0 T20. (3.16)
k=0

For proof we present the following calculations., For
simplicity we omit limits of summation, it being understood that

undefined summands are all zero:

' k % k k
Y EDS (e =Y CDF () (v by (3.15)
K, j

= Y OOy = T OGN -

i,j,k i),k

The sum on k is
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2(_1)1‘ (oh =Y e (B) - "Z(—1)m'k (™)
k k

=(1_1)m—i___0 for i<m,

Thus the Bi's themselves satisfy a linear recurrence
relation (3. 16) with characteristic polynomial (x - 1)™. Conversely,
given any set of g's which satisfy (3. 16), it is possible to recover
the Y's and obtain an element of Q(fm) by interlacing the corre-

),

for the B's, but an easier way is to observe that there are qnm

sponding S, This can be done by inverting the formula (3. 15)

possible selections for the g's subject to (3. 16), and this is
precisely the number of elements in ot™). We summarize these

results in a theorem:

Theorem 3.3: If f(x) is irreducible of degree n, then every

sequence in Q(fm) may be obtained by "'interleaving'" b sequences
from 0 (f(b)). Here b = p* is the unique power of p such that
p“—:1 <m< p . Furthermore, asetof b sequences Sy &)
i=1, 2, ..., b which correspond to the elements 6" B in GF[q ]
(with £(p) = 0) in the isomorphism between Q(f( )) and GF[q ]
may be interleaved to form a sequence from a(™) if and only if
the sequence (BO, Bys oo . ) satisfies the linear rccurrence over
GF[ q 1 whose characteristic polynomial is (x - 1)

Theorem 3, 3 is known in the special case that m = qc
for some integer ¢ [14, lemma 12], Of course in this case
f(b) =f and b = m, so that there is no relation imposed upon the

g8's.
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We present another application of theorem 3. 2 which involves
the nation of decimationand is of interest. We assume for the
following discussion that f(x) is an irreducible polynomial of degree
n in Fq[x], and that £ belongs to exponent e, eE = qn - 1.

It frequently happens that one is interested only in knowing
the way in which the residue from Fq are distributed among the
various sequences in Q(f). From this point of view, a complete
knowledge of Q(f) will consist of a list of distributions which occur
in Q(f), along with their multiplicities; in such a case there will of

course be no need to distinguish between a sequence s = (SD,

Siyeeey
Se-l) and one of its translates, say (Sk’ Spi1r ***2 Se1r S 1. ces
Sie. 1). We therefore (ignoring the all-zero sequence) view Q(f) not

as a collection of qn-l sequences, but rather as a collection of

(qn- 1)/e = E cycles. (A cycle is nothing but a sequence whose
starting point is considered irrelevant.) It is well known [ 107 that
when {f is irreducible, no sequence from Q(f) except the all-zero
sequence has a period which is shorter than e, so that for each
sequence s, all of its e translates are distinct. In terms of the
isomorphism provided by corollary 3.1, this point of view amounts

.= GF[ a1 as indistinguishable if

they are in the same coset of the subgroup T = {1, 0, 62, cees ee-l}.
The question about the distributions which occur in Q(f) can be

to regarding two elements of R

rephrased as follows:

"How are the values of the trace distributed among (3.17)
the cosets of T?" °
We shall be able to simplify question (3. 17) somewhat by
exhibiting a trace-preserving automorphism of GF[ qn] which

permutes the cosets of T; viz, the automorphism ¢: x - xL To
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show that this automorphism does in fact permute the cosets,
suppose that xy_l = " for some r;i.e., that x and y are in the
same coset of T. Then x% %= (xy 1)q = p"%¢ T. Therefore
the set X of cosets of T admits a cyclic permutation group

A= {1, Oy ooos an"l} . Clearly two cosets in the same orbit

- of X under A will have the same distribution of trace values,
since Tr(x) = Tr(x%).

Theorem 3, 4: The number of orbits of X under the action of A

is the same as the number of irreducible factors of XE-I in Fq[x] .
Proof: Choosc | as a primitive root for GF[qn] such that 6 = q:E,
sothat T = {1, ﬂ;E, ¢2E, caes w(e-l)E}. It is clear that the coset
of T to which an element u° belongs is determined by the value of
s modulo E, Thusif x= ¢S is taken as a coset representative of
Tx, the successive images of Tx under q are Tﬂ;s, T Sq, cees

so that the number of cosets in the orbit of Tx is the least integer
m such that sqm = s (mod E). But the process of mapping the

residues modulo E into themselves by x - x3

is exactly the process
described in chapter 1 for determining the number of irreducible

factors of XE—l. This proves theorem 3. 4.

Corollary 3.2: The number of distinct distributions which occur in

a(f) is less than or equal to the number of irreducible factors of
xE-l.

Corollary 3.2 is sometimes very accurate in giving the
number of distributions in Q(f), but usually not. I is possible,

however, to formulate an amusing converse to corollary 3, 2 which
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will provide us with a large number of polynomials for which the
bound is quite good,

Theorem 3,5: For any integer E such that (E,q) = 1, there are

infinitely many irreducible polynomials ft with dcgrees n, and

t
~ exponents € such that etE = qnt-l.

Proof: Suppose ¢ is the exponent to which g belongs modulo E.

For each t > 1, let e

for each exponent e prime to ¢, there is at least one polynomial f

= % (@®-1). As pointed out in chapter II,

of exponent e, and the degree of f is the exponent to which ¢ belongs
modulo e, For each t, we let ft be one such polynomial (i.e., with
exponent et),‘ and we shall show that with the possible exception of

t=1, each f, has degree n = ot. Since qcPt = 1 (mod E), it
follows that nt| pt. But since

n ot_ _
(a t_l)/‘l_E__l -g. -1

n
it follows that (qcPt- 1)/(q t 1) must be a divisor of E and therefore

< E. Butfor t> 2, and n, < ot,

t
et 4 pt-n, o5

a contradiction. (For t = 1, there may or may not be an exception,

This is illustrated by q = 2, E = 5 in which case t =1 is exceptional,
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and E = 11 for which t =1 is nol exceptional.) This completes
the proof of theorem 3. 5.

Corollary 3. 2 gives most information when E is such
that XE—I has few factors; an especially interesting case is when
-1 has only the two irreducible factors x - 1 and 1 B2
-+ eee + x4+ 1; it follows from the remarks in chapter 1 that this
will be the case if and only if E is a prime for which q is a

primitive root; so that with the aid of theorem 3.5 and a list of

the primes for which q is a primitive root it is possible to find

a very large number of irreducible polynomials f such that Q(f)
containg only two (non-zero) distinct distributions, In these cases
it is usually possible to determine the distributions exactly; for
an example see the end of chapter IV,
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IV. A THEOREM ON SYMMETRIC FUNCTIONS

This chapter does not deal directly with linear recurrence
relations but presents certain results which will be needed in
chapter V. Some of these results appear in [11],

Consider the algebra of all symmetric ""polynomials" in a
countably infinite set of variables X1s Xgy eees with coefficients in
a field . Of course by "polynomial" we mean merely that the
functions in question are formal sums of monomials
X?: X?zz eo x?: ; such functions, being symmetric, must all have
infinitely many terms. We shall frequently make statements such
as "the symmetric function of (yl, Yor eoes yn)". This should be
interpreted to mean 'the symmetric function of (Xl’ X5 - - .) with

-~ et e :".0”.

the substitution Xy T Vs ooes Xy =V X 1 %X o
If An is the space of all symmetric polynomials which arc
homogeneous of degree n, then it is known that a basis for An will

be formed by the monomial symmetric functions k)\ defined by

I3 A A
- 1 "2 r
k)\ = [)\.1, )\.2,00., )\.r] - z Xl Xz LI Xr ’ (40 1)
sym

where % = (g, Aoy vevy ) ,) is any partition of the integer n (i.e.,
the 1.'s are positive integers and IR D n), and by the
usual convention, the sum on the right-hand side of (4.1) is taken
over all distinct monomials which can be obtained from the one
actually written by permutations of the variables (Xl’ Xgy oo ).
When no confusion will arise, the abbreviation ""sym'' on symmetric
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sums of the form (4, 1) will be omitted. As an example, let n =6
and ) = (4, 2, 2). The symmetric function k)\ of the variables
Rqs Koy Xgy Ky is given by

_ 422 422 422
kx—[4, 2, 2]_X1X2X3+X1X2X4+xlx3x4
L A22, 422 4202

Xg Xy g+ Xg Xy Xy + X9 Xg Xy
--I-X4X2X2+X4X2X2+X4:X2X2

3 Xy Xg+ X3 Xy Xy + X3 X %y

Lk 22,422 4020

Xy Xy Xg + Xy Xy Xg T Xy X9 X3 -

I repetitions occur among the integers his Mgy sees it

is customary to write

v=(1 2 %3 %) (4.2)

which means that the partition ) involves m, ones, my twos,
etc. Thus we write (22 4) in place of (4, 2, 2).

Besides the k)\ 's, there are several other important bases
for An; we present here only the two which will concern us in the

applications:

(1). The elementary symmetric functions a, are the
.. m. . . _ . s
functions [17]; i.e., a_ =T XX, X, For a partition
A= (7\1, N ...) of n write a, = a)\l a)\2 +++ ., The fact that
the a, form a basis for AI1 is called the Fundamental Theorem on

A
Symmetric Functions., [ 12, p. 78],
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(2). The power sum symmetric functions s m are the
functions [m17; i.e., S = z Xxln. For a partition ) = ()‘1’ Ao
cee xr) of n write Sy = s}\1 s.}\2 cee S)‘r. The functions s,
form a basis for An whenever F has characteristic zero.

The important difference between the bases '{a)\} and

{sx} of An when F has characteristic zero is that the {a)\} form

an integral basis for A _ relative to the basis {kx}" while the {s)\}

do not. Thus a symmetric function which has integral coefficients
when expressed in terms of the k)\ 's will also have integral
coefficients when expressed in terms of the a, 's, but this will not
necessarily be the case when the function is expressed in terms of
the s, 's. It is for this reason that the s, 's cannot form a basis
for A.n when F has characteristic p > 0; indeed slf = sp in such
a field, so that the set {Sx} is not linearly independent, 1

The aim of this chapter is to express the functions kx in
terms of the functions Sy in the case that F has characteristic
zero, Surprisingly, it will be possible to apply this result under
certaln special circumstances to fields of prime characteristic.

Let us fix ) and n for the rest of the chapter, with
L=y Moy oee ’v)‘r) and with multiplicities m, as given in (4.2).
We define a new function h)\ of the variables (xl, Xgy oo .) as follows:

1 What is not difficult to show is that when the field F has
characteristic p, the dimension of the subspace of A_ spanned
by {s X} is exactly the number of partitions of n in * which

each summand is < p - 1.
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A A X

1 72 r
-— 1 =1 . o0

hx (IiI m, ! )k)\ E X X X, (4. 3)

sym(*)

where the summation "sym(*)" is extended over all r1 monomials

- obtainable from the one actually written by permutations of the
variables (1, 2, ..., r). Of course (4. 3) follows since each

distinct monomaial appearing in the sum k oceurs Hm ! times

in the sum h Another way to look at (4. 3) is to regard the integers

(xl, Ngs «- x ) to be formally distinct; perhaps one could "label"
two identical mtegers with subscripts. For example (2 4) becomes
(21 , 22, 4). From this point of view th)? function h)\ is no different
from k)\, since now every monomial Xlll 122 xi);r is distinguisha-
ble from every other,

Now consider the set P)\ of all partitions of the set

A= {X 17 Aoy ee e )‘r}’ regarding the Ay asa set of formally
distinct symbols., (It will always be clear whether we are viewing

A as a collection of integers or as a set of symbols, so that we need
not formally distinguish these logical differences.) A partition m of
the set P \ is a way to write Px as a disjoint union of subsets Bk’
called blocks:

mLA= U Bk , (4. 4)

with Bi'r\Bj =@ if i#j and Bk% @ for all k, 4 is called the
length of the partition r.
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It is possible to introduce a partial order "> " on P}\ in

such a way that P)\ becomes a lattice: if ¢ and m' are both
partitions of ), write m > n' if and only if every block of = is
a subset of some block of n'; Le., m>n'if i is a refinement
of m'. It is easy to show [9] that under this partial ordering, P N
- becomes a lattice with top element (maximal with respect to >) t,
where t is the partition {x 1} {x 2} {x r}.

With each element 1 ¢ P)\ , given by (4.4), we recall that
the elements of ) are really integers and define, for each k=1,

2, .cb,&

By = z Ne . | (4.5)

We now associate with m two symmetric polynomials in
and g(m) =h

(Xl’ X5 o .); they are f(rn) = hslhsz . hBL’ 8’
where g = (Bl’ Bos +oes B &) is the partition of n given by (4. 5),
and the functions h are given by (4.3). For example, if

h = {hgs hg hgo Ago A5} and w38 {ng, 2y Ay} {095 2} {25}, then

f(r) =h h h and
At Agt Ay x2+x6 )‘5’

g(n)=h .
M F At g gt hgs Mg

The following lemma is the crux of the matter:
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Lemma 4.1: f(m)= ) gln")

n'<m

Proof: By definition,

g . B B
(= (Y 5 (T 52 (V)

where the sums are symmetric by the convention (4. 1). We expand
this as

. B B 3
f(n) = lell Xi: Xi{' , (4.6)
A

and this sum is extended over all possible monomials obtainable by
selection of £ of the variables x;, X5, ... . We do not require
that the subscripts 11, 12, ceey 1 N be distinct.

Let B= {Bl, BZ’ coes B£}, and to each monomial which
occurs in the summation (4. 6) we assign a partition of B as follows:
BS and Bt are to be in the same block of the partition if and only if
is = it. We call two such monomials equivalent if they induce the
same partition of B, Now to each equivalence class of monomials
there corresponds in a natural way a partmon m'e P with ' < m;
i.e., to a partition of B such as {B , }{B], ],}
we associate the following partition of A {Bilu Bizu .o }

{leu szu ree } «++ , It is clear that the sum of the monomials

of (4.6) which belong to a fixed equivalence class is a g(rr') for some
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m' <, and conversely, given any n' < there is an equivalence
class corresponding to ' which contributes g(rr') to (4.6). This
completes the proof of lemma 4. 1. v

In view of lemma 4.1, it is now possible to apply Mtbius

inversion on the lattice P)\ in order to calculate the functions g(m):

gm) = ) wli) (4.7

n'<m

where p(r') is the Mbius function associated with P)\. (For
details about M8bius inversion on a lattice, see [9].) In particular,
we apply (4.7) with ¢ = t, the top element of P)x’ and obtain

hy =e®= ) uli). | (4.8)
n'e:P)\

(4. 8) is almost an explicit expression for h)\ in terms of the power-
sum functions f(r); all that lacks is the function u(m) for the
lattice. Fortunately this function has already been calculated [9];
if the partition n is given by (4.4), and if | B, | = by > 0, then

4
wm) = ()7* R (4.9)

We combine these reSults in a theorem:

my My
Theorem 4.1: If ) = (1 2 “ ... ) is a partition of n, then in a

field F of characteristic zero,
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k=i Y R

v mm.! /,
1 e P
€A

with the M8bius function u given by (4. 9).
The cases r =1 and r = 2 of theorem 4. 1 appear in
- MacMahon [ 7, p. 7], where, however, he dismisses the results
with the remark "In actual practice there are easier ways of
calculating the many-part [ monomial symmetric] functions and the
general formula is of little importance, "
With the aid of theorem 4, 1 it is possible to compute the
funct}itgns k, in the special case that the x, i=1, 2, ..., m) are

the e roots of unity in F, and X1 = %19 =

always that F is of characteristic zero. In this case we know that

««. =0, remembering

the functions S, are all zero, unless m = 0 (mod e), in which case
S, = € When applying theorem 4. 1, therefore we need only include
those partitions « ¢ P)\ whose associated numbers Bx given by

(4, 5) are all multiples of e, We denote that subset of P)\ by P)\ e’

and so for the eth roots of unity theorem 4, 1 becomes

k = "—__an];a.. Y amem) (4. 10)
1 P e
Te

A
where #(r) is the length of the partition . In particular we see
that k. = 0 unless el (x1+x2+e .o+ xr_), but it is not difficult to
show this directly.
| Finally we discuss the possibility of relaxing the
assumption that F has characteristic zero, at least for the
application (4, 10);
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Although we have chosen to expand K)\ in terms of the
functions s)\ it is nevertheless also possible to expand it in terms
of the functions a, , at least in theory. Since the functions a,
form an integral basis for the space An’ such an expansion will
have the form

k = 4,11
). e, (4.11)

where the summation is extended over all partitions of the integer

n, and each cM is an integer (possibly negative or zero.) Further-
more (4, 11) is a polynomial identity, and so it is valid over any

field, although naturally in a field of characteristic p > 0 one would
reduce the coefficients ¢ modulo p. If the variables X, are the

eJCh roots of unity, the staiement "the elementary symmetric functions
a  are all zero except that a, = (- 1)e+1, " is true in any field, so
that in order to calculate the functions k)\ of the eth roots of unity

N (which do not
depend on the field) into (4. 11) and reduce the resulting expression

wc nced only inscrt the values of the appropriate a

modulo the characteristic of the field. But it is equally possible to
find the value of (4.11) by using (4.10). Therefore it is possible to
compute the k)\ in any field by using (4. 10):

Theorem 4, 2: Let F be a field of characteristic p > 0. In order
th

to compute the symmetric function kx of the e roots of unity in F,
it is sufficient to compute the same function in the rational field and
reduce the resulting expression modulo p.

A careful application of (4. 10), which is permissible because

of theorem 4.2, will allow us to prove the main theorem of chapter V.



37
V. A COMBINATORIAL APPROACH

Throughout this chapter F=F D will be a finite prime field.
Let V= Ve(F) be on e-dimensional vector space over F whose
elements are the e-tuples v = (VO, Vis eees Vo 1) with entries from
F. For each ac F, we define a function N(v;a):N(v;a) is the number
of times the element a occurs as a component for v. The function

— — r————— — —

N(v;a) is not easily studied; let us instead write it in its formal p-
ary expansion:

N(v;a) = z Nk(v;a)pk. (5.1)

k>0

Thus N (v a) represents the kth digit in the p-ary expansion of the
number of a's which appear as coordinates for v. The advantage of
expanding N(v;a) as in (5. 1) is that it is possible to view the
functions Nk(v;a) as mappings from V into F by regarding an
integer between 0 and p - 1 as an element in the field ¥. Further-
more, since F is finite each function Nk(v; a) is in fact a polynomial
in the coordinates (VO’ Vs eens Vo 1) (To prove this one could use
an interpolation argument.) Also the function N is clearly
invariant under permutations of the coordinates of v, sothat it is in
fact a symmetric polynomial. We need not appeal to these abstract

considerations, however, because of

Theorem 5. 1: (v a)=a (1 (V —a)p 1- (vl-a)p_l, cees

p
p-1
1_(Ve~ 1" 1) ).




36

Proof: The abbreviation on the right-hand side of the equation is

to represent the symmetric function a Kk of the variables

- 1Y
Vi = 1—(Vi—a)p 1, i=0, 1, ..., e-1. Notice that the y, have the

property that y; = 11f v; = a, and y; < 0 otherwise., Theorem 5.1
is a consequence of Lucas' theorem 2, 3: in theorem 2.3 take

m = pk. We obtain that n = ( nk) (mod p). Hence Nk(v;a) = (N(;;; 9'))
(mod p), so that if we apply a 15 to the variables yg, ¥4, .., yei,
we get a contribution of 1 for each subset of order pk from
¥gs Vi vees Ye-l) which has the form (1, 1, ..., 1). This
completes the proof of theorem 5. 1.

Theorem 5. 1 shows not only that Nk is a symmetric
polynomial, but also that it has degree pk(p- 1). Hence according
to the fundamental theorem on symmetric functions it is possible
to express Nk(v ;a) as a polynomial with integral coefficients in the
symmetric functions a, :

N, (v;a) = ? c. a (5.2)

AR N U
A\

where the summation is extended over all partitions of all integers
< pk(p—l), and the c,
The object of this chapter is to apply theorem 3, 2, together

are integers.

with (5. 2), in order to obtain information about the functions N,.
We shall depend heavily on the results of chapter IV.

Let f(x) be a polynomial Fp[ x] which has no repeated
roots in a splitting field; f(x) = fl(x)fz(x) coo fm(x) with the £,
distinct and irreducible, If 8§ is a root of f(x) in a splitting field
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F*, and if fi has degree n, and exponent &,, We may assume that
F* = GF[p"] where n=1c¢,m, (nl, - P nm), and that 8 is
a primitive et root of unity with e = L. c. m. (el, gy euns em). If
g; = e/ € then it may also be assumed that g ' is a primitive eJiE
root of umty in GF[p 1] and f, (egl) =

We apply theorem 3, 2 to the polynomial f; it tells us that
for any sequence (St) e Q(f), it is possible to write the general

term as
m
: t
_ @, .5
5, = z Tr (%8 ), | (5.3)
i=1
. n,
where Tr(l) is the trace of GF[p 11 over GF[p] and the X, are

suitably chosen elements of the corresponding fields GF[pnlj

Let us expand (5. 3) by using the algebraic form for the trace:
n.~1
i

Tr(l) @) =x+xP#eee +x°

n.-1
i g
EDCACH IR L (5.4)
Lo

We regard the expression (5. 4) as a polynomial in et,
say s = P(et), where

n.-1
m i

P)= Y ) (ko i ¥ et (5.5)
i=1 j=0 keK
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In (5.5), the set X is the set of intcgers k which the
coefficient of xk in P(p) is formally different from zero. It is
clear from (5. 5) that the set K is precisely the set
{gp i=1,2, ..., m; j=0, 1, ..., n,- 1} The integers gp
are all distinct since £ 1s. assumed to ha.ve no repeated roots, and
| o N o
so the coefficient of o in (5. 5) is X .

(There is nothing new about regarding (5. 4) as a polynomial
in cpt in the case that f is squarefree; the idea is due to Mattson
and Solomon [8]. The point to be emphasized is that the only case
when theorem 3. 2 yields such a polynomial is when { is squarefree,
on account of the presence of the nonconstant binomial coefficients
( § ) when f has a repeated factor.)

Using the polynomial P of (5.5) it is possible to express

an element (St) e Q@) in the following form:

s= (269, P(eY), ..., P(5H).

We wish to compute the functions Nk(v;a) for each ve Qff),
with Q(f) regarded as a subspace Ve(F)' To do this, we must apply
theorem 5. 1 along with expression (5. 2), and compute the various
functions ar(P(eo), P(el), cee P(e%” 1) ). This function is

a = 7 P22 = T 1 Y ) 6.9)
sym sym j=1 keK

We shift our emphasis and regard (5. 6) not as a polynomial

in the single variable 8, but rather as a polynomial in the ck's.
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From this point of view (5. 6) is a linear combination of monomials

Cp Cp *°t Cp o To simplify the notation we replace ej by 8.
172 r ]

then the coefficient of ¢, ¢, -+~ ¢, in (5. 6) is clearly

172 r

k. k k
1 72 T
Y 8 8 8,1 » SO that

sym

a, = z kx cy (5.7)
()

where the summation () is extended over all unordered collections
A= (kl’ Kgy wves kr) of integers from K, c, is short for

cklck2 ses ckr, and kx is the monomial symmetric function of
the variables 8gs 815 =oe» B 10 (5. 7) is why the results of chapter
IV will be needed; for the kx in (5. 7) are the symmetric functions of
the ¢ L which are the eth roots of unity in G}?‘[pn 1, so that theorem
4, 2 will apply.

As we remarked after (4. 10), the functions kx are all zero
unless ‘kl + k2 +aee + .kr = 0 (mod e), This leads us to the concept

of the K-weight of an integer:

Definitions: If K is a set of positive integers, and if a > 0 is an
integer, we define the K-weight of a, written WK(a), as the
smallest integer s for which it is possible to write a = k; + Ky + <«
+k, with each k; ¢ K. (For example if K= {1, P, pz, } it is
clear that WK(a.) = ‘V{) (@) as defined in chapter IL)

Also define w,(a) = min W_(na); i.e., w,(a) is the least
K n>1 K K
integer s for which it is possi—ble to write ’kl + kz +oeee + .kS g 0

(mod a).
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It is now possible to state the main theorem of this chapter.

Theorem 5. 2: Let £(z) = fl(x)fz(x) “es fm(x) be a squarefree
polynomial in Fp[x] , and let the set K be as defined by (5. 5).

¥t o= ‘”K(e)’ with e the exponent of f, and ¢ = @p{%]' Then for
- all se (),

N(s;a) = 0 (mod p®) for a # 0, and

N(g;0) = e (mod p®).

Proof: Since the proof is rather lengthy, perhaps a brief sketch

is in order. The idea is to apply (4. 10) to evaluate the functions

k)\ which appear in (5. 7), and to show that each k)\ is zero when-
ever r is "sufficiently small" relative to w. This is the difficult
part of the proof and is labelled lemma 5.2, The vanishing of the

k)\ will in turn imply the vanishing of enough of the a N which appear
in (5. 2) to force each of the polynomials Nk(v; a) to be zero for

1< k<e, and a # 0. The statement about N(s;0) follows auto-

matically since » N(v;a) = e.
a

Lemma 5,1: ¥ K is the set given by (5.5), and if m,k, + myK,
+ ¢+« 2 0 (mod e), for integers m, and elements ki e K, then
EWpmy) 2 g (e).

Proof: We replace each integer m, by its p-ary expansion as a
sum of Wp(mi) powers of p and for each summand mi'ki obtain an

expression of the form
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a a
plki+pzki+--- . (5. 8)

. n,
We recall that each ke K is of the form gip], and since g;p 1z g;

(mod e) by definition, we may replace each term in (5. 8) by a bona
fide element of K without destroying the fact that the sum is = 0
(mod e). Hence starting with the expression % miki = 0 (mod e) we
obtain a sum of ¥ Wp(mi) elements of K with the same property.
But we have defined wK(e) as the smallest possible number of

elements with this property. Thus T Wp(mi) > wK(e) , as asserted.

Lemma 5,2: I mK(e) > 1+ (p- 1)10gp(r), then any monomial
symmetric function

klk

_ r
£ "Z % O = er—l

must vanish, provided that the 8, = o' are the eJCh roots of unity over

Fp and the ki are chosen from the set K,

Proof: The plan is to show that under the given conditions, the
rational integer given by (4. 10) is divisible by p. It is however not
the case that each summand o of (4. 10) has up(c) > 1, which would
be sufficient for our purposes in view of lemma 2.2, X will be
necessary first to combine certain of the terms of (4. 10) to obtain

the result. Let us first observe that since f is squarefree, (e,p) = 1,
so that the terms e%(“) in (4. 10) may be disregarded in a discussion
of divisibility by p.
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A typical partition 1 e P}\e which appears in the sum

(4. 10) with 2 = 2(rr) blocks By, By, oees B, is characterized

by the integers mij’ where mij = the multiplicity of the integer
. (Recall

iin Bj‘ Then clearly T mij =m, and ¥ mij = bj = | B,
1
that m, is the multiplicity of the integer i in )\ as a whole.) We

- are of course interested only in partitions n such that the numbers
By given by (4. 5) are all divisible by e; this is the definition of
P.°. . |

Let us recall that a given partition 1 ¢ P)\ was only
formally distinguishable from certain other partitions w' whose
blocks contained the same integers with the same multiplicities;
we assigned "labels' to the integers which occurred in ) more
than once, Our task now is to recombine those terms in the sum
(4. 10) which are distinguishable only because of the artificial

labels attached., The problem may be formulated as follows: given
m m m
3

1 2 2 3
is it possible to partition )\ into blocks Bl’ Bz’ cees BL with

a collection ) = (1 ...) of integers, in how many ways
given multiplicities mij’ assuming the integers in ) are all some-
how distinguishable? Stated this way the problem is a familiar
combinatorial one: there are my !/mn!mlz! ves mu! ordered
ways of placing the 1's, mzl/mzllmzzl cee mu! ordered ways
of placing the 2's, etc. To obtain the total number of ways we
must however account for the fact that the block lengths b need
not all be different; thus if &he block lengths (b by, eeuy b )
occur with multiplicities (1 ), We must divide the product
of multinomial coefficients by n d ! The total contribution of all
partitions ¢ with the given mult1p11c1t1es m, ij to the sum (4. 10) is
the formidable expression
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m,!
(1 : N1 (b,-1)1)

C= (it myy o e my Py T &

(nd.l) (Tm.!)

i i
T1(b,-1)!

_ r-4 i 2 _ r-1 B £
= (-1) (Hdi!)(nmij!) e’ = (-1) 5 € (5.9)

where B = n(bi-l)!, D= ndil, M= nmi].! Tt is the object of the
next few pages to show that up(C) > 1, so that by lemma 2, 2 we
obtain .kx =0 in Fp. We have already observed that the term ej(’
cannot contribute to (5.9), so that

W ©) = (B - w (D) - (M) (5. 10)

We may evaluate the terms on the right-hand side of
(5. 10) by means of Legendre's theorem 2. 2:

b () = 521-1 T (b 1-W (b;-1)) = 5_11 (2= § W (b~ 1)) (5.11)
i i
0@ =5 Y @ - W @) =531 (@ - T W () (5. 12)
1 1 -
b == Z(mij - W m)) =5 (0 - ) Womye)) (5.13)

1] ]
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combining these last three relations with (5. 10), we obtain

4,() =5}~1 (T W (my )+ YW @) - 22 - pr(bi-m. (5.14)

i, i

Since p.p(C) is an integer, if we only wish to show that
15(C) 2 1, it will be sufticient to drop the factor -15-}-1 trom (5. 14)
and prove that the remaining expression is positive. This will be

done by bounding certain of the terms in (5. 14). We need one more

lemma.
n

Lemma 5. 3: Suppose T Sy = S for integers 8y > 0. Then
k=1 '

T Wp(sk) < n(p- 1)10gp(1 + S/n).

Proof: We begin by showing that for any integer s > 0 it is true
that

Wp(s) < (p- l)logp (s+1) . (5. 15)

For a fixed W > 0, let us find the least integer s such that

W p(S) =W, This can most easily be done by writing W = k(p-1) + m
with 0 < m < p-1, and observing that the smallest such s must use
p-1 1's, p-1 p's, ..., {(p-1) pk-l’s and finally m pk‘s. Hence

s = pk—l + mpk = (m+1)pk- 1. For this value of s, (5.15) reduces to

m < (p- 1)10gp (m+1) . (5.186)
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But (5.16) is true for m = 0, m = p-1, and the function x/logp(x+1)
is monotonic increasing for x > 1. Since the right-hand side of

(5. 15) is itself a monotonic function of s, (5.15) must be'generally
true,

Because of (5.15) we may write

n

Y, Wylsy) < (0-1) ) log (s,+1) = (p-Dlog (rr{sy+1) ).
k=1

But since 1 (sk+1) =8 + n, the maximum value of the product w(sk+1)
is attained when s, +1 = 1/n (S+n)=8/n+ 1., Hence

S S
Y, Woley) = (o-Diog (1+ )" = nfp-Dlog (1 +3),
as asserted,

Note: Although the bound given by lemma 5. 3 is usually very crude,
the example Sy, = pr-l, k=1, 2, ..., n, shows that it is sometimes
sharp.

We apply lemma 5.3 to the term ¥ Wp(bi- 1) of (5.14), and
obtain

L

LW (1) < (o-Dlog (F) - (5.17)
1=1

We apply lemma 5.1 to the sum ¥ Wp(mij)’ and obtain that
for each j, ¥ W _(m..) > w, so that
i P 1]
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'L Wp(mij) > wb . (5.18)
i,j

Combining (5.17) and (5.18) with (5.14), we conclude that

1 r
Rp(€) 2 5oy (wt + ) W (d) - 22 - £(p-Diog (3)).
Hence in order to prove that up(C) > 0, we need

W+ = ZW (di) + (p- l)logp(i,) > 2+ (p- l)logp(r) . (5.19)
But by hypothesis w > 1 + (p- 1)logp(r), S0 it remains to show that
1 .
i iwp(di) + (p- 1)logp () > 1.

But if (p-l)logp(&) < 1, we have Lp_l < p, sothat 4 =1,
in which case % Y Wp(di) > 1, This proves (5.19) and also that
up(C) > 1, so that by lemma 2, 2, k)\ =0 in Fp. This completes
the proof of lemma 5. 2.

Lemma 5. 2 allows us to complete the proof of theorem 5. 2
without much dlfflculty. Accordmg to (5.2), N 1n.vplves only the
symmetric functions a, with r < p (p- 1). Fufthermore, if a # 0,
N(0;a) = 0, and so also O(0 a) = Nl(O a)=-+++ =0; i.e., no
constant terms are involved in the polynomials Nk(v;a) with a # 0.
Therefore if each a - l<r<p (p- 1) is zero, we have NO = Nl

= =N _=0, and so N(v;a) £ 0 (mod pk+1)

K . But as we have seen,
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when v is restricted to the subspace Qf(f), each a,, is a polynomial
in the functions k)\ , with ) a partition of r involving only elements
of K; this was equation (5.7). By lemma 5.2, each kx will vanish
if 9>1+ (p-l)logp(r). Therefore in order that N(v;a) = 0 (mod p°),
it is sufficient that each a, = 0 with r < pe_1 (p-1); i.e.,

o> 1+ (p- l)logp(p 'l(p— 1) =1+ (p-1){t-1) + (p- 1)10gp(p— 1); this
is equivalent to

w-1
e e-1+ logp (p-1) .

And since logp (p-1) < 1 this follows from the hypothesis %—_—1— > €.
Hence theorem 5. 2 is proved for a # 0, and as we remarked earlier,
the statement for a = 0 follows immediately since ¥ N(r;a) = e for
each ve Qff). a

In order to be able to make use of theorem 5. 2, it is
necessary to have an effective means of calculating the value of
w = wK(e) = min {W.K(me): m=1, 2, ... } , and as given the definition
appears to involve an infinite amount of calculation, But it is easy to
see that this is not the case, as follows:

‘Suppose that a minimum value for WK(me) is attained by

an equation of the form

k1+k2+...+kt50(mode). (5.20)

Now each ki in (5. 20) is an element of K and so has the form gipJ

n,
But gip ! = 8 (mod e), so that we may as well assume that a term

of t_he form gip]

gipJ occurs more than p-1 times in (5. 19) we could replace it by fewer

which occurs in (5.20) has j < n.. Also if a term
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terms of the same form; for example p - g p would be replaced by
+1.
g;P

number of elements of K, this cannot happen. Thus the left-hand
side of (5. 20) is bounded by

; but since (5. 20) is assumed to mvolve the minimum possible

m Ili-l n
(-1 § g’ =) g0 -1) = Me,

i=1 j=1 i
for suitable M. We have proved

Theorem 5, 3: wK(e) = min {WK(me): m=1, 2,..., M} .

Remark: In the case that f is an irreducible polynomial of degree
n, thesetK1s K—{l P, pz,.. } In this case M= E
== (p -1), so that mK(e) = mp(e) may be found by computing the
Values Wp(e) Wp(Ze), cees Wp(Ee)

Let us observe that the value w may be interpreted as the
least integer t for which it is possible to write 1 as a product of t
of the roots of f. Using this interpretation it is possible to state
theorem 5. 2 in a slightly different form, which does not add anything
essentially new to the theory, but which is possibly more suggestive:
let us define a sequence of polynomials f = £15 f9y «+., Where fk(x)
is the polynomial of F [X] whose roots are all possible products of

k roots from among those of f, so that f (x) has degree n™

Theorem 5.2': Let f be a squarefree element of Fp[x]. Hwyis
the smallest integer such that (x-1)|f m(x), and if ¢ = [ %—:% 1, then
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N(s;a) = 0 (mod p°) a#0, and
’N(S;O) = e (mod p°)
for all s e. Q(f).

Corollary 5.1: If w > p-1, then N(s;a) is divisible by p for each
a # 0, and each s e Q(f).

Corollary‘ 5.1 is well-known for the case p=2, where the
hypothesis reduces merely to (x-1) f f(x). But the result had been
thought to be peculiar to the binary case previously. (Selmer [ 10,

p. 1577 ).
Let us illustrate how the theorems in this thesis can be applied

to a particular example: consider the linear recurrence

-s.=0

+ S k

*Spro T Sk

Sk+6 T Sk+3
over GF[3]. The associated polynomial is f(x) = x6 + X3 + x2 -x-1,
and according to Church's table [2], f(x) is irreducible and belongs
to exponent e = 104. Using only this one borrowed piece of information,
it is possible to describe completely the distribution of the elements
from GF([3] (which we take to be 0, +1, and -1) in the space Q(f).
Here eE = pn-l becomes 104.7 = 36—1.

Let us first apply corollary 3.2; i.e., we regard Q(f) not
as a vector space but as a set of E =7 nonzero cycles of elements
from GF[3], which correspond to the cosets of the cyclic subgroup

T of order 104 in GF[SGJ. Since ¢ = 3 is a primitive rootof E = T,

x7-1 has only two irreducible factors and so only two distinct
distributions of trace values occur among the cycles of Q(f); i.e.,
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the subgroup T has one distribution and all other cosets Tx have

the other distribution. Hence we denote by SO’ Sl’ S_1 and CO’

Cl’ and C 1 the number of zeros, ones, and minus ones occurring

in the subgroup, and the cosets, respectively. Since the trace
assumes every value in GF[3] 35 = 243 times, we obtain

S, + 6C, = 243 - 1 = 242
S+ 6C, = 243
S_, +6C_; =243,

as well as the obvious relations

Sq+ S, +8 . =104

0 "1 1

Cy+Cq+C_y =104

We now wish to apply theorem 5,2, and to do so it is
necessary by theorem 5, 3 to compute the values W3(104k) for

k=1, 2, 3, 4, 5, 6, 7. The ternary expansions are

106=3%12.3%2,3+2.1
208 =2.3%+3%+2.3%:1
5 3 .2

312=3"+2.3"+3"+2:3;

4 L2

416 =3°+2.3% 1 3% 42.1 ;

520 =2.3°+3%+ 2.3+ 1

H

b

H

b

W3(104) =6
W3(208) =6
W3(312) =6
W3(416) =6

W3 (520) = 6

(5.21a)

{5.21b)

(5.21c)

(5.22a)

(5.22b)
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624=2-39+3%4:2.3% 43 ; W,(624) = 6
728 = 2. 3°42. 3% 2. 35,2, 32,2, 342 W, (728) = 12..

Consequently w3(104) = 6, since [ -g—};— 1 = 2, theorem 4. 2
" shows that

5

CIE S_la C_l'.'-. 0 (mod 9)

Sp2Cpz 104z S (mod 9) . (5.23)

0
From (5. 20a) and (5. 23) we obtain (242 - SO)/G = C0 =5

(mod 9), from which it follows that 8 = 212 = 50 (mod 54) so that
S0 = 50, (The possibility S0 = 104 corresponds to the all-zero
solution in Q(f) which has explicitly been excluded from consideration. )
Similarly from (5.20b) and (5.23) we obtain S; 2 243 = 27 (mod 54)
and finally S_1 g 27 (mod 54). Hence S1 and S_1 are either 27 or
81, but the possibility 81 is excluded by (5.22a). Hence §;=8_4=2T
Hence also, C 0= 32, C1 =36, C 1° 36. This completely solves the
distribution problem for qf(f),

y It would be interesting to know whether or not theorem 5.2
is the best possible of its kind; i.e,, as there exist polynomials f

for which either

N(s;a) = 0 (mod p€+1) a#0, or (5.24)

e+1)

N(g;0) = ¢ (mod p (5.265)

b

for all se Q(f)? It is the feeling of the author that this happens only
rarely:
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Conjecture: (5.24) is never true for all s e q(f), and (5.25) can
occur only for p > 2.

One reason that a = 0 seems to play a special role in the
conjecture is that the proof of theorem 5. 2 for a = 0 only made use
of the fact that 5§ N(s;a) = e. It is possible that each N(s;a) # 0

- (mod pﬁl), while ¥ N(s;a) =0 (mod p€+1) for p> 2. And in fact
af0
this sort of thing happens for p =3 and f(x) = X5 - x - 1 which has

exponent 121, The values of N(s;1) and N(s;-1) are 45 and 36 for
certain cycles se Q(f), and 36 and 45 for the others. But
36 +45=81= 34, whereas theorem 5, 2 gives only e = 2,

Let us observe finally that if we apply theorem 5. 2 to the
case where f(x) is a primitive polynomial of degree n in Fp[x] 5
i.e., when f has exponent e = p’-1. Here wp(e) = Wp(e) = n(p-1),
so that € = n-1. And in this case theorem 5. 2 is exact since it is
obvious that N(s;a) = pn'1 for a # 0 and N(s;0) = pn-l—l, for in
this case the subgroup T of theorem 3.1 is the complete
multiplicative subgroup of GF[pn] , S0 that the trace assumes
every nongero value pn_1 times on T, and zero pn'l-l times.
Thus theorem 5.2 can be exact for both large and small values of
e, and so it is unlikely that there is a general theorem which is

stronger than theorem 5, 2,
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